
The effect of fecundity derivatives on the

condition of evolutionary branching in spatial

models

Kalle Parvinen1,2, Hisashi Ohtsuki3 and Joe Yuichiro Wakano4,5

Journal of Theoretical Biology (in press)
DOI: 10.1016/j.jtbi.2016.12.019

1. Department of Mathematics and Statistics, FI-20014 University of Turku,
Finland. E-mail: kalle.parvinen@utu.fi

2. Evolution and Ecology Program, International Institute for Applied
Systems Analysis (IIASA), A-2361 Laxenburg, Austria

3. Department of Evolutionary Studies of Biosystems, School of Advanced
Sciences, SOKENDAI (The Graduate University for Advanced Stud-
ies), Shonan Village, Hayama, Kanagawa 240-0193, Japan

4. School of Interdisciplinary Mathematical Sciences, Meiji University,
Tokyo 164-8525, Japan

5. Meiji Institute for Advanced Study of Mathematical Sciences, Tokyo
164-8525, Japan

Abstract

By investigating metapopulation fitness, we present analytical ex-
pressions for the selection gradient and conditions for convergence
stability and evolutionary stability in Wright’s island model in terms
of fecundity function. Coefficients of each derivative of fecundity func-
tion appearing in these conditions have fixed signs. This illustrates
which kind of interaction promotes or inhibits evolutionary branch-
ing in spatial models. We observe that Taylor’s cancellation result
holds for any fecundity function: Not only singular strategies but also
their convergence stability is identical to that in the corresponding
well-mixed model. We show that evolutionary branching never occurs
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when the dispersal rate is close to zero. Furthermore, for a wide class
of fecundity functions (including those determined by any pairwise
game), evolutionary branching is impossible for any dispersal rate if
branching does not occur in the corresponding well-mixed model. Spa-
tial structure thus often inhibits evolutionary branching, although we
can construct a fecundity function for which evolutionary branching
only occurs for intermediate dispersal rates.

Key words: Adaptive dynamics; cooperation; evolutionary branching; nat-
ural selection

Highlights:

• We study trait evolution in Wright’s island model through metapopu-
lation fitness.

• First- and second-order conditions are derived in terms of fecundity
derivatives.

• In most cases, an introduction of spatial structure hinders evolutionary
branching.

• Space never favors branching when the fecundity function is based on
pairwise games.

• Though rare, we can construct an example where space promotes evo-
lutionary branching.

1 Introduction

Evolutionary branching is a process in which the trait of an evolving monomor-
phic population first approaches a so-called singular trait, but then disruptive
selection causes the population to become dimorphic, i.e., to contain two dif-
ferent resident traits, and these two traits evolve away from each other (Metz
et al., 1992, 1996; Geritz et al., 1997, 1998). When mutations are so frequent
that there is no clear separation between ecological and evolutionary time-
scales, evolutionary branching means that a unimodal trait distribution first
concentrates around the singular strategy, and then the distribution becomes
bimodal.

Invasion fitness (Metz et al., 1992) is the long-term exponential growth
rate of a rare mutant in an environment set by the resident. At singular
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strategies the first-order derivative of the invasion fitness vanishes. The con-
dition for evolutionary branching is usually given by calculating the second-
order derivatives of invasion fitness at a singular strategy. There is, however,
another approach to study the branching condition. Instead of considering
a mutant–resident system, we can study the dynamics of a continuous trait
distribution and identify evolutionary branching as the increase of the vari-
ance of the distribution (Sasaki and Dieckmann, 2011; Wakano and Iwasa,
2012). In a case of a well-mixed population, the branching condition derived
by calculating invasion fitness and that by calculating variance dynamics
have been shown to be identical when the trait distribution is approximated
by the Gaussian distribution. In case of a spatially structured population,
comparing these approaches requires more detailed calculations.

The metapopulation reproduction ratio (metapopulation fitness) is a fit-
ness proxy that measures the growth of a mutant population between dis-
persal generations in an environment set by resident. (Metz and Gyllenberg,
2001; Ajar, 2003; Parvinen and Metz, 2008). By investigating the metapopu-
lation fitness, the branching conditions have been studied for several different
metapopulation models (Parvinen, 2002, 2006; Nurmi and Parvinen, 2008,
2011). On the other hand, the trait distribution approach can also be ex-
tended to spatially structured populations and an analytic expression for the
branching condition has been derived by Wakano and Lehmann (2014) for
a specific model. In structured populations, the trait distribution cannot be
described by a single Gaussian distribution (as in a well-mixed case) because
different demes (local patches) can have different trait distributions and be-
cause individuals in the same deme tend to have similar trait values. In other
words, the individual trait value is no longer an independent random vari-
able sampled from the same distribution and we need to take into account
the positive correlation of trait values within a deme. This correlation can
be expressed in terms of relatedness and as a result the branching condition
is given by a combination of fitness derivatives and relatedness coefficients.
The analytically derived condition by Wakano and Lehmann (2014) agreed
with their simulations.

In this article we investigate Wright’s island model, which is a discrete-
time metapopulation model in which the number of adults in each deme
is fixed through generations. The relative fecundity of each adult depends
on its own inheritable trait and the traits of other adults in the same deme.
The individuals to become adults in the next generation are randomly chosen
among philopatric and dispersed offspring.

Assuming locally a fixed number of adults is not very realistic, and also
not strictly speaking even necessary, because evolution in metapopulation
models with more realistic local population dynamics has been successfully
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analysed using the metapopulation fitness (see references above). However,
this simplifying assumption allows one to obtain general analytic expressions
for the selection gradient and conditions for convergence stability and evo-
lutionary stability. Ajar (2003) obtained such expressions by calculating the
metapopulation fitness, while Wakano and Lehmann (2014) used the trait
distribution approach. Both studies express their main results in such terms
of relatedness coefficients, which might discourage researchers to apply these
results to practical questions if they are not very familiar with inclusive fit-
ness theory.

The first goal of this study is to explicitly show the selection gradient
and conditions for convergence stability and evolutionary stability in terms
of derivatives of the fecundity function and original spatial parameters (deme
size, dispersal rate and the probability to survive dispersal). The use of our
expressions is straightforward, and they are valid for any fecundity function.
In this form it will be clearly observed that singular strategies in the spatial
model are the same as in the well-mixed case (Taylor, 1992a; Taylor and
Irwin, 2000), also called a cancellation result. Also the condition for conver-
gence stability remains unchanged, whereas the condition for evolutionary
stability is affected by the spatial structure.

The second goal is to study whether spatial structure promotes or inhibits
evolutionary branching. For the direction of evolution in spatial models (e.g.,
evolution of cooperation), tremendous amount of papers have been published.
Compared to them, the effect of spatial structure on evolutionary branch-
ing has been far less studied. Wakano and Lehmann (2014) have shown
that when fecundity is determined by repeated snowdrift games (Doebeli
et al., 2004) between individuals within the deme, a smaller dispersal rate
inhibits branching. This was confirmed by their individual-based simulations
but their analysis is only a numerical calculation of the general formula of
the condition for evolutionary stability. Thus, it is not clear whether spa-
tial structure always inhibits branching for any kind of local interactions or
there exist some kind of interactions that trigger branching only when spatial
structure is introduced. We aim to answer this question by investigating the
explicit expression determining evolutionary stability.

This paper is organized as follows. In section 2 we describe the model and
formulate the metapopulation reproduction number. The general explicit
expression for the selection gradient and the second order derivatives are
presented in section 3. Especially, in the condition of evolutionary stability
the coefficients of each fecundity derivative (= derivative of the fecundity
function) have fixed signs. In section 4 we prove general results suggesting
that the spatial structure of Wright’s island model often, but not always,
inhibits evolutionary branching. As a counterexample we present an artificial
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fecundity function for which branching occurs only for intermediate values
of the dispersal rate. In section 5 we apply our results to situations in which
fecundity is determined by any pairwise game (not just the snowdrift game),
or by a public-goods game.

2 Model description and metapopulation fit-

ness

2.1 Island model and fecundity function

We consider an extended version of Wright’s island model (Wright, 1931). We
assume that there are infinitely many habitat patches (demes). In the begin-
ning of the season each patch contains n(> 2) adult individuals. These adults
may differ in their strategies s, which affect their fecundity γF that represents
the number of juveniles that they produce. Throughout the manuscript, γ
is considered to be very large (actually γ → ∞). More precisely, the rela-
tive fecundity for an adult with strategy s1, when the strategies of the other
individuals are sn−1 = (s2, . . . , sn) is

F (s1; sn−1) = F (s1; (s2, . . . , sn)) (2.1)

Naturally, the order of strategies in the vector sn−1 does not affect fecundity,
which we assume from now on. A proportion 0 < m 6 1 of the juveniles
will disperse. The proportion 0 < p 6 1 will survive dispersal and land in
a random patch, but the rest die out during dispersal. The present adults
are assumed not to survive until the next season. The local adult population
size is assumed to be fixed, so that the n individuals to become adults in
the next season are randomly chosen among the juveniles in each patch after
immigration. Throughout the paper, we assume that m and p are constant
parameters in the model; they are independent of the strategy s.

In the following we investigate the invasion potential of a mutant with
strategy smut in an environment set by a resident with strategy sres. For this
purpose, we denote the relative fecundity of a mutant and that of a resident
by Fmut and Fres, respectively. More specifically, the relative fecundity of a
resident, when there are i mutants and n − i residents (including the focal
resident) in its patch is denoted by

F i
res = F i

res(sres, smut) = F (sres; (smut, . . . , smut
︸ ︷︷ ︸

#=i

, sres, . . . , sres
︸ ︷︷ ︸

#=n−i−1

)). (2.2)
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Similarly, the relative fecundity of a mutant, when there are i mutants (in-
cluding the focal mutant) and n− i residents in its patch is denoted by

F i
mut = F i

mut(sres, smut) = F (smut; (smut, . . . , smut
︸ ︷︷ ︸

#=i−1

, sres, . . . , sres
︸ ︷︷ ︸

#=n−i

)). (2.3)

In particular, the relative fecundity of a resident, when all individuals in
the same patch are residents is denoted by

F 0
res = F (sres, (sres, . . . , sres)). (2.4)

2.2 The metapopulation fitness Rm

Suppose that all residents have the same strategy sres. Consider a dispers-
ing mutant juvenile with strategy smut. With some probability it survives
dispersal and settles in a patch and becomes an adult there. In that case it
will next produce juveniles, and a part of those juveniles remain in the focal
patch, and may be chosen to be adults in the next generation. These mutant
adults again produce juveniles. The initial mutant and its descendants in the
focal patch form a mutant colony. The metapopulation reproduction number
(metapopulation fitness) Rm is the expected number of mutant juveniles that
are sent from this mutant colony during its lifetime (taking the initial survival
and settlement probability into account) (Gyllenberg and Metz, 2001; Metz
and Gyllenberg, 2001). Obviously it is a function of sres and smut. Given the
fecundity function F , an expression of Rm is derived in A.

Invasion fitness is the long-term exponential growth rate of a mutant in an
environment set by the resident (Metz et al., 1992). A mutant may invade the
resident, if it has positive invasion fitness. However, positive invasion fitness
does not guarantee invasion success, because the initial stage of a potential
invasion involves demographic stochasticity. For many metapopulation mod-
els, the metapopulation fitness is easier to calculate than the invasion fitness.
In general, invasion fitness is positive if and only if Rm > 1, and therefore
metapopulation fitness can be used as a fitness proxy and it plays a central
role in metapopulation theory. In B we provide a formal proof about their
relation in this particular model. Intuitively speaking, metapopulation fit-
ness being greater than one means that a single mutant disperser produces
more than one descendant mutant dispersers.

The basic reproduction number (ratio) is a widely used concept in the
field of epidemics, in which it is used to describe the expected number of
infections caused by a single infected individual. The same concept can
also be used to describe population growth, in which context it is the ex-
pected number of offspring that an individual will get during its lifetime. It
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thus measures population growth between real generations in an analogous
way that the metapopulation reproduction number measures growth between
dispersal generations. In contrast, the invasion fitness measures population
growth in real time. The invasion criterion can also be formulated using the
basic reproduction ratio, and therefore it acts as another fitness proxy. For
a further discussion about fitness (proxies) and variants of the basic repro-
duction number see Lehmann et al. (2016)

When the effect of mutation is small enough (i.e. smut is close to sres), we
can use the Taylor expansion with respect to smut around sres to study the
potential for invasion. Because the metapopulation fitness is equal to one
when smut = sres, we have

Rm ≈ 1 + (smut − sres)D1(sres) +
1

2
(smut − sres)

2D2(sres), (2.5)

where D1(sres) and D2(sres) are the first- and second- order derivatives of Rm,
calculated as

D1(sres) =
∂

∂smut

Rm

∣
∣
∣
∣
∣
smut=sres

,

D2(sres) =
∂2

∂s2mut

Rm

∣
∣
∣
∣
∣
smut=sres

.

(2.6)

In particular, the first-order derivative, D1(sres), is usually called selection
gradient or fitness gradient.

2.3 Ajar’s (2003) general formulae

Ajar (2003) gave a general formula of the first-order derivative, D1(sres),
(i.e. equation (5) in Ajar (2003)) in terms of relatedness coefficients via a
metapopulation fitness calculation. To use Ajar’s result, we need to inves-
tigate the expected number of surviving offspring of a mutant in a patch
where there are j mutants (including the focal mutant). Let us use the same
symbol as Ajar (2003) and denote it by wj. It is given as

wj = wP
j + wA

j

=
n(1−m)F j

mut

(1−m){jF j
mut + (n− j)F j

res}+ pmnF 0
res

︸ ︷︷ ︸

wP
j

+
pmF j

mut

(1−m+ pm)F 0
res

︸ ︷︷ ︸

wA
j

, (2.7)

where wP
j and wA

j respectively represent the philopatric and allopatric com-
ponents of surviving offspring; namely, the expected number of offspring that
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settle down in the local patch and the expected number of offspring that settle
down in other patches. Since the mutant is (at least initially) rare, the de-
nominator of the allopatric component does not contain mutant immigrants.
Ajar (2003) also gave a formula of the second-order derivative, D2(sres), (i.e.
equation (9) in Ajar (2003)) in terms of relatedness coefficients that is valid
at the strategy sres where D1(sres) vanishes. To use the formula, we need to
further derive the quantity called πj in Ajar (2003), but it is equivalent to
our (j/n)wP

j in equation (2.7).
In the next section we present explicit expressions of the selection gradient

and conditions for convergence stability and evolutionary stability in terms
of derivatives of the fecundity function (2.1) and original spatial parameters
(deme size n, dispersal probability m and the probability to survive dispersal
p). We believe that the benefit of deriving these results are twofold. First,
Ajar’s results are expressed in terms of w, but not in terms of fecundity, F . In
practical application, it is useful to understand the effect of functional forms
of fecundity on evolutionary consequences. Second, Ajar’s formulae are very
general but therefore somewhat tedious to use. In contrast, the numbering
of other strategies s2, . . . , sn in our fecundity function F (s1; (s2, . . . , sn)) is
arbitrary, and therefore by using this symmetry we are able to obtain much
simpler expressions of the first and second order derivatives, which give us
insightful intuitions. A large part of the results in the next section can be
derived by applying Ajar (2003) formulae to the expression wj (2.7), although
we present the derivation of the expressions starting from the metapopulation
fitness (in the Appendix).

3 Evolution of strategy s

3.1 First-order results

Because of the symmetry property of F (s1; (s2, . . . , sn)), there are essentially
only two different first-order derivatives of F . One is the first-order derivative
with respect to the strategy of self, which is defined as

FS =
∂

∂s1
F (s1; (s2, . . . , sn))

∣
∣
∣
∣
s1=···=sn=sres

. (3.1)

The other is the first-order derivative with respect to the strategy of anybody
else in the patch, defined as

FD =
∂

∂sk
F (s1; (s2, . . . , sn))

∣
∣
∣
∣
s1=···=sn=sres

, where k ∈ {2, . . . , n}, (3.2)
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because the right-hand side of that equality is independent of the choice of
k. Note that the subscripts “S” and “D” respectively represent “Self” and
“Different”.

Especially, by differentiating (2.2) and (2.3) we obtain

∂

∂smut

F i
res(sres, smut)

∣
∣
smut=sres

= iFD

∂

∂smut

F i
mut(sres, smut)

∣
∣
smut=sres

= FS + (i− 1)FD.

(3.3)

Theorem 1. By using (3.3), the first-order derivative of the metapopulation
fitness (the selection gradient) can be written as

D1(sres) =
n(2− d)

n− (n− 1)(1− d)2
·

(
FS

F 0
res

)

(3.4)

where
d =

pm

(1−m) + pm
(3.5)

is the backward migration probability, i.e., the proportion of adults that are
immigrant in a monomorphic population (everybody has the same strategy),
0 < d 6 1.

Proof. The result is obtained by applying the implicit function theorem on
the expression of metapopulation fitness. See the C.

We note that such first order effects have been derived for a wider class of
models by Ajar (2003) (by using metapopulation fitness, in terms of fitness
derivatives; see eq. (5) therein), by Wakano and Lehmann (2014) (by using
trait distribution approach, in terms of fitness derivatives; see their eq. (12),
also see Appendix F of this paper), and by Mullon et al. (2016) (by using
lineage fitness; their eq. (12) is written in terms of fitness derivatives, and
their eq. (18) is written in terms of ”payoff” derivatives). In particular, our
Theorem 1 is a direct consequence of eq. (18) in Mullon et al. (2016) when
we calculate the κ-parameter there according to our Wright-Fisher life-cycle
assumption.

A strategy s∗ is called a singular strategy (Geritz et al., 1997, 1998) if the
selection gradient vanishes when that strategy is resident, D1(s

∗) = 0.

Corollary 2. Because the factor in front of (FS/F
0
res) in (3.4) is always

positive, the sign of the selection gradient is determined by FS alone, and
singular strategies are such strategies for which FS = 0.
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A good reference point for understanding (3.4) is when everybody dis-
perses (i.e. m = 1 and hence d = 1). In this case, the population is es-
sentially well-mixed and the selection gradient is simply given by (FS/Fres).
Equation (3.4) states that the (sign of the) selection gradient is preserved
even when the island structure is introduced. From (3.3) we could naively
expect that the other derivative, FD, should also be relevant in the selection
gradient, but (3.4) says that it is not the case.

To facilitate our understanding, imagine social interaction in a patch
of n individuals. Each individual can independently choose the amount of
cooperation s. Cooperation is costly to the individual performing the act, but
beneficial to the others: The benefit of cooperation will be equally distributed
to the other n− 1 individuals excluding self. The described situation is one
instance of public-goods games, and a natural choice of fecundity function of
this game model would be

F (s1; (s2, . . . , sn)) = Fbaseline − cs1 + b
s2 + · · ·+ sn

n− 1
, (3.6)

where b > 0, c > 0 and Fbaseline > 0 is a baseline fecundity. We have FS = −c
and FD = b/(n − 1) in this example. Equation (3.4) therefore suggests that
a smaller amount of cooperation is favored as long as c > 0 and that the
value of b does not affect the sign of the selection gradient at all. Indeed,
Taylor (1992a) studied the evolution of cooperation in Wright’s island model,
and showed that cooperation can evolve if the act of cooperation provides a
net benefit to the actor herself (his equation 5). In other words, altruism,
which is defined as an act that does not provide a net benefit to the actor
but does yield benefit to others, never evolves in the island model. In viscous
populations, altruists tend to cluster in locality, which favors its evolution.
At the same time, however, limited dispersal causes competition among kin,
which disfavors altruism. Here these two opposing effects precisely cancel
each other. This result is called Taylor’s cancellation result, and has been
shown shown to hold when one adopts the same life-cycle assumptions (non-
overlapping generations and so on) as ours (Taylor, 1992a,b; Queller, 1992;
Wilson et al., 1992; Rousset, 2004; Gardner and West, 2006; Lehmann et al.,
2007; Lehmann and Rousset, 2010; Taylor et al., 2011; Ohtsuki, 2012). In
this sense, our result (Corollary 2) confirms the results of Taylor (1992a) and
Taylor et al. (2011). Under different life-cycle assumptions, spatial structure
has been shown to affect the evolution of cooperation (e.g., Taylor and Ir-
win, 2000; Lehmann and Rousset, 2010; Parvinen, 2010, 2011; Seppänen and
Parvinen, 2014).
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3.2 Second-order results

Similarly to before, by using the property of the fecundity function, F (s1; (s2, . . . , sn)),
that the order of the other strategies than s1 can be freely permutated, we
see that there are only four kinds of second-order derivatives of F :

FSS =
∂2

∂s21
F (s1; (s2, . . . , sn))

∣
∣
∣
∣
s1=···=sn=sres

FDD =
∂2

∂s2k
F (s1; (s2, . . . , sn))

∣
∣
∣
∣
s1=···=sn=sres

, where k ∈ {2, . . . , n}

FSD =
∂2

∂s1∂sk
F (s1; (s2, . . . , sn))

∣
∣
∣
∣
s1=···=sn=sres

, where k ∈ {2, . . . , n}

FDD′ =
∂2

∂sj∂sk
F (s1; (s2, . . . , sn))

∣
∣
∣
∣
s1=···=sn=sres

,where j, k ∈ {2, . . . , n}, j 6= k.

(3.7)

Especially, by differentiating (2.2) and (2.3) we obtain

∂2

∂s2mut

F i
res(sres, smut)

∣
∣
smut=sres

= iFDD + i(i− 1)FDD′,

∂2

∂s2mut

F i
mut(sres, smut)

∣
∣
smut=sres

= FSS + (i− 1)FDD + 2(i− 1)FSD

+ (i− 1)(i− 2)FDD′.

(3.8)

3.2.1 Convergence stability

A (singular) strategy s∗ is an evolutionary attractor (convergence stable) if
the repeated invasion of nearby mutant strategies into resident strategies will
lead to the convergence of resident strategies towards s∗ (Christiansen, 1991).
For one-dimensional strategies this occurs when the sign of the derivative of
D1(sres) with respect to sres is negative.

Theorem 3. The condition D′

1(s) < 0 for a singular strategy s to be an
evolutionary attractor (convergence stable) is expressed in terms of F as

FSS + (n− 1)FSD < 0. (3.9)

Proof. At a singular strategy we have FS(s) = 0. Therefore the derivative of
D1(s) is, up to some positive constant, equal to

d

ds

(
FS(s)

F 0
res(s)

)

=
F ′

S(s)F
0
res(s)− F S(s)(F

0
res)

′(s)

(F 0
res(s))

2 =
F ′

S(s)

F 0
res(s)

.
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We also know that

F ′

S(s) =
d

ds
FS(s; (s, . . . , s)) = FSS + (n− 1)FSD.

Hence the result holds. Note that the condition of convergence stability is
the same as that in the well-mixed model (Wakano and Lehmann, 2014).

3.2.2 Evolutionary stability

The second-order derivative of metapopulation fitness is given by the follow-
ing formula.

Theorem 4. Using the properties (3.3) and (3.8) the second-order derivative
of metapopulation fitness can be written as

D2(sres) = C

[

φSS

(
FSS

F 0
res

)

+ φSD

(
FSD

F 0
res

)

+ φDD′

(
FDD′

F 0
res

)

+ ψS×S

(
FS

F 0
res

)2

+ ψS×D

(
FS

F 0
res

)(
FD

F 0
res

)

+ ψD×D

(
FD

F 0
res

)2
]

,

(3.10)

where

φSS = (2− d)
{
n− (n− 1)(1− d)2

}{
n2 − (n− 1)(n− 2)(1− d)3

}
> 0,

φSD = 2(n− 1)(1− d)2
{
n− (n− 1)(1− d)2

}{
n + n(1− d) + (n− 2)(1− d)2

}
> q0,

φDD′ = (n− 1)(n− 2)d(1− d)3
{
n− (n− 1)(1− d)2

}
> q0,

ψS×S = 2(1− d)
{

n3 + 2n2(n− 1)(1− d) + n(n− 1)2(1− d)2 − n2(n− 1)(1− d)3

− (2n3 − 6n2 + 5n− 1)(1− d)4 − (n− 1)3(1− d)5
}

> q0,

ψS×D = −2(n− 1)(1− d)4
{
n+ 2(n− 1)(1− d)2

}
6 q0,

ψD×D = −2(n− 1)2d(1− d)3
{
n− (n− 1)(1− d)2

}
6 q0,

C =
n

{n− (n− 1)(1− d)2} 2 {n2 − (n− 1)(n− 2)(1− d)3}
> 0.

Proof. The result is again obtained by applying the implicit function theorem
on the expression of metapopulation fitness. See the D.

Note that such second-order results (not necessarily at singular points)
have been obtained by Mullon et al. (2016) for a wider class of models (by
using lineage fitness; their eq. (13) is written in terms of fitness derivatives,
and their eq. (19) is written in terms of “payoff” derivatives under the as-
sumption that traits have no effect on pairwise relatedness). Also note that
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this result is not derived from Ajar (2003), because Ajar (2003) provided a
formula of the second-order derivative only at a singular strategy.

Comparison with the result of Mullon et al. (2016) elucidates that the
first three terms in the square brackets of (3.10) correspond to the effect
of joint deviation of two players’ strategies on one’s fitness, whereas the last
three terms correspond to the effect of deviation of strategies on demography
(relatedness). For more intuition, we cite Mullon et al. (2016).

Setting FS = 0 reproduces the following result.

Corollary 5. At a singular strategy, the second derivative D2(sres) has the
same sign as

D̃2(sres) = φ̃SS

(
FSS

F 0
res

)

+ φ̃SD

(
FSD

F 0
res

)

+ φ̃DD′

(
FDD′

F 0
res

)

+ ψ̃D×D

(
FD

F 0
res

)2

,

(3.11)
where

φ̃SS = (2− d)
{
n2 − (n− 1)(n− 2)(1− d)3

}
> 0,

φ̃SD = 2(n− 1)(1− d)2
{
n + n(1− d) + (n− 2)(1− d)2

}
> q0,

φ̃DD′ = (n− 1)(n− 2)d(1− d)3 > q0,

ψ̃D×D = −2(n− 1)2d(1− d)3 6 q0.

(3.12)

If D̃2(sres) is negative, the singular strategy is evolutionarily stable (ES). If
positive, on the other hand, it is not evolutionarily stable. The expression
D̃2(sres) can also be written as

D̃2(sres) = ξ̃SS

(
FSS

F 0
res

)

+
φ̃SD

n− 1

(
FSS + (n− 1)FSD

F 0
res

)

+φ̃DD′

(
FDD′

F 0
res

)

+ψ̃D×D

(
FD

F 0
res

)2

,

(3.13)
where

ξ̃SS = φ̃SS −
φ̃SD

n− 1

= d
[
n2 + 2(1− d)n2 + 2(1− d)2n(n− 1) + (1− d)3(n− 2)(n+ 1)

]
> 0.

(3.14)

The form (3.13) is especially helpful, because FSS + (n− 1)FSD < 0 holds
for a convergence stable singular strategy. Especially, for low d the term with
φ̃SD dominates, and for d close to 1 the term with ξ̃SS dominates (See Fig. 1
for illustration). We will use these properties in the next section.
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Note that such second-order results at singular points as our (3.11) have
been derived by Ajar (2003) (by using metapopulation fitness, in terms of
fitness derivatives; see eq. (9) therein) and by Wakano and Lehmann (2014)
(by using trait distribution approach, in terms of fitness derivatives; see their
eqs. (26–28), also see Appendix F of this paper).

It is notable that one of the four second-order derivatives of fecundity
function, FDD, does not appear in D2(sres) or D̃2(sres). It can be deemed as
another “cancellation result” that holds under the present assumptions about
the life cycle. This was observed also by Wakano and Lehmann (2014) in case
of pairwise games: in their equation (37) their parameter κ = 0 for Wright-
Fisher update rule. Theorem 4, from which Corollary 5 follows, was obtained
by applying the implicit function theorem on the expression of metapopula-
tion fitness. Note also that exactly the same result as in Corollary 5 can be
derived by the trait distribution approach (see F).
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Figure 1: Effect of the fecundity derivatives on evolutionary stability. Coeffi-
cients of D̃2(sres) given (a,b) by equation (3.12) and (c,d) by equation (3.13)
as a function of d when (a,c) n = 3 and (b,d) n = 8.
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4 Does spatial structure inhibit branching?

4.1 Spatial structure inhibits branching in a wide class
of fecundity functions

Using a continuous snowdrift game (Doebeli et al., 2004) as an example,
Wakano and Lehmann (2014) have shown that a branching point (evolution-
arily attracting singular strategy, which is not uninvadable) in a well-mixed
model changes to be evolutionarily stable (uninvadable) as the migration rate
decreases below a threshold value. We can generalize this result in the form
of the following theorem.

Theorem 6. Evolutionary branching is not possible for a sufficiently small
value of d (that is, small m or small p).

Proof. In the limit of d → 0 (m → 0 or p → 0), we have ξ̃SS = φ̃DD′ =
ψ̃D×D = 0 (See Fig. 1c,d), and D̃2(sres) (equation 3.13) becomes

D̃2(sres)
∣
∣
∣
d=0

= 2(3n− 2)
FSS + (n− 1)FSD

F 0
res

. (4.1)

According to Theorem 3 (Equation 3.9), if a singular strategy s is conver-
gence stable we have FSS+(n−1)FSD < 0, which means that (4.1) is negative.
This means that any convergence stable singular strategy is (locally) unin-
vadable (evolutionary stable). Based on continuity arguments, evolutionary
branching is not possible when d is close to 0.

Theorem 6 shows that a branching point never exists for a sufficiently
small d. However, there is still a possibility that a singular strategy which is
evolutionarily stable and convergence stable in a well-mixed model becomes
a branching point in structured models with intermediate d values. The
following theorem shows that this will not happen for a wide class of fecundity
functions.

Theorem 7. Suppose a singular strategy s is evolutionarily stable and con-
vergence stable in a well-mixed model, that is

FS = 0, FSS + (n− 1)FSD < 0, and FSS < 0. (4.2)

If

FDD′ 6 0 (4.3)

or
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FDD′ 6 FSD (4.4)

then s is also evolutionarily stable and convergence stable in the corresponding
structured models, that is

D̃2(s) < 0 (4.5)

holds for 0 < d < 1.

Proof. According to (3.13)

D̃2(sres) = ξ̃SS
︸︷︷︸

>0

(
FSS

F 0
res

)

︸ ︷︷ ︸

<0

+
φ̃SD

n− 1
︸ ︷︷ ︸

>0

(
FSS + (n− 1)FSD

F 0
res

)

︸ ︷︷ ︸

<0

+ φ̃DD′

︸︷︷︸

>0

(
FDD′

F 0
res

)

︸ ︷︷ ︸

60

+ ψ̃D×D
︸ ︷︷ ︸

60

(
FD

F 0
res

)2

︸ ︷︷ ︸

>0

< 0

(4.6)

where the inequalities follow from the assumptions (4.2) and (4.3) together
with properties ξ̃SS > 0, φ̃SD > 0, φ̃DD′ > 0 and ψ̃D×D 6 0, which proves
the first part of the theorem. Using the assumptions (4.2) and (4.4) and the
properties φ̃SD > 0, φ̃DD′ > 0 and ψ̃D×D 6 0, we have

D̃2(s) 6 φ̃SS

(
FSS

F 0
res

)

+ φ̃SD

(
FSD

F 0
res

)

+ φ̃DD′

(
F
DD′

F 0
res

)

= φ̃SS

(
FSS

F 0
res

)

+ (φ̃SD + φ̃DD′)
(

FSD

F 0
res

)

+ φ̃DD′

(
F
DD′−FSD

F 0
res

)

6 φ̃SS

(
FSS

F 0
res

)

+ (φ̃SD + φ̃DD′)
(

FSD

F 0
res

)

= (φ̃SS −
φ̃SD+φ̃

DD′

n−1
)
(

FSS

F 0
res

)

+ (φ̃SD + φ̃DD′)
(

FSS+(n−1)FSD

(n−1)F 0
res

)

6 (φ̃SS −
φ̃SD+φ̃

DD′

n−1
)
(

FSS

F 0
res

)

= d(2− d)n{(1− d)2(n− 2) + (2− d)n}
(

FSS

F 0
res

)

< 0.

(4.7)

4.2 Spatial structure can promote evolutionary branch-
ing with some fecundity functions

The convergence stability of a singular strategy is determined by the sign of
FSS + (n − 1)FSD, and evolutionary stability by the sign of equation (3.11)
involving the derivatives FSS, FSD, FDD′ and FD. The two latter derivatives
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thus only affect evolutionary stability, and not convergence stability. The
corresponding coefficients of D̃2(sres), φ̃DD′ > 0 and ψ̃D×D 6 0 (3.12) are zero
for d = 0 and d = 1, so they affect evolutionary stability for intermediate

values of d. Therefore, when
F
DD′

F 0
res

is positive and large compared to
(

FD

F 0
res

)2

,

D2(s) can be positive for intermediate values of d, even though branching
does not occur for d = 1, FSS < 0.

Now consider the following fecundity function, for which strategies s ∈
[0, 2].

F (s1; (s2, s3, . . . , sn)) = 1− (s1 − 1)2 + b

(
s2 + s3 + . . .+ sn

n− 1
− 1

)2

, b > 0.

(4.8)
This fecundity function is to some extent artificial. It can be thought to
describe some kind of public-goods situation in which deviation from s = 1 is
costly to the actor, and benefits are obtained according to how much others on
average deviate from s = 1. Although (4.8) is of form (5.9), results presented
in Section 5.2 do not apply here, because functions f(s) = 1 + b(s− 1)2 and
g(s) = (s− 1)2 (notation of equation 5.9) are not increasing for all s ∈ [0, 2].
For this model FS = −2(s−1) and FSS+(n−1)FSD = −2, which means that
s = 1 is a singular strategy, and convergence stable for all d. Furthermore,
FSS = −2, so that the singular strategy is evolutionarily stable in the well-
mixed model. Since for s = 1 we have FD = 0 and

F
DD′

F 0
res

= 2b
(n−1)2

is positive,
the conditions listed in the previous paragraph hold when b is large enough.
Figure 2 indeed shows, that when b is large, the strategy s = 1 is a branching
point for intermediate values of d. The threshold value for b, above which
branching is possible, is, however, unrealistically large, and increases with n.
Finding such cases in reality would be unlikely. Nevertheless, this example
shows that spatial structure can promote branching with some fecundity
functions, and thus it is not possible to prove that spatial structure would
always inhibit evolutionary branching.

5 Examples

5.1 Pairwise games

Assume that individuals in the deme play pairwise games among each other
and that the total payoff from these games determines the fecundity of each
individual. We can either assume that a certain number of games is played,
and the game participants are randomly chosen, or that all possible com-
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Figure 2: Spatial structure can promote evolutionary branching with some
fecundity functions. The expression D̃2(sres) determining evolutionarily sta-
bility given by equation (3.11) of the singular strategy sres = 1 as a function
of d for the fecundity function (4.8) with a) n = 3 and b) n = 8 for different
values of the parameter b.

binations of games take place. In some games the role of individuals mat-
ters. In such a situation, let Gi(sself, sopponent) denote the payoff of the indi-
vidual using strategy sself in role i matched with the player using strategy
sopponent. Assume that the player has a list of strategies, represented by a
vector s = (s(1), s(2)) for playing strategy s(1) in role 1 and playing s(2) in

role 2. When player 1 with the list s1 = (s
(1)
1 , s

(2)
1 ) is matched with player 2

with the list s2 = (s
(1)
2 , s

(2)
2 ) and if their roles are determined randomly, the

expected payoff of player 1 will be G(s1, s2) = G1(s
(1)
1 , s

(2)
2 )+G2(s

(2)
1 , s

(1)
2 ) up

to a factor of 1/2. Some games are symmetric, so that roles do not matter,
in which case it is rather easy to write the function G(s1, s2) directly as the
payoff of an individual playing s1 playing against an s2 opponent. An exam-
ple of a symmetric game is the nonlinear snowdrift game studied by Doebeli
et al. (2004).

G(s1, s2) = 1 + b1(s1 + s2) + b2(s1 + s2)
2

︸ ︷︷ ︸

common benefit

−c2(s1)
2 − c1s1

︸ ︷︷ ︸

individual cost

, (5.1)

where s denotes the cooperation strategy of individuals. The common benefit
of the game is a function of the sum of the two investments, but the cost
of investment is paid by the investor only. For example, when b1 = 6, b2 =
−1.4, c1 = 4.56, c2 = −1.6, evolutionary branching occurs in the well-mixed
situation (Figure 1A by Doebeli et al. (2004)).

In general, we assume that the fecundity of a focal individual in the deme
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is given by

F (s1; (s2, . . . , sn)) = Fbaseline +

n∑

j=2

G(s1, sj) (5.2)

Here, Fbaseline represents the baseline fecundity that is common to all individ-
uals, and G is a payoff function of an ‘elementary’ pairwise (i.e. two-player)
game played in the population.

We are interested in how the introduction of spatial structure affects con-
ditions of evolutionary branching. The first-order and second-order deriva-
tives of F are written in terms of G as follows;

FS = (n− 1)G1, FSD = G12,

FD = (n− 1)G2, FDD = G22,

FSS = (n− 1)G11, FDD′ = 0,

(5.3)

where

G1 =
∂

∂s1
G(s1, s2)

∣
∣
∣
∣
s1=s2=sres

, G2 =
∂

∂s2
G(s1, s2)

∣
∣
∣
∣
s1=s2=sres

, (5.4)

G11 =
∂2

∂(s1)2
G(s1, s2)

∣
∣
∣
∣
s1=s2=sres

, G12 =
∂2

∂s1∂s2
G(s1, s2)

∣
∣
∣
∣
s1=s2=sres

G22 =
∂2

∂(s2)2
G(s1, s2)

∣
∣
∣
∣
s1=s2=sres

.

, (5.5)

A notable feature of pairwise games is that evolutionary branching is never
favored by spatial structure. This is because FDD′ = 0 and Theorem 7 ap-
plies. Intuitively speaking, a non-zero FDD′ suggests that there is a synergetic
interaction between two others’ strategies. However, the fecundity function
of the form (5.2) does not allow such synergy because a focal individual plays
the pairwise game separately with every other. In contrast, the result in the
previous section implies that we can construct a certain ‘elementary’ three-
person game G(s1, s2, s3) that generates a fecundity function with which
spatial structure promotes evolutionary branching. In other words, we need
an elementary game that involves at least three players simultaneously to
find a positive effect of spatiality of evolutionary branching.

5.2 Public-goods game

Another important class of games other than pairwise game is multi-person
public goods games. Suppose that all n players in the same patch are en-
gaged in a single n-person public-goods game with non-linear benefit and
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cost functions. In this game, one’s strategy is often an amount of investment
to a public-good (and hence non-negative). In most cases cost is given as a
function of the investment level by self. However, there are two major ways
of formulating the benefit function (Sigmund, 2010). One way is to assume
that one’s benefit is a function of the average investment level of all n players
in the same patch including self. In this case, the fecundity function is given
by

F (s1; (s2, . . . , sn)) = f

(
s1 + s2 + · · ·+ sn

n

)

− g(s1), (5.6)

where f and g are benefit and cost functions, respectively. Both are assumed
to be increasing functions. The first order derivatives are given by

FS =
f ′(sres)

n
− g′(sres), FD =

f ′(sres)

n
. (5.7)

The boundary strategy s = 0 is evolutionarily repelling, if FS = f ′(0)
n

−g′(0) >
0, in which case positive investment levels can evolve in an initially non-
investing population. Singular strategies s are positive strategies for which
FS = 0. The second order derivatives are given by

FSS =
f ′′(sres)

n2
− g′′(sres),

FSD = FDD = FDD′ =
f ′′(sres)

n2
.

(5.8)

Because FSD = FDD holds, from Theorem 7 we conclude that spatial structure
in our model never favors evolutionary branching in this type of public goods
game.

Another common way to think about benefit in a public-goods game is
that one’s benefit is a function of the average investment level of all the other
n−1 players in the same patch excluding self, in which case eq. (5.6) receives
a minor change as

F (s1; (s2, . . . , sn)) = f

(
s2 + · · ·+ sn

n− 1

)

− g(s1). (5.9)

The first order derivatives are given by

FS = −g′(sres), FD =
f ′(sres)

n− 1
, (5.10)

but given usual monotonicity of the cost function g, g′(s) > 0, the investment
level s will evolve to zero both in a well-mixed population and in Wright’s
island model studied here.
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6 Discussion

We have studied evolution by natural selection in Wright’s island model in
which there is an infinite number of patches (demes) of constant, finite size.
In each season adults produce offspring, and the fecundity of each adult de-
pends on its own strategy as well as the strategies of other individuals in
the focal patch. A proportion of juveniles disperses to other patches. Since
adults do not survive until the next season, the fixed number offspring to be-
come adults are randomly chosen among the offspring present in each patch
after dispersal. We have derived explicit conditions for evolutionary singu-
larity, evolutionary stability, and convergence stability in terms of various
derivatives of the fecundity function. A notable difference from the pre-
vious work by Ajar (2003) is that his expressions are formulated in terms
of a series expansion of the fitness component (wj) of individuals, which is
the expected number of surviving offspring of a mutant in a patch where
there are j mutants (including the focal mutant), our equation (2.7). This
expression includes successful offspring both in the focal patch, and those
who dispersed to other patches. Such difference might seem trivial but it is
actually profound. In evolutionary game theory with genetic inheritance, a
payoff through game interactions is sometimes directly translated into one’s
fecundity. In contrast, one’s fitness involves not only the contribution from
one’s fecundity (called primary effect (West and Gardner, 2010)) but that of
fecundity others (called secondary effect) who are in reproductive competi-
tion with the focal individual. Therefore, fitness is a complex aggregate of
information including structure of the game itself, structure of interaction
partners, and structure of offspring dispersal. In contrast, fecundity has a
very simple interpretation; a result of games. We hence think it worthwhile
to derive several conditions in terms of derivatives of the fecundity function
in order to obtain a more intuitive understanding of evolutionary branching.
We have used the metapopulation fitness to obtain the branching condition,
but note that it can also be derived using the trait-distribution approach (for
details, see F).

We have firstly confirmed in Theorem 1 that an evolutionary singular
strategy in the corresponding well-mixed model is not affected by the presence
of spatial structure (Taylor, 1992a). More technically, the sign of the selection
gradient (3.4) is given by the sign of the derivative FS, and the derivative
FD does not appear in the singularity condition. As for second-order results,
we have also confirmed that the condition of convergence stability is not
affected by the spatial structure, either. A technical observation is that one
of the second order derivatives, FDD does not at all appear in the condition
of evolutionary stability (see Theorem 4).
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Our paper has not only reproduced those previously known results but
given several novel findings. We found that spatial structure inhibits branch-
ing for a wide class of fecundity functions. This statement is based on the
following results: First, evolutionary branching never occurs when the ef-
fective migration rate d is close to zero (Theorem 6). Moreover we have
also found two sufficient conditions (Theorem 7) under which evolutionary
branching never occurs in spatial models when the corresponding well-mixed
model does not allow branching. Roughly speaking, Theorem 7 holds un-
less the derivative FDD′ is positive and large. However, spatial structure can
occasionally promote evolutionary branching with some fecundity functions.
In fact, in the example in Section 4.2, evolutionary branching can occur only
for intermediate values of d. In other words, although evolutionary branch-
ing is not possible in a well-mixed setting, it does occur in a spatial setting.
The parameter values for which this scenario happens are, however, not very
realistic.

Applications of our general theory have revealed that when the fecundity
of individuals is determined only by pairwise interactions between individu-
als (pairwise games), spatial structure never favors evolutionary branching.
The same observation applies to a wide class of public goods games. It may
suggest that in many biologically reasonable situations, evolutionary branch-
ing is suppressed in spatial models compared to well-mixed models. Strictly
speaking, our results are valid for Wright’s island model with several specific
life-history assumptions, such as non-overlapping generations, local regula-
tion among adults after dispersal but before reproduction (in contrast with
population regulation among juveniles after reproduction but before disper-
sal), when a fecundity-affecting trait is under natural selection. Actually, it is
known that already a slight modification to those life-cycle assumptions made
here may change evolutionary outcomes (Taylor and Irwin, 2000; Lehmann
and Rousset, 2010). It is better, therefore, to take our result as one reference
point, not as one that applies to all life-history assumptions. For example,
an iteroparous species with a survival-affecting trait under natural selection
may respond differently to spatial structure.

Structured metapopulation models (Metz and Gyllenberg, 2001; Gyllen-
berg and Metz, 2001) typically also have an island structure (global disper-
sal), but incorporate more realistic local population dynamics than Wright’s
island model. In such models, Taylor’s cancellation result typically does not
hold, as spatial structure has been shown to affect the numerical value of
singular strategies (e.g., Alizon and Taylor, 2008; Nurmi and Parvinen, 2008,
2011; Parvinen, 2011; Seppänen and Parvinen, 2014). In some cases spatial
structure still inhibits evolutionary branching. For example, see Figure 4 of
Parvinen (2011), in which evolutionary branching of cooperation does not
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occur for low dispersal rates. For a counterexample in the context of re-
source specialization, see Figure 8b of Nurmi and Parvinen (2008), according
to which a branching point can become evolutionarily stable when the em-
igration probability is increased. Note, however, that in that model not all
patches are ecologically equal, as the resource distribution is different among
patches. Evolutionary branching under high environmental heterogeneity
and low emigration has been observed also by Heinz et al. (2009) and Payne
et al. (2011). Spatial structure might thus promote evolutionary branching
in Wright’s island model with ecologically different patches.

In summary, by deriving conditions for convergence stability and evo-
lutionary stability (and thus also for evolutionary branching) in terms of
derivatives of the fecundity function, we have derived much simpler expres-
sions than before. We believe that those expressions provide accessible tools
for researchers interested in evolution in Wright’s island model. Finally, these
expressions help us to understand when and how evolutionary branching is
favored or disfavored by the spatial structure of the population.
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A The metapopulation fitness, Rm

The metapopulation reproduction number (metapopulation fitness) is the
expected number of dispersing mutant juveniles that are produced by the
mutant colony of one dispersing mutant juvenile (Gyllenberg and Metz, 2001;
Metz and Gyllenberg, 2001). Consider a mutant juvenile that has just em-
igrated from a patch. It will survive dispersal with probability p. Next we
need to calculate the probability that it settles in a patch and becomes an
adult there. For this purpose, consider one dispersing mutant juvenile, who
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arrives in a random patch. Its proportion of the whole amount of juveniles
in this patch is approximately

q =
1

nγFres(1−m) + nγFrespm+ 1
(A.1)

The probability that the mutant will be among the n juveniles chosen to
be adults in the patch is

P (settlement) = q+ (1− q)q+ . . .+ (1− q)n−1q = 1− (1− q)n ≈ nq. (A.2)

The probability to survive dispersal and become an adult in a patch is thus
pP (settlement). The initial mutant and its descendants in the focal patch
form a mutant colony. Next we consider the dynamics of such a colony.
Assume that there are currently i adult mutants in the patch, which also
means that there are n − i residents. The proportion of mutant juveniles
competing in this patch in the next generation is

pi =
(1−m)iγF i

mut

(1−m)iγF i
mut + (1−m)(n− i)γF i

res +mnpγF 0
res

=
(1−m)iF i

mut

(1−m)iF i
mut + (1−m)(n− i)F i

res +mnpF 0
res

.

(A.3)

The probability that there will be j adult mutants in this patch in the next
generation is

tji =

(
n
j

)

pji (1− pi)
n−j . (A.4)

We collect these values into the transition matrix T = (tji) where i, j =
1, . . . , n. We leave on purpose the absorbing state i = 0 away. The probabil-
ity distribution at time t satisfies the recursion

α(t) = Ttα0, where α0 = {1, 0, . . . , 0}T (A.5)

The amount of juveniles that a mutant colony of size i will send is
imγFmut(i). We multiply these values with pP (settlement), which is the
probability that the initial dispersing mutant juvenile survived dispersal and
settled as an adult, and collect them into a column vector

E = pP (settlement){mγFmut(1), 2mγFmut(2), . . . , nmγFmut(n)}
T

= pmγP (settlement){Fmut(1), 2Fmut(2), . . . , nFmut(n)}
T

=
pm

(1−m+ pm)Fres
{Fmut(1), 2Fmut(2), . . . , nFmut(n)}

T ,

(A.6)
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where the last equality holds because γ is large:

lim
γ→∞

γP (settlement) = lim
γ→∞

γnq

= lim
γ→∞

γn

nγ(1−m+ pm)Fres + 1
=

1

(1−m+ pm)Fres
.

(A.7)

Next we want to calculate the expected number of times that a mutant
colony will have size i during its lifetime. It is obtained from

ω =
∞∑

t=0

α(t) =
∞∑

t=0

Ttα0 = α0 +T
∞∑

t=0

Ttα0 = α0 +Tω. (A.8)

From ω = α0 +Tω we obtain

(I −T)ω = α0 ⇒ ω = (I −T)−1α0. (A.9)

It can be numerically calculated as the limit of the recurrence ωt+1 = Tω+α0,
for any initial condition. Finally, the metapopulation reproduction ratio
(Gyllenberg and Metz, 2001; Metz and Gyllenberg, 2001) is

Rm = ETω. (A.10)

See also Ajar (2003).

B Consistency between metapopulation fit-

ness and invasion fitness

The metapopulation reproduction ratio measures growth of the mutant pop-
ulation between dispersal generations. We can also consider dynamics in real
time. The transition matrix T gives the transition probabilities for the focal
patch. In addition, emigrants may be able to settle into resident-dominated
patches. Such successful event results in a patch with one mutant only. Al-
together we get the next generation matrix

Γ = T+








ET

0
...
0








(B.1)

Invasion fitness, defined as the long-term exponential growth rate of a mu-
tant in an environment set by the resident, is the logarithm of the dominant
eigenvalue of the matrix Γ:

r = ln (λd(Γ)) (B.2)
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Theorem 8. The invasion fitness and the metapopulation reproduction ratio
are consistent: r = 0 if Rm = 1

Proof. From the definitions of Γ and Rm (equations B.1 and A.10) we have

Γω = Tω +








ETω
0
...
0








= Tω +








Rm

0
...
0








(B.3)

If Rm = 1, equation (B.3) becomes

Γω = Tω + α0 = ω, (B.4)

where the last equality follows from (A.8). This means that ω is an eigen-
vector of the matrix Γ corresponding to the eigenvalue 1, so that r = 0.

According to Caswell (2000), the derivative of an eigenvalue of a matrix
can be written using the left and right eigenvectors of the matrix. Above we
already observed that when smut = sres, the vector ωres is a right eigenvector
of Γ corresponding to the eigenvalue 1. Based on (A.6) and (E.2) we have

LT
1 Γres = LT

1Tres + ET
res = (1− d)LT

1 + dLT
1 = LT

1 , (B.5)

so that the vector LT
1 = {1, 2, 3, . . . , n} is a left eigenvector of Γres corre-

sponding to the eigenvalue 1. Therefore, we obtain (with the help of (E.7)
and (C.3))

∂

∂smut
λ(Γ)

∣
∣
∣
∣
smut=sres

=
LT
1

(
∂

∂smut
Γ
)

ωres

LT
1 ωres

= d

(

LT
1

∂

∂smut
T+ E ′T

)

ωres

= dD(sres).

(B.6)

The metapopulation fitness gradient D(sres) is thus sign-equivalent with the
fitness gradient calculated using the next-generation operator Γ. For rela-
tions between different fitness proxies, see also Lehmann et al. (2016).

C Proof of the first-order results (Theorem 1)

In this part of the Appendix, our aim is to provide a proof for Theorem 1,
which gives an explicit expression for the selection gradient in terms of deriva-
tives of the fecundity function. This proof consists of two parts. As explained
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in A, the vector ω needed in the calculation of metapopulation fitness is
obtained by solving a system of linear equations. Therefore, we first use
the implicit function theorem to obtain an explicit expression for the first
derivative of metapopulation fitness. Second, by taking advantage of sym-
metry properties of the fecundity function, we obtain the equation presented
in Theorem 1. Throughout the appendix we will use the notations

L1 = {1, 2, 3, . . . , n}T , and in more general, Lj = {1j , 2j, 3j, . . . , nj}T .
(C.1)

Equations involving vectors Lj , the vector ω, and the matrix T needed in
the proof are derived in E.

Since Rm = ETω, the metapopulation fitness gradient is

Dm(sres) =
∂

∂smut
Rm

∣
∣
∣
∣
smut=sres

= ET
resω

′ + E ′Tωres. (C.2)

Vectors E and ω have an intuitive meaning. The elements Ei describe the
expected number of successful emigrants from a deme with i mutants, and ωi

is the average time that a mutant colony spends in state with i mutants (the
sojourn time). The metapopulation fitness (reproduction number) Rm =
ETω is the average number of successful emigrants of a mutant colony. The
first component of the fitness gradient (ET

resω
′) describes how a (first-order)

change in the sojourn time affects the total number of emigrants of the colony,
provided that the emigrant production in each deme remains fixed. The
second term (E ′Tωres) describes the effect of changed emigrant production
(first-order) in each deme, provided that the sojourn times remain fixed.
These two first-order components together form the fitness gradient.

Proposition 9. The metapopulation fitness gradient can be written as

Dm(sres) =

(
∂

∂smut
LT
1T

)

ωres + E ′Tωres (C.3)

Proof. According to equation (A.9), the sojourn times ω are implicitly de-
fined by (I −T)ω = α0. From the implicit function theorem we have

ω′ =
∂

∂smut
ω
∣
∣
smut=sres

= (I −Tres)
−1

(

−
∂

∂smut
(I −T)ωres

)

= (I −Tres)
−1

(
∂

∂smut

T

)

ωres

(C.4)

According to (E.2) LT
1 (I −Tres) = dLT

1 = ET
res, so that

ET
res(I −Tres)

−1 = LT
1 . (C.5)
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From (C.4) and (C.2) it follows that ET
resω

′ = LT
1

(
∂

∂smut
T
)

ωres =
(

∂
∂smut

LT
1T

)

ωres,

and thus (C.2) becomes (C.3).

Let us investigate the first term of (C.3). According to (E.1) we have
(LT

1T)i = npi. By differentiating pi (Equation A.3) we obtain

∂
∂smut

npi

∣
∣
∣
smut=sres

= (1−m)i
[n(1−m+pm)−(1−m)i]F ′

mut
(i)−(1−m)(n−i)F ′

res(i)

n(1−m+pm)2Fres(0)

= 1
Fres(0)

[iK1 + i2K2] ,

(C.6)
where the second equality follows from (3.3) and (3.5), where

K1 = (1− d)(FS − FD)

K2 =
1− d

n
[dnFD − (1− d)(FS − FD)] .

(C.7)

Therefore
∂

∂smut
LT
1T =

1

Fres(0)
[K1L1 +K2L2] . (C.8)

Then consider the second term of (C.3). By differentiating (A.6) we
obtain E ′

i =
mp

(1−m+pm)Fres(0)
iF ′

mut(i). By using (3.3) and (3.5) we obtain

E ′ =
d

Fres(0)
[(FS − FD)L1 + FDL2] (C.9)

By applying expressions (E.7) for LT
1 ωres and (E.9) for LT

2 ωres, we obtain
(3.4).

D Proof of second-order results (Theorem 4)

In this part of the appendix, we prove Theorem 4, which gives an explicit
expression for the second derivative of the metapopulation fitness (with re-
spect to the strategy of the mutant) in terms of derivatives of the fecundity
function. Analogously to C, we first use the implicit function theorem, and
then use symmetry properties of the fecundity function.

Differentiating Rm = ETω (Equation A.10) two times we obtain

∂2

∂s2mut

Rm

∣
∣
∣
∣
smut=sres

= ETω′′ + 2E ′Tω′ + E ′′Tω, (D.1)

where E ′′ = ∂2

∂s2
mut

E
∣
∣
smut=sres

. The second-order effects of a mutation on

metapopulation fitness thus contain second order effects on sojourn time ω,
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provided that emigrant production E remains fixed (first term), and second-
order effects on emigrant production, provided that the sojourn time remains
fixed (third term), and finally first-order effects on both (second term).

Proposition 10. The second derivative (D.1) can be written as

∂2

∂s2mut

Rm

∣
∣
∣
∣
smut=sres

=
∂2

∂s2mut

(
LT
1T

)
ωres + 2

[
∂

∂smut

(
LT
1T

)
+ E ′T

]

ω′ + E ′′Tω

(D.2)

Proof. Consider the terms of (D.1). We can use the implicit function theorem
to obtain

ω′′ =
∂2

∂s2mut

ω
∣
∣
smut=sres

= (I −Tres)
−1

[

−

(
∂2

∂s2mut

(I −T)ωres + 2
∂

∂smut
(I −T)ω′

)]

= (I −Tres)
−1

(
∂2

∂s2mut

Tωres + 2
∂

∂smut
Tω′

)

(D.3)

Based on (D.3) and (C.5) we have

ET
resω

′′ = LT
1

(
∂2

∂s2mut

Tωres + 2
∂

∂smut
Tω′

)

. (D.4)

We investigate the three terms of the expression (D.2) for the second
derivative in turns. First look at the component ∂2

∂s2
mut

(
LT
1T

)
. According to

(E.1) we have (LT
1T)i = npi. By differentiating pi (Equation A.3) and using

(3.8) we obtain

∂2

∂s2mut

npi

∣
∣
∣
∣
smut=sres

= A1i+ A2i
2 + A3i

3, (D.5)

where

A1 =
(1− d)(−FDD + 2FDD′ − 2FSD + FSS)

Fres(0)
. (D.6)

Also the expressions for A2 and A3 depend on d and the derivatives of the
fecundity function, but they are quite lengthy. For details, see the electronic
supplement. We obtain ∂2

∂s2
mut

(
LT
1T

)
ωres = (A1L

T
1 + A2L

T
2 + A3L

T
3 )ωres, and
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by using (E.7), (E.9) and (E.10) we get the first part ready. It is not shown
separately, since we only need the sum in (D.2).

Concerning the second term, ∂
∂smut

(
LT
1T

)
is given by (C.8) and E ′T is

given by (C.9). We need to calculate their product with ω′, obtained from
(C.4). For this purpose we first need expressions (E.11) and (E.12) for Lj(I−
Tres)

−1, thereafter (C.8) and (E.13) for ∂
∂smut

(LjT), and finally (E.7), (E.9)

and (E.10) for LT
i ωres to obtain an explicit expression (not shown separately).

The third term is obtained by differentiating E:

E ′′ωres =
d

Fres(0)
(C1L1 + C2L2 + C3L3)ωres, (D.7)

where C1 = −FDD + 2FDD′ − 2FSD + FSS, C2 = FDD − 3FDD′ + 2FSD and
C3 = FDD′ . By applying (E.7), (E.9) and (E.10) for LT

i ωres we obtain an
explicit expression for E ′′ωres (not shown separately).

The final result (Equation 3.10 of Theorem 4) is obtained by adding
together the three expressions mentioned above.

E Vectors L1, L2 and L3

E.1 The vectors LT
i T

According to the definition of (A.4), we have

(LT
1T)i =

n∑

j=1

jtji =
n∑

j=1

j

(
n
j

)

pji (1− pi)
n−j = E(Xi) = npi, (E.1)

where Xi is a binomially distributed random variable with parameters n and
pi. According to (A.3) and (3.5) , pi =

(1−m)i
n(1−m+mp)

= (1−d)i
n

for the resident,
and thus

LT
1Tres = (1− d)LT

1 . (E.2)

Analogously, we have

(LT
2T)i =

n∑

j=1

j2tji =

n∑

j=1

j2
(
n
j

)

pji (1− pi)
n−j = E(Xi

2)

= npi + n(n− 1)p2i .

(E.3)

Again, by using (A.3) and (3.5) we obtain

(LT
2Tres)i = (1− d)i+

(n− 1)(1− d)2

n
i2. (E.4)
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In a similar way, we have

(LT
3T)i =

n∑

j=1

j3tji =
n∑

j=1

j3
(
n
j

)

pji (1− pi)
n−j = E(Xi

3)

= npi + 3n(n− 1)p2i + n(n− 1)(n− 2)p3i

= (1− d)i+ 3
(n− 1)(1− d)2

n
i2 +

(n− 1)(n− 2)(1− d)3

n2
i3.

(E.5)

E.2 The scalars LT
i ωres

When the mutant and resident have the same strategy, by definition (A.6)
we have Eres =

mp

1−m+mp
L1 = dL1, and thus

1 = Rm = ETωres = dLT
1 ωres, (E.6)

from which we get

LT
1 ωres =

1

d
. (E.7)

According to (A.8) we have Tω = ω − α0, so that

LT
i Tω = LT

i (ω − α0) = LT
i ω − 1. (E.8)

By using (E.4) and (E.7), the equation (E.8) with i = 2 gets a form from
which LT

2 ωres can be solved:

LT
2 ωres =

n

d (1 + (n− 1)d(2− d))
. (E.9)

In a similar way, by using (E.5) and (E.8) with i = 3 together with results
above, we can solve

LT
3 ωres =

(n+ 2(n− 1)(1− d)2)n2

d(1 + (n− 1)d(2− d)) (n2 − (n− 1)(n− 2)(1− d)3)
. (E.10)

E.3 Vectors LT
i (I −Tres)

−1

From (E.2) we get LT
1 (I −Tres) = dLT

1 so that

LT
1 (I −Tres)

−1 =
1

d
LT
1 . (E.11)

Furthermore, from (E.4) we have LT
2 (I−Tres) = (d−1)LT

1+
(

1− (1−d)2(n−1)
n

)

LT
2 .

By multiplying with (I − Tres)
−1from the right we get an expression from

which we can solve
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LT
2 (I −Tres)

−1 =
n

n− (n− 1)(1− d)2

(
1− d

d
LT
1 + LT

2

)

. (E.12)

E.4 Vectors LT
i T

′

The expression for LT
1T

′ was already obtained in (C.8). By differentiating
(E.3) and using (A.3) and (3.5) we obtain

LT
2T

′ =
1

Fres(0)

(
(1− d) (FS − FD)L

T
1

+
(1− d)

n
((1− d)(2n− 3)FS + (3(1− d) + n(3d− 2))FD)L

T
2

+2
(1− d)2(n− 1)

n2
((1 + d(n− 1))FD − (1− d)FS)L

T
3

)

.

(E.13)

F Connection to results based on trait distri-

bution approach

F.1 Previous result

Wakano and Lehmann (2014) obtained the following results in terms of fitness
derivatives, where fitness w was defined as the expected number of success-
ful offspring of a focal individual in the next generation. Note that w only
measures direct individual reproductive success, and is not the same concept
as invasion fitness or metapopulation fitness. Under the Gaussian approxi-
mation and under Wright’s island model spatial structure,they have shown
that the dynamics of the mean trait s̄ is given by

∆s̄ = V (wS +R2wD) (F.1)

and the dynamics of the variance V is given by

∆V = QESV
2 (F.2)

where
QES = ∆w +∆r (F.3)

∆w = wSS + (2wSD + wDD)R2 + wDD′R3 (F.4)
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∆r = 4R2
(2R2 + (n− 2)R3)w

p
D + (1 + (n− 1)R2)w

P
S

1−m
wD (F.5)

where R2 and R3 are the solutions of

R2 = (1−m)2
(
1

n
+
n− 1

n
R2

)

. (F.6)

R3 = (1−m)3
{

1

n2
+ 3

n− 1

n2
R2 + (

n− 1

n
)(
n− 2

n
)R3

}

(F.7)

The definitions of wS, wD,wSS, wSD, wDD, wDD′, wP
S , w

P
D are explained shortly.

Note that eq. (28) in Wakano and Lehmann (2014) contains a typo and it
should be replaced by eq. (F.5) shown above.

F.2 Rewriting in terms of fecundity derivatives

First, the previous results are derived for a case without dispersal mortality,
i.e., they assumed p = 1. If we closely follow their derivations, we can
confirm that their calculations are all correct when we replace their m by our
d. Second, they are written in terms of (individual) fitness derivatives. To
show the connection to our results, we need to rewrite them by derivatives
of the fecundity function. Below we show how we obtain our results based
on trait distribution approach by following Wakano and Lehmann (2014).
In their notation, fitness w is a function of trait values of all individuals
wki = wki(s11, s12, ..., s1n, s21, ...) where ski is the trait value of individual i in
deme k. Fitness wki is given by the sum of the expected number of successful
offspring in a focal deme and those in other demes

wki = wP
ki + wA

ki (F.8)

They are called philopatric and allopatric components of fitness, respectively.
They are explicitly given by

wP
ki =

(1− d)Fki

dF̄ + (1− d)Fk

(F.9)

wA
ki =

dFki

F̄
(F.10)

where F̄ is the average fecundity of the total population and Fk is the average
fecundity of n individuals in the focal deme k. Subscripts S and D have
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similar meanings as ours, but the effects of individuals in the same class are
collected. For example,

wD = (n− 1)
∂wki

∂skj

∣
∣
∣
∣
s11=s12=...=s̄

, (i 6= j) (F.11)

represents the fitness effect when all the n− 1 deme-mates change the trait
value by the same amount. Similarly, they defined

wS =
∂wki

∂ski

∣
∣
∣
∣
s11=s12=...=s̄

(F.12)

wSS =
∂2wki

∂s2ki

∣
∣
∣
∣
s11=s12=...=s̄

(F.13)

wSD = (n− 1)
∂2wki

∂ski∂skj

∣
∣
∣
∣
s11=s12=...=s̄

, (i 6= j) (F.14)

wDD = (n− 1)
∂2wki

∂s2kj

∣
∣
∣
∣
∣
s11=s12=...=s̄

, (i 6= j) (F.15)

wDD′ = (n− 1)(n− 2)
∂2wki

∂skj∂skl

∣
∣
∣
∣
s11=s12=...=s̄

, (i 6= j, j 6= l, l 6= i) (F.16)

wP
S =

∂wP
ki

∂ski

∣
∣
∣
∣
s11=s12=...=s̄

(F.17)

wP
D = (n− 1)

∂wP
ki

∂skj

∣
∣
∣
∣
s11=s12=...=s̄

, (i 6= j) (F.18)

They do not define mutant nor resident, but the average trait value at a
given snapshot s̄ plays a similar role as sres. To rewrite wS and wD appearing
in Eq. (F.1) as functions of FS and FD, we differentiate Eqs. (F.8) with
respect to ski for wS and with respect to skj for wD and use the following
rules

∂Fki

∂ski

∣
∣
∣
∣
s11=s12=...=s̄

= FS (F.19)

∂Fki

∂skj

∣
∣
∣
∣
s11=s12=...=s̄

= FD, (i 6= j) (F.20)

F̄ = F 0
res (F.21)

∂F̄

∂ski

∣
∣
∣
∣
s11=s12=...=s̄

= 0 (F.22)
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∂Fk

∂ski

∣
∣
∣
∣
s11=s12=...=s̄

=
FS + (n− 1)FD

n
(F.23)

Then a straightforward calculation shows the selection gradient satisfies

wS +R2wD

d
= D1(sres) (F.24)

where the explicit form of D1(sres) is identical to ours shown in Theorem 1.
To rewrite QES , fitness derivatives wSS, wSD, wDD, wDD′, wP

S , and wP
D

appearing in ∆w and ∆r should be rewritten in terms of FS, FD, FSS, FSD,
FDD, and FDD′ . Using the singular condition FS = 0 and using the similar
rules as above, we obtain these six functions. Note that wDD′ 6= 0 even if
FDD′ = 0. Then a very lengthy but straightforward calculation shows

QES

d
= D2(sres) (F.25)

where the explicit form of D2(sres) is identical to ours shown in Theorem 4
when FS = 0. Wakano and Lehmann (2014)’s Appendix D only provided how
to obtain D2(sres) in case of pairwise games and they wrote “The result is not
shown here since it is very lengthy.” We did further calculations to confirm
that it is identical to our Theorem 4 when FS = 0. On the other hand, when
game payoff only slightly changes fecundity, QES ≃ ∆w holds and a simple
expression in terms of derivatives of the fecundity function and relatedness
coefficients that approximately holds for a broader class of updating rules
can be derived (their eq.37-39).

Conceptually speaking, the trait distribution approach considers the mean
and variance of a distribution (s11, s12, ..., s1n, s21, ...) in the next generation,
while the metapopulation fitness approach calculates the accumulated al-
lopatric components of fitness wA until mutants get extinct in a focal deme.
Calculations leading to the the final result look very different, but both ap-
proaches produce exactly the same conditions which are given by very compli-
cated equations. This fact strongly suggest that both approaches are correct.
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