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Abstract	

The present study assessed whether fishing gear was selective on behavioural traits, 

such as boldness and activity, and how this was related with a productivity trait, 

growth. Female guppies Poecilia reticulata were screened for their behaviour on the 

shy–bold axis and activity, then tested whether they were captured differently by 

passive and active fishing gear, here represented by a trap and a trawl. Both gears 

were selective on boldness; bold individuals were caught faster by the trap, but 

escaped more often the trawl. Boldness and gear vulnerability showed weak 

correlations with activity and growth. The results draw attention to the importance of 

the behavioural dimension of fishing: selective fishing on behavioural traits will 

change the trait composition of the population, and might eventually impact resilience 

and fishery productivity.	

Keywords: activity; boldness; fishing; gear avoidance; Poecilia reticulata. 
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INTRODUCTION 

Humans have profound effects on natural ecosystems. In particular, humans exploit 

natural populations in a selective manner, so that the most desirable individuals are 

removed first. Evidence is accumulating that such selective harvesting is having 

ecological and evolutionary impacts in a wide range of fish (reviewed by Law 2000; 

Palumbi, 2001; Heino & Dieckmann, 2008). However, most of the studies have 

focused on life-history and morphological traits.  

 A behavioural change is the key first response to human-induced environmental 

changes; such behavioural responses allow coping with novel habitats, resources, 

enemies, etc.  (Sih et al., 2011; Tuomainen & Candolin, 2011). Fishing is unlikely to 

be an exception in triggering behavioural responses: fishing activities may cause 

avoidance of certain areas (e.g., passive gear led to avoidance of diel vertical 

migration in cod Gadus morhua L. 1758; Olsen et al., 2012), increased vigilance 

behaviour (Walsh et al., 2006), gear avoidance (Beukema, 1969), and modified social 

interactions and reproductive behaviour  (Suski & Philipp, 2004; Sutter et al., 2012). 

Capture process itself may depend on behavioural responses triggered by the fishing 

gear, such as the herding effect in trawling (Wardle, 1993). Not surprisingly, 

knowledge on fish behaviour is utilized in the improvement of fishing gears, reducing 

by-catch of non-target species and under-sized individuals (Engås, 1994). 

It is expected that behaviour affects differently capture efficiency of different 

fishing gears and methods. Passive gear (that is, static gears such as traps and gillnets) 

relies on fish movement and exploratory behaviours in both components of the 

catching process, encounter with the gear and retention by the gear (Rudstam et al., 

1984). Passive gear might be selective for behavioural types as bold individuals are 

associated with more exploratory and active behaviours (Heino & Godø, 2002; Biro 
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& Post, 2008; Uusi-Heikkilä et al., 2008; Wilson et al., 2011; Olsen et al., 2012). In 

contrast, the catchability of active gears (that is, mobile gears such as trawls, dredges 

and seines) is less straightforward as these gears are based on chasing the fish. In this 

case, innate predator-avoidance reactions influence the capture, and it is possible that 

shy fish are more easily frightened by the approaching vessel and gear (Ona & Godø, 

1990; Heino & Godø, 2002). Thus, shy individuals might be caught less if they freeze 

behind boulders on the seabed or dive under the path of an approaching mid-water 

trawl, but more if their reaction response is slower and they do not swim away from 

the approaching trawl in time. However, little is known on how fishing gear affects 

behavioural traits and this effect might be contrary to initially expected (e.g., angling 

caught more often timid, rather than bold, bluegill sunfish Lepomis macrochirus 

Rafinesque 1819; Wilson et al., 2011).  

Behaviours that could be linked vulnerability (e.g., boldness, activity and 

exploration) show consistent inter-individual variation and are heritable (Philipp et 

al., 2009; Chervet et al., 2011; Arimoyo et al., 2013), thus selectivity on them has 

potentially evolutionary consequences. In addition, behaviour-linked vulnerability 

might be related to other traits such as physiological and life-history ones (Uusi-

Heikkilä et al., 2008). It has been shown that vulnerability to fishing gear can be 

related to growth (Biro & Post, 2008; Redpath et al., 2009) and metabolic rate 

(Redpath et al., 2010). In addition, vulnerability can be related to other behaviours 

such as boldness (Biro & Post, 2008), activity (Olsen et al., 2012), and parental care 

(Cooke et al., 2007). Therefore, selective removal of one behavioural type by fishing 

might have a profound effect on the diversity of traits in a population.  

Behavioural changes towards gear can be adaptive: avoiding being caught 

obviously increases survival, a key fitness component. However, correlated changes 
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in other traits or in other situations may be maladaptive. An individual hiding under a 

rock or being very passive may be safe from predators (including fishing), but it will 

not have many chances for foraging (Walters, 2000; Killen & Brown, 2006; Jørgensen 

& Holt, 2013). Adaptive or not, these behavioural and correlated trait responses are 

likely to have an impact on the profitability of the fishery. If a fishery systematically 

removes highly vulnerable individuals, only those more difficult to catch will remain 

in the population (Miller, 1957; Philipp et al., 2009). If these changes are at least 

partly heritable (Philipp et al., 2009), such practices will over time reduce the value of 

a fish stock for commercial and recreational fishers alike. Thus, increased knowledge 

on effects of fishing on behaviour can be crucial for conservation of interspecific 

diversity and biology—and for the efficiency and profitability of fisheries. 

The aim of this paper was to study whether fishing gear are selective on 

certain behaviours and whether such vulnerability and behavioural traits are correlated 

with each other and with growth. The Trinidadian guppy Poecilia reticulata Peters 

1859 was used a model species, due to its amenability to laboratory testing and the 

availability of established protocols for studying their behaviour and other traits. In 

particular, the study focused on vulnerability of behavioural types along the shy–bold 

axis, which is heritable in fish (Arimoyo et al., 2013). While fishing gears are not 

purposely selective on boldness, this behaviour has been extensively studied and is 

correlated with many other behavioural, life-history and physiological traits in fish, 

including guppies and important capture fisheries species such as cod. In addition, 

boldness, activity and exploration are thought to play a role in cod escaping trawls 

and nets (Hansen et al., 2009; Olsen et al., 2012). It was tested whether female 

guppies were captured differently according to their boldness behavioural type (i.e., 

shy or bold), which is a consistent behaviour in guppies (Burns, 2008). Female P. 
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reticulata screened for this behavioural trait were tested with two types of fishing 

gear, passive and passive gear, here represented by a trap and a trawl. Additionally, to 

look for possible relations between boldness and other traits, experimental fish were 

assessed for growth and activity/exploration behaviour. Studying selection toward 

boldness and the indirect selection towards other, more directly ecologically relevant 

traits (growth, exploration, etc.) in guppies can bring insights on the selectivity of 

fishing towards behaviour in commercially relevant species and its consequences for 

the fishery. 

  

MATERIALS AND METHODS 

This study was performed at the University of Bergen, Norway, with first generation 

offspring of wild-caught P. reticulata from the Yarra River in Trinidad, the West 

Indies. The wild individuals were caught with active (hand nets) and passive fishing 

gears (minnow traps) both in the edges and in the centre of the river, to reduce any 

bias in the sampling. In addition, individuals were caught both in areas with current 

and still water. Sixteen wild-caught females were used to breed sixteen families. 

Females had mated in the wild, likely with multiple males, and individuals within 

each family were half-siblings or full-siblings. Wild-caught females were housed 

individually in 2-litre aquaria and fed ad-lib newly hatched brine shrimp, Artemia 

salina (Silver Star Artemia), in the morning, and fish flakes (TetraMin, Tetra) in the 

afternoon. Females were checked twice a day for offspring, which were removed from 

the mother aquaria by hand netting as soon as they were found. Offspring of a single 

female were kept together in broods until sexing was possible, then males and females 

were separated. Six virgin mature F1-females from each of the 16 families were 

chosen for this study. We only chose virgin females to eliminate possible differences 
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of sex and gestation stage. They were further reared isolated in 2-litre aquaria (42 

days before the beginning of the experiments) under the same light (12:12) and 

temperature (25  0.5 ºC) conditions and fed the same amount of food (20 µl of 

concentrate brine shrimp per day per female). All aquaria, including those with wild-

caught females, were placed in the same circulation system with constant flow-

through water (12:12 light and 25  0.5 ºC temperature).  

Each individual was used once, in a randomized order, in each of the four 

different tests (see details below): 1) boldness, 2) vulnerability to being capture by a 

trap, 3) vulnerability to being capture by a trawl, and 4) activity. The different 

experimental arenas were cleaned and water was renewed between individual tests. 

Growth rate was estimated as change in length per day from beginning to the end of 

the study. The values obtained in the present study (mean ± SE: 0.37 ± 0.07 mm day-

1) is comparable to other studies on P. reticulata maintained in similar conditions 

(0.25 mm day-1; Auer, 2010). Thus, there is no evidence to suggest that the testing and 

handling negatively affected individual growth. 

All females were dissected at the end of the study and found to be mature but 

virgin, except one individual that was pregnant; this female was dismissed from the 

study. Therefore, a total of 95 individuals were considered in this study. Females were 

killed by an overdose of MS222 (Metacaine) and their heads were cut off to ensure 

brain death prior dissection.  

BOLDNESS 

Here boldness in fish is considered sensu Gosling, (1998) and Toms et al. (2010), i.e., 

responses to novel events and environments (for a contrasting definition see Réale et 

al., 2007). Boldness is considered a behavioural personality trait as in a population 
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there are individual differences that are consistent in time and/or across contexts 

(Budaev, 1997; Dall et al., 2004; Gosling, 1998; Réale et al., 2007). In P. reticulata 

boldness is most reliably measured as susceptibility to a novel environment in an 

Open Field Test (OFT; Burns, 2008).  

OFT was conducted by introducing a fish in an experimental arena (a round 

plastic tub of 24 cm diameter and 4 cm of water depth), unknown to that individual, 

and recording its behaviour, from the time of release, with a digital video camera 

(Sanyo-VPC-WH1). The fish was first placed inside a black plastic pipe (7 cm 

diameter) in the middle of the arena to acclimatize for 60 s; once the pipe was lifted 

the fish could swim freely for three minutes. Freezing time was defined as the total 

time the individual was immobile for a period longer than two seconds during the 

three minutes of the test; shorter breaks were considered part of normal swimming 

behaviour. The estimation was done from the video file using Etholog 2.2 (Ottoni, 

2000). Freezing time is considered the best measurement of boldness in P. reticulata 

(Burns, 2008) and is commonly used for other fish (Toms et al., 2010). Fish with a 

relatively long freezing time were considered shy, while those with a relatively short 

freezing time were bold.  

Measurement of the freezing time in P. reticulata has been shown to be 

repeatable in different populations and between sexes (Burns, 2008), and this was 

confirmed for the population in our lab too. A pilot OFT study with 155 individuals 

tested twice showed that 48.5% of the variance was explained by inter-individual 

differences being maintained between tests (Linear Mixed Model based-Repeatability, 

R = 0.49, 95% C.I. = 0.35–0.60, P = 0.0001 statistical significance based on 10000 

permutations; Nakagawa & Schielzeth, 2010). Some of the residual variance was 

explained by mean-level changes in behaviour between the two tests. Once this 
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residual variance was controlled for 51% of the variance was explained by individual 

differences (Radj = 0.51, 95% C.I. = 0.38–0.62; P = 0.0001). A different coloured 

arena was used in each of the two trials (similar to the alternate form of OFT in 

Burns; 2008), thus the measurement of boldness was consistent over time and context. 

Similar values of R and Radj were found in brown trout Salmo trutta L. 1758 and were 

interpreted as behavioural consistency (Adriaenssens & Johnsson, 2012) and are 

above average repeatability values for behavioural traits (Bell et al., 2009; Wolak et 

al., 2011). 

VULNERABILITY TO TRAP 

The trap consisted of a transparent plastic bottle (a 75 cm2 cell culture flask) where 

the top was cut off and reversed (9.5 x 7.8 x 3.5 cm), mimicking a small minnow trap 

with one opening, typically used for catching small freshwater fish. The inlet of the 

bottle was reduced to 1.4 cm diameter with a plastic film shaped as a funnel glued to 

the inlet. This way the fish were unable to escape once inside the trap. The trap was 

placed inside a white round plastic tank (60 cm diameter and 4 cm water depth). It 

was set 10 cm from the edge of the tank with the inlet oriented anticlockwise and 

parallel to the edge. Each fish was singly placed with a hand net in the experimental 

arena, in the opposite side of the tank relative to the trap. Each fish was given 100 min 

in the experimental arena. The time until trapping was recorded. Fish that did not get 

trapped were given a notional score of 100 min. The experimental arena was checked 

every five minutes and trapped fish were released immediately when found inside the 

trap. 

VULNERABILITY TO TRAWL 
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The experimental ‘trawl’ consisted of a vertical net moving along the horizontal axis 

of a glass aquarium (90 x 20 x 17.5 cm) with 5 cm water depth (Fig. 1; similar to the 

trawl apparatus of Brown & Warburton, 1999a). The trawl consisted of a vertical 

green plastic net of approximately 2.5 x 2.5 mm mesh size (made of two 

superimposed garden meshes of 5 x 5 mm mesh size), mounted in an aluminium 

frame, and pulled along rails on the aquarium sidewalls. A constant velocity of 5 cm 

s-1 was maintained by winching the net frame with an electrical motor (Multifix 

constant). The net covered the whole transverse section of the tank, without allowing 

the fish to pass through, except through four escape holes at the bottom of the trawl: 

one in each corner (1 x 1 cm) and two holes (2 x 1 cm) 3 cm from the corners (see 

Fig. 1). This experimental trawl tries to imitate a bottom trawl where fish can escape 

under the footrope because of stones and other irregularities of the sea floor. 

Each fish was tested alone. The fish were allowed 60 min to acclimatize inside 

the tank, with the trawl at 14 cm from the wall of the tank and with the holes of the 

trawl covered. It took 15 s for the trawl to move from one end of the tank to the other. 

The trawl stopped 1 cm before the end of the tank to avoid damaging the fish. Here 

the trawl was held immobile and the fish was given 60 extra seconds to escape the 

trawl through the holes. Fish that did not escape the trawl were given a notional score 

of 75 s. Afterwards, the trawl was returned to the starting position and, after an 

interval of two minutes for fish acclimation, the net was pulled again. This procedure 

was repeated five times, in order to assess whether the escaping behaviour differed 

between trials, and thus, to determine learning or habituation in the fish. The whole 

procedure was recorded with a video camera and time to escape the trawl was noted 

for each trial. 
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The trap and the trawl were designed in such a manner that the stress during 

the catching process was minimized. Caught fish were in a limited space, but they 

could still swim freely; no signs of high stress were observed. The fish were not inside 

the trap and trawl longer than five minutes and one minute, respectively.  

LOCOMOTION 

Locomotion or activity refers to the general activity of an unstressed individual, i.e., 

in a non-novel, non-risky environment (Réale et al., 2007; Burns, 2008). The effect of 

activity was assessed in order to disentangle whether vulnerability to fishing gear was 

associated with activity rather than boldness. Locomotion was determined from video 

recordings of the trap test. Therefore, the experimental arena was the same as 

explained above, a white round plastic tank of 60 cm diameter and 4 cm water depth. 

Fish movement was recorded for five minutes, starting ten minutes after the fish was 

introduced to the arena. This time frame was chosen to allow some acclimatizing; 

none of the fish got trapped by this time.  

The videos were analyzed for trajectories of movement with the software 

LabTrack 2.3 (Bioras Aps, Denmark). Fish position was assessed every fifth frame of 

the video recorded at 31.3 frames s-1. Thus, over the five minutes recorded we 

assessed the position of the fish in 1878 frames. Eighteen individuals are missing 

from the activity assessment, as their videos could not be analyzed with the standard 

settings, in a comparable manner with the rest. From the coordinates of each position 

of the fish, we obtained the total distance moved and the total area covered by 

movements. 

These measurements of movement are considered as general fish activity in 

the present study because movement was measured after an acclimation of ten 
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minutes in the experimental arena. It is assumed that at the time of measuring the 

arena was no longer a novel and stressful environment, but acknowledged that the 

presence of the trap might have played a role as a novel object and affected the 

measurement. In such case activity might be confounded with exploratory behaviour. 

Exploration is an individual’s behaviour to collect information about a new 

environment and object (Réale et al., 2007; Burns, 2008). Burns (2008) found that 

activity and exploration are correlated and thereby confounded in novel object tests 

for P. reticulata. In such tests, general locomotion is associated with activity in a 

known environment, while exploration could only be measured as inspecting 

behaviour oriented to the novel object within few centimetres (Burns, 2008). 

Therefore, in the present study the measurement of movement can be interpreted as 

activity. 

STATISTICAL ANALYSIS 

Statistical analyses were performed with software R 2.14.1 (R Development 

Core Team 2012). A principal component analysis was performed to assess 

covariability between the different behavioural variables: freezing time, distance 

moved, area covered, trapping time and trawl escapement time. All the time variables 

were square root transformed, while the activity ones were untransformed. These 

variables were reduced to three principal components, which were then each tested for 

an effect of growth with a linear mixed model (LME). Each LME performed had one 

principal component as response variable, growth as a fixed effect, and family as 

random intercept. In addition, pair-wise correlations between all the variables were 

calculated. Time until trapping and time until escaping the trawl were assessed with 

survival analysis with censoring (trapped/not trapped and escaped/not escaped, 

respectively). These survival analyses not only consider how long it takes the fish to 
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get caught, but also whether it gets caught or not. Time until trapping was tested with 

a parametric survival analysis (PSA; R package “survival”; Therneau, 2012a) for the 

effect of freezing time as a proxy for boldness, with family as random effect (frailty). 

Time until escaping the trawl was tested for personality and trial number (repetitions 

of the trawling test) effects with a non-parametric survival analysis (NPSA; R 

package “coxme”; Therneau, 2012b), with individual identity nested within family as 

a random effect. A Tukey’s HSD posthoc test was performed to assess differences 

between trials (R package “multcomp”; Hothorn et al., 2008). The same NPSA model 

was performed with the factor boldness type (shy or bold), characterized by freezing 

times higher and lower than the median time (28.9 s) to further understand the effect 

of trial in each of the behavioural types (shy or bold). Similar survival analyses with 

censoring were performed to test the effect of activity on trapping (PSA with family 

as random effect) and trawling (NPSA with individual identity nested within family as 

a random effect). In both survival analyses total distance moved and area covered 

were the covariates included as proxies of activity. 

We found that in a linear mixed effect model with family as random factor the 

freezing time (square root-transformed) was affected by the weight at the end of the 

study and by when the open field test took place in the sequence of tests. Therefore, 

these factors were included as covariates in all survival analyses mentioned above. 

Neither of the activity measurements was affected by those factors in a linear mixed 

effect model with family as random factor and area covered or distance moved as 

response variables.  

In all tests freezing time was considered as a continuous variable. However, 

we additionally classified individuals with freezing time under or equal to the median 

(28.9 s) as bold (N = 48), while those with freezing time larger than the median were 
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classified as shy (N = 47) for illustration purposes. In addition, we used the shy and 

bold categories in a second NPSA (boldness type as factor) model for trawling time to 

be able to interpret the results of the first NPSA model (freezing time as covariate; see 

results for details). We repeated this test only considering the 30 shyest and the 30 

boldest individuals. 

In addition, intra-class (linear mixed model based-) correlation coefficients 

were calculated as estimates of repeatability of trawling time among the five trawling 

trials (R package rptR; Nakagawa & Schielzeth, 2010).  

RESULTS 

BOLDNESS 

Freezing time in the open field test (OFT) was highly variable (Fig. 2). Interpreted as 

a proxy for boldness, this result suggests high variability along the bold–shy axis. 

Freezing time was not affected by differences in age (LME: t27 = -0.11, P = 0.90), 

length at the beginning (t27 = -0.90, P = 0.37) or at the end of the experiment (t27 = 

0.90, P = 0.37), weight at the beginning of the experiment (t27 = -0.89, P = 0.37), 

growth (t27 = -0.90, P = 0.37; see also Table I), nor any of the activity variables 

(distance: t27 = -1.47, P = 0.15; area: t27 = -0.88, P = 0.38). However, freezing time 

was positively associated with when in the sequence of behavioural tests the open-

field test was performed: individuals tested for boldness after being tested for trawling 

and trapping froze for a shorter time than those first tested for boldness (LME: t71= -

3.06, P = 0.003). Individuals assessed in OFT in the second place did not differ from 

those assessed in the third or first place.  

LOCOMOTION 
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The total distance moved varied between 183 cm and 1780 cm (mean ± SD: 676 ± 

4314 cm, N = 77) and the total area covered between 85 cm2 and 885 cm2 (mean ± 

SD: 539 ± 112 cm2, N = 77); these variables were positively correlated (rp = 0.43, t75 = 

4.18, P = 0.00007). Neither of these activity variables was correlated with freezing 

time. Growth rate was weakly correlated with distance (Pearson’s correlation: rp = 

0.27, t72= 2.4, P = 0.01) but not with area (Table I). 

BEHAVIOURAL ASSOCIATIONS 

Principal Component Analysis (PCA) of the behavioural traits (excluding area 

covered due to its strong correlation with distance) resulted in the first two principal 

components (PC1, PC2) explaining 65% of the variance. The loadings of PC1 were 

high and positive for distance, showing positive association between them, and 

negative for time to be trapped, suggesting that active fish were trapped fastest. For 

PC2 the loadings were high and positive for trawl escape time, and high and positive 

for freezing time (Table II). These results suggest that vulnerability to trap/activity, 

vulnerability to trawl/freezing time represent two, partly independent aspects of 

behavioural diversity in guppies. 

Growth was not correlated with PC1, but it was negatively correlated with 

PC2 (rp = 0.32, t53 = -2.49, P = 0.01), indirectly suggesting a positive association 

between growth and freezing/trawl time.  

VULNERABILITY TO TRAP 

Only 28.4% of individuals got trapped, from those the time to get trapped ranged 

between 16 to 94 min (mean ± SD: 55.7 ± 23.8 min, N = 27) was affected by freezing 

time (PSA: 2
1 = 3.61, P = 0.05), when being controlled for the effect of test order 
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(PSA: 2
1 = 0.01, P = 0.93). Moreover, freezing and trapping times were positively 

correlated (Pearson’s correlation: rp = 0.20, t96= 2.03, P = 0.04; Table I). Shy 

individuals, i.e., those with longer freezing times, had longer capture times than bold 

individuals (Fig. 3a). Time to get trapped was not affected by total distance moved 

(PSA: 2
1 = 0.03, P = 0.86) or by area covered (PSA: 2

1 = 1.37, P = 0.24). 

VULNERABILITY TO TRAWL 

In 87% of trials the individual managed to escape the trawl (N = 475, 5 trials per 

individual), and all the individuals managed to escape the trawl at least once. Time to 

escape from trawl was negatively affected by freezing time (NPSA: z = -1.99, P = 

0.04) and trial, even after controlled by the effect testing order (NPSA: z = 0.50, P = 

0.62). Time to escape the trawl was not affected by activity (NPSA, area covered: z = 

-0.19, P = 0.85; total distance: z = -0.55, P = 0.58). Shy individuals needed more time 

to escape (Fig. 3b), however, this time also depended on the trial number (Fig. 4). 

Fourth and fifth trial resulted in a longer escape time than the first trial (Tukey HSD: z 

= -2.8, P = 0.03 and z = -3.01, P = 0.02, for respectively 4th and 5th trial).  

The time to escape the trawl was also assessed using boldness type as a binary 

explanatory variable (bold vs. shy, categories divided by the median freezing time, 

see methods for details). The significant interaction between boldness type and trial 

number showed that the difference in time to escape the trawl between shy and bold 

fish depended on trial number. Bold fish were not affected by trial number in their 

time to escape the trawl (Fig. 4). Shy fish did not differ from bold ones in the first 

trial, but in trials 2 to 4 shy individuals had longer escaping time than bold ones 

(NPSA: trial 2: z = -2.71, P = 0.006; trial 3: z = -2.46, P = 0.01; trial 4: z = -2.41, P = 

0.01). In the fifth trial the difference was no longer significant (Fig. 4). The trawl 
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escaping behaviour was repeatable among trials, but the variation explained by 

individual differences was low (R = 0.25, 95% C.I. = 0.16–0.35; P = 0.0001). 

DISCUSSION 

In the present study, Trinidadian guppies Poecilia reticulata exhibited a large 

variation in their behavioural traits, and this variability was linked to their 

vulnerability to being captured by “fishing” gear. This experiment illustrates that both 

passive and active fishing methods are selective with respect to boldness, a trait 

known to be heritable in fish (Arimoyo et al., 2013), and therefore, have the potential 

to drive evolutionary change in behavioural traits.  

The experimental trawl caught more often shy individuals with long freezing 

times than bold ones, which were better at finding their way out of the trawl. This 

effect of boldness on ability to escape the trawl was apparent despite the fact that 

trawl escape behaviour presented a high variation within individuals. Thus, the 

present study shows the potential selectivity of trawl-like fishing gear on fish 

boldness. The differential vulnerability of boldness types to trawls has previously 

been suggested not to be strong enough to be relevant (Biro & Post, 2008). However, 

Wilson et al. (2011) showed that catchability by active and passive fishing gears 

depends on fish boldness: L. macrochirus caught by seine were bolder (measured as 

shorter latency to exit a refuge to a novel environment) than individuals caught by 

angling.  

The escape time of shy individuals differed between trials, while this was not 

the case for bold fish confronted with the trawl, suggesting learning behaviour. 

However, in our experiment time to escape increased over time for the shy fish, which 

is the opposite of what is expected if avoidance is a learned skill, as a number of 
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earlier studies suggest. A tendency of faster escape was found over repeated trials in 

an experimental study rainbowfish Melanotaenia duboulayi (Castelnau 1878) were 

fished with an experimental trawl similar to the one used here (Brown & Warburton, 

1999a); this tendency was present when M. duboulayi was tested in groups of five 

individuals, but disappeared when pairs were tested (Brown & Warburton, 1999b). On 

the other hand, haddock Melanogrammus aeglefinus (Linnaeus 1758) initially avoided 

penetrating a mesh curtain, but the time of later penetrations was reduced as a result 

of previous experience (Özbilgin & Glass, 2004). These studies, together with the 

present experiment, show that fish learn to cope with trawl-like gear. However, in the 

present experiment, the shy fish apparently learned that it was safe to remain in the 

trawl. This is an artefact caused by the experimental set-up where being retained by 

the trawl had no negative consequences: the trawl stopped one centimetre before the 

wall of the tank to avoid harming the fish. 

 Bold fish with short freezing times were captured faster with a passive gear 

(trap) than shy fish with long freezing times. In experimental situations similar results 

have previously been shown for rainbow trout Oncorhynchus mykiss (Walbaum 1792) 

fished with gillnets (Biro & Post, 2008) and for angled L. macrochirus (Wilson et al., 

2011). However, angling seemed to catch more shy fish in wild habitats, as angling 

took place close to dense, covered areas with refuges where shy individuals were 

more abundant (Wilson et al., 2011). Using acoustically tagged wild G. morhua Olsen 

et al. (2012) showed that fish with consistently strong vertical migration behaviour 

were more at risk being caught in the fishery using a range of passive gears	 (traps, 

gillnets, and hand lines). 

It has been suggested that personality traits are correlated with life history and 

physiological traits. The common framework considers bold and active individuals to 
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grow faster and have higher metabolic rate (Biro & Stamps, 2008; Réale et al., 2010). 

However, no general rule has emerged yet, as the association might depend on the 

context, the exact definition of boldness, or be very variable in the wild (Adriaenssens 

& Johnsson, 2009; Réale et al., 2010).  In the present study there was a positive 

correlation between growth rate and activity (measured as the distance moved) and a 

positive relationship between growth and the second principal component, which was 

related to freezing time and time to escape the trawl, suggesting that shy fish that took 

longer to escape the trawl have higher growth. Braithwaite & Salvanes (2005) and 

Adriaenssens & Johnsson (2011) also showed the shy individuals grew faster for G. 

morhua and S. trutta, respectively. Our results pointing that shy fish grew more could 

be due to the lack of need to search or compete for food, as the test fish were reared 

isolated. The results showed here point to that a trap that selectively removes bolder 

individuals, could indirectly also remove slow growing individuals, while a trawl 

would selectively remove shy and fast growing individuals.  

Independently of whether personality traits are related to productivity traits 

(e.g. growth rate) or not, selective fishing on personality most probably has 

consequences for the population and for the productivity of the fisheries. In P. 

reticulata, exploratory behaviour is related to schooling, boldness, aggressiveness 

(Budaev, 1997) and longer resistance to stress (Budaev & Zhuikov, 1998). In 

addition, bold individuals are faster at escaping a predator and are preferred by 

females (Godin & Dugatkin, 1996). Thus, removal of certain behavioural types might 

interfere with population structure and viability. For example, mixed-personality 

shoals of guppies fed more than shy- and bold-only shoals; mixed shoals also resumed 

swimming faster than shy-only and bold-only shoals after a fright stimulus (Dyer et 

al., 2008). A mixed-behavioural types population seems more resilient relative to a 
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single-behavioural type one (Dyer et al., 2008).  

A limitation of the experiments presented here is that they mostly relate to the 

second part of the capture process, retention by the gear. The first part is encounter 

with gear (Rudstam et al., 1984), which was unavoidable with the trawl and relatively 

immediate for the trap placed on a small arena. The effect of freezing time and 

activity on encounter rate (measured as 1/ time to first touch the trap with snout and 2/ 

time to inter the trap inlet for the first time) was tested for a sample of our data (N = 

23). Both trap encounter measurements were affected by area covered, but not 

freezing time or distance move. Thus, from the small subsample of the data it could 

be concluded that encountering the trap seem to be related to fish activity, while the 

fact of actually entering the trap and being retained was affected by activity and 

freezing time (similar to the analysis with the whole dataset). Thus, something else 

than passing by the trap determined whether the fish was trapped or not.  Allowing for 

more complex capture process could yield different insights to the role of behavioural 

traits on vulnerability to fishing gears. While logistically challenging, this is an 

important avenue for future studies to follow. 

Another drawback from the present study is that single fish being tested for 

vulnerability to fishing gear does not represent most fishing situations nor normal fish 

behaviour. The present experimental design compromised the applicability of the 

results to real situations in order to assess more clearly the effect of behavioural types 

on the selectivity of fishing gears. Thus, it is acknowledged that the conclusion might 

vary when more complexity is added. Future experiments should test how groups of 

fish performed in the different vulnerability tests compare to individual fish. Of 

particular interest would be testing how different fishing gears select groups with 

dissimilar average boldness and sociability scores, whether the presence of a 

Commented [BDP1]: The	whole	paragraph	moved	on	
paragraph	down	
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experience individual would improve the performance of the group, and whether 

groups with different sex ratio would performed differently. Brown & Warburton, 

(1999b) found that larger groups performed better in an experimental trawl similar to 

ours. It is difficult to predict what would happen if mixed-personality guppy shoals 

are tested for vulnerability to traps and trawls. Intuitively one could say that bold 

individuals would lead the rest of the group to the trap (as seen for foraging 

behaviour; Dyer et al., 2008), increasing the efficacy of the trap, but reducing its 

selective towards boldness. However, bold individuals might benefit from the 

vigilance and careful exploration of shy individuals reducing the efficacy of the trap. 

A group might be less vulnerable to a trawl if the shy individuals follow the bold ones 

escaping the trawl or more vulnerable if the shoaling behaviour increase the herding 

and the efficiency of trawl.  

The selective removal of certain behavioural types by different fishing gears 

has a number of practical consequences. First, it can lead to sampling bias in 

behavioural studies (Biro & Dingemanse, 2009). Second, it affects the population 

structure, which in turn can have consequences for the population viability and the 

profitability of the fishery. Although P. reticulata is not an important fisheries 

species, it can provide valuable lessons for understanding evolutionary consequences 

of fishing in commercially fished species. The particular novelty of this study is 

including active gears, here a trawl, whose selectivity with respect to behavioural is 

still poorly known. There are similarities between the escape behaviour of gadoids 

(Engås & Godø, 1989; Ona & Godø, 1990) and guppies as both tend to escape by 

diving deeper. The present results suggest that active gear such as trawls favour fish 

with bold personalities. On the other hand, more active fish were more vulnerable to 

passive gears in our study, similarly as in yellow perch Perca flavescens (Mitchill 
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1814) with higher feeding activities or feeding on more active prey (Engås & 

Løkkeborg, 1994). Moreover, this selection on behaviour can in turn select for other 

important traits such as growth. Largemouth bass Micropterus salmoides (Lacepède 

1802) illustrates another example of adverse effect of inadvertent selection on 

behaviour: it has been shown that more aggressive individuals are more likely to be 

caught by angling, but these are also found to be better at parental care and have 

higher reproductive fitness (Suski & Philipp, 2004; Cooke et al., 2007; Sutter et al., 

2012). Selective fishing on M. salmoides may thus be interfering with population 

productivity and with sustainability of the recreational fishery (Sutter et al., 2014).  

This study stresses the need to consider the many facets of fish population 

responses to fishing. Trapping is advocated as an environmentally friendly way of 

catching fish (FAO, 2003), but our results highlight that this may inflict selection 

against bold, exploratory fish. When vulnerability is heritable, removal of more 

vulnerable fish will reduce the future profitability of the fishery (Philipp et al., 2009). 

In conclusion, establishing how fisheries or other human-induced selectivity affect 

behavioural traits is crucial to understand how populations respond to human-induced 

environmental change. 
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Fig. 1. Experimental set-up for the vulnerability to trawl test. The trawl consisted of a	
vertical green plastic net (mesh size approximately 2.5 x 2.5 mm) built in the test	
aquarium (90 x 20 x 17.5 cm). The net prevented the fish from passing through,	
except through four holes at the bottom of the trawl (one in each corner (1 x 1 cm)	
and two holes (2 x 1 cm) 3 cm from the corners). The trawl was pulled along rails on	
the aquarium sidewalls at a constant velocity of 5 cm/s by an electrical motor.	
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Fig. 2. Frequency distribution of freezing time (mean ± SD: 44.3 ± 41.5 s, N = 95),	
interpreted as a proxy for personality. Individuals with freezing time above the	
median (28.9 s, thick solid line) are considered relatively shy (N = 48), while those	
with values under the median are considered relatively bold individuals (N = 47). 
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Fig. 3. Survival curves for a) trapping and b) trawling. Bold (thick line, N = 48) and	
shy (thin line, N = 47) fish are separated by the median in freezing time (M = 28.9 s).	
Note that for trapping the survival curve shows the proportion of fish that were not	
trapped, thus “survived” the trap, while for trawling the curve show the proportion of	
fish that did not escape the trawl, i.e. “did not survive” the trawl. Most fish escaped	
the trawl right in the end of the trawl haul (time 15 s). The + symbol at the end of the	
curve corresponds to the proportion of individuals that were not trapped or escaped in	
the end of the trial.	
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Fig. 4. Time until escaping the trawl for bold (close dots, N = 48) and shy (open dots, 
N = 47) individuals at each trial. Dots and bars represent the mean and standard 
deviation. 


