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Methods S1: Mortality and bang-bang theorem

We first show the influence of mortality on our model predictions as a robustness
check, and second we show that the optimal control is of bang-bang type, with
one unique switch, for annuals with constrained growth, fixed season length,
and constant mortality.

How mortality affects our results

As a robustness check we extend the model with constant background mortality
rate m. We assume that the vegetative part grows according to

dV

dt
= u(t)F (V ) with V (0) = V0, (S1.1)

and that the reproductive part grows according to

dR

dt
= (1− u(t)F (V ))s(t), (S1.2)

where
s(t) = e−mt (S1.3)

is the survival function and m is the mortality rate. The reproductive mass
depends on the survival, but the vegetative mass does not since we would oth-
erwise account for the survival twice. According to Cohen (1976) the optimal
control is a bang-bang control of reproduction. Below we provide an alterna-
tive proof of this fact, based on optimal control theory, showing also that there
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will be one unique switch called the optimal flowering time t∗F (Theorem 1).
Therefore, the reproductive output is

W (t∗F ) =

∫ T

t∗F

F (V )s(t)dt =
F (V (t∗F ))

m

(
e−mt∗F − e−mT

)
,

where T the end of the season.
In Fig. S1 we show the optimal flowering time as a function of productivity

for a few different mortality rates. We find in Fig. S1a that there is no internal
maximum for the optimal flowering time, and in Fig. S1b,c that there is always
an internal maximum for intermediate productivity, regardless of the mortal-
ity. This indicates that (low) mortality rates does not qualitatively change our
results. Moreover, increasing the mortality always advances the optimal flow-
ering time (higher mortality implies that it is better to reproduce earlier since
then the risk of dying before reproduction decreases) and the effect of mortality
decreases as productivity increases.
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Figure S 1: Mortality decreases the survival, and affects the optimal flowering
times as a function of productivity. Mortality is m = 0, 1, 2, 3, corresponding to
no, low, intermediate and high mortality rate. The season length is E = 1 and
the default mass values are Vmax = 1 and V0 = 0.02.

In the case of exponential growth, when mortality is included in the form of a
survival function (Figure S1.a), we show how to find the optimal flowering time
t∗F analytically. In particular, in this case F (V ) = PV and hence, using the
bang-bang control in Theorem 1, the solution of (S1.1) becomes

V (t) = V0e
Pt

for 0 ≤ t ≤ tF , where tF is the flowering time. To find t∗F we maximize the
reproductive output

W (tF ) =
PV0

m
ePtF

(
e−mtF − e−mT

)
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with respect to tF . Differentiating w.r.t. tF and setting the derivative to zero
yield

dW (tF )

dtF
=

PV0

m
ePtF

(
(P −m)e−mtF − Pe−mT

)
= 0.

This implies that the optimal flowering time for exponential growth with mor-
tality m is

t∗F = T − 1

m
log

(
P

P −m

)
.

This is a maximum when the second derivative w.r.t. tF of the reproductive
output is negative, that is

d2W (tF )

dt2F
=

PV0

m

(
e−mtF (P −m)2 − P 2e−mT

)
e−PtF < 0,

which holds true for tF = t∗F .
This proves that, in the case of exponential growth, increasing the mortal-

ity always advances the optimal flowering time t∗F , and the effect of mortality
decreases as productivity increases.

Proof of optimal flowering bang-bang control with con-
strained growth and constant mortality

The dynamic model for vegetative mass V = V (t) is given by

dV

dt
(t) = u(t)F (V (t)), 0 < t < T, V (0) = V0 > 0 (S1.4)

where T is the end of the season, F (V ) is the growth function and u(t) ∈ A is
the control, in which

A = {u(t) : [0, T ]→ [0, 1] and u(t) is measurable}

denotes the set of admissible controls. We will prove results on properties on
controls u(t) maximizing the reproductive output

W =

∫ T

0

(1− u(t))s(t)F (V (t))dt. (S1.5)

In particular, we prove the following theorem.
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Theorem 1. Suppose that the growth function F (V ) is positive, that dF
dV (V )

is a non-increasing function of V , and that the survival function is given by
s(t) = e−mt, where m ≥ 0 is a constant mortality. Let f(m,T ) = m

1−e−mT

with f(0, T ) = 1
T . Assume that u∗(t) is an optimal control maximizing the

reproductive output in (S1.5). If dF
dV (V0) > f(m,T ), then there exists an optimal

flowering time t∗F ∈ (0, T ) and u∗(t) is given by the bang-bang control

u∗(t) =

{
1 if 0 ≤ t ≤ t∗F
0 if t∗F < t ≤ T.

If dF
dV (V0) ≤ f(m,T ), then the optimal control is u∗(t) = 0 for all t ∈ [0, T ], that

is, the optimal strategy is to flower immediately.

Proof. We intend to apply the Pontryagin maximum principle. Since the sur-
vival function s(t) depends on time we first extend the dynamic model for
vegetative mass (S1.4) by regarding time t as an additional variable t̂(t) = t

satisfying the differential equation dt̂
dt (t) = 1 for 0 ≤ t ≤ T . Next, we define, for

any x1, x2, p1, p2 ∈ R, a ∈ [0, 1], the Hamiltonian

H(x1, x2, p1, p2, a) =

(
aF (x1)

1

)
·
(
p1
p2

)
+ (1− a)s(x2)F (x1)

= F (x1)s(x2) + p2 + aF (x1)(p1 − s(x2)).

Assume that u∗(t) is the optimal control for (S1.4), (S1.5) and let V ∗(t) be the
corresponding trajectory for vegetative mass. Then the Pontryagin maximum
principle, see e.g. Theorem 4.3 in Evans (1983), implies the existence of costates
p∗1(t), p∗2(t) : [0, T ]→ R , satisfying the adjoint equations with x1 = V and x2 = t

dp∗1
dt

(t) = −dH

dV
= −dF

dV
(V ∗(t))s(t)− u∗(t)

dF

dV
(V ∗(t))(p∗1(t)− s(t)), (S1.6)

dp∗2
dt

(t) = −dH

dt
= m(1− u∗(t))s(t)F (V ∗(t))

with terminal conditions

p∗1(T ) = 0, p∗2(T ) = 0.

The second adjoint equation, related to dt̂
dt (t) = 1, will not be used below. Using

the maximum principle we get

H(V ∗(t), t, p∗1(t), p∗2(t), u∗(t))

= max
a∈[0,1]

{F (V ∗(t))s(t) + p∗2(t) + aF (V ∗(t))(p∗1(t)− s(t))} .

Since p∗1(T ) = 0 and s(T ) > 0 we deduce, using continuity of solutions of (S1.6),
that p∗1(t) < s(t) for t ≤ T close enough to T . Define t0 as the smallest number
in [0, T ] such that p∗1(t) < s(t) holds for all t0 < t ≤ T . Using F (V ) > 0 and
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that u∗(t) maximizes H we see that as long as t0 < t ≤ T we have u∗(t) = 0.
Therefore, the costate equation (S1.6) simplifies to

dp∗1
dt

(t) = −dF

dV
(V ∗(t))s(t), for t0 < t ≤ T. (S1.7)

We assume in the rest of the proof that m > 0, however, the case m = 0 follows
by similar calculations. Integrating (S1.7) from t0 to T yields

p∗1(t0) =

∫ T

t0

dF

dV
(V ∗(t))s(t)dt =

dF

dV
(V ∗(t0))

∫ T

t0

e−mtdt (S1.8)

=
1

m

dF

dV
(V ∗(t0))

[
e−mt0 − e−mT

]
.

If t0 = 0, then we must have p∗1(0) ≤ s(0) = 1 and so, by (S1.8),

dF

dV
(V0) ≤ m

1− e−mT
. (S1.9)

If t0 > 0, then p∗1(t0) = s(t0) = e−mt0 and (S1.8) implies

dF

dV
(V ∗(t0)) =

m

1− em(t0−T )
. (S1.10)

By assumption dF
dV is a non-increasing function of V and F (V ) is positive. There-

fore, from (S1.4) it follows that V0 ≤ V ∗(t0) and thus dF
dV (V0) ≥ dF

dV (V ∗(t0)).
Moreover, since t0 > 0 we have m

1−em(t0−T ) > m
1−e−mT and hence

dF

dV
(V0) >

m

1− e−mT
. (S1.11)

We can conclude that (S1.9) holds if and only if t0 = 0, and (S1.11) holds if and
only if t0 > 0. Setting t∗F = t0, this proves the result on when it is optimal to
flower immediately.

It remains to show that the optimal control is of bang-bang type and that
there exists only one switch. In particular, we will show that the optimal control
is given by

u∗(t) =

{
1 if 0 ≤ t ≤ t0
0 if t0 < t ≤ T.

(S1.12)

To do so we first observe that if t0 = 0 then u∗(t) = 0 for all t ∈ (0, T ] and,
therefore, we are done.

Assume that t0 > 0. If we can show that p∗1(t) > s(t) for all t ∈ [0, t0), then
u∗(t) = 1 for all t ∈ [0, t0) and, therefore, we are done. From (S1.10) and since
0 < em(t0−T ) < 1, we find the inequality

dF

dV
(V ∗(t0)) > m. (S1.13)
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We also know that dF
dV is a non-increasing function of V , and since F (V ) is

positive it follows from (S1.4) that V is a non-decreasing function of t. Therefore,
(S1.13) yields

dF

dV
(V ∗(t)) > m (S1.14)

for all t ∈ [0, t0). Since u∗(t) = 0 if p∗1(t) < s(t) = e−mt, and u∗(t) = 1 if
p∗1(t) > s(t) = e−mt, we see that u∗(t)(p∗1(t)emt − 1) ≥ 0 for all t ∈ [0, T ].
Hence, (S1.14) yields

dF

dV
(V ∗(t))

[
1 + u∗(t)(p∗1(t)emt − 1)

]
> m

for all t ∈ [0, t0). We obtain, according to (S1.6)

−dp∗1
dt

(t) =
dF

dV
(V ∗(t))

[
e−mt + u∗(t)(p∗1(t)− e−mt)

]
> me−mt = −ds

dt
(t)

which is equivalent to
dp∗1
dt

(t) <
ds

dt
(t)

for all t ∈ [0, t0). Recalling that p∗1(t0) = s(t0), the above inequality shows that
(S1.12) is true. This proves the theorem for t∗F = t0.

Methods S2: Analysing the optimal flowering time

Here we go through the details in finding the optimal flowering time t∗F that
maximizes reproductive output W , as well as a few criteria that needs to be
fulfilled. There are three steps in the derivations:

1. Find a solution V (t) for the growth of the vegetative mass from the dy-
namics dV/dt = u(t)F (V ) with V (0) = V0. The solution is easily found
for our growth types F (V ).

2. Find the reproductive output. Using Theorem 1 we have the bang-bang
reproduction

u(t) =

{
1 if 0 ≤ t ≤ tF
0 if tF < t ≤ T.

This means that the vegetative mass does not grow after the flower-
ing time tF , and the reproductive mass does not grow before time tF .

The reproductive output in this case is: W (tF ) = F (V (tF ))
∫ T

tF
dt =

F (V (tF ))(T − tF ), where T is the end of season.

3. Finally, in order to find the optimal flowering time t∗F we solve dW/dtF =
0. We also need to ascertain that d2W/dt∗F

2 < 0 so that the optimal
flowering time is a maximum, exclude the possibility of more than one
local maximum, and the possibility of a maximum on the boundary.
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We are interested in three types of growth:

(a) Exponential growth: F (V ) = PV ,

(b) Logistic growth: F (V ) = PV (1− V/Vmax), and

(c) West-Brown-Enquist growth: F (V ) = PV 3/4(1− (V/Vmax)1/4).

(a) Exponential growth

The plant grows according to

dV

dt
= u(t)F (V ) = u(t)PV,

where the allocation to vegetative growth is u(t). Assuming the bang-bang
control the differential equation has the solution

V (t) = V0e
Pt, (S2a.1)

for 0 ≤ t ≤ tF where V0 is the initial mass at time t = 0. The reproductive
output, with the bang-bang control having flowering time tF , is easy to find
since F (V (tF )) is constant after flowering,

W (tF ) = F (V (tF ))

∫ T

tF

dt = PV0e
PtF (T − tF ). (S2a.2)

To find the optimal flowering time we differentiate this w.r.t. tF and set the
derivative to zero,

dW

dtF
= −PV0e

PtF (P (tF − T ) + 1) = 0.

The solution is the optimal flowering time

t∗F = T − 1

P
.

This is a maximum when the second derivative w.r.t. tF of the reproductive
output,

d2W

dtF
2 = −V0P

2ePtF (P (tF − T ) + 2), (S2a.3)

is negative, which is the case when tF = t∗F = T − 1
P . There is no productivity

that maximizes tF since the derivative of t∗F w.r.t P is always positive, meaning
that the optimal flowering time always increases with increasing productivity,

dt∗F
dP

=
d

dP

(
T − 1

P

)
=

1

P 2
> 0. (S2a.4)
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(b) Logistic growth

The plant grows according to

dV

dt
= u(t)PV

(
1− V

Vmax

)
.

Assuming the bang-bang control the differential equation has the solution

V (t) =
VmaxV0e

Pt

Vmax + V0(ePt − 1)
, (S2b.1)

for 0 ≤ t ≤ tF , where Vmax is the maximum vegetative mass. The reproductive
output at the flowering time tF is

W (tF ) = F (V (tF ))

∫ T

tF

dt = PV (tF )

(
1− V (tF )

Vmax

)
(T − tF ), (S2b.2)

and we find the optimal flowering time t∗F when dW/dtF = 0. The derivative
has the same sign as

f(tF ) = Vmax − V0 − VmaxPT + PTV0 + P (Vmax − V0)tF + V0(1 + PT )ePtF

− PV0tF e
PtF = 0,

assuming that Vmax > V0. This equation has a unique solution for tF , which
we will only find numerically. The solution is unique because

df(tF )

dtF
= P (Vmax − V0) + (T − tF )P 2V0e

PtF > 0, (S2b.3)

since Vmax > V0 and T > tF . Therefore f(tF ) is a monotonically increasing
function and there can be only one or zero solutions to f(tF ) = 0. Assuming
that V0 is small, there exists a unique solution, which is the optimal flowering
time t∗F , since W (tF ) grows initially at tF = 0, and decreases at tF = T .

Now we show that increasing the productivity can either delay or advance
the optimal flowering time. By implicit derivation of f(tF ) we find that the sign
of dt∗F /dP is the same as the sign of

S = (T − tF )(Vmax − V0)− (T + PtF (T − tF ))V0e
PtF . (S2b.4)

The first term is positive since T > tF and Vmax > V0. For low values of P we
get dt∗F /dP > 0 (delayed optimal flowering) since the second negative term is
small, but for large values of P we get dtF /dP < 0 (advanced optimal flowering)
since the second negative term is dominating.
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(c) West-Brown-Enquist growth

The plant grows according to (West et al., 2001)

dV

dt
= u(t)PV 3/4

(
1− (V/Vmax)

1/4
)
.

Assuming the bang-bang control the differential equation has the solution

V (t) = Vmax

(
1−

[
1−

(
V0

Vmax

)1/4
]

exp

(
−Pt

4Vmax
1/4

))4

,

for 0 ≤ t ≤ tF . The reproductive output is

W (tF ) = PV (tF )3/4

(
1−

(
V (tF )

Vmax

)1/4
)

(T − tF ), (S2c.2)

and we find the optimal flowering time when dW/dtF = 0. The derivative has
the same sign as

f(tF ) = a + 4ab(T − tF )− (1 + bT )ebtF + btF e
btF = 0,

where

a =

[
1−

(
V0

Vmax

)1/4
]

and b =
P

4Vmax
1/4

.

This equation has a unique solution for the optimal flowering time t∗F , which we
will only find numerically. The solution is unique because

df(tF )

dtF
= −4ab− (T − tF )b2ebtF < 0, (S2c.3)

since Vmax > V0 and T > tF . Therefore f(tF ) is a monotonically decreasing
function and there can be only one or zero solutions to f(tF ) = 0. Assuming
that V0 is small, there exists a unique solution, which is the optimal flowering
time t∗F , since W (tF ) grows initially at tF = 0, and decreases at tF = T .

Now we show that increasing the productivity can either delay or advance
the optimal flowering time. By implicit derivation of f(tF ) we find that the sign
of dt∗F /dP is the same as the sign of

S = 4a
db

dP
(T − tF )− (T + btF (T − tF ))

db

dP
ebtF .

The first term is positive since T > tF , db/dP > 0 and a > 0. For low values
of b we get dtF /dP > 0 (delayed optimal flowering) since the second negative
term is small, but for large values of b we get dtF /dP < 0 (advanced optimal
flowering) since the second negative term is dominating.
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