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Abstract

A traditional question in community ecology is whether species’ traits are dis-
tributed as more-or-less regularly spaced clusters. Interspecific competition
has been suggested to play a role in such structuring of communities. The
seminal theoretical work on limiting similarity and species packing, presented
four decades ago by Robert MacArthur, Richard Levins and Robert May, has
recently been extended. There is now a deeper understanding of how com-
petitive interactions influence community structure, for instance, how the
shape of competition kernels can determine the clustering of species’ traits.
Competition is typically weaker for greater phenotypic difference, and the
shape of the dependence defines a competition kernel. The clustering ten-
dencies of kernels interact with other effects, such as variation in resource
availability along a niche axis, but the kernel shape can have a decisive influ-
ence on community structure. Here we review and further extend the recent
developments and evaluate their importance.
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1. Introduction

Throughout the history of evolutionary thinking, questions have been
posed about the reason for species numbers and the distribution of their
traits. When discussing evolutionary history, the point is often made that
there have been transitional forms, appearing in a sequence from ancestral to
derived, and that the transitional forms have gone extinct from competition
with emerging forms. This observation suggests that competition is crucial
for the distinctness of species.

Even though the clustering of species seems self-evident empirically, it
has proven hard to understand theoretically. The basic issues were identified
already in the pioneering studies on species packing into niche space. Over
the years, a large body of work on the topic has appeared, and much of it can
be portrayed in relation to the analyses of one of the founders of the disci-
pline, Robert MacArthur. Discussing the utilization of a resource spectrum,
MacArthur (1970) noted that: “Where the utilizations fall slightly below the
production, a new species can enter if the addition of one pair (or propagule)
will make the total utilization even closer to the available production. A
small multiple of some appropriate species will always improve the fit some-
where so that some new species, in very small quantity, could always invade.”
MacArthur’s reasoning points to the theoretical possibility of an extremely
close packing of species. In spite of this, he and his coworkers tended to side
with the idea that there are limits to similarity (e.g., MacArthur and Levins,
1967). This tension in the field – a search for limits, while at the same time
developing theories that suggest close packing – has added to its perceived
difficulty.

In a critical approach, Abrams (1975, 1983) argued that the ecological
relevance of theories of species packing depends on the realism of the under-
lying assumptions, and these can be questioned. Recent years have in fact
seen a decisive broadening of the original analyses (Scheffer and van Nes,
2006; Pigolotti et al., 2007; Doebeli et al., 2007; Leimar et al., 2008; Abrams
and Rueffler, 2009; Hernández-Garćıa et al., 2009; Ispolatov and Doebeli,
2009; Fort et al., 2009, 2010; Pigolotti et al., 2010). The new analyses relax
some of the main presuppositions of the earlier work, potentially improving
the ecological relevance of the predictions. It is our aim here to describe and
further extend these developments.

The traditional theory of species packing and community structure ap-
peared in a number of papers, of which those by MacArthur, Levins and May
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(MacArthur and Levins, 1967; MacArthur, 1969, 1970; May and MacArthur,
1972; May, 1974a,b) were especially influential. In these analyses, compe-
tition was modeled as an overlap of resource-utilization functions, implying
that resources contributing to the growth of one species become unavailable
to other species. This form of competition gives rise to competition kernels
with special shapes, of which the Gaussian shape is one often used example.
Based on their assumptions, May and MacArthur (1972) concluded that de-
mographic stability (i.e., stability against small deviations in the densities of
resident species) imposes no limit on species packing in a deterministic envi-
ronment. An important aim of some of the recent work (Pigolotti et al., 2007;
Leimar et al., 2008; Hernández-Garćıa et al., 2009; Pigolotti et al., 2010) has
been to investigate the consequences for species clustering of changing the
idealized assumption that competition arises only from resource-utilization
overlap. This is an important extension, not least because there are a num-
ber of well-established additional processes that cause effective competition
in ways that need not follow the MacArthur-May assumptions, including in-
terference competition and apparent competition. A crucial insight from the
new work, which considers competition kernels of general shape, is that this
shape can have a decisive influence on species clustering (see Fig. 1 for an
example).

In the following, we first explain the relation between competition ker-
nel shape and clustering using Fourier analysis. This is a mathematical
approach to the analysis of shape, and we attempt to provide an intuitive
understanding of the method. We also discuss how competition kernels are
determined by underlying ecological processes, and how they may depend
on the within-population distribution of the mediating traits. Apart from
competition kernel shape, heterogeneities in the distribution of resources can
influence species clustering, and we give an overview of the state of knowl-
edge of this phenomenon. We end by summing up the significance of the new
developments.

2. Competition kernel shape

In modeling, species are often positioned along a niche axis or resource
dimension (e.g., MacArthur and Levins, 1967; Scheffer and van Nes, 2006;
Pigolotti et al., 2007), where a position can be described by the corresponding
value x of a quantitative trait or phenotype best suited to the utilization of
the resource. More generally, the individuals in a population can have differ-
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Figure 1: Community simulations with competition kernels that either promote or coun-
teract species clustering. In (a) the competition kernel is quartic, a(x) = exp(−x4), which
causes the species to cluster in phenotype space, with a gap size of about 1.37. At the de-
picted stable equilibrium, there is only one species per cluster, with population sizes given
by the vertical lines. In (b) the competition kernel has a Gaussian shape, a(x) = exp(−x2).
There is no clustering and no limit to species packing. The vertical lines represent popu-
lation sizes of individual species and the light blue line is a smoothed population density
per unit phenotype. In the simulations, new species were first introduced intermittently
at a density of 0.0001 at random positions along a circular niche space with period 100
(of which the range from 0 to 10 is shown). Species reaching densities below a threshold
of 0.00008 were considered extinct. After a long period of species introduction and ex-
tinction, the introduction of new species was turned off and simulations were run for an
additional long period to reach a stable equilibrium.

ent phenotypes. The effect of competition from individuals with phenotype
xk is to reduce the growth rate of a population with phenotype xj. The re-
duction is quantified using a competition coefficient, which is often assumed
to be a function of the phenotypic difference, expressed as a(xj − xk). This
function a(x) is referred to as the competition kernel. The Lotka-Volterra



5

competition equations describe the dynamics of the densities of the species
in a community:

dNj

dt
= Nj

(

K(xj)−
∑

k

a(xj − xk)Nk

)

. (1)

For simplicity, we can focus on the case where the maximum per capita
growth rates and the carrying capacities K(xj) of the niche positions are
equal to 1. To gain conceptual understanding, hypothetical communities
where the species are placed either along an infinite niche axis or, for a finite
numbers of species, along a circular niche space (e.g., May and MacArthur,
1972; May, 1974a,b) are sometimes studied.

2.1. Fourier analysis and demographic stability

The Fourier transform â(φ) of a function a(x) is defined as

â(φ) =

∫

a(x) exp(−2πiφx) dx, (2)

where φ can be regarded as a frequency, i is the imaginary unit, and inte-
gration extends over the real line. For a circular niche space, this means an
infinite number of turns around the circle. If the function is symmetric, so
that a(−x) = a(x), the Fourier transform is real, but in general there are both
real and imaginary parts. Fig. 2 shows two symmetric competition kernels,
which were used for the results shown in Fig. 1, together with their Fourier
transforms. We can express Fourier transforms as functions of a wavelength,
given by λ = 1/φ, which we write as ã(λ) = â(1/λ) (the red curves in Fig.
3a,b show examples for quartic and Gaussian competition kernels).

Suppose there is an equilibrium community (i.e., densities such that the
growth rates in Eq. (1) are all zero) in which the species are closely spaced
along the niche axis, for instance, equidistantly. A perturbation of the density
of one species can, because of competition, spread to neighboring species, and
so on to more distant species, in this way influencing the whole community.
If the perturbation is damped over time, the community is demographically
stable, but if it is enhanced and causes extinction of some of the species, in
this way increasing the gaps in the community, there is a clustering tendency.

The Fourier transform can be used to study these questions of demo-
graphic stability. In general, the purpose of Fourier analysis is to describe
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Figure 2: (a) Quartic and Gaussian (pale curve) competition kernels and (b) their Fourier
transforms.

phenomena such as density perturbations in terms of components with dif-
ferent wavelengths; a typical application would be vibrations that are decom-
posed into individual frequency components. In the context of community
ecology, one can examine whether a close-packed community would be stable.
If it is not, one can find the most strongly destabilized wavelength. One can
also examine the stability of equidistant communities (see below).

For a close-packed community, it is convenient to write the Lotka-Volterra
dynamics in Eq. (1) as

∂n(x)

∂t
= n(x)

(

1−

∫

a(x− y)n(y) dy
)

, (3)

where n(x) is the population density per unit phenotype along the niche
axis. For species at discrete positions xj, like in Eq. (1), n(x) is a collection
of delta peaks, Njδ(x− xj). For a close-packed community, we approximate
n(x) as a continuous function of x. One equilibrium solution to Eq. (3)
is a constant density, n∗ = 1/

∫

a(y)dy. We can determine the stability of
this equilibrium by checking whether perturbations are damped or enhanced.
Given a small perturbation u(x), so that n(x) = n∗ + u(x), we can linearize
the Lotka-Volterra dynamics in Eq. (3), obtaining

∂u(x)

∂t
= −n∗

∫

a(x− y)n(y) dy. (4)

The Fourier transform of the linearized equation is

∂ũ(λ)

∂t
= −n∗ ã(λ)ũ(λ). (5)
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From this equation we conclude that a perturbation of wavelength λ is
damped if the real part of the Fourier transform ã(λ) is positive, and is
enhanced if the real part is negative (Pigolotti et al., 2007; Leimar et al.,
2008).

If the Fourier transform of a symmetric competition kernel a(x) is positive
for a given wavelength, there is a damping of periodic density perturbations
of that wavelength, as shown by Eq. (5). A symmetric competition kernel for
which the Fourier transform is positive for all wavelengths causes damping
of all small perturbations, and such a kernel is said to be positive definite.
The terminology is standard and is formed in analogy with the concept of
a symmetric positive definite matrix. If, on the other hand, the Fourier
transform of a kernel is negative for some wavelength, perturbations for that
wavelength can grow, breaking up a closely packed community. This then
constitutes a clustering tendency of the kernel.

2.2. Symmetric competition

Most analyses of species clustering have assumed symmetric competition.
In a successful transfer of approaches from physics to ecology, Pigolotti and
co- workers were the first to establish the importance for clustering of the
sign- structure of the Fourier transform of a symmetric competition kernel
(Pigolotti et al., 2007; Hernández-Garćıa et al., 2009; Pigolotti et al., 2010).
The same approach was used to study clustering along an environmental
gradient, involving both geographical and trait space, leading to similar con-
clusions about the role of competition kernel shape (Leimar et al., 2008).
A range of examples of the relation between competition kernel shape and
the equilibrium species distribution appears in Fig. 3. In each example, the
Fourier transform (red) of the competition kernel (orange) explains the equi-
librium patterning of species (blue). Positive definite competition kernels
give rise to continuous (arbitrarily close-packed) species distributions (Fig.
3b,d), whereas kernels whose Fourier transforms take negative values lead
to clustered distributions, with phenotype gap sizes that correspond to the
wavelength of the minimum of the Fourier transform (Fig. 3a,c,e,f). The
competition kernels in Fig. 3a,b were used in the simulations in Fig. 1 (Fig.
2b shows these Fourier transforms as functions of phenotypic frequency).
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Figure 3: The influence of competition kernel shape on clustering. Competition kernels
a(x) (orange), their Fourier transforms as functions of wavelength (red), demographically
stable species distributions (blue), and fitness landscapes (green) are shown. Species are
either clustered (blue vertical lines indicate population densities) or have continuous dis-
tributions (blue horizontal lines show population density per unit phenotype). Clustering
occurs if the Fourier transform has a negative minimum. The wavelength at the mini-
mum corresponds to the inter-cluster gap. (a) Quartic, a(x) = exp(−x4); (b) Gaussian,
a(x) = exp(−x2); (c) quartic with extended tails: a(x) = 0.9 exp(−x4) + 0.1 exp(−x2/9);
(d) Laplacian: a(x) = exp(−2|x|); (e) quartic with central peak, a(x) = 0.75 exp(−x4) +
0.25 exp(−16x2); (f) truncated Gaussian, a(x) = exp(−x2) for |x| < 1.2 and a(x) = 0
otherwise.
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Kurtosis is a common measure of the peakedness of a distribution. Ap-
plied to competition kernel shapes, it can give useful guidance about clus-
tering tendencies. Square or box-like kernels (Leimar et al., 2008; Pigolotti
et al., 2010) are typically platykurtic and tend to promote clustering (Fig.
3a), whereas mesokurtic and leptokurtic kernels can be positive definite (Fig.
3b,d). The correspondence is not perfect, however, as seen in Fig. 3c, where
the square central shape of the kernel dominates the clustering tendency, giv-
ing rise to a Fourier transform with negative values, whereas the long tails
of the kernel dominate kurtosis, making the kernel leptokurtic.

If the tails of a Gaussian are truncated, the resulting competition kernel
becomes platykurtic and has negative Fourier transform values, resulting
in species clustering (Fig. 3f). It has been argued that truncation of the
competition kernel is a way to represent a finite niche space (Scheffer and van
Nes, 2006; Fort et al., 2009, 2010). Alternatively, and preferably, a finite niche
space can be modeled as the tapering off of a resource distribution at its limits
(see Fig. 7 below). Note also that the equilibrium species distribution for the
truncated Gaussian kernel consists of double peaks (Fig. 3f), with the gap
between successive doubles corresponding to the wavelength at the minimum
of the Fourier transform. Similar clustering patterns can occur for kernels
that combine a platykurtic central part with a sharper peak (Hernández-
Garćıa et al., 2009) (Fig. 3e).

2.3. Asymmetric competition

It is likely that many or even most instances of competitive interactions in
nature are asymmetric, in the sense that, for two distinct trait values, one will
have a competitive advantage over the other (Wilson, 1975) (for instance, the
taller of two plants competing for light (Weiner, 1990)). Theoretical studies of
community evolution under asymmetric competition point to an important
distinction compared with symmetric competition (Taper and Case, 1992;
Law et al., 1997). Asymmetric competition can promote continual change
in a community, for instance in the form of taxon cycles (Taper and Case,
1992; Dayan and Simberloff, 2005; Dieckmann et al., 2007). In spite of such
basic differences between symmetric and asymmetric competition, questions
of species clustering and typical sizes of gaps in species distributions may
have similar answers for the two types of communities. For general com-
petition kernel shapes, the real part of the Fourier transform of the kernel
contains information about clustering, as shown by Eq. (5): if the real part
is positive, a close-packed community will be stable, whereas negative values
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indicate a clustering tendency. Because the real part is equal to the Fourier
transform of the symmetrized kernel, as(x) = (a(x) + a(−x))/2, one can use
the shape of the symmetrized kernel as an intuitive guide to the properties
of an asymmetric kernel. As an example, in Fig. 4a the asymmetric kernel
is a shifted Gaussian, so the symmetrized kernel is a platykurtic mixture
of Gaussians shifted left and right, whose Fourier transform takes negative
values, promoting clustering. This can be compared with Fig. 4b, where
the symmetrized kernel is a mixture of two Gaussians with equal means,
which becomes leptokurtic and is positive definite, potentially supporting a
close-packed community.

While the species distributions in Fig. 4 are demographically stable, the
fitness landscape in Fig. 4a shows that species from outside the community,
with traits somewhat to the right of the resident species, could invade. As
an illustration of how such invasions may influence species clustering, Fig. 5
shows the outcomes of community simulations (performed like those in Fig.
1) for the asymmetric kernels in Fig. 4. The simulations do not reach an
equilibrium, but there is instead a turnover of species. Nevertheless, there
is still a typical patterning of the species in Fig. 5a, with an approximate
gap size that seems to be related to the gap in Fig. 4a, whereas there is
closer packing in Fig. 5b. It thus seems that the Fourier transform of the
kernel conveys important information about the distribution of traits in a
community also for the case of asymmetric competition.

2.4. Demographic stability of equidistant communities

We have seen that Fourier analysis is helpful when examining questions of
demographic stability of close-packed communities, as illustrated by Eq. (5).
One can also apply Fourier analysis to equidistant communities. Thus, for
symmetric competition kernels, an equidistant community with phenotypic
gap size d is demographically stable if the inequality

∑

j

â(1/λ+ j/d) > 0 (6)

holds for all wavelengths λ, and it is unstable if the inequality is reversed for
some λ (see Appendices A and B for a derivation of the corresponding result
for general, possibly non-symmetric, competition kernels). For the case of a
close-packed community, we recover our previous condition, because in the
limit of d going to zero, only the term for j = 0 contributes to the sum on
the left-hand side of (6), giving the condition â(1/λ) = ã(λ) > 0.
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Figure 4: The influence of asymmetric competition kernel shape on clustering. Compe-
tition kernels a(x) (orange), symmetrized kernels (pale orange), the real part of their
Fourier transforms as functions of wavelength (red), species distributions (blue), and
fitness landscapes (green) are shown. (a) Asymmetric Gaussian, shifted left by 0.65:
a(x) = exp(−[x + 0.65]2); (b) asymmetric Gaussian for which the left half is ‘stretched’
by a factor of 1.5: a(x) = exp(−x2) for x ≥ 0 and a(x) = exp(−[x/1.5]2) for x < 0. The
community in (a) has a gap size of about 2.07, which is the position of the minimum of
the real part of the Fourier transform, and it can be invaded to the right of the resident
species. The community in (b) is demographically neutrally stable.

From condition (6) we see that equidistant communities with a positive
definite competition kernel are always demographically stable, because each
term in the sum is positive. Thus, while such kernels do not induce clustering,
neither do they lead to demographic instability of equidistant communities
(but they do allow invasions into the gaps of the community; see below). On
the other hand, for a kernel whose Fourier transform changes sign, condition
(6) entails that there is demographic stability only for certain values of the
spacing d, such that the negative values are compensated by positive values
in the sum. This compensation cannot occur for very small d, but is particu-
larly likely when d is close to the wavelength at the minimum of the Fourier
transform.

Condition (6) is related to and generalizes the classical results obtained
by May (1974a,b), on the smallest rate of damping of density perturbations
of equidistant communities. May (1974a,b) studied only positive definite
competition kernels, without making use of Fourier analysis, and he empha-
sized that the smallest rate of damping can, for small d, be extremely close
to zero, which he referred as an “essential singularity”. In terms of condition



12

0 5 10 15

0.0

1.0

a

0 5 10 15

0.0

0.5

b

Phenotype or resource

Figure 5: Community simulations illustrating the influence of asymmetric competition
kernel shape on clustering (using the same approach as in Fig. 1). (a) A ‘typical snapshot’
of a species distribution (blue verticals). The competition kernel is the one in Fig. 4a,
for which the real part of the Fourier transform has a negative minimum. The fitness
landscape at the time of the snapshot is shown in green, and indicates that the community
can be invaded at several niche positions to the right of resident species. The average gap
between species clusters is similar to but somewhat smaller than the gap size in Fig.
4a. (b) With the competition kernel in Fig. 4b, for which the real part of the Fourier
transform is positive, a ‘typical snapshot’ shows a more closely packed community (blue)
with a relatively flat fitness landscape (green). A smoothed species distribution (light blue
curve) has approximately the same density per unit phenotype as in Fig. 4b.

(6), this can be understood as a very small value for the sum on the left-hand
side, including for the term for j = 0, when λ is small (see, e.g., the red curve
in Fig. 3b; see also Appendix B).
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2.5. Invasion into communities

An equilibrium community could be destabilized by the growth of a per-
turbation of the resident densities, but also by the introduction of new species
with different traits. These two aspects of stability represent related inves-
tigations of a community dynamics such as the Lotka-Volterra equations.
Both have been dealt with in analyses of limiting similarity, for instance,
in three-species communities, where one can look for a stable coexistence of
three species, as well as examine if a third species can invade into the gap be-
tween two resident species (e.g., MacArthur and Levins, 1967; May, 1974a,b;
Roughgarden, 1974; Abrams, 1975). For equidistant communities along an
infinite niche axis, or along a circular niche space, it seems that only the ques-
tion of demographic stability has been examined using analytical methods
(May, 1974a,b). Nevertheless, as it turns out, Fourier analysis can be applied
to the question of invasion into the gaps of an equidistant community. As
is suggested by the fitness landscapes (green curves) in Fig. 3, the analysis
shows that the shape of competition kernels can have a decisive influence on
whether new species can invade into the gaps.

Symmetric positive definite competition kernels have a positive Fourier
transform, and from this one can show that invasion into the gaps of an
equidistant community is always possible (Appendix C), but for close packing
of the resident species, there is near-neutrality, with an essentially flat fitness
landscape. Although not previously proven, this result has often been taken
for granted, and it provides a motivation for the idea that positive definite
competition kernels set no strict limit to similarity.

The situation is quite different for symmetric competition kernels whose
Fourier transforms change sign (Appendix C). As illustrated by the fitness
landscapes in Fig. 3, for these kernels there are values of the spacing d such
that the gaps in the community are protected from invasion. This property,
of disfavoring invading species at certain distances from the resident species,
could represent an important influence of competition kernel shape on com-
munity structure. The influence is likely to be particularly strong for kernels
with a pronounced negative minimum of the Fourier transform, because these
kernels produce a strongly undulating fitness landscape (Appendix C, Fig.
3), with correspondingly robust consequences for community structure.

For asymmetric competition kernels, communities typically can be in-
vaded at certain niche positions along a resource spectrum (Fig. 4, Fig. 5).
Even so, the competition kernel shape can influence the lengths of the in-
tervals along a resource axis that are protected from invasion, as well as the
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gap sizes created when an invasion succeeds (Fig. 5). From the results shown
here, it seems that the Fourier transform of a symmetrized competition kernel
provides useful information about the clustering tendencies of the kernel.

3. Beyond idealized resource competition

The pioneering theoretical work on species packing assumed that compe-
tition was caused by an overlap of resource-utilization functions (MacArthur
and Levins, 1967; MacArthur, 1969, 1970; May and MacArthur, 1972; May,
1974a,b). The concept of utilization overlap has been employed to also es-
timate competition coefficients from data (Levins, 1968; MacArthur, 1972;
Roughgarden, 1974; Schoener, 1974; May, 1975; Wilson, 1975; Roughgar-
den, 1979; Case, 1981). In the most idealized case, in which the utilization
functions of different species have identical shape and width, and resource
availability along the niche axis is uniform, the resulting competition kernels
are symmetric and positive definite (Appendix D), permitting a close pack-
ing of species. This holds not just for Gaussian utilization functions, but for
arbitrary shapes, which means, for instance, that the work by Roughgarden
(1974), investigating a family of utilization function shapes, remained within
the confines of positive definite competition kernels.

It is of interest to go beyond this case, not least because one can doubt
the general applicability of idealized resource competition (Abrams, 1975,
1983; Hernández-Garćıa et al., 2009). A common deviation could be related
to inefficiency or wastefulness in competitive interactions, in the sense that
the activity of members of one species reduce the availability of resources for
another species, without fully utilizing these resources for their own popu-
lation growth (Schoener, 1974; Hernández-Garćıa et al., 2009). Thus, only
a part of the resources made unavailable to competitors by the activity of
a species might contribute effectively to population growth, whereas the re-
mainder might go to waste. Competition kernels for such situations are then
given by the overlap of an effective utilization function of one species with a
total utilization function of another species, and such kernels are in general
not positive definite, but can instead promote clustering (Fig. 6, Appendix
D). Among the reasons for waste in competition could be individuals that
monopolize resources (interference competition), including resources they do
not use. Waste could also be a side-effect of so-called trait-mediated inter-
actions, in which individuals restrict their foraging in response to increased
predation risk (Peckarsky et al., 2008; Preisser and Bolnick, 2008).
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Figure 6: (a) A total utilization function (shaded green) at niche position 0 overlaps with
a narrower Gaussian effective utilization function (shaded gray) at niche position 1.52.
(b) The resulting competition kernel (orange), together with its Fourier transform as a
function of wavelength (red), a demographically stable species distribution (blue), and a
fitness landscape (green).

Furthermore, if competition is mediated by traits (such as body size)
that influence the extent to which species share predators, which is referred
to as apparent competition (Holt, 1977), one should not expect the result-
ing competition kernels to be positive definite. Species interactions through
the sharing of predators could be either positive or negative (Abrams and
Matsuda, 1996), although effects of trait-mediated interactions (Peckarsky
et al., 2008; Preisser and Bolnick, 2008) will often be negative. It has been
suggested that apparent competition is quite common in large and diverse
groups of organisms, such as phytophagous insects (van Veen et al., 2006).

4. Within-population trait distributions

Individuals in a population vary in their traits, so the competitive effect
of the population is a sum of effects of individual traits that have a distribu-
tion with a certain shape and width along the niche axis. The distribution of
individual traits can depend, among other things, on whether selection is sta-
bilizing or disruptive (Rueffler et al., 2006). Disruptive selection can broaden
the distribution, which in turn acts to reduce disruptiveness, by flattening the
fitness landscape. There can be different causes of within-population varia-
tion in resource-related traits, including developmental plasticity and genetic
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polymorphism, but a common pattern is that resource polymorphisms cor-
respond to platykurtic or even bimodal trait distributions (Skúlason and
Smith, 1995; Elmer et al., 2010). There is also empirical evidence that re-
source polymorphism is a response to strong within-population competition
in combination with sufficient resource breadth (Martin and Pfennig, 2010).

If the within-population trait distribution becomes platykurtic, as a re-
sponse to disruptive selection, the total competitive effect of the population
is modified in the direction of a platykurtic competition kernel. Such self-
organized platykurtosis could thus contribute to the clustering tendency of
competition kernels (Sasaki and Dieckmann, 2011). Other causes of within-
population trait variation will also influence the nature of the population’s
total competitive effect in a similar way. Populations are often structured
into subsets having different trait means, such as age classes, or males and
females. The influence of the population structure might typically be in the
direction of a more platykurtic total competition kernel. For instance, for a
population with sexual trait dimorphism, one should expect a platykurtic,
and if the dimorphism is large enough, even bimodal total trait distribution,
which can produce a clustering tendency of the resulting total competition
kernel.

5. Niche-space heterogeneity

A simple explanation for patterns in the trait distributions of species is
that they mirror patterns in the distribution of resources. Variation in the
carrying capacities of species was an important issue already in the early
treatments of species packing (May and MacArthur, 1972; May, 1974a,b;
Abrams, 1975). An overall conclusion from that work is that closer packing
of species increasingly restricts the range of carrying capacities permitting co-
existence, which has been confirmed in recent theoretical analyses (Meszéna
et al., 2006; Szabó and Meszéna, 2006; Barabás and Meszéna, 2009; Barabás
et al., 2012a,b). It is also known that resource competition can strongly
amplify resource heterogeneities, resulting in clumped distributions of popu-
lation density (Sasaki, 1997).

There are different types of niche-space heterogeneity, for instance, small-
scale variation in resource availability along a niche axis, or a unimodal re-
source distribution that defines a finite niche space (Fig. 7). In general,
niche-space heterogeneity and competition kernel shape will jointly influence
species clustering (Fig. 7). In spite of considerable efforts (Sasaki, 1997; Ack-
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ermann and Doebeli, 2004; Meszéna et al., 2006; Szabó and Meszéna, 2006;
Barabás and Meszéna, 2009; Hernández-Garćıa et al., 2009), there is cur-
rently no full understanding of how species distributions are determined by
niche-space heterogeneity, but a few points can be mentioned.

First, for positive definite competition kernels, already a very small per-
turbation of a uniform resource availability (Sasaki, 1997) is enough to change
the equilibrium species distribution from uniform to clustered (compare Fig.
7a,b and Fig. 1b), although for small perturbations, the selection promoting
clustering will be weak. Second, according to the analysis by May on lim-
iting similarity in stochastic environments (May, 1974a,b) (which assumes
positive definite kernels and develops the idea of an “essential singularity”),
gap sizes are expected to typically be larger than about 0.5 in Fig. 7a,b, and
to become somewhat larger for increasing amplitudes of perturbation. There
is indeed a reasonable agreement between these predictions and the species
distributions in Fig. 7a,b. Third, for competition kernels that promote clus-
tering, like the quartic kernel, equilibrium species distributions are relatively
robust to niche-space heterogeneities (Fig. 7c,f). The explanation for this
robustness is the strong undulation of the fitness landscape for these kernels
(green curves in Fig. 3), in comparison with the fitness landscapes for posi-
tive definite kernels, which become very flat as soon as species distributions
approach equilibrium.

In nature, the carrying capacity is likely to taper off at the edges of a
niche range, which can be represented by a unimodal K(x) along the niche
axis (Fig. 7d-f). There is a well known theoretical result by Roughgarden
(1979), that for a Gaussian competition kernel and a (wider) Gaussian K(x),
the equilibrium species distribution is also Gaussian, which in practice would
correspond to a very close-packed distribution (Fig. 7d). Similar close-packed
equilibrium species distributions can occur for other shapes of K(x) (Fig.
7e), but if the shape is more narrow, or is perturbed by small-scale variation,
the species distribution breaks up into a lower number of separated species
(Sasaki, 1997; Meszéna et al., 2006; Szabó and Meszéna, 2006; Barabás and
Meszéna, 2009). For competition kernels with a strong clustering tendency,
the equilibrium species distribution is, however, relatively robust to niche-
space heterogeneity (Fig. 7c,f). Finally, niche-space heterogeneity enters into
the derivation of the competition coefficient from an underlying resource
dynamics (Schoener, 1974), and the resulting competition kernels need not
have the simple form a(xj − xk), which by itself can promote clustering
(Ackermann and Doebeli, 2004).
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Figure 7: Effects of competition kernel shape and resource heterogeneity on community
simulations. (a) For a Gaussian kernel, a(x) = exp(−x2), and a slightly perturbed K(x)
(see Eq. (1); green curve), there are fewer irregularly spaced species (blue verticals) com-
pared with Fig. 1b. The light blue line gives the equilibrium population density per unit
phenotype for K(x) = 1. (b) As in (a), but with a factor of 10 greater amplitude of
perturbation of K(x). (c) For a quartic kernel, a(x) = exp(−x4), and the same perturbed
K(x) as in (b), the species distribution is similar to that in Fig. 1a, but has some variation
in species densities and gap sizes. (d) For a Gaussian kernel and a Gaussian resource
distribution K(x) = exp(−[(x− 10)/4]2), there is a very close-packed equilibrium species
distribution. Smoothing this distribution (light blue curve) shows that the population
density per unit phenotype is close to Gaussian. (e) As in (d), but with a resource distri-
bution K(x) = exp(−[(x − 10)/7.5]4). (f) For a quartic kernel and the same K(x) as in
(e), the equilibrium species distribution has regular spacing.
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6. Discussion

The recent work on species packing, not least the approach of using
Fourier analysis to characterize the effects of competition kernel shape on
species clustering (Pigolotti et al., 2007; Leimar et al., 2008; Hernández-
Garćıa et al., 2009; Pigolotti et al., 2010), is a significant step forward, for
instance, by overcoming assumptions of idealized resource competition. As
shown here, the application of Fourier analysis can also move the theory be-
yond an assumption of symmetric competition, and thus beyond the domain
of MacArthur’s classical minimization principle (MacArthur, 1969, 1970).

There are of course additional directions in which the traditional the-
ory of limiting similarity can usefully be extended, for instance, by study-
ing cases where the community dynamics are not well approximated by the
Lotka-Volterra competition equations. Depletion, or even extinction, of the
resources in a niche interval is a possible consequence of resource utilization
by competing consumers, leading to deviations from Lotka-Volterra dynam-
ics, with implications for limiting similarity and the coexistence of consumer
species (Abrams, 1998; Abrams et al., 2008; Abrams and Rueffler, 2009).

Apart from the extinction and invasion of species, there can be evolu-
tionary changes of the traits in a community, for instance, in the form of
character displacement (Dayan and Simberloff, 2005), and this topic has of-
ten been brought up in discussions of species packing. Concerning the effects
of competition kernel shape on character displacement, one might expect that
strong clustering tendencies of a kernel, in the sense of a pronounced min-
imum of its Fourier transform, select more strongly for divergence between
species. The reason is that such kernels produce a strongly undulating fitness
landscape. More generally, the ecological relevance of much recent work on
species clustering, including the results presented here, to a large extent de-
pends on whether competition in nature sometimes reasonably corresponds
to competition kernels with strong clustering tendencies.

Going beyond the effects of competitive interactions per se, recent re-
search has uncovered processes that promote clustering when acting in con-
junction with competition, of which assortative mating in sexual organisms
is a noteworthy example (Doebeli et al., 2007; Ispolatov and Doebeli, 2009).
There are also theoretical arguments to the effect that clustering should be
seen as a typical or generic outcome of competitive interactions. The idea
that continuous distributions in trait space or in physical space are fragile,
lacking structural stability or otherwise readily disintegrating into discrete
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clusters, has gained support in recent theoretical work (Sasaki and Ellner,
1995; Sasaki, 1997; Gyllenberg and Meszéna, 2005; Meszéna et al., 2006;
Pigolotti et al., 2010; Barabás et al., 2012a,b). The issue of continuous coex-
istence can thus be regarded as resolved, to the effect that continuous coexis-
tence is an unlikely special case. Even so, interesting questions remain, such
as the relation between niche-space heterogeneity and the resulting equilib-
rium species distributions. For instance, our examples in Fig. 7 suggest that
large-scale, gradual variation of a carrying capacity along niche space does
not in itself strongly influence smaller-scale species clustering (Fig. 7d,e,f),
although more research is needed before definite conclusions can be drawn.

Scheffer and van Nes (2006) noted that body-size distributions across
species are often composed of groups or clumps of similar-sized species, sepa-
rated by gaps (see also Allen et al. (2006); Thibault et al. (2011) on the mul-
timodality of body-size distributions), and argued that such distributions are
the expected outcome of competitive interactions within a community (Schef-
fer and van Nes, 2006). Clumping of similar species, separated by gaps, can
indeed be an equilibrium of the Lotka-Volterra competition equations for cer-
tain competition kernels (Pigolotti et al., 2007; Hernández-Garćıa et al., 2009,
Fig. 3e,f). Another explanation is that there can be long-lasting transients
during community assembly, in which clumps of similar species are slowly
pruned down to singletons (Fort et al., 2009, 2010; Pigolotti et al., 2010).
The swift manner in which this issue of species clumps has been clarified is
a testament to the current vigor of research in this area.

While much work on species clustering remains to be done, the field is
rapidly moving forward, indicating that its central position from the 1960s
and 1970s could be regained. There is now a deeper understanding of the
groundbreaking results by MacArthur, Levins and May, which has been
achieved by placing the classical work into a wider context created by the
recent theoretical progress. Even more, there is now a new set of ideas and
theoretical results that might usefully interact with observations on the dis-
tribution of traits in communities.
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Appendix A. The Poisson summation formula

The derivations in the Appendices B and C make use of the so-called
Poisson summation formula for the Fourier transform f̂(φ) of a function
f(x). The summation formula is given by

∞
∑

j=−∞

f(jd) =
1

d

∞
∑

j=−∞

f̂(j/d), (A.1)

where the Fourier transform is defined as in Eq. (2) and d is a positive
real number. This is a well-known result and holds, for instance, if f(x) is
an integrable function of bounded variation (Benedetto and Zimmermann,
1997). The following two relations are alternative versions of the summation
formula:

∞
∑

j=−∞

f(jd) exp(−i2πφ0jd) =
1

d

∞
∑

j=−∞

f̂(φ0 + j/d) (A.2)

and
∞
∑

j=−∞

f(jd+ x0) =
1

d

∞
∑

j=−∞

f̂(j/d) exp(i2πx0j/d). (A.3)

They follow because the transform of g(x) = f(x) exp(−i2πφ0x) is given
by ĝ(φ) = f̂(φ0 + φ) and the transform of g(x) = f(x + x0) is given by
ĝ(φ) = f̂(φ) exp(i2πx0φ).

Appendix B. Demographic stability

This appendix contains a derivation of the following result: An equidis-
tant community with competition kernel a(x) and phenotypic gap size d is
demographically stable if the inequality

∞
∑

j=−∞

Re[â(1/λ+ j/d)] > 0 (B.1)



22

holds for all wavelengths λ, and it is unstable if the inequality is reversed
for some λ. The result in Eq. (6) in the main text is a special case of this
condition, for symmetric kernels, for which the Fourier transform is real.

For the derivation it will be convenient to introduce the so-called discrete-
time Fourier transform (the terminology “discrete-time” is traditional, but
here the variable is not time, but niche position), which is defined as a trans-
form F (φ) of the sampled values f(xj) of a function f(x) at the equidistant
niche positions xj = jd, as follows

F (φ) = d
∞
∑

j=−∞

f(jd) exp(−i2πφjd). (B.2)

The discrete-time Fourier transform will be periodic, with period 1/d, so that
F (φ+1/d) = F (φ). We can find a relation between the discrete-time Fourier
transform and the ordinary Fourier transform of f(x), as follows:

F (φ) =
∞
∑

j=−∞

f̂(φ+ j/d). (B.3)

This follows directly from the version of the Poisson summation formula in
Eq. (A.2).

For an equidistant community, only the values a(jd) of the competition
kernel at the interspecific distances xj = jd can influence the community
dynamics. It is then convenient to make use of the discrete-time Fourier
transform A(φ) of the sampled competition kernel values a(jd). Eq. (B.3)
gives

A(φ) =
∞
∑

j=−∞

â(φ+ j/d). (B.4)

We linearize Eq. (1), for the special case K(x) = 1, around the equilibrium

N∗ =
1

∑

∞

j=−∞
a(jd)

. (B.5)

Writing Nj = N∗ + uj, we get the linearized dynamics

duj

dt
= −N∗

∞
∑

k=−∞

a(jd− kd)uk. (B.6)
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Taking the discrete-time Fourier transform, as defined in Eq. (B.2), of the
linearized dynamics in Eq. (B.6), we get

dU(φ)

dt
= −

N∗

d
d2

∑

j

∑

k

a(jd− kd)uk exp(−i2πφjd)

= −
N∗

d
d
∑

k

uk exp(−i2πφkd) d
∑

l

a(ld) exp(−i2πφld)

= −
N∗

d
A(φ)U(φ), (B.7)

where ld was substituted for jd− kd in the second line. From this equation
we can conclude that the equilibrium is stable if the real part of the discrete-
time Fourier transform A(φ) is positive, i.e. if Re[A(φ)] > 0 holds for each
φ, whereas the equilibrium is unstable if the inequality is reversed for some
φ. From Eq. (B.4), and putting φ = 1/λ, we see that this yields condition
(B.1).

It is instructive to examine the special case of a close-packed community,
for which d is small. In the limit of d going to zero, the discrete-time Fourier
transform in Eq. (B.2) converges to the ordinary Fourier transform, and Eq.
(B.7) converges to Eq. (5) in the main text.

For symmetric positive definite competition kernels, which were studied
by May (1974a,b), we see from Eq. (B.7) that the smallest rate of damping
of density perturbations is given by the minimum of N∗A(φ)/d, which will
typically occur for φ = 1/(2d). For small d, this minimum can be extremely
close to zero, for instance, for a Gaussian kernel, resulting in effectively neu-
tral demographic stability. May (1974a,b) referred to this phenomenon as an
“essential singularity” of the community dynamics.

Appendix C. Invasion into gaps

Consider an equidistant community, with species at the niche positions
xj = jd, and a competition kernel a(x). The equilibrium density in the
community is given by Eq. (B.5). Using the Poisson summation formula in
Eq. (A.1), we can write the equilibrium density as

N∗ =
d

∑

∞

j=−∞
â(j/d)

. (C.1)
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For a potential invader species at x, having the low density u, the linearized
dynamics is

du

dt
= u

(

1−N∗

∞
∑

j=−∞

a(x− jd)
)

, (C.2)

so that

F (x) = 1−N∗

∞
∑

j=−∞

a(x− jd) (C.3)

is a fitness landscape for invasion into the community (illustrated by the green
curves in Fig. 3, 4 and 6b). Using the version of the summation formula from
equation (A.3), we can express the fitness landscape in terms of the Fourier
transform of the competition kernel as

F (x) = 1−
N∗

d

∞
∑

j=−∞

â(j/d) exp(−i2πxj/d). (C.4)

Using Eq. (C.1), we can verify that F (x) = 0 at the positions x = kd of the
resident species. We can then write F (x) as

F (x) =
N∗

d

∞
∑

j=−∞

â(j/d)
(

1− exp(−i2πxj/d)
)

. (C.5)

For a symmetric kernel, for which the Fourier transform is real and symmet-
ric, the fitness landscape can be expressed as

F (x) = 2
N∗

d

∞
∑

j=1

â(j/d)
(

1− cos(2πxj/d)
)

. (C.6)

It follows that F (x) > 0 for positions x �= kd. Thus, for a symmetric positive
definite kernel, invasion into the gaps of an equidistant community is always
possible. For small d, the values â(j/d) will be extremely small, making F (x)
small, so gap invaders are nearly neutral.

On the other hand, for a symmetric kernel whose Fourier transform
changes sign, there can be gap sizes d such that F (x) < 0 in the gaps,
preventing the growth of invading species (as illustrated in Fig. 3a,c,e,f).
Examining the term for j = 1 of the sum in Eq. (C.6), which might represent
an important contribution to the sum, such protection of the gaps in the
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community is likely to be strongest when d is close to the wavelength λ at
which ã(λ) = â(1/λ) has a minimum. Furthermore, a more negative value
of ã(λ) typically results in stronger selection against invaders in the gaps of
the community.

For asymmetric competition kernels, Eq. (C.5) seems not to provide a
lot of insight into the shape of the fitness landscape. Perhaps the typical
situation is that such communities can be invaded, resulting in a turnover or
shifting of species, as illustrated in Fig. 4 and Fig. 5.

Appendix D. Competition kernels and waste in competition

A classical formulation for the competition coefficient is as the over-
lap

∫

fj(y)fk(y)dy between the utilization functions fj(y) and fk(y) of two
species j and k (May, 1974a,b). If all utilization functions have the same
shape f , we can write the competition kernel as

a(x) =

∫

f(y − x)f(y)dy. (D.1)

This kernel is symmetric, regardless of whether f(y) is symmetric. Its Fourier
transform is equal to the square of the transform of the utilization shape,
ã(λ) = |f̃(λ)|2, so such a kernel is positive definite. If f instead is an effec-
tive utilization function, representing resources contributing to population
growth, and g is a corresponding total utilization function, representing re-
sources rendered unavailable to other species (Schoener, 1974; Hernández-
Garćıa et al., 2009), including ‘wasted resources’, the competition kernel is
given by

a(x) =

∫

f(y − x)g(y)dy. (D.2)

This kernel need not be positive definite, as is illustrated by the example in
Fig. 6.
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Szabó, P., Meszéna, G., 2006. Limiting similarity revisited. Oikos 112, 612–
619.

Taper, M.L., Case, T.J., 1992. Models of character displacement and the
theoretical robustness of taxon cycles. Evolution 46, 317–333.

Thibault, K.M., White, E.P., Hurlbert, A.H., Ernest, S.K.M., 2011. Multi-
modality in the individual size distributions of bird communities. Global
Ecology and Biogeography 20, 145–153.

van Veen, F.J.F., Morris, R.J., Godfray, H.C.J., 2006. Apparent compe-
tition, quantitative food webs, and the structure of phytophagous insect
communities. Annual Review of Entomology 51, 187–208.

Weiner, J., 1990. Asymmetric competition in plant populations. Trends in
Ecology & Evolution 5, 360–364.

Wilson, D.S., 1975. The adequacy of body size as a niche difference. American
Naturalist 109, 769–784.


