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Agricultural production is sensitive to weather and thus directly
affected by climate change. Plausible estimates of these climate
change impacts require combined use of climate, crop, and
economic models. Results from previous studies vary substan-
tially due to differences in models, scenarios, and data. This paper is
part of a collective effort to systematically integrate these three
types of models. We focus on the economic component of the
assessment, investigating how nine global economic models of
agriculture represent endogenous responses to seven standardized
climate change scenarios produced by two climate and five crop
models. These responses include adjustments in yields, area, con-
sumption, and international trade. We apply biophysical shocks
derived from the Intergovernmental Panel on Climate Change’s rep-
resentative concentration pathway with end-of-century radiative
forcing of 8.5 W/m2. The mean biophysical yield effect with no in-
cremental CO2 fertilization is a 17% reduction globally by 2050 re-
lative to a scenario with unchanging climate. Endogenous economic
responses reduce yield loss to 11%, increase area of major crops by
11%, and reduce consumption by 3%. Agricultural production, crop-
land area, trade, and prices show the greatest degree of variability in
response to climate change, and consumption the lowest. The sour-
ces of these differences include model structure and specification; in
particular, model assumptions about ease of land use conversion,
intensification, and trade. This study identifies where models dis-
agree on the relative responses to climate shocks and highlights
research activities needed to improve the representation of agri-
cultural adaptation responses to climate change.

climate change adaptation | model intercomparison |
integrated assessment | agricultural productivity

Climate change alters weather conditions and thus has direct,
biophysical effects on agricultural production. Assessing the

ultimate consequences of these effects after producers and con-
sumers respond requires detailed assessments at every step in the
impact chain from climate through to crop and economicmodeling.
Comparisons of results from global studies that have attemp-

ted such model integration in the past show substantial differ-
ences in effects on key economic variables. Studies in the early
1990s found that climate change would have limited agricultural
impacts globally, but with varying effects across regions (1–3).
Adaptation and carbon dioxide (CO2) fertilization effects were
the two largest sources of variation in the results. New simulation
approaches emerged in the mid-2000s, with gridded representation
of yield impacts and more comprehensive coverage of variability

in climate model projections (4, 5). However, these studies still
relied on a single crop model and a single economic model. The
number of economic models used for these types of analysis has
remained relatively limited, and there has been no attempt to
compare their behavior systematically. The Fourth Assessment
Report of the Intergovernmental Panel on Climate Change
(IPCC) (6) renewed the call to “enhance crop model inter-
comparison” and noted that “economic, trade and technological
assumptions used in many of the integrated assessment models
to project food security under climate change were poorly tested
against observed data” (ref. 6, p. 285).
This paper is part of a collective effort (7) to make progress in

this direction by systematically integrating results from the three
types of models—climate, crop, and economic—to assess how
agriculture responds to climate change. The modeling chain is
portrayed in Fig. 1. General circulation models (GCMs) use a
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representative (greenhouse gas) concentration pathway (RCP)
to produce data on changes in climate variables such as tem-
perature and precipitation. Process-based models of crop growth
use the climate results as inputs to simulate biophysical yield
effects, and these, in turn, become inputs into economic models.
The economic models then simulate the responses of key eco-
nomic variables to the changes in biophysical crop yields.
This paper focuses on the endogenous responses of the eco-

nomic models. Conceptually, the initial effect of climate change
that reduces yields (given existing practices) is a leftward shift of
the supply curve, reducing production and raising prices. Con-
sumers respond by reducing consumption of more expensive
crops and shifting to other goods. Producers respond by changing
farm-level management practices and increasing the amount of
acreage under these crops. Global reallocation of production
and consumption through international trade further alters
climate change impacts on global agriculture. The economic
models represented in this paper all capture these general effects
but have large differences in the relative contribution of these
response options. The models represent a diversity of approaches
to describing human-nature interactions, with five computable
general equilibrium (CGE) models covering the full economy and
four partial equilibrium models specialized in agriculture, in-
cluding two grid-cell–based optimization models (see Table S1 for
more details).
Results from seven scenarios on biophysical crop yield changes

under climate change (described in Table S2) are compared
across the nine economic models used in the exercise. These
scenarios are based on a combination of five different crop models
and two general circulation models. In the economic models, the
climate change effects on agricultural productivity are added to
a reference scenario that harmonizes socioeconomic and exoge-
nous agricultural productivity drivers; other drivers and parameter
choices remain specific to each model. All climate change sce-
narios use the same RCP (RCP 8.5), which is the most extreme of
the emissions pathway scenarios developed for the IPCC’s Fifth
Assessment Report. The crop models use a constant CO2 level
equal to that of the early 2000s.
The standardization of model outputs allows us to compare

the effects of the exogenous climate change shock on yields
(YEXO) arising from differences in crop model outputs for four
crop aggregates—coarse grains, oil seeds, wheat, and rice—
which collectively account for about 70% of global crop har-
vested area. The differences in the endogenous responses in the
economic models are measured through changes in 2050 in final
yields (YTOT), crop area (AREA), net imports relative to pro-
duction in the reference scenario (TRSH), and consumption
(CONS) that accompany the market price effects (PRICE) of
the climate shock.

Results
Endogenous Responses in the Economic Models Distribute the Effects
of Climate Change. Together with the assumption of no in-
cremental yield effects from CO2 fertilization, the mean bio-
physical effect of the climate change shock on yields (YEXO) of
the four crop groups and 13 regions of the globe is a 17% de-
cline. The distribution of the biophysical yield shocks (SD of

±13%) arises from both the heterogeneous impacts of climate
change over crops and geography, and the diversity of modeling
approaches in the GCM and crop models (8).
Fig. 2 provides an overview of how the initial shock at the crop

and the regional level propagates through the response options
in the economic modeling. The economic models transfer the
shock effect to the response variables. Producers respond to the
price increase associated with the shock both by intensifying
management practices [the final yield change (YTOT) is a mean
decline of 11%] and by altering the area devoted to these crops
(AREA), resulting in a mean area increase of 11%. The com-
bined yield decline and area increase result in a mean decline in
production of only 2%. Consumption (CONS) also declines only
slightly (mean decline of 3%). Changes in trade shares cancel out
across regions but the share of global trade in world production
increases by 1% on average (see Fig. S1 for world aggregated
effects). Finally, average producer prices (PRICE) increase by
20%. The direction of responses described above are common to
all models, as can be seen in the correlation matrix (Tables S3–
S5). However, the magnitude of responses varies significantly
across models, crops, and regions (Figs. S2–S4).

More Heterogeneous Responses in Production than Consumption.
The second interesting pattern of model responses is the change
in variance of the shock across geography, crops, and scenarios
along the modeling chain, displayed as box plots in Fig. 2.
Economic adjustment occurs through the endogenous PRICE

General 
circula�on 

models
(GCMs)

ΔTemp.
ΔPrec.

…

Global 
gridded

crop models
(GGCMs)

Global 
economic

models

Climate EconomicBiophysical

ΔYield
(Biophysical)

ΔArea
ΔYield
ΔCons.
ΔTrade

Fig. 1. The impact modeling chain from climate
through to crop and economic effects. Abbrevia-
tions: Temp, temperature; Prec, precipitation; Cons,
consumption.
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Fig. 2. Variability of key crop and economic model results across crop
aggregates (n = 4), models (n = 9), scenarios (n = 7), and regions (n = 13).
Box-and-whiskers plots for key crop and economic model results. The vari-
ables YEXO, YTOT, AREA, PROD, CONS, and PRICE are reported as percent-
age change for a climate change scenario relative to the reference scenario
(with constant climate) in 2050. TRSH is the change in net imports relative to
reference scenario production in 2050. Total n is not equal to the full
product of dimensions because region–crop pairs without production and
consumption in the baseline of a model are not represented for that model.
The boxes represent first and third quartiles, and the whiskers show 5–95%
intervals of results. The thick black line represents the median, and the thin
red dotted line, the mean value.
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variable, which has variation comparable to variables AREA,
PROD, and TRSH. Variation in the initial productivity shock
YEXO (SD of 13%) is similar to that of equilibrium yield YTOT
(SD of 17%). Variability values for agricultural area (AREA),
production (PROD), and trade share (TRSH) are similar in size
(SD of 25–26%) and substantially larger than those for yields.
Consumption (CONS) (SD of 6%) has the smallest variation of
all variables in Fig. 2.
Model-specific results (Fig. S2) show notable differences in

shock propagation from YEXO through yield and area responses
to PROD, a point to which we return below. Part of these dif-
ferences can be explained by model-specific differences in re-
gional impacts. This can be seen by comparing Fig. 2 with Figs.
S1 and S5 that display world aggregates for the complete sample
and by model. Consumption responds little because food de-
mand globally is less sensitive to price changes than other vari-
ables. This effect is particularly visible when comparing the
correlation of PRICE and CONS to the correlations of PRICE
and other endogenous responses in the models (Table S6 and
Fig. S6). The large variability in trade and area responses is the
result of varying assumptions about trade flexibility and ease of
land conversion in the models.
Analysis of variance (Table 1) allows us to investigate the in-

dividual contributions of a number of sources of variation for the
seven response variables described above. Specifically, the vari-
ables’ responses are assessed for effects by economic model (n =
9), crop type (n = 4), region (n = 13), and scenario (n = 7), which
we further decompose by GCM (n = 2) and crop model (n = 5).
The sum of squared error (Sum Sq.) column in Table 1 displays
the magnitude of total variance attributed to each source, with the
remaining variance allocated to residuals. The mean squared error
(Mean Sq.) column adjusts for the number of items in each group
and provides an indication of the relative contribution of sources.
Variability in the exogenous productivity shock YEXO is

primarily due to crop model and region. The only contribution
from the economic models is due to differences in model-specific
product and regional differences in how the shock is imple-
mented. Final yield YTOT demonstrates the transition toward
variation contributed by economic models, which is now the
grouping with the largest contribution to variation. This pattern
continues in agricultural area (AREA) and production (PROD),
with large contributions from models to variability. Consumption
(CONS) is an interesting variable, again with economic models
as the largest contributor to variability, but with very low con-
tributions from other groupings, and it has the smallest total sum
of squared errors of all economic variables. For TRSH, only the
region is a significant source of variability because in other
dimensions net imports sum to zero. Model-specific responses
for scenarios and variables are available in Figs. S7–S16.

Distribution of Responses Across Models. More in-depth analysis of
model responses is required to understand the origins of hetero-
geneity introduced along the chain of variables. For this purpose,

Fig. 3 graphs univariate regression lines of response variables of
each model against the initial shock (YEXO). The slope co-
efficient reflects the local response and can be roughly interpreted
as an elasticity. A value of 1 indicates that a change in the climate
shock generates an equivalent percentage change in the response
variable; for yields, this means there is no endogenous response at
the regional level. An intercept that differs from zero indicates
that a local change arises from effects elsewhere via price effects
transmitted through international trade. Table 2 reports re-
gression results by individual model and by model type (general
or partial equilibrium). One additional variable is added to the
regression analysis to isolate the pure endogenous yield re-
sponse (YENDO) (see Methods for more details).
Yield response varies by model with four different patterns.

Four models [Asia-Pacific Integrated Model (AIM), The Global
Change Assessment Model (GCAM), The International Model
for Policy Analysis of Agricultural Commodities and Trade
(IMPACT), and The Modular Applied General Equilibrium Tool
(MAGNET)] appear relatively unresponsive in terms of pro-
ductivity management, with the YTOT slope coefficient close to 1
(little or no significant endogenous yield response YENDO to cli-
mate change). Three other models [The Environmental Impact and
Sustainability Applied General Equilibrium model (ENVISAGE),
Future Agricultural Resources Model (FARM), and Global Trade
and Environment Model GTEM)] show a significant management
response to regional shocks but responses are mainly local (large
negative slope value for YENDO and intercept close to 0). These
models compensate the most through intensification in regions
where yields are most severely affected. The final yield reduction is
reduced on average to 65% of the initial shock for ENVISAGE
and 32% for GTEM. A third pattern, represented by the MAgPIE
model, is characterized by a strong response in all regions in-
dependent of the magnitude of the impact. This model displays
a slope on YTOT close to 1 with a positive intercept. Finally, the
yield response in the GLOBIOM (Global Biosphere Optimization
Model) model is unique. Unlike all of the other models, its slope
on final yield is greater than 1. This is due to a reallocation effect
both through international trade, which is highly responsive in this
model, and through intraregion spatial allocation of the most
fertile lands to least severely hit crops with more severely affected
ones being shifted to marginal lands, hence further exacerbating
the climate change effect.
Area responses also differ substantially by model. Five models

show an inverse relationship (as productivity declines, AREA
increases) of moderate (ENVISAGE, GTEM) to relatively high
magnitude (AIM, FARM, and MAgPIE). For these models, the
intercept is zero, suggesting international price transmission
does not affect area. MAGNET and IMPACT have the same in-
verse relationship but also show some price transmission effects
(significant intercept dummies). Two models (GLOBIOM and
GCAM) have a positive relationship between productivity and
area, indicating strong reallocation patterns across regions. For

Table 1. Partition of the sum of squares and analysis of variance for the different variables

YEXO YTOT AREA PROD TRSH CONS PRICE

Variable Df
Sum
Sq.

Mean
Sq.

Sum
Sq.

Mean
Sq.

Sum
Sq.

Mean
Sq.

Sum
Sq.

Mean
Sq.

Sum
Sq.

Mean
Sq.

Sum
Sq.

Mean
Sq.

Sum
Sq.

Mean
Sq.

Economic model 8 0.11 0.01 10.64 1.33*** 9.98 1.25*** 1.80 0.22*** 0.63 0.08 1.75 0.22*** 35.71 4.46***
Climate model 1 0.12 0.12** 0.18 0.18** 0.29 0.29* 0.01 0.01 0.07 0.07 0.02 0.02* 0.90 0.90***
Crop model 4 3.26 0.82*** 1.67 0.42*** 1.87 0.47*** 0.67 0.17* 0.27 0.07 0.12 0.03*** 9.69 2.42***
Product 3 0.34 0.11*** 0.96 0.32*** 1.57 0.52*** 0.38 0.13. 0.49 0.16. 0.24 0.08*** 0.89 0.30***
Region 12 9.53 0.79*** 7.35 0.61*** 7.49 0.62*** 13.06 1.09*** 5.54 0.46*** 1.17 0.10*** 16.01 1.33***
Residuals 2,862 36.09 0.01 58.87 0.02 157.60 0.06 164.84 0.06 194.94 0.07 8.23 0.00 105.90 0.04

The point (.), single asterisk (*), double asterisk (**), and triple asterisk (***) indicate significance at the 10%, 5%, 1%, and 0.1% levels, respectively.
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these two models, regions that are most affected by climate change
decrease cultivated area and replace less profitable production
with imports from more favorable areas. This reallocation pattern
is also evident in the PROD regression, with slope much greater
than 1 for these two models and a positive intercept. For these two
models, production increases in regions with a small climate shock
but in regions and crops where the negative effects are larger,
production decreases, and imports grow.

Trade responses to the productivity shock are implicit in the
intercept responses discussed above. The TRSH regression coef-
ficients reinforce the observations above. GCAM and GLOBIOM
are the most trade-responsive models. They reallocate a significant
share of production across regions and are less dependent on local
yield and area responses. IMPACT and MAGNET show an in-
termediate level of trade responsiveness, resulting in a PROD
slope close to 1. Finally, AIM, ENVISAGE, GTEM, FARM, and
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Fig. 3. Economic responses of model variables against YEXO, by model. The gray circles represent the PROD results on y axis versus YEXO input on the x axis,
obtained in each model for the 13 regions, four crops, and seven scenarios of the analysis. The different lines represent results of univariate regressions for
each variable against YEXO. The thick blue line corresponds to the regression on the gray circles; points for other variables are not displayed.

Table 2. Regressions of economic responses to climate change shock (YEXO) by model

Model YTOT YENDO† AREA PROD TRSH CONS PRICE

AIM Int 0.004** −0.001 0.001 0.047*** −0.038*** 0.011* −0.006
Slope 0.923*** −0.143*** −1.140*** 0.293*** −0.216*** 0.122*** −0.931***

ENVISAGE Int 0.044*** 0.020*** 0.032*** 0.084*** −0.063*** 0.020*** −0.003
Slope 0.654*** −0.679*** −0.195*** 0.537*** −0.331*** 0.205*** −0.384***

FARM Int 0.018*** 0.001 0.018 0.055*** −0.063*** 0.005 −0.011
Slope 0.717*** −0.513*** −0.694*** 0.262*** −0.239*** 0.055* −0.788***

GCAM Int −0.002 −0.002 0.315*** 0.283*** −0.333*** −0.030*** 0.035***
Slope 0.998*** 0.003 0.978*** 1.863*** −1.871*** 0.015 −0.095***

GLOBIOM Int 0.098*** 0.114*** 0.119** 0.189*** −0.242*** −0.028*** 0.137***
Slope 1.277*** 0.339*** 0.382. 1.436*** −1.11*** 0.253*** −1.272***

GTEM Int −0.009 −0.055*** 0.010 0.007*** −0.063*** 0.014* −0.010
Slope 0.318*** −1.192*** −0.336*** 0.375*** −0.261*** 0.127*** −0.738***

IMPACT Int 0.010. 0.005 0.053*** 0.070*** −0.115*** −0.044*** 0.176***
Slope 0.881*** −0.201*** −0.210*** 0.802*** −0.573*** 0.137*** −0.490***

MAGNET Int −0.017*** −0.015** 0.132*** 0.133*** −0.138*** −0.005 0.073***
Slope 0.960*** −0.021 −0.440*** 0.916*** −0.707*** 0.176*** −1.462***

MAgPIE Int 0.179*** 0.181*** −0.068* 0.011 −0.012 −0.004* 0.204***
Slope 0.910*** −0.459*** −0.720*** 0.123 −0.113 0.000 −0.676***

All models Int 0.036*** 0.022*** 0.058*** 0.090*** −0.108*** −0.011*** 0.068***
Slope 0.862*** −0.330*** −0.330*** 0.649*** −0.538*** 0.102*** −0.738***

The point (.), single asterisk (*), double asterisk (**), and triple asterisk (***) indicate significance at the 10%, 5%, 1%,
and 0.1% levels, respectively. Summary statistics for the different regressions are available in Table S7. Int, intercept.
†YENDO measures the yield endogenous response and is defined from the YTOT column as follows: YENDO =
(1 + YTOT)/(1 + YEXO) − 1.
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MAgPIE are the least trade-responsive. This result is not un-
expected as AIM, ENVISAGE, GTEM, and FARM are CGE
models that rely on the Armington assumption (9) that generally
results in less responsiveness to international price changes. The
model-specific results of Table 2 confirm this smaller trade response
characteristic of CGEs (see also Table S8 for regression results on
model type effects). MAgPIE also shows this pattern due to re-
strictive trade assumptions with self-sufficiency constraints.
Consumption responses are relatively small and differ little

across the models. Two models (GCAM and MAgPIE) do not
include endogenous consumption change. For the seven other
models, endogenous consumption responses are smaller than for
other variables. GLOBIOM has the strongest effect (0.26 slope),
followed by IMPACT, MAGNET, and ENVISAGE. Hence,
across the models included here, at least three quarters of cli-
mate change responses occur through land use change, man-
agement intensity, and trade adaptation.

Discussion
This paper offers a systematic comparison of responses of the
food system to climate change across a large set of global eco-
nomic models. The same economic behaviors are represented in
the models and their results are qualitatively similar. With a neg-
ative productivity effect from climate change, prices increase and
trigger more intensive management practices, area expansion,
reallocation through international trade, and reduced consump-
tion. However, the relative magnitude of these responses varies
widely across the models, reflecting differences in model structure
and parameterization. The distribution and magnitude of these
effects are of crucial importance because of their effects on
human well-being.
Our analysis shows that all models transfer a large part of the

climate change shock to production-side and trade responses. An
important implication of this is that analyses that limit climate
change impact to biophysical effects alone significantly under-
estimate our capacity to respond. However, the models disagree on
whether area or yield responses will be most important locally, and
on the role of exploiting international comparative advantage. In
addition, although the average consumption effect is relatively small,
the price increases caused by the inelastic nature of global demand
are likely to significantly increase food costs for the poor, with es-
pecially negative effects for the poor in rural areas who will also see
reduced income from production side effects.

Model Specification and Parameterization. Both model structure
and parameter choice affect the results. Parameter choice is the
most obvious way in which modeling teams represent their per-
spectives about the future. For example, on the demand side,
how quickly will other Asian countries follow Japan in reducing
rice consumption as incomes rise (represented as declining in-
come elasticities)? On the supply side, how easy is it to switch
from wheat to maize in Canada or Russia if temperatures rise?
How much tropical forest can be converted to agricultural land
and how easy is that conversion? The CGE models all have their
roots in the Global Trade Analysis Project database and the CGE
optimizing approach (10) and so have similar model specifications
but parameterization choices result in very different outcomes.
For instance, ENVISAGE and FARM absorb on average one-
third of the climate shock through intensification but for GTEM
it is as much as two-thirds. AIM and MAGNET parameterization
results in most of the response taking place in area expansion.
Model specification choices can also influence the results. For

example, in the case of trade, some models (e.g., GLOBIOM,
GCAM, and IMPACT) rely on an integrated world market
representation, which could overstate the degree of trade response
(11), whereas others use Armington elasticities which tend to re-
strict trade (CGE models) (12) or self-sufficiency constraints
(MAgPIE). With respect to land, both GLOBIOM and MAgPIE

have a full representation of land use and allocate it through an
optimization process with high spatial resolution, whereas, for
instance, the IMPACT model only considers cropland and
assumes it can be expanded as needed without constraint. On the
CGE side, land representation also varies strongly, from the
simplified structure of substitution found in GTEM or ENVIS-
AGE that does not consider land expansion into forest to
MAGNET that relies on a land supply curve calibrated on
a biophysical model (13). Finally, endogenous yield adjustments
can differ widely between a CGE, which represents substitution
with factors such as capital and labor; a bottom-up model like
GLOBIOM, which explicitly represents switches between dif-
ferent management systems and the relocation of production
between different grid-cell locations (14); and, for instance,
MAgPIE, which features an endogenous mechanisms of public
and private investments in agricultural productivity (15).

From Comparison to Improvement. This model comparison exercise
has not only enhanced understanding of the different economic
responses of agriculture to climate change; it has also created
a systematic process for improvement of model input data, in-
tegration with other models, and sharing of modeling insights.
A first set of envisioned improvements is more detailed as-

sessment and, as appropriate, harmonization of specific types of
model parameters and drivers. For instance, price and income
elasticities are all currently sourced from different datasets with
little assessment of their appropriateness for long-term scenar-
ios. Although progress was made toward a standardized language
with respect to scenario assumptions such as macroeconomic
drivers, exogenous productivity paths, and behavioral parame-
ters, further efforts on protocol development and simulation
experiments are needed to effectively compare model behavior.
Finally, harmonization of some base data would also be benefi-
cial, but this appears especially challenging, with CGE models
relying on different versions of the GTAP database and partial
equilibrium models aligned with FAOSTAT data but with dif-
ferent starting years. Still, some diversity in model approaches
will and should remain because of the inherent uncertainty about
the future of demand, trade, technological progress, and other
processes (16).
Model integration under a common protocol of data exchange

also constitutes a great potential for future improvement of
models and overall assessments. This study has compared the
results from 63 climate, crop, and economic model combina-
tions, with standardized procedures allowing full tracing of
modeling assumptions on choice of RCP, GCM, and level of
CO2 fertilization. Further harmonization with more detailed
geographical scales and products would also allow improvements
in future analysis and systematize the distinction of management
systems and spatially explicit analyses.
Finally, this exercise has focused on improving the model in-

tegration process. However, it has omitted some potential large
biophysical effects of climate change, including CO2 fertilization
effects on crops and weeds, plant nutrient management choices,
ozone damage, extreme events, or biotic stresses. In addition, it
has ignored the potential for policy and program responses
around the world to facilitate or hinder adaption to these chal-
lenges. Attention to these topics should be high on the agenda
for future research across the modeling chain. The collective
experience gained in this first exercise of model integration
and comparison will help to improve current estimates, and
to refine the contribution of economic models to the full
chain uncertainty.

Methods
Climate Data. Climate model inputs were provided by the HadGEM2-ES (17)
and IPSL-CM5A-LR (18) GCMs using the RCP 8.5, the most extreme of the
RCPs developed for the IPCC’s Fifth Assessment Report (19). This RCP has
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a radiative forcing of ∼8.5 W/m2 by 2100. Its CO2 concentration in 2050 is 540
ppm (see www.iiasa.ac.at/web-apps/tnt/RcpDb). The resulting climate out-
puts were bias-corrected and downscaled for the Inter-Sectoral Impact
Model Intercomparison Project (ISI-MIP) model comparison project (20).

Crop Models. The ISI-MIP climate data were used as inputs into five crop
growthmodels as part of a global gridded cropmodeling exercise (8). Climate
data for 2000 and 2050 were used to generate yields at 0.5° resolution
(about 55.5 km at the equator). The crop models results used are all based
on a constant CO2 atmospheric concentration assumption, eliminating any
fertilization effect from the additional CO2 emitted during the period from
2000 to 2050. The combination of the most extreme RCP with the assump-
tion of limited CO2 fertilization effects in 2050 means that the negative
productivity effects are at the upper end of direct yield effects from climate
change by 2050. However, they do not include the deleterious effects of
increased ozone concentrations, biotic stresses from a range of pests and
diseases that will thrive under higher temperatures and more CO2, and the
likelihood of increased occurrence of extreme events. The process of trans-
forming crop model data to inputs for economic modeling involves three
challenges—deriving yield effects for crops not included in the crop models,
aggregating from high resolution spatial crop model outputs to lower reso-
lution country or regional units of the economic models, and determining
yield effects over time. See SI Text for more technical discussion of the process,
including the mapping of climate yield impacts for crops not available in the
crop models (see Table S9).

Baseline in Economic Models.All models were run with gross domestic product
(GDP) and population values from Shared Socioeconomic Pathway 2 (SSP2)
(21, 22). In SSP2, global population reaches 9.3 billion by 2050, an increase of
35% relative to 2010, and global GDP triples. The SSP data are available at
https://secure.iiasa.ac.at/web-apps/ene/SspDb. Exogenous agricultural pro-
ductivity changes from research and extension efforts were also aligned
across models using IMPACT modeling suite estimates (23), except for
MAgPIE, which represents this effect through its own endogenous yield
response (15). IMPACT values are based on expert opinion about potential
biological yield gains for crops in individual countries based on historical
yield gains and expectations about future private and public sector research
and extension efforts. Table S10 reports the resulting yield changes between
2005 and 2050 for selected crops in selected countries. These estimates do
not include crop model-based climate change effects or economic model
yield responses to changes in input or output prices.

Economic Responses to Climate Shocks. Each of the global economic models
used the exogenous productivity shocks as yield determinants (YEXO). For the

computable general equilibrium economic models, the shocks were imple-
mented as shifts in the land efficiency parameters of the sectoral production
functions. For the partial equilibrium models, the shocks were additive shifters
in a yield or supply equation.

The variables YEXO, YTOT, AREA, CONS, and PRICE were reported by each
model for the same set of regions (Table S11) and the four following crop
aggregates: wheat, coarse grain, rice, and oil seeds. These variables are cal-
culated as percentage change for a climate change scenario relative to the
reference scenario. Trade share (TRSH) is defined as the 2050 difference in
net imports between climate change scenarios and reference scenario, di-
vided by 2050 production in the reference scenario. For TRSH world aggre-
gate, only positive net flows are accounted to obtain the share of production
traded. Two additional variables are used in the main text or SI Text to isolate
the endogenous yield response YENDO and supply response PENDO. The for-
mulas are YENDO = (1 + YTOT)/(1 + YEXO) − 1 and PENDO = (1 + PROD)/
(1 + YEXO) − 1 = (1 + AREA)*(1 + YENDO) − 1. The price variable chosen for
this comparison (PRICE) is the average producer price weighted by production
volumes, and deflated by the GDP price index.
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