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1. Introduction 

In dynamical systems describing the interaction of n different "populations", het- 

eroclinic cycles occur whenever the species of the population supersede each other 

in cyclic fashion. 

A heteroclinic cycle is a cyclic arrangement of saddle equilibria connected by orbits 

which have one saddle point as a-limit and another one as w-limit; such systems 

occur in ecology, genetics, chemical kinetics, game theory, et c. Generally, (con- 

tinuous time) systems with a heteroclinic cycle are not structurally stable, as the 

saddle connections can be broken up by arbitrarily small perturbations. However, 

the heteroclinic cycles may be preserved if the perturbations respect some essential 

feature or symmetry of the system (for example if there exist invariant subspaces) 

(see e.g. Guckenheimer and Holmes (1988), Melbourne (1989), Melbourne, Chossat 

and Golubitsky (1989)). 

For general Lotka-Volterra equations 

or replicator equations 

n 

xi = xi(fi(x) -f(x)) with f(x) = C x i f , ( x )  on the simplex Sn, 
i= 1 

which describe models as mentioned above, heteroclinic cycles occur as robust 

phenomena. The reason is that the boundary of the state space, which corresponds 

to the absence of one or several populations, is flow invariant. 

May and Leonard (1975) give an example of a dynamical system with a heteroclinic 

cycle, which models competition between three species: Species 2 outcompetes 

species 1, but is beaten by species 3, which in turn is replaced by species 1. 



Other simple examples are the "stone-scissors-paper" game and the "battle-of- 

the-sexes" in game dynamics; in chemical kinetics such behaviour occurs within 

the hypercycle (see Hofbauer and Sigmund (1988)). 

Let us consider the behaviour of an orbit whose w-limit is a heteroclinic cycle. If it 

approaches one of the saddle equilibria, it will linger there for a long period of time, 

then it skitters alongside the saddle connections to the next fixed point, where it 

will loiter for a much longer time, then joumey to the next one, and so on. Since 

the orbit converges to the heteroclinic cycle, it comes closer and closer to the fixed 

points and consequently remains there for longer and longer periods. We will see 

that, if the saddles are hyperbolic, these sojourn times increase exponentially, while 

the times required to move from one saddle point to the next change very little. 

Asymptotically these times are those which the saddle connections require to move 

from the neigbbourhood of one fixed point to the next. They can be neglected, in 

comparison with the times the orbit spends within these neighbourhoods. 

Thus the dynamics is somewhat unpredictable: nearby orbits may leave the neigh- 

bourhoods at very different times and evolve quite out of phase. It is difficult to 

tell in advance near which saddle the orbit x(T) will linger at some large time T. 

Mathematically, the state of the population will never attain any of the fixed 

points in which only one species is present. In biological systems or numerical 

simulations, however, the frequencies of the species cannot fall below a certain 

value (resp. small fluctuations can lead to extinction of some species), and the 

state will end up in one of the saddle points. It is impossible to predict which 

one. If by some oportunistic event (e.g. migration or mutation) one of the missing 

species is reintroduced again, the cycle continues and the population may end up 

in a different state. 

We shall show that the time averages () J: x(t)dt for continuous dynamical sys- 

1 N-1 tems or x(t) for discrete ones) of orbits tending to the heteroclinic cycle 



will not converge, but will spiral closer and closer to the boundary of a polygon. 

During the time the orbit is bogged down in the vicinity of one of the saddles, 

the time average, which was close to one of the comers of the polygon, moves 

towards the next saddle point. This behaviour seems to have been noticed first by 

E. C. Zeemaa (unpublished); Hofbauer and Sigmund (1988) prove this result for 

the May-Leonard system. We use a more general method. 

Let us consider as a simple example the "stone-scissors-paper" game with payoff- 

matrix 

The state of the population at any time is given by a vector x = (xl,  xz, x3), where 

xi = xi(t) denotes the frequency of individuals which play strategy i ; the payoff 

a;j for a player using strategy i against a j-player is given by A. We therefore have 

three available strategies which beat each other in cyclic fashion. If we assume 

that the rate of increase % of strategy i is given by (Ax), - xAx (the difference 

between its payoff and the average payoff of the population), we obtain the game 

dynamical equation 

xi = x,((Ax); - XAX) 

on the simplex S3. If E > 0 the boundary of the simplex forms an attracting 

.heteroclinic cycle, and the time averages of all orbits t H x(t) in the interior of S3 

(with exception of the interior fixed point) tend to the triangle spanned by 

and corresponding points A2 and A3 (see Fig. 1). (Cf. section 4.) 

Fig. 1 
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In section 2 we deal with two-dimensional l r y p d d k  heteroclinic cycles, in section 

3 we apply these results to some examples, in section 4 we give a sketch for the 

case of higher dimensional systems, and finally, in section 5 we briefly sketch the 

case of discrete dynamical systems. 

2. T h e  two-dimensional case 

Let jL = f (x) be a continuous dynamical system defined on a subset of I R ~  and let 

Fo, . . . , F,-l be saddle equilibria which correspond to a heteroclinic cycle I'. 

Each saddle point Fi of I' has a positive eigenvalue X i  > 0 and a negative eigenvalue 

-pi < 0. We say that I' is repelling (resp. attracting) if it is the a- (resp. w-)  limit 

of any orbit which starts in a vicinity of I?. r is repelling if p := JJzi < 1 

(i.e. the product of the "outgoing velocities" is greater than the product of the 

"incoming velocities"), and it is attracting if p > 1. (See e.g. Hofbauer and 

Sigmund (1988). It will also follow from the proof we give.) 

We linearize the system in an arbitrarily small neighbourhood U(Fi) of the sad- 

dle equilibria and take local coordinates such that ? = A i r  and y = -p,y hold 

approximately. Now, consider the cross-sections Si = {(r, y) : y = 1) "before" Fi 

and S: = {(r, y) : r = 1) "after" Fi (see Fig. 2). 

Fig. 2 

Lemma 1. Let x(t) be an orbit with initial point x = (r, I), in the local coordinates 

in U(Fi), and ti be the time spent in U(Fi). Let pi := v. Then 

ti+ 1 lim - = p;+l . 
2 4 0  t i 

REMARK: We always will count the indices of the saddles Fi, of the eigenvalues, 

and of the pi modulo n. 



PROOF: An orbit which starts in (x, 1) crosses S: in (1, y) = (xexit , e-pit). There- 

fore the time the orbit spends between Si and S: is t = -* log x. The transition 
fi map cp; : S; + SI, (x, 1) H (1, y), is given by cp;(x) = x Ai. (Since one coordinate 

is fixed, vi is a function in one variable.) The transition map t,bi : S: + Si+l, 

(1, y) H (XI ,  1) can be expanded into a Taylor series and $;((I, 0)) = (0,l). Thus 

we have in first order approximation $;(x) = six, for some positive constant a;. 

It is enough to consider i = 0. 

tl Xo logao + y o g x  Po - * -- - .  -+ - for x + 0. 
to A1  log x 1 

REMARK 1: It is easy to see that the choice of the Poincard-sections at (x , l )  resp. 

(1, y ) is no restriction of generality. We obtain the same result if we choose (x, q) 

and (ql, y ) for any q, q1 > 0. 

REMARK 2: For the Poincard map g = o cpn-l o . -  o t,bo o qo  : So -+ So we 

obtain g(x) = ax", where 

and 

Hence, asymptotically the sojourn times near the saddle points Fi increase expo- 

nentially with factor p. 

(A determination of the precise form of the Poincard map which also takes higher 

order terms into consideration can be found e.g. in Anosov and Arnold (1988).) 

REMARK 3: Proof of Lemma 1 shows that the heteroclinic cycle is attracting if 

p > 1 and that it is repelling if p < 1. 



Theorem 1.  Let x(t) be a n  orbit whose w-limit b I'. The accumulation poinb of 

the time average + J: x(t)dt form the boundary of the polygon A. . . . An-l where 

The points Ai) Ai+l) and Fi+l are collinear. 

REMARK: Thus, asymptotically, the time averages move on a line from Ai  to Ai+1 

in the direction of Fi+l. 

(i) Consider first a piecewise constant function xi from IR to IR2 whose values 

alternate cyclically between the Fi, with the property that if it remains at Fi-l 

for a time interval of length then it next takes the value Fi for a span of time 

ti, with ti = piti-1. The jump to Fi takes place at time Ti. (While the indices of 

the points Fi,  the eigenvalues and the pi are counted cyclically, the indices of the 

times ti and Ti are not .) 

The time average of xt over one full cycle starting at Ti is given by 

A straightforward computation shows that 

We have 

lim - J xidt = 
k-00 Tk 

k ~ i  ( m o d n )  0 

since this average consists of full cycles (up to an initial phase which does not 

affect the limit). If T E [Tk , Tk+l) (for k i (mod n)), then 



The time average in the second term is just Fi. The time average of the first 

summation term converges to Ai-1. For sufficiently large T (i.e. k) the time 

average is arbitrarily close to a convex combination of Ai-1 and Fi. For T = Tk 

this yields Ai-1, for T = T k + l  it yields in the limit A;: Since k = i + nm for some 

suitable m E IN (m  + m as k + m )  we can write 

and 

Tk+i - Tk = pmpiti-1. 

Hence, for m + oo we obtain (2). 

Thus every possible time limit lies on the polygon spanned by the Ai. Conversely, 

any given point on the segment from Ai-1 to Ai occurs as limit point for a suitable 

sequence of time averages. 

(ii) Let us consider next a piecewise constant function with the same properties as 
ti above, except that ti = is replaced by - + pi for i + oo (we recall that 

ti-1 
the index of pi is taken modulo n). The same argument as in (i) applies, with the 

exception that now the time averages over a full cycle starting at To converge to 

A;-1 as given by (1). 

(iii) Next let us consider a function xt which is no longer piecewise constant. It still, 

as in (ii), takes on the value F; for intervals of lenght ti, but now the translation 

from one Fi to the next does not occur as a jump, but as a continuous movement 

during some time interval of uniformly bounded length. Since the union of these 

transition intervals is of density zero, this does not affect the accumulation points 

of the time averages of xt, they are still given by the polygon as above. 

(iv) Finally, we note that the behaviour of the time average of the orbit x ( t )  is 

asymptotically the same as that of xt: For any E > 0 we can find neighbour- 

hoods U,(Fi) of diameter < E into which we can introduce local coordinates as 



in Lemma 1. The times the orbit x(t) needs to switch from Uc(Fi) to Uc(Fi+l) 

converge to the time needed by the saddle-connections to cross from one neigh- 

bourhood to the next, hence they are uniformly bounded. The two functions x(t) 

and x t  differ only in that, while x(t) is in Uc(Fi), xt is precisely at Fi- Therefore 

the time averages differ only by at most E ,  which can be chosen arbitrarily small. 

REMARK: Ai -+ for p + 1; that is, the polygon degenerates to a single point 

in this case. 

If p = 1, it is not possible to say generally if the heteroclinic cycle is attracting 

or repelling. If it is attracting, the sojourn times near the saddles do not grow 

exponentially, but linearly. 

We see by Lemma 1 that the Po incd  map is approximately given by the linear 
ti+n map g(x) = ax, and therefore the ratio of the time intervals - converges to 1. 
ti 

We have 

For Lotka-Volterra and replicator equations the time averages for orbits which 

tend to the inner equilibrium or are periodic, converge to the inner equilibrium. 

Theorem 1 shows that the time averages converge to this equilibrium also for p = 1, 

even if the heteroclinic cycle is attracting. 

We have discussed the "generic" case that all saddle equilibria of an attracting 

heteroclinic cycle are hyperbolic. By a heuristic argument it seems plausible that 

the formulas for the degenerate case can be obtained by simple passage to the 

limit. We show that (1) still holds, by way of example, for the case that one of 

the "outgoing" eigenvalues of the saddle points, say Xo,  is zero. 

As in the generic case we can linearize the vector field in neighbourhoods of the 

saddle F; for i = 1,. . . , n - 1. In U(Fo) we can take local coordinates such 



that i = ax2 + bxy (we recall that {x = 0) is invariant) and y = -pay hold 

approximately. (In the first equation we consider terms of second order, since the 

corresponding eigenvalue is zero. a, b are appropriate constants.) If we neglect 

higher order terms we can consider an equation of the form i = vx2, y = -pay, 

which we obtain by a differentiable coordinate transformation of the form x + 

x + h(x), where h(x) is a homogeneous vector polynomial. (This is a special case 

of a theorem of Poincar&Dulac, see e.g. Arnold (1983).) 

Now consider cross-sections Si = {(x, l)) and S: = {(I, y)) as in Lemma 1. 

Lemma 1 still holds with pn = CQ. 

PROOF : The transition map 90 : So + Sh is now given by 

(x, 1) - (+,e-pot - - vt ) = Y), 
2 

so that 
1 1 - 2  t = - . -  -EL.- 

and vo (x) = e . = . 
v x 

I - t  
This yields $0 o vo(x) = aoe- '7 (for an appropriate positive constant ao). 

We have 

Further, 

tn -- _ _ .  n -  1 - $ 1  0 n - )  _ CQ as 
-+ *, 

in-1 v log3 $n-1 0 vn-l(x) 
P n - 1  

since $n-l o vn-l (x) = an-lxX.-l, as in the generic case. 

Hence Theorem 1 holds also for Xo = 0, that is 



3. Examples 

Ezample 1 

In the "general stone-scissors-paper" game, described by the equation 

with 

the heteroclinic cycle r: F1 = (1,0,0) + F2 = (0,0,1) + F3 = (0,1,0) + F1 is 

attracting iff blb2b3 > ala2a3 (a; and -bi are the eigenvalues at Fi). The time 

averages approach the triangle A1A2A3 with 

(See Fig. 1.) 

Ezample 2 

The equation 
x = x(l - x)(a + bx 4- cy) 

Y = ~ ( 1 -  y ) (d+ex+fy )  

on [ O , l ]  x [ O , 1 ]  describes the dynamics of asymmetric games between two popu- 

lations interacting with themselves and with each other, with two strategies for 

each (see Schuster et al. (1981)). 

The boundary of the state space forms a heteroclinic cycle F1 = (0,O) + F2 = 

( 1 , O )  + F3 = (1, l )  + Fq = (0, l)  + F1 if the expressions X1 = a, X2 = d + e, 



are all positive (resp. all negative; then the cycle runs the other way round). Xi 

and -pi are the eigenvalues of the saddle equilibria. If n Xi  > n pi, the cycle is 

attracting, and the time averages spiral to the quadrangle A1 A2 A3A4 (see Fig. 3), 

Fig. 3 

4. Time averages for higher diineilsional attracting heteroclinic cycles 

In higher dimensions it is difficult to describe heteroclinic cycles generally. We will 

discuss the situation for the May Leonard system (1975) and for the simplex S4. 

( a )  T h e  sys tem of M a y  and Leonard 

The Lot ka-Volterra equation 

on El.: describes a competition between three species. 

The equilibria F1 = (1,0,0), F2 = (0,1,0) and F3 = (0,0,1) form an attracting 

heteroclinic cycle, if 0 < < 1 < a and a + P > 2 (see May and Leonard (1975)). 



The eigenvalues of the saddle equilibria "in direction of the heteroclinic cycle" are 

X := 1 - p and -p  := -(a - 1); -1 is the "transversal" eigenvalue. 

If we linearize the system at F;, we obtain 

Analogously to the two-dimensional case, we take cross-sections Si = {(x, y, 1)) 

"before" and S: = {(x, 1,z)) "after" Fi. The transition map cp; : S; + S: for 

the linearized system is given by yi(+, y, 1) = ( ~ e - ~ ,  ye'Lt, e-J") = (xy f , 1, y f  ), 

and t = -+logy is the time the orbit spends between Si and S:. The transition 

map $i : S: + Si+l maps (x, 1 , O )  to (xl,O, I), hence it can be approximated by 

$;(x, 1, Z)  = (f;.(x, z), ajz, I), where ai is an appropriate positive constant and 

E(x, z) some differentiable function (see Fig. 4). 

Fig. 4 

Therefore 

The situation is similar to the two-dimensional case and Theorem 1 holds. Thus 

the time averages for orbits in int IR; converging to this cycle (all except those on 

the diagonal) tend to the boundary of the triangle A1 A2A3, where 

(the indices of the Fi are counted modulo 3), which lies on the simplex S3. That 

1 
A - 

- (1 - p)2 + (1 - P)(a - 1) + (a  - q2 ((a - q2, (1 - P)2, (a  - l ) ( l  - P)) 

1 . ((a - l ) ( l  - P), (a  - q2, (1 - P ) ~ )  
A2 = (1 - P)2 + (1 - P)(a - I )  + (a  - 



The "transversal" eigenvalues do not affect the time averages. 

This result was shown by Hofbauer and Sigmund (1988), by a different method. 

An analogous situation yields the system 

which was studied by Guckenheimer and Holmes (1988). The trajectories F1 = 

(0 ,  G,o) + F2 = ( c , 0 , 0 )  4 F3 = (0,O, 6) 4 F1 form an attracting 

heteroclinic cycle if e = 1, a +  b + c  = -1, f < a  < 0,  c  < a < b < 0. The 

eigenvalues "in direction of the cycle" are X = :(a - b) and -p  = -$(a - c )  and 

therefore the time averages for almost all orbits spiral to the triangle A1 , A2, AJ, 

Al = V a ( (a  - b)?, ( a  - c ) ~ ,  ( a  - b)(a - c ) )  
( a  - b)3 + (a'- b)(a - c)  + ( a  - c ) ~  

A2 = ( (a  - c ) ~ ,  ( a  - b)(a - c) ,  ( a  - b)2) 
( a  - b)3 + ( a  - b)(a - c )  + ( a  - c)3 

AS = ( (a  - b)(a - c) ,  ( a  - bl2, ( a  - c ) ~ )  . 
(a  - b)2 + ( a  - b)(a - c )  + ( a  - c)2 

(b )  At t rac t ing  heterocl in ic cycles o n  S4 

The previous section may suggest that formula ( 1 )  also holds in higher dimensions, 

that is, the set of accumulation points of the time averages only depends on the 

"incoming" and "outgoing" eigenvalues at each saddle and are not influenced by 

the "transversal" eigenvalues. However, the following example shows that this 

needs not always be true. 

Consider a dynamical system defined on the simplex S4 where the corners of 

the simplex F1 = ( l , O ,  O , O ) ,  . . . ,F4 = (0,0,0,1)  and the edges FiFi+1 form an 



attracting heteroclinic cycle and the "faces" { t i  = 0) are invariant. Further, let 

there be a positive eigenvalue Xi  and two negative eigenvalues -pi and -a; at 

every vertex Fi (A; and -pi are the eigenvalues "along" the cycle, -a; is the 

"transversal" eigenvalue). (We count the indices modulo 4.) 

Such situations may occur in replicator equations (see e.g. Hofbauer and Sigmund 

(1988), Gaunersdorfer et al. (1990)). We first discuss a result from Hofbauer 

(1987), see also Hofbauer and Sigmund (1988): 

The linearization at Fi yields 

We take the cross-sections as in the previous example, and the transition maps 
Ili 

are given by vi(x, 1, Z )  = (1, x * i  , z t  % ) resp. $;(17 y, z) = (air, 1, biy), since the 

faces of S4 are invariant (see Fig. 5). 

Fig. 5 

3 !!i 
Then $i ocpi(x, 1, z) = (aizx *i , I ,  biz *i ) (a; and b; are appropriate constants), and 

the Poincak map is of the form g(x,z) = ( A X ~ ~ B ,  Bz7z6) (A, B, a, p, 7, 6 are 

positive constants, depending on the eigenvalues Xi,  -pi and -ai). 

It is convenient to change the coordinates to yl := - log x and y;! := - log z. Then 

the transition map can be written in the form $; o 9; : y H Piy + q; where 

and q; depends on a;, bi7 Xi7  pi7 ai. 

The Poincard map S1 --+ Sl transforms to y I+ P y  + q with 

4 - log A 
p = n p i = ( ;  i=l ) and q = ( - l O g B )  



and the heteroclinic cycle r corresponds to the limit yl, y2 -+ oo. 

As all entries of P are positive, P has a dominant eigenvalue p > 0 and has positive 

left and right eigenvalues u and V, by the theorem of Perron-Frobenius. 

If p # 1 we can ignore the translation term q (by replacing y by y + 9 ,  where 9 

is the fixed point of g ) .  If p > 1 we have P-kPky -+ u as k -+ w for all y > 0, 

hence r is attracting. For p < 1 all orbits of y -+ P y  tend to 0 and r is repelling. 

As p-kPky -+ u (for k -+ oo), there is a hk for every k, lirn hk = 0, such that 
k+oo 

(Pky)1 = p k ( ~ l  + hk). We define ti as in section 1. The ratio of the time intervals 

an orbit spends within a neighbourhood of F1 converges to 

tk+4 lim - - - lim (Pk+ly)l  = lirn pk+'(ul + hk+l) = p. 
k+oo tk k+oo (pky)1 
k ~ l  

k+oo pk(ui 4- hk) 

That is, the length of the time intervals the orbit remains "near" the saddles 

asymptotically grows exponentially with factor p (cf. the planar case). 

Further we have 

ti+l lirn - - Xi  (9% 0 cpi(~))l - lirn - 
y l  7y2*=3 ti yl,y2*=3 Xi+l Y 1 

where a(i) and P(i) are entries of the matrix P( i )  = ng: P,. 

In what follows we restrict ourselves to the symmetric case Xi =: A, pi := p, 

and oi := o for all i. Then p = w4, where w is the dominant eigenvalue of Pi, 
. -  2 
1.e. w2 - f w  - f = 0 and p = w(Xw - o). Further a = $ + 3 g  + 5 and 

p = 2 5 + $ .  

(It is easy to see, that w resp. p are > 1 iff X < p + o.) 

Thus the accumulation points of the time averages of orbits that tend to the hetero- 

clinic cycle form the boundary of the "three-dimensional quadrangle" A, A2 A3A4 

with 



We see that, analogously to the planar case, the polygon degenerates to a point 

for p + 1 (i.e. w + 1). 

5. Difference equations 

Now let us consider an analogous situation for a discrete dynamical system x I+ 

f (x), where f is a differentiable function. 

Again we linearize the system near the saddle equilibria Fi and take local coordi- 

nates such that x I+ X ~ X ,  y pig (Xi > 1 , O  < pi < 1) approximates the dynamics 

near F; (where Xi and pi are the eigenvalues of the linearization). 

Let Si = { (x ,~(x ) ) )  ( ~ ( x )  E (7-6,7+6) for some small 6 > 0) and S: = { (~ (y ) ,  9)) 

cross-sections L'before" and "after" Fi (generally, we cannot take a straight line for 

Si (resp. Si), but a curve lying in a small strip around the line x = 7 resp. y = 7). 

Without loss of generality we set 7 = 1. For the transition map cp; : Si + S: we get 

( ~ ~ 1 )  I+ (Xfix E l , p f i ) .  This yields ki = -*+hi E IN (hi = hi(x) E [O, i]) and 
- k E z + h .  

l0g.A; ' therefore cpi(x) = pi . We approximate the transition map $i : S: + Si+l 

by a linear map $i(x) = aix7 since a point (x,0) is mapped by a differentiable 

map to (0, y), as in the continuous case. 

This yields 
- 3 3 5  -&+hi - logxi  log X i  

$i 0 vi(x) = aipl =: Uipi 

Hence the ratio of the sojourn times near the saddles is given by 

ki+l - lim - - I log pi1 
2-40 k; 10gXi+~ ' 

This yields formulas for the time averages that are analogous to the continuous 

case, except that the eigenvalues are replaced by their logarithms. 



Ezample 

Consider the discrete "stone-scissors-paper" game (c.f. Example 1) 

where ai 2 0 and Q = xi ~f + (al + a2)x i , j x ,x j .  The fixed points (l,O,O), 

(0,1, O), (0,0,1) correspond to an attracting heteroclinic cycle, if ala2 < 1 (Hof- 

bauer (1984)). The eigenvalues in direction of the cycle are a1 and a2, therefore 

the time averages spiral to the boundary of the triangle A1A2A3 with 

Al = 
1 

I log a1 l 2  + I log a1 . log a2 I + I log a2 12 ( I  log a1 1 2 ,  1 log a2 1 2 ,  I log a1 . log a2 I )  
A2 = 

1 

Ilogai12 + Ilogal . loga2I + Iloga2(2 (I log.ai . log a2 I ,  I log a1 1 2 ,  1 log a2 1 2 )  
AJ = 

1 

I log a1 l 2  + I log a1 . log a2 ( + I log a2 ( 2  
( I  log a2 1 2 ,  I log a1 . log a2 I, I log a1 1 2 )  . 
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Figure captions 

Fig. 1: The accumulation points of the time average for the "stone-scissors- 

paper" game. 

Fig. 2: Cross-sections for the linearized 2 dimensional system. 

Fig. 3: The accumulation points of the time average for Example 2. (a) the 

generic case; (b) X1 = 0; (c) XI = X2 = 0; (d) X1 = Xz = 0; (e) XI = 

X2 = X3 = 0. 

Fig. 4: Cross-sections for the linearized May Leonard system. 

Fig. 5: A heteroclinic cycle on the simplex S4. 
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