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ABSTRACT: The rate of growth in agricultural production has been decreasing in several regions of the world in recent
years. The availability of water, which is one of the main inputs, is becoming limiting and more variable. In this article,
we study the sensitivity of the agroecosystem to rainfall variability in order to identify vulnerable areas. We applied a
longitudinal assessment of remote sensing time-series data, using the correlation between inter-annual rainfall anomalies
and anomalies in Normalized Difference Vegetation Index (NDVI), a proxy for crop production. With a novel approach, we
then identified whether the sensitivity results from a variation in crop growth or from a deliberate adjustment in the cropping
pattern, reflecting a coping strategy. In our case study area, the Ganges basin, 25% of the basin area showed a significant
correlation (p < 0.10) between rainfall and NDVI anomalies during the summer monsoon-dominated cropping season, both
positive and negative. During the consecutive dry season, 18 % of the basin area showed a significant correlation, mostly
positive. This variation in sensitivity shows the added value of spatially explicit information from remote sensing over
lumped crop statistics. Primarily in the drier western part of the basin, a coping strategy of increasing fallow land in years
with below-average rainfall was detected. Distinguishing a coping strategy from a crop yield reduction is important from
both an economic and a hydrologic perspective.
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1. Introduction

A growing world population and changing diets will
cause an increase in the demand for food in the com-
ing decades (FAO, 2009; Molden, 2007). At the same
time, the availability of one of the main inputs for food
production, water, is becoming limiting and more vari-
able (Biemans, 2012). By the mid-21st century, annual
average freshwater availability is projected to decrease
by 10–30% over some dry regions at mid-latitudes and
in the dry tropics, several of which are water-stressed
regions (Parry et al., 2007). In addition to changes in
average rainfall, the inter-annual and inter-seasonal vari-
ability is expected to change with rainfall becoming more
erratic (Parry et al., 2007).

Limited water availability has already affected the rate
of growth in agricultural production (Funk and Brown,
2009; Molden, 2007). For large parts of the dry tropics,
especially on the Indian subcontinent, the rate of yield
growth has slowed since the mid-1990s (Milesi et al.,
2010). This was mainly attributed to limitations in the
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expansion of irrigated areas and the unsustainable use of
irrigation water. In the near future, higher water demand
due to higher temperatures and increasing competing
claims by other sectors are expected to further impact
the agroecosystem. As a result, sensitivity to rainfall
variability is likely to increase and coping strategies will
have to adapt accordingly.

Coping strategies aim to either buffer variations in
supply, by storage or the additional use of groundwater
or canal water, or to adjust demand. Demand side coping
strategies involve either structural measures such as
crop diversification, or, more flexible measures, such
as seasonal adjustment of the cropped area. Farmers in
Uttarakhand, Northern India, shift to less water-intensive
crops in years with poor rainfall (Kelkar et al., 2008). In
rainfed areas in Karnataka, Southern India, the choice
of crops in a specific year depends upon the timing
of the sowing rains (Gadgil and Rao, 2000). In the
command area of irrigation schemes along the Krishna
river in Andhra Pradesh, Southern India, farmers leave
land fallow in below-average monsoon years or plant
part of their fields with rainfed crops (Venot et al.,
2010). Outside India, in Queensland, Australia, a forecast
‘likely to be drier than normal’ leads to maximising no-
till area (Meinke and Stone, 2005). In the northeast of
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Brazil, farmers adapt cropped and irrigated area based
on rainfall expectation and the quantity of stored water
resources in reservoirs (van Oel et al., 2010). As a result
of these strategies, land and water use in water-stressed
catchments can be highly dynamic, changing from year
to year and from season to season.

A detailed insight into these dynamics and the sensi-
tivity of the agroecosystem to inter-annual rainfall vari-
ability and related coping strategies in land and water use
is often lacking, especially at the regional or catchment
scale. Existing regional and global scale data, like land
cover maps, describe only average, fixed land use pat-
terns. Analyses that do describe inter-annual variability
in land use, cropping patterns or crop production mostly
use data aggregated at the scale of countries or states
(e.g. Krishna Kumar et al., 2004; Revadekar and Preethi,
2012). More detailed local scale statistics on cropping
patterns and water allocation strategies are difficult to
upscale and interpret. If available, they are often not
complete for the whole area or time period of interest,
or are outdated. Likewise, vulnerability studies based on
socioeconomic research techniques like interviews pro-
vide in-depth information on sensitivity, vulnerability and
coping strategies at the local level, but do not cover larger
areas (e.g. Molle et al., 2010; Venot et al., 2010). As
a result, feedbacks from coping strategies in response
to changes in water availability, like a seasonal reduc-
tion of area under cropping, are hardly considered in
most present-day water resources management assess-
ments. This hampers our understanding of the present
and future impact of hydroclimatic and socioeconomic
changes on the agroecosystem.

A way to overcome the gap between location-specific
coping strategies at the very local level and the need
for water resources and agroecosystem analysis at the
catchment scale is the use of remote sensing. In this
article, we apply a longitudinal approach, using remote
sensing time-series on the Normalized Difference Vege-
tation Index (NDVI), an often used proxy for net primary
production, to provide information on the spatial and on
the temporal, i.e. inter-annual, variation in crop produc-
tion. The inter-annual variation in agricultural production
and the influence of varying cropping patterns has to our
knowledge not been fully studied. Some studies have
used NDVI time-series to assess inter-annual relation-
ships between rainfall and vegetation, but they either
did not focus specifically on agriculture (e.g. Fang et al.,
2001; Knapp and Smith, 2001), touched upon it only at a
more aggregated state- or country-wide level (e.g. Milesi
et al., 2010), or studied the relation between climate and
crop phenology at higher resolution, but did not go so
far as to distinguish underlying management responses
(e.g. Brown et al., 2010; Vrieling et al., 2011). Biggs
et al. (2010) and Gumma et al. (2011) did map agricul-
tural responses to a water supply shock in 2002/2003 in
Southern India with remote sensing, but focussed solely
on this single drought event.

To identify those areas sensitive to inter-annual rainfall
variability, we correlated NDVI anomalies to rainfall

anomalies for the period 1982–2006 after correction for
autonomous trends in crop yields over the years. For
the most sensitive areas, we then distinguished whether
correlation between rainfall variability and variability in
NDVI is merely a biophysical response of the crop to
varying rainfall or whether a coping strategy in the form
of changing cropped area was involved. We used the
Ganges basin as our case study site. Census data at district
level on cropped areas and production were used to verify
the correlations found in the remote sensing data. The
longitudinal approach gives not only the sensitivity to
rainfall variability but can also be used to gain more
insight into the coping strategies of farmers and thereby
the dynamics as a result of anthropogenic responses to
variability in rainfall.

2. Study area

The rice–wheat cropping system in the Ganges basin
(Figure 1) provides the staple food for a large proportion
of the rapidly expanding Indian population. Its produc-
tivity and overall production have been increasing in
the previous decades, attributed to technological changes
brought about by the Green Revolution, the expansion
of irrigated areas and a surge in the use of groundwater.
This increase has been levelling off since the early-1990s
(Milesi et al., 2010), especially in drier areas, even though
recent years saw record-breaking agricultural production
for India as a whole (Government of India, 2013). Rain-
fall varies within the Ganges basin due to the monsoon
circulation patterns and large orographic differences, with
high rainfall along the southern part of the Himalayan arc
and low rainfall in the southwest. Inter-annual variability
in rainfall is high throughout the basin (see Table 1).

The productivity of the rice–wheat cropping system
heavily depends on the Indian summer monsoon occur-
ring from June to September. In large parts of the basin,
this monsoon rainfall supports a double crop rotation,
with a Kharif crop during the monsoon and a Rabi crop
in the following dry season. During the Kharif season,
crop development relies heavily on rainfall. Rabi season
crop cultivation on the other hand, occurring after the
end of the monsoon, relies on over-year water storage in
glaciers and deeper groundwater reservoirs or seasonal
water storage in snow, soil and small reservoirs (e.g.
village tanks). For those farmers having only access to
seasonal water storage, the time lag between rainfall and
planting and resulting insight in water resources stored in
soil, reservoirs and shallow groundwater offers a window
of opportunity to take management decisions regarding
crop type and intensity.

3. Methodology and datasets

We used freely available datasets for rainfall and NDVI
to assess the sensitivity of the agroecosystem and related
coping strategies. First, sensitivity to rainfall variability
was assessed using data with a long temporal coverage
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3068 C. SIDERIUS et al.

Figure 1. Ganges basin delineation. With (a) regions: 1. Himalayas; 2. Western Plain; 3. Eastern Plain; 4. Chambal; 5. South and 6. West
Bengal region (rocks, snow and ice in Himalayas excluded); (b) location of the basin and; (c) spatial resolution of the used gridded rainfall and
NDVI datasets and average land holding size of different classes in India: a. marginal (<1 ha, 22% of total area); b. small (1–2 ha, 22%); c.
semi-medium (2–4 ha, 24%); d. medium (4–10 ha, 21%); e. large (>10 ha, 11%) and f. average of all size classes (as per Agriculture Census

2010–2011, Government of India, 2013).

(25 years) at medium spatial resolution (8 km). On the
basis of this analysis, sensitive regions were selected
where in more detail the presence of a coping strategy
in land use was studied using data with a higher spatial
resolution (250 m), but with a shorter temporal coverage
(10 years). Data sources, characteristics and methods will
be described separately for both components in the
following paragraphs.

3.1. Sensitivity to rainfall variability

3.1.1. Datasets

For the sensitivity analysis, NDVI data from the Global
Inventory Modeling and Mapping Studies (GIMMS)
dataset, generated by the AVHRR satellite, were used.

GIMMS is available at 8 km resolution for the years
1981–2006 (Tucker et al., 2005). The GIMMS dataset
has been corrected for view geometry, volcanic aerosols
and other effects not related to vegetation change. The
data can be downloaded as composites for the first and
second half of each month. Rainfall was derived from the
APHRODITE dataset for monsoonal Asia (APHRO-MA-
V1003R1), a daily precipitation dataset covering most of
China, South and Southeast Asia (Yatagai et al., 2009).
APHRODITE data are created primarily with data from
between 5000 and 12 000 rain gauges across Asia. The
rain-gauge data are interpolated at a 0.05◦ grid, using
WORLDCLIM climatology data (Hijmans et al., 2005),
and re-gridded to a 0.25◦ and 0.5◦ resolution covering
the period of 1951–2007. We used the 0.25◦ resolution
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Table 1. Land use (based on the South Asia Land Use and Irrigated Area Map), rainfall (APHRODITE) and NDVI-rainfall
anomaly statistics for each model region.

Chambal Western
Plain

Eastern
Plain

South West
Bengal

Himalayas

Total area (km2) 267 264 189 728 152 384 156 001 46 980 177 953
Land use

Irrigated (%) 65 97 97 57 91 0
Rainfed (%) 15 1 0 2 0 0
Shrubs and forest (%) 20 2 3 41 9 100

Rain
Mean (mm) 653 659 972 912 1018 1109
Relative standard deviation (%) 27 28 24 21 21 20

Correlation (p < 0.1)
Kharif (% of area) 27 19 46 24 36 15
Rabi (% of area) 35 18 12 8 5 12

dataset and aggregated daily precipitation to monsoon
totals (JJAS months) for all 0.25◦ grid cells.

3.1.2. Methodology

Sensitivity can be defined as the degree to which a system
is affected, either adversely or beneficially, to climate-
related stimuli (McCarthy et al., 2001). In this article,
sensitivity of the agroecosystem to inter-annual rainfall
variability is based on the correlation between rainfall
anomalies and NDVI anomalies. NDVI, derived from
satellite measurement of surface reflectance, is often used
as a proxy for vegetation or crop yields (Field et al.,
1995; Prince and Goward, 1995; Tucker et al., 1985).
It has proven suitable for detecting vegetation changes
in relation to rainfall anomalies (Anyamba and Tucker,
2005). Anomalies in NDVI values give information on
the stability of the natural resource base of a region,
catchment or farming system (Vrieling et al., 2011).

To derive annual anomalies in NDVI, data needed to be
corrected for autonomous trends in crop production over
the observed period. As shown by Milesi et al. (2010),
there seems to be a distinct slowing down in the increase
in NDVI since the mid-1990s in large parts of the Indian
subcontinent.

Seasonal cumulative NDVI was calculated for the
Kharif and Rabi season (cNDVIi ,s , with i for years and s
for season). Regression with a second-order polynomial
best described the slowing down and was consequently
used to determine trends in cNDVI values over the
observed period for all individual pixels taking the
Kharif and Rabi season separately. Other approaches to
describe the trend, such as simple linear regression or a
combination of two simple linear regressions, one for the
early period with a steep rise in NDVI and one for the
later period with a slowdown, as used by Milesi et al.
(2010), were tested as well. They reduced the amount
of pixels with a significant trend in cNDVI and were
therefore considered less suitable (results not shown).
Annual anomalies in NDVI for the two seasons were
then calculated per year as the difference between cNDVI
and the 1982–2006 seasonal cumulative NDVI trend
(cNDVItrend,s). Using maximum seasonal NDVI instead

Figure 2. Seasonal variation in average NDVI in the Chambal region,
part of the Ganges basin, for all years with an above-average monsoon
rainfall (mean rainfall plus standard deviation) and below-average
monsoon rainfall (mean rainfall min standard deviation). Average of all
pixels. Source: MODIS Terra (MOD13Q1) NDVI data (Huete et al.,

2002).

of cumulative seasonal NDVI gave similar results (results
not shown).

Figure 2 shows the different time periods under con-
sideration. The monsoon period partly overlaps with the
Kharif season, which ends around late October after
which the Rabi season starts. No trend in total monsoon
rainfall (JJAS months) was expected over the Ganges
basin for the period 1982–2006. This was verified for
each meteorological grid cell individually. APHRODITE
data showed a significant trend in rainfall over only 5% of
the basin area, of which half was in the Himalayas, which
is an area less relevant for our analysis. Annual anoma-
lies in total monsoon rainfall (mRaini) were therefore
derived from a simple correction against the long-term
mean for each meteorological grid cell (mRainmean). Sen-
sitivity was thus interpreted as:

SensitivityS = corr
((

cNDVIi ,s − cNDVItrend,s
)

,
(
mRaini − mRainmean

))
(1)

The relationship between annual rainfall anomalies
and cNDVI anomalies can be either positive or negative.
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When the relationship is positive, more rainfall leads to
higher cNDVI, i.e. going from drought stress to optimum
plant growth and full crop cover. When the relationship
is negative, more rainfall leads to lower cNDVI, due
water logging or flooding. There will be no relationship
if sufficient water resources are available each season,
either from rainfall or from a reliable source of irrigation.
Pearson’s r of the simple linear regression was calculated
for each NDVI data pixel at 8 km resolution. The sign
of the correlation coefficient determines whether more
rainfall resulted in a higher cNDVI or lower cNDVI.
A t-test was used to identify pixels with a significant
correlation between rainfall anomalies and cNDVI
anomalies. We did not apply a Bonferroni correction,
or a similar method, to correct for false positives which
will occur to some degree when testing a correlation
for thousands of pixels. The Bonferroni correction is
regarded as conservative when there is large number
of tests involved. In our analysis, such a correction
would reduce the expected number of pixels with a
significant correlation more or less to zero. Deriving the
proper correction factor is technically very complicated,
especially for a spatial analysis, and beyond the scope of
this article. Instead, we show the pixels with a significant
correlation between rainfall and cNDVI for different
significance levels (p < 0.01, p < 0.05 and p < 0.10) and
compare the spatial pattern that arises with district-level
data on crop production. Results were also analysed for
six subregions in the Ganges basin, which were defined
using a combination of major land use characteristics
and the subcatchment delineation (Figure 1).

3.2. Coping strategies

3.2.1. Datasets

Moderate Resolution Imaging Spectroradiometer
(MODIS) NDVI data were used to determine whether
the identified sensitivity is a result of a variation in crop
growth or a deliberate adjustment of the cropping pattern.
At 250 m resolution, MODIS NDVI data give more spa-
tially explicit information than the GIMMS data. MODIS
Terra (MOD13Q1) NDVI is available for the year 2000
till present as 16-day composites. It has been corrected
for water, clouds, heavy aerosols and cloud shadows.
Owing to orbit overlap, multiple observations may exist
for one day and a maximum of four observations may be
collected. This can result in a maximum of 64 observa-
tions over a 16-day cycle though the final number of good
quality observations is typically less than 10. With two or
more good quality observations, the highest NDVI value
is chosen as the most representative for the whole 16-day
period. Otherwise, the historic average value is used
(Huete et al., 2002). In the Rabi season, which is our
main period of interest, it rains only occasionally. Never
more than 2% of the pixels were influenced by cloud
cover, so additional cloud correction was not necessary.

Rainfall was taken from the Tropical Rainfall Mea-
suring Mission (TRMM) Multi-satellite Precipitation
Analysis dataset (TMPA, TRMM V7) because the

APHRODITE dataset does not cover the whole period for
which MODIS images are available. TRMM covers the
period from 1998 to present and contains 3-hourly pre-
cipitation estimates at all longitudes from 50◦N to 50◦S
at a 0.25◦ resolution. The TMPA product is based on
a combination of passive microwave data and infrared
data (IR) from different sensors. Passive microwave data
from a variety of low earth orbit satellites have a strong
relationship to rainfall, but incomplete 3-hourly coverage
(averaging about 80% of the earth’s surface in the lat-
itude band 50◦N–S). Cloud-top brightness temperatures
measured by IR of geosynchronous earth orbit satellites
has less correlation to precipitation at fine time/space
scales and is measured at lower spatial resolution, but has
complete coverage for each 3-hourly time period. The
resulting rainfall estimate, rescaled to rain-gauge data,
provides reasonable performance, especially at monthly
scales (Huffman et al., 2007). We used the 3-hourly prod-
uct, TMPA 3B42, further referred to as TRMM data.
We aggregated 3-hourly rainfall to monsoon totals (JJAS
months) for all pixels.

3.2.2. Methodology

A coping strategy to deal with inter-annual variability
in rainfall is to vary the intensity of the cropping pat-
tern from year to year. In the Kharif season, during the
monsoon, it is assumed that NDVI is largely a direct
reflection of the crop response to rainfall, with production
being supported by water management in irrigated areas.
Farmers can react to varying rainfall through irrigation
management if additional water resources are available,
but they have less time to anticipate, e.g. by varying the
cropping pattern or, more specific, the cropped area. In
the Rabi season, however, cropping starts after the mon-
soon when water resource availability is partly known
to farmers. Differences in NDVI during this season are
therefore also likely to reflect coping strategies, like leav-
ing land fallow in this second cropping season. It is
assumed that less rainfall leads to a more diverse cropped
area pattern in the Rabi season, with both fallow land and
fields fully irrigated.

The presence of coping strategies in the form of
leaving land fallow in the Rabi season was assessed
by comparing probability density functions (PDFs) of
maximum seasonal NDVI (mNDVI) between years with
below-average rainfall and years with above-average
monsoon rainfall. A simple crop response to lower
rainfall would result in a PDF which gradually changes
from a normal distribution around higher mNDVI values
to a normal distribution around lower mNDVI values.
In other words, in case of low rainfall, a suppressed
crop growth results in lower mNDVI values but largely
the same standard deviation and shape of the PDF. If
management is involved, limited water resources could
be allocated selectively. In dry years, there will be
areas receiving no water (highlighted by a very low
mNDVI) and areas still receiving enough water because
irrigation is specifically allocated to them (highlighted by

© 2013 Royal Meteorological Society Int. J. Climatol. 34: 3066–3077 (2014)



SENSITIVITY OF THE GANGES BASIN TO INTER-ANNUAL RAINFALL VARIABILITY 3071

a high mNDVI). In this case, the PDF would not shift,
as described above, but result in a distinctly different
mNDVI pattern during dry years.

The higher resolution of the MODIS data made it
possible to distinguish between different land uses. The
Rabi season PDFs were constructed for four main land
and water management classes within the six regions
within the basin. The land use classification was taken
from the regional South Asia Land Use and Irrigated
Area Map which is primarily based on a classification
of MODIS 500 m gridded data (Dheeravath et al., 2010).
The 18 classes of the freely available version of this
land use map were aggregated into three main groups:
‘irrigated agriculture’, ‘rainfed agriculture’, ‘nature’, with
snow, ice and rocks in the Himalayas excluded from
the analysis. As land holding sizes are on average still
smaller than the MODIS grid size (Figure 1), purity of
pixels cannot be guaranteed. However, land use is rather
uniform in large parts of the basin, which reduces the
likelihood of mixed pixels.

For each meteorological grid cell, years with above-
average rainfall (defined as mean plus standard deviation,
in accordance with Indian Meteorological Department
standards) and below-average rainfall (mean minus stan-
dard deviation) were selected. It was not an option to
pre-selecting single years for which all pixels experi-
enced below-average or above-average rainfall due to the
large size of the basin and subregions, the heterogene-
ity of terrain and the spatial variation in climate. The
mNDVI values in the Rabi season for the above- and
below-average years of all pixels in a land use region
combination were then plotted in the PDFs. Only those
pixels that showed a significant sensitivity to rainfall vari-
ability (Section 3.1.2) were plotted. Maximum NDVI in
the Rabi season occurred during the second half of Jan-
uary. PDFs for the period before or after, i.e. the first
half of January or the first half of February, gave similar
results (results not shown).

3.3. Production and cropped area statistics

To validate the results from the NDVI analysis, district-
level statistics on production of the main staple crops
were collect for three states in the Ganges basin:
Rajasthan (wheat), Uttar Pradesh (rice) and Bihar (rice).
Together these states cover about 50% of the Ganges
area and roughly represent the main climatic regions from
Rajasthan in the drier west to Bihar in the wetter east.
Uttar Pradesh stretches over the central part of the Indo-
Gangetic Plain.

The Directorate of Economics and Statistics of the
Ministry of Agriculture, Govt. of India, and the rele-
vant state-level authorities release estimates on area, pro-
duction and yield of principal crops. Yield statistics on
food grain production are collected through crop cutting
experiments (CCEs), conducted under the General Crop
Estimation Surveys (GCES), covering about 95% of vil-
lages. Area statistics are based on land records of revenue
agencies and sample surveys, covering up to 20% of the

villages (Government of India, Directorate of Economics
and Statistics, Ministry of Agriculture, 2012). In areas
with no official reporting, a more qualitative approach
involving the village headmen is used to collect data.

Bihar data were collected from the Crop Production
Statistics Information System (http://apy.dacnet.nic.in,
accessed June 2012), and covers the period 1999–2011.
Uttar Pradesh data were collected from the Uttar Pradesh
agricultural statistics department of the Government of
UP (http://updes.up.nic.in/spatrika/spatrika.htm, accessed
April 2012), and covers the period 1990–2008. Rajasthan
data were collected from the Rajasthan agricultural statis-
tics department of the Government of Rajasthan (http://
www.krishi.rajasthan.gov.in/Departments/Agriculture,
accessed April 2012), and covers the period 1993–2006.
Unlike for the other states, for which only time-series of
annual crop yields per district were available, Rajasthan
data included besides crop yields also cropped area, for
Rabi and Kharif separately, for the main staple crop
wheat.

Correlation between rainfall and crop yields and rain-
fall and cropped area was determined in a similar way as
for the NDVI analysis, de-trending seasonal crop yields
and cropped area first using a second-order polynomial
and then applying simple linear regression. APHRODITE
data were used as rainfall estimate as this dataset has a
greater temporal overlap with the district statistics data
than TRMM.

4. Results and discussion

4.1. Trend correction

In both the Kharif and the Rabi season, there has been
an increase in seasonal cNDVI over the past decades
in the Ganges basin (Figure 3). For the Kharif sea-
son 37 % of the pixels and for the Rabi season 53%
of the pixels (p < 0.10) show a significant trend in sea-
sonal mean NDVI. Especially during the Rabi season this
increase has been slowing down since the early-1990s,
similar to the decline in growth rate as found by Milesi
et al., 2010. Kharif seaonal mean NDVI does not show
a decline in growth rate when taking the mean of all
pixels with a significant trend. The almost linear trend
is mainly a result of a balance between pixels which
still show an accelerated increase (convex regression)
and pixels which show a slowing down (concave regres-
sion). Regional differences in agroeconomic development
in the basin might explain this variation. Regions with
high-intensity agriculture and early adoption of ground-
water irrigation and improved cropping practices might
have experienced slower growth in recent years, whereas
other regions are still developing. Milesi et al. (2010)
observed decreases in irrigated areas and shifts in crop-
ping patterns for more water demanding crops like Rabi
wheat in Haryana and parts of Rajasthan in agricul-
tural statistics. The same statistics showed a significant
increase in Kharif production over Madhya Pradesh in
the Chambal region, which they attributed to a recent
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Figure 3. Trend in NDVI development for the Kharif and Rabi cropping seasons (Ganges basin mean for all pixels with a significant correlation
between year and yearly mean seasonal NDVI).

expansion in irrigated area. Here, we corrected for trends
in cNDVI, but did not analyse them in further detail, in
order to focus on the sensitivity of inter-annual rainfall
variability.

4.2. Sensitivity to rainfall variability

The sensitivity analysis of cNDVI for inter-annual rainfall
variability shows a significant correlation in 25% of the
basin area during the Kharif season and 18% during
the Rabi season (p < 0.10). However, the direction of
the relationship is distinctly different between Rabi and
Kharif as is shown in Figure 4. While an increase in
monsoon rainfall results in an expected increase in NDVI
during the following Rabi season, especially in the drier
Chambal region in the southwest, the pattern for Kharif
is mixed. In the drier western part of the basin, there is
a similar positive correlation, but towards the east, more
rainfall seems to result in lower cNDVI. This effect is
especially prevalent in the downstream part of the Kosi
river basin in the northern part of the Indian state of
Bihar. This region is known for its recurrent flooding
(Government of India, 2008).

District-level annual crop production statistics confirm
the largely positive correlations in the west and negative
correlations in the east of the Ganges basin (Table 2).
In Rajasthan, 30% of the districts in the Ganges basin
show a significant increase in yearly crop production in
years with higher rainfall. No negative correlation was
found. Similar to the cNDVI analysis no clear pattern was
detected in Uttar Pradesh with only few districts showing
any correlation between production and rainfall. Yearly
rainfall totals are on average higher in Uttar Pradesh than
in Rajasthan, making water less limiting. In addition, a
substantial part of the agricultural areas in Uttar Pradesh
is supported by canal irrigation systems, bringing in
snow-, ice- and rainfall-derived water from the Himalayas
at times when rainfall in the plains is scarce (Siderius

et al., 2013). For Bihar, district statistics on crop yields
indicate a negative correlation with rainfall, though this
is only significant in three districts. These three districts
are all situated in the northern part of the state, a region
identified as highly flood affected in a ranking by the
Government of India (2008). According to this ranking,
the flood affected area is even much larger than the
district crop statistics suggest, which is also reflected
in our rainfall-NDVI analysis. About 41% of the total
cropped area in Bihar, mainly the northern plains, is
reported to be flood prone with yields being affected due
to floods, water logging and poor drainage (Figure 4,
inlay).

To get an indication of the loss of productivity, we
calculated the percentage reduction in seasonal cNDVI
between dry and wet years (years with a below- and
above-average monsoon rainfall) (Table 3). cNDVI val-
ues lower than 0.2 were regarded as fallow land or bare
soil and not included in the calculating the difference.
The highly sensitive Chambal region shows the largest
reduction in the Rabi season of 28% for the irrigated
areas. The irrigated areas in the total Ganges basin show
only a reduction of 5% in cNDVI between wet and dry
years in the Rabi season. There is even a slight increase
in cNDVI during dry years in the Kharif season for the
Ganges basin as a whole, which can be attributed to the
sensitivity to excess rainfall in the eastern and southern
parts of the catchment.

4.3. Rainfall variability and cropped area during Rabi

Figure 5 shows PDFs of MODIS mNDVI values at
the height of the Rabi season for different land use
classes and region combinations, for only those pixels
which showed a significant (p < 0.1) sensitivity to rainfall
variability. A distinct difference in PDFs between wet
and dry years is shown for the irrigated areas of the
Chambal region, the region identified as most sensitive
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(a) (b)

(a) (b)

Figure 4. Correlation between rainfall and NDVI for Kharif (left) and Rabi (right) based on a rainfall anomaly – NDVI anomaly regression
(Pearson’s r for a linear relationship), with increasing colour intensity indicating the p < 0.10, p < 0.05 and p < 0.01 significance intervals. In
the inlays, the red figures indicate the Pearson’s r for significant correlation (p < 0.1) between rainfall and district statistics for Bihar (a) and
Rajasthan (b). The yellow figures indicate the yearly flood affected cropped area in Bihar in percentage (Source: Government of India, 2008).

The ‘-’ sign indicates no significant correlation was found or no flood affected area was reported.

Table 2. Percentage of districts showing a positive or negative correlation between rainfall (APHRODITE) and yearly crop
production based on district-wise crop statistics.

State Number of districts
in the Ganges basin,

with data (total)

Maximum number
of years with

data, n

Crop Positive
correlation

Negative
correlation

p < 0.1 p < 0.05 p < 0.1 p < 0.05

Rajasthan 20 (20) 18 Wheat 30% 20% 0% 0%
Uttar Pradesh 54 (54) 14 Rice 6% 7% 6% 2%
Bihar 29 (40) 9 Rice 3% 0% 10% 7%

Table 3. Difference (in %) in cumulative NDVI between years
with a below-average monsoon and years with an above-
average monsoon for the irrigated areas in Ganges basin as

a whole and the Chambal region in specific.

Ganges
irrigated

(% difference)

Chambal
irrigated

(% difference)

Chambal
rainfed

(% difference)

Kharif season 1 −8 −12
Rabi season −5 −28 −31

to lower monsoon rainfall. In this drought prone area,
the bulk of the irrigated area shows high mNDVI values
in wet years (peak in mNDVI values around 0.8), but
the shape of the PDF is almost reversed in dry years,
when far more land remains fallow (mNDVI values

around 0.2 or lower). In principle, this difference could
be caused by a mixture of reflections from irrigated areas
with non-irrigated areas (rainfed agriculture or nature)
within one remote sensing pixel, with the latter showing
a decreased natural vegetation in drier years. However,
the PDFs for the rainfed agriculture and nature classes in
the Chambal region show low mNDVI values during the
Rabi season in both dry and wet years, which make such
an effect in this case unlikely. A more likely explanation
is that it reflects a deliberate area adjustment based on
water availability at the end of the monsoon period. In
dry years, land is taken out of production when soil,
reservoir and shallow groundwater appears insufficient
to sustain a crop during the dry Rabi months. Only
those fields are cropped for which sufficient water is
available.
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Figure 5. PDFs of NDVI at the height of the Rabi season (second half of January) in the different regions for years with a below-average
monsoon and years with an above-average monsoon. Below and above-average are defined as the mean ± standard deviation in accordance with

Indian Meteorological Department standards.

Table 4. Percentage of districts in Rajasthan showing a positive or negative correlation between rainfall (APHRODITE) and Rabi
season and Kharif season cropped area based on district-wise crop statistics.

Cropping season Number of
districts

Number of
seasons with

data,
n

Positive correlation
monsoon rainfall – cropped
area

Negative correlation
monsoon rainfall – cropped
area

p < 0.1 p < 0.05 p < 0.1 p < 0.05

Kharif 20 18 0% 0% 0% 0%
Rabi 20 17 40% 20% 0% 0%

Statistical data on cropped area of wheat in Rajasthan
confirm this inter-annual variability in cropped area in the
Chambal region in response to rainfall variability. Table 4
and Figure 4 show the correlation between cropped area
and rainfall of the preceding monsoon for all districts
of Rajasthan within the Chambal subcatchment. These
districts cover the Chambal subcatchment in the western
part of the Ganges basin, the region most sensitive to
lower rainfall. The location of districts with the highest
correlation matches with the area identified to be most
sensitive by our remote sensing analysis. Cropped area
during the Rabi season shows a positive correlation to
rainfall for 8 out of 20 districts (p < 0.1). Even in those

districts without a significant relationship, the dry year
of 2002/2003 is clearly reflected in the cropped area data
for the Rabi season. Twenty-five out of 33 districts in
Rajasthan, including those outside the Ganges/Chambal
basin, show a below-average cropped area (cropped area
of district below the mean minus standard deviation)
in this year. For comparison, for the Kharif season no
correlation between cropped area and monsoon rainfall
could be found.

In other regions, a variety of responses occur during
the Rabi season (Figure 5). In irrigated areas in the
Western Plain only a slight shift towards lower mNDVI
in the dry years can be detected. This suggests that water
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resources from canal or groundwater are sufficient to
maintain a rather constant NDVI from year to year. More
downstream towards the Eastern Plain the shift towards
lower mNDVI in the dry years becomes larger, but there
is no clear indication of more fallow land as in the Cham-
bal region. In the South region, irrigated areas show lower
mNDVI in both dry and wet years, indicating lower crop
production during the Rabi season in most years. Interest-
ingly, in West Bengal, irrigated Rabi mNDVI in a small
strip along the coast in the South was found to have a neg-
ative correlation with rain during the preceding monsoon
months (see also Figure 4). This might actually have a
different, though related, cause: cyclones impact this part
of the basin during the Rabi season and both cyclones
and monsoon rainfall are influenced by the El Niño
Southern Oscillation (ENSO) (Choudhury, 1994). The
forests of the Himalayan foothills are not affected.

The distribution of mNDVI at the height of the Kharif
season (not shown) is as expected, with only a (slight)
shift towards lower mNDVI in the Western Plain in dry
years. For the South, West Bengal and Eastern Plain
regions, a shift towards higher mNDVI values in dry
years was found. In these regions, too much rainfall
and flooding are likely to hamper agriculture, as the
correlation with rainfall anomalies during the Kharif
season also showed.

5. Discussion and conclusions

In this study, we present a remote sensing-based method
to identify areas where an inter-annual variability in
rainfall has an impact on NDVI, a proxy for crop
production. In the Ganges basin, 25% (Kharif cropping
season) to 18% (Rabi cropping season) of the land area is
significantly affected. In the monsoon-dominated Kharif
season this relationship can either be positive or negative.
Results show that more rainfall leads to higher mNDVI in
the drier western parts of the basin and lower mNDVI in
the eastern parts of the basin where too much rainfall
leads to floods, which hamper crop development. For
the Rabi season, the relationship for those areas with
a significant impact is mostly positive.

This variation in sensitivity shows the added value of
using spatially explicit information from remote sens-
ing over lumped cropping statistics at the catchment
scale. While Milesi et al. (2010) found a higher and
clearly positive correlation in grain production anoma-
lies and rainfall for Kharif (r2 = 0.76) for the period
1966–2006, they looked explicitly at water-stressed
regions. Revadekar and Preethi (2012) found a nega-
tive correlation between most rainfall indices and state-
wise crop production for Bihar as a whole, but this
approach ignored the North–South difference between
drought prone and flood affected areas within the state.
The Ganges basin, individual states and even individual
districts contain a mixture soil and hydroclimactic condi-
tions from being sensitive to shortage of rainfall to being
sensitive to excess rainfall. Targeted policy decisions

to reduce the sensitivity require a detailed site-specific
analysis as can be provided with the remote sensing
method developed in this study.

Overall, the small reduction of 5% in cumulative
NDVI in the irrigated areas in the Ganges in below-
average monsoon years during the Rabi season indicates
that water resources are still sufficiently available in large
parts of the basin to buffer the inter-annual variability in
rainfall during this second cropping season. Mainly the
western part of the basin is affected in the below-average
monsoon years with a reduction of 28% in cumulative
NDVI for the irrigated areas during Rabi . The increase
in fallow land in below-average years as detected with
the PDFs does suggest a coping strategy during these
years. This distinction between a coping strategy, in
the form of more fallow land, versus a biophysical
reduction in crop growth and yield is important in terms
of cost and benefits. Although not optimal compared to
a situation of year-round irrigation, leaving land fallow
means saving inputs in the form of labour, water or
investments, which are at least partially lost in the case
of growth reduction or complete crop loss.

District statistics confirm that inter-annual variability
in crop production is partly a result of a cropped area
adjustment in the dry parts of the Ganges basin and
not only a reduction in yield per hectare. This should
be taken into account in analyses of the interactions
between climate, water resources and food production.
To the best of our knowledge, global and regional inte-
grated hydrological vegetation models [e.g. Variable Infil-
tration Capacity (VIC) model (Liang et al., 1994), Joint
UK Land Environment Simulator (JULES) (Best, 2011),
Lund-Potsdam-Jena managed Land (LPJmL) Dynamic
Global Vegetation and Water Balance Model (Gerten
et al., 2004)] only simulate changes in yield per hectare
but do not include algorithms to simulate inter-annual
changes in cropped area. Inter-annual variability in crop
production in the dry tropics is therefore likely to be
underestimated. Expanding models with a management
response algorithm and calibrating this using a com-
bination of remote sensing analyses and crop statistics
data could improve their validity for these water-stressed
regions.

Separating deliberate management responses and
coping strategies from the more biophysical responses
could be further explored with remote sensing. Perry
(2005) already suggested to look at resource reliability
and how this affects crop production and risk strategies.
The Ganges basin provided a particularly interesting
case study as it has a distinct two-season crop rotation
in which the second crop is for a large part depending
on preceding monsoon rainfall. As such, there exists a
window of opportunity in which farmers and water man-
agers can make decisions on the allocation of resources.
Using a longitudinal approach, a coping strategy of
leaving more land fallow could be identified. The current
analysis relied almost completely on remote sensing data
with a minimum resolution of 250 m. It was verified
with crop production and cropped area data at district
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level. A combination of using more detailed remote
sensing data with even more local data on specific land
use, crop production and water allocation strategies, for
multiple years and for both cropping seasons separately,
could further enhance our insight.

As data are freely available and the presented method
to calculate the sensitivity to rainfall variability is rel-
atively simple the sensitivity analysis can be updated
annually and a basin could be monitored annually. Areas
currently not affected, with additional water resources
like canal irrigation water or groundwater still sufficiently
available, might become more vulnerable, e.g. due to a
changing climate or an on-going depletion of resources.
Within the Ganges basin, especially in the western states
of Haryana and Rajasthan, more groundwater is used
than naturally replenished (Rodell et al., 2009). A fur-
ther decline in groundwater resources is likely to lead
to a higher dependence on surface water resources and
an increased sensitivity to rainfall variability. Contrarily,
improved flood control measures might reduce the sensi-
tivity of the agroecosystem to high-rainfall events in the
eastern parts of the basin. Coping with current climate
variability is thereby considered as a first step towards
coping with future climate change (Glantz, 1992; Kabat
et al., 2003). A better monitoring of coping strategies
under current rainfall variability will also increase our
understanding of the adaptive capacity of the system to
deal with future change.
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