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The mammalian vertebral column is highly variable, reflecting adaptations to a wide 

range of lifestyles, from burrowing in moles to flying in bats. Yet, in many taxa the 

number of trunk vertebrae is surprisingly constant. We argue that the latter constancy 

results from strong selection against initial changes of these numbers in fast-running or 

agile mammals, while such selection is weak in slower-running, sturdier mammals. The 

rationale is that changes of the number of trunk vertebrae require homeotic 

transformations from trunk into sacral vertebrae, or vice versa, and mutations towards 

such transformations generally produce transitional lumbosacral vertebrae that are 

incompletely fused to the sacrum. We hypothesize that such incomplete homeotic 

transformations impair flexibility of the lumbosacral joint and, thereby threaten survival 

in species that depend on axial mobility for speed and agility. Such transformations will 

only marginally affect performance in slow sturdy species, so that sufficient individuals 

with transitional vertebrae survive to allow eventual evolutionary changes of trunk 

vertebral numbers. We present data on fast and slow carnivores and artiodactyls and on 

slow afrotherians and monotremes that strongly support this hypothesis. The conclusion 



 

 

is that the selective constraints on the number of trunk vertebrae stem from a combination 

of developmental and biomechanical constraints.  

 

 

Many mammalian taxa show a remarkable conservation of the number of presacral (cervical, 

thoracic plus lumbar) vertebrae. For instance, carnivores almost invariably have 27 and 

artiodactyls 26 presacral vertebrae. Yet, in some taxa, in particular afrotherians, there is 

considerable interspecific variation1,2. In this study we investigate the causal importance for 

this conservation of biomechanical problems associated with incipient homeotic 

transformations3,4. To this end, we compare the frequencies of abnormal (i.e., non-modal) 

presacral vertebral numbers in fast-running artiodactyls and carnivores versus slower-running 

species in the same taxa and slower-running afrotherians and monotremes. We predict that 

slower-running species harbour more abnormal presacral numbers and transitional lumbosacral 

vertebrae than fast ones, both within and between taxa. Furthermore, assuming that there are 

no other causes for variation, we predict that afrotherians are not more variable than similarly 

slow species of other taxa.   

 

Fast versus slow 

Variation in the number of presacral vertebrae in fast running artiodactyls and carnivores is 

almost absent in our dataset (Table 1, <2%), both in sprinters (felids) and endurance runners 

(canids and artiodactyls). We found only three abnormal numbers (≠26) in 161 artiodactyl 

specimens (in Saiga tartarica, Eudorcas rufifrons, Kobus vardoni) and one (≠27) in 269 

carnivore specimens (in Leptailurus serval). In contrast, variation is common in slower running 

artiodactyls and carnivores ranging from ± 25% in badgers, muskoxen and bay duikers to >50% 

in water chevrotains and Hippopotamus (Tables S1,S2). Most abnormal presacral numbers are 



 

 

due to transitional lumbosacral vertebrae, i.e. to incomplete homeotic transformations (71.4%, 

Table 1). Within the Artiodactyla the differences between fast and slower runners are 

significant for transitional vertebrae and total abnormal presacral numbers (including 

transitional vertebrae, Table S2). This also holds at the family level for the Bovidae and for all 

non-bovid taxa together. Similarly, in the Carnivora, fast and slower runners differ significantly 

as, at the family level, do short-limbed mustelids.  

Fast carnivores and fast artiodactyls do not differ significanty, and neither do slow carnivores 

and slow artiodactyls (Table 1). The slow carnivores, artiodactyls, monotremes and afrotherians 

differ significantly, but, posthoc pairwise comparisons show that only the afrotherians differ 

from slow carnivores and slow artiodactyls; the other differences are not significant (Table 1). 

The afrotherians do not differ significantly from the slowest artiodactyls, Hyemoschus and 

Hippopotamus (Tables S2,3). Hippopotamus has the highest frequency of abnormal presacral 

vertebrae, a striking 70%. However, the range of variation (25.5-26) is smaller than in other 

species, like Hyemoschus (24.5-26) and Elephas (28.5-31).  

Flexible versus stiff trunk 

The fast-running taxa with the lowest frequency of transitional vertebrae gallop at top speed 

and are generally long-limbed (Fig. 1a,b, Table S1,2). The spine is dorsoventrally and laterally 

flexible, the rigid ribcase rather short and narrow and the lumbar spine relatively long and 

slender5-7. The mobility of the trunk is largest at the lumbosacral transition5,7-9. The laterally 

projecting transverse processes are slender and point forward, clearly separated from the sacrum 

and ilium (Fig. 2h-j). The dorsal spinous processes of the thorax point backward up to the 

anticlinal vertebrae, which usually has a straight spinous process (Fig. 1a-c). Posterior to the 

anticlinal vertebra the spinous processes point forward. This anticlinality, particularly 

pronounced in fast carnivores, allows dorso-ventral flexion around the anticlinal vertebra. In 



 

 

fast artiodactyls, anticlinality is less pronounced  (Fig. 1a), especially in larger species, with 

dorsoventral flexibility concentrated around the lumbosacral transition5. Dorsoventral 

flexibility significantly contributes to speed as it increases stride-length5,9. Additionally, many 

fast species are also agile, able to swerve and leap (e.g. servals, cheetahs and impalas), which 

requires not only dorsoventral, but also lateral mobility of the lumbosacral spine. Incomplete 

and asymmetric fusions of the lumbar spine to the sacrum necessarily reduce flexibility of the 

lumbosacral joint (Fig. 2k-n). In wolves, dogs and humans transitional lumbosacral vertebrae 

are furthermore associated with additional biomechanical problems in adjacent tissues, like 

pressure on blood vessels and nerves, intervertebral disc degeneration, iliolumbar ligament 

degeneration, scoliosis and hip dysplasia10-12. Hence, such transitional vertebrae dramatically 

reduce survival in species that depend on speed and agility to catch prey or to avoid predation.  

The taxa with the highest frequency of transitional lumbosacral vertebrae and/or abnormal 

presacral numbers (> 47%, echidnas, afrotherians and slow artiodactyls) do not gallop and 

locomotion is cautious with usually three or four and minimally two feet on the ground, thus 

avoiding great transitory stresses on the joints8,13-17. The trunk has limited flexibility, due to a 

long, robust and stiff thoracic region, a stiff lumbar spine of variable length and little mobility 

at the lumbosacral joint (Fig. 1f and 2b-d). The stiffness of the lumbar spine can be realized in 

different ways. In elephants and echidnas stiffness is provided by sturdy dorsal spinous 

processes that all point backward (no anticlinality) (Fig. 1f). Additionally, the lumbar region is 

short and wedged between the rigid ribcage and sacrum (Fig. 1f,2a). In aardvarks, 

hippopotamuses and water chevrotains stiffness is provided by wide and long laterally 

projecting transverse processes. The most caudal ones often touch the ilium and sacrum, 

severely limiting mobility (Fig. 2b-d). In addition, ligaments and muscles interconnecting the 

transverse and spinous processes and connecting the lumbar vertebrae with the ilium and 

sacrum further stiffen the axial skeleton9,18. The restricted mobility of the lumbosacral transition 



 

 

and the usually slow movements make that structural abnormalities will only minimally affect 

performance so that indirect selection against change in vertebral numbers should be weak.   

Species with an intermediate number of abnormal presacral numbers (24-33% in swine, 

badgers, musk oxen and bay divers, Table S1,2) are also intermediate in speed, agility and trunk 

stiffness (c.f. shape, size and position of transverse and spinous processes, relative lengths of 

thoracic and lumbar regions, Figs. 1d,e and 2e,f). These species gallop, but only infrequently. 

The variability in presacral numbers that we find in different taxa thus agrees well with the 

hypothesized strength of selection against homeotic transformations.  

 

Gallop versus half-bound 

 

The fast short-limbed mustelids have a somewhat higher incidence of abnormal presacral 

numbers than fast long-limbed carnivores and artiodactyls (~5% vs ~1%), notwithstanding the 

flexibility of their lumbosacral spine (Figs. 1c and 2g). These mustelids do not gallop, but 

employ a half-bounding gait with the left and right hind-limb simultaneously striking the 

ground. The increased tolerance of abnormal lumbosacral transitions probably has to do with 

this symmetric strike. Asymmetric striking of the hind-limbs should lead to greater torsional 

strains on an asymmetric lumbosacral boundary, with longer limb lengths increasing the effect 

(except for fully parasagittal strides); longer limb lengths also lead to higher parasagittal shear 

stresses, further increasing the biomechanical adversity of abnormal lumbosacral joints.  

 

Body size  

Body size appears to matter less than stiffness of the lumbosacral spine, as we find highly 

variable presacral numbers in large (elephants and hippopotamuses) and small species 



 

 

(tragulids,bay divers, echidnas, Table S2-S4).  Naturally, weight plays a role in that extremely 

heavy mammals always have stiff lumbar spines, to prevent structural damage and minimize 

muscular stabilization costs5,8,9. 

 

Domestication and inbreeding 

 

Domesticated species usually harbour high numbers of transitional lumbosacral vertebrae, also 

those that originate from fast and agile wild counterparts (e.g. cats, dogs, horses)11,19,20 Human 

care relaxes selection by increasing the survival of less adapted individuals. Inbreeding 

probably also plays a role, as inbred wild wolves have higher numbers of transitional 

lumbosacral vertebrae than outbred ones12,21. The Saiga tatarica with a transitional vertebra 

may well be the product of the strong inbreeding in this endangered species22,23.  

 

Developmental buffering and canalization 

 

The incidence of abnormal lumbosacral transitions in slower-running species was higher than 

we expected, with a quarter or more affected individuals. One possible cause is low 

developmental robustness. That is, during the embryonic stage when the identities of the lumbar 

and sacral vertebrae are determined as part of the A-P patterning of the embryonic axis, 

buffering mechanisms are rather ineffective at neutralizing environmental and mutational 

disturbances that cause some degree of homeotic transformation. The high frequency of 

transitional lumbosacral vertebrae in inbred mammals supports this hypothesis as inbreeding 

appears to weaken developmental stability24-26. In contrast, in fast running species the transition 

at the lumbosacral boundary is sharp and vertebral shape is regular (Fig. 2g-j), suggesting strong 

selection for robust and stable vertebral development. Any weakening of this selection in slow 



 

 

and domesticated species, due to the mitigated fitness effects of lumbosacral abnormalities, 

probably leads to a sharp decrease in robustness. This can in part be explained by the high 

interactivity and low modularity of the vulnerable early organogenesis stage, when lumbosacral 

vertebral identities are determined27,28. Moreover, the early irreversibility of the determination 

of vertebral identity further limits the buffering potential3. 

 

Fast and inbred cheetahs 

 

Unexpectedly, we did not find any abnormal lumbosacral transitions in cheetahs (Table S1), 

despite their dramatically low genetic diversity29 and our (exceptional) inclusion of captive-

born specimens (9 of 38 specimens). Apparently, the extreme demands for high speed in this 

fastest of all terrestrial species have resulted in the selective maintenance of a highly canalized 

vertebral development, despite severe inbreeding. It will be of interest to study more cheetahs 

in zoos, to see whether and after how many generations the canalized lumbosacral development 

breaks down. 

 

Developmental and biomechanical constraints 

 

Our results indicate that the selective constraints limiting the evolution of mammalian presacral 

vertebral numbers are due to a combination of developmental and biomechanical constraints. 

Many genes (including Hox) are involved in determining vertebral identity, with initial 

mutations for shifts of the lumbosacral boundary typically leading to incomplete homeotic 

transformations (a developmental constraint), associated with later acting biomechanical 

problems hampering locomotory performance (biomechanical constraints). The biomechanical 

problems come from (i) incomplete and often asymmetric fusions of transitional lumbosacral 



 

 

vertebrae with the sacrum and, (ii) correlated biomechanical problems, because many genes 

that pattern the vertebrae also influence patterning of adjacent nerves and muscles 

(developmental constraints). Fast and agile mammals, thus, provide a powerful example of the 

potential importance of the interplay of developmental and biomechanical constraints in 

evolution.   

Methods (supplementary online info) 

Specimens 

We analysed skeletons of 753 wild-born and 9 captive-born individuals of 89 species of 14 

different mammal families of 8 European natural history museums: Naturalis Biodiversity 

Center, Leiden (Naturalis), The Natural History Museum, London (NNM), the Royal Museum 

for Central Africa, Tervuren (RMCA), the Royal Belgian Institute of Natural Sciences, Brussels 

(RBINS), the Natural History Museum of Denmark, Copenhagen (ZMUC),  Naturhistorisches 

Museum Wien, Vienna (NHMW), the Swedish Museum of Natural History, Stockholm (NRM) 

and Museum für Naturkunde, Berlin (ZMB).  To avoid the potentially confounding effects of 

inbreeding, we excluded mammals that were born in zoos, except for 9 cheetahs (Acinonyx 

jubatus) that were included for additional information on this extremely fast species.  

Carnivora. We analysed 419 skeletons of Carnivora including 84 Canidae, 183 Felidae, 134 

Mustelidae and 18 Procyonidae (Table S1).  

 

Artiodactyla. We analysed 266 skeletons of Artiodactyla including 3 Antilocapridae, 165 

Bovidae, 21 Cervidae, 10 Hippopotamidae, 33 Suidae and 34 Tragulidae (Table S2).  

Afrotheria. We analysed 48 skeletons of Afrotheria including 21 Tubulidentata and 27 

Elephantidae (Table S3). 



 

 

Monotremata. We analysed skeletons of 30 Tachyglossidae of the Order Monotremata (Table 

S4). 

Vertebral formula 

We have determined the vertebral formula of the skeletons by determining the number of 

cervical, thoracic, lumbar, sacral and coccygeal vertebrae. Transitional vertebrae at boundaries 

were counted as half for each of the neighboring regions, e.g. half thoracic and half lumbar. 

The thoracolumbar boundary is sometimes difficult to establish with precision, because 

transitional thoracolumbar vertebrae have one or two rudimentary ribs and these are often lost 

and the detection of their small articulations on the vertebra is often difficult, especially when 

the vertebrae are worn or damaged by strong maceration during preparation. Therefore, the sum 

of the thoracic and lumbar vertebrae is more precise than the separate numbers, but this does 

not affect the precision of the presacral number. We considered the most frequent whole 

presacral number (mode) as normal. For carnivore species the normal number is 27 and for 

artiodactyl species 26 (tables S1,S2). For Afrotherians, the normal number is 28 for 

Orycteropus, 30 for Elephas and 31 for Loxodonta (table S3). For the monotremes it is 26 for 

Tachyglossus and 27 for Zaglossus (table S4). Abnormal numbers were divided into two 

groups: a) with a transitional lumbosacral vertebra (abnormal transitional) and b) without one 

(abnormal non-transitional). 

Classification of fast-running versus slower-running  

Predictions regarding running speed and gait were based on references found in the literature 

13-17,30-39 and surmised from the anatomy and observations. To avoid classification mistakes, we 

selected as far as available the fastest and most agile of galloping, long-limbed species versus 

the slowest and sturdiest species within the taxon. The slower-running species consist of those 



 

 

that never gallop on land (the afrotherian Elephas, Loxodonta, Orycteropus and the artiodactyl 

Hyemoschus and Hippopotamus, of which the latter only gallops under water) and those that 

infrequently gallop (the artiodactyl Ovibos, Cephalophus and the suid species and the carnivore 

Meles and Procyon), Classifications can be found in tables S1-S4 and were made before the 

analyses of the vertebral columns. In total we classified 252 specimens of carnivore as fast 

running and 51 as slower running. An exception was made for the family Mustelidae 

(Carnivora), for which we included as fast species, exclusively for the analysis at the family 

level, the fast, but short-limbed Martes foina, Mustela erminea and Mustela nivalis.  The 

rationale was that in this set of mustelid species there are no long-limbed and galloping fast 

species, but only fast and agile elongate species that use a half-bound gait and have short limbs.    

Statistical tests 

We analyzed overall contingency tables of the different slow and fast running taxa and their 

presacral numbers (normal, abnormal non-transitional or abnormal transitional) using Fisher’s 

exact tests. Posthoc comparisons were performed by Fisher’s exact tests and p-values were 

Holm-Bonferroni adjusted. 

Legends 

Figure 1. Skeletons of fast and slower running mammals, lateral views. (a-c) Fast-running 

and agile species with slender vertebral columns with a relatively short thoracic region (ribs 

provide rigidity), a relatively long lumbar region and a highly flexible lumbosacral transition: 

long-limbed gallopers, Gazella dorcas (a), coyote (b, Canis latrans) and short-limbed and half-

bounding marten (c, Martes martes). (d-f) Slower running species with more sturdy skeletons, 

longer thoracic and shorter lumbar regions and stiffer lumbosacral transitions: badger (d, Meles 

meles) and Babirusa swine (e, Babyrousa babyrussa) and Asian elephant (f, Elephas maximus, 

juvenile specimen). Swine and badgers occasionally run fast, whereas elephants never uses the 



 

 

gallop and have a particularly stiff lumbosacral transition. The stiffness of the elephant spine 

comes from the dorsal spinous processes which are all backward pointing (no anticlinality) and 

a particularly short lumbar region that is wedged between the long and sturdy ribcage and rigid 

sacrum. For a comparison of fast-running and slower-running species within one family, cf. the 

slender and flexible marten (c)  and the sturdier and stockier badger (d).  The spinous and 

transverse processes are more robust in the badger, which provides rigidity in combination with 

the attached ligaments. Additionally, in martens the thoracic region has one less vertebra and 

the lumbar region one more vertebra, adding to the flexibility (see Fig. 2f-g for dorsal views of 

the lumbosacral spines). Anticlinality is particularly pronounced in fast carnivores (b,c), 

allowing dorsoventral flexibility at the end of the thoracic region. However, in fast artiodactyls 

(a) this is less the case, with flexibility of the lumbosacral transition being especially important.  

 

Figure 2. Lumbosacral spines of fast and slower running mammals, dorsal views. (a-d) 

Relatively slow and cautiously moving species with a stiff lumbosacral transition. In Asian 

elephants (a, Elephas maximus), stiffness is due to a short lumbar region that is wedged in 

between a rigid ribcase and sacrum, in combination with a backward orientation of all spinous 

processes of the trunk (see Fig. 1f).  In aardvarks (b, Orycteropus afer), hippopotamuses  (c, 

Hippopotomus amphibius) and water chevrotains (d, Hyemoschus aquaticus), stiff lumbosacral 

transitions are due to wide and long laterally projecting transverse processes of the lumbar 

vertebrae, that are close to, or touch each other, or the sacrum and ilium. (e,f,) Babirusa swine 

(e, Babyrousa babyrussa) and badgers (f, Meles meles) are species that occasionally run and 

that have intermediately stiff lumbosacral transitions. The transverse processes of the lumbar 

vertebrae are clearly separated from each other and less robust compared to those in (a-d), but 

more robust than those of the fast species in (g-j).  The most caudal transverse processes 

generally do not touch the sacrum or ilium (e), but occasionally do so slightly (f). (g-j) 



 

 

Lumbosacral spines of fast running species with flexible lumbosacral transitions: the short-

limbed half-bounding pine marten (g, Martes martes) and the long limbed gallopers, cheetah 

(h, Acinonyx jubatus), coyote, (i, Canis latrans) and Gazella dorcas (j). These fast species have 

flexible and slender lumbar spines with a sharp lumbosacral transition. The lateral transverse 

processes are slender and forward pointing, clearly separated from each other and from the 

sacrum and ilium. Asymmetrical transitional lumbosacral vertebrae in a badger (k, Meles 

meles) and a Saiga tatarica (l) and symmetrical transitional lumbosacral vertebrae in an 

aardvark (m, Orycteropus afer) and a water chevrotain (n, Hyemoschus aquaticus. The partial 

fusions with the sacrum drastically limit the flexibility of the lumbosacral joint, which is 

especially problematic in fast and agile mammals.  
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Normal number

presacral vertebrae

Abnormal number

non-transitional vertebrae

Abnormal number

transitional vertebrae

Carnivora

fast 260   (99.6%) 1     (0.4%) 0     (0.0%)

fast half-bound 95     (95.0%) 2     (2.0%) 3     (3.0%)

slow 38     (74.5%) 4     (7.8%) 9    (17.6%)

Artiodactyla

fast 158   (98.1%) 2     (1.2%) 1     (0.6%)

slow 62     (59.0%) 12   (11.4%) 31   (29.5%)

Bovidae

fast 134   (97.8%) 2     (1.5%) 1     (0.7%)

slow 21     (75.0%) 2     (7.1%) 5     (17.9%)

Afrotheria (slow) 15     (31.3%) 11   (22.9%) 22   (45.8%)

=

Table 1.



Fisher's exact tests

f a s t  ga l l opi ng vs  f a s t  ha l f - bound Ca r ni vor a

f a s t  ha l f - bound vs  s l ow Ca r ni vor a

f a s t  ga l l opi ng  vs  s l ow Ca r ni vor a

f a s t  vs  s l ow Ar t i oda c t y l a

f a s t  vs  s l ow Bovi da e

f a s t  vs  s l ow non- Bovi da e

f a s t  Ca r ni vor a  vs  f a s t  Ar t i oda c t y l a

s l ow c a r ni vor a ,  a r t i oda c t y l a ,  a f r ot he r i a ,  monot r e mat a

Pos t hoc  pa i r wi s e  c ompa r i s ons

s l ow Ca r ni vor a  vs  s l ow Ar t i oda c t y l a

s l ow Ca r ni vor a  vs  Monot r e ma t a

s l ow Ca r ni vor a  vs  Af r ot he r i a

s l ow Ar t i oda c t y l a  vs  Af r ot he r i a

s l ow Ar t i oda c t y l a  vs  Monot r e ma t a

Monot r e ma t a  vs  Af r ot he r i a

Table 2.



P-value

< 0. 01

< 0. 001

< 0. 001

< 0. 001

< 0. 001

< 0. 001

0. 24

0. 01

P- va l ue ( Hol m- Bonf e r r oni  a dj us t e d)

0. 44

0.40

< 0.001

< 0.01

0.69

0.40



Fast galloping Carnivora (N=267) Slow Carnivora (N=51) Fast half-bound Carnivora (N=101)

Family Family Family 

Genus N Genus Presacral No. N Genus Presacral No. N

Canidae 0.0% abnormal 84 Mustelidae 24.2% abnormal 33 Mustelidae 5.0% abnormal 101

Canis 27 63 Meles 25.5 1 Martes 27 36

Chrysocyon 27 6 26 2 28 1

Lycaon 27 15 26.5 3 Mustela 26.5 1

27 25 27 60

Felidae 0.5% abnormal 183 27.5 2 27.5 2

Acinonyx 27 38 28 1

Caracal 27 17 Procyonidae 27.8% abnormal 18

Felis 27 20 Procyon 26 2

Leopardus 27 8 26.5 2

Leptailurus 26 1 27 13

27 28 27.5 1

Lynx 27 22

Panthera 27 30

Prionailurus 27 11

Profelis 27 8

Presacral No.

Supplementary table 1.



Fast Artiodactyla (N=161) Slow Artiodactyla (N=105)

Family Family 

Genus N Genus Presacral No. N

Antilocapridae 0.0% abnormal 3 Bovidae 25.0% abnormal 28

Antilocapra 26 3 Cephalophus 25.5 2

26 11

Bovidae 2,2% abnormal 137 27 1

Aepyceros 26 3 Ovibos 25 1

Alcelaphus 26 4 25.5 2

Antidorcas 26 10 26 10

Beatragus 26 1 26.5 1

Boselaphus 26 3

Capra 26 1 Hippopotamidae 70.0% abnormal 10

Connochetes 26 4 Hippopotamus 25.5 7

Damaliscus 26 4 26 3

Eudorcas 26 5

25 1 Suidae 33.3% abnormal 33

Gazella 26 19 Babyrousa 26 1

Kobus 26 27 Phacochoerus 25 1

27 1 26 2

Litocranius 26 2 Potamochoerus 25 3

Nanger 26 2 25.5 3

Oryx 26 9 26 16

Pelea 26 1 26.5 1

Redunca 26 14 Sus 25.5 2

Rupicapra 26 1 26 3

Saiga 26 10 27 1

26.5 1

Taurotragus 26 2 Tragulidae 50.0% abnormal 34

Tragelaphus 26 12 Hyemoschus 24.5 2

25 3

Cervidae 0.0% abnormal 21 25.5 7

Rangifer 26 21 26 8

Moschiola 26.5 1

Tragulus 25 1

25.5 1

26 9

26.5 1

27 1

Presacral No.

Supplementary table 2.



Afrotheria (N=47)

Family 

Genus Presacral No. N

Elephantidae 63.0% abnormal 27

Elephas 28.5 3

29 4

29.5 3

30 7

30.5 1

31 2

Loxodonthas 29.5 1

30 2

30.5 1

31 2

Orycteropodidae 76.2% abnormal 21

Orycteropus 26.5 1

27 3

27.5 11

28 5

28.5 1

Supplementary table 3.



Monotremata (N=30)

Family 

Genus Presacral No. N

Tachyglossidae 46.7% abnormal 30

Tachyglossus 25.5 3

26 13

26.5 4

27 1

27.5 1

Zaglossus 27 3

27.5 4

28 1

Supplementary table 4.
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