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Abstract

The further advancement of alternative energy sources such as photovoltaics based on organic
semiconductor materials requires, in addition to experimental efforts, a deeper understanding of
the underlying physical processes in the organic electronic devices at the theoretical level. In order
to access the electronic structure of the relevant systems, i.e., molecules with up to several hundreds
of electrons, a numerically feasible yet reliable theoretical framework is in great demand.

Density-functional theory provides such an efficient and, in principle, exact formalism to cal-
culate the electronic structure of matter from first principles. However, a practical application of
density-functional theory requires an approximate expression for the exchange-correlation energy
as a functional of the electron density, which leads to an approximate description of physical
observables. In fact, it is observed that the quality of results crucially depends on the approximation
of the exchange-correlation energy that is used. In particular, functionals that describe ground-state
properties such as molecular structures and binding energies reasonably well, often fail to predict
quantities related to ionization and photoemission processes with a comparable quality.

In the course of this thesis I investigate this issue with a special focus on the class of hybrid
functionals, which use nonlocal exact exchange in combination with semilocal functional parts. I
present a novel hybrid functional that, in contrast to the traditional hybrid approach, uses a space-
and density-dependent mixing of the nonlocal and semilocal components. Guided by the principle
of combining exact exchange with compatible correlation, the presented functional is constructed
to fulfill exact constraints on the exchange-correlation energy. Furthermore, it is designed to
effectively counteract electronic self-interaction, a fundamental problem with serious implications
for the reliability of density-functional methods. I discuss to what extent this generalized hybrid
ansatz leads to results that are similar to or different from the standard hybrids. In particular, I
address the asymptotic behavior of the exchange-correlation potential and its connection to the
problem of simultaneously describing thermochemistry in contrast to ionization properties with
comparable accuracy. Further, I evaluate the performance of the novel hybrid functional for applica-
tions that are drastically influenced by self-interaction such as, for instance, the interpretation of the
eigenvalue spectrum as a physical density of states in the context of photoemission experiments. My
investigations reveal unexpected similarities between this novel and the standard hybrid concept,
and provide insights into the construction of functional approximations for the characterization of
organic semiconductor molecules.

Additionally, I present an analysis of density-functional methods that are generalized to ensem-
ble states with fractional numbers of electrons. This formalism was found to strongly remedy the
problem of deviations from piecewise linearity in the total energy as a function of the particle
number, which marks another fundamental difficulty in practical density-functional theory. In
this work I discuss the implications of the ensemble generalization with a particular focus on the
prediction of ionization potentials. I find that the ensemble formalism indeed enables an improved
description of this quantity, while systematic deviations with respect to experimental ionization
potentials persist throughout all density functionals investigated.

Finally, I examine the catalytic activity of a palladium nanoparticle supported by a matrix of
silicon, carbon, and nitrogen in the context of an experimental work regarding the synthesis of
alcohols derived from biomass. I illustrate an approach to efficiently characterize the influence of
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the supporting material on the electronic structure of the metal nanoparticle by using a combination
of classical molecular-dynamics simulations and density-functional methods. In summary, I find
strong arguments that the good catalytic properties of the metal nanoparticle are preserved during
the embedding, thus supporting its use as a catalyst during the synthesis process. Since this process
outlines the possibility to reduce the dependence on oil-derived hydrocarbons in the chemical
industry, my investigations are in line with the motivation of developing theoretical methods for
the characterization of alternatives to conventional resources.
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Kurzdarstellung

Die Weiterentwicklung alternativer Energiequellen, wie beispielsweise auf organischen Halbleiter-
materialien basierende Photovoltaik, setzt neben experimentellen Untersuchungen ein tiefgreifendes
theoretisches Verständnis der grundlegenden physikalischen Prozesse voraus. Um Zugriff auf die
elektronische Struktur der relevanten Systeme, das heißt Moleküle mit typischerweise mehreren
hunderten Elektronen, zu erhalten, wird eine numerisch durchführbare theoretische Beschreibung
mit verlässlichen Vorhersagen benötigt.

Die Dichtefunktionaltheorie bietet die Möglichkeit, die elektronische Struktur kondensierter
Materie effizient und im Prinzip exakt zu berechnen. Die praktische Durchführung von Dichte-
funktionalrechnungen erfordert jedoch einen genäherten Ausdruck für die sogenannte Austausch-
Korrelationsenergie als Funktional der Elektronendichte, was wiederum eine näherungsweise Be-
schreibung von physikalischen Observablen zur Folge hat. Die Qualität dieser Resultate wird
entscheidend von der jeweiligen Näherung für die Austausch-Korrelationsenergie beeinflusst: Bei-
spielsweise sind Dichtefunktionale, welche zufriedenstellende Vorhersagen von Grundzustands-
eigenschaften wie Molekülstrukturen und Bindungsenergien liefern, oft nicht in der Lage, Ionisa-
tions- und Photoemissionsvorgänge ebenso verlässlich zu beschreiben.

In dieser Dissertation untersuche ich diese Problematik im Detail für die Klasse der Hybrid-
funktionale, welche nichtlokalen exakten Austausch mit semilokalen Funktionalen kombinieren.
Ich stelle ein neuartiges Hybridfunktional vor, welches, im Gegensatz zu den klassischen Hy-
bridansätzen, auf dem Prinzip des ortsaufgelösten und dichteabhängigen Vermischens der nicht-
lokalen und semilokalen Funktionalkomponenten beruht. Dieses Funktional wurde anhand ex-
akter analytischer Anforderungen an die Austausch-Korrelationsenergie konstruiert, basierend auf
dem Grundgedanken, exakten Austausch mit einem kompatiblen Korrelationsterm zu kombinieren.
Außerdem ist es darauf ausgerichtet, der sogenannten Selbstwechselwirkung entgegenzuwirken,
welche ein grundlegendes Problem mit erheblichen Auswirkungen auf die Zuverlässigkeit von
Dichtefunktionalrechnungen darstellt. Ich erörtere inwiefern dieser verallgemeinerte Hybridansatz
zu Ergebnissen führt, welche denen der Hybride in ihrer Standardform ähneln oder sich von ih-
nen unterscheiden. Dabei lege ich besonderes Augenmerk auf das asymptotische Verhalten des
Austausch-Korrelationspotenzials und die Verbindung zu dem eingangs erwähnten Problem, ther-
mochemische Größen und Ionisationseigenschaften gleichzeitig zufriedenstellend zu beschreiben.
Des Weiteren untersuche ich das neue Hybridfunktional in Verbindung mit Anwendungen, welche
stark von Selbstwechselwirkung betroffen sind, wie zum Beispiel die Deutung des Eigenwert-
spektrums als physikalische Zustandsdichte im Zusammenhang mit Photoemissionsexperimenten.
Meine Untersuchungen zeigen unerwartete Parallelen zwischen dem vorgeschlagenen Hybridansatz
und Hybriden in ihrer Standardform, und bieten daher neue Einblicke in die Konstruktion von
Dichtefunktionalnäherungen zur Beschreibung von organischen Halbleitermolekülen.

Zusätzlich analysiere ich einen Ansatz zur Erweiterung der Dichtefunktionaltheorie für die
Beschreibung von Ensemblezuständen mit fraktionellen Teilchenzahlen. Dieser Formalismus re-
duziert die Abweichung der Gesamtenergie als Funktion der fraktionellen Teilchenzahl vom idealen
linearen Verhalten, einer weiteren fundamentalen Problematik angewandter Dichtefunktionaltheo-
rie. Ich diskutiere die Auswirkungen der Ensembleerweiterung und konzentriere mich dabei auf
die Beschreibung von Ionisationspotenzialen. Dabei stelle ich fest, dass eine Erweiterung auf
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Ensemblezustände eine verbesserte Charakterisierung dieser Größe ermöglicht, während syste-
matische Abweichungen im Bezug auf experimentelle Ionisationspotenziale für alle untersuchten
Dichtefunktionalnäherungen verbleiben.

Abschließend untersuche ich die katalytischen Eigenschaften eines Palladium-Nanoteilchens,
welches in ein Gerüst aus Silizium, Kohlenstoff und Stickstoff eingefügt ist. Diese Untersuchung
geschieht im Kontext einer experimentellen Arbeit zur Entwicklung einer Synthese zur weiteren
Verarbeitung von Alkoholen, welche aus Biomasse gewonnen wurden. Ich erläutere einen Ansatz
zur Charakterisierung des Einflusses des Trägermaterials auf die elektronische Struktur des Nano-
teilchens mittels einer Kombination aus klassischer Molekulardynamik und Dichtefunktionaltheo-
rie. Dabei zeigt sich, dass das Metallnanoteilchen seine guten katalytischen Eigenschaften während
des Einbettens bewahrt, was dessen Eignung als Katalysator in der Synthese unterstreicht. Dieser
Syntheseprozess zeigt eine Möglichkeit auf, die Abhängigkeit von aus Erdöl gewonnen Kohlen-
wasserstoffen in der chemischen Industrie zu reduzieren. Daher fügen sich meine Untersuchen gut
in die Zielstellung ein, theoretische Methoden zur Erforschung alternativer Energien und erneuer-
barer Ressourcen zu entwickeln.
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1 Introduction

It is an indisputable fact that a prosperous continuance of human civilization as we know it is
inextricably tied to the issue of meeting the steadily increasing worldwide energy demand. In
this context, it is one of the great challenges of our time to address the problem of reducing
the strong dependence on conventional energy sources and make alternative, renewable energy
sources accessible on a large scale. Fortunately, this question has attracted much public attention
during the recent years and gained a higher priority in the process of making political decisions.
This public support paved the way for numerous scientific and industrial initiatives searching for
effective alternatives to the burning of fossil fuels and nuclear fission. Among others, the concept of
collecting and converting solar energy is the most promising candidate to provide such a sustainable
and clean energy source. Notably, organic solar cells offer great advantages over their conventional
inorganic counterparts due their cost-effective production with low energy demands and their ability
to be processed into light and flexible devices [KB09].

The main aim of research in the field of organic solar cells is currently set on the question
of increasing the efficiency of organic photovoltaic devices, which is typically lower compared
to traditional inorganic solar cells [GEH+15]. Here, the common approach is to modulate the
characteristics of photovoltaic devices by influencing the chemical structure of the underlying
organic materials [KB09]. In order to advance the search for promising materials in chemistry
and materials science, a basic understanding of the fundamental physical processes that take place
within the solar cell is essential. Such insights can be gained by investigations regarding the
electronic structure of the building blocks of organic photo cells, i.e., polymers, oligomers or
small organic molecules. Naturally, a theoretical description of these systems must take place at
the quantum-mechanical level. Furthermore, any theoretical method that is chosen to access the
electronic structure of organic systems must provide a reliable description of the relevant physical
processes and quantities, while being capable of administering the size of the corresponding system
in terms of the emerging numerical effort.

Density-functional theory (DFT) provides an attractive theoretical framework that satisfies these
requirements. While time-dependent DFT offers the possibility to effectively describe dynamical
processes, the electronic structure of organic materials can be accurately characterized at the level
of ground-state DFT with even less numerical costs. Yet, even though DFT is exact in principle,
the practical execution of a DFT calculation in general requires an approximate expression of the
exchange-correlation (xc) energy term (see Sec. 2.3 for a detailed introduction). As a consequence,
a DFT calculation naturally provides an approximate description of physical processes and quanti-
ties. In fact, it turns out that the quality of DFT results strongly depends on the approximation to the
xc energy term that is put to task. For instance, functional approximations that were constructed to
successfully predict ground-state properties such as structures, binding energies, and reaction barri-
ers do not necessarily deliver results of a similar quality for the description of ionization processes,
charge-transfer excitations, and photoemission spectra. Further, it is well known that these standard
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1 Introduction

xc approximations have difficulties to accurately describe processes such as molecular dissociation
and electronic transport. The problem of practical DFT to correctly characterize many of these
physical situations using a single functional approximation can be tracked down to few analytical
properties the xc energy is required to fulfill. Among others, especially the long-range behavior of
the local xc potential and the concept of electronic self-interaction play major roles.

In the course of this work I discuss these fundamental difficulties in practical ground-state
DFT with a special focus on a specific class of functional approximations, the so-called hybrid
functionals. In an attempt to obtain a functional that allows for ground-state calculations with
reliable results for thermochemistry while also describing photoemission observables accurately,
an extension of the hybrid approach is presented. The introduced functional belongs to the class of
local hybrid functionals, which are constructed based on a spatially resolved and density-dependent
mixing procedure of nonlocal and semilocal functional components. Particularly, the novel local
hybrid functional is designed under the perspective of fulfilling important exact constraints on the
xc energy. In this thesis I summarize important features of the constructed local hybrid and evaluate
its performance with respect to both thermochemistry and ionization potentials. Further, I provide a
discussion of local hybrids under the aspect of the asymptotic behavior of their local xc potential and
the influence of electronic self-interaction on their performance for the description of photoemission
observables.

This dissertation is organized as follows. In Chapter 2 I present the foundations of ground-state
DFT as an approach to the quantum-mechanical many-body problem, with a special focus on exact
properties of the xc energy and the problem of self-interaction. I give a detailed introduction to
relevant approximations of the xc energy in Chapter 3. In this context, I outline the limitations
of hybrid functionals and draft the concept of local hybrids as a natural extension of the hybrid
approach. Additionally, I provide a concise review of existing local hybrid functionals and motivate
important features of local hybrids in general.

In Chapter 4 I shortly summarize the construction and evaluation of a novel local hybrid func-
tional, which is also the main topic of Publ. 1. Based on this functional, I explicitly discuss the
general potential asymptotics of local hybrids with a focus on the influence of orbital nodal planes,
as presented in detail in Publ. 2. Local hybrids are further used in the calculation of photoemission
spectra of prototypical organic semiconductor molecules, which provides the main topic of Publ. 4.
In Chapter 5 I introduce a generalization of DFT to ensemble states, which has been developed in
the context of describing systems with fractional numbers of electrons with DFT methods. Here,
the focus is set on the implications for the description of physical quantities for systems with integer
numbers of electrons, as it is presented in Publ. 3. As this approach is evaluated for a wide
range of functionals, it helps to gain deeper insights into similarities and differences of various
approximations to the xc energy. Notably, the results presented in the Chapters 4 and 5 contribute
to a detailed understanding of the different types of hybrid functionals and their applicability in the
context of characterizing organic materials for photovoltaic devices.

A more applied study is the subject of Chapter 6. Here, the electronic structure of a palladium
nanoparticle supported by a matrix of silicon, carbon, and nitrogen is investigated, focusing on the
question of how the supporting material affects the catalytic properties of the metal nanoparticle.
This investigation is performed in the context of the experimental work demonstrated in Publ. 5.
In this publication, a synthesis process is presented to convert alcohols obtained from biomass
into polycyclic aromatic N-heterocycles, which form important building blocks in chemistry and
materials science. Such reactions help to reduce the strong dependence on oil-derived hydrocarbons
in these industries and therefore they are in one line with the search for adequate replacements
for fossil fuels mentioned in the beginning. Since the embedded palladium nanoparticle plays a
decisive role in the developed synthesis, the presented electronic-structure investigations provide a
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theoretical justification for their use and support the experimental work of Publ. 5.
The Appendix contains additional information regarding implementations in the all-electron

code DARSEC, experimental data of the systems used throughout this work, details on the asymp-
totic decay of the xc potential of hybrid functionals, and explanations regarding the use and gener-
ation of pseudopotentials. Lastly, the published versions of Publ. 1, Publ. 2, Publ. 3, and Publ. 4
as well as the manuscript of Publ. 5 are attached at the end of this document together with a short
statement regarding my personal contribution to each publication.
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2 Density-Functional Theory

The following chapter briefly outlines the conceptual and theoretical foundations of ground-state
DFT as an exact reformulation of the quantum-mechanical many-body problem. Based on the
fundamental Hohenberg-Kohn theorems, I introduce the Kohn-Sham (KS) approach to practical
DFT. I focus on the prominent xc energy by discussing its known analytical properties. In this
context, I draft important concepts of DFT calculations within the KS formalism. As this chapter is
of merely introductory character, I refer the interested reader to Refs. [PY89, DG90, PK03, Cap06,
ED11], which provide excellent reviews on DFT. Throughout this work, all equations are expressed
using atomic units h̄ = me = e = 4πε0 = 1.

2.1 The Quantum-Mechanical Many-Body Problem

The key equation to describe the ground-state properties of condensed matter, i.e., atoms, molecules,
and solids, is given by the time-independent Schrödinger equation: ĤΨ = EΨ. In the course of this
work, the Schrödinger equation is considered in its adiabatic form for electrons as motivated by
the Born-Oppenheimer approximation [BO27]. For a nonrelativistic, time-independent quantum
system containing N electrons and Nk nuclei, the corresponding electronic many-body Hamiltonian
Ĥ reads

Ĥ =−
N

∑
i=1

∇2
i

2︸ ︷︷ ︸
T̂

+
N

∑
i=1

v(ri)︸ ︷︷ ︸
V̂

+
N

∑
i< j

1
|ri− r j|︸ ︷︷ ︸

Ŵ

. (2.1)

The operator T̂ denotes the kinetic energy of all electrons and Ŵ their Coulomb interaction. The
external potential V̂ is the sum of the single-particle potentials v(ri) = ∑Nk

k=1
Zk

|ri−Rk| , which are
uniquely determined by the positions Rk of the nuclei with charge Zk.

In general, the ground-state wavefunction Ψ0 is characterized as the wavefunction that yields
the minimum energy E0 according to the Rayleigh-Ritz variational principle

E0 = min
Ψ
〈Ψ|Ĥ|Ψ〉= 〈Ψ0|Ĥ|Ψ0〉. (2.2)

Consequently, finding the ground state of a specific system requires a full energy minimization via
the many-electron wavefunction Ψ. However, since Ψ = Ψ(r1,σ1, ...,rN ,σN) is a function of the
N spin σi =↑,↓ and 3N spatial coordinates ri, the major conceptual difficulty with this approach
becomes evident: If p denotes the number of parameters per degree of freedom that is needed for
an accurate description of Ψ, the overall number of parameters (neglecting the spin) is estimated by
M ∝ p3N [Koh99]. Even under the optimistic assumption of using only few parameters (p < 10),
the storage of Ψ (not to mention the numerical minimization of Eq. (2.2)) for a system with few
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2.2 The Hohenberg-Kohn Theorems

hundreds of electrons would easily exceed all existing computational capacities. This exponential
wall renders quantum-mechanical calculations via Eq. (2.2) unfeasible for systems beyond a very
moderate size. Fortunately, as the following section will show, DFT provides an elegant and efficient
framework to avoid this fundamental drawback.

2.2 The Hohenberg-Kohn Theorems

The conceptual strength of DFT lies in the fact that the wavefunction Ψ is replaced by the electron
density n(r) as the central quantity. Both functions are connected by the expectation value of the
density operator n̂(r) = ∑N

i=1 δ (r− ri) according to

n(r) = 〈Ψ|n̂(r)|Ψ〉= N ∑
{σi}=↑,↓

∫
...
∫
|Ψ(r,σ1,r2,σ2, ...,rN ,σN)|2 d3r2...d3rN . (2.3)

Importantly, the electron density determines the total electron number via

N[n] =
∫

n(r) d3r. (2.4)

The advantage of relying on n(r) rather than Ψ becomes apparent immediately: Instead of 3N
only three spatial degrees of freedom are involved and the exponential wall can be circumvented.
However, the question if a function of three coordinates can contain the same information about the
ground state of an interacting many-body quantum system as the highly dimensional wavefunction
aims directly at the heart of DFT. This question was answered by two theorems proven in the
seminal work of Pierre C. Hohenberg and Walter Kohn in 1964 [HK64].

First Hohenberg-Kohn theorem: For a given electron-electron interaction, there exists a one-
to-one correspondence between the ground-state electron density n(r) and the local external poten-
tial v(r) (up to a physically irrelevant constant)1. Thus, the Hamiltonian Ĥ and the ground-state
wavefunction Ψ0 of a many-body system are determined completely by n(r). As a consequence, all
observables are functionals of n(r), e.g., the total energy E = E[n].

Second Hohenberg-Kohn theorem: The ground-state energy E0 and density n0(r) are defined
by the density reformulation of the variational principle, i.e.,

E0 = E[n0] = min
n

E[n]. (2.5)

Particularly, the total-energy functional can be expressed as E[n] = F [n]+V [n]. Here, the first part
denotes a universal contribution determined by the electron number N and is defined as

F [n] = min
Ψ→n
〈Ψ|T̂ +Ŵ |Ψ〉. (2.6)

The minimization is restricted to wavefunctions that give the electron density. The second part is
given by

V [n] =
∫

n(r)v(r) d3r. (2.7)

Based on these relations one could in principle find the ground-state energy and density of
a particular system by minimizing the total-energy functional according to Eq. (2.5). However,

1While the original formulation of the Hohenberg-Kohn theorems is restricted to nondegenerate ground states, it was
later extended to include degeneracies as well [Lev79].
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2 Density-Functional Theory

for the universal F [n] only the functional dependence on n(r) but not its explicit form is known.
Hence, Eq. (2.6) does not provide a direct practical advantage over the minimization of Eq. (2.5).
In other words, the difficulty in solving the Schrödinger equation is now expressed in the problem
of finding reasonable approximations for F [n]. The next section introduces a scheme that is based
on the foundation of the two Hohenberg-Kohn theorems and provides a viable approach to solve
the many-body problem of condensed matter by employing approximations to F [n].

2.3 The Kohn-Sham Scheme

The energy minimization in Eq. (2.5) must be performed under the constraint of using densities
that give the correct number of electrons according to Eq. (2.4). Consequently, Eq. (2.5) can be
expressed by introducing a Lagrange multiplier µσ via

δ
δnσ (r)

[
F [{nσ}]+

∫
n(r)v(r) d3r−µσ

∫
nσ (r) d3r

]
= 0, (2.8)

which results in the Euler equation

δF [{nσ}]
δnσ (r)

+ v(r) = µσ . (2.9)

Note that I introduced the spin-polarized formulation of DFT as presented in Ref. [vBH72], where
σ =↑,↓ denotes the electron spin and n(r) = n↑(r)+n↓(r) with N = N↑+N↓.

In 1965, Walter Kohn and Lu Jeu Sham formulated an approach to this energy-minimization
problem based on the concept of considering a system of auxiliary, noninteracting particles to
represent the real, interacting system of electrons [KS65]. The basic tenet of their work is that
this noninteracting set of particles is subject to an effective potential vKS

σ (r) such that the particle
density exactly reproduces the density of the fully interacting system. For such fictitious particles,
no interaction Ŵ exists and F [{nσ}] simplifies to the noninteracting kinetic energy

Tni[n] = min
Φ→n
〈Φ|T̂ |Φ〉= 〈Φmin

n |T̂ |Φmin
n 〉 with

δTni[n]
δnσ (r)

+ vKS
σ (r) = µσ . (2.10)

Here, Φmin
n denotes the wavefunction that minimizes the kinetic energy and yields the ground-state

density n(r). Since it describes a set of noninteracting fermionic particles, Φmin
n can be expressed by

a Slater determinant set up by the spin orbitals that solve the single-particle Schrödinger equation(
−∇2

2
+ vKS

σ (r)
)

ϕiσ (r) = εiσ ϕiσ (r). (2.11)

In order to use a single-particle equation of the form of Eq. (2.11) while including all interaction
effects of the real, interacting system, Kohn and Sham defined the energy functional F [{nσ}]
as [KS65]

F [{nσ}] = Tni[n]+EH[n]+Exc[{nσ}]. (2.12)

In this definition, EH[n] denotes the classical Coulomb interaction via the Hartree integral

EH[n] =
1
2

∫ ∫ n(r)n(r′)
|r− r′| d3r d3r′. (2.13)

8



2.3 The Kohn-Sham Scheme

The noninteracting kinetic energy can readily be calculated using the spin orbitals in

Tni[n] =−
1
2 ∑

σ=↑,↓

Nσ

∑
i

∫
ϕ∗iσ (r)∇

2ϕiσ (r) d3r. (2.14)

The spin orbitals ϕiσ (r) are commonly referred to as KS orbitals. The quantity Exc[{nσ}] represents
the xc energy, i.e., the term that contains all contributions to F [{nσ}] that are not captured by Tni[n]
and EH[n]. It can in general be expressed (nonuniquely, cf. Refs. [PSTS08, BCL98, CLB98, AK14])
via

Exc[{nσ}] =
∫

n(r)exc[{nσ}](r) d3r, (2.15)

where exc[{nσ}](r) denotes the xc energy density per particle.
The effective potential vKS

σ (r) is constructed such that the energy minimization for the auxiliary
system leads to the exact ground-state density of the interacting system. This is the case if one
regards both minimizations of Eqs. (2.9) and (2.10) as identical, which holds for

vKS
σ (r) = v(r)+ vH(r)+ vxcσ (r). (2.16)

Here, the second term stands for the Hartree potential

vH(r) =
δEH[n]
δnσ (r)

=
∫ n(r′)
|r− r′| d3r′ (2.17)

and the third term denotes the xc potential defined by

vxcσ (r) =
δExc[{nσ}]

δnσ (r)
. (2.18)

Solving the set of single-particle equations given in Eq. (2.11) with the effective, multiplicative
potential vKS

σ (r) is referred to as the KS scheme in DFT. The KS orbitals ϕiσ (r) yield the exact
ground-state density of the fully interacting system via

n(r) = ∑
σ=↑,↓

Nσ

∑
i
|ϕiσ (r)|2, (2.19)

provided that the exact Exc[{nσ}] is known. Importantly, the effective potential in the KS equation
depends on the electron density n(r) itself, i.e., vKS

σ (r) = vKS
σ [{nσ}](r), requiring to find a self-

consistent solution of Eq. (2.11) with the aid of an iterative numerical procedure. Furthermore, the
KS orbitals are implicit functionals of the electron density n(r) as a consequence. The ground-state
energy of the fully interacting system reads

E0 = Tni[n]+EH[n]+
∫

n(r)v(r) d3r+Exc[{nσ}]

= ∑
σ=↑,↓

Nσ

∑
i

εiσ −EH[n]+Exc[{nσ}]−
∫

n(r)vxcσ (r) d3r. (2.20)

The KS formulation of DFT provides an elegant and, in principle, exact approach to calculate
the ground-state density and, governed by the Hohenberg-Kohn theorems, the ground-state observ-
ables of condensed matter. In particular, the partitioning in Eq. (2.12) enables an efficient and
accurate solution of the many-body problem. In the KS formulation all electronic interactions be-
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2 Density-Functional Theory

yond the noninteracting kinetic energy and the classical electrostatic interaction term are described
by the xc energy Exc[{nσ}]. However, an explicit expression that allows for a practical evaluation
is in general not known for the exact Exc. Hence, for the practical application of DFT, one has
to find reasonable approximations. Even though it represents a rather small energy contribution in
comparison to, e.g., Tni[n], it is well understood that including Exc is crucial to achieve a qualitatively
correct description of condensed matter [KP00].

Consequently, Exc marks the holy grail of ground-state DFT, and during the last decades much
effort has been invested in the development of efficient, yet accurate xc energy functionals (see
Ref. [Bec14] for a review). To approach the unknown ultimate Exc, it is essential to understand its
analytical properties that can be derived on general grounds [PRT+05]. Therefore, I devote the next
sections to discuss elementary properties of the ultimate xc energy functional.

2.4 Exact Properties of the Exchange-Correlation Functional

Exact Exchange versus Correlation

It is possible to partition the xc energy into a part that is, in principle, exactly known and a remaining
energy contribution. Using the Slater determinant of the noninteracting KS system introduced in
Eq. (2.10), the exact-exchange (EXX) energy is defined via

Eex
x [{ϕiσ [nσ ]}] = 〈Φmin

n |Ŵ |Φmin
n 〉−EH[n]

= −1
2

Nσ

∑
i, j=1
σ=↑,↓

∫ ∫ ϕ∗iσ (r)ϕ jσ (r)ϕiσ (r′)ϕ∗jσ (r′)
|r− r′| d3r d3r′. (2.21)

This energy contribution strictly follows from the Pauli exclusion principle. It resembles the Fock
exchange integral evaluated with KS orbitals.

The remaining part of Exc is referred to as correlation energy

Ec[{nσ}] = F [{nσ}]−Tni[n]−EH[n]−Eex
x [{ϕiσ [nσ ]}] (2.22)

= 〈Ψ0|T̂ |Ψ0〉−〈Φmin
n |T̂ |Φmin

n 〉+ 〈Ψ0|Ŵ |Ψ0〉−〈Φmin
n |Ŵ |Φmin

n 〉. (2.23)

Thus, correlation summarizes all contributions of the electronic kinetic and interaction energy
that cannot be described by a single Slater determinant of KS orbitals but rather require knowledge
of the many-body ground-state wavefunction Ψ0. Other than this formal correspondence, no explicit
expression is in general known for the exact correlation energy in contrast to the exchange part.

In practice, usually both the exchange and correlation energy are approximated. In this case, the
exact distinctions of exchange and correlation of Eq. (2.21) and Eq. (2.23) do not apply. However,
it is convention to distinguish between exchange and correlation even though neither is described
exactly, i.e., Exc[{nσ}] = Ex[{nσ}]+Ec[{nσ}] and vxc[{nσ}](r) = vx[{nσ}](r)+vc[{nσ}](r) for the
approximate xc energy and potential.

Uniform Coordinate Scaling

One direct approach to characterize the xc energy is given via the uniform coordinate scaling of the
electron density defined as [LP85]

nγ(r) = γ3n(γr). (2.24)

10
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The density scales such that nγ(r) always reproduces the correct N according to Eq. (2.4). While
γ < 1 stretches and expands the density, γ > 1 compresses it.

For the Hartree and noninteracting kinetic energy terms of Eq. (2.12) evaluating the correct
scaling behavior is straightforward. Based on Eq. (2.13) and Eq. (2.14), one finds

EH[nγ ] = γ EH[n] and (2.25)

Tni[nγ ] = γ2 Tni[n]. (2.26)

However, for the exact xc energy the situation is more complicated. The exchange part, whose
expression in Eq. (2.21) is similar in its basic structure to EH[n], scales as

Eex
x [nγ ] = γ Eex

x [n]. (2.27)

For the correlation part, on the other hand, no straightforward scaling rule exists. Instead,

Ec[nγ ] = γ2 E1/γ
c [n], (2.28)

where E1/γ
c [n] denotes the correlation in a system with reduced electron interaction Ŵ → Ŵ/γ

[PK03]. The scaling of Ec can further be expressed by the inequality [LP85]

Ec[nγ ]

Ec[n]
< γ for γ > 1. (2.29)

Note that Eq. (2.27) is not only fulfilled by EXX, but holds for other approximate exchange
energy functionals Ex as well. In fact, in Ref. [Lev91] it is argued that the scaling rule of Eq. (2.27)
defines the exchange part of any Exc, whereas the part with no simple scaling rule should be declared
as correlation according to [KK08]

Ex[n] = lim
γ→∞

(
Exc[nγ ]/γ

)
and (2.30)

Ec[n] = Exc[n]− lim
γ→∞

(
Exc[nγ ]/γ

)
. (2.31)

The uniform coordinate scaling further provides a rule to distinguish functionals that treat
exchange 100% exactly in contrast to functionals that only partially include EXX (see Sec. 3 for an
introduction to such functionals) [PS01]. In Ref. [PSTS08], functionals that fulfill

lim
γ→∞

Exc[nγ ]

Eex
x [nγ ]

= 1 (2.32)

are termed to have full EXX. Consequently, said functionals automatically satisfy all constraints on
their exchange part. It is reasonable to assume that the more exact constraints a functional fulfills,
the better it performs for different physical situations [PSTS08, KPB99]. In this light, Eq. (2.32)
provides a desirable aim for the construction of approximations to Exc.

Lastly, note that the high-density limit in Eq. (2.32) does not describe a merely theoretical
limiting case. It represents, e.g., the physical situation of an atom with fixed electron number N and
core charge Z→ ∞. Such a system becomes increasingly hydrogenic, with Tni dominating EH and
Ex as follows from Eqs. (2.25), (2.26), and (2.27) [PK03].
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2 Density-Functional Theory

Exchange-Correlation Hole

Based on the concept of the xc hole n̄xc(r′,r) [GJL76, FNM03], one can in general express the xc
energy via [BP95, PK03]

Exc[n] =
1
2

∫ ∫ n(r)n̄xc(r′,r)
|r− r′| d3r d3r′. (2.33)

Illustratively, the xc hole describes the reduction in the probability of finding an electron at r′ given
that there is one at r [Cap06]. Therefore, it obeys the sum rule∫

n̄xc(r′,r) d3r′ =−1, (2.34)

i.e., the electron at r is considered to be taken out of the system [PK03]. Notably, the exact xc hole
has a cusp at r′→ r [Kim73, PK03], and n̄xc(r′,r) is obtained via the coupling-constant integration
(see Sec.3). The exact xc energy can further be expressed by [GJL76, FNM03]

Exc[n] =
N
2

∫ ∞

0
4πu2 〈n̄xc(u)〉

u
du, (2.35)

with u = r− r′. Therefore, the xc energy is only defined by the spherically averaged xc hole

〈n̄xc(u)〉=
1
N

∫
d3r n(r)

∫ n̄xc(r−u,r)
4π

dΩu. (2.36)

Significance of the Highest Occupied KS Eigenvalue

For the exact Exc there exists a simple correspondence between the negative highest occupied (ho)
KS eigenvalue and the first vertical ionization potential (IP) defined as I(N) = E0(N−1)−E0(N)
for a finite system with N electrons and ground-state energy E0(N). Labeled IP theorem in the
following, this relation reads [Jan78, PPLB82, LPS84, AvB85, PL97]

−εho(N) =−εN(N) = I(N). (2.37)

This relation is strongly connected to the asymptotic decay of the electron density in finite systems.
Since the KS orbitals fall off exponentially with their decay determined by their corresponding KS
eigenvalue according to ϕiσ (r) −→|r|→∞

exp(−√−2εiσ · |r|) [KKGG98], the density is dominated by a

single KS orbital in the asymptotic limit and thus n(r) −→
|r|→∞

exp(−2
√−2εho · |r|) [AvB85].

Extending the IP theorem to a system with N + 1 electrons naturally provides the electron
affinity (EA), which is defined as A(N) = I(N +1) = E0(N)−E0(N +1), thus yielding

−εho(N +1) =−εN+1(N +1) = A(N). (2.38)

Note that the determination of A(N) of the N electron system requires knowledge of the ho KS
eigenvalue of the N +1 electron system, i.e., the anion.

It is important to emphasize that Eqs. (2.37) and (2.38) only provide a strict physical meaning
for the corresponding ho eigenvalue. For all other KS eigenvalues, however, no rigorous correspon-
dence to electron removal energies can be derived mathematically. For a more detailed discussion
of this matter, I refer the reader to Sec. 4.7 of this thesis.
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2.4 Exact Properties of the Exchange-Correlation Functional

Derivative Discontinuity

The energy difference ∆g = I(N)−A(N), commonly referred to as fundamental gap, is of direct
physical relevance as it gives, e.g., the band gap of semiconductors [BGvM13]. However, based on
the correspondence to occupied eigenvalues defined above, it follows that calculating ∆g requires
self-consistent solutions of the KS equations for the N and N + 1 electron systems. One might
therefore ask if there is a way to express the fundamental gap in terms of quantities related to the N
electron system only.

In 1982, Perdew et al. provided an answer to this question. Based on a statistical mixture
between two integer states, they expanded the realm of KS DFT to noninteger particle numbers,
i.e., N = N0 + ω with N0 ∈ N and w ∈ [0,1[ [PPLB82]. Importantly, it can be shown that the
ground-state energy varies linearly with the fractional electron number between adjacent integer
points (cf. Sec. 2.5 and 5.1 for a more detailed discussion of this behavior).

This linear dependence directly implies a surprising feature of the exact Exc[n]: At the integer N0

the slope of the energy curve, and thus the chemical potential µ(N) = ∂E(N)
∂N , exhibits discontinuous

jumps [PPLB82]

µ(N) =

{
−I(N0) = E(N0)−E(N0−1), N0−1 < N < N0

−A(N0) = E(N0 +1)−E(N0), N0 < N < N0 +1.
(2.39)

This quantity directly represents a discontinuity at integer electron numbers. Based on the Euler
equation of Eq. (2.9) in combination with the KS energy partitioning of Eq. (2.12), it can be
expressed as [PL83, SS83]

∆g = I(N0)−A(N0) = lim
ω→0

{
δE[n]
δn(r)

∣∣∣∣
N0+ω

− δE[n]
δn(r)

∣∣∣∣
N0−ω

}
(2.40)

= lim
ω→0

{
δTni[n]
δn(r)

∣∣∣∣
N0+ω

− δTni[n]
δn(r)

∣∣∣∣
N0−ω

+
δExc[n]
δn(r)

∣∣∣∣
N0+ω

− δExc[n]
δn(r)

∣∣∣∣
N0−ω

}
. (2.41)

The functional derivatives of the Hartree term and the external potential are continuous in N and
thus do not appear here [PL83].

The fundamental gap is built up by two contributions. The first term contains the discontinuity
of the noninteracting kinetic energy. In the literature, it is referred to as KS gap ∆KS and, using
Eq. (2.10), it can be formulated as

∆KS = εN+1(N)− εN(N) = εlu(N)− εho(N). (2.42)

Here, εlu(N) denotes the lowest unoccupied (lu) KS eigenvalue. The second contribution in Eq. (2.41)
is the so-called derivative discontinuity of the xc potential ∆xc, since

∆xc = lim
ω→0

(
δExc[n]
δn(r)

∣∣∣∣
N0+ω

− δExc[n]
δn(r)

∣∣∣∣
N0−ω

)
= v+xc(r)− v−xc(r). (2.43)

The quantity ∆xc marks a spatially independent energy contribution, and therefore represents the
overall jump of the xc potential when traversing a point with integer particle number [SP08, GGS09,
YCMS12, CC13, MSC14].

This jump can be understood as a direct manifestation of the principle of integer preference
discussed in Ref. [Per90]. In order to ensure integer dissociation of, e.g., diatomic molecules
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2 Density-Functional Theory

consisting of atoms with different electronegativity, a step-like structure appears in the exact xc
potential (see Refs. [RPC+06, KAK09, MKK11] for details).

Asymptotic Behavior

Another exact constraint on the ultimate Exc[n] is given by the long-range behavior of the xc energy
density and potential for neutral finite systems. The former quantity, as introduced in Eq. (2.15), is
asymptotically dominated by EXX and thus decays as [GJL79, vLB94]

exc(r)∼ eex
x (r) −→

|r|→∞
− 1

2|r| . (2.44)

Similarly, the asymptotic behavior of the xc potential, as defined by the functional derivative in
Eq. (2.18), is given via [LPS84, AP84, AvB85]

vxc(r)∼ vex
x (r) −→

|r|→∞
− 1
|r| . (2.45)

This relation can be understood quite illustratively by considering a single electron far out in a
finite neutral system. Leaving behind N− 1 remaining electrons in the now ionized system, such
an electron will effectively feel the Coulomb potential of a single positive charge in agreement with
Eq. (2.45) [FNM03].

Size Consistency

Size consistency is a fundamental principle not only of DFT but electronic-structure theory in
general [Per90]. It states that the energy of two systems A and B that are well separated by a
large distance should equal the sum of the energies of the individual systems

E(A...B) = E(A)+E(B). (2.46)

For a detailed discussion of size consistency and the implications of its violation in the context of
DFT, see, e.g., Refs. [KK08, Sav09, KKK13].

Homogeneous Electron Gas

The density of a homogeneous quantum gas or liquid of interacting electrons marks one of the oldest
and most simple models in the theoretical description of condensed matter [Tho27, Fer27]. Notably,
the foundations of DFT have their source in considerations regarding systems with a uniform density
nhom(r) = nhom = const. [HK64, KS65].

For such a density, the xc energy density per particle (cf. Eq. (2.15)) becomes a direct function
of nhom. The exchange component can be derived analytically, yielding in the spin-unpolarized
formulation [ED11]

nhom · ehom
x (nhom) =−3

4

(
3
π

) 1
3 (

nhom) 4
3 . (2.47)

For the correlation part no such exact formulation is known. Yet, based on Quantum Monte
Carlo calculations [CA80], very accurate and reliable approximate expressions of ehom

c (nhom) were
developed [VWN80, PZ81, WP92].

The importance of the homogeneous electron gas for DFT is twofold: First, it provides a
limiting case that is physically relevant, e.g., for solids and extended systems with slowly varying
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densities, with a solution that is in principle known. Second, it sets the stage for the oldest and most
fundamental functional approximation, the local (spin-)density approximation (L(S)DA, see Sec. 3
for details).

Single-Electron Case

Naturally, no electronic interaction should occur if a system contains only one electron. For such
a system, e.g., hydrogen or multiply ionized atoms, the density is composed by a single KS orbital
n1e(r) = |ϕ(r)|2. In this case, no correlation energy can be involved and the exchange term needs
to cancel the Hartree interaction, i.e.,

Ec[n1e,0] = 0 and Ex[n1e,0]+EH[n1e] = 0. (2.48)

This relation is fulfilled by the EXX integral of Eq. (2.21). Note that the single-electron case is
connected to the asymptotics of the xc potential via

vxc[n1e,0](r) =−vH[n1e](r) =−
∫ n1e(r′)
|r− r′| d3r′ −→

|r|→∞
− 1
|r| . (2.49)

2.5 The Problem of Self-Interaction

The single-electron case prepares the ground for the discussion of a conceptual difficulty in DFT. In
the spirit of the discussion above, no erroneous interaction of individual electrons with themselves
should occur for many-electron systems as well. Violation of this principle is referred to as elec-
tronic self-interaction. In contrast to the single-electron equivalent, the condition of being free from
self-interaction cannot be expressed directly for a many-electron system. The reason is that the KS
system, which gives raise to the energy partitioning of Eq. (2.12), only reproduces the density of all
interacting electrons combined, but no information regarding single electrons is provided.

One widely accepted attempt to formulate such a condition was introduced in Refs. [Per79,
PZ81]. In principle, this definition is based on the KS approach of substituting the interacting
system of electrons by noninteracting, fictitious particles represented by the spin-orbital densities
niσ (r) = |ϕiσ (r)|2 of the occupied KS orbitals. The definition reads

∑
σ=↑,↓

Nσ

∑
i=1

{
EH[niσ ]+EDFA

xc [niσ ,0]
}
= 0, (2.50)

where EDFA
xc [niσ ,0] denotes the xc energy of a particular density-functional approximation (DFA)

evaluated on the spin-orbital density niσ (r) only. The definition of Eq. (2.50) is closely related to
Eq. (2.48). Thus, a DFA that meets this requirement is labeled as being free from the one-electron
self-interaction error (one-error in the following). Note that the spin-orbital densities niσ (r) are
in general not of ground-state character, e.g., they exhibit nodal planes, whereas the xc energy
functional is only defined for ground-state densities. While this issue certainly poses interesting
conceptual questions [HKKK12], it does not prevent a practical evaluation of Eq. (2.50).

Unfortunately, KS orbitals are in general not to be identified with electrons. Therefore, the
definition in Eq. (2.50) is only one way to quantify electronic self-interaction for a many-electron
system, and it does not necessarily capture all energy contributions originating from self-interaction.
A broader approach to the self-interaction problem is based on the straight-line criterion for the total
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energy as a function of the particle number [PPLB82], i.e.,

E(N) = (1−ω)E(N0)+ωE(N0 +1), (2.51)

as mentioned in Sec. 2.4 in the context of the derivative discontinuity. Here, N = N0 +ω , where
N0 ∈ N denotes the number of electrons of the singly ionized system and w ∈ [0,1[ identifies the
fraction of an electron that is added.

The linearity of E(N) is an exact requirement rather than a definition. It is a direct consequence
of the statistical approach in Ref. [PPLB82] and must be obeyed by the unknown exact xc energy
functional. A DFA that yields a piecewise-linear energy curve in this sense is referred to as
being free from many-electron self-interaction (many-error in the following). In the literature,
the many-error is also known as delocalization error, since it causes an artificial delocalization
of the charge distribution during the dissociation process of molecules [ZY98, MSCY06, RPC+06,
VS06b, RPC+07, VSP07, PRC+07, CMSY08, CMSY12, KK15].

In comparison to the definition of the one-error, the straight-line behavior represents the more
stringent criterion on a DFA in terms of self-interaction. While Eq. (2.50) is always fulfilled for,
e.g., the EXX integral of Eq. (2.21) alone, none of the known DFAs universally, i.e, system-
independently, yields an exactly piecewise-linear energy curve with respect to the particle num-
ber [MSCY06, VSP07, RPC+07].

2.6 The Optimized Effective Potential

A detailed analysis of functional approximations within the KS scheme of DFT requires knowledge
of their local, multiplicative xc potential based on the functional derivative in Eq. (2.18). However,
while some DFAs are constructed using only the electron density itself (so-called density-dependent
functionals), it becomes beneficial under certain aspects to design functionals by directly using KS
orbitals (see Sec. 3.2 and 3.3 for an introduction to such DFAs). These functionals are termed
orbital-dependent or simply orbital functionals, indicating that their xc energy is an explicit func-
tional of the KS orbitals and only an implicit functional of the density. Thus, the question arises
how to evaluate vxcσ [{nσ}](r) = δExc[{ϕiσ [{nσ}]}]/δnσ (r) in practice? An answer is provided by
the optimized effective potential (OEP) scheme, which I briefly outline in the following.

The OEP formalism has its roots in early attempts to construct a local potential to the integral
of Eq. (2.21) [SH53, TS76, SGP82]. The derivation of an expression for vxcσ (r) of any orbital
functional is based on Eq. (2.18) with the chain-rule argument (see, e.g., Refs. [GL94, GG95,
GKG97, FNM03, KK08])

vxcσ (r) = ∑
µ,ν=↑,↓

Nµ

∑
i

∫ ∫ δExc[{ϕ jτ}]
δϕiµ(r′)

δϕiµ(r′)
δvKS

ν (r′′)
δvKS

ν (r′′)
δnσ (r)

d3r′d3r′′+ c.c.. (2.52)

Explicit evaluation of this expression leads to

Nσ

∑
i=1

ψ∗iσ (r) ϕiσ (r)+ c.c.= 0, (2.53)

which is one possible representation of the OEP equation [KLI92b]. Here, the ψ∗iσ (r) are termed
orbital shifts. They represent the first-order change in the KS orbital ϕiσ (r) if the KS potential is
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replaced by the orbital-specific potential uiσ (r), which is defined as [KP03a, KK08]

uiσ (r) =
1

ϕ∗iσ (r)
δExc[{ϕ jτ}]

δϕiσ (r)
. (2.54)

The orbital shifts can be obtained via

(ĥKS
σ − εiσ )ψ∗iσ (r) =− [vxcσ (r)−uiσ (r)− (v̄xciσ − ūiσ )]ϕ∗iσ (r). (2.55)

Here, ĥKS
σ represents the KS Hamiltonian of Eq. (2.11), while the quantities v̄xciσ and ūiσ denote

the orbital-averaged potentials

v̄xciσ =
∫

ϕ∗iσ (r
′)vxciσ (r′)ϕiσ (r′) d3r′ and (2.56)

ūiσ =
∫

ϕ∗iσ (r
′)uiσ (r′)ϕiσ (r′) d3r′. (2.57)

Based on these expressions, the OEP equation can be reformulated as

vxcσ (r) =
1

2nσ (r)

Nσ

∑
i=1

{
|ϕiσ (r)|2 [uiσ (r)+(v̄xciσ − ūiσ )]−∇ [ψ∗iσ (r)∇ϕiσ (r)]

}
+ c.c.. (2.58)

In this representation, an important property of the OEP equation becomes evident. Since the xc
potential appears both on the left- and the right-hand side of Eq. (2.58) (via its orbital average), the
OEP defines an integral equation for vxcσ (r) that has to be solved self-consistently.

In principle, both representations of the OEP are identical. The formulation in Eq. (2.53) is of
special relevance for an efficient iterative construction of the xc potential [KP03b, KP03a, KKP04,
MKHM06]. The alternative OEP expression in Eq. (2.58) readily sets the stage for an important
approximation first suggested by Krieger, Li and Iafrate (KLI) [KLI90, KLI92b, LKI93, IK13]. It
is obtained by neglecting the last term on the right-hand side of Eq. (2.58), i.e.,

vKLI
xcσ (r) =

1
2nσ (r)

Nσ

∑
i=1

{
|ϕiσ (r)|2

[
uiσ (r)+

(
v̄KLI

xciσ − ūiσ
)]}

+ c.c., (2.59)

and allows for a solution with drastically reduced numerical effort in contrast to the full OEP
equation [KLI90, GG97, KK08].

A special feature of the OEP/KLI scheme are nonvanishing asymptotic constants, which were
first discussed in the context of pure EXX in Refs. [DG02, KP03a]. These are related to the
condition v̄xcNσ σ = ūNσ σ , which is typically enforced within the OEP/KLI formalism in order to
ensure that vxcσ (r) of an orbital-dependent functional approaches zero asymptotically [KKGG98].
If evaluated along a nodal plane of the ho state, in contrast, the xc potential asymptotically ap-
proaches the constant

Cσ = v̄xcMσ σ − ūMσ σ , (2.60)

with Mσ denoting the highest lying KS state that does not vanish along the nodal plane of the ho
orbital in this particular spin channel [DG02, KP03a]. This is a remarkable finding, since it means
that the local xc potential of orbital-dependent functionals approaches different asymptotic limits in
different spatial directions [KK08] (see Sec. 4.6 for an illustration).

Lastly, it is important to mention that a feasible alternative to the OEP exists outside the KS
framework in DFT. Termed generalized Kohn-Sham (GKS) scheme [SGV+96], it is based on the
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2 Density-Functional Theory

idea of mapping the interacting system of electrons into an auxiliary system that partially interacts,
but is still describable by a single Slater determinant. Consequently, singe-particle equations in the
spirit of Eq. (2.11) can be derived for this system, with orbitals that correctly reproduce the electron
density. However, the difference to the KS realization is that the potential ceases to be strictly
local and becomes a nonlocal and orbital-specific operator (see Ref. [SGV+96, KK08, KK10] for a
detailed derivation and discussion regarding differences between KS and GKS).
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3 Approximate Exchange-Correlation Functionals

Due to its central role in DFT, numerous approximations to Exc were developed over the years. In
this chapter, I provide a brief introduction to important DFAs with a focus on hybrid functionals,
which are of special relevance for this thesis. Based on explicit results, I illustrate the fundamental
parameter problem of global hybrids and outline the concept of EXX with compatible correlation.
In this context, I introduce local hybrid functionals as a more flexible extension to the global
hybrid approach and discuss established local hybrid constructions. For more detailed reviews
on functional approximations I refer the interested reader to, e.g., Refs. [PS01, KK08, Bec14].

3.1 Local and Semilocal Functionals

The LDA (and its spin-polarized formulation LSDA [vBH72]) is the most basic functional approx-
imation. Already introduced in Ref. [HK64], it is as old as DFT itself and relies on a simple
and efficient principle. The LSDA uses the parametrization of the exact xc energy density of
the homogeneous electron gas (cf. Sec. 2.4) evaluated with the spin densities nσ (r) of the, not
necessarily homogeneous, N electron system according to

eLSDA
xc [{nσ (r)}](r) = ehom

xc (
{

n′σ
}
)
∣∣
n′σ→nσ (r)

. (3.1)

The xc energy density and potential at r are determined entirely by the density at this particular point
in space. Thus, the LSDA and other DFAs that use only nσ (r) are labeled local approximations.

Intriguingly, the LSDA performs qualitatively well not only for systems with slowly varying
densities such as solid states, but also in other cases [PS01, KK08] (see Sec. 3.5 for a reasoning
based on the properties of the LSDA xc hole). However, in general the results of LSDA calculations
are not of sufficient precision, as, for instance, binding energies [Bec92a, Bec92b] are drastically
over- and bond lengths underestimated.

The generalized gradient approximations (GGAs) were introduced in the 1980s to remedy some
of the shortcomings of the LSDA [LM83, PY86, Per86a, Per86b]. GGAs include the gradients of
the spin densities, i.e., eGGA

xc (r) = eGGA
xc [{nσ (r)} ,{∇nσ (r)}] (r), and are thus labeled semilocal

functionals. The construction of GGAs in general does not follow from a direct gradient expansion
of the xc energy of the homogeneous electron gas [LP80, SGP82]. In fact, such an expansion is
known to perform poorly in comparison to the LSDA [Per85].

Instead, GGAs are constructed either to meet known constraints on the xc energy or by in-
troducing parameters that are determined empirically in order to optimize the functionals per-
formance. The most prominent example of the former category is the GGA of Perdew-Burke-
Ernzerhof (PBE) [PBE96, PBE97], which was designed to reproduce the limits of slowly and
rapidly varying densities. The latter type of GGA is represented by, e.g., the BLYP functional,
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3 Approximate Exchange-Correlation Functionals

which consists of the B88 exchange functional [Bec88b, EB09] in combination with the correlation
functional of Lee, Yang and Parr (LYP) [LYP88].

A related, yet more elaborate class of functionals are the so-called meta-GGAs. Meta-GGAs
make use of higher-order derivatives of the density, e.g, the Laplacian ∇2nσ (r), and employ the KS
kinetic energy density

τ(r) = ∑
σ

τσ (r) =
1
2 ∑

σ

Nσ

∑
i
|∇ϕiσ (r)|2. (3.2)

Here, τσ (r) is directly related to Eq. (2.14), as its integral reproduces the noninteracting kinetic
energy Tni = ∑σ

∫
τσ (r) d3r. The KS kinetic energy density introduces an explicit dependence

on the set of occupied KS orbitals {ϕiσ (r)} to the meta-GGA xc energy expression. While being
of semilocal nature, meta-GGAs therefore belong to the class of orbital-dependent functionals in
contrast to the LSDA and GGAs, which are strictly density dependent.

Due to their components, meta-GGAs allow for a more flexible construction and offer the
possibility to fulfill more exact constraints [SRP15]. Such a construction is demonstrated, e.g.,
in Ref. [PKZB99] for the meta-GGA of Perdew, Kurth, Zupan and Blaha (PKZB), where the
functional was additionally optimized by the inclusion of empirical parameters. Based on that ex-
pression, the meta-GGA of Tao, Perdew, Staroverov and Scuseria (TPSS) was developed [TPSS03,
PTSS04]. In general, the quality of DFT calculations for, e.g., atomization energies increases
when upgrading from the LSDA to GGAs and meta-GGAs [SSTP03]. Yet, it is important to state
that more evolved functional constructions do not necessarily lead to universal improvement in
the functional’s performance, as, for instance, the PKZB and TPSS meta-GGAs predict molecular
geometries and lattice constants of solids with less accuracy when compared to GGAs [AES00].

While semilocal functionals certainly allow for efficient and, for some applications, sufficiently
accurate calculations, it is worthwhile to mention that they typically suffer from common draw-
backs such as, for instance, the incorrect asymptotic decay of their local xc potential, the ab-
sence of a derivative discontinuity, and electronic self-interaction. These shortcomings strongly
affect the prediction of IPs and fundamental gaps using KS eigenvalues [KSRAB12]. Recently,
an intriguing construction of a GGA addressing the issues of the potential asymptotics and the
derivative discontinuity was introduced [AK13], yielding promising results for finite systems and
solid states [COM14, VSNL+15]. Yet, the question of self-interaction remains difficult to resolve
in the context of semilocal functionals, as discussed in the next section.

3.2 Self-Interaction Correction

The LSDA and all GGAs are not inherently free from the one-error, while meta-GGAs can be
designed to effectively counteract electronic self-interaction to some extent. This is accomplished
by constructing a space-dependent function that causes a vanishing correlation energy in case a
single KS orbital dominates the density [Bec98, VS98, PKZB99] (cf. Sec. 3.6). Additionally, meta-
GGAs are often normed to yield the correct exchange energy for the hydrogen atom [TPSS03,
SRP15]. However, this mechanism cancels the one-error for many-electron systems only partially,
as typically a large contribution from the Hartree energy, which is not completely counteracted by
the exchange energy for meta-GGAs, remains [KK08].

In contrast, self-interaction correction (SIC) schemes offer the possibility to completely elimi-
nate the one-error (see, e.g., Refs. [KK08, TH14] for a review of SIC methods). The most widely
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3.3 Hybrid Functionals

used SIC approach is directly related to Eq. (2.50) and defines

ESIC
xc [{nσ}] = EDFA

xc [{nσ}]−∑
iσ

{
EH[niσ ]+EDFA

xc [niσ ,0]
}

(3.3)

as the self-interaction-corrected version of the approximate functional EDFA
xc .

In principle, the SIC can be applied to any DFA. However, the SIC of Eq. (3.3) is typically
used in combination with the LSDA, as it has been shown that applying the SIC to GGAs or meta-
GGAs in fact deteriorates the results for binding energies, IPs, EAs, and reaction barrier heights in
contrast to their uncorrected versions [VS04, VS05, VSP+06, HKKK12]. Additionally, arguments
against the use of SIC in combination with GGAs were found in the context of time-dependent
DFT [HK12b]. Further detailed examinations regarding the performance of SIC for ground-state
properties can be found, e.g., in Refs. [GU97, CJ98, GKC04, VS06a].

An important aspect of this SIC scheme was noticed early on [PZ81]: The xc energy of Eq. (3.3)
is not invariant under unitary orbital transformations. A set of orbitals ϕ̃iσ (r) that gives the same
density as the canonical KS orbitals, i.e., n(r) = ∑iσ |ϕ̃iσ (r)|2 = ∑iσ |ϕiσ (r)|2, results in an altered
xc and consequently total energy. In principle, one could evaluate Eq. (3.3) simply by using the KS
orbitals ϕiσ (r). However, the unitary transformation that connects the two sets of orbitals via

ϕ̃iσ (r) =
Nσ

∑
j=1

Uσ
i j ϕ jσ (r) (3.4)

introduces an additional degree of freedom that can be used in order to enhance the functional’s per-
formance [KMK08]. Here, among others, the use of energy-minimizing transformations [PHL84,
PHL85, PL88] has proven to be a favorable ansatz [KKM08, DKK+11, HKK12, HKKK12, HK12a].

SIC methods can in principle be evaluated with the OEP scheme and the KLI approximation in
order to find a local, multiplicative potential. In this context, however, the unitary transformation of
Eq. (3.4) has to be taken into account. The appearance of a transformation Uσ

i j leads to additional
terms in the chain-rule argument of Eq. (2.52) and eventually results in generalized equations
for the OEP and KLI (termed GOEP and GKLI in the following) [KKM08, HKK12, HKKK12].
SIC methods that involve a unitary transformation in connection with GOEP or GKLI are labeled
generalized SIC (GSIC).

3.3 Hybrid Functionals

The exchange integral of Eq. (2.21) represents an interesting component for the construction of one-
error-free DFAs, since EXX itself fulfills Eq. (2.50). Functional approximations that contain EXX
in any form are in general labeled hybrid functionals. Thus, hybrid functionals, together with the
SIC, are prominent representatives of the class of orbital-dependent functionals. Due to the integral
form of Eq. (2.21), hybrid functionals are nonlocal DFAs, i.e., their xc energy density and potential
at point r is determined by the density at all other points in space.

The concept of hybrid functionals is based on the adiabatic-connection theorem [HJ74, GL76,
GL77, LP77, Har84]. In this formalism, a parameter λ is introduced to adiabatically control the
electronic interaction in the many-particle Hamiltonian of Eq. (2.1) via

Ĥλ = T̂ +V̂λ +λŴ . (3.5)

Thus, λ is referred to as coupling constant. Importantly, the external potential V̂λ is constructed
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3 Approximate Exchange-Correlation Functionals

such that the density nλ (r) reproduces the ground-state density of the fully interacting system for
each value of λ . While λ = 1 gives the full Hamiltonian of the interacting system, λ = 0 yields
the KS Hamiltonian. As a consequence, the xc energy can be expressed via the coupling-constant
integration

Exc[n] =
∫ 1

0
Eλ

xc[n] dλ , (3.6)

where Eλ
xc[n] = 〈Ψλ |Ŵ |Ψλ 〉−EH[n] and Ψλ denotes the ground state of Ĥλ [Ern96, EPB97].

Semilocal DFAs describe the coupling-constant dependence of Eλ
xc[n] reasonably well for λ →

1 [EPB97]. However, they fail to reproduce the limit λ → 0 which, according to the definition of
Eλ

xc[n] above, is given by the EXX [Bec93b]. Based on attempts to reproduce the λ -dependence of
Eλ

xc[n] while restoring its coupling-constant integral [Bec93a], the following form of the approxi-
mate xc energy was developed [Bec96, PEB96, BEP97]:

Egh
xc [{ϕiσ [n]}] = bEex

x [{ϕiσ [n]}]+ (1−b)Esl
x [n]+Esl

c [n]. (3.7)

Here, Esl
x,c[n] denotes the exchange and correlation energy of a semilocal DFA such as the LSDA

or GGAs. The parameter b is bound between 0 ≤ b ≤ 1 and denotes the mixing ratio of nonlocal
EXX and semilocal components. Since b is a global, constant coefficient, DFAs that are constructed
based on Eq. (3.7) are referred to as global hybrid functionals in the following.

The value of b that yields improvement over GGAs and meta-GGAs was found to be b ≈
0.16−0.30, depending on the semilocal DFA that is employed (see Ref. [KK08] for details). Such
a determination of b, regardless if via empirical fitting [Bec96] or based on theoretical consid-
erations [PEB96], is typically performed in the context of total-energy-related quantities such as
atomization energies and IPs via total-energy differences.

In the course of this work, the PBEh global hybrid functional plays a central role. Using PBE
components for semilocal exchange and correlation, it is defined as

EPBEh
xc (a) = aEex

x +(1−a)EPBE
x +EPBE

c . (3.8)

Note that a choice of a = 0.25 gives the so-called PBE0 functional, which was motivated in
Refs. [AB98, AB99, ES99].

Today, the most widespread DFA is the B3LYP global hybrid functional. It is based on the
functional form suggested by Ref. [Bec93b] and uses LDA components together with the B88
exchange and LYP correlation. It was first introduced in Ref. [SDCF94] in the form

EB3LYP
xc (a) = ELDA

xc +a0
(
Eex

x −ELDA
x

)
+ax

(
EB88

x −ELDA
x

)
+ac

(
ELYP

c −ELDA
c

)
. (3.9)

The three parameters were determined empirically to a0 = 0.20, ax = 0.72, and ac = 0.81.
Global hybrid functionals using a relatively small amount of EXX in combination with LSDA

or GGA components provide an accurate description of binding energies, IPs, and EAs using total-
energy differences [Bec96, PEB96, SSTP03]. In fact, it is argued that, based on a static mixing
process with these ingredients, no better description of such thermochemical properties can be
obtained [Bec97]. Further, B3LYP and PBE0 yield great improvement over the LSDA, GGAs
and meta-GGAs for many applications beyond thermochemistry, e.g., for molecular structures and
electrical properties such as polarizabilities and dipole moments [KK08, KH01]. Global hybrids
also predict semiconductor band gaps more accurately than GGAs [BIN+08, Haf08], especially
when using a density-dependent mixing procedure [MVO+11]. However, due to their construction,
global hybrid functionals suffer from several conceptual drawbacks, as the next section will reveal.
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3.4 The Global Hybrid Parameter Dilemma

A related, yet conceptually different type of hybrid functionals are range-separated hybrids
(RSHs). RSHs use a separation scheme that splits the electronic interaction into a long- and short-
range contribution based on a range-separation parameter [SF95, LSWS97]. These functionals
then approximate the different parts by different DFAs, typically by using semilocal functionals for
the short-range and EXX for the long-range interaction [BN05, VS06b, LB07, HJS08, KSSB11].
Some RSHs do not treat long-range exchange exactly [HSE03, HSE06], resulting in an enhanced
applicability to solids [HS04a, HS04b, PMH+06b, PMH+06a]. RSHs vary in the method to find
their optimal range-separation parameter, either empirically [YTH04, SHTH07, CHG08, RMH09]
or for each system individually by tuning it to exact physical constraints [SKB09a, SKB09b, BLS10,
KSRAB12, KSSB11].

Especially the latter approach, termed optimally tuned RSHs, deserves special attention. Due
to the physical constraint they are tuned to fulfill, these functionals show a very small many-
error with an accurate derivative discontinuity, and thus deliver IPs and fundamental gaps with
a high precision [VSP07, SEKB10, BLS10, RABK11, KSSB11, RASG+12, SAG+12]. The use
of EXX in the long-range regime further guarantees the exact asymptotic behavior of the xc po-
tential. Thus, RSHs provide promising candidates for the calculation of charge-transfer excita-
tions [KSBK11a, KSBK11b, KSRAB12, PDSB12, KNTK13, dQK14, NDdQ+15, dQK15]. Al-
though not being intrinsically free from the one-error, optimally tuned RSHs effectively mitigate
this error [EWRA+14]. However, due to the tuning procedure optimally tuned RSHs in general
do not obey the size-consistency criterion of Eq. (2.46) [LB07, KKK13]. As a direct consequence,
optimally tuned RSHs do not describe binding energies of molecules with an accuracy comparable
to global hybrid functionals and further deliver questionable predictions of potential energy sur-
faces [KKK13]. While RSHs certainly are promising functionals for many applications, they are
not in the main focus of this work due to these shortcomings.

3.4 The Global Hybrid Parameter Dilemma

While global hybrids in their standard parametrization deliver thermochemical predictions with high
accuracy, other applications typically require larger amounts of EXX, as, for instance, accurate pre-
dictions of reaction barriers heights [BAMT95, CJ98, LFHT00, KH01]. Typical global hybrids are
insufficient for the characterization of long-range charge-transfer states [DWHG03, Toz03, DHG04]
and excitation energies with time-dependent DFT [BA96, TH98]. In the same way, the description
of vertical excitation energies to Rydberg states [TH98] and radical ions [BS97] pose problematic
applications for global hybrids. Further, they do not universally fulfill Eq. (2.50) with severe
implications for the prediction of, for instance, photoemission observables, as discussed in Sec. 4.7.

The difficulties in describing these properties can be related to the fact that the local xc potential
of global hybrids decays faster than−1/r [CJCS98, CS00, CS13]. In fact, global hybrids in general
show vgh

xc(r)→−b/r (cf. Table A.2). This incorrect asymptotic decay is strongly connected to the
quality of KS eigenvalues according to Eq. (2.37) and (2.38). In order to describe IPs via −εho
correctly and yield a good description of properties that rely on this quantity, e.g., fundamental
gaps, the local xc potential needs to decay rather slowly [SBL11, AYC+13]. Therefore, the IP
theorem serves as a strong indicator for the quality of properties that are significantly influenced by
the asymptotic behavior of the xc potential.

For a quantitative discussion, I evaluate the dissociation energies D = EA +EB−EAB and the
IPs via I =−εho for a set of molecules using the PBEh global hybrid. A local potential was obtained
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Figure 3.1: Average relative error δ of the dissociation energy D and the IP via −εho of the
molecule set using PBEh with different values of a.

using the KLI approximation to the OEP1. The molecules are evaluated on their experimental bond
lengths. Further, the obtained dissociation energies and IPs are compared to the corresponding
experimental values by computing the average relative errors δD and δI (cf. Eq. (11) in Publ. 1).
Detailed information regarding the molecule set is listed in Appendix A.2. The results of δD and δI

are given as functions of the parameter a in Fig. 3.1.
Fig. 3.1 shows a clear minimum for δD around a≈ 0.2. Thus, PBEh performs best for dissocia-

tion energies using such a parametrization in agreement with Refs. [Bec96, PEB96]. The minimum
for δI is located around a ≈ 0.75, indicating that much more EXX is needed in order to optimize
the functionals performance in this respect. Importantly, Fig. 3.1 outlines the parameter dilemma
of global hybrid functionals: An optimal description of properties defined by the total energy in
contrast to potential-related quantities is not possible with PBEh using a single parametrization.

3.5 Exact Exchange and Compatible Correlation

Fig. 3.1 shows that δD at a = 0 is significantly smaller compared to the value at a = 1. This is a
surprising finding, as PBEh with a = 0 reduces to the PBE GGA, while EPBEh

xc (a = 1) = Eex
x +EPBE

c ,
i.e., full EXX in combination with PBE correlation. Intuitively, one would expect that a functional
that describes exchange exactly while using an approximate expression for the correlation energy is
superior to a DFA that approximates both. The fact that this is not necessarily true is rooted in the
issue of the compatibility of exchange and correlation energy functionals [KK08].

The concept of compatibility can be understood from two perspectives. The first reasoning
is based on properties of the xc hole introduced in Sec. 2.4. According to Eq. (2.35) the xc
energy is merely determined by the spherically averaged xc hole. It has been shown that, e.g,
the LSDA reproduces the exact 〈n̄xc(u)〉 to a large extend, while also satisfying the sum rule of
Eq. (2.34) [GJL79, BPE97, BPE98, HCW+98, KK08]. Further, the EXX hole has a long-range
component, which is typically counteracted by its exact correlation complement. Consequently,
the resulting xc hole has local character, while the xc hole of the LSDA and GGAs is also rather
local [KK08]. Thus, these functionals typically benefit from a cancellation of errors, which sets the
basis for their success for systems with varying densities.

1It has been demonstrated on the basis of calculations using pure EXX that the total energy and the ho KS eigenvalue
varies insignificantly when using the KLI approximation over the full OEP [KLI92b, GKG97, DG01]. On these
grounds, using the KLI approximation seems well justified also for global hybrid functionals. A direct comparison
of these quantities is provided in Publ. 1 in the context of local hybrid functionals, affirming this assumption.
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3.6 Individual Combinations of Components: Local Hybrids

In case of combining full EXX with semilocal correlation, the spherically averaged hole is
reproduced less accurately since the error cancellation is disturbed in its balance and the xc hole
remains with long-range components. Besides that, one can show that Eex

x +Esl
c is a combination

of functional components that only poorly reproduces the coupling-constant dependence of the xc
energy in the context of the adiabatic connection [Sch11]. Based on these arguments, pure EXX
can be regarded as incompatible to a correlation term of solely semilocal nature.

A second, related reasoning is connected to the splitting of electronic correlation into two
types, dynamical and nondynamical (static) correlation [MNH96]. Dynamical correlation describes
the reduction in the probability to find two electrons tightly together as a consequence of the
electronic repulsion [PTH09]. It is related to the cusp in the Coulomb interaction at ri→ r j [HC01].
Dynamical correlation requires a combination of many Slater determinants in the Configuration
Interaction. Static correlation, on the other hand, is caused by the degeneracies or near-degeneracies
of only few Slater determinants [KK08]. In this context referred to as left-right correlation, it is
necessary for a correct description of the dissociation process of molecules, as it causes electrons
to locate on separate atoms [HC01, MCH02, PTH09].

While dynamical correlation is a short-range effect due to screening, static correlation is in-
herently of long-range character [PTH09]. In fact, it was shown by comparisons to wave-function
methods that semilocal correlation energies reproduce dynamical correlation fairly well [MNH96].
Similar investigations have shown that GGA-exchange functionals not only capture exchange, but
also include static correlation to a large extent [GSB97, GGvGB01].

Under these aspects, the hybrid ansatz appears in a different light if restructured as

Egh
xc [{ϕiσ [n]}] = Eex

x [{ϕiσ [n]}]+ (1−b)
(
Esl

x [n]−Eex
x [{ϕiσ [n]}]

)
+Esl

c [n]. (3.10)

Semilocal correlation is used in order to account for dynamical correlation, whereas the difference
between exact and semilocal exchange represents static correlation. In particular, the nonlocality
of the EXX provides an important feature for the static correlation term, as it leads to long-range
correlation part with a nonlocal hole. Consequently, the xc hole and correlation arguments for
compatibility appear to be two sides of the same medal.

However, in this ansatz full EXX in the sense of Eq. (2.32) is only achievable by b → 1,
which, as described above, results in combining incompatible components. It thus appears that
the traditional hybrid approach does not provide sufficient flexibility in the construction of the xc
energy to satisfy both criteria simultaneously.

3.6 Individual Combinations of Components: Local Hybrids

The main focus of this thesis is set on a more flexible hybrid approach: the so-called local hybrid
functionals. While sharing their origin in the adiabatic connection, local hybrids differ from global
hybrid functionals by using a spatially resolved and density-sensitive instead of a rigid, constant
mixing of nonlocal and semilocal functional components. The local hybrid ansatz was first in-
troduced in Ref. [CLB98]. Based on the hybrid representation of Eq. (3.10), it reads in general

elh
xc[{ϕiσ}](r) = eex

x [{ϕiσ}](r)+ f [n](r)
(
esl

x [n](r)− eex
x [{ϕiσ}](r)

)
+ esl

c [n](r). (3.11)

Here, eex
x (r) and esl

x,c(r) denote the energy densities of EXX and semilocal xc functionals.
Importantly, local hybrid functionals substitute the constant mixing ratio b of global hybrids

by a position-dependent local mixing function (LMF) f [n](r). An explicit form of f [n](r) was not
proposed in Ref. [CLB98], only that it should be obtained by some nonempirical procedure. Thus,
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3 Approximate Exchange-Correlation Functionals

constructing the LMF as an explicit functional of the electron density marks a logical step.
The local hybrid construction appears as a promising functional approach for two reasons. First,

each system is described by using an individual mix of nonlocal and semilocal components, which
is defined by the electron density, i.e., the electronic structure, of this particular system itself. Thus,
local hybrids by construction provide a flexibility in adapting their composition to different density
scenarios. This ability does not exist for global hybrids functionals.

Second, the LMF in Eq. (3.11) introduces an additional degree of freedom into the construction
of local hybrids. In accordance with the idea of designing functionals on an ab initio basis, f [n](r)
can be constructed in a way to satisfy exact constraints on the xc energy [PSTS08]. It is reasonable
to assume that fulfilling such constraints results in an enhanced functional performance for physical
applications. In particular, the LMF can be used in order to ensure that a combination of full EXX
with compatible correlation is used by enforcing additional constraints on the static correlation
part. Therefore, local hybrid functionals raise hope of being capable of overcoming some of the
drawbacks of global hybrids.

3.7 Local Mixing Functions

In Ref. [JSE03], a local hybrid functional with a specified form for the LMF was introduced for the
first time. It uses Eq. (3.11) in combination with

f JSE03[n](r) = 1− τW(r)
τ(r)

, (3.12)

where τ(r) denotes the KS kinetic energy density defined in Eq. (3.2) and τW(r) the so-called von
Weizsäcker kinetic energy density, which is given by

τW(r) =
|∇n(r)|2

8n(r)
. (3.13)

The advantage of such a choice for the LMF becomes clear when looking at two different
density scenarios: In the case of a homogeneous or slowly varying density (see Sec. 2.4), one yields
τW(r)/τ(r)→ 0 since |∇n(r)|2≈ 0 and τ(r) remains finite. As a consequence, the LMF approaches
f JSE03[n](r)→ 1, causing the xc energy density in Eq. (3.11) to reduce to semilocal components
only. Since semilocal DFAs describe systems with a homogeneous density accurately, the local
hybrid provides a correct characterization of such areas.

The other important scenario is given by spatial areas where the density is dominated by a single
spin-orbital shape. Such areas are referred to as iso-orbital regions [KPB99, KP03c], and here

τW(r)
n(r)≈|ϕiσ |2−−−−−−→τ(r). (3.14)

Consequently, f JSE03[n](r)→ 0 and the local hybrid reduces to EXX in combination with semilocal
correlation which, depending on its construction, may vanish in this case [PKZB99, JSE03].

Due to its ability to indicate regions with iso-orbital character, τW(r)/τ(r) is referred to as indi-
cator or detection function, and one can show that it is confined to 0 ≤ τW(r)/τ(r)≤ 1 [KPB99].
A thorough investigation of analytical properties of τW(r) and τ(r) is given in Ref. [DFC15]. In
particular, Eq. (3.14) renders the detection function attractive for the construction of functionals
that are free from the one-error. For instance, a local hybrid of the type of Eq. (3.12) clearly obeys
Eq. (2.50), assuming that it uses a one-error-free correlation part. For each spin-orbital density
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3.7 Local Mixing Functions

the LMF reduces to zero, leaving only pure EXX and thus canceling the Hartree term. For this
reason, the function τW(r)/τ(r) was already applied in the construction of functionals outside the
context of local hybrids, e.g., for self-correlation-free meta-GGAs [Bec85, Bec88a, BE90, Dob92,
Bec98, PKZB99]. Notably, counteracting self-interaction via such a detection function results in a
functional expression that is invariant under unitary orbital transformations [Dob92, KP03c]. For a
more detailed discussion of local hybrids and the one-error, see Sec. 4.7 and Publ. 4.

In Ref. [JSE03], the local hybrid with f JSE03[n](r) was evaluated non-self-consistently using
B88 exchange with LYP correlation as well as PBE exchange and PKZB correlation. The authors
observed an improved description of the dissociation behavior of symmetrical radical cations and
enhanced reaction barriers for hydrogen transfer reactions. However, the calculated atomization
energies were inferior to the ones obtained by BLYP and B3LYP. In Ref. [AKB06] self-consistent
results for a local hybrid functional based on a local potential were reported for the first time. Using
the LMF of Eq. (3.12) and a related expression in their spin-polarized form, the authors found that
the local hybrid provides atomization energies with a lower accuracy than GGAs, with little effect
on the results from self-consistency. They concluded that such a local hybrid includes a too large
amount of EXX.

Based on this finding, a scaled LMF was suggested in Ref. [BRAK07] defined as

f BRAK07[n](k,r) = 1− k
τW(r)
τ(r)

. (3.15)

The additional parameter k was introduced to reduce the intrinsic amount of EXX in the local
hybrid and chosen in order to optimize the functional’s performance with respect to atomization
energies of a large molecule set. The optimal value was determined as kopt = 0.48, which results
in atomization energies well comparable to the best global hybrid. To further discuss their finding,
I calculate the relative average error δD for the binding energy and δI for the IP via −εho for the
evaluation set (see Appendix A.2) as a function of k in analogy to the previous investigation of
the global hybrid PBEh. I use LSDA components for semilocal exchange and correlation, as it is
done in Ref. [BRAK07]. For this functional and all other local hybrid calculations presented in the
following, a local multiplicative potential was obtained by using the KLI approximation to the OEP
(see Publ. 1 for a comparison). The results are given in Fig. 3.2 in comparison to the LSDA and
pure EXX.

Notably, for k = 0 δD and δI coincide with the LSDA result as required by construction. For
k = 1 the LMF agrees with f JSE03(r), and the result for δD underlines that little improvement over
existing DFAs in terms of thermochemistry was found in Refs. [JSE03, AKB06]. Clearly, the
performance of such a local hybrid can be improved by decreasing k, i.e., including less EXX.

Overall, my results for δD reproduce the finding of Ref. [BRAK07], even though the optimal
value in Fig. 3.2 slightly differs from kopt = 0.48. Such deviations may arise due to the fact that in
Ref. [BRAK07] the spin-polarized version of f BRAK07(k,r) is used, which is applied to n(r) ·elh

xc(r)
instead of elh

xc(r)2. Also, the different choices for the reference set of molecules result in different
optimal values for k. For clarity, I use kopt = 0.48 in the following.

In Ref. [BRAK07] the authors mainly focus on enhancing the description of thermochemi-
cal properties. The results in Fig. 3.2 show that δD can indeed be optimized with the ansatz of
Eq. (3.15), whereas δI shows no minimum in this parameter range. For k = 1 the relative average
error for IPs is in the range of the EXX results, but it is reasonable to assume that δI could be
further optimized. Still, it becomes clear that kopt does not simultaneously optimize the description

2In fact, in Ref. [AK12] the spin-unpolarized LMF is explicitly evaluated, yielding an optimum at k = 0.534 in better
agreement with the result presented here.
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Figure 3.2: Average relative error with respect to experiment for the dissociation energy D
(a) and the IP via −εho (b), obtained with the LSDA, EXX, and a local hybrid
using f BRAK07(k,r) as a function of k. Pure EXX leads to δD = 66.2% and is not
depicted for clarity.

of binding energies and IPs via the ho KS eigenvalue. In this respect, the local hybrid of Eq. (3.15)
unfortunately offers no answer to the global hybrid parameter dilemma (see Sec.4.3 for a direct
comparison).

More elaborated LMFs were created by, e.g., the inclusion of dimensionless density gradi-
ents [AK07, KBA07] and density matrices [JS07, JS08] in combination with varying dynamical
correlation parts. Thus, more accuracy in the description of thermochemistry and reaction barrier
heights of hydrogen transfer reactions is obtained. In Ref. [PSTS08] a LMF was designed to
combine TPSS xc components guided by the pursuit to fulfill exact constraints, yielding excellent
enthalpies of formation and reaction barriers. In Ref. [JKS08] local hybrids with a range-separation
scheme were evaluated self-consistently in the GKS scheme. For long-range corrected local hy-
brids the long-range exchange is treated exactly, while screened local hybrids approximate this
component. As a result, molecular thermochemistry is described with an accuracy comparable to
the local hybrid of Ref. [BRAK07], while screened local hybrids seem especially appropriate for
the calculations of solid states.

In further local hybrid approaches, improvement over global hybrids is achieved for the de-
scription of enthalpies of formation and other thermochemical properties [Joh14]. Notably, the
inclusion of a non-system-dependent amount of EXX [HJS09, HS10], explicit consideration of
the spin polarization [ABK09], and the application of dispersion corrections [TABK11] contribute
to establish local hybrid as a powerful tool in ground-state DFT (see Refs. [AK11, AK12] for a
review). Recently, it has been demonstrated that a local hybrid approach based on Eq. (3.12) seems
promising in terms of efficiency and accuracy in the context of time-dependent DFT within the
linear-response formalism [MBK15].

In the next section, I briefly outline the construction of a novel local hybrid guided by exact
constraints. Constructed to combine full EXX with compatible correlation, this functional is not
designed to further enhance the accuracy of existing local hybrid methods for thermochemical
applications, but rather to investigate conceptual properties of local hybrids and how they affect
their performance. I put special emphasis on the discrepancy in the description of total-energy in
contrast to potential-related properties, which so far was not in the main focus of research.
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4 The ISO Local Hybrid Functional

In an attempt to construct a functional that remedies the drawbacks of global hybrid functionals
while maintaining their strength for properties that are related to thermochemistry, a new local
hybrid functional is designed. In Sec. 4.1 I briefly outline the construction of this functional,
which is guided by the pursuit to fulfill exact constraints. This is also the main subject of Publ. 1
along with an explicit evaluation of the functional for the description of binding energies, IPs, and
molecular-dissociation curves. In Secs. 4.2 and 4.3 I highlight important aspects of the functional’s
performance. In particular, I provide a direct comparison to other functional approximations in
Sec. 4.4. A thorough investigation regarding the asymptotic behavior of the local xc potential of
local hybrid functionals is given in Publ. 2 and, with a special focus on the influence of orbital
nodal planes, in Secs. 4.5 and 4.6. In Publ. 4 I discuss the designed local hybrid under the aspects
of both the one- and many-error, with summaries of the findings provided in Secs. 4.7 - 4.9.

4.1 Construction via Exact Constraints

The newly proposed local hybrid functional is motivated by the aim to meet several constraints
on the exact xc energy. First, like other local hybrid approaches it is designed to satisfy both
the limit of a homogeneous or slowly varying density as well as the case of a single-spin-orbital
region. In connection to the latter case, the novel local hybrid is free from the one-error in the
sense of Eq. (2.50). Further, the functional is designed to include full EXX and to obey the correct
asymptotic limit of the xc energy density. Lastly, the local hybrid was constructed guided by the
principle of combining EXX with a compatible correlation as motivated in Sec. 3.5. Since the newly
introduced LMF is based on the iso-orbital-region detection function τW(r)/τ(r), the local hybrid
is referred to as ISO functional in the following.

The ISO functional is based on the local hybrid approach of Eq. (4.1) with LSDA components
for semilocal exchange and correlation. Since LSDA correlation itself does not vanish for single-
spin-orbital regions, a second LMF for the dynamical correlation is introduced in the ISO ansatz

eISO
xc (c,r) = eex

x (r)+ f ISO
x (c,r)

(
eLSDA

x (r)− eex
x (r)

)
+ f ISO

c (r)eLSDA
c (r). (4.1)

The dependencies on the density and the orbitals are dropped for brevity. The LMFs are defined as

f ISO
x (c,r) =

1−d(r)
1+ ct2(r)

and f ISO
c (r) = 1−d(r), (4.2)

with the modified detection function

d(r) =
τW(r)
τ(r)

ζ 2(r) (4.3)
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and the spin polarization

ζ (r) =
n↑(r)−n↓(r)
n↑(r)+n↓(r)

. (4.4)

The function t(r) originates from the gradient expansion of the xc energy of the homogeneous
electron gas [SGP82]. It indicates the strength of the density variation over a certain length scale
and is defined as [PBE96]

t2(r) =
(π

3

)1/3 a0

16Φ2(ζ (r))
|∇n(r)|2
n7/3(r)

. (4.5)

The constant a0 denotes the Bohr radius and the function Φ(ζ (r)), which was introduced by consid-
ering the spin-scaling properties of the correlation energy of the homogeneous electron gas [WP91],
is defined via Φ(ζ (r)) = 1

2

(
(1+ζ )2/3 +(1−ζ )2/3

)
.

In Publ. 1 a detailed analysis of the LMFs f ISO
x (r) and f ISO

c (r) in the context of exact constraints
(see Sec. 2.4) is provided. Here, I briefly highlight important properties of the ISO LMFs.

First, note that Eq. (3.14) is fulfilled either if the density contains a single spin orbital only or
if n(r) consists of two KS orbitals with identical spatial shapes but opposite spins. Thus, the ratio
τW(r)/τ(r) itself does not distinguish between general iso-orbital and true one-spin-orbital regions.
The difference between these two cases is quite important and can be explained illustratively on the
examples of the hydrogen atom and the H2 molecule. The former system gives a single-spin-orbital
region over all space and is correctly solved by using pure EXX in KS DFT. The latter, in contrast,
represents an iso-orbital system containing two KS orbitals and, ideally, requires EXX plus some
correlation [Bae01]. For the ISO functional, the detection function d(r) additionally uses the spin
polarization ζ (r), which clearly distinguishes between these two scenarios: In case of a true single-
spin-orbital region one yields that ζ (r)→ 1 and, consequently, f ISO

x/c (r)→ 0, whereas in case two
identical KS orbitals with opposite spins are dominating, ζ (r)→ 0. As a consequence, the ISO
functional reduces to pure EXX only in the former case, e.g., for the hydrogen atom, while in the
latter scenario some static and dynamical correlation is still included. The requirement of being free
from the one-error is generally met by the ISO functional since ζ (r)= 1 together with τW(r)→ τ(r)
if evaluated on a single spin-orbital density yielding vanishing LMFs f ISO

x (c,r) and f ISO
c (r).

Second, the LMF f ISO
x (c,r) restores the correct asymptotic decay of the xc energy density due

to the reduced density gradient in the denominator. It further ensures the correct scaling behavior
under uniform coordinate scaling, resulting in the fact that the ISO indeed employs full EXX. In
connection to this, the energy density multiplied by f ISO

x (c,r) scales like a correlation rather than an
exchange energy and, in this sense, underlines the idea of using EXX with compatible correlation.

Lastly, the function t(r) in Eq. (4.2) is multiplied by a free parameter c. Unfortunately, no exact
constraint was found to uniquely determine this parameter. Instead, it is used in the following to
investigate the performance of the ISO functional by variation of c. In general, larger values of c
result in a higher intrinsic amount of EXX.

4.2 Functional Performance

The central results of Publ. 1 are the average relative errors with respect to experiment for the
binding energy D and the IP via −εho for the ISO functional evaluated for the representative
molecule set specified in Appendix A.2. To enable direct comparisons, Fig 4.1 shows these results
as a function of the free parameter c as it was done, e.g., in Sec. 3.4 in the context of the PBEh hybrid
functional and in Sec. 3.7 for the local hybrid based on Eq. (3.15). The corresponding figures for
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ISO are given here again because they illustrate the average relative errors δD and δI for an extended
parameter range in contrast to Fig. 1 and 2 of Publ. 1.

It becomes apparent from the construction of the ISO functional that the expression in Eq. (4.1)
reduces to the LSDA for fully spin-unpolarized systems, i.e., ζ (r) = 0∀r if a value of c = 0 is
used. Since the molecule set also includes spin-polarized systems such as, for instance, most of the
atoms, the results of ISO(c = 0) do not completely reproduce the results obtained via the LSDA. An
optimal description of binding and, as shown in Publ. 1, also total energies is obtained with c≈ 0.5,
yielding great improvement over the LSDA (see Fig. 4.3 for a comparison to other functionals).

0

10

20

30

40

0.0 2.5 5.0 7.5 10.0 12.5 15.0

δ D
(%

)

c

ISO(c)
ISO(c = 106)

LSDA

(a) δD

0

10

20

30

40

0.0 2.5 5.0 7.5 10.0 12.5 15.0

δ I
(%

)

c

ISO(c)
ISO(c = 106)

LSDA
EXX

(b) δI

Figure 4.1: Average relative error with respect to experiment for the dissociation energy D (a)
and the IP via −εho (b), obtained with the LSDA, EXX, and the ISO local hybrid
as a function of c. The limit c→ ∞ is represented by the black dotted line.

For optimizing δI , however, a much larger amount of EXX is necessary. The best description
via the ISO functional requires a choice of c≈ 4.5, which leads to more accurate results in compar-
ison to pure EXX. Unfortunately, such a parametrization again deteriorates the quality of binding
energies to the level of the LSDA. In this respect, the δD- and δI-curves in Fig 4.1 appear similar to
those in Fig. 3.1 and the parameter dilemma remains also with the ISO local hybrid functional.

The results for even larger values of c again illustrate the compatibility problem discussed in
Sec. 3.5. For c → ∞, which is here realized by using a sizable value of c, pure EXX is used
in combination with dynamical correlation only, since f ISO

x (r)→ 0 in this case. Consequently,
an imbalance between the exchange and the correlation term occurs, resulting in worse binding
energies in comparison to the LSDA.

In Publ. 1 more applications of the ISO functional are demonstrated. It is shown that ISO, using
the optimal value for binding energies of c= 0.5, provides the exact dissociation behavior of the H+

2
molecule and delivers an improved dissociation curve for the He+2 molecule in contrast to standard
global hybrid functionals (see, e.g., Refs. [RPC05, RPC+07]). Further, it is shown that ISO in this
parametrization drastically improves the description of IPs via −εho for quasi-one-electron systems
such as the lithium, sodium, and potassium atoms. For a further assessment of the ISO local hybrid
and local hybrid functionals using related LMFs see Ref. [dSC15].

Lastly, note that the LMFs of Eqs. (3.15) and (4.2) appear similar in the sense that they include
a parameter to adjust the intrinsic amount of EXX in the corresponding local hybrid. However,
introducing a scaling factor via multiplication with τW (r)/τ(r) seems less advisable, as such a
functional does not provide the correct asymptotic behavior of the xc energy density per particle
and is not inherently free from the one-error. This can lead to negative effects on the performance
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4 The ISO Local Hybrid Functional

of the local hybrid for applications outside thermochemistry. Therefore, optimizing the local hybrid
via the parameter c in f ISO

x (c,r) appears as the preferable approach.

4.3 Modification of the ISO Local Mixing Function

One special aspect of the LMFs of the ISO functional requires further discussion. The inclusion
of the spin polarization ζ (r) in Eqs. (4.2) is motivated by the inability of the detection func-
tion τW(r)/τ(r) to distinguish between general iso-orbital and pure single-spin-orbital regions.
However, ζ (r) vanishes completely for fully spin-unpolarized systems such as the F2 molecule
(cf. Appendix A.3) or the organic semiconductor molecules discussed in Publ. 4. As a consequence,
the detection function τW(r)/τ(r) is canceled by ζ (r) = 0 for such systems and does not contribute
to the mixing process. The LMF f ISO

c (r) is set to 1 for the ISO functional in this case, resulting in
a constant amount of dynamical correlation in the local hybrid.

This issue is especially relevant for the discussion of local hybrids in the context of the one-error
for systems with ζ (r) = 0∀r (see Sec. 4.7 and Publ. 4). Here, Eq. (2.50) is formally fulfilled by
the ISO functional, but effectively τW(r)/τ(r) is not used in its LMFs. In order to construct a local
hybrid that is free from the one-error and includes the detection function τW(r)/τ(r) also for fully
spin-unpolarized systems, a modified expression of the ISO functional is introduced.

This functional, in the following referred to as ISOII, is also based on the mixing of semilocal
and nonlocal components according to Eq. (4.1). Its uses expressions for the LMFs that are derived
from Eqs. (4.2) by using ζ (r) = 1 ∀r, i.e.,

f ISOII
x (c∗,r) =

1− τW(r)
τ(r)

1+ c∗t2
II(r)

and f ISOII
c (r) = 1− τW(r)

τ(r)
(4.6)

with t2
II(r) = t2(ζ ,r)

∣∣
ζ=1 =

(π
3

)1/3 a02
2
3

16
|∇n(r)|2
n7/3(r) .

The ISOII functional uses a parameter c∗ to regulate the intrinsic amount of EXX in analogy
to ISO. Again, the freedom in choosing c∗ is used to investigate the functional’s performance with
respect to binding energies in contrast to IPs via −εho. The results are shown in Fig. 4.2.
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Figure 4.2: Average relative error with respect to experiment for the dissociation energy D (a)
and the IP (b) via−εho, obtained with the LSDA, EXX, and the ISOII local hybrid
as a function of c∗. The limit c∗→ ∞ is represented by the black dotted line.
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The prediction of IPs is optimized for values around c∗ ≈ 1.2, which improves the quality of
−εho in contrast to pure EXX. Unfortunately, ISOII with c∗ = 0 yields results for δD comparable
to the LSDA, and using larger values of c∗ further increases the average error. ISOII seems less
appropriate for calculations of thermochemical properties since δD cannot be optimized to the
level of, e.g., ISO with c = 0.5. In this sense, the mixing functions f ISOII

x (c∗,r) and f ISOII
c do

not provide an appropriate mixing scheme for combining EXX with a compatible correlation term.
A sufficient description of thermochemical properties cannot be obtained with ISOII, and also with
these modified LMFs the parameter dilemma remains unsolved. Instead, both the curves in Fig. 4.2
appear as the continuation of the ISO results for larger values of the functional parameter, indicating
that ISOII involves a larger intrinsic amount of EXX.

4.4 General Functional Comparison

In this section I provide a general overview of the performance of important DFAs discussed so
far. I focus on δD and δI computed for the molecular evaluation set as representative indicators for
the quality of total-energy in contrast to potential-related properties. The quantity (δD + δI)/2 is
computed to indicate the overall performance of a certain DFA.

Semilocal functionals are represented by the LSDA, the GGAs PBE and BLYP, as well as
the TPSS meta-GGA. I also evaluate the global hybrid BHLYP, which uses 50% EXX with the
corresponding amount of B88 exchange and LYP correlation [Bec93a]. Besides the global hy-
brids PBE0 and B3LYP, I further present results of the global hybrid TPSSh, which uses 10%
EXX in combination with TPSS exchange and correlation according to Eq. (3.7) [SSTP03]1. Lo-
cal hybrid functionals are represented by Eq. (3.12) (denoted JSE06), Eq. (3.15) with k = 0.48
(BRAK07(0.48)), ISO with c = 0.5, and ISOII with c∗ = 0. All results are depicted in Fig. 4.3.
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Figure 4.3: Average relative error with respect to experiment for the binding energy D and the
IP via −εho as well as the average (δD +δI)/2 for a range of DFAs.

The downward trend of δD when going from the LSDA via PBE and BLYP to TPSS in Fig. 4.3
underlines the improvement that GGAs and meta-GGAs yield over the LSDA for thermochemical
properties. On the other hand, all four approximations describe experimental IPs using their ho
KS eigenvalue with an error of ≈ 40%. In general, improvement is obtained by including certain
amounts of EXX. The average relative error δI decreases steadily for an increasing intrinsic amount

1Note that TPSS and TPSSh were evaluated within the GKS scheme using the software package TURBOMOLE [tur].
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of EXX in the corresponding DFA. The local hybrids BRAK07(0.48) and ISO(0.5), both using their
optimal parametrization for the description of binding energies, yield a value of δI ≈ 25%, which is
comparable to the BHLYP result. The prediction of IPs can further be optimized by using the local
hybrids JSE03, ISOII(0) or pure EXX at the cost of less reliable binding energies. The quantity δD

is minimized by the global hybrids TPSSh with 4.1% and B3LYP (4.6%), while the local hybrids
BRAK07(0.48) (4.8%) and ISO(0.5) (6.0%) show accurate results for binding energies as well.

In summary, Fig. 4.3 illustrates the parameter dilemma that was explicitly discussed in the
previous sections. For this, the average (δD +δI)/2 can be used as an indicator, showing that none
of the functionals investigated minimizes δD and δI at the same time. Overall, BRAK07(0.48)
performs best with (δD + δI)/2 = 14.7% and ISO(0.5) shows results that are only slightly worse
(15.9%) while fulfilling more exact constraints. Thus, the local hybrids seem preferable to the
global hybrids PBE0 (17.7%), B3LYP (18.0%), and TPSSh (19.6%).

4.5 Asymptotic Behavior of the Local Exchange-Correlation Poten-
tial

From a global-hybrid point of view, the difficulty to accurately describe both energy- and potential-
related quantities using a fixed parametrization can be explained by the incorrect asymptotic be-
havior of the local xc potential (see Sec. 3.4). For local hybrid functionals, on the other hand, one
would intuitively expect that the long-range behavior of vxcσ (r) is described correctly due to the
asymptotic properties of the LMFs in Eq. (3.11). Unfortunately, the local hybrid construction does
only guarantee the correct asymptotics of the xc energy density, not of the local xc potential. In
Publ. 2 an explicit evaluation of the general asymptotic decay of vxcσ (r) is demonstrated for local
hybrids within the OEP formalism. In this section, I briefly outline the fundamental concepts of
finding a general form of vxcσ (r) in the asymptotic limit |r| → ∞ and discuss its implications.

As a starting point, a local hybrid construction according to Eq. (3.11) is assumed. For all
further derivations, the general LMF f (r) must fulfill the requisite

lim
|r|→∞

f (r) = 0. (4.7)

Thus, the static correlation term vanishes asymptotically, leaving only pure EXX and ensuring the
correct asymptotic decay of exc(r) according to Eq. (2.44). This is a reasonable requirement for
the LMF, since for a finite system the density is asymptotically dominated by the ho KS orbital
only [AvB85, CC89] and EXX provides an exact solution. Here, it is explicitly assumed that
the semilocal correlation esl

c (r) decays fast enough in the asymptotic limit, which is typically
fulfilled for the LSDA, GGAs and meta-GGAs. Examples for LMFs that obey the requirement
of Eq. (4.7) are given by f ISO

x (c,r) (see Publ. 1 for details), f ISOII
x (c∗,r), and f JSE03(r), with

limitations discussed in the next section.
The derivations in Publ. 2 rely on two important aspects of the OEP formalism. First, the

asymptotic decay of the local xc potential within the OEP scheme, as presented in Eqs. (2.53)
and (2.58), is given by [KKGG98]

lim
|r|→∞

vxcσ (r) = lim
|r|→∞

uNσ σ (r). (4.8)

The function uNσ σ (r) denotes the functional derivative of the orbital-dependent xc energy with
respect to the ho KS orbital in the spin channel σ (see Eq.(2.54)).

36
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The second important aspect is that the KLI approximation preserves all asymptotic properties
of the full OEP equation [KKGG98]. As a consequence of these two aspects, it suffices to investi-
gate the asymptotic properties of the functional derivative in the ho KS state in order to obtain the
long-range behavior of the local KLI and OEP potential.

For a local hybrid functional that is designed according to the assumptions above, two terms
contribute to the long-range behavior of the functional derivative with respect to the occupied KS
orbitals. The first term arises from the derivative of the EXX energy density in Eq. (3.11) and decays
with −1/|r| for |r| → ∞. The second term originates from the static correlation energy, i.e., from
the EXX energy density multiplied by the LMF, and involves a fully nonlocal evaluation of f (r).
For an insight how this term emerges see, e.g, the appendix of Publ. 1, where an explicit expression
of uiσ (r) is derived for the ISO functional. Naturally, the corresponding functional derivative of
ISOII follows from this expression by setting ζ (r) = const. = 1. Further, uiσ (r) for the LMF in
Eq. (3.12) is given in the appendix of Publ. 2.

Evaluating those two terms under the aspect of Eq. (4.8) results in

vxcσ (r) −→|r|→∞
−γσ

|r| . (4.9)

The quantity γσ determines the asymptotic slope of the local xc potential. It is given by

γσ = 1− 1
2

∫
f (r)|ϕNσ σ (r)|2 d3r, (4.10)

where ϕNσ σ (r) denotes the ho KS orbital in this particular spin channel. Equations (4.9) and (4.10)
are the central results of Publ. 2 and I shortly summarize their implications.

One can show that γσ is bound between 1
2 < γσ ≤ 1 since the local hybrid construction is based

on 0≤ f (r)≤ 1. Note that an asymptotic slope of γσ = 1
2 is not possible. According to Eq. (4.10),

this case requires f (r)= 1∀r, which in fact reduces the local hybrid to a purely semilocal functional
with its corresponding characteristic potential fall-off (i.e., exponentially for the LSDA and most
GGAs). In contrast, the case γσ = 1, which equals the correct asymptotic decay, is fulfilled only
for f (r) = 0∀r. This case, however, corresponds to a local hybrid that contains EXX alone or in
combination with semilocal correlation only, a combination that is not advisable.

Physically relevant LMFs typically vary between 0 and 1 for finite systems with varying densi-
ties. Thus, the local xc potential of local hybrids does not decay correctly in the asymptotic limit but
with a reduced slope similar to global hybrids. The fundamental difference is that the asymptotic
slope for global hybrids is given by the constant parameter b in Eq. (3.7), whereas for local hybrids
it becomes a system-dependent quantity. Furthermore, for spin-polarized systems the values of γσ
differ for the different spin channels, resulting in an individual asymptotic decay for each σ .

For local hybrids with a functional parameter in their LMFs such as ISO or ISOII, the asymptotic
slope becomes a function of this parameter due to Eq. (4.10), i.e., γσ (c) and γσ (c∗). Both functionals
are constructed such that an increase in their functional parameters results in larger values for the
asymptotic slope since the LMF becomes increasingly suppressed. In particular, the correct long-
range decay is only provided via limc→∞ γσ (c) = limc∗→∞ γσ (c∗) = 1. With increasing asymptotic
slope the ho KS eigenvalue becomes more negative and describes the IP more correctly (cf. Table 1
of Publ. 2), which results in the behavior observed in Figs. 4.1 and 4.2.

Note that the derivations leading to Eqs. (4.9) and (4.10) are based on the general grounds
of Eqs. (3.11) and (4.7) rather than a particular form of the LMF f (r). Therefore, the incorrect
asymptotic decay of the xc potential appears as an elementary feature of local hybrid functionals in
general. This feature marks a fundamental obstacle in the way of overcoming the hybrid parameter
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4 The ISO Local Hybrid Functional

dilemma using this particular functional class.
The incorrect asymptotic behavior of local hybrids is insightful in the context of the one-error.

As argued in Sec. 2.4, an electron moving far out of a neutral system will be subject to a Coulomb
potential with charge −1, thus it will feel a −1/r-potential. If self-interaction is present, however,
the electron erroneously interacts with itself, resulting in an incorrect asymptotic behavior of the
potential. This argumentation provides an illustrative connection between self-interaction and the
potential asymptotics, but in practical DFT both properties are less strictly related. Local hybrids
can be designed to be free from the one-error, but their local potential does not decay correctly.
Thus, Eqs. (4.9) and (4.10) underline that a one-error-free energy expression does not guarantee
the correct long-range behavior of the xc potential. This finding was already discussed for SIC
schemes [VSP+06]. Vice versa, a correct potential decay by no means guarantees a self-interaction
free energy expression [vLB94, TH98, CS00]. In Publ. 2, the connection of self-interaction and
potential asymptotics is discussed in further detail.

4.6 The Influence of Orbital Nodal Planes

The second important aspect discussed in Publ. 2 is the influence of orbital nodal planes on the
iso-orbital indicator τW(r)/τ(r). It is demonstrated that Eq. (3.14) is in general only fulfilled for
one-orbital densities of ground-state character. In practice, orbital densities do not generally have
ground-state character, as, for instance, they contain nodal planes. If evaluated on nodal planes,
the detection function τW(r)/τ(r) does not necessarily yield its intended value. In particular, it is
demonstrated in Publ. 2 that for a density dominated by the ho and the next lower lying (ho−1)
orbital density, i.e., n(r)∼ |ϕho(r)|2 + |ϕho−1(r)|2, the evaluation along a nodal plane in the ho KS
orbital (denoted by −→

n.p.
) yields

τW

τ
−→
n.p.

|∇ϕho−1|2
|∇ϕho|2 + |∇ϕho−1|2

< 1. (4.11)

Note that a nodal plane only means that ϕ(r) vanishes, while ∇ϕ(r) still takes finite values.
This finding is of special relevance for the description of asymptotic regions in finite systems

since the density is dominated by few orbitals in this domain. Publ. 2 provides insights into the
influence of orbital nodal planes in the ho KS orbital on the asymptotics of the local xc potential
illustrated by the example of the carbon atom. A further, more detailed description of this issue is
given in Appendix A.3 using the F2 molecule as a paradigm system. In summary, it is demonstrated
that significant deviations from the general, analytically determined long-range behavior arise for
local hybrids with LMFs that are asymptotically dominated by the detection function τW(r)/τ(r).
Importantly, it is shown that such local hybrid functionals neither obtain the correct−1/r-behavior,
nor do they obey Eq. (4.10) in combination with the nonvanishing asymptotic constants resulting
from Eq. (2.60). In this context, Publ. 2 discusses the implications of Eq. (4.11) for the construction
of functionals based on the detection function τW(r)/τ(r).

Recently, an orbital-free detection function was proposed [dSC15]. Based on the idea of
measuring the deviation of the electron density from exponential behavior [dSKW14], a so-called
density-overlap-regions indicator was designed [dSC14]. This indicator function resembles the
orbital-dependent τW(r)/τ(r) to a large extent and recreates its behavior around the atomic posi-
tions in finite systems as shown for the carbon atom and the N2 molecule in Ref. [dSC15]. It was
demonstrated that local hybrids using this orbital-free detection function instead of τW(r)/τ(r) re-
produce the accuracy of the original functional for thermochemical properties and, if modifications
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to the LMFs are applied, even lead to some enhancement [dSC15]. In contrast to τW(r)/τ(r), the
orbital-free detection function is not sensitive to the occurrence of nodal planes in the ho KS state
and remedies this unexpected behavior and its consequences explained in this chapter. Thus, it
provides a promising ingredient for the construction of LMFs in future local hybrids.

In the next section I provide a perspective on local hybrids under the aspect of electronic self-
interaction as presented in Publ. 4. Here, I mainly focus on the interpretation of KS quantities
as physical observables, e.g., in the context of photoemission experiments. Further, I discuss the
many-error in local hybrids in connection to the piecewise-linearity criterion of Eq. (2.51).

4.7 Interpretability of Kohn-Sham Eigenvalues

Photoemission spectroscopy (PES) provides an experimental technique to effectively probe the
electronic structure of condensed matter (see, e.g., Ref. [Hüf03] for a detailed introduction to PES).
The fundamental principle of PES is based on the famous photoelectric effect and is as plausible
as it is illuminating: A sample of interest is exposed to a beam of photons which, if sufficient
energy is provided, causes emission of electrons from the sample. Analysis of the kinetic energy
of the emitted electrons then yields information about the sample’s electronic structure in form of
electron binding energies. Especially gas-phase valence-electron spectroscopy in the ultraviolet
regime attracts great attention (see, e.g., Refs. [DMK+06, FYK+06, SWLZ09]) in order to study
the electronic structure of organic molecules that are important building blocks for novel (opto-)
electronic devices.

Due to their dynamic nature, photoemission processes are prototypical applications in the scope
of time-dependent DFT [RG84, MMN+12] (see Ref. [KK14b] for a review of theoretical methods
to describe PES). For instance, the peak positions in photoemission spectra, i.e., electron binding
energies, can be obtained as excitation energies of the ionized N−1 electron system via the linear-
response formalism of time-dependent DFT [WH08, MMN+12] or by spectral analysis of dipole
and quadrupole moments obtained from the time-dependent density [MK07]. A yet different ap-
proach to PES is given by recording the time-dependent KS orbitals at distant observation points and
reconstruct the energy-resolved photoemission intensity at these points via the Fourier transform of
the orbitals [PRS00]. In contrast to the time-dependent approaches mentioned before, such an
explicit simulation of the photoemission process in real-time provides knowledge of peak positions
and heights, i.e., emission intensities [DK16].

Ground-state DFT, on the other hand, is not capable of providing such an explicit description of
dynamic processes. Yet, it is possible to obtain accurate predictions of photoemission observables
using DFT in the ground-state domain, thus reducing the ratio of computational effort to accuracy
in comparison to the time-dependent method [KK14b]. For instance, the set of occupied KS or
GKS eigenvalues {εiσ} is typically used in order to approximate electron removal energies, i.e.,
the KS density of states (DOS) is calculated based on the {εiσ} and compared to the experimental
photoelectron spectrum [BC95, AMH+00, KBJ01, KFK+02, KFK+03, SB09, KK10]. At first, such
an ansatz seems rather crude keeping in mind that, strictly speaking, only the ho KS eigenvalue
has a physical meaning, as its negative value gives the first IP according to Eq. (2.37). However,
strong arguments supporting the approach of using the KS DOS to describe experimental spectra
were provided by investigations based on xc potentials reconstructed from highly accurate ab initio
densities. The KS eigenvalues obtained from such potentials were found to describe the IPs of outer
valence electrons accurately with a deviation of ≈ 0.05− 0.1 eV [CGB02, GBB03]. This finding
is further rationalized by the fact that KS eigenvalues were determined as the leading term in a
perturbative expansion of quasiparticle energies [CGB02, KK10, KK14b].
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4 The ISO Local Hybrid Functional

Based on this footing, the approximate peak positions in photoemission spectra can in principle
be extracted from ground-state DFT calculations via the set of occupied KS eigenvalues. This offers
a straightforward approach to PES results, but in practice severe difficulties arise due to the use of
approximate expressions for the xc energy and, hence, the xc potential. One prominent problem
that crucially affects the interpretability of KS eigenvalues as electron removal energies is the issue
of electronic self-interaction introduced in Sec. 2.5. It was found that functionals affected by self-
interaction erroneously shift the eigenvalues of localized orbitals to higher energies, i.e., artificially
destabilize electron energies, while delocalized states suffer less from self-interaction [DMK+06,
KK08, MHSK08, KKMK09, MK09, KKMK10, Kör11, EWRA+14, KK14b].

Explicit removal of the one-error via the GSIC scheme indeed results in an enhanced descrip-
tion of experimental photoelectron spectra in contrast to results obtained via, e.g, the LSDA or
PBE [KKMK09, EWRA+14]. Distortions arising from the one-error can also be mitigated by using
global hybrid functionals. For global hybrids evaluated within the KS scheme via the OEP/KLI
formalism, however, large amounts of EXX are necessary to achieve a satisfying agreement of the
KS DOS with experimental spectra [KK10, MCR+12]2.

In light of the connection between the one-error and the quality of KS eigenvalues as physical
electron removal energies, an assessment of the performance of local hybrid functionals for the
description of PES results in comparison to GSIC and global hybrids becomes interesting. The
question one may ask in this context is: How does the ability of local hybrids to be free from the
one-error affect the quality of their KS DOS? Such an investigation, based on the local hybrids ISO
and ISOII in contrast to the global hybrid PBEh and the energy-minimizing GSIC, is in the main
focus of Publ. 4. I here briefly summarize the important findings.

In Publ. 4, the KS DOS of ISO and ISOII for various values of their corresponding functional
parameters is compared to experimental photoemission spectra for the six prototypical organic
molecules benzene, pyridine, pyrimidine, pentacene, perylene and 1,4,5,8-naphthalene tetracar-
boxylic dianhydride (NTCDA). In case of pentacene and perylene, it is well understood that self-
interaction does not drastically affect the KS DOS [KKMK09, KK10]. Indeed, for these systems,
the LSDA and PBE as well as the hybrids PBEh, ISO, and ISOII in all parametrizations describe
the experimental spectra accurately and show a KS DOS that agrees well with the GSIC result.

For the other systems, however, self-interaction plays a major role, and semilocal functionals
fail to accurately describe the PES outcome while using PBEh with large values of a typically results
in an improved interpretability of KS eigenvalues. The DOS obtained by ISO and ISOII do not
universally reproduce the experimental spectra. Instead, Publ. 4 reveals that ISO and ISOII perform
rather similar to PBEh and the interpretability of their KS eigenvalue spectra decisively depends
on their corresponding functional parameters, i.e., the intrinsic amount of EXX. Better agreement
with experimental spectra and GSIC results is typically obtained only for values of c and c∗ that
are significantly larger than their corresponding values optimized to describe thermochemistry.
Importantly, Publ. 4 draws the conclusion that a functional that is constructed to be one-error-
free does not guarantee physically meaningful KS eigenvalues. Furthermore, it is demonstrated that
both local and global hybrids using large functional parameters predict the position of the first IP
via −εho more accurately in contrast to GSIC, which usually overestimates this quantity.

The finding that local hybrids do not necessarily describe photoemission quantities with the
same reliability as GSIC is further supported by investigations in the context of angular-resolved
PES [KTY+06, DKK+11]. Here, the measured momentum maps can, under certain circumstances,

2Note that the eigenvalue spectrum differs fundamentally if the corresponding functional is evaluated within the KS or
GKS scheme of DFT. A detailed discussion and rationalization of these differences in the context of hybrid functionals
is provided in Refs. [KK10, KK14b].
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be identified with the Fourier transform of molecular orbitals of the valence states [PBF+09]. It
was demonstrated for, e.g, the NTCDA molecule that a description with DFT methods requires
GSIC or global hybrids with large amounts of EXX in order to obtain the correct ordering of the
valence states [DKK+11, DWF+14, KK14b]. Similarly, it is shown in Publ. 4 that the local hybrids
ISO and ISOII only restore the correct ordering of the NTCDA orbitals for large values of their
corresponding functional parameters.

Additionally, in the appendix of Publ. 4 the performance of the local hybrid functional ISO
is discussed for describing the charge-transport characteristics of a model system consisting of two
separate hydrogen chains that are subject to an external field [KBY07, HK12a]. It is well understood
that a correct description of the transport properties of such a system requires explicit treatment of
the one-error [TFSB05, KBY07, HK12a, LBBS12]. It is again discovered that the local hybrid
does not generally provide a comparable solution in this case. This observation and the findings
regarding photoemission observables described above strongly indicate that a functional, which is
nominally free from the one-error, by no means guarantees the same quality of results in comparison
to an explicit removal of the one-error via GSIC. Instead, for hybrid functionals, regardless if global
or local, the intrinsic amount of EXX seems to be the decisive factor.

4.8 Local Hybrids and d-States

The question of self-interaction and orbital localization is further important in the context of de-
scribing systems that contain d-electrons [AAL97, Lep13]. The KS DOS is often used in order to
characterize, e.g., catalytic and magnetic properties of transition-metal clusters [LK11, LAFK13]
(see Chapter 6). Functionals affected by the one-error typically lead to a qualitatively incorrect
DOS due to an erroneous treatment of localized d-states based on the arguments given previously.
Thus, counteracting the one-error is necessary in order to ensure a qualitatively correct description
of systems containing transitions metals.

For a complete characterization of the local hybrids with respect to the one-error, I investigate
the following question: Are one-error-free local hybrid functionals more sensitive to localized d-
states than global hybrids? For this, I compare the calculated KS DOS of systems containing
transition metals with the results of semilocal DFAs and the inherently one-error-free EXX taken
as references. In order to avoid inaccuracies regarding pseudopotential calculations of transition
metals with local hybrids (see Appendix A.5), I only consider diatomic molecules evaluated with
the all-electron code DARSEC. While the findings discussed in this section were observed for several
molecules containing transitions metals, I focus on ZnO and CuCl as representative examples.

In Fig. 4.4, the highest lying KS orbitals of ZnO, evaluated on its experimental bond length
Rexp

Zn−O = 2.6695 a.u. with PBE, are plotted in the (xz)-plane. Here, the oxygen and zinc atoms are
located at rO/Zn = (0,0,±Rexp

Zn−O/2). While the hybridized orbitals of the ho and ho−1 KS state are
rather delocalized, the ho−2 and ho−3 orbitals (and also the ho−4 which is not shown here) are of
d-character and localized on the zinc atom.

The corresponding KS DOS is shown in Fig. 4.5(a) for the LSDA, PBE, pure EXX, the global
hybrid PBEh, and the local hybrids ISO and ISOII for various values of their respective functional
parameters. The DOS was obtained by convolution of the KS eigenvalue spectrum with a Gaussian
using a standard deviation of 0.08 eV. All spectra were aligned to match εho = 0. It is evident
that the d-states, which together account for the peak at ≈ 7 eV under the ho eigenvalue for PBE,
are shifted towards lower energies when using pure EXX. This shift is significantly larger than
the difference observed in the ho−1 state, emphasizing the link between orbital localization and
self-interaction.
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Figure 4.4: Highest lying KS orbitals of ZnO between their respective maximum and min-
imum values (in atomic units) in the (xz)-plane obtained with PBE. Twofold
degenerate orbitals are denoted by "2x deg.".
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Figure 4.5: KS DOS of ZnO (a) and CuCl (b) for various functionals (specifications are valid
for both plots). Pure EXX is given in black. The blue lines mark the PBE curve
for the PBEh panels and the LSDA curve for the local hybrid panels.

When using the PBEh hybrid with increasing values of a, the localized d-states are shifted
towards lower energies and the EXX result, which is even exceeded for a≈ 1. The KS DOS of the
local hybrids ISO and ISOII show a similar effect. Here again, agreement with the EXX results is
obtained with increasing values of the parameter c and c∗. Interestingly, PBEh with a = 0.25 and
ISO with c = 0.5, which were found to be perform similarly for the prediction of binding energies,
show a comparable KS DOS for ZnO.

A similar scenario occurs for the KS DOS of CuCl as shown in Fig. 4.5(b). Here, all peak
positions appear to be influenced by self-interaction except for the peak at≈ 3 eV under the ho state.
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As a result, hybrid functionals systematically shift the remaining peaks towards lower energies.
However, the local hybrids do not exhibit a stronger sensitivity to localized states than the global
hybrid. Here again, PBEh(0.25) and ISO(0.5) show a similar KS DOS.

In summary, the results discussed in the context of localized d-states confirm the main ob-
servations of Publ. 4. Local hybrids, even though constructed to be free from the one-error, in
fact perform comparably to global hybrids for properties that are influenced by self-interaction.
Evidently, the intrinsic amount of EXX plays the dominant role for both types of hybrids. In this
respect, both global and local hybrids exhibit their common nature.

4.9 Piecewise Linearity

An additional aspect investigated in Publ. 4 are hybrid functionals and their treatment of the many-
error as manifested in deviations from the piecewise-linearity criterion of Eq. (2.51). Here, the
question of how the nominally one-error-free local hybrid functionals perform with respect to
quantities determined by the many-error is of primary interest. For this, energy curves as functions
of particle numbers were explicitly calculated for four atoms and four molecules using a variety of
DFAs, including the global hybrid PBEh and the local hybrids ISO and ISOII.

In the realm of KS DFT with fractional electron numbers as discussed in Ref. [PPLB82],
occupation numbers 0 ≤ giσ ≤ 1 are typically employed (cf. Chapter 5). As a consequence, the
electron density is expressed as n(r) = ∑σ=↑,↓∑i giσ |ϕiσ (r)|2 and, analogously, the KS kinetic en-
ergy density as τ(r) = ∑σ=↑,↓

1
2 ∑i giσ |∇ϕiσ (r)|2. For orbital-dependent functionals, a formulation

of the OEP/KLI formalism based on these occupations numbers is used [KLI92a].
It is well understood that standard semilocal functionals erroneously yield a convex energy

curve, while pure EXX results in a concave deviation from the piecewise-linear behavior [MSCY06,
SAG+12, KK13]3. Therefore, for global hybrids a certain mixing ratio of nonlocal and semilocal
components can be found that minimizes the deviation from piecewise linearity [SBL11]. In Publ. 4
this optimal mixing ratio is determined for most systems as a≈ 0.75 using PBEh.

Note that the exact relation [Jan78, CMSY12]

∂E
∂giσ

= εiσ (giσ ) (4.12)

establishes a direct link between the curvature of the energy curve as a function of fractional
electron numbers, the ho KS eigenvalue, and the IP. If evaluated for the ho KS state, one yields
−I =

∫ 1
0 ∂E/∂gho dgho = εho for a functional obeying the straight-line criterion. Thus, such a DFA

automatically yields a ho KS eigenvalue whose negative value reproduces the exact IP. In this light,
the finding that PBEh reduces the deviation from piecewise linearity for a≈ 0.75 appears consistent
with the parametrization that was found to optimally describe IPs using −εho (see Sec. 3.4).

For the local hybrids, a significant asymmetry in the energy curves can be observed especially
for smaller systems such as the helium atom. This unusual behavior has its roots in the concept of
position- and system-dependent mixing, particularly due to the inclusion of the spin polarization for
the ISO functional. The origin of asymmetric energy curves is discussed in more detail in Publ. 4.

Regarding the performance of local hybrids with respect to the many-error, no significant differ-
ence to the global hybrid PBEh could be found. In both cases, the deviation from piecewise linearity
can be minimized by using a functional parameter in a range similar to what was determined as

3It has recently been shown that this is statement is only valid for finite systems, since the deviation from piecewise
linearity naturally vanishes in the solid-state limit even for approximate xc energy functionals [VESN+15].
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the optimum in the context of the IP theorem. Notably, the ability of local hybrids to nominally
eliminate the one-error does not result in a systematically reduced many-error. Instead, again the
intrinsic amount of EXX involved seems to be the dominant aspect. A further discussion of local
hybrids and the many-error with a special focus on the influence of range-separation schemes is
provided in Ref. [HHJHS10]. In the next chapter, a new perspective on DFT for systems with
fractional electron numbers is discussed.
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In this chapter, the ensemble formalism in KS DFT as proposed in Ref. [KK13] is introduced.
Based on a generalization of the KS system for ensembles states, this approach gives rise to energy-
correction terms that, for any xc approximation, significantly reduce deviations from piecewise
linearity of the total-energy curves as functions of fractional particle numbers. In Sec. 5.1 I briefly
draft the fundamentals of the ensemble approach as derived in detail in Refs. [KK13] and [KK14a].
Implications of this formalism for calculations regarding systems with an integer number of elec-
trons are the main topic of Publ. 3, and I summarize the important findings in Sec. 5.2.

5.1 The Ensemble Formalism

Deviations from piecewise linearity of the total energy as a function of fractional particle numbers
have a direct effect on the prediction of physical quantities in KS DFT. In Sec. 4.9 it was demon-
strated that the quality of IPs predicted via the ho KS eigenvalue can directly be related to the
straight-line criterion according to Eq. (4.12). In principle, DFAs can be constructed to minimize
these deviations for individual systems, as, for instance, optimally tuned RSHs provide an accurate
description of IPs and a small many-error due to their tuning condition (cf. Sec. 3.3). Further, in
Publ. 4 it was demonstrated that also global and local hybrid functionals can be parametrized to
minimize the deviations from piecewise linearity. However, approximate xc energy functionals
in general violate the straight-line criterion and complete piecewise linearity is only established
universally, i.e., system-independently, by the exact xc energy. In Ref. [KK13] it is argued that the
deviations observed for practical DFAs are partly due to the fact that these approximations were
developed in the context of pure rather than ensemble states. As a remedy, a concept to generalize
the KS system to ensemble states was proposed, which I will outline in the following.

For an interacting system at zero temperature with N = N0 +ω electrons, where N0 ∈ N and
ω ∈ [0,1], the ground state is determined by an ensemble of the two pure many-electron ground
states ΨN0 and ΨN0+1. This ensemble is described by the statistical operator [PPLB82]1

Λ̂ = (1−ω)|ΨN0〉〈ΨN0 |+ω|ΨN0+1〉〈ΨN0+1|. (5.1)

The density of this system is obtained with the density operator by

n(r) = tr{Λ̂ n̂}= (1−ω)n0(r)+ωn1(r), (5.2)

with n0(r) (n1(r)) denoting the density of the interacting N0 (N0 + 1) electron system. A similar
evaluation of the operator Λ̂ with the many-body Hamiltonian Ĥ readily yields Eq. (2.51), i.e., the

1It is explicitly assumed that these pure ground states are not degenerate.
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piecewise-linear total-energy curve.
In the KS scheme of DFT, the electron density is exactly reproduced by the density of a single

set of fictitious particles that are subject to one effective potential (cf. Sec. 2.3). Thus, the KS system
contains a fractional number of particles as well, and its ground state is given by the ensemble

Λ̂KS = (1−ω)|Φ(ω)
N0
〉〈Φ(ω)

N0
|+ω|Φ(ω)

N0+1〉〈Φ
(ω)
N0+1|. (5.3)

Here, Φ(ω)
N0

and Φ(ω)
N0+1 denote Slater determinants set up by N0 or N0 + 1 KS orbitals ϕ(ω)

i (r),
respectively2. Importantly, these orbitals belong to the same set and are solutions to the same ω-
dependent KS potential. Hence, they contain an implicit dependence on the fractional number ω .
For ω = 0 (1), Φ(ω)

N0
(Φ(ω)

N0+1) denotes the pure KS ground state. Based on Eq. (5.3), the electron
density of the KS system can be expressed as

n(r) = tr{Λ̂KS n̂}= (1−ω)ρ(ω)
0 (r)+ωρ(ω)

1 (r) = ∑
i

gi|ϕ(ω)
i (r)|2, (5.4)

with ρ(ω)
p (r) = 〈Φ(ω)

N0+p|n̂|Φ
(ω)
N0+p〉 = ∑N0+p

i=1 |ϕ
(ω)
i (r)|2 for p = 0,1. The occupation numbers gi

are defined as gi = 1 for i ≤ N0, gi = 0 for i > N0 + 1 and gi = ω for i = N0 + 1. Note that
n(r) by construction gives the electron density of the interacting system, while the ρ(ω)

p (r) do not
necessarily yield n0(r) or n1(r).

The kinetic-energy operator T̂ , when evaluated with the ensemble operator Λ̂KS in the spirit
of Eq. (2.10), trivially leads to a linearized noninteracting kinetic energy that can be expressed in
the form of Eq. (2.14) using the corresponding occupation numbers (see Sec. 4.9). The interaction
operator Ŵ , which gives rise to the Hartree and EXX term according to Eq. (2.21), is expressed as

tr{Λ̂KS Ŵ}= (1−ω)EH[ρ
(ω)
0 ]+ωEH[ρ

(ω)
1 ]︸ ︷︷ ︸

=Ee-H

+(1−ω)Eex
x [ρ(ω)

0 ]+ωEex
x [ρ(ω)

1 ]︸ ︷︷ ︸
=Eex

e-x

. (5.5)

Here, EH[ρ
(ω)
p ] and Eex

x [ρ(ω)
p ] denote the pure-state forms of the Hartree and EXX energy. While

the Hartree term can be obtained by the densities directly, the notation for EXX indicates that the
Fock integral of Eq. (2.21) has to be evaluated with N0 + p orbitals, respectively.

The interaction term in Eq. (5.5) consists of the two terms Ee-H and Eex
e-x, which show an

explicitly linear dependence on ω . The subscript "e-" indicates the ensemble correction. Since
they are not linear in the density or the orbitals, both terms cannot be obtained solely by extend-
ing their corresponding pure-state definitions to systems with fractional particles via occupation
numbers. For instance, inserting the density of Eq. (5.4) into the definition of the Hartree energy
EH[n] given in Eq. (2.13) does clearly not result in Ee-H directly. Instead, a correction arises such
that Ee-H = EH[n]+∆Ee-H[ϕ

(ω)
N0+1](ω) for the Hartree and Eex

e-x = Eex
x [n]−∆Ee-H[ϕ

(ω)
N0+1](ω) for the

EXX term. Here, Eex
x [n] represents the integral of Eq. (2.21) evaluated with occupation numbers

according to the fractional occupations of the KS states. The correction term can be derived as

∆Ee-H[ϕ
(ω)
N0+1](ω) =

1
2

ω (1−ω)
∫ ∫ |ϕ(ω)

N0+1(r)|2|ϕ
(ω)
N0+1(r

′)|2
|r− r′| d3r d3r′. (5.6)

2All derivations are presented in the spin-unpolarized form for simplicity. In practice, spin-polarized systems are
considered by fractionally occupying only one particular spin channel. Thus, the assumption that the ensemble
consists of only two pure states generally holds.
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5.2 Implications for Systems with Integer Particle Numbers

This correction emerges naturally due to the generalization of the KS system to ensemble states. It
can be obtained by a single ground-state calculation for the N0 +ω electron system.

While Eq. (5.5) demonstrates the explicit linearity in ω for the Hartree and the EXX term,
it is reasonable to require that any approximate xc energy functional fulfills the same condition
expressed as (see supplemental material to Ref. [KK13] for a detailed reasoning)

Ee-xc[ρ
(ω)
0 ,ρ(ω)

1 ](ω) = (1−ω)Exc[ρ
(ω)
0 ]+ωExc[ρ

(ω)
1 ]. (5.7)

Since no explicit form of the approximate Exc is assumed here, no general correction term in the
spirit of Eq. (5.6) can be formulated for the ensemble generalized xc energy. However, based on the
form of Eq. (5.7) calculations for systems with fractional numbers of electrons can be performed in
practice. The energy functional reads in this case

E[n] = Tni[n]+V [n]+EH[n]+∆Ee-H[ϕ
(ω)
N0+1](ω)+Ee-xc[ρ

(ω)
0 ,ρ(ω)

1 ](ω). (5.8)

In the context of applying the ensemble generalization to DFAs, some important aspects need
to be discussed. First, even for density-dependent functionals the KS potential cannot be obtained
directly by a functional derivative with respect to n(r). Instead, the terms ∆Ee-H and Ee-xc in
Eq. (5.8) introduce a dependence on the orbitals ϕ(ω)

i (r). Thus, the local potential of ensemble-
corrected DFAs has to be obtained in the OEP formalism to remain within the KS framework.

Second, the ensemble correction does not change the total energy for systems with an integer
number of electrons since the Hartree correction in Eq. (5.6) vanishes for ω = 0,1 and the general-
ized xc energy of Eq. (5.7) reduces to its pure-state form in this case. Hence, predictions regarding
total-energy related properties remain unaffected by the ensemble formalism.

Third, for calculations with pure EXX without correlation, the ensemble generalization has no
effect on the energetics even for fractional electron numbers. The correction term of Eq. (5.6)
appears for both the Hartree and the EXX energy with opposite sign. Consequently, this correction
is canceled and in this sense the EXX can be regarded as ensemble-generalized by construction.

In Ref. [KK13] it is demonstrated that the ensemble-generalized LSDA indeed yields energy
curves that deviate significantly less from piecewise linearity compared to the results of the non-
generalized LSDA. It is argued that the remaining concavity is caused by the fact that both the
Hartree and the xc energy are generalized to be explicitly linear in ω , but a certain nonlinearity
remains due to their implicit dependence on ω via ϕ(ω)

i (r). Further, the change in the curvature of
the total energy as a function of fractional particle numbers directly implies a change in the eigen-
value of the ho KS state according to Eq. (4.12). This behavior is indeed observed in Ref. [KK13],
and its implications for the prediction of physical quantities for systems with an integer number of
electrons is the main subject of Publ. 3. In the following section I highlight the important findings.

5.2 Implications for Systems with Integer Particle Numbers

In the limit ω → 1−, i.e., approaching a neutral system with an integer number of particles from
the left, the local KS potential of an ensemble-generalized DFA can be expressed as vKS(r) =
v(r)+vH(r)+vxc(r)+v(0). While the Hartree and xc potential retrieve their pure-state form in this
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5 Ensemble Generalized DFT

case, a space-independent potential shift v(0) remains. It can be derived as [KK13]

v(0) =−1
2

∫ ∫ |ϕ(ω)
N0+1(r)|2|ϕ

(ω)
N0+1(r

′)|2
|r− r′| d3r d3r′

+ Exc[ρ
(ω)
1 ]−Exc[ρ

(ω)
0 ]−

∫
|ϕ(ω)

N0+1(r)|2vxc[ρ
(ω)
1 ](r) d3r.

(5.9)

This shift is a direct consequence of the ensemble generalization, and v(0) must be taken into account
for εho to match the curvature of the total-energy curve according to Eq. (4.12). Since the absolute
value of the total energy is not affected by a constant shift in the KS potential, v(0) does not influence
the energetics of ensemble-generalized DFT calculations at integer particle numbers.

With respect to the IP theorem, on the other hand, the potential shift gains great relevance. It
was already demonstrated in Ref. [KK13] that the ho KS eigenvalue obtained by the LSDA can
be brought in closer agreement with the experimental IP for the carbon atom and the H2 molecule
due to v(0). The effect of this constant on the interpretability of the ho KS eigenvalue as a physical
quantity is investigated at length in Publ. 3. For this, the quantity εe-ho = εho + v(0) is computed for
the molecular test set (see Appendix A.2 for details). A comprehensive comparison is ensured by
calculating the average relative error δI via −εho in contrast to −εe-ho with respect to experimental
IPs for a range of different DFAs. To this end, the LSDA, PBE, BLYP, B3LYP as well as the global
hybrid PBEh and the local hybrid ISO (for various values of their respective functional parameters)
were investigated.

Interestingly, the results in Publ. 3 indicate an average relative error for the IP via −εe-ho of
≈ 15% for all DFAs investigated. The application of the potential shift v(0) to the KS eigenvalues
systematically results in an overestimation of experimental IPs using the ho KS eigenvalue. As
this behavior is observed in Publ. 3 for all systems and functional approximations investigated,
it strongly indicates that the ensemble generalization of DFAs in general results in a remaining
concavity of the total-energy curves as a function of fractional electron numbers. In particular, for
the global hybrid PBEh and the local hybrid ISO a drastically reduced dependence of δI on the
corresponding functional parameter is observed if −εe-ho is used in contrast to −εho. Consequently,
the average relative error δI ≈ 15% if calculated via −εe-ho is obtained by hybrid functionals
regardless of their intrinsic amount of EXX. This finding appears interesting in light of the hy-
brid parameter dilemma discussed in the course of this thesis. Since the ensemble generalization
eliminates the parameter dependence of δI for hybrid functionals to a large extent, the respective
functional parameter can be chosen such that total-energy-related properties are well described
without affecting the functional’s performance for the description of IPs. However, while an average
relative error of δI ≈ 15% yields improvement for many DFAs in comparison to their uncorrected
formulations, it in fact deteriorates the performance for hybrids functionals with high intrinsic
amounts of EXX. Further, a constant shift in the KS potential does not affect other potential-related
properties, e.g., the relative positions of KS eigenvalues used in a physical interpretation of the KS
DOS. Thus, the ensemble formalism certainly provides an effective approach to address the problem
of piecewise linearity and the connected interpretability of frontier orbitals as physical quantities,
but it does not resolve the hybrid parameter dilemma.

Note that the potential shift of Eq. (5.9) is different if a state with an integer number of particles
is approached from the left (ω → 1−) or from the right (ω → 1+). The reason is that in the former
case the ensemble is built based on the pure states with N0 and N0 +1 electrons, while in the latter
cases the corresponding states of the N0 + 1 and N0 + 2 electron system are used. Naturally, this
difference in the potential shifts gives rise to a derivative discontinuity even for DFAs that do not
exhibit this feature in their pure-state formulation such as, for instance, the LSDA. Importantly,
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5.2 Implications for Systems with Integer Particle Numbers

the derivative discontinuity derived in the ensemble formalism follows strictly from first principles
and its calculation requires only knowledge of the system with a fixed integer number of electrons.
The nature of the ensemble derivative discontinuity is briefly discussed in Publ. 3 and a detailed
investigation and derivation is presented in Ref. [KK14a] in the context of band gaps for finite and
infinite, periodic systems.

The ensemble approach can further be employed in order to address the problem of fractional
dissociation of molecules observed for many DFAs in KS DFT [KK15]. This problem is related
to the often observed convexity in the total energy as a function of the number of electrons, which
leads to an erroneous preference of states with a noninteger number of electrons located on the
separated atoms [Per90, DHG06, GB06, MSCY06, RPC+06, VS06b, VSP07, PRC+07, CMSY08,
CMSY12]. Since the ensemble formalism in general corrects this convexity to a slight concavity,
such states do not appear energetically preferable and thus fractional dissociation can be prevented
(see Ref. [KK15] for details).
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6 Supported Palladium Nanoparticle

In the following chapter, I outline the fundamental concepts and results of electronic-structure
calculations that were performed as a theoretical contribution to Publ. 5. This publication, which is
of predominantly experimental nature, presents a sustainable synthesis procedure in which alcohols
obtained from biomass are converted into polycyclic aromatic N-heterocycles, important building
blocks in organic chemistry. An efficient synthesis process is obtained in Publ. 5 by the usage of
noble-metal nanoparticles embedded in a silicon carbonitride matrix (denoted SiCN) as thermally
stable and reusable catalysts. In this context, I discuss a theoretical approach to characterize the cat-
alytic properties of a supported palladium nanoparticle by combining classical molecular dynamics
with DFT methods. This ansatz is motivated in more detail in Sec. 6.1. In Sec. 6.2 I introduce a
path to extract information regarding the catalytic activity of supported metal nanoparticles with
feasible effort in DFT. I present and discuss the corresponding results in Sec. 6.3 with a focus on
the following question: Which effect does the SiCN matrix have on the electronic structure and the
catalytic activity of the palladium nanoparticle?

6.1 Motivation

The high demand of carbon compounds in the chemical industry is so far almost exclusively
satisfied by relying on fossil resources as the primary carbon source. The use of lignocellulosic
biomass on the other hand provides a promising alternative strategy for obtaining carbon-based
compounds [SC02, TPH+12]. It has been demonstrated that lignocellulose can be converted into
alcohols, which can thus be regarded as an environmentally sustainable equivalent of oil-derived
hydrocarbons [VZS+10]. Thus, the investigation of reactions that effectively turn alcohol-based
compounds into other chemicals is of fundamental importance.

In Publ. 5 such a synthesis concept is introduced. Based on a catalytical functionalization
of phenols by aminoalcohols or aminophenols, various purely aromatic polycyclic N-heterocycles
such as indoles, carbazoles, quinolines, and acridines were synthesized. In other words, a method is
presented to convert carbon compounds originating from lignocellulose into more complex carbon-
based chemicals that are widely applicable in medical and materials science. In this sense, Publ. 5
marks a step towards the reduction of the dependence on oil-based hydrocarbons in the chemical
industry.

The developed synthesis process takes place in several steps, which are supported by different
catalysts. These are chosen in order to maximize the yield for the corresponding step in the synthesis
(see Publ. 5 for details). For the theoretical contribution to this work, the focus is set on the most
active catalyst for the dehydrogenation step, which is a composite of palladium in a matrix of SiCN.
It is experimentally confirmed by powder X-ray diffraction and analysis via transmission electron
microscopy that the palladium is contained within the SiCN in form of nanoparticles. Subsequently,
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6.1 Motivation

a theoretical characterization of the catalytic properties of such a palladium nanoparticle embedded
in SiCN is of interest.

It is well known that noble-metal nanoparticles exhibit strong catalytic activities for a wide
range of organic and inorganic reactions since, in contrast to bulk materials, they offer the advantage
of a high surface-to-volume ratio and active atoms at the surface [Pyy04, Has07, Nar10]. Especially
nanoalloys consisting of different metals were found to show exceeding catalytic properties due to
synergistic effects [FJJ08, LK11, KLW+12, LAK12]. An experimental investigation of the catalytic
properties of metal nanoparticles requires the explicit performance of various chemical reactions in
the presence of nanoparticles with varying shapes, sizes, and, in case of nanoalloys, also compo-
sitions [HFM+12, CLA14]. In analogy, a theoretical modeling of catalytic processes in principle
is based on the calculation of barriers for certain chemical reactions, as, for instance, adsorption
energies of small molecules on the surface of a metallic nanoparticle [GS10, GCF13, LKK15].

However, a characterization of the factors shape, size, and composition of a nanoparticle in
relation to its catalytic activity is also possible outside the context of a specific chemical reaction.
For instance, it has been demonstrated that an interplay of molecular-dynamics simulations and
electronic-structure calculations via DFT leads to an enhanced understanding of gold-platinum
nanoalloys without consideration of a particular reaction [LAK12, LAFK13]. Here, the classical
mean-square displacement in combination with the DOS obtained from DFT computations serve
as indicators for the catalytic activity, yielding insights into the influence of mixing ratios and
structures of the nanoalloys. In a similar way, an improved understanding of local differences in the
catalytic activity between different regions on a nanoparticle’s surface were gained, highlighting the
special role of corners and defect regions [CLA14]. Such an approach certainly does not allow for
absolute statements regarding the performance of a nanoparticle as a catalyst in a specific reaction.
Yet, it enables legitimate relative comparisons between, e.g., different structures and compositions,
and thus helps to understand fundamental principles of catalytic nanoparticles. In the following, a
similar approach is taken to investigate the catalytic palladium nanoparticles of Publ. 5. However,
rather than a characterization with respect to shapes and sizes, the main focus is set on the effect of
the surrounding material in which the nanoparticles are embedded.

The combination of supporting material and metal nanoparticles is referred to as supported
metal nanoparticles [WLB+09]. Depending on the chemical nature of the supporting materials,
supported nanoparticles offer great advantages such as, for instance, a higher reusability, long-
term durability and thermal stability [WLB+09]. Notably, a supporting matrix of SiCN has proven
to provide a thermally and chemically stable support that allows for the generation of small metal
nanoparticles [ZSMK12]. Such supported metal catalysts (denoted M@SiCN) have shown high cat-
alytic activities combined with an increased stability for a variety of chemical reactions [GSK+10,
ZMK11, ZSMK12, FOF+14]. Experimentally, supported metal nanoparticles are typically charac-
terized in terms of size and shape of the nanoparticles as well as their dispersity and distribution
within the supporting material [WLB+09]. Importantly, these catalytic materials have to be synthe-
sized such that the metal nanoparticle is not completely surrounded by the support, since otherwise
they would remain chemically inactive [SWZ11].

From a theoretician’s point of view, the following questions arise in the context of supported
metal nanoparticles: How does the supporting material affect the electronic structure of the included
metal nanoparticles and what are the consequences for their properties as catalysts? In principle,
two limiting scenarios are thinkable. Ideally, the supporting material only provides mechanical,
thermal, and chemical stability, while it does not significantly alter the electronic structure of the
metal nanoparticle. As a consequence, its good catalytic properties are preserved. In a scenario less
ideal, the supporting matrix and the metal nanoparticle might interact in a way that the combined
system exhibits a drastically reduced catalytic activity in comparison to the pure metal nanoparticle.
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6 Supported Palladium Nanoparticle

In the following sections, I outline a feasible theoretical approach to answer these questions for the
catalytic system Pd@SiCN, which is used in Publ. 5. The approach is based on a combination of
different methods. First, the coordinates of a Pd nanoparticle with a width of≈ 3 nm embedded in a
matrix of SiCN are obtained via classical molecular-dynamics simulations. Then, the supported Pd
nanoparticle is divided into subsystems at the Pd-SiCN interface, and DFT calculations for varying
subsystem sizes are performed to efficiently access the system’s electronic structure. This approach
is outlined in more detail in the following section. Note that the molecular-dynamics simulations
were conducted in the group if Prof. Dr. Rodrigo Q. Albuquerque at the University of São Paulo in
São Carlos, Brazil, while I performed the corresponding DFT calculations.

6.2 The Subsystem Approach

In contrast to the other systems investigated in this thesis so far, the supported metal nanoparticle
Pd@SiCN cannot be calculated directly using DFT methods due to its large number of atoms.
Instead, a different path is taken. As a starting point, the structure of one supported Pd nanoparticle
was obtained via classical molecular-dynamics simulations. For this, 586 Pd atoms were embedded
in a support consisting of 2240 Si, 1904 C and 2140 N atoms, a ratio suitable to represent the
experimental situation. The Pd nanoparticle was initially taken as an approximately 3 nm wide cut-
out from the bulk crystal lattice, and then half-embedded in the SiCN support. The interactions of
the Pd atoms within the nanoparticle were computed using the embedded-atom method [DB84], the
SiCN matrix was calculated with the Tersoff potential [Ter88, Ter89, Ter90], and the interactions
between the particles were estimated by a Lennard-Jones potential. Annealing at 10 K and 1 atm
then resulted in the structure shown in Fig. 6.1. Particularly, the structure of the simulated Pd
nanoparticle shows features that are also observed experimentally: It appears deformed due to the
embedding within the SiCN support while it still maintains an organized structure in the center.

(a) Top view (b) Front view

Figure 6.1: Structure of the Pd nanoparticle embedded in a matrix of SiCN as obtained by
molecular-dynamics simulations annealed at 10 K. The red sphere marks the
subsystem taken around the reference point with a radius of R = 8.0 Å.
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6.2 The Subsystem Approach

A suitable indicator for the catalytic activity of a specific system is given by its electronic DOS.
In particular, a high DOS close to the Fermi level is known to advocate a pronounced chemical
activity [KLW+12, LAFK13, LKK15]. A reliable DOS can most effectively be obtained by using
DFT methods. However, the single Pd@SiCN nanoparticle depicted in Fig. 6.1 contains in total
6780 atoms, a number that cannot easily be handled even by DFT. In order to solve this problem,
a different approach is chosen. Instead of calculating the Pd@SiCN system in its entirety, smaller
subsystems were created that allow for numerically feasible, yet representative DFT calculations.

These subsystems were created by choosing a reference point at the Pd and SiCN interface
as the center of a sphere with varying radii. Each subsystem then considers the atoms that are
located within its corresponding radius. As a guiding criterion, the location of the reference point
was chosen such that subsystems with different radii contain a comparable ratio of Pd to SiCN
atoms. In Fig. 6.2 the numbers of atoms and electrons contained in these subsystems are plotted
as a function of the sphere radius. It becomes evident that the numbers of atoms and electrons
of type Pd, SiCN and the combined Pd@SiCN scale similarly with respect to the sphere radius,
underlining the construction of the subsystems and the choice of the reference point. Note that
for calculations using a subsystem with, e.g., only Pd atoms, the corresponding structure from the
molecular-dynamics simulation is modified by explicitly removing the SiCN atoms (and vice versa),
but no geometry relaxation is performed. In Fig. 6.1, the subsystem with R = 8.0 Å is illustrated by
the red sphere.
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Figure 6.2: Scaling of the number of atoms (a) and electrons (b) with respect to the sphere
radius R around the reference point for only Pd, only SiCN ,and Pd@SiCN, i.e.,
the combined system. Each curve is fitted to the function f (R) = a ·Rb (dashed
lines). The corresponding values of a and b are noted in the graph.

In order to make sure that the subsystem approach leads to a reliable representation of the
overall system, the important properties related to the electronic structure have to be investigated
for convergence with respect to the sphere radius. For this, the quantity

Σ∆(R) =
1

Natoms(R)

∫ εFermi

εFermi−∆

gR(ε) dε (6.1)

is introduced as a transparent indicator for the behavior of the DOS under the Fermi level. Here,
Natoms(R) denotes the total number of atoms that are included in a subsystem with radius R. The
function gR(ε) denotes the DOS obtained by a DFT calculation for a particular subsystem. It is
obtained by broadening the calculated spectrum of the occupied DFT eigenvalues with Gaussians
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6 Supported Palladium Nanoparticle

of a width of 0.08 eV to account for line broadening1. Finally, the eigenvalue of the ho state was
taken as the Fermi level.
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Figure 6.3: Integrated DOS Σ∆(R) as a function of the subsystem sphere radius R for a variety
of DFAs and HF. For each subsystem, the atoms of type Pd, SiCN, and both
combined (Pd@SiCN) were considered.

The results for Σ∆(R) as a function of the subsystem radius R are shown in Fig. 6.3 for ∆ = 1 eV
and ∆ = 2 eV. Here, the LSDA, PBE and the global hybrid PBE0 were used up to a radius of R =
8 Å. In this subsystem, Pd@SiCN contains 1940 electrons which was determined as the practical
limit in terms of numerical feasibility (PBE0 calculations could only be converged up to R = 6 Å
for Pd@SiCN with 890 electrons). Further, the global hybrid functionals B3LYP and BHLYP as
well as Hartree-Fock (HF) were employed to calculate the subsystem with R = 5.5 Å.

The behavior of the integrated DOS of the LSDA, PBE, and, for Pd and SiCN, also PBE0 indeed
reveals that Σ∆(R), a dependable indicator for catalytic activity, converges for large subsystem
sizes above R = 6.5− 7.0 Å. This observation is further confirmed by extending the integration
region from ∆ = 1 eV to ∆ = 2 eV below the Fermi level. Hence, it appears justified to access the
relevant electronic structure properties of the Pd nanoparticle embedded in SiCN via representative
calculations of subsystems with sufficiently large radii. In the following section, this approach will
be evaluated more extensively.

6.3 Analyzing the Density of States

After sufficient justification of the subsystem approach, a direct investigation of the obtained DFT
DOS provides the next step on the path to a characterization of the supported Pd nanoparticle in
terms of its catalytic activity. In Fig. 6.4(a) the DOS obtained with PBE is plotted for the subsystem
R = 8.0 Å, which, as argued above, can be regarded as converged with respect to the integrated
DOS. The DOS of the combined Pd@SiCN in the direct vicinity of the Fermi level is evidently

1The program package TURBOMOLE [tur] was used to perform self-consistent DFT calculations. Semilocal functionals
were utilized using a TZVPP def2-basis set, while hybrid functionals were evaluated with an SVP def2-basis set in the
GKS scheme. The accuracy of both the basis sets and the resolution-of-the-identity approximation (see Ref. [Ahl04]
and references therein) were checked and both were found to have negligible influence on Σ∆(R).
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6.3 Analyzing the Density of States

dominated by the DOS of the Pd atoms. In this region, both graphs exhibit a similar height and
structure, whereas the DOS of the SiCN support is found to have little effect on the overall curve.
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Figure 6.4: DFT DOS obtained with PBE for the subsystem with R = 8.0 Å (a) and R = 5.5 Å
(b) for Pd only, SiCN only, and both combined (Pd@SiCN). The positions of the
corresponding ho states, i.e. the Fermi levels, are given by the colored ticks at the
top.
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Figure 6.5: DFT DOS obtained with PBE0 (a) and BHLYP (b) for the subsystem with R =
5.5 Å for Pd only, SiCN only, and both combined (Pd@SiCN).

A similar observation, even though less distinct, can be made in Fig. 6.4(b) for the smaller
subsystem with R = 5.5 Å calculated with PBE. The same subsystem is recalculated with the PBE0
and BHLYP global hybrid functionals in order to demonstrate that the conclusion drawn above is not
merely a feature of the PBE functional. The resulting DOS are shown in Fig. 6.5(a) for PBE0 and
Fig. 6.5(b) for BHLYP. In principle, both results underline the argumentation that the overall DOS is
predominantly influenced by Pd in the region close to the Fermi level. Importantly, these functionals
counteract electronic self-interaction that affects the energetic positioning of states emerging from
localized orbitals (cf. Secs. 4.7 and 4.8). This effect becomes apparent from the corresponding
figures since the DOS is significantly shifted towards lower energies with an increasing amount of
EXX involved in the calculation. It is also shown in Figs. 6.3(a) and 6.3(b) that the integrated DOS
decreases with larger amounts of nonlocal EXX. Note that investigations regarding the electronic
structure of Pd@SiCN based on local hybrid functionals are not presented due to inaccuracies
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arising for local hybrids in the context calculating transition metals with pseudopotential methods
(see Appendix A.5 for details). Yet, the results of Sec. 4.8 strongly indicate a similar sensitivity
to localized d-states for both global and local hybrid functionals. Based on this reasoning, it can
be expected that local hybrids provide a characterization of the DOS and the catalytic properties of
Pd@SiCN that is comparable to the presented results obtained with global hybrid functionals.

In summary, it is demonstrated that the electronic structure of a Pd nanoparticle within SiCN,
as obtained with molecular-dynamics simulations, can be accessed reliably via the subsystem ap-
proach. DFT calculations of subsystems with sufficient size yield the observation that electronic-
structure properties of the supported Pd@SiCN are essentially influenced by Pd instead of SiCN.
This conclusion is supported by calculations with different DFAs, especially addressing the question
of self-interaction and localized states. In this sense, the results presented in this chapter support the
observation that Pd preserves its excellent catalytic properties within a matrix of SiCN and provide
a theoretical reasoning for the use of this particular catalyst in the synthesis of Publ. 5.
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A.1 Modifications in DARSEC

The numerical results which set the basis for Publ. 1, Publ. 2, and Publ. 3 were almost entirely
obtained with the program package DARSEC. I here give a concise outline of the fundamental
principle of DARSEC and highlight relevant modifications of the code that I implemented in the
context of the work presented in this thesis. More detailed information about DARSEC can be
found in Refs. [MKK09, Mak10].

DARSEC is a parallelized electronic-structure code based on a finite-difference approach with
a representation of space-dependent functions on a real-space numerical grid. It allows for self-
consistent KS DFT calculations of systems with up to two atomic centers, i.e., atoms and diatomic
molecules, with a wide range of DFAs and an explicit consideration of all electrons present. The
rotational symmetry inherent to such systems enables an analytical treatment of the dependence
on the azimuthal angle in all occurring functions. Thus, the problem effectively reduces to two
dimensions, resulting in a drastically diminished numerical effort. The numerical grid is expressed
in prolate spheroidal coordinates, which naturally provide a dense sampling in the vicinity of the
atomic center and a more coarse representation of the asymptotic regions. In DARSEC, a local
multiplicative potential of orbital-dependent functionals is obtained either via the full OEP based
on the S-iteration method [KP03b, KP03a] or via the KLI approximation (cf. Sec. 2.6). DARSEC
further facilitates DFT calculations with user-specified electronic configurations of the molecule or
atom of interest.

In the following, I provide a brief overview of important modifications that I applied to DARSEC,
listed by the name of the modified subroutine with a short description of the applied changes:

– program darsec: general cleaning and reduction of output;

– get_xc: rearrangement of the computation of the xc energy and local potential for both
density- and orbital-dependent functionals, enabling a straightforward combination of the
corresponding functions for DFAs with several parts such as, for instance, hybrid functionals;

– restart: enabling restarted calculations on charge-density or KS orbital input files ob-
tained from previous DARSEC calculations;

– b88_x: implementation of the B88 exchange functional;

– lyp_c: implementation of the LYP correlation functional;

– pbe_x, pbe_c and pbe_xc: implementation of the PBE exchange and correlation func-
tionals, which are combined with EXX to the PBEh hybrid functional;
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– get_uiwf_eiso and get_uiwf_coco: numerically stable implementation of the xc
energy and potential for the ISO and ISOII local hybrid functionals based on their functional
derivative uiσ (r), including an evaluation of the asymptotic slope γσ ;

– get_pot_bar, get_vxc_kli, get_uiwf and oep_S_iter: rearrangement and mod-
ification of subroutines related to the OEP/KLI procedure, enabling an evaluation of function-
als consisting of several orbital-dependent components and different convergence schemes for
the S-iteration;

– get_v0_DD_ddep, get_v0_orb, create_red_electronic_struct and
print_out_shift: implementation of the ensemble potential shift v(0) for density- and
orbital-dependent functionals in a spin-polarized formalism;

– ionpot: inclusion of the electrostatic potential of a positively charged sphere ("jellium
potential") as external potential for debugging;

– usrinput_90: introduction of several flags to the input file darsec.in related to the
changes described above.
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A.2 Experimental Data of Atoms and Diatomic Molecules

In the following, I present the experimental data of the atoms and diatomic molecules used through-
out this work in tabular form. For all systems in the evaluation set, which was used in Publ. 1
and Publ. 3 as well as in Secs. 3.4, 3.7, 4.2, and 4.3, the ground-state configurations and first
vertical IPs are listed. Further, the electronic configurations of the corresponding cationic states are
provided as they are used in Publ. 3 to compute IPs via total-energy differences. For the molecules
in the test set the experimental bond lengths and binding energies are listed. The experimental
binding energies were taken at zero temperature and adjusted by removing zero-point vibrational
energies. For the molecules SiO, ZnO, and CuCl as discussed in Appendix A.5 and Sec. 4.8 only the
ground-state configurations and bond lengths are provided, as the IPs and binding energies are not of
relevance in the corresponding discussion. All experimental values are obtained from Ref. [Lid11]
and http://webbook.nist.gov (latest access on March 27, 2016) and are listed in Table A.1.

Table A.1: Experimental data of the atoms and diatomic molecules used throughout this work.

System Ground state Rexp
A−B (a.u.) Iexp (eV) Dexp (eV) Cationic state

Evaluation set:

H2
1Σ+

g 1.4011 15.426 4.747 2Σ+
g

LiH 1Σ+ 3.0139 7.755 2.515 2Σ+

Li2 1Σ+
g 5.0518 5.113 1.072 2Σ+

g
LiF 1Σ+ 2.9553 11.306 5.997 2Σ+

BeH 2Σ+ 2.5368 8.204 2.381 1Σ+

BH 1Σ+ 2.3290 9.769 3.683 2Σ+

BO 2Σ+ 2.2766 13.306 8.463 1Π
BF 1Σ+ 2.3861 11.120 7.635 2Σ+

CH 2Π1/2 2.1163 10.640 3.646 1Σ+

CN 2Σ+ 2.2144 13.598 7.863 1Π
CO 1Σ+ 2.1322 14.014 11.252 2Σ+

NH 3Σ− 1.9600 13.490 3.606 4Σ−
N2

1Σ+
g 2.0743 15.600 9.900 2Σ+

g
NO 2Π1/2 2.1746 9.264 6.626 1Σ+

OH 2Π3/2 1.8324 13.017 4.646 3Π2

O2
3Σ−g 2.2819 12.329 5.225 2Πg

FH 1Σ+ 1.7326 16.120 6.120 2Σ+

F2
1Σ+

g 2.6695 15.697 1.663 2Πg

H 1s1 13.598 —
Li [He] 2s1 5.392 1s2

Be [He] 2s2 9.323 [He] 2s1

B [Be] 2p1 8.298 [He] 2s2

C [Be] 2p2 11.260 [Be] 2p1

N [Be] 2p3 14.534 [Be] 2p2

O [Be] 2p4 13.618 [Be] 2p3

F [Be] 2p5 17.423 [Be] 2p4

Continued on next page
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Table A.1 – continued from previous page

System Ground state Rexp
A−B (a.u.) Iexp (eV) Dexp (eV) Cationic state

Other:

SiO 1Σ+ 2.8530
ZnO 1Σ+ 3.2162
CuCl 1Σ+ 3.8762

Na [Ne] 3s1 5.132 [Be] 2p6

K [Ar] 4s1 4.340 [Mg] 3p6
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A.3 Details of the Potential Asymptotic Behavior

In this section, the important findings of Publ. 2 as well as Secs. 4.5 and 4.6 are investigated in more
detail. Based on the illustrative example of the F2 molecule I discuss the influence of orbital nodal
planes and nodal axes1 in the ho KS orbital on the asymptotics of the local xc potential for local
hybrid functionals. Further, a summary of the asymptotic behavior of relevant DFAs, including
local and global hybrids as wells as GSIC, is provided in tabular form.

As a starting point, Fig. A.1 shows relevant quantities the for F2 molecule along the (xz)-plane
as facilitated by the program package DARSEC (see Appendix A.1 for details). The F2 molecule
is evaluated on its experimental bond length of Rexp

F−F = 2.6695 a.u. (see Appendix A.2). The two
separate fluorine atoms are located at rF = (x,y,z) = (0,0,±Rexp

F−F/2). The spin index σ is neglected
in the following since F2 is fully spin unpolarized. I here focus on the ISOII local hybrid functional
for the reasons explained in Sec. 4.3.
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Figure A.1: (a), (b): the highest lying KS orbitals of F2 plotted between their respective
maximum and minimum values (in atomic units); (c), (d): the detection function
τW/τ(r) obtained by ISOII with c∗ = 0; (e), (f): the ISOII LMF for c∗ = 0 and
c∗ = 0.5.

Both the ho and the ho−1 KS orbital are twofold degenerate (labeled "2x deg.") and exhibit a
nodal axis along the z-axis. The ho KS orbital contains an additional nodal plane along the (xy)-
plane. The corresponding orbitals are plotted in Figs. A.1(a) and A.1(b). The resulting detection
function τW(r)/τ(r) is depicted in Fig. A.1(c) for a large region of the numerical grid, a more

1Nodal planes and nodal axes of KS orbitals have the same effect on τW(r)/τ(r) and only differ in the dimension of
their influence (2D vs. 1D). Therefore, I mainly refer to nodal planes, but all arguments hold for nodal axes as well.
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detailed view of the core area is provided in Fig. A.1(d). Note that these quantities are obtained
with the ISOII local hybrid using c∗ = 0, but it can readily be assumed that fundamental orbital
features such as nodal planes are not influenced by the DFA put to task. Therefore, the KS orbitals
and consequently τW(r)/τ(r) appear similar when calculated with other functionals.

The detection function reaches its intended asymptotic limit along all spatial directions where
ϕho(r) and ϕho−1(r) do not exhibit nodal features. Along the (xy)-plane and the z-axis, τW(r)/τ(r)
behaves as predicted by Eq. (4.11). More precisely, the detection function deviates more strongly
along the z-axis since here n(r)∼ |ϕho(r)|2 + |ϕho−1(r)|2 + |ϕho−2(r)|2, yielding

τW

τ
−→
n.a.

|∇ϕho−2|2
|∇ϕho|2 + |∇ϕho−1|2 + |∇ϕho−2|2

< 1. (A.1)
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Figure A.2: The local xc potential of F2 on the (xz)-plane obtained using ISOII(c∗ = 0.5). The
black grid marks −γ/r with γ = 0.852. The grey line flags grid points located at
R = 20 a.u..

Based on these properties of the detection function, two different scenarios arise for the long-
range behavior of the LMF. For a LMF that employs τW(r)/τ(r) without any additional function,
as given by, e.g, Eq. (3.12) and ISOII(c∗ = 0), the asymptotic behavior follows directly from the
properties of the detection function. This case is illustrated in Fig. A.1(e). The other scenario is
given by a LMF that uses the detection function, but its long-range behavior is dominated by a
different functional ingredient. Examples are the ISO and ISOII local hybrids with finite values for
their respective parameter. Here, the reduced density gradient in Eq. (4.2) and Eq. (4.6) suppresses
τW(r)/τ(r) in the asymptotic limit, and the LMF approaches 0 as intended. This is demonstrated
in Fig. A.1(f) on the example of ISOII with c∗ = 0.5. In the following, I discuss the influence of
orbital nodal planes on the asymptotics of vxc(r) based on these two scenarios.

Fig. A.2 shows the xc potential for F2 calculated via the KLI approximation using ISOII with
c∗ = 0.5. In general, vxc(r) decays with γ = 0.852 as determined according to Eq. (4.10), but along
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the x-and z-axis special potential features occur. These bumps and valleys are manifestations of the
nonvanishing asymptotic constants of Eq. (2.60).

Due to the orbital structure of F2, two different constants can be observed in Fig. A.2. Along
the x-axis, the nonvanishing asymptotic constant is determined by the ho−1 state, which gives
Cx = 0.019 hartree. Along the z-axis, both the ho and ho−1 KS orbital vanish and the asymptotic
constant is determined by the ho−2 state, yielding Cz =−0.090 hartree for ISOII with c∗ = 0.5. In
Fig. A.3 the vxc(r) of Fig. A.2 is replotted at a fixed radius R = 20 a.u. as function of the polar angle
φ together with the relevant asymptotic quantities. It becomes evident that vxc(r) generally decays
with −γ/r. In the vicinity of nodal planes, the potential bends towards the asymptotic constants Cx

at φ = 0,π and Cz at φ = π
2 ,

3π
2

2.
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Figure A.3: The xc potential of F2 computed with ISOII(c∗ = 0.5) plotted along the polar
angle φ at fixed radius R = 20 a.u. as marked by the grey line in Fig. A.2.

A similar representation is given in Fig. A.4 for the xc potential of ISOII with c∗ = 0. Here,
the potential generally decays with γ = 0.776 as determined via Eq. (4.10). Yet, the asymptotic
constants Cx = 0.016 hartree and Cz =−0.071 hartree are not correctly attained by vxc(r). Instead,
the potential takes up larger values along the x- and z-axis and their vicinities, as indicate by the
bend of vxc(r) close to φ = π

2 ,
3π
2 . The reason for this deviation from the predicted behavior are

the incorrect asymptotic properties of the LMF of ISOII(c∗ = 0) as depicted in Fig. A.1(e). As
mentioned earlier, such a LMF does not fulfill Eq. (4.7) and violates the requisite for Eq. (4.10).
This leads to a different asymptotical behavior for which no general expression is known at this
stage. Importantly, the xc potential does not achieve the correct −1/r behavior in this case either.

Table A.2 provides an overview of the asymptotic behavior of the local xc potential of rele-
vant DFAs discussed in this thesis, including the local hybrids ISO and ISOII, the global hybrid
PBEh, and the GSIC. The asymptotics of local hybrids are listed for the various in terms of spin
polarization and orbital nodal planes. In Table A.2, the first column denotes the functional with
a specification of the corresponding parameter, while the second column distinguishes between
the cases of spin-unpolarized (spin = 1) and spin-polarized (2) systems. In the third column, it
is specified if a nodal plane/axis in the ho KS orbital is assumed. In the last column, the explicit
analytical form of the asymptotic decay is given if available. In case no general expression is
known, it is denoted as "not generally defined" (n.g.d.). For spin-polarized cases, the index σho
denotes the spin channel that contains the global ho KS state, while the other spin channel is given
by σ̄ho (cf. Appendix B of Publ. 2).

2At φ = π
2 ,

3π
2 , the non-vanishing asymptotic Cz is not fully attained by vxc(r) since grid points directly on the z-axis

were excluded from DARSEC-calculations [MKK09].

63



A Appendix

-0.12

-0.09

-0.06

-0.03

0.00

0 π/2 π 3π/2 2π

v x
c

(h
ar

tr
ee

)

φ

− γ
R

Cz − γ
R

Cx − γ
R

− 1
R

Figure A.4: The xc potential of F2 computed with ISOII(c∗ = 0) plotted along the polar angle
φ at fixed radius R = 20 a.u..

Table A.2: Overview of the general potential asymptotics of PBEh, GSIC and the local hybrid
functionals ISO and ISOII.

nodal plane/axis asymptotic behavior
functional spin in ho KS orbital? vxc(σ)(r) −→|r|→∞

...

PBEh(a > 0) 1,2 no − a
|r|

1,2 yes C(σ)− a
|r|

(G)SIC 1,2 no − 1
|r|

1,2 yes C(σ)− 1
|r|

ISO(c = 0) 1 no, yes exp(−const · |r|)
2 no σho: − γσho

|r| ; σ̄ho: n.g.d.
2 yes σho: n.g.d.; σ̄ho: n.g.d.

ISO(c > 0) 1,2 no − γ(σ)

|r|
yes C(σ)−

γ(σ)

|r|

ISOII(c = 0) 1 no − γ
|r|

1 yes n.g.d.
2 no σho: − γσho

|r| ; σ̄ho: n.g.d.
2 yes σho: n.g.d.; σ̄ho: n.g.d.

ISOII(c > 0) 1,2 no − γ(σ)

|r|
yes C(σ)−

γ(σ)

|r|

64



A.4 Pseudopotential Generation

A.4 Pseudopotential Generation

The Pseudopotential Principle

The core electrons of atoms are chemically inert, i.e., their density does not vary greatly if the
atom is subject to different chemical environments. Based on this reasonable assumption, one can
construct a general, effective potential felt by the valence electrons that reproduces the potential
of the nuclei screened by the core electrons [KK08]. Thus, only the valence electrons have to be
considered explicitly, and the numerical effort to solve the KS equations can be reduced drastically.
Such potentials are termed pseudopotentials. In contrast to model potentials, they are usually
constructed based on an ab initio approach. Especially norm-conserving pseudopotentials [HSC79]
provide very accurate results. Additionally, pseudopotentials can be used to include relativistic
effects into a DFT calculation, which becomes relevant for heavy atoms [Kle80].

In the following, I briefly outline the construction of pseudopotentials as described in Refs.
[BHS82, RRKJ90, TM91, PTA+92, KK08], focusing on the method of Ref. [TM91]. First, one
solves the atomic, radial KS equation using the DFA for which the pseudopotential should be
constructed. Thus, the all-electron-valence orbitals ϕae-v

lm (r) are obtained for this particular atom,
with l denoting the angular momentum and m the magnetic quantum number of the valence shell.
Pseudo-valence orbitals ϕps-v

lm (r) are then created based on the following approach: Outside a certain
radius rc(l), the radial part of ϕae-v

lm (r) and ϕps-v
lm (r) must be identical. For r ≤ rc(l), the radial part

of ϕps-v
lm (r) is constructed by using a smooth, analytical function such that the norm of the all-

electron- and pseudo-valence orbital is the same. Hence, the pseudo-valence orbitals do not exhibit
the strong oscillations in the core region which are typically found for the all-electron orbitals. As
a consequence, the numerical treatment is significantly simplified.

Thereafter, a screened pseudopotential vps-scr
l (r) is obtained by inversion of the radial KS equa-

tion. Due to this step, the valence-state KS eigenvalues of the pseudopotential method agree with
the all-electron results. The potential vps-scr

l (r) is then unscreened by using the valence-pseudo
density nps-v(r) via

vps
l (r) = vps-scr

l (r)− vH[nps-v](r)− vxc[nps-v](r). (A.2)

Two things have to be noted here. First, for the ionic pseudopotential vps
l (r) one relies on the

approximation that the xc potential can be split linearly into a core and valence part, i.e., vxc[n](r)≈
vxc[nc](r)+vxc[nv](r). This relation only holds if core and valence densities do not strongly overlap.
In other cases, one can explicitly take the core density into account via a non-linear core-correction
to Eq.(A.2) [LFC82].

Second, the ionic pseudopotential is different for different angular momentum components.
Consequently, the general pseudopotential must be constructed by using the l-dependent vps

l (r) in
combination with a projection operator for that l-component on the angular part of the orbital,
rendering the pseudopotential operator nonlocal [TM91]. In practice, typically the efficient repre-
sentation of the nonlocal pseudopotential according to Ref. [KB82] is employed.

For a DFT calculation of, e.g., a molecule, the overall pseudopotential is compiled by adding the
pseudopotential of each atom. By construction, the pseudopotential approach exactly reproduces
the KS eigenvalue spectrum for a single atom. However, for a system with many atoms, this is only
the case if the the pseudopotential is transferable to different chemical environments [HSC79]. In
this context, the parameters rc(l) are of special importance, since they determine the radius outside
which the pseudo-valence orbitals coincide with the true KS orbitals. Thus, when constructing
atomic pseudopotentials, the rc(l) must be chosen small enough to ensure a high transferability,
while being large enough to produce smooth pseudo-valence orbitals [KK08].
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Directly Evaluated Generation of Pseudopotentials for Semilocal Functionals

In order to create and evaluate pseudopotentials for semilocal functionals effectively, I developed
a procedure to test pseudopotentials for different chemical environments directly after their con-
struction. For this, pseudopotentials are generated with the atomic radial code of José Luís Martins
(available at http://bohr.inesc-mn.pt/~jlm/pseudo.html, latest access on March
27, 2016) based on the approach described previously. The pseudopotential generation requires
information regarding the desired state (typically the ground state) of the respective atom, i.e., a
specific electronic configuration, as well as a choice for the cutoff radii rc(l) as input.

Subsequent to their construction, pseudopotentials are tested in an automated fashion by the
script genPP. Based on a multitude of electronic configurations of excited and ionized states
provided by the user, genPP initializes calculations of the atom in these states using all electrons
on the one and the previously designed pseudopotential on the other hand. Afterwards, a summary
of the differences between the all-electron and the pseudopotential computation is printed for the
following quantities: the eigenvalues of the occupied and some unoccupied valence states, the total
energy and the radius r at which |r ·ϕlm(r)| becomes extremal. These numbers are compared for all
excitation and ionization configurations, yielding significant, clear indicators for the performance of
the pseudopotential constructed with those specific values for the rc(l). By a systematic variation of
the cutoff radii rc(l) and repetition of the procedure using genPP, these indicators can be optimized
and pseudopotentials can be tested effectively and reliably.
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Figure A.5: KS DOS of a Pd6 cluster obtained with the LSDA. The grey dashed lines gives
the DOS obtained in TURBOMOLE (QZVPP) with the position of the ho KS
eigenvalue marked with the red tick. The black solid lines show the DOS obtained
in PARSEC with an LSDA pseudopotential constructed using the parameters
denoted in the graph in the form (rc(s), rc(p), rc(d)). The blue tick marks εho for
the pseudopotential calculation. The pseudopotential was constructed to include
relativistic effects [Kle80].

The influence of the cutoff radii on computational results is illustrated in Fig. A.5, which shows
the KS DOS of a Pd6 cluster calculated in PARSEC and in TURBOMOLE (taken as a reference
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in the following). Several pseudopotentials for Palladium with 10 d-electrons were obtained by
using genPP with the LSDA. The optimized cutoff radii were determined as rc(s) = 2.39 a.u.,
rc(p) = 2.88 a.u. and rc(d) = 2.33 a.u.. The cutoff radii were varied to create harder and softer
pseudopotentials as specified in Fig. A.5. It becomes evident that the optimized pseudopotential
parameters provide an accurate description in the DOS, while too large or too small cutoff radii
only lead to insufficient agreement. Yet, the DOS of Pd6 appears as rather robust under variation of
the rc(l), since the semisoft and semihard pseudopotentials also lead to a sufficiently accurate KS
DOS. In Fig. A.6, the observation that the optimized pseudopotential cutoff radii lead to a reliable
KS DOS is further verified. It is shown for a Pd7 and two Pd13 clusters with different geometries,
that such a choice for the rc(l) results in a DOS that agrees acceptably well with the TURBOMOLE
result in terms of shape and absolute position on the energy scale.
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Figure A.6: KS DOS of a Pd7 and two Pd13 clusters with different geometries denoted Cs
and C3ν (see Ref. [KCO+11]). The grey dashed lines gives the DOS obtained
in TURBOMOLE (QZVPP for Pd13 Cs and TZVPP for Pd13 C3ν and Pd7) with
the position of the ho KS eigenvalue marked with the red tick. The black
solid lines show the DOS obtained in PARSEC with an LSDA pseudopotential
constructed using the optimized parameters. The blue tick marks εho for the
pseudopotential calculation. The pseudopotential was constructed to include
relativistic effects [Kle80].

67



A Appendix

A.5 Compatibility with Pseudopotentials

The systems discussed in Publ. 4 and Sec. 4.7, i.e., organic molecules and hydrogen chains, were
calculated using the Bayreuth version [MKHM06] of the program package PARSEC [KMT+06], a
real-space code based on finite-difference methods. In PARSEC, core electrons are treated via the
pseudopotential approach described in Appendix A.4. Here, norm-conserving pseudopotentials of
Troullier-Martins type are used.

While pseudopotentials for semilocal functionals can be created in a straightforward manner
(cf. Appendix A.4), their construction for orbital-dependent functionals is more involved [KK08].
Therefore, it seems inadvisable to construct pseudopotentials for each orbital-dependent functional
anew, and instead a different approach is employed. This approach consists of using orbital-
dependent functionals on top of pseudopotentials that were constructed from different functional
approximations. Such a strategy has already proven to be justified for GSIC using LSDA pseu-
dopotentials [HKKK12].

For the global hybrid PBEh one can show that good agreement in the KS eigenvalues with
all-electron calculations can be obtained if either PBE or EXX [EHS+01] pseudopotentials are
employed. In Appendix A.6 a direct comparison is provided for the CO and N2 molecule, with
deviations typically ranging between 0.05−0.1 eV for the valence states. For the local hybrids ISO
and ISOII, however, such an approach does not yield eigenvalues that agree with the all-electron
results within an acceptable accuracy (see supplemental material of Publ. 4). Instead, rather big
deviations for the KS eigenvalues and the asymptotic slopes γσ occur. In fact, the asymptotic slope
of a local hybrid calculated on top of, e.g, an EXX pseudopotential is systematically smaller than
the correct all-electron result. Based on Eq. (4.10) and the assumption that the shape of the ho
KS orbital does not differ greatly between the all-electron and the pseudopotential calculation, it is
conclusive that these differences must be caused by an incorrect representation of the LMF.

In Fig. A.7 the LMF f ISOII
x (r) of ISOII(c∗ = 0) computed in different schemes is plotted along

the interatomic axis for the CO molecule. It becomes evident that the LMF obtained on top of an
EXX pseudopotential substantially differs from the all-electron result in the vicinity of the atomic
core regions. Here, besides strong oscillations due to numerical instabilities, the LMF is overall too
large, while the long-range behavior of f ISOII

x (r) is described rather well.
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Figure A.7: LMF of ISOII with c∗ = 0 for the CO molecule along the interatomic z-axis
obtained in DARSEC (black line) and in PARSEC using an EXX pseudopotential
with (blue line) and without (red line) explicit consideration of the core density.
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The incorrect behavior of the LMF around the atomic positions can be attributed to the fact
that, when computed in a pseudopotential context, only the valence density nv(r) is used for its
construction. In said regions, however, the core density nc(r) is dominating and exhibits great
influence on, e.g, the detection function τW(r)/τ(r) [PKZB99]. To obtain agreement between the
LMF of an all-electron and a pseudopotential calculation, it is therefore necessary to explicitly
include nc(r) via a core-density correction (denoted with the superscript "cd") according to

τcd
W (r) =

|∇(nv(r)+nc(r)) |2
8(nv(r)+nc(r))

, (A.3)

τcd(r) =
1
2


 ∑

iσ
valence
states

|∇ϕv
iσ (r)|2

+ |∇(nc(r))
1
2 |2

 . (A.4)

Here, ϕv
iσ (r) denotes the KS orbitals of the valence states.

In Fig. A.7 the corrected LMF is given in blue for f ISOII
x (r) of ISOII(c∗ = 0), indicating great

improvement in the description of the core regions. Besides small remaining instabilities directly
at the atomic positions, the core-density-corrected LMF describes the all-electron function much
more accurately. A similar result is illustrated in Fig. A.8 for the LMF of ISOII(c∗ = 0.5). Here,
due to the finite value of c∗, the core-density-corrected reduced density gradient

(
tcd(r)

)2
=
(π

3

)1/3 a0

16Φ2(ζ (r))
|∇(nv(r)+nc(r)) |2

(nv(r)+nc(r))7/3 . (A.5)

has to be taken into account. In general, the spin polarization is obtained via ζ (r) = (nv↑(r)−
nv↓(r))/(nv↑(r)+ nv↓(r)), and for ISOII ζ (r) = 1∀r as discussed earlier. Fig. A.8 demonstrates
that also for a LMF using the reduced density gradient, explicit inclusion of the core density yields
great improvement in the vicinity of the nuclei in contrast to the uncorrected LMF.
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Figure A.8: LMF of ISOII with c∗ = 0.5 for the CO molecule along the interatomic z-axis
obtained in DARSEC (black line) and in PARSEC using an EXX pseudopotential
with (blue line) and without (red line) explicit consideration of the core density.

Importantly, the core-density-corrected LMFs are inserted at the level of the xc energy for the
corresponding local hybrid, providing a corrected basis for the functional derivatives uiσ (r). Fur-
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ther, numerical instabilities can be limited by decreasing the expansion order of the finite-difference
calculation. In the supplemental material of Publ. 4 detailed numerical results are provided for
the molecules CO, N2 and NH. It is demonstrated that core-density-corrected LMFs in the spirit
of Eqs. (A.3), (A.4) and (A.5) systematically enhance the agreement of the asymptotic slope γσ
with all-electron results. Governed by this improvement, direct comparisons of KS eigenvalues
systematically yield improved agreement between all-electron and pseudopotential results.

Note that the core-density correction of the KS kinetic energy density in Eq. (A.4) explicitly
assumes that

∑
kν

core states

|∇ϕc
kν(r)|2 ≈ |∇(nc(r))

1
2 |2, (A.6)

with ϕc
kν(r) denoting the KS orbitals of the core states obtained by all-electron calculations. While

Eq. (A.6) is in fact exact for atoms with only one doubly occupied core orbital of s-character (as,
for instance, the C, N, and O atom), this is not the case for other atoms, since here

|∇(nc(r))
1
2 |2 = |∇

 ∑
kν

core states

|ϕc
kν(r)|2


1
2

|2 6= ∑
kν

core states

|∇ϕc
kν(r)|2. (A.7)

Hence, τcd
W (r) and

(
tcd(r)

)2 are accurately represented for such atoms while τcd(r) is not. For
a description of the latter quantity the individual core orbitals are required, and τcd(r) cannot be
reproduced if only the core density is available. This issue is illustrated in Fig. A.9, which shows
f ISOII
x (r) of ISOII(c∗ = 0) for the SiO molecule calculated on top of an LDA pseudopotential.
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Figure A.9: LMF of ISOII with c∗ = 0 for the SiO molecule along the interatomic z-axis
obtained in DARSEC (black line) and in PARSEC (blue line) using an LDA
pseudopotential with cd.

It becomes evident from Fig. A.9 that the LMF around the oxygen atom is described acceptably
well besides a small instability at the atomic position. In the vicinity of the silicon atom, which
contains five doubly occupied core orbitals in the pseudopotential representation (two with s- and
three with p-character), PARSEC erroneously obtains f ISOII

x (r) ≈ 0 and does not resolve the shell
structure given by the all-electron result. This behavior is rooted in the fact that around the atomic
positions the core density is dominating and, if τcd(r) is obtained via (A.4), one yields τW ≈ τ in
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this region3. Hence, for systems with several core orbitals the approximation of Eq. (A.6) is not
resulting in a reliable representation of the LMF.

As a summary, Table A.3 provides a comparison of the asymptotic slope according to Eq. (4.10)
obtained in DARSEC and PARSEC by using ISO and ISOII for different values of c and c∗ for the
CO and SiO molecule. Since both the carbon and the oxygen atom contain only one core orbital,
good agreement of γ is obtained for CO with both ISO and ISOII for all parameters investigated.
For SiO, however, ISOII produces notably larger deviations in γ than ISO. This behavior is plausible
considering that SiO is a spin-unpolarized system. Thus, the LMF of ISO only contains the reduced
density gradient, which is described accurately even for systems with several core orbitals. ISOII,
on the other hand, uses the incorrectly represented detection function τW(r)/τ(r) also for spin-
unpolarized systems, which leads to larger deviations in γ . More precisely, the deviations observed
in ISOII decrease with increasing parameter values, since larger values of c∗ increase the effect of
the reduced density gradient and suppress the error introduced by τW(r)/τ(r) at the position of the
silicon atom.

Table A.3: The asymptotic slopes of ISO and ISOII for CO and SiO.

CO SiO
γ ∆γ γ ∆γ

all- PP EXX all- PP LDA
Functional electron + cd electron + cd

ISO
c = 0.5 0.634 0.634 0.000 0.625 0.626 −0.001
c = 1.0 0.700 0.700 0.000 0.688 0.690 −0.002
c = 2.5 0.796 0.797 −0.001 0.786 0.789 −0.003

ISOII
c∗ = 0.0 0.827 0.827 0.000 0.806 0.814 −0.008
c∗ = 0.5 0.871 0.871 0.000 0.857 0.862 −0.005
c∗ = 1.0 0.894 0.893 −0.001 0.883 0.887 −0.004
c∗ = 2.5 0.928 0.927 −0.001 0.922 0.925 −0.003

The discussion of the differences between the CO and the SiO molecule indicates a fundamental
difficulty to describe systems with several core orbitals via the approach of correcting LMFs using
the core density. The inability to accurately reproduce the function τW(r)/τ(r) by using only the
core density restricts the use of this approach to period 1 or period 2 elements. While this range
of elements is sufficient to calculate the organic molecules discussed in Sec. 4.7, many interesting
elements such as, for instance, transition metals are out of reach. Especially for larger atoms, the
effect of an incorrect representation of the detection function is expected to be more severe. One
possibility to overcome this obstacle is to provide the individual core orbitals ϕc

kν(r) of all-electron
calculations as input in analogy to how it is currently handled in PARSEC for the core density.
Alternatively, an orbital-free detection function could be employed, which further potentially limits
the influence of orbital nodal planes on this quantity [dSC15].

3Note that the von Weizsäcker kinetic energy density can be expressed as τW(r) = |∇n(r)|2
8n(r) = 1

2 |∇(n(r))
1
2 |2.
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A.6 Comparison of Eigenvalues for the Global Hybrid Functional

In this section a direct comparison of KS eigenvalues between all-electron and pseudopotential
calculations is provided for the CO and N2 molecule computed with the PBEh global hybrid. The
all-electron results were obtained in DARSEC, while the pseudopotential eigenvalues were attained
with PARSEC using both PBE and EXX pseudopotentials. The PBE pseudopotential cutoff radii
were chosen as rc(s) = 1.49 a.u., rc(p) = 1.53 a.u. for C, rc(s) = 1.50 a.u., rc(p) = 1.50 a.u. for N,
and rc(s) = 1.45 a.u., rc(p) = 1.45 a.u. for O, while the specifications for the EXX pseudopotential
are rc(s) = 1.20 a.u., rc(p) = 1.20 a.u. for C, rc(s) = 1.19 a.u., rc(p) = 1.19 a.u. for N, and rc(s) =
0.99 a.u., rc(p) = 0.94 a.u. for O.

The corresponding valence-state eigenvalues of PBEh for various values of the parameter a are
listed in Table A.4 for a comparison based on a PBE pseudopotential and in Table A.5 for an EXX
pseudopotential. Additionally, the latter table provides the results of a full EXX calculation.

In summary, both tables show eigenvalue differences for the valence states that are typically in
the range of≈ 0.05−0.1 eV. Thus, the global hybrid PBEh can be evaluated on top of either a PBE
or an EXX pseudopotential with satisfying accuracy in the KS eigenvalues.

Table A.4: Eigenvalue comparison of all-electron and PBE pseudopotential results (denoted
PP PBE) for the CO and N2 molecule using PBEh(a). The quantity ∆εi denotes the
eigenvalue difference for the corresponding state.

CO N2
val- εi (eV) ∆εi (eV) εi (eV) ∆εi (eV)
state all- PP all- PP

a i electron PBE electron PBE

0.25 2 −16.022 −15.968 −0.054 −15.439 −15.523 0.084
3 −13.737 −13.706 −0.030 −13.619 −13.689 0.070
4 −13.737 −13.706 −0.030 −13.619 −13.689 0.070
5 −10.757 −10.742 −0.015 −12.208 −12.229 0.021
6 −3.661 −3.629 −0.032 −3.793 −3.786 −0.007

0.50 2 −17.923 −17.850 −0.073 −17.395 −17.455 0.060
3 −15.623 −15.584 −0.039 −15.610 −15.672 0.062
4 −15.623 −15.584 −0.039 −15.610 −15.672 0.062
5 −12.481 −12.449 −0.032 −14.160 −14.152 −0.007
6 −5.326 −5.305 −0.021 −5.645 −5.637 −0.008

0.75 2 −19.833 −19.740 −0.092 −19.359 −19.393 0.034
3 −17.516 −17.469 −0.047 −17.609 −17.660 0.051
4 −17.516 −17.469 −0.047 −17.609 −17.660 0.051
5 −14.210 −14.162 −0.048 −16.120 −16.082 −0.038
6 −7.001 −6.992 −0.008 −7.511 −7.500 −0.011
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Table A.5: Eigenvalue comparison of all-electron and EXX pseudopotential results (denoted
PP EXX) for the CO and N2 molecule using PBEh(a) and pure EXX. The quantity
∆εi denotes the eigenvalue difference for the corresponding state.

CO N2
val- εi (eV) ∆εi (eV) εi (eV) ∆εi (eV)
state all- PP all- PP

a i electron EXX electron EXX

0.25 2 −16.022 −16.089 0.067 −15.438 −15.522 0.084
3 −13.737 −13.738 0.001 −13.619 −13.689 0.070
4 −13.737 −13.738 0.001 −13.619 −13.689 0.070
5 −10.757 −10.806 0.049 −12.208 −12.229 0.021
6 −3.661 −3.619 −0.042 −3.793 −3.786 −0.007

0.50 2 −17.924 −17.972 0.048 −17.395 −17.455 0.060
3 −15.623 −15.618 −0.005 −15.610 −15.672 0.062
4 −15.623 −15.618 −0.005 −15.610 −15.672 0.062
5 −12.481 −12.506 0.025 −14.160 −14.151 −0.007
6 −5.326 −5.294 −0.032 −5.645 −5.637 −0.008

0.75 2 −19.833 −19.860 0.027 −19.359 −19.393 0.034
3 −17.516 −17.503 −0.013 −17.609 −17.660 0.051
4 −17.516 −17.503 −0.013 −17.609 −17.660 0.051
5 −14.210 −14.210 −0.001 −16.120 −16.082 −0.038
6 −7.001 −6.979 −0.022 −7.511 −7.500 −0.011

EXX 2 −20.679 −20.723 0.044 −20.291 −20.346 0.055
3 −18.336 −18.315 −0.021 −18.529 −18.568 0.039
4 −18.336 −18.315 −0.021 −18.529 −18.568 0.039
5 −15.038 −15.085 0.047 −17.150 −17.158 0.007
6 −7.763 −7.726 −0.037 −8.436 −8.410 −0.026
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We present and test a new approximation for the exchange-correlation (xc) energy of Kohn-Sham
density functional theory. It combines exact exchange with a compatible non-local correlation func-
tional. The functional is by construction free of one-electron self-interaction, respects constraints
derived from uniform coordinate scaling, and has the correct asymptotic behavior of the xc en-
ergy density. It contains one parameter that is not determined ab initio. We investigate whether it
is possible to construct a functional that yields accurate binding energies and affords other advan-
tages, specifically Kohn-Sham eigenvalues that reliably reflect ionization potentials. Tests for a set
of atoms and small molecules show that within our local-hybrid form accurate binding energies can
be achieved by proper optimization of the free parameter in our functional, along with an improve-
ment in dissociation energy curves and in Kohn-Sham eigenvalues. However, the correspondence
of the latter to experimental ionization potentials is not yet satisfactory, and if we choose to opti-
mize their prediction, a rather different value of the functional’s parameter is obtained. We put this
finding in a larger context by discussing similar observations for other functionals and possible di-
rections for further functional development that our findings suggest. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4865942]

I. INTRODUCTION

Kohn-Sham (KS) density-functional theory (DFT)1, 2 has
become one of the most frequently used theories for elec-
tronic structure calculations. It employs the electron ground-
state density, n(r), as the central quantity and accounts for
all electronic interaction beyond the classical electrostatic
(Hartree) repulsion, EH, via the exchange-correlation (xc) en-
ergy functional, Exc[n].3–5 Even though the xc energy is typi-
cally the smallest component in the ground-state total energy,
it governs binding properties, geometrical structures, and ion-
ization processes.5–7 Thus, the quality of a DFT calculation
depends decisively on the functional approximation put to
task.

It has become popular to categorize density functional
approximations (DFA) according to the “Jacob’s ladder”
scheme introduced in Ref. 8. Typically, the accuracy of a
DFA improves when more “ingredients” are allowed in the
functional construction, at the price of increased complex-
ity. The local spin-density approximation (LSDA),2 which
approximates Exc[n] based on the xc energy of the homo-
geneous electron gas,9–12 and even more so the semi-local
generalized gradient approximations (GGAs),13–19 which ad-
ditionally take the density gradient into account, offer a fa-
vorable ratio of computational expense and accuracy.7 Hybrid
functionals20–25 typically reach yet greater accuracy by com-

a)T. Schmidt and E. Kraisler contributed equally to this work.
b)Present address: Institut für Theoretische Physik, Universität Innsbruck,

Technikerstraße 25, A-6020 Innsbruck, Austria.

bining a fixed percentage of Fock exchange

Eex
x = −1

2

Nσ∑
i, j = 1
σ =↑, ↓

∫∫
ϕ∗

iσ (r)ϕjσ (r)ϕiσ (r′)ϕ∗
jσ (r′)

|r − r′| d3rd3r ′,

(1)
with (semi-)local exchange and correlation energy terms
(Hartree atomic units are used throughout). Equation (1) eval-
uated with the exact Kohn-Sham orbitals defines the ex-
act Kohn-Sham exchange energy. Self-consistent Kohn-Sham
calculations based on the energy of Eq. (1) use the optimized
effective potential (OEP) equation (see Refs. 26–28 and ref-
erences therein). When we use the abbreviation EXX in the
following, we always refer to this Kohn-Sham variant of ex-
act exchange.

While the aforementioned functionals in many cases pre-
dict binding energies and bond-lengths reliably, semi-local
DFAs and to some extent also hybrid functionals are less reli-
able for ionization processes, photoemission spectra, and den-
sities of states. Very early on it was realized that this problem
is closely related to the (one-electron) self-interaction (SI)11

error, i.e., to the fact that in exact DFT Exc + EH should van-
ish for any one-electron system, but does not do so for these
DFAs. Due to the SI error and the fact that semi-local func-
tionals “average over” the derivative discontinuity,29, 30 the
Kohn-Sham eigenvalues of the above mentioned approximate
functionals typically fulfill neither the exact condition that the
highest occupied eigenvalue εho should match the first ion-
ization potential (IP),31–34 nor the approximate but for prac-
tical purposes equally important condition that upper valence

0021-9606/2014/140(18)/18A510/14/$30.00 © 2014 AIP Publishing LLC140, 18A510-1
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eigenvalues are good approximations to higher IPs when they
are calculated from accurate xc potentials.35–40

Although the interpretation of occupied eigenvalues even
with the exact xc potential is approximate (except for εho), it is
of great practical importance. For example, the band-structure
interpretation of Kohn-Sham eigenvalues has had a great im-
pact on solid-state physics and materials science.41 In recent
years, the interpretation of eigenvalues has become particu-
larly important in the field of molecular semiconductors and
organic electronics. Efforts to understand, e.g., photoemis-
sion experiments, have revealed severe shortcomings of tra-
ditional DFAs that go considerably beyond a spurious global
shift of the eigenvalue spectrum.37–39, 42–49 A similar problem
is witnessed also in solid state systems.50–55 We emphasize
that these problems of interpretation arise already for the oc-
cupied eigenvalues, i.e., the issues are separate from the well
known band-gap problem28, 29, 56, 57 of Kohn-Sham theory. The
KS EXX potential leads to band structures and eigenvalues
that match experiments much better than the eigenvalues from
(semi-)local approximations.26, 43, 58–61

A comparison to hybrid functionals is more involved,
because already the occupied eigenvalue spectrum depends
sensitively on whether one uses the hybrid functional in a
KS or a generalized KS calculation.45 For well understood
reasons,29, 56 the differences between the KS and the gen-
eralized KS eigenvalues become yet larger for unoccupied
eigenvalues (see, e.g., the review in Ref. 57). This article’s
focus is on Kohn-Sham theory, therefore we do not discuss
the comparison to hybrid functionals used in the general-
ized KS scheme in detail. We note, however, that in particu-
lar range-separated hybrid functionals used in the generalized
KS approach can predict gaps and band structures quite ac-
curately, as discussed, e.g., in Refs. 57 and 62, but global hy-
brid functionals tend to yield a less reliable density of states
for complex systems than self-interaction free Kohn-Sham
potentials.39, 45

Besides these practical benefits, EXX also appears as a
natural component of DFAs because it may be considered
attractive to treat as many energy components as possible
exactly, and including EXX has shown to be beneficial for,
e.g., describing ionization, dissociation and charge transfer
processes.28 However, bare EXX is a very poor approximation
for binding energies, (see, e.g., Refs. 27, 63, and 5, Chap. 2).
Combining EXX with a (semi-)local correlation term in many
situations leads to results of inferior quality compared to pure
EXX or semi-local DFAs, because of an imbalance between
the delocalized exchange hole and the localized correlation
hole.8, 28, 64, 65

One promising approach for combining EXX with ap-
propriate correlation in a balanced way is the local hybrid
form66–68

exc(r) = (1 − f [n](r))eex
x (r) + f [n](r)esl

x (r) + esl
c (r). (2)

Here, exc(r) is the xc energy density per particle that yields the
xc energy via Exc[n] = ∫

n(r) exc(r) d3r . The quantities esl
x (r)

and esl
c (r) denote exchange and correlation energy densities

per particle, respectively, approximated with (semi-)local ex-
pressions, whereas eex

x (r) represents the EXX energy density

per particle deduced from Eq. (1). The function f [n](r) is the
local mixing function (LMF). It is a functional of the density
and a decisive part of the local hybrid concept.

Equation (2) can be viewed as a generalization of the
common (global) hybrids. Instead of a fixed amount of EXX,
the local hybrid can describe different spatial regions of a sys-
tem with varying combinations of EXX and semi-local xc, by
means of f [n](r) (where 0 ≤ f ≤ 1). For example, whereas
one-electron regions are supposed to be well-described us-
ing EXX, regions of slowly varying density are expected to
be captured appropriately by (semi-)local xc functionals. The
idea of local hybrids can also be understood in terms of the
adiabatic connection theorem,69 because f [n](r) may offer
further flexibility in an accurate construction of the coupling-
constant-dependent xc energy,66 especially for small coupling
constant values.

The local hybrid form was pioneered by Jaramillo
et al.67 with a focus on reducing the one-electron SI-error
in single-orbital regions. Numerous further local hybrid con-
structions followed.68, 70–78 They proposed various LMFs
with different one-electron-region indicators, suggested sev-
eral (semi-)local exchange and correlation functionals to be
used in the construction, and followed different procedures
to satisfy known constraints and determine remaining free
parameters.

In the present paper, we propose a new local-hybrid ap-
proximation that combines full exact exchange with a compat-
ible correlation functional. The development is guided by the
philosophy of fulfilling known constraints:79 Our xc energy
density per particle, exc, is one-electron SI-free, possesses the
correct behavior under uniform coordinate scaling, and has
the right asymptotic behavior at large distances. It includes
one free parameter that is not determined uniquely from these
constraints.

In difference to earlier work, our emphasis is not on im-
proving further the accuracy of binding energies beyond the
one that was achieved with global hybrids. Instead, we focus
on whether it is possible to construct an approximation that
yields binding energies of at least the same quality as estab-
lished hybrids and at the same time affords other advantages,
notably KS eigenvalues that approximate IPs reasonably well.
We find that if we choose the parameter in our functional by
optimizing the prediction of binding energies, the latter are
obtained with an accuracy that is similar to the one reached
with usual global hybrids. At the same time, we achieve a
significant improvement in prediction of dissociation energy
curves for selected systems. Improvement in prediction of the
ionization energy via the highest occupied KS eigenvalue is
also observed. It is especially large for alkali atoms. However,
the quality of the ionization energy prediction is not yet satis-
factory, and if we aim to optimize the prediction of the latter,
a rather different value for the functional’s free parameter is
obtained. We put this finding in a larger context by discussing
similar observations for other functionals.

The paper is organized as follows: Sec. II is de-
voted to the description of the new local hybrid functional.
Section III (and the Appendix) provide methodological and
computational details. Section IV presents and discusses the
results, and Sec. V offers conclusions and a summary.
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II. CONSTRUCTION OF THE FUNCTIONAL

In the construction of our functional, we choose to con-
centrate on satisfying the following exact properties: (i) use
the concept of full exact exchange, as defined by the cor-
rect uniform coordinate scaling80, 81 (see elaboration below);
(ii) freedom from one-electron self-interaction;11 (iii) correct
asymptotic behavior of the xc energy density per particle at
|r| → ∞;82 (iv) reproduction of the homogeneous electron
gas limit. In addition, we wish to maintain an overall balanced
non-locality of exchange and correlation.68

Regarding property (i), under the uniform coordinate
scaling r → γ r the density transforms as nγ (r) = γ 3n(γ r),
with its integral, N, unchanged and the exchange scales
as Ex[nγ (r)] = γEx[n(γ r)],5, 28 which implies eex

x [nγ (r)]
= γ eex

x [n(γ r)]. This scaling relation is fulfilled, e.g., by
eLSDA
x , the exchange energy density per particle in the LSDA.

For the correlation functional, Ec[n], no such sim-
ple scaling rule exists: the correlation scales as Ec[nγ (r)]
= γ 2E

(1/γ )
c [n(r)], where the superscript (1/γ ) indicates a sys-

tem with an electron-electron interaction that is reduced by
a factor of γ .5 Additional scaling results for the correlation
energy can be found in, e.g., Refs. 80 and 81. Here, we con-
centrate on the limiting case of high electron densities, i.e., γ

→ ∞, where the xc energy should be dominated by Ex[n],81

lim
γ→∞

Exc[nγ ]

Eex
x [nγ ]

= 1. (3)

A functional is said to use full exact exchange if it obeys
Eq. (3).68

With this definition in mind, we return to Eq. (2). Using
exc(r) = eex

x (r) + ec(r), we obtain

ec(r) = f [n](r)
(
esl
x (r) − eex

x (r)
) + esl

c (r). (4)

We now see that when f [n] scales in the high density limit
as γ a with a < 0, then it is clear that the first term on the
RHS of Eq. (4) is a correlation contribution rather than an
exchange term.134 Assuming esl

c (r) scales as γ b with b < 1,
the functional exc(r) that fulfills this condition can therefore
justly be viewed as a combination of EXX, namely, eex

x (r),
and a compatible correlation term, ec(r).

The reduced density gradient17

t2(r) :=
(π

3

)1/3 a0

16�2(ζ (r))

|∇n(r)|2
n7/3(r)

, (5)

where a0 is the Bohr radius, �(ζ (r)) = 1
2 ((1 + ζ )2/3

+ (1 − ζ )2/3) and ζ (r) = (n↑(r) − n↓(r))/(n↑(r) + n↓(r)) is
the spin polarization, is a natural ingredient to be used to con-
struct a f [n](r) that aims at enforcing the uniform coordinate
scaling, because in the high density limit t2 ∼ γ . We make use
of this quantity as described in detail below.

Property (ii) is reflected in the equation EH[niσ ]
+ Exc[niσ ] = 0, where niσ (r) = |ϕiσ (r)|2 are one-spin-orbital
densities, with ϕiσ (r) denoting the ith KS-orbital in the spin-
channel σ . One can attempt to realize such a one-spin-orbital
condition by detecting regions of space in which the density is
dominated by just one spin-orbital and making sure that full
exact exchange and zero correlation is used there. Previous
works have discussed the use of iso-orbital indicators83–86 for

similar tasks. Here, we define a one-spin-orbital-region indi-
cator by

d(r) = τW (r)

τ (r)
ζ 2(r), (6)

where τW (r) = |∇n(r)|2/(8n(r)) is the von Weizsäcker ki-
netic energy density and τ (r) = 1

2

∑
σ

∑Nσ

i=1 |∇ϕiσ (r)|2 is the
Kohn-Sham kinetic energy density.

For one-spin-orbital densities of ground-state character,
d(r) → 1, because τ (r) → τW (r) and ζ 2(r) → 1. For regions
with slowly varying density, however, d(r) → 0 because
τW (r) tends to zero, whereas τ (r) does not. In contrast to ex-
pressions suggested in the past,67 Eq. (6) does not classify a
region of two spatially identical orbitals with opposite spins as
a one-orbital region. It also avoids introducing68, 70–74, 78 any
parameters in d(r).

Despite our use of Eq. (6) and the frequent use of sim-
ilar indicators in the past, we wish to point out two caveats
before proceeding. First, it should be noted that formally
there exists a difference between one-electron and one-spin-
orbital regions. The former corresponds to spatial regions in
the interacting-electrons system where the probability density
is such that one finds just one electron. The latter, however,
corresponds to spatial regions in the KS system dominated by
a single KS spin-orbital.87 There is no guarantee that these
two regions coincide, because, strictly speaking, the interact-
ing system and the KS system have only the total electron
density in common.

Our second caveat refers to the fact that orbital densi-
ties are typically not of ground-state character. Therefore, the
equivalence of τ (r) and τW (r) is not guaranteed for these over
all space. It is reached, however, in the energetically relevant
asymptotic region. We further note that it has recently been
pointed out88 that also the Perdew-Zunger SI correction11 may
have problems because of orbital densities not being ground-
state densities. This may indicate that the question of how to
associate orbitals with electrons for the purposes of eliminat-
ing self-interaction is a fundamental one, affecting all of the
presently used concepts for self-interaction correction that we
know of.

With the aim of fulfilling conditions (i)-(iv) we propose
the following approximate form for our EXX-compatible cor-
relation energy density per particle, ec(r):

ec(r) =
1 − τW (r)

τ (r) ζ 2(r)

1 + ct2(r)

(
eLSDA
x (r) − eex

x (r)
)

+
(

1 − τW (r)

τ (r)
ζ 2(r)

)
eLSDA
c (r). (7)

In other words, we approximate the LMF function of Eq. (4)
by

f [n](r) = 1 − d(r)

1 + ct2(r)
=

1 − τW (r)
τ (r) ζ 2(r)

1 + ct2(r)
, (8)

the semi-local exchange energy density per particle by its
LSDA form3 esl

x (r) = eLSDA
x (r), and the semi-local correlation

energy density per particle by

esl
c (r) =

(
1 − τW (r)

τ (r)
ζ 2(r)

)
eLSDA
c (r), (9)
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which is the LSDA correlation energy density per particle,
multiplied by (1 − d(r)).

The proposed functional is one-electron SI-free, has the
required asymptotic behavior for exc(r) at |r| → ∞, behaves
correctly under uniform coordinate scaling, and reduces to the
LSDA for regions of slowly varying density.

One-electron self-interaction is addressed via d(r). When
d(r) tends to 1, ec(r) vanishes and the only remaining term
is eex

x (r), which then cancels the Hartree repulsion. Note
that the semi-local correlation part, which is the last term in
Eq. (7), also vanishes for one-spin-orbital regions. This is
assured by introducing the prefactor (1 − d(r)) in front of
eLSDA
c . Otherwise, for one-orbital regions one would get

the undesired, unbalanced combination of EXX and local
correlation.

The correct uniform scaling is achieved due to the de-
nominator in f [n](r), which scales as γ , and cancels the γ -
dependence of the exchange terms that multiply it. In addi-
tion, eLSDA

c scales as −ln (γ ) (see Eq. (10) in Ref. 10, Sec. II
of Ref. 81), which is slower than γ . Therefore, the limit in
Eq. (3) is satisfied.

For slowly varying densities, f [n](r) → 1 and τW (r)
→ 0, which yields exc(r) → eLSDA

x (r) + eLSDA
c (r), reproduc-

ing the LSDA limit as required.
Finally, note that the proposed exc approaches the known

exact limit at |r| → ∞. Since EXX already has the right
asymptotic decay of eex

x (r) ∼ −1/(2r),82 it suffices to verify
that ec(r) of Eq. (7) decays faster. Indeed, because the orbitals
asymptotically tend to ϕiσ ∼ e−αiσ r , where αiσ = √−2εiσ ,
the density is dominated by the highest occupied orbital,
ϕho, and tends to n ∼ |ϕho|2 ∼ e−2αhor . Because asymptoti-
cally τW/τ ≈ 1 and t2 ∼ e

2
3 αhor , one finds f ∼ t−2 ∼ e− 2

3 αhor ,
which makes ec(r) decay exponentially. Therefore, the correct
asymptotic behavior at |r| → ∞ is achieved.

There remains one important point to be discussed. In
Eq. (7), we are left with one undetermined parameter, c. Un-
fortunately, we presently do not know of an ab initio con-
straint that would allow us to fix this parameter uniquely, al-
though we do not rule out the possibility that future work may
achieve this. The value of c affects the amount of EXX that is
used in a calculation and is therefore expected to have an in-
fluence in practical applications. One can therefore argue that
not having c determined from first principles is a disadvan-
tage. However, with c being a free parameter, the functional
form contains some freedom which allows one to adjust it to
specific many-electron systems. One can therefore argue that
our yet undetermined c is in line with the principle of reducing
(but not eliminating) empiricism in DFT.7

In this first study, the freedom of varying c will be used
deliberately to explore the properties of the proposed func-
tional. We perform fitting of c per system for a representative
test set to observe how much its optimal value varies between
the different systems, and whether a global fitting procedure,
i.e., fitting for all systems combined, is at all justified. In par-
ticular, we wish to elucidate the question of whether good
binding energies and good eigenvalues can be achieved with
the suggested local hybrid functional form. As an aside we
note that when c is a fixed, system-independent parameter,
the proposed functional is fully size-consistent and complica-

tions that are known to occur with system-specific adjustment
procedures89 are avoided.

III. METHODS

The proposed functional was implemented and tested us-
ing the program package DARSEC,90, 91 an all-electron code,
which allows for electronic structure calculations of single
atoms or diatomic molecules on a real-space grid represented
by prolate spheroidal coordinates. We therefore avoid possi-
ble uncertainties associated with the use of pseudopotentials
or complicated basis sets in OEP calculations28 – an advan-
tage for accurate functional testing.

DARSEC allows the user to solve the KS equations self-
consistently for density- as well as orbital-dependent func-
tionals (ODFs), for example, the proposed functional. For
ODFs, the xc potential is constructed by using either the full
optimized effective potential formalism (OEP)26, 28 via the S-
iteration-method92, 93 or, with reduced computational effort,
by employing the Krieger-Li-Iafrate (KLI) approximation.94

We note that other ways of defining approximations to the
OEP exist.95–97 However, for pure exchange earlier works
have shown that total energies and eigenvalues are obtained
with very high accuracy in the KLI approximation,26, 94, 95 and
for our local hybrid we explicitly compare KLI results to full
OEP results in Sec. IV A and find very good agreement.

In DARSEC, all computations were converged up to
0.001 Ry in the total energy, Etot, as well as in the highest
occupied KS eigenvalue, εho, by appropriately choosing the
parameters of the real-space grid and by iterating the self-
consistent DFT cycle. For full OEP calculations, applying the
S-iteration method to the KLI xc potential typically resulted
in a reduction of the maximum value of the S-function92 by
a factor of 100. The spin and the axial angular momentum of
the systems were taken as in experiment. Note that to this end,
for some systems it was necessary to force the KS occupation
numbers.

Numerical stability of self-consistent computations using
ODFs, in the KLI- or OEP-scheme, mainly depends on the
numerical realization of the functional derivative

uiσ (r) = 1

ϕ∗
iσ (r)

δExc[{ϕjτ }]
δϕiσ (r)

, (10)

which “conveys” the special character of the corresponding
xc functional into the calculation of the xc potential. Be-
cause our functional approach results in a rather compli-
cated function uiσ (r) (see Appendix A, Eq. (A41)), careful
analytical restructuring was necessary in order to avoid di-
verging and unstable calculations. In particular, an explicit
division by the KS orbitals or the electron density should
be avoided, because their exponential decay98 leads to in-
stabilities at outer grid points. A numerically stable uiσ (r)
was gained by such considerations, for example, by replacing
τW (r) = |∇n(r)|2/(8n(r)) in Eq. (7) with the equivalent ex-
pression τW (r) = 1

2 |∇n
1
2 (r)|2, or, in case division by the den-

sity cannot be avoided, by equally balancing density terms of
the same power in numerator and denominator (for details see
Appendix A).
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All results using (semi-)local functionals (LSDA,10

PBE17) or the B3LYP hybrid functional23 (evaluated within
the generalized KS scheme99) were obtained with the
Turbomole program package,100 using the def2-QZVPP
basis set. The pure EXX calculations were performed in
DARSEC by employing the functional derivative uiσ (r) orig-
inating from Eq. (1) (as derived in Appendix A, Eq. (A6)).

When evaluating a new functional, it is reasonable to con-
centrate on a class of relatively simple systems to keep com-
putational costs low and to refrain from additional sources
of error beyond the xc approximation, e.g., searching for an
optimal geometry in systems with many degrees of freedom.
However, the systems should not be too simple, so as to pose
a significant challenge for the proposed functional. The class
of systems has to be large enough, as success or failure for
one particular system has very limited meaning. It should
also be rich enough to try to represent other systems that
are not included. Previous work17 has shown that a limited
set of well selected small molecules can allow for meaning-
ful exploration of a functional’s properties. For these reasons,
we focus on a set of 18 light diatomic molecules: H2, LiH,
Li2, LiF, BeH, BH, BO, BF, CH, CN, CO, NH, N2, NO, OH,
O2, FH, F2, and their constituent atoms. The systems include
single-, double-, and triple-bond molecules as well as atoms
(no bonding).

IV. RESULTS

A. Comparison of KLI and OEP

While good agreement between the KLI and OEP scheme
has been demonstrated before for ground-state energy calcu-
lations using EXX,101 the accuracy of the KLI approximation
needs to be checked anew when it is applied to a previously
untested functional. Table I provides this check for our func-
tional. It compares the total energy and the highest occupied
KS eigenvalue as obtained with the OEP and the KLI approx-
imation for different values of the parameter c (cf. Eq. (7)) for
different systems, and lists the corresponding differences for
EXX for comparison.

TABLE I. Comparison of total energy, E, and highest occupied KS eigen-
value, εho, obtained with the suggested local hybrid functional and with pure
EXX, within both the KLI and OEP schemes, as a function of c (�E = EKLI

− EOEP, �ε = εKLI
ho − εOEP

ho ). All values are in hartree.

Suggested functional

System c = 0 c = 0.5 c = 2.5 EXX

C �E 0.0000 0.0002 0.0003 0.0004
�ε −0.0005 0.0001 0.0003 0.0007

BH �E 0.0000 0.0002 0.0005 0.0006
�ε 0.0000 0.0003 0.0004 0.0010

Li2 �E 0.0000 0.0001 0.0002 0.0002
�ε 0.0000 0.0002 0.0005 0.0006

NH �E 0.0001 0.0005 0.0008 0.0011
�ε 0.0007 0.0013 0.0025 0.0055

N2 �E 0.0000 0.0009 0.0017 0.0023
�ε 0.0000 −0.0010 −0.0019 0.0018

Table I shows that the requirement EOEP
tot ≤ EKLI

tot
28 is

fulfilled independent of the value of c employed. Unlike for
the total energy, there is no theorem stating that the high-
est occupied KS eigenvalue found in the OEP scheme must
be below its KLI counterpart. For example, for the C atom
and the N2 molecule, we observe the opposite. Furthermore,
because the suggested local hybrid with c = 0 for spin-
unpolarized systems (ζ (r) = 0 ∀ r) is exactly equivalent to the
purely semi-local constituent functional, one would expect
the KLI and OEP results to coincide. This is indeed fulfilled
within numerical accuracy. A detailed listing of the total en-
ergies and eigenvalues of the highest occupied KS states ob-
tained by the KLI approximation in comparison to full OEP
can be found in Appendix B, Tables IV and V.

With increasing c, a larger amount of EXX is employed
and the functional gains more non-local character, leading to
greater deviations between KLI and OEP results. Note that,
within the considered c-range, the deviations with our func-
tional are consequently lower than those obtained for EXX.
The last statement applies to both Etot and |εho|. Furthermore,
in agreement with Ref. 27 (p. 255), we observe an increasing
difference between KLI and OEP results with growing num-
ber of electrons in the system.

To summarize, using the KLI approximation for our func-
tional is as justified as it is for pure EXX. This observation is
in agreement with the fact that EXX is the limiting case of the
suggested functional for c → ∞.

B. Fitting the parameter c for each system

The proposed functional has one unknown parameter, c.
We aim to define a global value for c, relying on fitting it such
that for a group of selected systems, some predefined quantity
is optimally predicted (possible choices are discussed in detail
below). As a prerequisite, we obtain individual c-values by
optimizing the parameter for each of the systems separately.
As a test for whether a global fitting procedure is meaningful,
we verify that these individual c-values are clustered within a
reasonable numerical range.

In the following, we present two ways to fit c. One pos-
sibility is fitting the dissociation energy: To find c for the
molecule AB, the total energies of the molecule and its con-
stituent atoms have to be calculated, with the same c. Then,
the dissociation energy D(c) = EA(c) + EB(c) − EAB(c) is
fitted to its experimental value,102 Dexp, by varying c. Alter-
natively, one can compute the total energy of the system for
various values of c and fit it to the experimental total en-
ergy. The latter is obtained for atoms as E

exp
atom = −∑

i I
exp

i

– the sum of all its experimental IPs, I
exp

i ; for molecules as
E

exp

AB = E
exp

A + E
exp

B − Dexp. Unless explicitly stated other-
wise, here and throughout molecular properties are calculated
at their experimental bond lengths.102

Table II presents optimized c values for various systems,
obtained from both the D-fitting and the E-fitting procedures.
The numerical uncertainty reported for the c values is due to
the 1 mRy numerical accuracy in the total energy. The table
confirms that the chosen numerical accuracy for the total en-
ergy is indeed sufficient. We note that in the E-fitting there is
a tendency for c to increase with the electron number, which
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TABLE II. The parameter c optimized for various systems, using the D- and
E-fitting procedures.

System cD cE

H2 0.552 ± 0.002 0.537 ± 0.012
LiH 0.642 ± 0.005 0.556 ± 0.004
Li2 1.50 ± 0.06 0.571 ± 0.002
LiF 0.141 ± 0.006 0.976 ± 0.003
BeH 0.746 ± 0.025 0.648 ± 0.004
BH 0.590 ± 0.010 0.685 ± 0.004
BO 0.288 ± 0.007 0.916 ± 0.002
BF 0.578 ± 0.027 0.943 ± 0.002
CH 0.672 ± 0.028 0.741 ± 0.003
CN 0.146 ± 0.005 0.908 ± 0.002
CO 0.283 ± 0.009 0.916 ± 0.002
NH 0.667 ± 0.027 0.811 ± 0.004
N2 0.107 ± 0.009 0.908 ± 0.003
NO 0.329 ± 0.009 0.960 ± 0.002
OH 1.20 ± 0.07 0.942 ± 0.004
O2 0.472 ± 0.009 1.004 ± 0.002
FH 0.075 ± 0.011 1.105 ± 0.004
F2 0.356 ± 0.006 1.206 ± 0.003

H . . . Any
Li . . . 0.543 ± 0.005
Be . . . 0.644 ± 0.005
B . . . 0.698 ± 0.003
C . . . 0.757 ± 0.002
N . . . 0.848 ± 0.005
O . . . 0.925 ± 0.004
F . . . 1.067 ± 0.003

reflects a larger contribution of exact exchange. We attribute
this to the fact that the energy of the core electrons (which is
less important in D-fitting) is more strongly dominated by ex-
change. For our purposes, the most important conclusion to be
drawn from Table II is that for all systems examined in both
approaches, optimal values for c lie between 0 and 1, and are
never larger than 2. This observation justifies our pursuit of a
global value of c .

C. Determining a global value for the parameter c

Following the conclusion that the parameter c can indeed
be fitted, we performed a series of calculations, obtaining the
c-dependent average relative errors

δA(c) =
√√√√ 1

M

M∑
m=1

(
Am(c) − Aexp

Aexp

)2

. (11)

Here, A can refer to the dissociation energy, D, the total en-
ergy, E, or the ionization potential I evaluated via I = −εho,
the IP-theorem for the exact functional. The index m runs over
all the systems calculated.135

The functions δD(c) and δE(c) are plotted in Figs. 1
and 2, respectively, accompanied by the average relative er-
rors for commonly used functionals: the LSDA, PBE, and
B3LYP. As mentioned previously, the B3LYP results here
and in the following were obtained in the generalized KS ap-
proach, which we, based on previous experience,28 expect to
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FIG. 1. Average relative error of the dissociation energy, δD, as a function
of the parameter c (solid line). Relative errors for the LSDA (dashed), PBE
(dashed-dotted), and B3LYP (dotted) functionals are given for comparison.
Pure EXX reaches an error of δEXX

D (c) = 66% and exceeds the scale we
chose here.

yield total energies that are very similar to the ones from the
KS approach for the systems studied here. For completeness,
results obtained with pure EXX evaluated in the KLI approx-
imation are also reported.

In both figures, we observe clear minima for the proposed
functional at the values of c0 = 0.4 for δD and 0.6 for δE, with
minimal error values of 5.3% and 0.09%, respectively. These
error values are close to those achieved with the B3LYP func-
tional, and are significantly better than the PBE and LSDA
results. Because optimizing δD(c) and δE(c) demands almost
the same value for c, a satisfying description of both proper-
ties is possible using a common parameter of c = 0.5. For this
c, the relative error in the dissociation energy �Dm = (Dm

− Dexp)/Dexp is lowest for the BF molecule (0.7%) and high-
est for Li2 and F2 (14% and 17%, respectively). The relative
error in the total energy is more evenly spread around 0.12%.

The function δI(c) shown in Fig. 3 exhibits a different
behavior, reaching its minimum of 6% at a higher value of
c ≈ 4.5.136 When evaluated at c = 0.5, the average relative
error is δI(c = 0.5) = 26%. Although lower than 31% for
B3LYP and 42% for both LSDA and PBE, such a deviation is
rather significant. Therefore, Fig. 3 suggests that in order to
reach good agreement between the experimental IP and −εho,
a larger amount of EXX is required.
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FIG. 2. Average relative error of the total energy, δE, as a function of the
parameter c (blue solid line). Relative errors for the LSDA (dashed), PBE
(dashed-dotted), and B3LYP (dotted) functionals, as well as pure EXX(KLI)
(purple solid line) are given for comparison.
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FIG. 3. Average relative error of the IP predicted via the highest occupied
KS eigenvalue, εho, as a function of the parameter c (blue solid line). Rel-
ative errors for the LSDA (dashed), PBE (dashed-dotted), and B3LYP (dot-
ted) functionals, as well as pure EXX(KLI) (purple solid line) are given for
comparison.

Interestingly, when calculating NH and BO, we observed
that the highest occupied state changes with varying the pa-
rameter c from εho = ε3↓ to ε5↑ at approximately c = 0.7 for
NH, and from ε6↓ to ε7↑ at c = 1.6 for the BO molecule. Such
systems could therefore be good candidates for checking the
functional’s ability to predict physically meaningful orbitals
in the sense of Ref. 39.

Finally, we checked the previously made assumption that
experimental bond lengths can be used, assuming they are
not very different from those obtained by relaxation. To this
end, all 18 molecules in the reference set were relaxed, and
the obtained bond lengths Lm were compared to the exper-
imental values, L

exp
m .102 It was found that for most systems

L
exp
m lies within the computational error for Lm and the dif-

ference |Lm − L
exp
m | is below 0.02 bohr,137 except F2, where

|Lm − L
exp
m | ≈ 0.08 bohr.138

D. Achievements of the suggested functional

In the following, we examine some of the proposed func-
tional’s properties at the value of c = 0.5, which was deter-
mined in Sec. IV C.

As the functional is one-electron SI-free (see Sec. II), it is
important to investigate its behavior in systems that are known
to suffer from a large self-interaction error when described by
standard DFAs. First, for one-electron systems, like H, He+,
H+

2 , etc., the functional reduces analytically to the EXX func-
tional, as can be seen from Eq. (7). Therefore, all the prop-
erties of these systems are obtained, by construction, exactly.
This advantage is not shared by (semi-)local or most hybrid
functionals.

In particular, Fig. 4 presents the dissociation curve of H+
2 ,

obtained with various functionals. It can be seen that, as ex-
pected, the curve obtained with the proposed functional per-
fectly agrees with the EXX curve, which provides the exact
result in this case. In particular, our local hybrid does not ex-
hibit a spurious maximum in the curve, which appears in con-
ventional approximate functionals at bond lengths around 5-6
bohrs103–107 and whose electrostatic origin has recently been
discussed.108 The dissociation of neutral H2 is a special chal-
lenge for most density functionals and is closely connected to
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FIG. 4. Dissociation curve of the H+
2 molecule, for the LSDA (squares), PBE

(x’s), B3LYP (dots), EXX (solid line), and the suggested functional (circles).

the question of how static correlation is accounted for.109 Our
local hybrid for H2 yields a binding curve that is qualitatively
similar to the one obtained in pure exchange calculations, i.e.,
for large internuclear separation the lowest energy is obtained
with a spin-polarized atomic density centered around each nu-
cleus, which yields a total energy of 1 hartree. Quantitatively,
there are differences with respect to the EXX solution: The
point from which on the spin-polarized solution has a lower
energy than the spin-unpolarized one lies at about 3.6 bohrs
with our local hybrid, and the minimum energy is −1.173
hartree as compared to −1.134 hartree obtained with EXX.

Generally, delocalization in stretched molecular bonds is
conceptually connected to the SI-error of DFAs.105 There-
fore, reduction of this error marks a first step towards en-
hancing the description of dissociation processes and chem-
ical reactions.110

To examine this, the dissociation curve of the 3-electron
molecule He+

2 is shown in Fig. 5. The curve achieved with
the suggested functional is the closest to the reference result
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FIG. 5. Dissociation curve of the He+
2 molecule, for the LSDA (squares),

PBE (x’s), B3LYP (dots), EXX (rhombi), and the suggested functional with
c = 0.5 (circles), compared to CCSD(T) results from Ref. 104 (dashed line).
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TABLE III. The highest occupied eigenvalue compared to the experimental
IP for Li, Na, and K, computed with four different functionals (LSDA, PBE,
B3LYP, and our suggested functional using c = 0.5). The table contains the
absolute numbers in hartree as well as the relative error in %.

IP
−εho

System Exp. LSDA PBE B3LYP Suggested functional

Li 0.1981 0.1163 0.1185 0.1311 0.1797
(−41%) (−40%) (−34%) (−9%)

Na 0.1886 0.1131 0.1116 0.1251 0.1647
(−40%) (−41%) (−34%) (−13%)

K 0.1595 0.0961 0.0930 0.1038 0.1334
(−40%) (−42%) (−35%) (−16%)

obtained with a highly accurate wavefunctions method (see
Ref. 104 and references therein). Here again, only our local
hybrid and the EXX curves do not possess the spurious max-
imum, which appears in the conventional approximations –
LSDA, PBE, and B3LYP around 4 bohrs. Unlike for the H+

2
system, here the proposed functional does not automatically
reduce to the exact expression, and therefore the accurate pre-
diction for He+

2 in Fig. 5 can be seen as a consequence of the
strong reduction of SI-errors, in agreement with a previous
study.111

We further investigated how well εho corresponds to the
experimental IP102 for the atoms Li, Na, and K. These atoms
can be considered as quasi-one-electron systems, consisting
of electrons arranged in closed shells, which screen the charge
of the nucleus, and one additional electron in the last open
shell. Table III shows that the εho obtained from our functional
evaluated with c = 0.5 is closer to the experimental IP than the
εho from LSDA, PBE, and B3LYP. Note that for these systems
a remarkable improvement is achieved, as one would expect
from their strong one-electron character.

V. CONCLUSIONS

In this article, we presented the construction of a lo-
cal hybrid functional that combines full exact exchange with
compatible correlation. The functional respects the homoge-
neous electron gas limit and addresses the one-electron self-
interaction error via a one-spin-orbital-region indicator. The
qualitative improvement that is achieved with this construc-
tion is reflected in, e.g., dissociation energy curves for H+

2 and
He+

2 that are much more realistic than the ones obtained from
(semi-) local functionals and global hybrids. We investigated
different conditions for fixing the undetermined parameter of
the functional. When the parameter is fit to minimize binding
energy errors or total energy errors, with respect to experi-
ment, then our local hybrid reaches an accuracy that is better
than LSDA or PBE and similar to the one afforded by the
B3LYP global hybrid. Predicting the first ionization energy
via the highest occupied eigenvalue εho is more accurate with
our functional than with LSDA, PBE, or B3LYP, but still not
satisfactorily accurate.

When the parameter is fit such that −εho should be as
close as possible to the experimental first ionization potential,
then the local hybrid functional achieves much smaller errors

in this quantity than, e.g., B3LYP. However, the value ob-
tained for the free parameter differs considerably from the one
that was obtained by fitting to binding or total energies. As a
result, prediction of these energies considerably differs from
their experimental values. Therefore, our local hybrid does al-
low for reaching accurate binding energies or accurate highest
eigenvalues, but not with the same functional parametrization.

Looking at this from a more general perspective, we note
that many functionals can achieve good accuracy on one of
the aforementioned properties or the other, but not on both
properties at the same time.

A first example are global hybrids. With the usual
0.2-0.25 fraction of exact exchange they yield good binding
energies, but highest eigenvalues that are considerably too
small in magnitude. Increasing the aforementioned fraction to
∼0.75 leads to improved gap prediction.112–114 However, such
a large fraction of exact exchange can compromise signifi-
cantly the accuracy in thermochemical24, 25, 115 or electronic
structure properties.45, 48, 57

A second example are range-separated hybrid function-
als. When combined with a tuning procedure based on the
IP theorem,57, 116–123 they allow for obtaining eigenvalues that
reflect ionization potentials very accurately by construction.
However, the typical value of the range-separation parameter
that is reached by such tuning is quite different from the one
that is reached when atomization energy errors are minimized
via the range-separation parameter.124

A third example is provided by the various self-
interaction correction schemes. Different forms of self-
interaction correction greatly improve the interpretabil-
ity of the eigenvalues when compared to semi-local
functionals,11, 37, 125–128 but binding energies are not ac-
curately predicted128, 129 unless the correction is “scaled
down.”126, 130

This rather universal difficulty to achieve accurate eigen-
values and accurate binding energies at the same time may
indicate that combining these two properties may require a
type of physics that all present day functionals lack.131

Recent work provides two new and interesting perspec-
tives on this problem. On the one hand, it has been noted
that even a semi-local functional can yield eigenvalues that
are qualitatively similar to the ones obtained from bare
EXX when the asymptotic properties of a GGA are care-
fully determined.132 On the other hand, it has recently been
shown that an ensemble perspective offers new and improved
ways of interpreting eigenvalues and extracting information
from semi-local functionals.133 Exploring in particular this
latter option, i.e., combining the ensemble approach with the
present local hybrid functional, will be the topic of future
work and may shed further light on the question of how to
obtain accurate binding energies and Kohn-Sham eigenvalues
from the same functional.

ACKNOWLEDGMENTS

S.K. gratefully acknowledges discussions with J. P.
Perdew on local hybrids in general and on an early version
of this functional in particular. We thank Baruch Feldman
for fruitful discussions. Financial support by the Deutsche

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.180.92.68 On: Fri, 21 Mar 2014 10:36:14



18A510-9 Schmidt et al. J. Chem. Phys. 140, 18A510 (2014)

Forschungsgemeinschaft (DFG) Graduiertenkolleg 1640, the
European Research Council, the German-Israeli Foundation,
and the Lise Meitner center for computational chemistry is
gratefully acknowledged. E.K. is a recipient of the Levzion
scholarship. T.S. acknowledges support from the Elite Net-
work of Bavaria (“Macromolecular Science” program).

APPENDIX A: DERIVATION OF THE CORRELATION
POTENTIAL

In order to employ the OEP formalism26, 28 (or its KLI
approximation94), one has to provide an analytical expres-
sion for the functional derivative of the explicitly orbital-
dependent exchange-correlation energy, Exc[{ϕiσ }], with re-
spect to the orbitals {ϕiσ }. For the functional proposed in the
present contribution,

Exc[{ϕiσ }] = Eex
x [{ϕiσ }] + Eiso

c [{ϕiσ }] + Esl
c [{ϕiσ }], (A1)

where Eex
x [{ϕiσ }] is the exact exchange defined in Eq. (1),

Esl
c [{ϕiσ }] is the semi-local correlation energy, whose energy

density per particle, esl
c (r), is given in Eq. (9), and Eiso

c [{ϕiσ }]
equals

Eiso
c [{ϕiσ }] =

∫
f (r′) n(r′)

(
eLSDA
x (r′) − eex

x (r′)
)

d3r ′,

(A2)
with the LMF function, f (r), being defined in Eq. (8).

Due to the additive structure of Eq. (A1), the functional
derivative

uiσ (r) = 1

ϕ∗
iσ (r)

δExc[{ϕiσ }]
δϕiσ (r)

(A3)

can be split in three terms

uiσ (r) = uexx
iσ (r) + uiso

iσ (r) + usl
iσ (r), (A4)

which are considered separately in the following.

1. The exact exchange contribution

The first term on the RHS of Eq. (A4) can be computed
directly from the exact-exchange expression (Eq. (1))

Eex
x = −1

2

Nσ∑
i, j = 1
σ =↑, ↓

∫ ∫
ϕ∗

iσ (r)ϕjσ (r)ϕiσ (r′)ϕ∗
jσ (r′)

|r − r′| d3rd3r ′

(A5)
and simply reads

ϕ∗
iσ (r) uexx

iσ (r) = −
Nσ∑
j=1

ϕ∗
jσ (r)

∫
ϕ∗

iσ (r′)ϕjσ (r′)
|r − r′| d3r ′. (A6)

2. The semi-local correlation contribution

The self-interaction-free semi-local correlation energy
contribution Esl

c [{ϕiσ }] is defined by

Esl
c [{ϕiσ }] =

∫
g(r′)Q(r′) d3r ′, (A7)

where

g(r) = 1 − τW (r)

τ (r)
ζ 2(r) (A8)

and

Q(r) = n(r)eLSDA
c (r). (A9)

For completeness, we list out all the quantities that are
required to construct the function g(r):

(a) kinetic energy density

τ (r) = 1

2

Nσ∑
i = 1

σ =↑, ↓

|∇ϕiσ (r)|2; (A10)

(b) Von Weizsäcker kinetic energy density

τW (r) = |∇n(r)|2
8n(r)

= 1

2
|∇n

1
2 (r)|2; (A11)

(c) spin polarization

ζ (r) = n↑(r) − n↓(r)

n↑(r) + n↓(r)
.

Taking the functional derivative based on Eq. (A7) results
in two parts

ϕ∗
iσ (r)usl

iσ (r) =
∫ (

δg(r′)
δϕiσ (r)

)
Q(r′) d3r ′

+
∫

g(r′)
(

δQ(r′)
δϕiσ (r)

)
d3r ′. (A12)

By denoting the constituent functions of the function g(r) by
ψ1(r) = τ (r), ψ2(r) = τW (r), and ψ3(r) = ζ (r), chain rule ar-
guments lead to the following expression:(

δg(r′)
δϕiσ (r)

)
=

3∑
l=1

δψl(r′)
δϕiσ (r)

δg(r′)
δψl(r′)

. (A13)

Here, we explicitly took into account the fact that g(r) de-
pends on ψl(r) locally.

In order to obtain an analytical expression for
δg(r′)/δϕiσ (r), which can then be inserted into Eq. (A12),
one has to consider the three constituent functions ψl(r)
separately:
l = 1:

δτ (r′)
δϕiσ (r)

=−1

2
δ(r−r′)

[∇′2ϕ∗
iσ (r′)+(∇′ϕ∗

iσ (r′)) · ∇′], (A14)

δg(r′)
δτ (r′)

= τW (r′)ζ 2(r′)
τ 2(r′)

, (A15)

l = 2:

δτW (r′)
δϕiσ (r)

=− ϕ∗
iσ (r′)

2n
1
2 (r′)

δ(r−r′)(∇′2(n
1
2 (r′))+(∇′n

1
2 (r′)) · ∇′),

(A16)

δg(r′)
δτW (r′)

=−ζ 2(r′)
τ (r′)

, (A17)
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l = 3:

δζ (r′)
δϕiσ (r)

= ϕ∗
iσ (r′)δ(r − r′)

(
δσ − ζ (r′)

n(r′)

)
, (A18)

δg(r′)
δζ (r′)

= −2τW (r′)ζ (r′)
τ (r′)

. (A19)

Here, the operator ∇′ denotes a gradient relative to the coor-
dinate (r′) and the quantity δσ distinguishes between the two
spin channels by

δσ =
{

1 if σ =↑
−1 if σ =↓ .

(A20)

It is noted that the functional derivatives above have the pre-
sented form with respect to the occupied orbitals only; deriva-
tives with respect to unoccupied orbitals equal zero.

The derived relations (A14)–(A19) now have to be in-
serted via Eq. (A13) into Eq. (A12). By further employing
a chain rule argument for the second term on the RHS of
Eq. (A12),

δQ(r′)
δϕiσ (r)

=
∑

τ=↑,↓

∫
δQ(r′)
δnτ (r′′)

δnτ (r′′)
δϕiσ (r)

d3r ′′

= ϕ∗
iσ (r)

δQ(r′)
δnσ (r)

= ϕ∗
iσ (r)vLSDA

c,σ (r′)δ(r−r′), (A21)

one arrives at the final expression of the functional derivative
of Esl

c [{ϕiσ }],
ϕ∗

iσ (r)usl
iσ (r)

= −1

2

[(∇2ϕ∗
iσ (r)

) δg(r)

δτ (r)
Q(r) + ∇ϕ∗

iσ (r) · ∇
(

δg(r)

δτ (r)
Q(r)

)]

− ϕ∗
iσ (r)

2n
1
2 (r)

[(
∇2n

1
2 (r)

) δg(r)

δτW (r)
Q(r)

+∇n
1
2 (r) · ∇

(
δg(r)

δτW (r)
Q(r)

)]

+ϕ∗
iσ (r) (δσ − ζ (r))

δg(r)

δζ (r)
eLSDA
c (r)

+ϕ∗
iσ (r) g(r) vLSDA

c,σ (r). (A22)

Equation (A22) corresponds to the functional derivative the
way it was implemented into the KLI/OEP-routine in the pro-
gram package DARSEC.

3. The contribution Eiso
c [{ϕiσ }]

The correlation term Eiso
c [{ϕiσ }] is defined in Eq. (A2).

Let us denote

P (r) = n(r)
(
eLSDA
x (r) − eex

x (r)
)

(A23)

and recall that the LMF function f (r) equals

f (r) =
1 − τW (r)

τ (r) ζ 2(r)

1 + c · t2(r)
. (A24)

In addition to the quantities τ , τW , and ζ introduced
above, the function f (r) additionally employs the so-called

reduced density gradient17

t(r) =
(π

3

) 1
6 a

1
2
0

4�(r)

|∇n(r)|
n

7
6 (r)

:= a
tn(r)

�(r)
(A25)

with

�(r) = 1

2
[(1 + ζ (r))

2
3 + (1 − ζ (r))

2
3 ] (A26)

and

a =
(π

3

) 1
6 a

1
2
0

4
= const.

The exact relation

t2
n (r) = 8τW (r)

n
4
3 (r)

(A27)

will be useful for later derivations.
Analogously to Eq. (A12), the application of the func-

tional derivative with respect to the KS-orbitals leads to two
contributions,

ϕ∗
iσ (r)uiso

iσ (r) =
∫ (

δf (r′)
δϕiσ (r)

)
P (r′) d3r ′

+
∫

f (r′)
(

δP (r′)
δϕiσ (r)

)
d3r ′. (A28)

Moreover, an analogous relation to Eq. (A13) helps to rewrite
the first part of this equation, only that now one has to con-
sider also the functions ψ4(r) = t2

n (r) and ψ5(r) = �(r),

(
δf (r′)
δϕiσ (r)

)
=

5∑
l=1

δψl(r′)
δϕiσ (r)

δf (r′)
δψl(r′)

. (A29)

We evaluate each term separately and obtain
l = 1:

δf (r′)
δτ (r′)

=
τW (r′)
τ 2(r′) ζ

2(r′)

1 + c · t2(r′)
= − δf (r′)

δτW (r′)
τW (r′)
τ (r′)

, (A30)

l = 2:

δf (r′)
δτW (r′)

= − ζ 2(r′)
τ (r′)

(
1 + c · t2(r′)

) , (A31)

l = 3:

δf (r′)
δζ (r′)

= −
2 τW (r′)

τ (r′) ζ (r′)

1 + c · t2(r′)
, (A32)

l = 4:

δt2
n (r′)

δϕiσ (r)
= 8

δτW (r′)
δϕiσ (r)

1

n
4
3 (r′)

− 32

3

τW (r′)ϕ∗
iσ (r′)

n
7
3 (r′)

δ(r − r′),

(A33)

δf (r′)
δt2

n (r′)
= − ca2f (r′)

�2(r′)(1 + c · t2(r′))
, (A34)
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l = 5:

δ�(r′)
δϕiσ (r)

= δ�(r′)
δζ (r′)

δζ (r′)
δϕiσ (r)

= 1

3
[(1 + ζ (r′))−

1
3 − (1 − ζ (r′))−

1
3 ] ·

ϕ∗
iσ (r′)δ(r − r′)

(
δσ − ζ (r′)

n(r′)

)
. (A35)

To avoid numerical instability due to the negative pow-
ers of − 1

3 , we multiply the above relation by (1 + ζ (r′))
1
3

(1 − ζ (r′))
1
3 and then divide by the same term expressed in

terms of the spin-densities. We then obtain

δ�(r′)
δϕiσ (r)

= −1

3
[(1 + ζ (r′))

1
3 − (1 − ζ (r′))

1
3 ] ·

n
2
3 (r′)

2
2
3 (n↑(r′)n↓(r′))

1
3

ϕ∗
iσ (r′) · δ(r−r′)

(
δσ−ζ (r′)

n(r′)

)
,

(A36)

δf (r′)
δ�(r′)

= 2ct2(r′)f (r′)
�(r′)(1 + c · t2(r′))

. (A37)

In order to compute the first term of Eq. (A28), one now
has to evaluate all the contributions originating from the dif-
ferent ψ l (Eqs. (A14), (A16), (A18), (A30), (A31), (A32),
(A33), (A34), (A36), and (A37)) via the chain rule argument
(A29).

Similar considerations are now used for the second term
on the RHS Eq. (A28). By applying chain rule arguments only
to the semi-local energy density part of P (r), one arrives at the

following equation:

δP (r′)
δϕiσ (r)

=
∑

τ=↑,↓

∫
δ
(
n(r′)eLSDA

x (r′)
)

δnτ (r′′)
δnτ (r′′)
δϕiσ (r)

d3r ′′

−δ
(
n(r′)eex

x (r′)
)

δϕiσ (r)
. (A38)

While the first term contributes simply via the regular density-
dependent LSDA exchange potential (similar to Eq. (A21)),
requires the second term explicit evaluation of the exact ex-
change energy density

n(r′)eex
x (r′)=−1

2

Nυ∑
k, q = 1
υ =↑, ↓

∫
ϕ∗

kυ(r′)ϕqυ(r′)ϕkυ(r′′)ϕ∗
qυ(r′′)

|r′ − r′′| d3r ′′.

(A39)

Therefore, Eq. (A38) results in

δP (r′)
δϕiσ (r)

= ϕ∗
iσ (r)vLSDA

x,σ (r′)δ(r − r′)

+ 1

2

Nσ∑
k=1

δ(r − r′)ϕ∗
kσ (r′)

∫
ϕkσ (r′′)ϕ∗

iσ (r′′)
|r′ − r′′| d3r ′′

+ 1

2

Nσ∑
q=1

ϕ∗
iσ (r′)ϕqσ (r′)ϕ∗

qσ (r)

|r′ − r| . (A40)

Evaluating this expression with the corresponding integral in
Eq. (A28) and adding the previously derived first term, one
arrives at the final expression for the functional derivative of
Eiso

c [{ϕ}] with respect to the KS orbitals

ϕ∗
iσ (r)uiso

iσ (r) = −f (r)

2
ϕ∗

iσ (r) uexx
iσ (r) + 1

2

Nσ∑
j=1

ϕ∗
jσ (r)

∫
f (r′)

ϕ∗
iσ (r′)ϕjσ (r′)

|r − r′| d3r ′ + ϕ∗
iσ (r)f (r)vLSDA

x,σ (r)

− 1

2

[(∇2ϕ∗
iσ (r)

) δf (r)

δτ (r)
P (r) + ∇ϕ∗

iσ (r) · ∇
(

δf (r)

δτ (r)
P (r)

)]
− ϕ∗

iσ (r)

2n
1
2 (r)

[
(∇2n

1
2 (r))

δf (r)

δτW (r)
P (r)

+ ∇n
1
2 (r) · ∇

(
δf (r)

δτW (r)
P (r)

)]

− 1

3
[(1 + ζ (r))

1
3 − (1 − ζ (r))

1
3 ]

ϕ∗
iσ (r)n

2
3 (r)

2
2
3 (n↑(r)n↓(r))

1
3

(δσ − ζ (r))
δf (r)

δ�(r)

(
eLSDA
x (r) − eex

x (r)
)

− 2ϕ∗
iσ (r)

n
4
3 (r)

[
∇2n(r)

(
eLSDA
x (r) − eex

x (r)
) δf (r)

δt2
n (r)

− 28

3
τW (r)

(
eLSDA
x (r) − eex

x (r)
) δf (r)

δt2
n (r)

+ ∇n(r) · ∇
((

eLSDA
x (r) − eex

x (r)
) δf (r)

δt2
n (r)

)]

+ϕ∗
iσ (r) · 2ct2(r)

1 + ct2(r)
f (r)

(
eLSDA
x (r) − eex

x (r)
) + ϕ∗

iσ (r) (δσ − ζ (r))
δf (r)

δζ (r)

(
eLSDA
x (r) − eex

x (r)
)
. (A41)
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TABLE IV. Comparison of total energy, Etot, using the suggested local hy-
brid functional in both the KLI and OEP schemes, as a function of c. All
values are in hartree.

System c KLI OEP EKLI
tot − EOEP

tot

C 0 − 37.4804 − 37.4804 0.0000
0.5 − 37.8108 − 37.8110 0.0002
2.5 − 37.9494 − 37.9497 0.0003

BH 0 − 24.9768 − 24.9768 0.0000
0.5 − 25.2612 − 25.2614 0.0002
2.5 − 25.3983 − 25.3988 0.0005

Li2 0 − 14.7244 − 14.7244 0.0000
0.5 − 14.9809 − 14.9810 0.0001
2.5 − 15.1245 − 15.1247 0.0002

NH 0 − 54.7769 − 54.7770 0.0001
0.5 − 55.1769 − 55.1774 0.0005
2.5 − 55.3555 − 55.3563 0.0008

N2 0 − 108.6958 − 108.6958 0.0000
0.5 − 109.4464 − 109.4474 0.0009
2.5 − 109.7593 − 109.7609 0.0017

Finally, we note that when numerically implementing
such complex expressions, questions of numerical stability
may emerge. We found that implementing the von Weizsäcker
kinetic energy density as τW (r) = 1

2 |∇n
1
2 (r)|2 and the quan-

tity δ�(r′)
δϕiσ (r) as in Eq. (A36) is highly advantageous. In addition,

we store τW (r)/τ (r) as a separate quantity, enforcing the exact
condition that it is never larger than 1. We also store separately
the quantity (1 + ct2(r))−1 and express ct2(r)/(1 + ct2(r)) in
terms of the former, to avoid the divergence of t(r) at large
distances.

APPENDIX B: OEP/KLI COMPARISON

This appendix reports detailed numerical results for the
total energies, Etot, as well as the eigenvalues of the high-
est occupied KS state, εho, using the proposed local hybrid

TABLE V. Comparison of highest occupied orbital energy εho using the
suggested local hybrid functional in both the KLI and OEP schemes, as a
function of c. All values are in hartree.

System c KLI OEP εKLI
ho − εOEP

ho

C 0 − 0.2740 − 0.2736 − 0.0005
0.5 − 0.3067 − 0.3068 0.0001
2.5 − 0.3688 − 0.3691 0.0003

BH 0 − 0.2031 − 0.2031 0.0000
0.5 − 0.2412 − 0.2415 0.0003
2.5 − 0.3043 − 0.3047 0.0004

Li2 0 − 0.1189 − 0.1189 0.0000
0.5 − 0.1286 − 0.1289 0.0002
2.5 − 0.1522 − 0.1527 0.0005

NH 0 − 0.3157 − 0.3164 0.0007
0.5 − 0.3770 − 0.3783 0.0013
2.5 − 0.4581 − 0.4607 0.0025

N2 0 − 0.3825 − 0.3825 0.0000
0.5 − 0.4456 − 0.4447 − 0.0010
2.5 − 0.5463 − 0.5444 − 0.0019

functional for selected systems: the BH, Li2, NH, and the N2

molecules, as well as the C atom. A multiplicative, local KS
potential was obtained by employing the functional derivative
of Eq. (A41) either in the full OEP scheme or by the KLI ap-
proximation. Table IV lists the absolute values of Etot for KLI
and OEP, as well as the differences between results obtained
with both schemes. Table V provides the same comparison for
εho.

Note that the systems BH, Li2, and N2 are spin-
unpolarized. Therefore, for c = 0 the functional reduces to
the LSDA xc functional (cf. Eq. (7)) and thus no difference
between KLI and OEP should occur. This is indeed the case,
within numerical accuracy.
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134Note that there exists a stronger requirement on the correlation energy,
namely, limγ → ∞Ec[nγ ] > −∞ (see Ref. 81, Eq. (12)), which here we do
not strive to fulfill.

135The quantities δE and δI were obtained relying on all the molecules and
atoms in the reference set (M = 26), while δD was obtained relying on the
molecules only (M = 18).

136When calculating δI(c), the vertical experimental ionization potentials
were used (see Ref. 102 and http://webbook.nist.gov).

137The numerical error in Lm is governed by the accuracy of 1 mRy in the
total energy, rather than by the convergence of the relaxation process.

138Two exceptional cases are LiH and Li2, which have an extremely shallow
E(L) minimum. The uncertainty of 1 mRy in the total energy translates
into a numerical uncertainty in the bond length of 0.16 bohr and 0.26 bohr,
respectively. Therefore, the difference |Lm − L

exp
m |, being 0.04 bohr and

0.22 bohr, although large, has no actual meaning due to the large numerical
uncertainty.
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One-electron self-interaction and the asymptotics
of the Kohn–Sham potential: an impaired relation

Tobias Schmidt,a Eli Kraisler,b Leeor Kronikb and Stephan Kümmel*a

One-electron self-interaction and an incorrect asymptotic behavior of the Kohn–Sham exchange–

correlation potential are among the most prominent limitations of many present-day density functionals.

However, a one-electron self-interaction-free energy does not necessarily lead to the correct long-

range potential. This is shown here explicitly for local hybrid functionals. Furthermore, carefully studying

the ratio of the von Weizsäcker kinetic energy density to the (positive) Kohn–Sham kinetic energy

density, tW/t, reveals that this ratio, which frequently serves as an iso-orbital indicator and is used to

eliminate one-electron self-interaction effects in meta-generalized-gradient approximations and

local hybrid functionals, can fail to approach its expected value in the vicinity of orbital nodal planes. This

perspective article suggests that the nature and consequences of one-electron self-interaction and

some of the strategies for its correction need to be reconsidered.

1 Density functional approximations
and their Kohn–Sham potentials

During the past few decades, Kohn–Sham density-functional
theory (DFT)1,2 has evolved into a standard tool for electronic
structure calculations of atoms, molecules and solids. The
decisive quantity of DFT is the exchange–correlation (xc) energy
functional, Exc, which contains all electronic interactions
beyond the classical electrostatic Hartree contribution, EH. Exc

in practice has to be approximated, and the approximation
used governs the accuracy of a DFT calculation.3,4 It is one of
the puzzles of DFT that explicit density functionals such as the
generalized gradient approximations (GGAs) can predict bind-
ing energies and bond lengths of complex many-electron
systems reliably, but make substantial errors in describing
simple one-electron systems. The underlying problem is well-
known as the one-electron ‘‘self-interaction problem’’:5 for the
exact functional, Exc + EH will vanish for any one-electron
ground-state density because one electron does not interact
with itself – but most approximate functionals yield a spurious
finite value for this case. Following ref. 5 a functional is
considered to be one-electron self-interaction free if it fulfills
the condition

EH[nis] + Exc[nis] = 0, (1)

where nis = |jis(r)|2 designates a single spin-orbital density.

Self-interaction plays a decisive (although not the only) role
in the (un)reliability of density functional theory calculations,
and its consequences are particularly pronounced, e.g., in
questions of orbital localization,5–8 ionization processes,9–12

charge transfer,13–15 and the interpretability of eigenvalues
and orbitals, e.g., as photoemission observables.16–23

Many of these observables can also be directly related to
properties of the Kohn–Sham exchange–correlation potential,
which is defined as the functional derivative of the xc
energy with respect to the ground-state density n(r), i.e.,

vxcðrÞ ¼
dExc½n�
dnðrÞ . It is generally expected that there is a close

relation between freedom from self-interaction and xc potential
features. The field-counteracting term that is important for
obtaining correct response properties is one such feature.24,25

Another example, and probably the most prominent one, is the
long-range asymptotic behavior of the xc potential,26,27

vxcðrÞ �!
jrj!1

� 1

jrj: (2)

(Hartree units are used here and throughout.) In this
perspective article we focus exclusively on Kohn–Sham theory,
i.e., on a local multiplicative xc potential, as opposed to orbital-
specific (non-multiplicative) potentials that arise in generalized
Kohn–Sham theory28 and are used in the standard application
of hybrid functionals. In the Kohn–Sham approach, the local xc
potential models the interaction of one particle with all others
and it therefore appears intuitively plausible that a functional
that is not self-interaction-free cannot show the correct �1/r
long-range asymptotic behavior: as one particle of a finite,
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overall electrically neutral system ventures out to infinity, it will
‘‘feel’’ the hole of charge 1 that it left behind in the total charge.
This gives rise to the �1/r potential asymptotics (see, e.g., ref. 4,
p. 242 for a more detailed argument along these lines). How-
ever, a particle that spuriously self-interacts will ‘‘feel’’ itself,
and thus not the proper hole. Consequently, the potential will
not have the proper long-range decay.

The correct asymptotics of the xc potential has proven to
be important for a variety of physical quantities. It plays a
prominent role for obtaining stable anions in DFT, it leads to a
Rydberg series in the Kohn–Sham eigenvalues and generally to
unoccupied eigenvalues of improved interpretability, and as a
consequence allows for improved accuracy in the prediction of
various response properties.29–33 The correct asymptotic behavior is
also important for the ionization potential (IP) theorem,26,27,34,35

which states that the negative of the highest occupied Kohn–Sham
eigenvalue �eho should correspond to the vertical IP, and for
developing functionals that allow for approximately predicting
IPs from ground-state eigenvalues.36,37

There have been fruitful attempts to incorporate the correct
behavior in the limit |r| -N directly into the xc potential,38–41

leading to improvements in the description of some of the
aforementioned properties. However, since directly designed
potential expressions are typically not functional derivatives of
any energy functional, the use of such ‘‘potential only’’ approx-
imations is necessarily limited, as discussed, e.g., in detail in
ref. 42–44.

A functional that combines freedom from self-interaction and
the correct asymptotics of the potential is exact exchange (EXX),
being defined as the Fock integral evaluated using Kohn–Sham
orbitals jis(r), where i labels orbitals in spin channel s:

Eex
x ðrÞ ¼ �

1

2

XNs

i; j¼1
s¼";#

ððjis
�ðrÞjjsðrÞjisðr0Þjjs

�ðr0Þ
r� r0j j d3rd3r0: (3)

Here, Ns is the number of electrons with spin s. Treating
exchange exactly with a local Kohn–Sham potential leads to a
significant improvement in the quality of Kohn–Sham eigen-
values when compared to (semi-)local functionals.20,45,46 EXX
also tends to increase Kohn–Sham gaps,8,47–50 leads to a desired
particle number discontinuity in static51 and time-dependent52

situations, and improves the description of charge transfer,24,25

dissociation53 and ionization processes.52

However, using bare EXX is known for its rather poor
description of binding energies and structural properties (see,
e.g., ref. 54 and 55, and ref. 4, chapter 2). Adding a (semi-)local
correlation term to EXX hardly improves the situation and
typically leads to results that are inferior to the ones from
(semi-)local functionals. The reason for this failure is the well-
known incompatibility of the fully non-local Fock exchange
with a purely (semi-)local correlation term.56

A class of approximations which has been designed to remedy
this incompatibility is that of local hybrid functionals,57,58

sometimes also called hyper-GGAs.56 Whereas global hybrid
functionals59–64 mix a constant, fixed fraction of Fock exchange
with (semi-)local exchange and correlation, local hybrids

replace the fixed fraction by a density dependent local mixing
function (LMF). Both types of hybrids originate from the
concept of the coupling-constant integration, i.e., the adiabatic
connection scheme.59,65 Global hybrids are successful in
modeling the coupling-constant averaged, integrated energy.
Local hybrids can go one step further and aim to model the
coupling-constant curve itself66 instead of just the integral.
Thus, in contrast to the global hybrid functionals which
are used in practical applications of DFT and combine GGA
components with a fixed fraction of exact exchange, local
hybrids can incorporate full exact exchange and can be fully
one-electron self-interaction-free.

An early local hybrid with reduced one-electron self-
interaction error showed promising results for dissociation
curves and reaction barriers, but its accuracy for binding
energies was limited.58 A self-consistent implementation of a
local hybrid functional was given in ref. 67, and over the years
several local hybrids were constructed, using different LMFs
and (semi-)local exchange and correlation functionals,68–76

striving to reach greater accuracy by refining the position-
dependent mixing of nonlocal and local components. Many
of these functionals rely on the concept of an iso-orbital
indicator, i.e., a functional that allows one to distinguish
regions of space in which the density is dominated by one
orbital shape from regions of space where several orbitals of
different shapes contribute to the density. The most prominent
iso-orbital indicator, which goes back to a long tradition of
using kinetic energy densities in density functional construc-
tion,77–79 is the ratio of the von Weizsäcker kinetic energy
density tW to the positive (as opposed to other possible defini-
tions, see, e.g., ref. 80) Kohn–Sham kinetic energy density t,
discussed in detail below.

By using full EXX and an iso-orbital indicator, local hybrids
aim at being one electron self-interaction-free and producing a
Kohn–Sham potential with the proper long-range asymptotic
decay. They are a paradigm class of functionals designed for
simultaneously curing both of these two prominent problems
of (semi-)local density functionals. In the following, we there-
fore use the example of a local hybrid functional to shed light
on the relation between a functional’s self-interaction and its
potential asymptotics, as well as the properties of the tW/t
indicator. We argue that quite generally a one-electron self-
interaction-free energy does not guarantee the correct long-
range potential, and that tW/t loses its indicator ability in the
vicinity of nodal planes of the highest-occupied molecular
orbital (HOMO).

2 Correlation compatible with exact
exchange: the local hybrid approach

The xc energy functional can be written as

Exc[n] =
Ð

n(r)exc([n];r)d3r, (4)

with exc([n];r) denoting the xc energy density per particle.
The definition of exc(r) is not unique and subject to
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a gauge-dependence.72 Yet, for local hybrid functionals it has
become common to define this energy in the form

elh
xc(r) = eex

x (r) + f (r)(esl
x (r) � eex

x (r)) + esl
c (r). (5)

Here, eex
x (r) marks the exchange energy density per particle

corresponding to the EXX energy of eqn (3). This non-local term
is mixed with (semi-)local exchange and correlation energy
densities esl

x (r) and esl
c (r), respectively. The position dependent

mixing ratio f (r), which is itself a density functional, marks
the LMF.

Often, the LMF is designed in a way that aims at eliminating
the one-electron self-interaction error of eqn (1) that is inherent
in most density functionals. An established method for
reducing self-interaction effects is to detect regions of space
where a single Kohn–Sham orbital shape dominates the density
(‘‘iso-orbital regions’’), and then enforce eqn (1) in these
regions. One of the most popular58,67,70,71,74,76,80–83 indicator
functions for detecting iso-orbital regions is

gðrÞ ¼ tWðrÞ
tðrÞ ; (6)

where tW(r) = |rn(r)|2/(8n(r)) denotes the von Weizsäcker

kinetic energy density and tðrÞ ¼ 1

2

P
s

PNs

i¼1
rjisðrÞj j2 is the posi-

tive Kohn–Sham kinetic energy density. In iso-orbital regions,
t(r) - tW(r) and therefore g(r) - 1. In the case of a slowly
varying density, tW(r) - 0 and, since t(r) remains finite, g(r) - 0.
This indicator function is typically a decisive ingredient in
the LMF, f (r), of local hybrids. With its help one can construct
f (r) such that eqn (5) reduces to correct limiting cases, e.g.,
esl

x (r) + esl
c (r) for slowly varying densities, and eex

x (r) for single
orbital regions. The latter case additionally requires that
esl

c (r) vanishes in single-orbital regions, a condition that we
discuss below.

In the asymptotic limit, |r| - N, the xc energy density for a
finite system should be dominated by eex

x (r). When esl
c (r)

vanishes sufficiently fast in the asymptotic region (a condition
that is usually fulfilled), then

lim
jrj!1

f ðrÞ ¼ 0 (7)

is the requirement that one aims at, because it leads to the
correct asymptotic limit of the xc energy density per particle

elhxcðrÞ � eexx ðrÞ �!jrj!1 �
1

2r
: (8)

(Note the difference to the asymptotic limit of the xc
potential, see ref. 38).

Since for a finite system each Kohn–Sham orbital decays
exponentially with an exponent set by its eigenvalue,84 the
density is asymptotically dominated by the HOMO density,
i.e., it becomes of iso-orbital character. Therefore, g(r) can be
used in the construction of the LMF to realize eqn (8).

Considerations of the type discussed above are inherent to
many density functional constructions. As a particular example

for a local hybrid functional we here use a recently proposed,
physically motivated LMF,83 which reads

ftðrÞ ¼
1� tWðrÞ

tðrÞ z
2ðrÞ

1þ ct2ðrÞ : (9)

The function g(r) in the numerator is multiplied by the
squared spin polarization z(r) = (nm(r) � nk(r))/(nm(r) + nk(r)),
which lets the LMF not only identify iso-orbital regions, but
also correctly distinguish between true one-orbital regions, and
regions with two identical spin-orbitals. The function g(r) is
used in such a way that ft(r) vanishes for one-orbital regions, as
required. The use of the reduced density gradient

t2ðrÞ ¼ p
3

� �1=3 a0

16F2ðzðrÞÞ
jrnðrÞj2

n7=3ðrÞ ; (10)

where a0 is the Bohr radius and F(z(r)) = 1
2((1 + z)2/3 + (1 � z)2/3),

in the denominator of ft(r), ensures the correct behavior of Exc

under uniform coordinate scaling r - gr.85,86 The density
transforms as ng(r) = g3n(gr) and as a consequence eqn (9) uses
full exact exchange in the sense of ref. 72

lim
g!1

Exc ng
� �

Eex
x ng
� � ¼ 1: (11)

The function t2(r) is multiplied by a parameter c that
we cannot determine, at least presently, from fundamental
constraints. It allows for adjustments in the functional ansatz.
In the case of slowly varying densities, ft(r) - 1 and eqn (5)
reduces to its purely (semi-)local components. As an aside we
note that this LMF comprises the one of ref. 58 as the special
case when c = 0 and z(r) = 1 8 r. We denote this case by f0(r),

i.e., f0ðrÞ ¼ 1� tWðrÞ
tðrÞ .

For the semi-local exchange we use the LSDA,87 i.e., esl
x (r) =

eLSDA
x (r), whereas eslc ðrÞ ¼ 1� tWðrÞ

tðrÞ z
2ðrÞ

� �
eLSDA
c ðrÞ. The addi-

tional multiplication with the numerator of eqn (9) consistently
reduces eqn (5) to pure EXX in the one-spin-orbital case, where
eLSDA

c (r) alone does not vanish.
The general questions that we discuss in this perspective

article, i.e., whether there is a relation between self-interaction
and the xc potential asymptotics and how far the iso-orbital
indicator tW/t can be used to enforce freedom from self-
interaction, can be scrutinzed with the local hybrid of eqn (9)
as an instructive example.

3 The Kohn–Sham exchange–
correlation potential of local hybrid
functionals

In order to implement local hybrids self-consistently within the
Kohn–Sham scheme, one has to find the local multiplicative xc
potential corresponding to the energy of eqn (4) and (5).
The fact that local hybrids use EXX and typically also t(r)
makes them explicitly orbital-dependent. Therefore, the local
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xc potential must be obtained from the optimized effective
potential (OEP) equation (see, e.g., ref. 45, 55 and 88–91). The
computational effort can be reduced significantly by employing
the approximation of Krieger, Li and Iafrate (KLI).92 For
the local hybrid of eqn (9) it has been shown that the total
energy Etot and the highest occupied Kohn–Sham eigenvalue eho

obtained using the KLI approximation agree quite well with the
ones from the full OEP.83 Furthermore, it is a general finding84

that the KLI approximation does not affect the potential
asymptotics to leading order. In the actual calculations
presented in the following we therefore always use the KLI
approximation.

In the OEP (and KLI) scheme the chain rule for functional
derivatives45 relates the derivative with respect to the density to
the derivatives with respect to the orbitals,

uisðrÞ ¼
1

jis
�ðrÞ

dExc½fjg�
djisðrÞ

: (12)

From the structure of the OEP equation it further follows
that to first order

lim
jrj!1

vxcsðrÞ ¼ lim
jrj!1

uNssðrÞ; (13)

i.e., the functional derivative with respect to the HOMO in
general determines the potential asymptotics.84 Therefore,
investigating the HOMO functional derivative is the key to
determining the asymptotic behavior of an orbital dependent
functional’s xc potential. When one takes the functional deri-
vative (with respect to the orbital) of a local hybrid one obtains
three terms, corresponding to the three addends in eqn (5):

ulh
is(r) = uexx

is (r) + uc-nl
is (r) + uc-sl

is (r) (14)

Evaluating the asymptotical behavior of each of these three
terms for the highest occupied orbital allows one to predict the
potential asymptotics.

The first term can be derived directly from eqn (3) and reads

uexxis ðrÞ ¼ �
1

jis
�ðrÞ

XNs

j¼1
jjs
�ðrÞ
ðjis

�ðr0Þjjsðr0Þ
jr� r0j d3r0 (15)

This term evaluated for the HOMO indeed provides the
correct asymptotic behavior45

uexxNssðrÞ �!jrj!1 �
1

jrj: (16)

The third term uc-sl
is (r), on the other hand, does not con-

tribute to the asymptotics of eqn (16) as it decays exponentially
due to its purely (semi-)local nature.

Evaluating the second term on the right-hand side of
eqn (14) requires careful consideration. Intuitively, one might
expect that an asymptotically vanishing LMF will surpress any
asymptotic contribution of this term to the potential. In the
following we check this expectation. Details of the underlying
calculation for both LMFs used in this work, i.e., ft(r) and f0(r),
can be found in ref. 83 and in Appendix B, eqn (27),
respectively.

By defining P(r) = n(r)esl
x (r) and Q(r) = n(r)eex

x (r) one can write

uc-nlis ðrÞ ¼
1

jis
�ðrÞ

d
djisðrÞ

ð
f ðr0ÞðPðr0Þ �Qðr0ÞÞd3r0

¼ 1

jis
�ðrÞ

ð
df ðr0Þ
djisðrÞ

� �
Pðr0Þd3r0 þ

ð
f ðr0Þ dPðr0Þ

djisðrÞ

� �
d3r0

�

�
ð

df ðr0Þ
djisðrÞ

� �
Qðr0Þd3r0 �

ð
f ðr0Þ dQðr0Þ

djisðrÞ

� �
d3r0

	
:

(17)

The first two terms consist of (semi-)local components and
thus vanish exponentially. Evaluating the third term on the
other hand is not as trivial as it contains the non-local quantity
Q(r) as well the functional derivative of the LMF with respect to
the corresponding Kohn–Sham orbital. For the LMFs addressed
in this perspective we find that this term does not contribute to
the asymptotics either (see ref. 83 and Appendix B for details).

Thus, only the fourth term in eqn (17) is relevant in the
asymptotic limit and therefore

uc-nlis ðrÞ !
1

2jis
�ðrÞ f ðrÞ

XNs

j¼1
jjs
�ðrÞ
ð
jis
�ðr0Þjjsðr0Þ
jr� r0j d3r0

"

þ
XNs

j¼1
jjs
�ðrÞ
ð
f ðr0Þ

jis
�ðr0Þjjsðr0Þ
jr� r0j d3r0

#
:

(18)

The first term in this equation equals �uexx
is (r) of eqn (15),

locally multiplied by f (r)/2. Due to eqn (7) it vanishes faster
than the leading term of ulh

is, which is given in eqn (16).
The second term, however, is of a different structure, as it

evaluates the LMF under the integral. By considering the
HOMO level, its asymptotic limit is

uc-nlNssðrÞ �!jrj!1
1

2

ð
f ðr0Þ

j�Nssðr
0ÞjNssðr0Þ
jr� r0j d3r0: (19)

This corresponds to a Hartree-like potential caused by the
spin-orbital density of the HOMO averaged over all space, with
the LMF as a weighting function. Thus, this term gives a finite
contribution in the asymptotic limit despite eqn (7).

Now, when adding the asymptotically significant components,
eqn (16) and (19), for the evaluation of eqn (13), we arrive at

vxcsðrÞ �!
jrj!1

�gsjrj: (20)

Here, the parameter gs denotes the reduced slope of the
potential asymptotics, which can numerically be extracted from
a self-consistent Kohn–Sham calculation via

gs ¼ 1� 1

2

ð
f ðrÞjjNssðrÞj

2d3r: (21)

Eqn (21) is a central result of this work, as it demonstrates
that a local hybrid of the form of eqn (5) does not lead to the
exact asymptotic behavior of the xc potential. Eqn (20) holds for
all f (r) that vanish in the asymptotic limit and for which the
third term of eqn (17) does not contribute to the asymptotics of the
functional derivative uc-nl

is (r), i.e., under very general conditions.
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Further details of the calculation, specifically regarding the ques-
tion of the xc potential asymptotics in different spin-channels, are
given in Appendix B.

The LMF is limited between 0 r f (r) r 1 and therefore the
asymptote is bound between 1

2 o gs r 1. Consequently, the
exact value gs = 1 can only be reached by setting f (r) = 0 8 r,
which corresponds to the trivial case of using EXX, ‘‘as is’’ or
combined with a purely (semi-)local correlation functional.

A different extreme case, f (r) = 1 8 r, does not, as one could
naı̈vely believe due to eqn (21), lead to gs = 1

2. Here, we have to
take the neglected first term of eqn (18) into account again, and
from this we see that gs actually vanishes. This is to be
expected, since in this case the local hybrid reduces to a purely
(semi-)local functional.

Fig. 1 shows a numerical verification of the above analytical
considerations (see Appendix A for numerical details). It
depicts the xc (KLI) potential corresponding to the local hybrid
of eqn (9) in comparison with the asymptotic decay according
to eqn (20) and (21) for the carbon atom. An additonal curve
indicates the exact �1/r decay, which is clearly not reached.
The xc potential, instead of decaying with gm = 1 as one would
intuitively expect,69 approaches the predicition of eqn (21)
(gm = 0.716) quite rapidly.

Fig. 2 shows the xc energy density exc(r) for the same system
in comparison to its correct asymptotic of�1/(2r). Clearly the xc
energy density shows the correct asymptotic, cf. eqn (8).
We thus see that while the behavior of exc can directly be
controlled via the LMF in eqn (5), the process of finding
the local xc potential via functional differentiation leads to
non-local evaluations of the LMF that decisively impact the
potential’s asymptotics.

A physically meaningful quantity closely related to the asym-
ptotics of the xc potential is the highest occupied eigenvalue eho.
Table 1 shows �eho compared to the experimental IP for the
carbon and fluorine atoms for different functionals, together with
the corresponding value of gs of the xc potential from eqn (21).

The LSDA, as generally known, significantly underestimates
the IP due to the wrong potential asymptotics and the inherent
self-interaction error. Using pure EXX with the correct asymp-
totic decay and no self-interaction error leads to a much better
prediction of the IP. When employing a local hybrid with the
LMF ft(r), the explicit dependence on the parameter c becomes
evident: with growing c, the asymptotic value gs grows and the
description of the IP improves. Fig. 3 sheds further light on the
situation. It shows potentials of local hybrids which are all based on
eqn (9) but use different values of c. Growing values of c increase
the amount of EXX and lead to an overall deeper potential. This
explains that the eigenvalues become more negative.

We thus see that while all of the local hybrids used here can
(so far, see caveat in the next section) be thought of as being
one-electron self-interaction free, they show different potential
asymptotics and their highest occupied eigenvalues predict the
IP with significantly different reliability. The relation between
freedom from self-interaction, potential asymptotics, and physical

Fig. 1 The xc potential vxcm(r) for the C atom along the x-axis (see
Appendix A for definition), computed using ft(r) with c = 0.5. Also displayed
is the asymptotic curve according to eqn (20) with gm(c = 0.5) = 0.716 and
the correct asymptotic �1/r. The inset shows the potential plotted along
the complete axis.

Fig. 2 xc energy density per particle exc(r) for the C atom along the x-axis
(see Appendix A for definition), computed using ft(r) with c = 0.5. Also
displayed is the corresponding asymptotic slope of �1/(2r). The inset
shows the energy density plotted along the complete axis.

Table 1 Comparison of the highest occupied Kohn–Sham eigenvalue
�eho to the experimental vertical IP93 for the C (e4m) and F atoms (e4k) using
different functionals. All values are in hartrees

System Functional gsho
�eho Exp. IP

C LSDA — 0.2249 0.4138
ft(r)(c = 0) 0.6098 0.2740
ft(r)(c = 0.5) 0.7162 0.3067
ft(r)(c = 1.0) 0.7678 0.3302
ft(r)(c = 2.5) 0.8441 0.3688
ft(r)(c = 5.0) 0.8966 0.3970
f0(r) 0.8309 0.3530
EXX 1.0000 0.4378

F LSDA — 0.3808 0.6403
ft(r)(c = 0) 0.5055 0.3810
ft(r)(c = 0.5) 0.6665 0.4724
ft(r)(c = 1.0) 0.7390 0.5269
ft(r)(c = 2.5) 0.8365 0.6060
ft(r)(c = 5.0) 0.8971 0.6570
f0(r) 0.7927 0.5798
EXX 1.0000 0.6779
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interpretability of the highest occupied eigenvalue as the negative
IP is therefore much less clear than intuitively believed. This
observation also calls for taking a closer look at the iso-orbital
indicator g(r) that is used in enforcing freedom from self-
interaction. This is the topic of the next section.

4 The implications of orbital nodal
planes

As explained in the preceding sections, many local hybrids and
other functionals such as meta-GGAs rely on the function g(r)
tending to 1 to detect regions of space in which a single orbital
shape dominates the density, and then, e.g., correct for self-
interaction in such regions. However, a first caveat that one has
to take note of is that g(r) - 1 holds for one-particle densities of
ground-state character. This is a possibly far reaching restriction
for the use of g(r) because electron orbital densities typically have
nodes, i.e., are not of ground-state character. As a specific,
illustrative example, consider an atom where the HOMO has
an azimuthal quantum number m i.e., is expressed in spherical
coordinates as jho(r) = R(r,y)eimf. In the region where the density
is HOMO-dominated, tW(r) is therefore given approximately by
1
2|rR(r,y)|2. However, in the same region t(r) is given approxi-
mately by 1

2|rjho(r)|2 = 1
2(|rR(r,y)|2 + m2R2(r,y)/(r sin y)2). Thus, if

m = 0, then t(r) = tW(r), but for m a 0 this is no longer the case.
Instead, t(r) and tW only approach each other asymptotically, as
the m2-dependent-term of t(r) decays to zero with large r.

One may counter-argue that this restriction is not so severe
because in density functional construction, the condition
t(r) - tW(r) is mostly used to detect those regions of space in
a finite system which are far from all nuclei, and where the
density decays nodelessly. However, we here show that even in
such regions the condition t(r) - tW(r) can be violated. This
leads to a second caveat about the reliability of the g(r) indicator.
It is rooted in the existence of orbital densities that have nodal
planes or nodal axes. Fig. 4 illustrates this case. It shows g(r)

evaluated in the (xz)-plane for the carbon atom (see Appendix A
for numerical details, including grid setup). The density here
was obtained using ft(r)(c = 0.5), but the density features relevant
here are not sensitive to functional details. The important
observation is that g(r) approaches 1 in the asymptotic limit in
every direction – except for in the vicinity of x = 0.

The first step towards an understanding of this finding is to
note that the z-axis is a nodal axis, being the intersection of the
nodal planes of the two HOMOs of carbon, which are degen-
erate and of p-orbital character.

The consequences of the existence of nodal planes can be
studied analytically. To this end we look at a schematic density
that is dominated by the HOMO jho(r), but also take the next
lower lying orbital jho�1(r) into account, i.e. n(r) B |jho(r)|2 +
|jho�1(r)|2. With this ansatz one finds

tW �
rjjhoj

2 þrjjho�1j
2

� �2
8 jjhoj

2 þ jjho�1j
2

� � (22)

and

t B 1
2(|rjho|2 + |rjho�1|2). (23)

These two terms combined and evaluated on or close to a
nodal plane (denoted by �!

n:p:
), where jho - 0, yield

tW
t
�!
n:p:

rjho�1j j2

rjhoj j2þ rjho�1j j2
o 1: (24)

Even though jho vanishes on the nodal plane, its gradient still
yields a finite value and keeps the function g(r) from approaching 1.

Fig. 4 shows that the deviation from 1 has a noticeable
spatial extension of a few a.u. This raises the question of how
well the use of the iso-orbital indicator g(r) leads to freedom
from self-interaction, as in some regions that so far have been
considered as iso-orbital ones, e.g., all space far from the
system’s center, self-interaction effects may not be eliminated
fully when the indicator aberrates due to the presence of a
nodal plane or axis. A different interpretation of Fig. 4 would be

Fig. 4 The function gðrÞ ¼ tWðrÞ
tðrÞ on the numerical grid for the C atom.

Fig. 3 Asymptotics of the xc potential vxcm(r) for the C atom along the
x-axis, computed with pure EXX and local hybrids using ft(r) from eqn (9)
with parameters c = 0.5 and c = 5.0. Also displayed are the complete
potentials in the inset.
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to reconsider one’s expectation of where iso-orbital regions are,
or what they are. The traditional point of view has been that all
space far from a finite system’s center is of iso-orbital nature.
Fig. 4 and eqn (24) may be interpreted to show that this is not
the case when the HOMO has a nodal plane/axis extending to
infinity. From this perspective one might say that g(r) does
exactly what it is supposed to be doing, i.e., it indicates that the
nodal plane region is not of iso-orbital character. Yet, also from
this perspective Fig. 4 reveals a surprising finding, namely that
even infinitely far from a finite system’s center, the density may
not be of iso-orbital character.

The nodal plane observation also forces us to take a yet
closer look at the central topic of this perspective, the potential
asymptotics. Nodal planes can influence the asymptotics of a
local hybrid’s xc potential in two ways. First, it has been argued
that all orbital-dependent functionals show non-vanishing
asymptotic constants in their xc potential along nodal planes
of the highest occupied Kohn–Sham orbital that extend to
infinity. This was first discussed in ref. 94 and 95 for the case
of pure EXX, and the occurring shift was determined to be

Cs = %vxcMs
s � %uxcMs

s, (25)

with %vxcis =
Ð
jis*(r)vxcs(r)jis(r)d3r and %uxcis =

Ð
jis*(r)uxcis(r)jis(r)d3r.

The index Ms denotes the highest lying Kohn–Sham orbital that
does not show a vanishing spin-orbital density along the nodal
plane of the HOMO. Since eqn (25) follows from the KLI (OEP)
equation without referring to a specific functional, non-vanishing
asymptotic constants on nodal planes of the HOMO are expected
on rather general grounds.

Second, the fact that g(r) - 1 is not guaranteed on a nodal
plane can also affect the potential. For the sake of clarity, we
again discuss this effect for the specific example of local
hybrids. When the LMF tends to zero on the nodal plane, i.e.,
f ðrÞ �!

n:p:
0 and eqn (7) is obeyed, then the non-vanishing con-

stant of eqn (25) is the only effect. An example for this case is
the LMF ft(r) with a finite value of the parameter c. It is depicted
in Fig. 5 for the C atom density in the (xz)-plane, and one sees

that there are no asymptotic features. This is because the
reduced density gradient in the denominator causes ft(r) to
vanish in the asymptotic limit, regardless of the occurrence of a
nodal plane. The potential decays like �gs/r in all directions,
but along the z-axis a non-vanishing constant

vxcsðrÞ �!
n:p:

Cs �
gs
jrj (26)

appears. This is shown in Fig. 6 for ft(r)(c = 0.5) and the F atom.
One can clearly see how vxcm(r) decays with gm = 0.6650, but,
instead of zero, approaches a constant of Cm = 0.0244, in
agreement with eqn (25).

A different situation occurs when f ðrÞ !=
n:p:

0, i.e., the behavior

of the indicator function along a nodal plane/axis of the HOMO
prevents the LMF from reaching its intended limit. This hap-
pens, e.g., for f0(r) or ft(r)(c = 0) and is depicted in Fig. 7, again
for the C atom. The occurrence of a nodal axis here very clearly
affects the LMF. Since in this case eqn (7) is violated in the
direction of the z-axis, the previous derivations cannot be used
to predict the potential’s asymptotic behavior. However, we
have numerically checked the xc potential’s behavior. On the

Fig. 5 The LMF ftðrÞ ¼
1�tWðrÞtðrÞ z2ðrÞ

1þct2ðrÞ , evaluated with c = 0.5, on the numerical
grid for the C atom.

Fig. 6 Asymptotics of the xc potential vxcm(r) for the F atom along the
(projected) z-axis (denoted z*, see Appendix A for definition), computed
using ft(r) with the parameter c = 0.5.

Fig. 7 The LMF f0ðrÞ ¼ 1� tWðrÞ
tðrÞ on the numerical grid for the C atom.
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nodal axis it neither tends to �1/r, nor to Cs �
gs
jrj, but rather

tends to some other value. Thus, the nodal axis in this case has
a very noticeable influence on the potential asymptotics, which
is hard to predict a priori.

5 Conclusions

With local hybrid functionals serving as an explicit example we have
argued that freedom from self-interaction in the sense of eqn (1)
does not necessarily lead to the expected �1/r decay of the local
Kohn–Sham xc potential. We have further argued that the ratio of
the von Weizsäcker kinetic energy density to the positive Kohn–
Sham kinetic energy density, which is frequently used in functional
construction for indicating iso-orbital regions and eliminating self-
interaction effects in these, may not serve its intended purpose
because it is very sensitive to excited state features such as orbital
nodal planes that are present in Kohn–Sham orbitals that construct
ground-state densities of many-electron systems.

These findings have immediate and somewhat discomforting
consequences for the local hybrid approach. For a large class of
functionals one has to accept that the correct long-range xc potential
simply cannot be obtained. This observation plays a role in explain-
ing why it is very hard to construct a local hybrid that yields good
binding energetics and physically meaningful eigenvalues with the
same functional form and set of parameters.83 However, the
impaired relation between self-interaction and the xc potential’s
asymptotics, and also the impact of nodal planes, stand in a context
that is much larger than the local hybrid one. The iso-orbital
indicator g(r) has been used in many functionals, not only local
hybrids. Nodal planes are known to impact the exact exchange
potential in surprising ways.94,95 They have appeared here as a
prominent feature in kinetic energy ratios, and we expect96 that they
play a much larger role in the exchange potential than has been
realized so far. The observation that a one-electron self-interaction-
free energy can go together with a potential that does not fall of like
�1/r is not only a feature of local hybrids, but has also been reported
for a ‘‘scaled down’’ version of the Perdew–Zunger self-interaction
correction.97 One may therefore wonder whether semi-local indica-
tor functionals are in some sense incompatible with the fully non-
local self-interaction correction that is achieved by EXX or full
Perdew–Zunger-type correction approaches. It has also been pointed
out recently98 that eqn (1) itself, which is the basis of the present
definition of one-electron self-interaction, leads to questions when
evaluated for orbital densities, because Exc[n] is intended to be used
with ground state densities, whereas orbital densities are excited
state densities. Further conceptual questions about eqn (1) relate to
its inherent identification of orbitals with electrons and its unitary
variance.5,99,100 The success of self-interaction corrections schemes
that rely on eqn (1) tells us that the equation is meaningful.
However, the sum of the insights into its limitations that emerged
over the years suggests that there is more to the question of self-
interaction in density functional theory.

While the above considerations point out areas that require
further thought and work, one should also note that there have
been developments in DFT that shine a bright light into the future.

The concept of many-electron self-interaction101,102 is not as
straightforward to use as eqn (1), but it avoids the conceptual
questions that are associated with this equation. Range-
separated hybrids yield the correct asymptotic potential and
have proven to be a very successful concept, without being self-
interaction-free.23,36,103–117 There have been successful func-
tional constructions that can be seen as combinations of the
local hybrid and the range-separation idea.118,119 Ensemble
corrections120 allow to extract information from functionals in
an unexpected way, and can, e.g., further improve IP prediction.
Finally, it has recently been shown121 that a new type of a
generalized gradient approximation can show features that were
so far thought of as being associated only with exact exchange,
such as step structures and surprising nodal plane features,96 and
understanding potentials in terms of xc charges has provided new
insights.122–124 Therefore, the battle against DFT’s old foe, the self-
interaction error, and its surprisingly independent side-kick, the
wrong potential fall-off, is far from being lost.

Appendix A: numerical details

We used the all-electron code DARSEC125 for all calculations
presented in this perspective. This code exploits the rotational
symmetry of diatomic molecules along the interatomic axis z,
treating the azimuthal angle f analytically and thus effectively
reducing the problem of solving the Kohn–Sham equations in two
dimensions. The equations are represented on a real-space grid of
prolate-spheroidal coordinates. In such a coordinate system, the
nuclear position(s) coincide with the focal point(s) of the grid located
at z = �R/2, with R being the bond length of the diatomic molecule.
This is the case also for calculations of single atoms: the position of
the nucleus is not equivalent to the origin of the coordinate system,
but it is located at z = �R/2, where R was set to 0.5 a.u. e.g., the C
atom in our plots is centered at rC = (x,z) = (0, �0.25). The x-axis is
defined as perpendicular to the z-axis, crossing the latter at z = 0,
i.e., at a point being equidistant from the focal points of the grid (see
ref. 125 for details).

In order to avoid numerical instabilities due to singularities
in the Laplacian, the grid was chosen such that it does not
include the actual z-axis, i.e. the interatomic axis. As a conse-
quence, in this direction all quantities can only be plotted along
a projected z*-axis, which takes into account all grid points that
are closest to the actual z-axis. Since the discrepancy between the
projected and the real z-axis decreases with increasing number
of grid points, we made sure that the difference between z and z*
is small by choosing sufficiently dense and large grids.

Appendix B: the asymptotic decay of
the exchange–correlation potential in
detail

In the following, we present considerations about the asymp-
totics of the xc potential in the spin channel that carries the
global HOMO (sho), as compared to the other spin channel
(�sho). Section 3 used the condition that f (r) needs to vanish at a
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sufficient rate in the derivation of eqn (20). In the present work,
we investigated two possibilities for the decay of the LMF.

First, ft(r) for a finite value of the parameter c vanishes

exponentially because ftðrÞ � t�2ðrÞ � e�
2
3

ffiffiffiffiffiffiffiffiffi
�2eho
p

r. In this case,
all individual terms in each functional derivative, uc-nl

is (see
eqn (17)), vanish exponentially in the asymptotic limit as well,
except for the second term in eqn (18). Eventually, this remain-
ing term is responsible for the reduced asymptotic decay of
eqn (20) due to the non-local evaluation of ft(r). Consequently,
the xc potential in both spin channels decays with �gs/r.

However, a different picture emerges when evaluating

f0ðrÞ ¼ 1� tWðrÞ
tðrÞ . This function decays much more slowly than

ft(r) with finite c, as Fig. 8 shows for the carbon atom. Consequently,
not all terms in the functional derivative originating from f0(r)
vanish individually and more detailed investigations are necessary.

Defining K(r) = n(r)(esl
x (r)� eex

x (r)), the functional derivative in
this case reads

uc-nlis ðrÞ ¼ �
f0ðrÞ
2

uexxis ðrÞ þ f0ðrÞvLSDA
x;s ðrÞ

þ 1

2jis
�ðrÞ

XNs

j¼1
jjs
�ðrÞ
ð
f0ðr0Þ

jis
�ðr0Þjjsðr0Þ
jr� r0j d3r0

� 1

2jis
�ðrÞ r

2jis
�ðrÞ

� �df0ðrÞ
dtðrÞKðrÞ

�

þrjis
�ðrÞ � r df0ðrÞ

dtðrÞKðrÞ
� �	

� 1

2n
1
2ðrÞ

r2n
1
2ðrÞ

� � df0ðrÞ
dtWðrÞ

KðrÞ
�

þrn1
2ðrÞ � r df0ðrÞ

dtWðrÞ
KðrÞ

� �	
;

(27)

with
df0ðrÞ
dtðrÞ ¼

tWðr0Þ
t2ðr0Þ ¼ �

df0ðrÞ
dtWðrÞ

tWðrÞ
tðrÞ . Therefore, both

df0ðrÞ
dtðrÞ and

df0ðrÞ
dtWðrÞ

reach the same absolute value in the asymptotic

limit, but show opposite signs. Now, we have to distinguish

between the spin channels: If one looks at uc-nlNshosho
ðrÞ in the spin

channel that has the global HOMO, i.e. n(r) B |jNshosho
(r)|2, then

one can see from eqn (27) that the fourth and fifth terms are
equivalent in the asymptotic limit except for the sign. There-
fore, they cancel each other and, since the first and second
terms decay fast enough, only the third term remains, leading
to the limit of �gsho

/r. In the other spin channel however, the
fourth and fifth terms do not cancel anymore, since the density
is still dominated by jNshosho

(r), whereas the fourth term
features jN�sho

�sho(r). Therefore, in the other spin channel yet
another asymptotic limit is obtained, again strictly following
from the evaluation of the functional derivative.

This feature can be corrected by using a spin-polarized
ansatz with an indicator function that is a spin-polarized

LMF of the form gsðrÞ ¼
tWsðrÞ
tsðrÞ

, with tWs(r) and ts(r) being

the kinetic energy spin densities. In this case, a functional
derivative that does not feature the total density n(r) follows and
therefore the aforementioned effect does not occur. However,
since for the spin channel sho all derivations made are valid
independently of the form of the LMF and since this spin
channel features the physical meanigful quantity �eho, it
suffices for this work to consider the more simple LMFs instead
of their spin-polarized counterparts.
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There are several approximations to the exchange-correlation functional in density-functional theory,
which accurately predict total energy-related properties of many-electron systems, such as bind-
ing energies, bond lengths, and crystal structures. Other approximations are designed to describe
potential-related processes, such as charge transfer and photoemission. However, the development of
a functional which can serve the two purposes simultaneously is a long-standing challenge. Trying to
address it, we employ in the current work the ensemble generalization procedure proposed by Kraisler
and Kronik [Phys. Rev. Lett. 110, 126403 (2013)]. Focusing on the prediction of the ionization poten-
tial via the highest occupied Kohn-Sham eigenvalue, we examine a variety of exchange-correlation
approximations: the local spin-density approximation, semi-local generalized gradient approxima-
tions, and global and local hybrid functionals. Results for a test set of 26 diatomic molecules and
single atoms are presented. We find that the aforementioned ensemble generalization systematically
improves the prediction of the ionization potential, for various systems and exchange-correlation
functionals, without compromising the accuracy of total energy-related properties. We specifically
examine hybrid functionals. These depend on a parameter controlling the ratio of semi-local to
non-local functional components. The ionization potential obtained with ensemble-generalized func-
tionals is found to depend only weakly on the parameter value, contrary to common experience with
non-generalized hybrids, thus eliminating one aspect of the so-called “parameter dilemma” of hybrid
functionals. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4930119]

I. INTRODUCTION

Modern density-functional theory (DFT), based on the
theoretical foundation laid by Hohenberg, Kohn, and Sham1,2

in the 1960s, in principle provides an exact framework for
treating the many-electron problem. Within this framework,
the electron-electron interaction is expressed via the exchange-
correlation (xc) energy term, Exc[n], which is a functional
of the electron density n(r).3–5 In practice, one has to
approximate this energy contribution, aiming at a numerically
efficient yet accurate description of the electronic structure of
various many-electron systems, such as atoms, molecules, and
solids.

During the eventful history of DFT, many density
functional approximations (DFAs) to the exact xc energy
were developed.6,7 The performance of each of them can
be evaluated from a twofold perspective: On the one hand,
ground-state quantities such as binding energies, bond lengths,
and crystal structures are closely related to the total energy
of the system and hence to the approximate xc energy
Exc itself. On the other hand, there also exists a range
of physical properties and processes, whose description
is substantially influenced by the xc potential, vxc(r)
B δExc[n]/δn(r). Prominent examples for the latter category
are charge-transfer and ionization processes, as well as the
description of photoemission spectra. Here, especially the

a)E. Kraisler and T. Schmidt contributed equally to this work.

approximate interpretation of Kohn-Sham (KS) eigenvalues
as a physically meaningful density of states lies at the focal
point of ongoing research (see Ref. 8 and references therein).

For applications to real materials, one would wish to
have a DFA with a good performance from both perspectives.
However, this is not the case for many existing DFAs. The
development of such a DFA is a long-standing challenge, as
discussed below.

One of the exact relations in KS-DFT is the ionization
potential (IP) theorem, −εho = I,9–14 which relates the highest
occupied (ho) KS eigenvalue, εho, to the IP, I, i.e., the
removal energy of one electron from an N-electron system.
Consequently, there are two fundamentally different ways
to obtain the IP in DFT: by evaluating −εho or (with more
computational effort) by calculating the energy difference
of the ionized and neutral system, with N0 − 1 and N0
electrons, respectively, I∆SCF = E(N0 − 1) − E(N0). This is
usually referred to as the ∆SCF approach. Note that while
the latter relies on accurate total energy values, the former
relies on the potential to yield an accurate ho energy level.

The ∆SCF approach, which has been extensively
used since the early days of DFT,15–25 usually yields an
IP with a satisfactory accuracy of a few percent with
respect to experiment, for atoms and small molecules,
even with standard (semi-)local DFAs, such as the local
spin-density approximation (LSDA)26 or the generalized
gradient approximation (GGA).27 Comparison of −εho to
the experimental IP, however, shows poor correspondence for

0021-9606/2015/143(10)/104105/10/$30.00 143, 104105-1 © 2015 AIP Publishing LLC
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many DFAs. For example, with the aforementioned (semi-)
local approximations, one can observe an underestimation of
up to 50%, as manifested in, e.g., Refs. 21 and 28–32.

This failure has been related to various systematic
shortcomings of existing functionals. First, the one-electron
self-interaction problem, i.e., the fact that for many DFAs
the Hartree energy EH is not canceled by Exc if evaluated on
one-electron ground-state densities,22 is well-known to have
a large impact on the quality of KS eigenvalues.8 Second,
many DFAs show a potential that features an incorrect
long-range asymptotic behavior, again with negative effect
on the interpretation of KS eigenvalues (see, e.g., Ref. 33
and references therein). Note that while the two issues are
related in a physical sense, they are not the same and their
connection in the construction of reasonable DFAs is far less
obvious.34 Another shortcoming affecting the KS eigenvalues
is the deviation of the total energy curve, E(N), as a function
of the number of electrons, N , from piecewise linearity, for
fractional N (see, e.g., Refs. 14 and 35–48). In the literature,
this phenomenon is sometimes referred to as many-electron
self-interaction35–37,39 or as a (de-)localization error.38,41,46

For (semi-)local functionals, one obtains a convex energy
curve rather than a straight line. Such a deviation reflects
negatively also on systems with an integer N : it leads to
disagreement between the IPs predicted by the ∆SCF method
and those predicted via −εho. This happens because the slope
of the energy curve (to the left) equals, according to Janak’s
theorem,49 the ho KS eigenvalue. Therefore, even when one
is interested only in closed systems, with an integer number
of electrons, it is important to tackle the problem of lack of
piecewise-linearity in order to obtain a physically meaningful
value for εho.

There exist many approaches to address the aforemen-
tioned shortcomings and obtain accurate results for the IP via
εho. Self-interaction correction22 schemes lead to a significant
improvement in the interpretation of KS eigenvalues.50

Yet, their performance for ground-state energetics is
debatable.51–55 Approaches that approximate directly the xc
potential56–59 yield eigenvalues that satisfactorily reproduce
the experimental IP, due to modified long-range properties
of the potential. However, for these functionals total-energy
related quantities are not accessible.60–62 New types of GGAs
can yield significantly improved potential properties,63–65 but
at the cost of being less accurate for total energies. Global
hybrid functionals,66–71 which linearly combine (semi-)local
xc energy components, with a weight (1 − a), and exact
exchange (EXX, i.e., the Fock-integral evaluated with KS
orbitals), with a weight a, mitigate the one-electron self-
interaction error and often yield an excellent description of
properties related to the total energy, for a ≈ 0.25. However,
since the self-interaction is only partly canceled, the KS
potential falls off too quickly in the asymptotic limit, and −εho
is typically far from describing experimental IPs.

Nevertheless, with global hybrids it is possible to find
a value of a such that the global hybrid will produce a
piecewise linear energy curve and therefore an improved
value for −εho. This happens because for fractional N the
non-local EXX component of the global hybrid produces a
concave energy curve (see, e.g., Ref. 37), while the (semi-)

local components usually cause a convex energy curve, which
therefore cancel each other. However, this cancellation is
achieved with values of a ≈ 0.75,72–74 which in most cases
significantly compromises the performance of the functional
for other quantities.33,70,71,75–77

This creates what we call the “parameter dilemma”: while
an accurate description of energy-related quantities requires
a certain value for the functional’s parameter, the accurate
description of potential-related quantities requires a different
value, and there is no value that provides a satisfactory
description of both.78–80

Local hybrid functionals81–83 aim at preserving the good
energetics of global hybrid functionals while reducing the
self-interaction error by introduction of a more flexible, space-
dependent mixing of (semi-)local and non-local components
(see Ref. 84 for an overview and discussion). However,
we recently illustrated using a specially constructed local
hybrid functional, termed ISOcc in the following, that the
aforementioned “parameter dilemma” persists also there.85

Similarly, in range-separated hybrids (RSHs) the values
of the range-separation parameter have to be different to
accurately reproduce, e.g., atomization energies and ionization
potentials.29

It has been recently shown86,87 that an alternative way
to improve the prediction of the IP via −εho is given by
employment of the ensemble approach9,88–90 in KS-DFT. This
approach allows for the generalization of the Hartree and xc
functionals for fractional N such that the piecewise linearity
behavior of the total energy is restored, to a large extent. As
a result, better correspondence of εho to the experimental IP
and to the ∆SCF value is achieved, as demonstrated for the
H2 molecule and the C atom with the LSDA.

Here, we employ the ensemble generalization procedure
proposed in Ref. 87 to the Hartree and common approximate
xc functionals, aiming to address the aforementioned
challenge of simultaneous prediction of energy-related and
potential-related properties with one DFA. Focusing on
the prediction of the IP via the ho KS eigenvalue,
we examine a variety of xc approximations: the local
spin-density approximation, semi-local generalized gradient
approximations, as well as global and local hybrids. Results
for a representative test set of 26 light diatomic molecules
and single atoms are presented. We find that the ensemble
generalization systematically improves the prediction of the
IP, for a wide variety of systems and xc functionals, changing
the general tendency from under- to a small overestimation,
compared to experiment. This improvement is achieved
without any change in total energy-related properties. For
hybrids that include a parameter, the IP obtained with
ensemble-generalized functionals is found to be only weakly
dependent on the parameter value, contrary to common
experience with non-generalized hybrids. Thus, the ensemble
approach eliminates one aspect of the “parameter dilemma.”

II. THEORETICAL BACKGROUND

For completeness, we briefly present the ensemble gener-
alization to the approximate Hartree-exchange-correlation
(Hxc) density functional, focusing on its influence on the
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highest occupied KS energy level, εho. A complete derivation
can be found in Refs. 86 and 87.

First, we formally consider a system with a fractional
number of electrons, N = N0 − 1 + α, where N0 ∈ N and
α ∈ [0,1], so that α = 1 corresponds to a neutral and α = 0
to a singly ionized system. Subsequently, we take the limit
α → 1−, focusing on neutral systems with an integer number
of electrons.

In a landmark article, Perdew et al. have shown that the
zero-temperature ground state of an interacting many-electron
system with fractional N should be described by an ensemble
state.9 This state is a linear combination of the pure ground
states for N0 − 1 and N0 electrons, with the classical statistical
weights of (1 − α) and α, respectively.135,136 The ground-state
energy of this ensemble state has then been shown to be equal
to E(N) = (1 − α)E(N0 − 1) + αE(N0), i.e., it is a piecewise-
linear function of N .9 This result is a general one, applying to
any many-electron system. Therefore, in principle it trivially
carries over to DFT; because if the exact exchange-correlation
functional is used, DFT-based energies must reproduce the
all-electron ones.

As mentioned in the Introduction, in practice approximate
density functionals often deviate significantly from the exact
functional when trying to describe a quantum system with
fractional N in KS-DFT, and it has been traditionally assumed
that this is just another manifestation of the approximate
nature of the functional used. However, in Ref. 87 it was
pointed out that much of this deviation is due to the fact
that the pure-state exchange-correlation expression is used for
both integer and fractional densities, whereas the fractional
KS system must itself be in an ensemble state. This happens
because the number of particles in the KS system equals the
number of electrons in the real, interacting system and is
also fractional. Therefore, the ground state of the KS system
must also be expressed as an ensemble of the (N0 − 1)- and
N0-KS states, obtained from the same KS potential, even if
one uses an approximate functional. Reference 87 therefore
suggested that any approximate Hartree-exchange-correlation
functional can be generalized for an ensemble ground state
using ensemble state theory9,88–90 (for other recent uses of
the ensemble approach, see Refs. 46, 91, and 92). Performing
an ensemble average of the many-electron Coulomb operator
Ŵ = 1

2


i


j,i |ri − r j |−1 in the KS system, it has been found

that the pure-state Hxc energy functional can be generalized
to ensemble states in the following form:

Ee-Hxc[n(α)] = (1 − α)EHxc[ρ(α)−1 ] + αEHxc[ρ(α)0 ], (1)

which is exact for the Hartree and exchange components and
approximate for the correlation. Here, the index e- indicates
that the functional is ensemble-generalized, EHxc is the pure-
state Hxc functional, ρ(α)p (r) is defined as the sum of the
first N0 + p KS orbitals squared: ρ(α)p (r) = N0+p

i=1 |ϕ(α)i (r)|2,
where p = −1 or 0, and n(α)(r) = (1 − α)ρ(α)−1 (r) + αρ

(α)
0 (r) is

the ensemble-state electron density. When N is an integer,
i.e., α assumes the value of 0 or 1, the Hxc energy reduces to
that obtained from the underlying pure-state Hxc functional.
Therefore, ensemble-generalization does not affect the total
energy at integer N . The generalization in Eq. (1) is applicable

to any xc functional and makes the Hartree and the xc energy
components explicitly linear in α. However, there may still
remain an implicit non-linear dependence of Ee-Hxc[n(α)] on α,
because the KS orbitals themselves, ϕ(α)i (r), and consequently
ρ
(α)
p (r) and EHxc[ρ(α)p ], may depend on α. The dependence

of ϕ(α)i (r) on α arises from the fact that the KS orbitals are
expected to relax as one varies α from 0 (positive ion) to 1
(neutral system).44,87,92

Importantly, Eq. (1) is derived by considering the
generalization of pure-state functionals to ensemble states,
without assuming anything a priori about piecewise-linearity,
because it also applies to approximate exchange-correlation
functionals. Nevertheless, in Refs. 87 and 93 it has been
shown that by employing Eq. (1) the energy curve E(N)
satisfies the piecewise-linearity criterion much more closely,
being slightly concave. The concavity is related to the above
mentioned implicit non-linear dependence of the energy on α.
Another perspective on this approximate piecewise-linearity
can be obtained from the fact that Eq. (1) can be derived, with
some further approximations, from different schemes that
attempt to enforce piecewise-linearity explicitly.14,44,47,48,92,94

Due to the fact that the slope of E(N) changes for all
α, including α → 1−, it follows from Janak’s theorem,49,137

which identifies ∂E/∂N with εho, that the ho energy level
has to change, too, even for a system with an integer N . This
change is obtained in practice from an ensemble generalization
of the KS potential, as explained below.

The KS potential is expressed as ve-KS(r) = vext(r)
+ ve-Hxc[n](r), where vext(r) is the external potential and
ve-Hxc[n](r) B δEe-Hxc/δn(r) is the ensemble-generalized Hxc
potential. In the limit α → 1−, this potential reduces to a
sum of two terms: ve-Hxc[n](r) = vHxc[n](r) + v0[n] – the usual
pure-state Hxc potential, vHxc[n](r), and a spatially uniform
term, v0[n], which can be written as87

v0[n] = EHxc[n] − EHxc[n − |ϕho|2]
−


|ϕho(r)|2vHxc[n](r)d3r. (2)

Here and below, the superscript (α) is dropped at the limit
α → 1− for brevity. Note that the ensemble-generalized KS
potential does not vanish at r → ∞, but asymptotically
approaches v0[n]. We stress that v0[n] is a well-defined,
rather than arbitrary, potential shift. It must be taken into
account for the ensemble-generalized functional in order
for the ho KS eigenvalue to equal ∂E/∂N , i.e., to obey
Janak’s theorem. Note that the shift discussed here is different
from the one recently proposed by Zahariev and Levy.95 As
clarified in Ref. 92, in Ref. 95 the potential shift makes the
energy of the KS system equal the energy of the interacting
system. Here, however, the shift emerges naturally from
the ensemble treatment and is essential to obtaining results
that are consistent with Janak’s theorem. Also note that the
result above has been presented in a spin-independent form
for simplicity; in practice, in spin-dependent calculations,
there exist potential shifts vσ0 to both spin channels σ =↑,↓.
Calculating vσ0 with Eq. (2), we take the ho level to be the
highest occupied level in the σ-channel considered (noted as
σ − ho). In the following, however, if not stated explicitly
otherwise, when mentioning the ho level we refer to the
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global ho: εho = maxσ εσho, i.e., the one of the two σ-ho
levels which is higher in energy; the same applies for the
ensemble-generalized ho level, εe-ho.

To summarize, as a result of the approximate ensemble
generalization of the Hxc functional (Eq. (1)),86,87 in the
limit of integer N the KS potentials exhibit spatially uniform
shifts vσ0 , such that all KS eigenvalues of the same spin
channel are shifted by the same value (see, e.g., Fig. 4 in
Ref. 93). The KS orbitals, and as a result the density and the
total energy, are not changed and remain the same as those
obtained with the underlying Hxc functional. Furthermore,
because all eigenvalues are shifted by the same amount,
eigenvalue differences (as well as quantities based on them,
e.g., in linear response time-dependent DFT96) are not affected
either. Therefore, the σ − ho energy levels of the ensemble-
generalized functional can be expressed as εσe-ho = ε

σ
ho + v

σ
0 ,

being a sum of the σ − ho level that emerges from a standard
KS-DFT calculation prior to the ensemble generalization and
the potential shift of the relevant spin channel, calculated
according to Eq. (2). Comparing both εe-ho and εho to
experimental IPs and −I∆SCF is the main subject of Sec. IV.

III. COMPUTATIONAL DETAILS

We concentrate on a relatively elementary, yet chemically
representative, set of systems, consisting of 18 light diatomic
molecules: H2, LiH, Li2, LiF, BeH, BH, BO, BF, CH, CN, CO,
NH, N2, NO, OH, O2, FH, F2, and their 8 constituent atoms.
The simplicity of the systems allows us to keep computational
costs low and to refrain from introducing additional sources
of error, e.g., searching for an optimal geometry in systems
with many degrees of freedom. At the same time, systems of
single-, double-, and triple-bond molecules as well as atoms
(no bonding) are included in the test set, which makes the
set representative of more complicated systems, as shown in
previous work (see, e.g., Refs. 27 and 85).

All calculations were performed using the program
package DARSEC,97,98 an all-electron code that allows for
electronic structure calculations of single atoms or diatomic
molecules on a real-space grid represented by prolate-
spheroidal coordinates. DARSEC allows one to solve the KS
equations self-consistently for explicitly density-dependent,
as well as orbital-dependent, functionals. For the latter, a
local, multiplicative xc potential is obtained by employing
the KLI99 approximation to the optimized effective potential
(OEP)100–102 formalism. Use of this approximation has been
justified in Ref. 103 for the EXX functional and in Ref. 85 for
the ISOcc local hybrid functional.

For all systems, an accuracy of 0.0005 hartree in the total
energy and in the ho KS eigenvalue has been achieved by
appropriately choosing the parameters of the real-space grid
and by iterating the self-consistent DFT cycle. For molecules
the bond length was taken from experiment.104,105 Differences
due to atomic relaxation were found to be insignificant.138,139

The net spin of the neutral systems was also taken to be
as in experiment. The spin configuration of cations (used
below for calculating ionization potentials from total energy
differences) was obtained by removing an electron from the
highest occupied orbital of the neutral.

IV. RESULTS

A. Effect of the ensemble correction—O2
as a prototypical case

Previous work87,93 has already demonstrated that the
ensemble generalization of Eq. (1) significantly reduces the
deviation from the piecewise-linearity condition for the total
energy, i.e., greatly diminishes the delocalization error, and
as a consequence eliminates the fractional dissociation error
in diatomic molecules. Here, we focus on the potential shifts
(Eq. (2)) that emerge from the ensemble-generalization and
their effect on the Kohn-Sham energy levels. In particular, we
consider the prediction of the IP via εe-ho.

For a clear understanding of the results presented in
this paper, it is of advantage to first illustrate the effect
of the potential shift mechanism, given by Eq. (2), on the
eigenvalue structure of a particular system with an integer
number of electrons. Here, we provide a detailed presentation
of a selected system—the O2 molecule, computed with the
Perdew-Burke-Ernzerhof (PBE) GGA27 at its experimental
bond length of 2.2819 bohr.

Due to its electronic ground-state configuration, 3Σ−g ,
this system must be treated in a spin-polarized formalism.
Consequently, it provides an interesting example for how
eigenvalues belonging to different spin channels are shifted
when the corresponding ensemble potential shift, vσ0 , is
applied.

The positions of the highest occupied (εσho) and lowest
unoccupied (εσlu) KS eigenvalues for both spin channels are
depicted in Fig. 1. The eigenvalues changed by the respective
potential shift, i.e., εσe-ho = ε

σ
ho + v

σ
0 and εσe−lu = ε

σ
lu + v

σ
0 , as

well as the negative of the experimental IP, −Iexp, are also
included in the figure.

It can be readily observed that the unshifted highest
occupied eigenvalue of the up channel, ε↑ho = −0.251 hartree,
which lies higher than its spin down counterpart, poorly
reproduces the negative of the experimental IP of the O2
molecule. In fact, with PBE it underestimates the experimental
IP of Iexp = 0.453 hartree105 by 45%, a value that is quite
typical for other systems as well. However, after application
of the potential shift, the highest occupied eigenvalue is
ε↑e-ho = −0.526 hartree, i.e., the experimental IP is now
overestimated by 16%. As shown below, this is a typical
result also for other systems and other functionals.

FIG. 1. Diagram of the highest occupied and lowest unoccupied KS-PBE
eigenvalues of the O2 molecule, for both spin channels, before and after
applying the potential shifts of Eq. (2), along with the negative of the ex-
perimental IP. All values are in hartree.
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From the results presented for the ensemble generalized
PBE functional, the question of how other DFAs perform for
the same system naturally arises. In particular, the change of
the eigenvalues obtained with functionals containing a varying
amount of non-local EXX is of great interest, as we know that
a greater percentage of EXX already leads to a more accurate
description of IPs via the highest occupied eigenvalue.

Fig. 2 provides a comparison of the unshifted and shifted
ho eigenvalues to the experimental IP for O2. Besides (semi-)
local functionals such as the LSDA, PBE, and BLYP,106–108

we also ensemble-generalized the global hybrid functionals
B3LYP69 and PBEh(a)70 (employed within the KS scheme
using the KLI approximation), with a denoting the fixed
amount of EXX combined with (1 − a) of PBE exchange and
with full PBE correlation.

The unshifted eigenvalues for the three purely
(semi-)local functionals (LSDA, PBE, BLYP) underestimate
the IP by ∼45%. After ensemble generalization, we observe
an overestimation by ∼16%. It is instructive to check to which
extent this overestimation comes from errors in calculating
total energy differences that are inherent to the underlying
functional, and to which extent they arise from the ensemble
generalization process.140 Therefore, we compare the shifted
and unshifted eigenvalues to −I∆SCF. For O2 computed with
PBE, one obtains I∆SCF = 0.464 hartree, which deviates from
experiment by only 2.3%. With respect to this quantity, the
unshifted eigenvalue yields an underestimate of 46%, while
the shifted value overestimates it by 14%. We therefore realize
that most of the discrepancy comes from the concavity that
remains in the E(N) curve even after ensemble generalization.

In the global hybrid, PBEh(a), increasing the intrinsic
amount of EXX significantly improves the correspondence of
the unshifted eigenvalue to experiment. Due to the fact that
the KS potential decays asymptotically more slowly with a
growing value of a, the IP via −εho is very sensitive to non-
local functional components included. Changing from under-
to overestimation, an optimal description of Iexp is reached for
this system with a ≈ 0.6. However, for ensemble generalized
DFAs the value of −εe-ho systematically overestimates the IP
with respect to experiment for the O2 molecule, regardless of

FIG. 2. Comparison of −εho and −εe-ho to the experimental IP of the O2
molecule, calculated with different DFAs. The corresponding labels provide
the relative deviation in percent.

the value of a, while at the same time being far less sensitive
to the amount of non-locality in the functional expression.
While for “plain” PBE the relative error now reads ∼+16%,
it increases to +29% when full non-local exchange combined
with PBE correlation is used. The reason for this reduced
sensitivity lies in the following mechanism: while the absolute
value of εho grows with increasing a, the potential shift v0 is
reduced, roughly commensurately, because the Hartree+EXX
functional has zero potential shift.87

B. Evaluating the test set—A systematic study

Following the illustration of the mechanism of the
potential shift for a single system, we now focus on the
mean discrepancy in the evaluation of the experimental IP
via shifted and unshifted KS eigenvalues, for a variety of
functionals.109 We use the test set of systems introduced in
Sec. III as a basis for averaging.

We emphasize that the eigenvalues’ shift is expected
to improve the correspondence between the negative of the
ho eigenvalue and the ionization energy obtained via the
∆SCF method, for a given DFA. We compare the shifted
and unshifted eigenvalues to experiment, and not to ∆SCF
values, relying on the aforementioned fact that the ∆SCF
reliably describes systems of our test set, with small average
relative errors: 3.4% for PBE and 4.2% for both the LSDA
and ISOcc(c = 0.5).

We define the averaged relative error in the ionization
potential,

δIP =


1
M

M

j=1

*,
−ε( j) − I ( j)exp

I ( j)exp

+-
2

. (3)

Here, the index j runs over all systems in the test setup to
the total number M = 26, and ε stands either for the shifted
(εe-ho) or unshifted (εho) highest occupied KS eigenvalue.

Note that in Eq. (3) the unsigned deviation from
experimental IPs is employed to avoid a misleading result of
zero average relative error, which emerges when there occurs
an overestimation for some systems and an underestimation
for others. However, in order to be able to distinguish between
systematic over- or underestimation, an additional measure is
defined accordingly as

S =
1
M

M

j=1

sgn
(
−ε( j) − I ( j)exp

)
. (4)

While δIP provides the mean deviation from experimental
values in %, the quantity S indicates the average trend of
the prediction, being naturally confined to the interval [−1,1].
Namely, for a systematic overestimation, we obtain S = 1, and
for a systematic underestimation, S = −1. Both quantities, δIP
and S, were obtained for various DFAs and their ensemble-
generalized counterparts.

Fig. 3 shows the corresponding results for the LSDA,
the semi-local PBE and BLYP, the global hybrid functionals
B3LYP and PBEh(0.25), the EXX, and the ISOcc(0.5) local
hybrid functional. Note that for EXX the results for the regular
and ensemble-generalized functional coincide, because the
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FIG. 3. Average relative error δIP in % (upper axis) and signum function
S (lower axis) for the LSDA, PBE, BLYP, B3LYP, PBE(a = 0.25), ISOcc(c
= 0.5), and pure EXX (black) as well as their ensemble-generalized versions
(red).

Hartree+EXX functional exhibits a zero potential shift.87,141

Fig. 4 provides the corresponding results for the PBEh(a)
global hybrid functional as a function of the parameter a,
i.e., on various amounts of non-local EXX.142 The value
a = 0 in this figure reproduces the PBE result. Fig. 5 depicts
δIP and S obtained with the local hybrid ISOcc. The latter
functional was developed using the so-called local mixing
function rather than a fixed mixing ratio of non-local and
semi-local components. It contains a free parameter c, which
implicitly determines the intrinsic amount of EXX included
in the local hybrid. Higher c values correspond to a higher
fraction of EXX being included. Consequently, for ISOcc both
the quantities given by Eqs. (3) and (4) are functions of this
parameter c, in analogy to the global hybrid PBEh(a).

In principle, both parameters a and c, in PBEh(a)
and ISOcc(c), respectively, are free. However, as mentioned
earlier, it is known that in terms of total energy related

FIG. 4. Average relative error δIP(a) in % (upper axis) and signum function
S(a) (lower axis) for PBEh(a) (black) and e-PBEh(a) (red) as a function of
the parameter a.

FIG. 5. Average relative error δIP(c) in % (upper axis) and signum function
S(c) (lower axis) for ISOcc(c) (black) and e-ISOcc(c) (red) as a function of
the parameter c.

quantities, PBEh(a) performs best for a = 0.25, while we
recently showed that for the ISOcc(c) functional, the optimal
parameter value is c = 0.5. Therefore, both functionals, using
their optimal respective parameters, play a special role in the
following discussion, and Fig. 3 shows their performance in
comparison to the other DFAs.

Fig. 3 clearly indicates that using the unshifted
eigenvalues εho, the three (semi-)local functionals LSDA,
PBE, and BLYP strongly and systematically underestimate
δIP by ≈41% − 43%. Regarding hybrids, for the global hybrid
B3LYP, we obtain an underestimation of 31%, for PBEh(a
= 0.25) 28%, and for the local hybrid ISOcc(c = 0.5) 26%.
The improvement of hybrids over (semi-)local functionals is
explained by the fact that the non-local terms in hybrids lead
to a partial cancellation of the self-interaction error and an
improved behavior of the xc potential in the asymptotic limit.

If the parameters a and c are varied, Figs. 4 and 5
illustrate that when using εho, the global hybrid PBEh(a) and
the local hybrid ISOcc(c) show a transition in their parameter-
dependent S-function from negative to positive values. This
feature clearly indicates that, for the systems studied here, it
is possible to fit the corresponding functional parameter for
a given system so that εho exactly gives the experimental IP.
If a and c are optimized to reduce the error δIP, we obtain
an underestimation of 5% for a = 0.75 in PBEh and of 6%
for c = 4.5 in ISOcc. Therefore, by changing the parameters
a and c, we are able to strongly reduce the average error in
the IP of our test set. However, this comes at a price in total
energy-related quantities, as has been shown in Refs. 72 and
85, and is the subject of the so-called “parameter dilemma”
presented in Sec. I.

When using the ensemble-corrected highest occupied
eigenvalues εe-ho, we obtain a completely different picture.
First, the systematic underestimation now changes to an
overestimation. All of the aforementioned functionals now
show a very similar average error of δIP ≈ 14%–17%,
which is significantly smaller than the results from non-
generalized functionals. Second, for ensemble-generalized
hybrid functionals e-PBEh(a) and e-ISOcc(c), there is no
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transition from an underestimation to overestimation regime,
but rather a systematic overestimation of the IP, independent of
the parameter value. In other words, the amount of non-locality
included in the hybrid functional plays a minor role in the
description of IPs via shifted KS eigenvalues, in contrast to
their unshifted counterparts. This confirms that the mechanism
of cancellation between the change in the potential shift of
Eq. (2) and the highest occupied eigenvalue with a varying
amount of non-locality is not particular to the O2 molecule,
but rather a systematic feature of ensemble-generalized
functionals. Furthermore, in the ensemble-generalized version
of DFAs, the “parameter dilemma” does not emerge: since
the ensemble-generalized eigenvalues describe IPs with an
accuracy almost independent of the amount of EXX included,
one cannot deduce a preferred value of the parameter
by minimizing δIP. Therefore, in principle one could use
the functional with the parameter optimized to describe
binding processes and structural quantities and rely on the
description of IPs via the shifted eigenvalues εe-ho. In this
case, our results for δIP using thermochemically optimized
functionals with ensemble-generalization (such as e-B3LYP,
e-PBEh(a = 0.25), and e-ISOcc(c = 0.5)) indicate a clear
improvement over their non-generalized counterparts.

Our results further indicate that even functionals whose xc
terms were constructed on different grounds and from different
perspectives, such as, for example, the PBE and BLYP
functional, yield similar values of roughly δIP ≈ 15% after
applying the ensemble generalization. As even the inclusion
of non-local components does not lead to significant change,
one might wonder if this “natural border” of 15% is inherent
to the ensemble shift mechanism regardless of the specific
form of the respective DFA put to task. This question has
been checked by varying the parameters µ and κ used in the
construction of the PBE exchange functional.27,110 We find that
for different choices of µ and κ one obtains different values
for the average relative error δIP. For instance, using PBE
exchange with a value of µ = 1.0 together with the original
κ = 0.8401 results in an error of δIP = 20% when using εe-ho,
while a combination of the original µ = 0.21 951 and κ = 5.0
leads to δIP = 8%. From this we conclude that the ensemble-
generalization as such does not lead to a fixed systematic error
in the description of experimental IPs via KS eigenvalues.
However, the results of this subsection suggest that after the
ensemble generalization the functionals examined here have a
common missing part, which causes the described discrepancy
in δIP.

Before concluding this subsection, we note that while
we have focused our work on the IP of neutral atoms and
diatomic molecules, IPs of ions may in principle be assessed
in the same manner. In particular, the electron affinity (EA)
of the neutral can be explored as the IP of the singly charged
anion (barring geometrical relaxation). Unfortunately, for the
atoms and very small molecules studied here, it is well-
known111–113 that with common semi-local approximations,
negative ions of small systems may erroneously be predicted
to be unstable. However, when performing calculations with
finite basis sets, as in, e.g., Ref. 114, unbound states can
be artificially stabilized,115 because the basis set effectively
confines the unbound electron to the vicinity of the neutral

system. Because the ensemble generalization discussed here
does not change the total energies of systems with integer
electrons (including neutrals, cations, and anions), anions that
are not bound with the underlying xc functional will remain
unbound even if its ensemble-generalized version is employed.
Furthermore, although ensemble-generalization will generally
shift the energy levels, including the unoccupied ones, the
question of whether the lowest unoccupied KS orbital has a
bound or unbound character will not be affected,93 because
orbitals are unchanged by a uniform shift of the potential.

C. Ensemble-generalization and the Aufbau principle

In general, at zero temperature the energy levels in the KS
system have to be occupied according to the Aufbau principle,
i.e., the levels are occupied without “holes,” starting with the
lowest ones up. In the following, we term such an occupation
proper. An example for a proper occupation is given in Fig. 1
for the O2 molecule. All calculations performed for this work,
except for a few discussed below, yield proper occupation.

In spin-polarized calculations a special situation can
occur, when each of the spin channels is occupied properly
itself, while the system as a whole possesses a “hole” in its
occupation. For example, this happens when the lu level of the
↓-channel appears lower than the ho level of the ↑-channel.
An occupation of this kind is termed proper in a broad sense.
It is emphasized here that a broad-sense-proper density obeys
all the required restrictions related to a rigorous definition and
differentiability of energy functionals;116,117 therefore it can
serve as a legitimate solution of a many-electron system. In
the past, broad-sense-proper occupations have been observed
in certain transition-metal and lanthanide atoms and ions in
LSDA and PBE calculations,24 as well as in the Li atom with
the EXX118 and with the exact KS potential, which has been
obtained from accurate wave-function-methods based spin
densities.119 The latter result strengthens our understanding
that a broad-sense-proper occupation is not necessarily an
artifact of some DFAs, but rather is an expected result, because
it may appear even with the exact functional.

In the current work we find that the ensemble
generalization, by means of the potential shifts vσ0 , yields
broad-sense-proper results for systems which appeared strictly
proper before. Figure 6 illustrates the situation for the Li

FIG. 6. Diagram of the highest occupied and lowest unoccupied KS eigen-
values of the Li atom, for both spin channels, before and after application of
the potential shifts of Eq. (2), obtained within the PBE functional, along with
the negative of the experimental IP. All values are in hartree. The highest
occupied eigenvalue at the ↓-channel is lower than −0.65 hartree and is
therefore not shown for clarity.
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atom calculated with PBE and e-PBE. Due to the fact that
v ↑0 = −0.087 hartree, while v ↓0 = −0.603 hartree, the ↓-e-lu
level appears below the ↑-e-ho level, causing a broad-sense-
proper occupation. The significant differences in the values of
the two potential shifts are associated with the different nature
of the σ-ho orbitals: the ↑-ho orbital is a relatively delocalized,
high-lying 2s orbital, whereas the ↓-ho orbital is a localized,
low-lying 1s orbital. A similar situation is observed in the Na
atom, for which we obtained a broad-sense-proper result too.
To summarize, we view the appearance of broad-sense-proper
occupations in the ensemble treatment of the alkaline atoms
Li and Na as another feature of the exact DFT result, which
has been recovered by the ensemble generalization.

D. The derivative discontinuity (DD)
in ensemble-generalized functionals

While in the current work we are concerned primarily
with the IP of atoms and molecules, it is worth discussing
a related quantity—the (fundamental) gap, Eg. By definition,
Eg = I − A, where A is the electron affinity, i.e., the energy
gained by adding one electron to the system. As opposed to
the IP, the gap of the interacting system does not equal the
gap of the KS system, EKS

g = εlu − εho, even for the exact
xc functional. Instead, Eg = EKS

g + ∆, where ∆ is the DD—a
“jump” experienced by the KS potential when it is varied with
respect to N , and N crosses an integer value.9,28,120–126

There exist several ways to find the DD. First, for finite
systems it can be obtained using total energy differences,

∆E = E(N0 + 1) − 2E(N0) + E(N0 − 1) − EKS
g . (5)

Second, the DD can be obtained as suggested in Refs. 127
and 128,

∆OEP = ⟨ϕlu|uxc,lu|ϕlu⟩ − ⟨ϕlu|vxc|ϕlu⟩, (6)

where uxc, i(r) B ϕ−1
i (r)δExc/δϕi(r), i.e., the orbital-specific

xc potential of the ith orbital and vxc B δExc/δn, i.e., the
local xc potential, which in general has to be obtained via the
OEP procedure100–102 (hence the index OEP). The derivation
of ∆OEP assumes the “alignment equality” ⟨ϕho|uxc,ho|ϕho⟩
= ⟨ϕho|vxc|ϕho⟩, which determines the free constant in vxc(r) as
part of the OEP procedure. Additional approaches to introduce
the derivative discontinuity include Refs. 129–133 (see also
Refs. 41, 46, 86, and 134 for an overview).

Finally, an approximation for the DD can be obtained
from an ensemble treatment for a given underlying Hxc
functional, as proposed in Ref. 86,

∆ens = EHxc[n + |ϕlu|2] − 2EHxc[n] + EHxc[n − |ϕho|2]
+


d3r vHxc[n](r)

�|ϕho(r)|2 − |ϕlu(r)|2
�
. (7)

The first way requires three independent self-consistent
calculations of the total energy (hence the index E): of the
neutral system, the cation, and the anion. In contrast, the
second and third ways yield the DD from KS quantities of the
neutral system only, which is an advantage when considering
infinite systems.

Relying on our experience with ensemble-generalized
calculations for atoms and small molecules (Ref. 87 and

this work), we expect ∆ens obtained with an approximate
xc functional to be larger than ∆E. As has been shown in
Fig. 2 of Ref. 86 (lower panel), εe-ho is obtained as being
somewhat too low immediately to the left of an integer N and
somewhat too high immediately to the right of it. As a result,
∆ens overestimates the true discontinuity. This overestimate is
related to the residual concavity of the E(N) curve after the
ensemble generalization. In the current study, we showed that
the overestimate in εe-ho to the left of the integer point, which
corresponds to the negative of the IP, is systematic, i.e., it
happens in various systems and with different functionals.
Consequently, we expect a systematic overestimate for ∆ens
and the resulting Eg.

The discrepancy between ∆OEP and ∆ens has a different
origin. While ∆OEP originates because the KS potentials are
differently “aligned” (see above) to the left and to the right of
an integer point, ∆ens comes from two sources (see Ref. 86 for
detailed explanations): the first is the same as for ∆OEP; the
second is the fact that the ensemble-generalized KS potential
does not approach zero at r → ∞, but rather a constant v0 (see
Eq. (2)), which is different to the left and to the right of an
integer N . ∆OEP does not consider the second source described
above, assuming (correctly in the context of Refs. 127 and
128) that the potentials asymptotically tend to zero. In fact, it
can be analytically shown that ∆OEP is an ingredient in ∆ens,
which was denoted by ∆1 in Ref. 86.

V. CONCLUSIONS AND SUMMARY

In the current work, we employed the ensemble-
generalization procedure87 for a test set of 26 diatomic
molecules and single atoms, for a variety of xc functionals.
These include the LSDA, the semi-local PBE and BLYP, the
global hybrids B3LYP and PBEh(a), and the local hybrid
ISOcc(c). We focused on the prediction of the IP via the
highest occupied KS eigenvalue, εe-ho.

We found that implementing the ensemble approach
improves, on average, the correspondence of εho with the
experimental IP for all xc functionals considered, changing
the general tendency in the IP prediction from a gross
underestimation to a smaller overestimation.

For functionals that include a parameter, namely, the
hybrids PBEh(a) and ISOcc(c), we observed a rather weak
dependence of εe-ho on the respective functional parameter,
while yielding a roughly constant overestimation to the
IP, with respect to experiment. This eases the so-called
“parameter dilemma”: there are no two optimal values of
the functional’s parameter originating from fitting to total
energy-related quantities as opposed to fitting potential-related
quantities. Instead, the parameter can be determined relying
on energetics only, because of its weak influence on the value
of εe-ho. Indeed, the average relative error in the ionization
potential, δIP, equals approximately 15% for all ensemble-
generalized xc functionals, as can be seen from Fig. 3.
Surprisingly, such features of the underlying xc functional,
as being local (LSDA), semi-local (PBE, BLYP), or non-
local (B3LYP, PBEh, ISOcc), relying on features of the
homogeneous electron gas (LSDA, PBE, PBEh, ISOcc) or
not (BLYP, B3LYP), are of little relevance with respect to the
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IP prediction, once the functional is used in the ensemble-
generalized form. We therefore conclude that upon ensemble
generalization (Eq. (1)) all the functionals we tested share the
same deficiency. It is most probably related to the remaining
concavity of the E(N) curve, due to the implicit dependence
of the KS orbitals on α. Therefore, future improvement in
the IP prediction via εe–ho may be achieved via formulating a
correction that will remove the remaining concavity in E(N).

ACKNOWLEDGMENTS

Financial support by the German-Israeli Foundation, the
European Research Council, and the Lise Meitner center for
computational chemistry is gratefully acknowledged. E.K. is
a recipient of the Levzion scholarship. T.S. acknowledges
support from the Elite Network of Bavaria (“Macromolecular
Science” program).

1P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).
2W. Kohn and L. Sham, Phys. Rev. A 140, 1133 (1965).
3R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules
(Oxford University Press, New York, 1989).

4R. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach
to the Quantum Many-Body Problem (Springer, Berlin, 1990).

5A Primer in Density Functional Theory, edited by C. Fiolhais, F. Nogueira,
and M. Marques (Springer-Verlag, Berlin-Heidelberg, 2003).

6A. D. Becke, J. Chem. Phys. 140, 18A301 (2014).
7K. Burke, J. Chem. Phys. 136, 150901 (2012).
8L. Kronik and S. Kümmel, Top. Curr. Chem. 347, 137 (2014).
9J. P. Perdew, R. G. Parr, M. Levy, and J. L. J. Balduz, Phys. Rev. Lett. 49,
1691 (1982).

10M. Levy, J. P. Perdew, and V. Sahni, Phys. Rev. A 30, 2745 (1984).
11C.-O. Almbladh and U. von Barth, Phys. Rev. B 31, 3231 (1985).
12J. P. Perdew and M. Levy, Phys. Rev. B 56, 16021 (1997).
13M. K. Harbola, Phys. Rev. B 60, 4545 (1999).
14I. Dabo, A. Ferretti, and N. Marzari, Top. Curr. Chem. 347, 193 (2014).
15B. Y. Tong and L. J. Sham, Phys. Rev. 144, 1 (1966).
16V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated Electronic

Properties of Metals (Pergamon, New York, 1978).
17U. von Barth and L. Hedin, J. Phys. C: Solid State Phys. 5, 1629 (1973).
18O. Gunnarsson, B. I. Lundqvist, and J. W. Wilkins, Phys. Rev. B 10, 1319

(1974).
19J. F. Janak, V. L. Moruzzi, and A. R. Williams, Phys. Rev. B 12, 1257 (1975).
20O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).
21O. Gunnarsson and R. O. Jones, Phys. Scr. 21, 394 (1980).
22J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
23S. Kotochigova, Z. H. Levine, E. L. Shirley, M. D. Stiles, and C. W. Clark,

Phys. Rev. A 55, 191 (1997).
24E. Kraisler, G. Makov, and I. Kelson, Phys. Rev. A 82, 042516 (2010).
25U. Argaman, G. Makov, and E. Kraisler, Phys. Rev. A 88, 042504 (2013).
26Y. Wang and J. P. Perdew, Phys. Rev. B 45, 13244 (1992).
27J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
28M. Allen and D. Tozer, Mol. Phys. 100, 433 (2002).
29E. Livshits and R. Baer, Phys. Chem. Chem. Phys. 9, 2932 (2007).
30T. Körzdörfer, S. Kümmel, and M. Mundt, J. Chem. Phys. 129, 014110

(2008).
31U. Salzner and R. Baer, J. Chem. Phys. 131, 231101 (2009).
32S. Klüpfel, P. Klüpfel, and H. Jónsson, Phys. Rev. A 84, 050501 (2011).
33L. Kronik, T. Stein, S. Refaely-Abramson, and R. Baer, J. Chem. Theory

Comput. 8, 1515 (2012).
34T. Schmidt, E. Kraisler, L. Kronik, and S. Kümmel, Phys. Chem. Chem.

Phys. 16, 14357 (2014).
35P. Mori-Sánchez, A. J. Cohen, and W. Yang, J. Chem. Phys. 125, 201102

(2006).
36O. A. Vydrov, G. E. Scuseria, and J. P. Perdew, J. Chem. Phys. 126, 154109

(2007).
37A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A. Vydrov, and G. E. Scuseria,

J. Chem. Phys. 126, 104102 (2007).
38A. J. Cohen, P. Mori-Sánchez, and W. Yang, Science 321, 792 (2008).
39R. Haunschild, T. M. Henderson, C. A. Jiménez-Hoyos, and G. E. Scuseria,

J. Chem. Phys. 133, 134116 (2010).

40I. Dabo et al., Phys. Rev. B 82, 115121 (2010).
41A. J. Cohen, P. Mori-Sánchez, and W. Yang, Chem. Rev. 112, 289 (2012).
42T. Stein, J. Autschbach, N. Govind, L. Kronik, and R. Baer, J. Phys. Chem.

Lett. 3, 3740 (2012).
43S. N. Steinmann and W. Yang, J. Chem. Phys. 139, 074107 (2013).
44G. Borghi, A. Ferretti, N. L. Nguyen, I. Dabo, and N. Marzari, Phys. Rev.

B 90, 075135 (2014).
45M. A. Mosquera and A. Wasserman, Phys. Rev. A 89, 052506 (2014).
46M. A. Mosquera and A. Wasserman, Mol. Phys. 112, 2997 (2014).
47N. L. Nguyen, G. Borghi, A. Ferretti, I. Dabo, and N. Marzari, Phys. Rev.

Lett. 114, 166405 (2015).
48G. Borghi, C.-H. Park, N. L. Nguyen, A. Ferretti, and N. Marzari, Phys.

Rev. B 91, 155112 (2015).
49J. Janak, Phys. Rev. B 18, 7165 (1978).
50T. Körzdörfer, S. Kümmel, N. Marom, and L. Kronik, Phys. Rev. B 79,

201205 (2009); 82, 129903 (2010).
51D. Cremer, Mol. Phys. 99, 1899 (2001).
52O. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 121, 8187 (2004).
53O. A. Vydrov, G. E. Scuseria, J. P. Perdew, A. Ruzsinszky, and G. I. Csonka,

J. Chem. Phys. 124, 94108 (2006).
54D. Hofmann, S. Klüpfel, P. Klüpfel, and S. Kümmel, Phys. Rev. A 85,

062514 (2012).
55S. Klüpfel, P. Klüpfel, and H. Jónsson, J. Chem. Phys. 137, 124102 (2012).
56R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994).
57D. J. Tozer and N. C. Handy, J. Chem. Phys. 109, 10180 (1998).
58A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006).
59W. Cencek and K. Szalewicz, J. Chem. Phys. 139, 024104 (2013).
60A. Karolewski, R. Armiento, and S. Kümmel, J. Chem. Theory Comput. 5,

712 (2009).
61A. P. Gaiduk, S. Chulkov, and V. N. Staroverov, J. Chem. Theory Comput.

5, 699 (2009).
62A. Karolewski, R. Armiento, and S. Kümmel, Phys. Rev. A 88, 052519

(2013).
63R. Armiento and S. Kümmel, Phys. Rev. Lett. 111, 036402 (2013).
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136The fact that only contributions from the N0 − 1- and the N0-states are
included relies on the conjecture that the series E(N0) for N0 ∈ N
is a convex, monotonously decreasing series. In other words, all
ionization energies I (N0) := E(N0 − 1) − E(N0) are positive, and higher
ionizations are always larger than the lower ones: I (N0 − 1) > I (N0).
This conjecture, although strongly supported by experimental data,
remains without proof, to the best of our knowledge.4,41,88

137Janak’s theorem49 states that the ith KS eigenenergy, εi, equals
∂E/∂ fi—the derivative of the total energy of the interacting system,
E , with respect to the occupation of the ith level, fi. It can be shown
that with the exact xc functional the ho eigenenergy, εho, has to equal
εho = ∂E/∂α = ∂E/∂N = E(N0) − E(N0 − 1) = −I , i.e., it equals the
negative of the IP.

138For the LSDA, relaxation runs have been performed for all molecules.
It was found that the experimental bond length lies within the numerical
error range of the relaxed bond length in all cases. We checked that the ho
and e− ho energy values for the relaxed geometries agree with the ones
at experimental geometries within 0.002 hartree, except for H2, NH, and
F2, where the difference reaches 0.005 hartree. For the ISOcc functional,
similar relaxation checks were performed, as described in Ref. 85.

139In this context, we note that the values reported by some of us in Ref. 87
for the relaxed H2 molecule, namely, the e-ho energy, εe-ho, and as a
result—the fundamental gap of the ion, Eg, are slightly different upon
closer observation. In fact, at the relaxed bond length of L = 1.45 Bohr,
these values are εe-ho = 0.618 hartree = 1.236 Ry and Eg = 0.671 hartree
= 1.341 Ry and not 1.223 Ry and 1.320 Ry, respectively. The difference
originates from retrieving the value for εe-ho directly, not relying on
the chemical potential µ calculated in the DARSEC program, with a
temperature of 1K.

140We recall that the latter does not produce a strictly piecewise linear
energy curve E(N ), but there typically remains some concavity, which is
attributed to the implicit dependence of E(N ) on α via the KS orbitals.
This concavity affects the value of εe-ho. However, even in case E(N )
would be exactly piecewise linear, εe-ho would reproduce −I∆SCF rather
than the experimental IP.

141Note that the combination of the EXX functional with the standard form
for the Hartree functional results in an intrinsically ensemble-generalized
functional if the ground state is described by an ensemble comprised
of two pure many-electron states. This is the case throughout this work
as we describe the ionization process by extracting an electron from a
specific spin-channel. If the number of many-electron states is larger than
two (as is the case, e.g., if both spin channels are fractionally occupied),
then the EXX is not intrinsically ensemble-generalized, but an appropriate
ensemble generalization, proposed in Ref. 91, is available.

142When calculating the NH molecule with the LSDA or PBEh(a) using
values of 0 ≤ a . 0.55, the global εho and εe-ho do not belong to the
same spin channel, a behavior that has not been observed in any other
system in our test set.
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In the following we present in tabular form the numerical data used to generate Figs. (2)-(5) of the main text.
For each system in the test set, we provide the negative of the unshifted highest occupied eigenvalue, −εho, as
well as its shifted counterpart, −εe−ho, for a variety of functionals discussed in the article. Table I contains results
obtained with the functionals LSDA, BLYP, B3LYP and pure EXX, tables II and III provide values obtained with
the global hybrid functional PBEh(a) and the local hybrid functional ISOcc(c), as function of the parameter a or c,
respectively. Additionally, if calculated, the ionization potential evaluated by the ∆SCF method is included in the
tables. Finally, for each functional the averaged relative errors δIP , evaluated with −εho, −εe−ho and ∆SCF, together
with the corresponding sign functions S, are presented. Our calculations were based on bond lengths and vertical
ionization potentials determined by experiment as given in Ref. [1] and http://webbook.nist.gov; the actual values
are included in the tables for comparison.

TABLE I: Unshifted and shifted highest occupied eigenvalue −εho and −εe−ho for the system set evaluated with LSDA, BLYP,
B3LYP and pure EXX. Additionally, for LSDA the IP computed via ∆SCF is listed. All energy values are in Ha.

Functional
System Rexp

AB (Bohr) IPexp IPDFT via ... LSDA BLYP B3LYP EXX
H2 1.4011 0.5669 −εho 0.3772 0.3819 0.4313 0.5945

−εe−ho 0.6257 0.6329 0.6353 0.5945
∆SCF 0.5963

LiH 3.0139 0.285 −εho 0.1613 0.1588 0.1922 0.3011
−εe−ho 0.3424 0.3435 0.3437 0.3011
∆SCF 0.3017

Li2 5.0518 0.1879 −εho 0.1189 0.1127 0.1313 0.1812
−εe−ho 0.2147 0.2115 0.2123 0.1812
∆SCF 0.1954

LiF 2.9553 0.4155 −εho 0.2333 0.2254 0.2809 0.4760
−εe−ho 0.5835 0.5733 0.5622 0.4760
∆SCF 0.4542

BeH 2.5368 0.3015 −εho 0.1692 0.1666 0.1983 0.3096
−εe−ho 0.3152 0.3175 0.3193 0.3096
∆SCF 0.3057

BH 2.3290 0.359 −εho 0.2031 0.2011 0.2370 0.3461
−εe−ho 0.3876 0.3858 0.3869 0.3461
∆SCF 0.3558

BO 2.2766 0.489 −εho 0.3045 0.2462 0.2857 0.5199
−εe−ho 0.5064 0.4395 0.4429 0.5199
∆SCF 0.4765

BF 2.3861 0.4087 −εho 0.2508 0.3004 0.3491 0.4053
−εe−ho 0.4435 0.5038 0.5129 0.4053
∆SCF 0.4059

CH 2.1163 0.391 −εho 0.2185 0.2091 0.2562 0.4162
−εe−ho 0.4520 0.4411 0.4432 0.4162
∆SCF 0.4057

CN 2.2144 0.4997 −εho 0.3508 0.3404 0.3836 0.5316
−εe−ho 0.5932 0.5822 0.5778 0.5316
∆SCF 0.5376

CO 2.1322 0.515 −εho 0.3350 0.3311 0.3839 0.5526
Continued on next page

∗These authors contributed equally
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TABLE I – continued from previous page

Functional
System Rexp

AB (Bohr) IPexp IPDFT via ... LSDA BLYP B3LYP EXX
−εe−ho 0.5769 0.5705 0.5780 0.5526
∆SCF 0.5176

NH 1.9600 0.4958 −εho 0.2928 0.2842 0.3404 0.5011
−εe−ho 0.5695† 0.5774† 0.5731† 0.5011
∆SCF 0.5066

N2 2.0743 0.5733 −εho 0.3825 0.3770 0.4364 0.6303
−εe−ho 0.6251 0.6168 0.6294 0.6303
∆SCF 0.5740

NO 2.1746 0.3405 −εho 0.1690 0.1622 0.2206 0.4173
−εe−ho 0.4206 0.4116 0.4217 0.4173
∆SCF 0.3685

OH 1.8324 0.4784 −εho 0.2740 0.2629 0.3203 0.4984
−εe−ho 0.5879 0.5740 0.5715 0.4984
∆SCF 0.4957

O2 2.2819 0.4531 −εho 0.2547 0.2502 0.3173 0.5571
−εe−ho 0.5316 0.5265 0.5396 0.5571
∆SCF 0.4683

FH 1.7326 0.5924 −εho 0.3608 0.3544 0.4203 0.6453
−εe−ho 0.7391 0.7313 0.7235 0.6453
∆SCF 0.6172

F2 2.6695 0.5769 −εho 0.3544 0.3481 0.4205 0.6667
−εe−ho 0.6478 0.6406 0.6552 0.6667
∆SCF 0.5744

H 0.4997 −εho 0.2690 0.2722 0.3191 0.5000
−εe−ho 0.4787 0.4979 0.4991 0.5000
∆SCF 0.4787

Li 0.1981 −εho 0.1163 0.1114 0.1311 0.1962
−εe−ho 0.2013 0.2034 0.2041 0.1962
∆SCF 0.2011

Be 0.3426 −εho 0.2057 0.2009 0.2290 0.3089
−εe−ho 0.3447 0.3439 0.3454 0.3089
∆SCF 0.3318

B 0.3049 −εho 0.1509 0.1494 0.1866 0.3170
−εe−ho 0.3380 0.3382 0.3390 0.3170
∆SCF 0.3175

C 0.4138 −εho 0.2249 0.2182 0.2662 0.4378
−εe−ho 0.4714 0.4667 0.4661 0.4378
∆SCF 0.4313

N 0.5341 −εho 0.3085 0.2970 0.3560 0.5705
−εe−ho 0.6115 0.5996 0.5957 0.5705
∆SCF 0.5512

O 0.5005 −εho 0.2737 0.2803 0.3366 0.5193
−εe−ho 0.5962 0.6045 0.5984 0.5193
∆SCF 0.5146

F 0.6403 −εho 0.3808 0.3797 0.4478 0.6779
−εe−ho 0.7679 0.7677 0.7598 0.6779
∆SCF 0.6598
δIP (%) via −εho 41.45 42.62 31.50 9.19
δIP (%) via −εe−ho 16.42 15.48 15.48 9.19
δIP (%) via ∆SCF 4.17
S via −εho -1.00 -1.00 -1.00 0.62
S via −εe−ho 0.92 0.92 0.92 0.62

† In this case, the states marking the highest occupied eigenvalue before and after the shift are not the same, but they belong to different
spin channels.
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One- and many-electron self-interaction error in local and global hybrid functionals
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Electronic self-interaction poses a fundamental challenge in density-functional theory. It greatly limits, e.g.,
the physical interpretation of eigenvalues as electron removal energies. We here investigate whether local hybrid
functionals that are designed to be free from one-electron self-interaction lead to occupied Kohn-Sham eigenvalues
and orbitals that approximate photoemission observables well. We compare the local hybrid results to the ones
from global hybrid functionals that only partially counteract the self-interaction, and to the results that are
obtained with a Perdew-Zunger-type self-interaction correction. Furthermore, we check whether being nominally
free from one-electron self-interaction translates into a reduced many-electron self-interaction error. Our findings
show that this is not the case for the local hybrid functionals that we studied: In practice they are similar to
global hybrids in many respects, despite being formally superior. This finding indicates that there is a conceptual
difference between the Perdew-Zunger way and the local hybrid way of translating the one-electron condition
to a many-electron system. We also point out and solve some difficulties that occur when using local hybrid
functionals in combination with pseudopotentials.

DOI: 10.1103/PhysRevB.93.165120

I. INTRODUCTION

Due to its favorable balance between accuracy and numer-
ical efficiency, Kohn-Sham density-functional theory (DFT)
[1,2] has become the standard method for electronic structure
calculations. Based on the electron density n(r) as the
central quantity, DFT provides an elegant and in principle
exact framework to solve the quantum-mechanical many-body
problem [3–5].

In practice, the quality of the results from a DFT calculation
decisively depends on the approximation to the exchange-
correlation (xc) energy Exc[n]. From the early years of DFT
on, there was a strong focus of research on developing
reliable density functional approximations. This research led
to functionals that successfully describe a range of physical
ground-state properties [6]. Even long-known (semi)local
functionals such as the local spin density approximation
(LSDA) [7–9] or the PBE generalized gradient approximation
[10,11] often yield reliable binding energies and structures.
Yet, DFT use and research also uncovered many deficiencies
of these established approximations. On the one hand there are
numerous limitations in quantitative accuracy. On the other
hand there are also qualitative problems. Among them are the
erroneous dissociation behavior of diatomic radicals [12–15]
and neutral molecules [16–21] and the drastic overestimation
of static electric polarizabilities and hyperpolarizabilities of
molecular chains [22–27]. The approximate interpretation
of Kohn-Sham eigenvalues and orbitals as photoemission
observables is of great practical interest, yet also problematic
(see, e.g., Refs. [28–36] and references therein). When using
common functionals in time-dependent DFT, e.g., via an adia-
batic approximation, further difficulties arise, in particular with
respect to charge-transfer excitations [37–40] and electronic
transport characteristics [41–44].

This diverse set of issues in practical DFT can be traced back
to a common conceptual problem: electronic self-interaction

*stephan.kuemmel@uni-bayreuth.de

(SI). SI can be understood by the example of a single-
electron system with ground-state density n1e(r). In this case,
the Hartree energy EH has to be fully canceled by Exc,
i.e., EH[n1e] + Exc[n1e] = 0, since otherwise one obtains an
erroneous interaction of the electron with itself, the SI error
(SIE) [45].

For a system with more than one electron, it is less obvious
how to quantify the SIE. The most famous definition for
a system with N = ∑

σ Nσ electrons being free from SIE
[45,46] is based on identifying orbitals with electrons [47].
When making this identification, which goes beyond the usual
Kohn-Sham concept and in principle raises the question of
whether orbital densities are allowed to be inserted into the
ground-state energy functional despite them not being ground-
state densities [48], then the electrons are represented by the
spin-orbital densities niσ (r) = |ϕiσ (r)|2 of the occupied Kohn-
Sham orbitals ϕiσ (r). With this identification, the famous
Perdew-Zunger definition∑

σ=↑,↓

Nσ∑
i=1

{
EH[niσ ] + Eapprox

xc [niσ ,0]
} = 0 (1)

appears as a very natural concept. Here, i counts the Kohn-
Sham states and σ the electron spin. As this definition is di-
rectly linked to the single-electron case, a functional fulfilling
EH[n1e] + Exc[n1e] = 0 for any n1e(r), ore more generally
Eq. (1), is referred to as being free from the one-electron
self-interaction error. For brevity, we denote the one-electron
self-interaction error as one-error in the following.

However, as orbital densities cannot always be identified
with electrons, Eq. (1) does not unambiguously quantify the
SI problem. The more general concept of the many-electron
self-interaction error (in the following referred to as many-
error) [14,17] uses the straight-line energy condition [49] to
define the SIE in a many-electron system in a different way. A
functional is defined as being free from many-error if the total
energy E(N ) of an N electron system is piecewise linear as a
function of particle number,

E(N ) = (1 − ω)E(N0) + ωE(N0 + 1), (2)

2469-9950/2016/93(16)/165120(15) 165120-1 ©2016 American Physical Society
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with N = N0 + ω, where N0 ∈ N gives the number of elec-
trons in the singly ionized system and w ∈ [0,1[ denotes the
fraction of an electron that is added. The many-error is often
referred to as delocalization error, since the SI leads to a
spurious delocalization of the charge distribution [50]. It is
well established that standard, (semi)local functionals show
a convex, while Hartree-Fock (and pure exact exchange as
defined below) gives a concave energy curve [14,51,52].

Although systems with a fractional number of electrons
seem like rather abstract constructions, the implications of a
functional violating Eq. (2) are of direct physical relevance.
Especially the problem of predicting fundamental gaps from
Kohn-Sham eigenvalues is connected to the deviation from
piecewise linearity in the energy curves of the employed
functional [52–56]. Furthermore, it was demonstrated that it is
the violation of Eq. (2) that leads to the aforementioned incor-
rect description of molecular dissociation, because solutions
with fractional charges on separate atoms incorrectly become
energetically favorable [13,15,17,57–59].

In light of the problems caused by electronic SI, much
effort has been invested in addressing both the one- and the
many-error. Equation (1) sets the basis for SI correction (SIC)
schemes, that, by explicitly removing the one-error from SI
affected functionals, remedy the aforementioned shortcomings
to a large extent (see Ref. [60] and references therein for
a detailed discussion). Using SIC methods, e.g., electrical
response properties of molecular chains were predicted more
accurately [25,61], and the description of charge transport
characteristics [41,44] and charge-transfer excitations [40] was
qualitatively improved.

The recently proposed ensemble generalization of DFT
[52] addresses the many-error. Restoring piecewise linearity
to a large extent, its application leads to a better description
of ionization potentials (IPs) [56] and fundamental gaps
using Kohn-Sham eigenvalues [55], and eliminates fractional
dissociation [59].

A different approach to counteract SI is based on using
exact exchange (EXX). EXX is defined as the Fock exchange
integral evaluated with Kohn-Sham orbitals,

Eex
x = −1

2

Nσ∑
i,j = 1
σ = ↑,↓

∫∫
ϕ∗

iσ (r)ϕjσ (r)ϕiσ (r′)ϕ∗
jσ (r′)

|r − r′| d3r d3r ′.

(3)

EXX fulfills the condition (1) and is thus a natural “ingredient”
in functional constructions that try to address SI.

Global hybrid functionals [62–64], as motivated by the adia-
batic connection [65–67], use a fixed, constant amount of EXX
in combination with (semi)local functional components. This
leads to a considerable improvement over purely (semi)local
functionals for ground-state properties if about 25% of EXX
are used. However, global hybrids with such a parametrization
often perform less well than, e.g., SIC schemes, in situations
that are known to be strongly influenced by electronic SI. The
reason for this is presumably that global hybrid functionals
with a small fraction of EXX are not one-error free.

Local hybrid functionals [68–71] take the idea of combining
nonlocal and (semi)local functional parts one step further.
Based on the concept of (nonuniquely [71–73]) expressing

the xc energy via the integral Exc[n] = ∫
n(r) exc(r) d3r ,

they approximate the xc energy density per particle exc(r)
as a spatially resolved mix of nonlocal and (semi)local
components. Local hybrids proved to be a powerful functional
ansatz for the description of thermochemistry and reaction
barriers [70,74–85] and appear promising in linear-response
time-dependent DFT [86].

The local hybrids’ mixing concept provides for much
more flexibility in the functional construction than the global
hybrids’ fixed fraction of exchange. Consequently, the two
types of functionals typically differ substantially in the formal
treatment of the SIE: In contrast to global hybrids, local hybrids
can be constructed to be inherently free from the one-error in
the sense of Eq. (1) [69,87,88]. Yet, despite this important
conceptual difference, local and global hybrids share more
features than one would intuitively expect. One of them is the
recently discussed incorrect asymptotic decay of the local xc
potential [89].

In the present paper, we systematically investigate the
differences and similarities that exist between local and global
hybrid functionals with respect to the SIE. In Sec. II we review
the global and local hybrid functionals that we employ in this
study. In Sec. III we present some insights on the influence
of SI on the description of physical quantities. Section IV
provides details of our calculations. In Sec. V A we contrast
manifestations of the one-error in calculations using global and
local hybrids to the ones found in calculations using full SIC
schemes. We focus on the interpretability of DFT eigenvalues
and orbitals as photoemission observables. In Sec. V B we
study the connection between the one- and many-error for
global and local hybrids with the help of total energy curves
E(N ) for fractionally charged systems. In our concluding
Sec. VI we discuss the implications that our findings have for
the construction and use of functionals that are only nominally
free from the one-error.

II. THE INVESTIGATED FUNCTIONALS

We use the PBEh functional [90,91] as a representative
for global hybrid functionals. Employing a constant amount
a ∈ [0,1] of the EXX energy density eex

x (r) as (implicitly)
defined by Eq. (3) together with corresponding amounts of
PBE xc energy densities ePBE

x,c (r), it approximates the overall
xc energy density per particle by

ePBEh
xc (a,r) = a eex

x (r) + (1 − a) ePBE
x (r) + ePBE

c (r). (4)

While PBEh with a ≈ 0.25 performs well for binding energies,
a ≈ 0.75 leads to [92–94] highest occupied (ho) Kohn-Sham
eigenvalues that approximate experimental IPs well via the
IP theorem, i.e., I = −εho [49,95–98]. In the following, we
explore how this functional’s performance with respect to the
one- and many-error depends on the value of a.

As a representative for the local hybrid functionals we use
the “ISO-functional” introduced in Ref. [88]. It replaces the
mixing constant a by a spatially resolved local mixing function
(LMF) (1 − fx[n](r)) and introduces a separate LMF fc[n](r)
for the correlation part:

eISO
xc (c,r) = (1 − fx[n](r)) eex

x (r) + fx[n](r) eLSDA
x (r)

+fc[n](r) eLSDA
c (r), (5)
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where the LMFs are given by

fx[n](c,r) =
1 − τW(r)

τ (r) ζ 2(r)

1 + ct2(r)
(6)

and

fc[n](r) = 1 − τW(r)

τ (r)
ζ 2(r). (7)

Here, τW(r) = |∇n(r)|2/(8n(r)) denotes the von Weizsäcker
and τ (r) = 1

2

∑
σ

∑Nσ

i=1 |∇ϕiσ (r)|2 the Kohn-Sham kinetic
energy density. The function t2(r) is the reduced density
gradient [10]

t2(r) =
(

π

3

)1/3
a0

16	2(ζ (r))

|∇n(r)|2
n7/3(r)

, (8)

with the Bohr radius a0, 	(ζ (r)) = 1
2 ((1 + ζ )2/3 + (1 − ζ )2/3)

and the spin polarization ζ (r) = (n↑(r) − n↓(r))/(n↑(r) +
n↓(r)). A detailed motivation and discussion of this functional
was given in Refs. [88,89]. In the context of the present work
it is important to be aware of three aspects.

First, the ISO-functional contains an initially undetermined
parameter c in the denominator of Eq. (6). We recently
demonstrated that c ≈ 0.5 is optimal for binding energies,
whereas c ≈ 5.0 is best for predicting IPs via ε−ho. The
parameter c determines the intrinsic amount of EXX in the
ISO functional, i.e., in this sense corresponds to a in Eq. (3).
The higher the value of c, the smaller fx(r) generally gets,
resulting in an intrinsically higher fraction of EXX.

Second, it can be shown that ISO obeys condition Eq. (1)
independently of the value of c. Based on the fact that
τW(r)/τ (r) → 1 and ζ 2(r) → 1 if evaluated on one-spin-
orbital densities of ground-state character (see Ref. [89] for
a more detailed discussion), both fx(r) and fc(r) in Eqs. (6)
and (7) vanish, leaving only pure EXX in Eq. (5), and thus
canceling the Hartree contribution completely. In this sense,
in contrast to global hybrid functionals, the local hybrid ISO
is free from one-error.

The third aspect regards the explicit occurrence of the
spin polarization ζ (r) in the LMFs of ISO. This function
was originally introduced in order to prevent the LMFs from
incorrectly identifying regions in space that are dominated
by two spatially identical orbitals with opposite spins as
one electron regions. However, for fully spin-unpolarized
systems ζ (r) = 0 ∀ r. Thus, the detection function τW(r)/τ (r)
in fx(r) and fc(r) is multiplied by zero for such systems.
One therefore might argue that effectively the LMFs are
not using the detection function, while at the same time
Eq. (1) is undoubtedly fulfilled. Therefore, we here introduce
a modification of the ISO functional without spin polarization.
It uses the LMFs

f II
x (c∗,r) =

1 − τW(r)
τ (r)

1 + c∗t2
II(r)

(9)

and

f II
c (r) = 1 − τW(r)

τ (r)
. (10)

Here, t2
II(r) = t2(ζ (r) = 1,r) = (π

3 )1/3 a02
2
3

16
|∇n(r)|2
n7/3(r) . Note that

also this construction (called ISOII in the following) has an
undetermined parameter, c∗. It plays a similar role as c does
in ISO. The modified ISOII, in contrast to ISO, reduces the
xc energy density to pure EXX also for two spatially identical
orbitals, and both functionals are free from one-error in the
sense of Eq. (1).

III. MANIFESTATIONS OF SELF-INTERACTION

The interpretation of occupied Kohn-Sham eigenvalues as a
physical density of states (DOS), as frequently done to interpret
experimental photoemission spectra, markedly illustrates the
one-error. Even though only the ho Kohn-Sham eigenvalue
is rigorously physically meaningful, it has been argued that
also lower lying eigenvalues can be good approximations
to electron removal energies [30,36,99,100]. However, the
spectra obtained by standard functionals can be very much
distorted due to electronic SI. In Ref. [32] the orbital self-
interaction error (OSIE) was introduced as a criterion to
quantify the influence of one-error on the eigenvalue structure.
The OSIE is defined as

eiσ = 〈ϕiσ |vH[|ϕiσ |2]|ϕiσ 〉 + 〈ϕiσ |vxcσ [|ϕiσ |2,0]|ϕiσ 〉, (11)

with vH[|ϕiσ |2](r) denoting the Hartree and vxcσ [|ϕiσ |2,0](r)
the xc potential evaluated on single spin-orbital densities.

The OSIE is a valuable indicator for the quality of eigen-
value spectra. If Eq. (11) gives a different OSIE for all Kohn-
Sham states, i.e., self-interaction affects different eigenvalues
to a different degree, then a completely distorted spectrum is
to be expected and the DOS will not even qualitatively reflect
the spectrum that is observed in a photoemission experiment
[32,33,100–102].

Evaluating Eq. (11) with an explicitly density-dependent
functional is straightforward, but calculating eiσ for an explic-
itly orbital-dependent functional is more difficult. The problem
is that no explicitly density-dependent expression for vxcσ

exists that could be directly evaluated on a single spin-orbital
density. However, also for orbital-dependent functionals the
following relation holds:

vxcσ [|ϕiσ (r)|2,0] = δExc[{ϕjν[n]}]
δnσ

∣∣∣∣
n=|ϕiσ |2

. (12)

The functional derivative can be evaluated using the
optimized effective potential (OEP) formalism [60,103]. In the
Supplemental Material to this paper [104], we demonstrate
how to evaluate Eq. (11) for explicitly orbital-dependent
functionals. In particular, for the OSIE of the global hybrid
we find

ePBEh
iσ (a) = (1 − a)〈ϕiσ |(vH[|ϕiσ |2] + vPBE

xσ [|ϕiσ |2,0]
)|ϕiσ 〉

+ 〈ϕiσ |vPBE
cσ [|ϕiσ |2,0]|ϕiσ 〉. (13)

Note that the OSIE of Eq. (13) depends on a in a structure
similar to the xc energy in Eq. (4). This is consistent with
the limiting cases: For a = 0 the OSIE reduces to the one
of pure PBE, while for a = 1, i.e., full EXX with PBE
correlation, the Hartree term as well as the PBE exchange
are fully canceled, and only PBE correlation contributes to the
OSIE.
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For the local hybrids ISO and ISOII, on the other hand, it can
be demonstrated that the Hartree term is completely canceled
by the xc term in Eq. (11), since the latter reduces to pure EXX
if evaluated on single spin-orbital densities only. Consequently,
these functionals give an OSIE of zero independently of the
parameter used, i.e.,

eISO
iσ (c) = eISOII

iσ (c∗) = 0 ∀ c,c∗. (14)

The cancellation is triggered by the single spin-orbital detec-
tion functions τW(r)/τ (r) in the LMFs.

However, there is also a completely different approach to
eliminate the one-error. Traditional SIC schemes [45,60] rely
on Eq. (1) and define

ESIC
xc = Eapprox

xc −
∑
iσ

{
EH[niσ ] + Eapprox

xc [niσ ,0]
}

(15)

as the self-interaction corrected version of the approximate
functional E

approx
xc .

It is important to note that Eq. (15) is not invariant
under unitary transformations of the Kohn-Sham orbitals.
Evaluation of Eq. (15) with orbitals that are transformed
via ϕ̃iσ (r) = ∑Nσ

j=1 Uσ
ij ϕjσ (r) results in an altered xc and,

consequently, total energy, while leaving the electron den-
sity unchanged: n(r) = ∑

iσ |ϕiσ (r)|2 = ∑
iσ |ϕ̃iσ (r)|2. Kohn-

Sham SIC schemes that incorporate a unitary transformation
Uσ

ij into the OEP equation are referred to as generalized OEP
SIC (GSIC) [40,47,105].

In the following, we discuss the consequences of removing
the one-error (a) directly via a GSIC scheme, (b) nominally
via the local hybrids ISO and ISOII and (c) partially via
the global hybrid PBEh. For doing so we compare the
corresponding Kohn-Sham eigenvalue spectra to experimental
photoemission data for six prototypical organic molecules (see
Fig. 1): the aromatic rings benzene, pyridine and pyrimidine,
the polycyclic aromatic hydrocarbons pentacene and perylene
as well as 1,4,5,8-naphthalene tetracarboxylic dianhydride
(NTCDA), a model organic semiconductor. These systems are
paradigm test cases for questions of treating SI and orbital
localization with DFT.

In addition to the one-error we also examine the many-error.
For this, we investigate the total energy curve as a function of
particle number for the local hybrids ISO and ISOII as well
as the global hybrid PBEh. We explicitly calculate the energy
curves E(N ) for eight atoms and diatomic molecules between
their neutral (N0 + 1) and singly ionized state (N0 electrons).
In order to allow for a comprehensive evaluation of our results,
we introduce (following Ref. [106]) the squared integrated
many-electron SIE

� =
√∫ N0+1

N0

[(E(N ) − Eisl(N )]2 dN. (16)

Here, Eisl(N ) denotes the straight line between adjacent
integer particle numbers based on Eq. (2). It is obtained by
linear interpolation between the calculated energy values at
N0 and N0 + 1. The definition of � was chosen such that
Eq. (16) gives a measure of the many-error in energy units.
Importantly, energy curves with both convex and concave parts
are not falsely detected as obeying the straight-line criterion,
since squaring the energy difference in Eq. (16) prevents an

FIG. 1. Schematic illustration of the molecules studied in this
paper. Carbon atoms are represented in black, hydrogen in white,
nitrogen in blue, and oxygen in red.

erroneous cancellation of terms under the integral. Instead, �

gives zero only for exact piecewise-linear behavior. Further,
note that Eq. (2) provides a meaningful measure only for finite
systems, as it has been demonstrated that the curvature of the
energy curve naturally vanishes in the solid-state limit even
for (semi)local density functionals [107].

IV. METHODOLOGY

The calculations of the E(N ) curves were carried out
using the highly accurate real-space grid program DARSEC
[88,108,109]. We calculate the energy curves for the atoms
He, C, O, and Mg, as well as for the molecules BeH, CO,
N2, and NO. For the molecules, we use experimental bond
lengths [110]. The integral in Eq. (16) is computed using
the trapezoidal rule with a step size of 
 = 0.05 for the
fractional electron number N . Throughout this work, all
orbital-dependent functionals are evaluated self-consistently
by using the KLI approximation [111,112].

The systems in Fig. 1 are calculated using the Bayreuth
version [31] of the program package PARSEC [113]. Core
electrons are treated only implicitly via the pseudopotential
(PP) approximation. Throughout this work, we employ con-
sistent norm-conserving PPs of Troullier-Martins type [114]
for (semi)local functionals. For orbital-dependent xc approxi-
mations such as hybrid functionals, constructing a consistent
pseudopotential is very demanding [60]. We therefore here
adopt a workaround strategy. For PBEh satisfying results for
the Kohn-Sham eigenvalues can be obtained by employing
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PBE or EXX [115] PPs (depending on a). We here use PBE
PPs for the global hybrid with 25% EXX, while for higher
fractions of EXX we use EXX PPs in combination with a
Giannozzi-type PP for hydrogen [116] (see Appendix B for
details regarding the PPs used in this paper).

For the local hybrids ISO and ISOII the question of a proper
PP is yet more difficult. Using these functionals on top of PPs
constructed with a different functional leads to eigenvalues that
deviate noticeably from the ones of all-electron calculations.
We explicitly checked this by comparing DARSEC and PARSEC
results. However, there is a way to restore satisfying agreement
in the Kohn-Sham eigenvalues for these functionals without
having to go through the heavy work of constructing a truly
consistent PP. The important step is to introduce a sort of
“core-correction,” based on the following idea: Since the
crucial difference between global and local hybrids is the
spatially resolved mixing of various functional ingredients, one
must try to reproduce the all-electron structure of the LMFs of
Eqs. (6), (7), (9), and (10) for ISO and ISOII, respectively,
as close as possible in the PP calculation. In standard PP
calculations, the xc energy and potential are obtained using
only the valence density nv(r). However, it is well understood
that the core density nc(r) around the atomic center has a large
influence on detection functions such as τW(r)/τ (r) [117].
Therefore, it is important to explicitly include nc(r) in the
construction of the LMFs in order to correctly detect all spatial
regions as intended in the construction of the xc energy density
in Eq. (5).

For this, we replace the functions τW(r), τ (r) and t2(r) in
Eqs. (6), (7), (9), and (10) by their core-density (cd) corrected
modifications

τ cd
W (r) = |∇(nv(r) + nc(r))|2

8(nv(r) + nc(r))
, (17)

τ cd(r) = 1

2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

∑
iσ

valence
states

∣∣∇ϕv
iσ

∣∣2

⎞
⎟⎟⎟⎟⎟⎠ + ∣∣∇(nc(r))

1
2
∣∣2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (18)

(tcd(r))2 =
(

π

3

)1/3
a0

16	2(ζ (r))

|∇(nv(r) + nc(r))|2
(nv(r) + nc(r))7/3 . (19)

In our implementation the spin polarization only features
the valence density, i.e., ζ (r) = (nv↑(r) − nv↓(r))/(nv↑(r) +
nv↓(r)).

In Eq. (18) one identifies the second term on the RHS with
the core contribution to the Kohn-Sham kinetic energy density,
i.e.: ∑

kν
core states

∣∣∇ϕc
kν(r)

∣∣2 ≈ ∣∣∇(nc(r))
1
2
∣∣2

. (20)

Equation (20) is exact for atoms with one (doubly occupied)
core orbital of s character, since here ϕc(r) = (nc(r))

1
2 . There-

fore, the organic molecules investigated in this publication
are covered exactly, as they only consist of C, N, and O
atoms in combination with H. For systems with more core
orbitals (especially of p character), Eq. (20) would only be an
approximation.

In the Supplemental Material [104] we compare the Kohn-
Sham eigenvalues of ISO and ISOII obtained in PARSEC using
EXX PPs to all-electron eigenvalues from DARSEC for the
molecules NH, N2, and CO. We find that the core-density
corrected LMFs are crucial for reaching satisfying agreement
with the all-electron results. Especially the higher lying
valence states, on which we focus in Sec. V A, are described
much more accurately by implicitly taking the core density
into account.

In Ref. [89] it was demonstrated that the xc potential of
local hybrids asymptotically decays with vxcσ → −γσ /|r| for
|r| → ∞ instead of the correct −1/|r| behavior [96,97]. Here,

γσ = 1 − 1

2

∫
fx(r)|ϕNσ σ |2d3r, (21)

i.e., the asymptotical decay is not a global constant, but
rather determined by the electronic structure of each system
individually. The value of γσ offers a convenient way to
compare the LMFs from the all-electron and the PP runs with
and without the core-density correction in a single numerical
value. Indeed we find that applying the core-density correction
brings γσ in closer agrement with the all-electron calculations
(see Ref. [104]).

In our GSIC calculations we use complex-valued energy-
minimizing orbital transformations (labeled E-min GSIC). A
local, multiplicative potential is obtained via the generalized
OEP (GOEP) formalism. We here use the generalized KLI
approximation (GKLI) [47] with the gradient-line-search algo-
rithm for the energy-minimizing transformation as described
in Ref. [105]. We apply the GSIC scheme of Eq. (15) to the
LSDA, for the reasons given in Refs. [48,105], and use LSDA
PPs as justified in Ref. [105].

V. RESULTS

A. Hybrid functionals and one-error: Simulated
photoemission observables

In this section, we simulate photoemission spectra (PES) for
the molecules of Fig. 1 by interpreting our calculated occupied
Kohn-Sham eigenvalues as physical electron removal energies.
For this, we align each eigenvalue spectrum to the first peak
in the experimental gas phase photoemission spectrum and
chose this as the zero of energy. Additionally, for evaluating
the corresponding functional’s performance with respect to
the IP theorem, both the experimental IP and the (unshifted)
negative ho eigenvalue are reported for each system. Further,
we broaden the relative Kohn-Sham eigenvalue spectra by
convolution with a Gaussian using a standard deviation of
0.08 eV in order to mimic the broadening of the experimental
data. However, no uniform stretching [118] is applied to our
computed spectra.

In order to discuss the connection between one-error and
the interpretation of Kohn-Sham eigenvalues as a physical
DOS, we here show the OSIE obtained by the global and local
hybrids for the six organic molecules. For both ISO and ISOII
we rely on the analytical argument of Eq. (14), i.e., a vanishing
OSIE is obtained for all states independently of the functional
parameter. The OSIE for PBEh is numerically evaluated using
Eq. (13) after self-consistency is reached in the Kohn-Sham
equations. In order to give a transparent overview over the
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FIG. 2. Relative OSIE in eV for benzene, pyridine, pyrimidine,
pentacene, perylene, and NTCDA. For PBEh the OSIE is numerically
computed using Eq. (13) for different values of a. For the local hybrids
ISO and ISOII the OSIE is zero according to Eq. (14).

distortions introduced by SIE, the relative OSIEs ei − eho are
plotted in Fig. 2 by taking the OSIE of the ho Kohn-Sham state
as reference.

We start our discussion with some general observations.
For benzene, pyridine, pyrimidine, and NTCDA the OSIEs
computed with pure PBE (black squares) show values that
vary greatly from one state to another. Consequently, a large
impact of the one-error on the Kohn-Sham DOS is to be
expected in agreement with Refs. [32,100,102]. For pentacene
and perylene, however, all higher valence states show almost
the same OSIEs with respect to the ho state, resulting in a DOS
that is expected to be much less distorted by SI [100].

Second, Fig. 2 shows that for all systems an increasing value
of a in PBEh leads to smaller values of the relative OSIEs. For
benzene, pyridine, pyrimidine, pentacene, and, except for the
ho-4 and ho-3 state, also perylene, a higher amount of EXX has
a “straightening” effect. For a = 1.0, i.e., using 100% EXX
in combination with PBE correlation, the OSIEs are reduced
to virtually zero for all systems, coinciding with the analytical
results for the local hybrids. For NTCDA, this straightening
effect also exists but is less obvious to discuss, as an increase
in the amount of EXX leads to a change in both the OSIEs and
the ordering of the Kohn-Sham orbitals, resulting in a more
complicated curve.

Third, the OSIE curves obtained with PBEh(a = 0), i.e.,
pure PBE exchange and correlation, are similar to the ones

FIG. 3. Kohn-Sham DOS for pyridine obtained from different
functionals compared to the experimental gas phase photoemission
spectrum [119].

from other (semi)local functionals, as for example the LSDA.
Therefore, it is justified to discuss the Kohn-Sham DOS of the
LSDA in connection to the OSIEs of PBEh (a = 0).

Pyridine exhibits the strongest deviations in the relative
OSIEs with values up to 3 eV for pure PBE. Indeed the Kohn-
Sham DOS obtained from LSDA describes the experimental
photo-emission spectrum insufficiently. Figure 3 shows that
in the shifted spectrum especially the second and third peak
are off by ≈0.5–1 eV, while also the ho eigenvalue of −εho =
6.03 eV drastically underestimates the experimental IP.

Explicit removal of the one-error leads to better agreement
with the experimental spectrum, as the second and third
eigenvalues obtained by E-min GSIC are shifted towards
the corresponding experimental peaks. However, here the ho
eigenvalue significantly overestimates the experimental IP. We
attribute this to the “overcorrection” that can be seen in energy-
minimizing SIC schemes, as discussed in Ref. [27]. The global
hybrid PBEh moves the second and third eigenvalue towards
the GSIC results when going from a = 0.25 to a = 0.5, as the
one-error is increasingly compensated by the higher amount
of EXX.

Interestingly, ISO and ISOII show Kohn-Sham eigenvalue
spectra that are similar to the PBEh spectra. The fact that for
global and local hybrids the description of the IP via −εho

depends decisively on the value of the respective functional
parameter was investigated in detail in Refs. [56,88], finding
a close connection with the incorrect asymptotical decay of
vxc(r) for both types of hybrids [89].

Also the occupied Kohn-Sham eigenvalues below the ho
state show striking similarities for the global and local hybrids.
Here, the agreement with physical removal energies improves
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FIG. 4. Kohn-Sham DOS for pyrimidine obtained from different
functionals compared to the experimental gas phase photoemission
spectrum [120].

if the value of the corresponding functional parameter is
increased. Especially the Kohn-Sham eigenvalues of the ho-2
and ho-3 state are moved towards the experimental peaks,
similar to the ones of PBEh. From the perspective that the local
hybrids are nominally free from one-error with systematically
vanishing OSIEs, one would intuitively expect a spectrum
closer to the one obtained by GSIC. Our results show that
it is in principle possible to obtain a DOS comparable to
GSIC with ISO and ISOII using relatively large parameters.
However, the eigenvalues of GSIC and the local hybrids
do not describe physical energies with the same accuracy
independent of the value of the functional parameter, as their
systematically vanishing OSIE might suggest. Consequently,
the fact that the interpretability of Kohn-Sham eigenvalues
as physical energies for these functionals depends on the
amount of EXX rather than on the property of being free
from one-error demonstrates a fundamental point: the OSIE is
a necessary, but not sufficient criterion for judging the quality
with which Kohn-Sham eigenvalues approximate physical
electron removal energies.

The calculated eigenvalues of pyrimidine depicted in Fig. 4
confirm these statements. Here, increasing the functional
parameter of the local hybrids has a large impact on the
relative position of the ho-1 and ho-3 orbital, shifting them
towards physically meaningful energies. However, the DOS
of ISO and ISOII for large values of their parameter deviates
from the GSIC spectrum. While GSIC predicts the ho-1 and
ho-2 state to be nearly degenerate, the local hybrid functionals
open up a gap between these eigenvalues and shift the ho-1
towards the corresponding experimental peak. Using such a
parametrization, the local hybrids therefore even outperform

FIG. 5. Kohn-Sham DOS for benzene obtained from different
functionals compared to the experimental gas phase photoemission
spectrum [119].

GSIC for this system, while at the same time delivering a more
realistic prediction of the IP via the ho eigenvalue.

The results for benzene in Fig. 5 underline how the relative
OSIEs predict the problem of describing the experimental
photoemission spectrum via the LSDA. Removing the one-
error via GSIC significantly opens up the gap between the
twofold degenerate ho and ho-1 and the ho-2 and ho-3 states.

Interestingly, both PBEh and ISOII show a reduced de-
pendency on their functional parameter for the position of
the ho-2 and ho-3 states. The local hybrid ISO on the other
hand moves these states towards the experimental peak and the
GSIC results. For values of c � 2.5 ISO offers the possibility
to describe the photoemission spectrum of benzene with an
accuracy comparable to GSIC, while again it remedies the
overestimation of the IP using −εho.

As discussed earlier in this section, the molecules pentacene
and perylene show only small differences in the relative OSIEs
for the valence states. Indeed Figs. 6 and 7 show that the
(shifted) LSDA eigenvalues describe the experimental spec-
trum reasonably well. Furthermore, removing the one-error
explicitly via GSIC has almost no effect on the Kohn-Sham
DOS, but only results in a uniform shift on the spectrum, as
the corresponding eigenvalue of the ho state indicates.

Similarly, an increase in the amount of EXX has no
considerable effect on the Kohn-Sham DOS of the global and
local hybrids. Figures 6 and 7 depict the simulated spectra
using PBEh (a = 0.25), ISO (c = 0.5) and ISOII (c∗ = 0). The
spectra using larger values for the corresponding parameter
look very similar (see Supplemental Material [104] for all
spectra).
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FIG. 6. Kohn-Sham DOS for pentacene obtained from different
functionals compared to the experimental gas phase photoemission
spectrum [121].

Our findings confirm that for systems for which the OSIEs
of (semi)local functionals suggest negligible distortions in the
Kohn-Sham eigenvalue spectrum, any additional mechanism
to counteract one-error has no considerable effect on the
aligned spectrum. This was demonstrated in Ref. [100] for
global hybrid functionals and is here confirmed for local
hybrids and GSIC. Note that in such cases as, e.g., pen-
tacene and perylene, both local and global hybrids offer a
more satisfying description of the photoemission spectrum,
because when their respective functional parameter is chosen
large enough, the agreement between the experimental IP and
−εho improves [122].

Figure 8 shows the comparison of Kohn-Sham eigenvalues
to the experimental spectrum for NTCDA. Here, especially the
position of the ho-1 state suffers from one-error, as its OSIEs in
Fig. 2 suggest. Consequently, the LSDA predicts a DOS with
a too narrow gap between the ho and ho-1 state. Applying the
GSIC to this system opens up this gap drastically and shows
eigenvalues that can better be interpreted as physical ionization
energies.

FIG. 7. Kohn-Sham DOS for perylene obtained from different
functionals compared to the experimental gas phase photoemission
spectrum [121].

FIG. 8. Kohn-Sham DOS for NTCDA obtained from different
functionals compared to the experimental gas phase photoemission
spectrum [123].

For this system, all hybrid functionals shift the ho-1
eigenvalue towards the experimental energy if the value of the
respective parameter is increased. Here, it is worth to discuss
the performance of ISO using c = 0.5 in contrast to PBEh
with a = 0.25. In these respective parametrizations, both
functionals show their best performance for thermochemical
properties [88,90]. However, the corresponding Kohn-Sham
DOS in Fig. 8 demonstrates that ISO(c = 0.5) delivers
eigenvalues of a higher interpretability, as it noticeably opens
the gap between the ho and ho-1 state when compared to PBEh
(a = 0.25).

The hybrid functionals offer the possibility to reproduce
the Kohn-Sham eigenvalue structure of GSIC, requiring large
values of the respective functional parameter. On the one
hand such a choice enhances the description of the overall
IP via −εho and remedies the systematical overestimation of
this quantity in GSIC. Yet, it conflicts with the performance
of hybrid functionals for other ground-state properties. Im-
portantly, the ISO and ISOII spectra agree acceptably well
with the E-min GSIC result only for large values of c and
c∗. This underlines the finding that a nominal freedom from
one-error does not universally guarantee the same quality of
results compared to a direct removal of the SIE in the sense
of Eq. (15). Instead, in analogy to global hybrids, the amount
of EXX plays the dominant role for the interpretability of
Kohn-Sham eigenvalues.

It has been demonstrated that SI not only affects the quality
of Kohn-Sham eigenvalues, but also hinders the interpretation
of intensity patterns observed in angular-resolved photoemis-
sion spectroscopy (ARPES) [32,33,35,36,124,125]. Based on
the assumption that during the emission process the electron
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method ordering
ARPES map [35] A - B

E-min GSIC A - B

LSDA C - A

PBEh(a = 0.00) C - A
PBEh(a = 0.25) A - C
PBEh(a = 0.50) A - C
PBEh(a = 0.75) A - C
PBEh(a = 1.00) A - B

ISO(c = 0.0) C - A
ISO(c = 0.2) A - C
ISO(c = 0.5) A - C
ISO(c = 1.0) A - C
ISO(c = 1.5) A - B
ISO(c = 2.0) A - B
ISO(c = 2.5) A - B

ISOII(c∗ = 0.0) A - C
ISOII(c∗ = 0.5) A - B
ISOII(c∗ = 1.0) A - B
ISOII(c∗ = 1.5) A - B
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FIG. 9. Left side: Orbital ordering of the ho and ho-1 state
for NTCDA calculated with different functionals in comparison
to the ordering obtained in ARPES experiments. Agreement with
experiment is marked in boldface. Right side: ARPES momentum

maps of three NTCDA Kohn-Sham orbitals at |k| = 2.75 Å
−1

.

performs a transition from one particular molecular orbital to
a plane-wave final state (see details in Refs. [126,127]), the
photoemission intensity can be expressed as

I (kx,ky,Ekin) ∝ |ϕiσ (k)|2|k|=const.. (22)

Equation (22) directly relates the emission intensity mea-
sured in ARPES experiments to the Fourier transform of a
molecular orbital |ϕiσ (k)|2, with |k| denoting the momentum
of the outgoing electron. In order to discuss the relation
between one-error and the interpretation of higher lying
Kohn-Sham orbitals as ARPES momentum maps, we present
two-dimensional representations of the corresponding fourier-
transformed orbitals for the NTCDA molecule. Due to energy
conservation and the relation Ekin = |k|2/2, |ϕiσ (k)|2 has to
be evaluated on a sphere with radius |k|. This translates
into a spherical cut through the three-dimensional orbital in
k-space, as it is shown in color code in the following. For our
discussion we make use of the finding that for the molecule
and momentum range studied here, the Kohn-Sham orbitals
obtained with different functionals are in most cases quite
similar and therefore result in quite similar momentum maps.
In other words, we here focus on the relative ordering of the
states.

Figure 9 shows the plots for the relevant transformed π (A
and B) and σ orbitals (C) as a function of kx and ky , evaluated
at a fixed kinetic energy. Experimentally confirmed by ARPES
are the momentum maps A and B of the two π orbitals, with
A having the smaller binding energy. Therefore, map A can
be identified with the ho and B with the ho-1 state of the

NTCDA molecule. Purely (semi)local functionals such as the
LSDA and PBE do not reproduce this ordering, as they predict
the ho state to be of type C, originating from a σ orbital not
observed in ARPES experiments among the first two peaks.
PBEh interchanges the ordering of the ho and ho-1 Kohn-Sham
orbitals for intermediate values of the parameter a, while the
correct ordering A–B is only reproduced for large amounts of
EXX. Explicit removal of the one-error via GSIC gives the
experimentally observed orbital ordering [35].

For ISO, a picture in analogy to PBEh occurs. ISO(c = 0)
reduces to pure LSDA for spin-unpolarized systems, and it
consequently predicts a momentum map of type C for the ho
state. Increasing the amount of EXX puts the map of type A
in the first position, while incorrectly predicting the ho-1 state
to be of type C. The correct ordering of momentum maps for
both the ho and ho-1 state is only reproduced for large values
of the functional parameter. The same mechanism emerges for
ISOII, even though here the amount of EXX introduced via
the modified LMF in Eq. (9) is intrinsically larger, resulting
in the orbital ordering A–C for c∗ = 0, while higher values of
this parameter lead to the correct ordering.

These results again support the conclusion that the lo-
cal hybrid functionals, despite being nominally free from
one-error, reliably predict photoemission observables only
for sufficiently large values of their respective functional
parameter. We conclude that counteracting the one-error via
spatially resolved single-orbital detection functions does not
guarantee that Kohn-Sham eigenvalues and orbitals are as close
to the physical quantities as the eigenvalues and orbitals that
are found when the one-error is removed based on Eq. (15).

B. Hybrid functionals and many-error: Energy curves
for fractional charges

In the previous subsection we discussed that global and
local hybrids formally treat the one-error very differently,
yet show a similar performance for quantities influenced by
one-error. Naturally, the question arises whether the nominal
freedom from one-error of local hybrids influences the many-
error. In Ref. [106], E(N ) was discussed in detail for several
local hybrids, focusing on the influence of range-separated
components in the hybrid construction. In this paper, we
concentrate on the question of how the conceptual freedom
from one-error in a local hybrid functional affects the energy
curves.

In this discussion we restrict ourselves to the different
types of hybrid functionals and leave out SIC schemes based
on Eq. (15). This has two reasons. First, an interesting SIC
scheme employing fractional particle numbers has been put
forward [15]. Yet, as it is based on off-diagonal Lagrangian
multipliers [128] it goes beyond the Kohn-Sham concept of
DFT on which we focus in this paper. Second, the previously
discussed Kohn-Sham GSIC [40,47,105] requires a unitary
orbital transformation which we so far could not extend to
fractional particle numbers.

Therefore, we explicitly evaluate total energy curves E(N )
for the global and local hybrids and compare our calculated
curves to the expected piecewise linear behavior, Eq. (2). We
here focus on systems with particle numbers between their
neutral and singly ionized state, i.e., N = N0 + ω with N0 ∈ N
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FIG. 10. E(N ) − Eisl(N ) as a function of the fractional electron
number N = N0 + ω for the magnesium atom. The curves were
obtained using the LSDA, pure EXX and the global hybrid PBEh
(upper panel) as well as the local hybrids ISO and ISOII (lower
panel) for different values of the respective functional parameter. The
piecewise-linear result is indicated by the dashed line.

and w ∈ [0,1[. Instead of plotting the calculated energy curves
directly, it is beneficial to illustrate the difference E(N ) −
Eisl(N ).

Figure 10 shows these curves for the magnesium atom. We
clearly see the concave behavior found for pure EXX, and
the convex deviation from piecewise linearity observed for the
LSDA and PBE. Naturally, for global hybrid functionals one
expects that there exists a certain mixing ratio of nonlocal and
(semi)local components that minimizes the deviation from the
straight-line behavior [92]. Figure 10 indeed demonstrates that
an increasing amount of EXX in PBEh reduces the convexity
until it is (almost) fully canceled and turned to concavity for
large values of a.

For local hybrid functionals, due to their approach of
flexible instead of rigid mixing, it is less clear what energy
curve to expect. We find that the ISO functional also shows
curves with reduced convexity for increasing values of c.
However, in contrast to the results of LSDA, PBEh and
EXX calculations, the local hybrid curves are noticeably
asymmetrical. This asymmetry is introduced by the sensitivity
of the LMF [Eq. (6)] to the electronic structure of the
underlying system. Especially the explicit occurrence of the
spin polarization in the LMF leads to an asymmetry in E(N ),
as can be explained on the example of ISO using c = 0: The
neutral magnesium atom has ζ (r) = 0, reducing ISO(c = 0) to
the LSDA since in this case fx(r) = fc(r) = 1. Consequently,
for ω → 1 the energy curves of ISO(c = 0) and LSDA agree
well. Towards ω → 0 a finite spin-polarization ζ (r) �= 0 is
built up due to the fractional electron missing, resulting in
fx(r) < 1 and a partial inclusion of EXX. Therefore, the energy

FIG. 11. E(N ) − Eisl(N ) as a function of the fractional electron
number N = N0 + ω for the helium atom. The curves were obtained
using the LSDA, pure EXX and the global hybrid PBEh (upper panel)
as well as the local hybrids ISO and ISOII (lower panel) for different
values of the respective functional parameter. The piecewise-linear
result is indicated by the dashed line.

curve is shifted upwards, leading to the observed asymmetry.
Note that not only ζ (r), but also the other functional ingredients
τW(r)/τ (r) and t2(r) contribute to the asymmetry in E(N ).
Thus, a similar effect is observed for the energy curves
obtained with ISOII, though with smaller magnitude.

In the case of the helium atom, this effect leads to an
interesting feature in the energy curves. Figure 11 shows
rather symmetrical energy curves for the LSDA, EXX, and
PBEh. ISO, on the other hand, gives curves with both convex
and concave parts, i.e., E(N ) shows an inflection point and
an intersection with the piecewise linear curve for ω �= 0,1.
This peculiarity can also be explained with the example of
ISO(c = 0). While for ω → 1 the functional reduces to the
LSDA, the singly ionized helium atom at ω → 0 only has
one remaining electron, for which ISO reduces to pure EXX.
Consequently, varying ω from 0 to 1 changes the functionals
character from fully nonlocal to purely local, resulting in the
observed curves.

An increase in the functional parameter c smoothens the
curves and reduces the deviation from piecewise linearity. The
energy curves obtained via ISOII for the helium atom coincide
with the results of a pure EXX computation independently of
c∗, due to the fact that setting ζ = 1 leads to vanishing LMFs
in Eq. (9) and (10) for a density built up of two identical
Kohn-Sham orbitals of opposite spin.

Connected to this qualitative discussion of exemplary
energy curves, we present a quantitative analysis of the
deviation from piecewise linearity for the hybrids, using LSDA
and EXX results as references values. For this, we rely on � as
introduced in Eq. (16). The corresponding results are presented
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FIG. 12. � [Eq. (16)] in eV for the atoms helium, carbon, oxygen
and magnesium obtained using the LSDA, EXX, PBEh, ISO, and
ISOII.

for the atoms He, C, O, and Mg in Fig. 12 and the molecules
BeH, CO, N2, and NO in Fig. 13. These system were chosen as
they represent a small, transparent set of atoms and molecules
which yet is diverse enough to lead to different electronic
configurations in their ground and singly ionized states.

The LSDA and PBE perform similarly, being the function-
als that deviate the most from piecewise linearity for almost
all systems investigated. Interestingly, the magnesium atom
in general shows small deviations with � = 0.54 eV for the
LSDA in contrast to, e.g., helium with � = 1.55 eV. Pure
EXX reduces � considerably for all systems when comparing
to (semi)local functionals, and the remaining error always
originates from concavity. As already indicated for magnesium
and helium, PBEh with a large fraction of EXX can nearly
restore piecewise linearity by mixing convex (semi)local with
concave functional components. As a result, most of the
atoms and molecules in Figs. 12 and 13 show a minimum
in � around a ≈ 0.75. This finding supports the connection
between piecewise linearity and the description of IPs via
−εho, since PBEh was found to perform best in the latter
category using this parametrization as well [56].

The local hybrid ISO evaluated with c = 0 already reduces
� in comparison with the (semi)local LSDA and PBE
especially for the atoms and the BeH molecule. For these
systems, we further observed that ISO(c = 0.5) outperforms

FIG. 13. � [Eq. (16)] in eV for the molecules BeH, CO, N2, and
NO obtained using the LSDA, EXX, PBEh, ISO, and ISOII.

the comparable global hybrid PBEh(a = 0.25), meaning that it
reduces the many-error while performing similar for quantities
related to thermochemistry. The reduction of � for ISO in
contrast to the comparably parametrized global hybrid is
mostly due to the explicit inclusion of ζ (r) in the functional
construction and the consequences for piecewise linearity
described in detail above. For the molecules CO, N2, and NO
this effect appears less pronounced, as here the removal of one
electron has a smaller impact on the spin polarization.

Apart from these features, both ISO and PBEh display
a similar dependence of � on their respective functional
parameter. Our calculations show that the local and global
hybrid systematically reduce � when the amount of EXX is
increased. ISO minimizes � for values between c ≈ 5–10 for
the systems C, CO, NO, O, while the other molecules and
atoms require even larger values of the functional parameter to
considerably reduce the deviation from piecewise linearity in
their energy curves. Again, this result agrees with the finding
that describing IPs via the ho Kohn-Sham eigenvalue using
this local hybrid functional requires a similar parametrization
[88].

Our results support the conclusion that the formal criterion
of a functional being free from one-error does not guarantee
a good performance with respect to the energy curves E(N ),
a manifestation of the many-error. This finding is in line with
the results of Ref. [58]. Thus, we arrive at the same principle
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discussed in Sec. V A for the influence on the one-error: For
both local and global hybrids, the amount of EXX included
plays the decisive role regarding the performance for properties
dominated by the many-error. In that sense, global and local
hybrids can be thought of as two sides of the same medal.

This finding is further supported by evaluating � for ISOII
in Figs. 12 and 13. Setting ζ (r) = 1 in its LMFs in Eqs. (9) and
(10) systematically reduces the values that these functions take,
resulting in instrically higher portions of EXX. Consequently,
ISOII shows the smallest deviations from piecewise linearity.
Especially the energy curve for the magnesium atom in Fig. 10
shows how this local hybrid restores the correct total energy
dependency on fractional charges for large values of the
functional parameter c∗. However, also here the performance
with respect to many-error depends strongly on the functional’s
parameter, and in this sense ISOII can be understood as a
continuation of ISO with larger functional parameter.

VI. CONCLUSIONS

In this work we shed light on the manifestation of the
one- and many-electron self-interaction error in global and
local hybrid functionals. Our first focus was on investigating
whether local hybrids that are formally one-electron self-
interaction free are superior to global hybrids with respect
to the interpretation of their Kohn-Sham eigenvalues and
orbitals as photoemission observables. To this end, we also
compared the iso-orbital indicator (τW(r)/τ (r)) based self-
interaction correction of the local hybrids to the GSIC, i.e.,
a Perdew-Zunger type Kohn-Sham self-interaction correction.
We found that compared to LSDA and a GGA, the local hybrid
functionals can considerably increase the interpretability of
Kohn-Sham eigenvalues as electron removal energies, similar
to GSIC. However, the local hybrids’ performance depends
very much on the value of a parameter that appears in these
functionals. Large values for the parameter, corresponding to a
large exact exchange component, are necessary to obtain phys-
ically meaningful eigenvalues. In this sense, local hybrids are
much like global hybrids. With a properly chosen parameter,
hybrid functionals lead to highest occupied eigenvalues that
approximate experimental IPs better than GSIC eigenvalues.

In a second step we discussed the total energy as a function
of particle number for local and global hybrids. For the
smaller systems in our study we found that a local hybrid
can lead to a reduction of many-electron self-interaction in
comparison to a global hybrid due to the mixing function’s
sensitivity on the systems’ spin polarization. The latter
changes naturally upon addition or removal of an electron.
For larger systems, however, removal of one electron only
causes a relatively small change in the spin densities, and the
local hybrid again becomes more similar to a global hybrid. A
similarity between local and global hybrids also emerges for
the electron-transfer characteristics in hydrogen chains that
we discuss in Appendix A.

Our findings demonstrate that there is a conceptual
difference between the different ways of how the one-electron
condition Eq. (1) is used in a many-electron system.
While Eq. (1) poses a stringent test for functionals in the
one-electron case, it does not provide a unique construction
rule for density functionals, and obeying Eq. (1) does not

guarantee reliable results for many-electron systems. In
particular, under different perspectives we arrive at the
conclusions that although local hybrids can be formally made
one-electron self-interaction free with the help of detection
functions such as τW(r)/τ (r), this does not necessarily
remove self-interaction in the same way as the Perdew-Zunger
concept of Eq. (15). Thus, local hybrid functionals based
on the concept of canceling self-interaction with the help of
semilocal detection functions appear as elaborate extensions
of global hybrids, sharing some of their basic shortcomings,
while offering some additional benefits through the flexible
mixing of non and semilocal functional components.
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APPENDIX A: ELECTRON TRANSPORT
IN HYDROGEN CHAINS

We here investigate the charge transfer (CT) properties
of a model system consisting of two hydrogen chains, each
containing eight hydrogen atoms separated by 1 Å. These
chains are aligned along the x axis, located at a distance of
8 Å as illustrated in the inset of Fig. 14. We then switch on
a constant electric field in the x direction, which induces CT
from the right (donor) to the left (acceptor) hydrogen chain.
In order to quantize the simulated CT from the donor to the
acceptor chain, we investigate the charge density integrated
in the acceptor’s semisphere as a function of the applied field
strength. Figure 14 shows the results obtained using the LSDA,
E-min GSIC, and ISO with c = 0.5 and c = 5.0. Note that
for some values of the electric field no convergence could
be reached for ISO, since the calculation repeatedly jumped
between different solutions.

Due to their large separation and small coupling, CT
between the hydrogen chains must occur via integer electron
jumps at certain field strengths [42,44]. However, the LSDA
gives a qualitatively wrong picture of the CT: Beginning
at a field strength of ≈2.0 × 109 V

m , fractional charges are

FIG. 14. Integrated charge density on the acceptor in dependence
on the strength of the external electrical field.
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gradually transferred from the donor to the acceptor chain. At
≈7.8 × 109 V

m one whole electron has migrated, while higher
field values again induce fractional CT. In contrast, removal of
the one-error via GSIC results in the physical integer electron
transfer, occurring at a field strength of ≈5.1 × 109 V

m [129].
We now investigate the performance of a nominally one-

error free local hybrid functional. Figure 14 shows that using
ISO with a parameter of c = 0.5 slightly improves over
the LSDA curve by shifting the appearance of fractional
CT towards higher field strengths, while at the same time
broadening the plateau around ≈7–8 × 109 V

m . Increasing the
functional parameter to c = 5.0 further improves the simulated
CT properties, as here fractional charge transfer sets in at even
higher field strengths.

It thus becomes apparent that the performance of the local
hybrid decisively depends on the amount of EXX included,
a feature that is also observed for global hybrids [42].
Consequently, the CT studied here is another example for the
similarity between local and global hybrids functionals.

APPENDIX B: PSEUDOPOTENTIALS DETAILS

We here specify all details regarding the PPs used through-
out this work. Table I lists which functional is used with which
PP. For each atom the corresponding cutoff radii are given in

TABLE I. Specifications of the PPs. DF denotes the density
functional.

DF DF PP atom rc(s) rc(p)

LSDA, E-min GSIC LSDA H 1.39
C 1.60 1.60
N 1.50 1.50
O 1.45 1.45

PBE, PBEh (a = 0.25) PBE H 1.40
C 1.49 1.53
N 1.50 1.50
O 1.45 1.45

PBEh (a � 0.50) Giannozzi H
EXX C 1.20 1.20

N 1.19 1.19
O 0.99 0.94

ISO (c) Giannozzi H
ISOII (c∗) EXX C 1.20 1.20

with nc N 1.19 1.19
O 0.99 0.94

bohrs. For the local hybrid functionals, the explicit use of the
core densities as explained in Sec. IV is marked by the note
“with nc.”
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I. ORBITAL SELF-INTERACTION ERROR FOR ORBITAL
DEPENDENT FUNCTIONALS

A. Derivation based on occupation-number formalism

In Ref. [1, 2], the orbital self-interaction error (OSIE) of a
density functional approximation to the exchange-correlation
(xc) energy Exc was defined by

eiσ = 〈ϕiσ|vH[|ϕiσ|2]|ϕiσ〉 + 〈ϕiσ|vxcσ[|ϕiσ|2, 0]|ϕiσ〉. (1)

Here, vH(r) denotes the Hartree and vxcσ the spin-polarized
xc potential with the Kohn-Sham spin-orbitals ϕiσ(r) of state
i and spin σ.

In case of considering an explicit functional of the electron
density n(r) =

∑
σ nσ(r), i.e., Exc = Exc[n↑, n↓], the evaluation

of Eq.1 is a straightforward task: First, an explicitly density-
dependent expression for the xc potential is obtained analyti-
cally via

vxcσ([n↑, n↓]; r) =
δExc[n↑, n↓]
δnσ(r)

. (2)

This expression is then evaluated numerically on a specific
spin-orbital density niσ(r) = |ϕiσ(r)|2, i.e.,

vxcσ([|ϕiσ|2, 0]) =
δExc[n↑, n↓]

δnσ

∣∣∣∣∣
n=niσ

, (3)

and later multiplied by |ϕiσ(r)|2 and integrated according to
Eq. (1).

However, the situation is more complicated if the func-
tional expression is orbital-dependent, i.e., Exc = Exc[{ϕ jν}].
In this case, both the xc energy and potential are explicit
functionals of the complete set of occupied Kohn-Sham spin-
orbitals, which themselves are functionals of the electron den-
sity. Therefore, both Exc and vxcσ are implicit functionals of
the electron density, i.e., Exc = Exc[{ϕ jν[n]}]. Consequently,
evaluating Eq.1 for orbital-dependent functionals is a more
subtle task than evaluating it for explicit density functionals,
as no analytical, explicitly density-dependent form of vxcσ ex-
ists, which could be evaluated directly on niσ(r).

However, in principle, such an evaluation should be possi-
ble also for orbital-dependent functionals based on the follow-
ing relation:

vxcσ[|ϕiσ(r)|2, 0] =
δExc[{ϕ jν[n]}]

δnσ

∣∣∣∣∣∣
n=niσ

(4)

This looks very similar to expression 3, with one fundamental
difference: While Eq.3 allowed for a direct evaluation of the
xc potential on the corresponding spin-orbital densities niσ(r),
the functional derivative on the RHS of Eq.4 does not result in
a purely density-dependent expression, but rather requires the
optimized effective potential (OEP) formalism (see Refs. [3–
5] and references therein) to obtain a local, multiplicative xc
potential.

In the following, we will make use of the occupation-
number formalism, as this will lead to an argument allowing
for a direct evaluation of Eq.4. In this formalism, usually em-
ployed to describe fractionally occupied Kohn-Sham states by
using occupation numbers 0 ≤ g jν ≤ 1 for state j and spin ν ,
the electron density can be written as

n(r) =
∑

jν

g jν ϕ
∗
jν(r)ϕ jν(r) (5)

Occupation numbers offer a convenient way to express orbital
densities by

niσ(r) =
∑

j

g jσ ϕ
∗
jσ(r)ϕ jσ(r)

∣∣∣∣∣∣∣∣
g jσ=δi j

= n(r)|g jν=δi jδσν (6)

Rederiving the OEP equation within the occupation-
number formalism of Eq. (5) gives the following relation for
the local xc potential [6]:

vxcσ(r) =
1

2nσ(r)

∞∑

i=1

giσ

{
[uiσ(r) + (v̄xciσ − ūiσ)] |ϕiσ(r)|2

−∇ · [ψ∗iσ(r)∇ϕiσ(r)
]}

+ c.c. (7)

Here, the functional derivative uiσ(r) is defined as

uiσ(r) =
1

giσ

1
ϕ∗iσ(r)

δExc[{ϕ jν}]
δϕiσ(r)

, (8)

while the orbital-averaged functions v̄xciσ and ūiσ read

v̄xciσ = 〈ϕiσ(r)|vxcσ(r)|ϕiσ(r)〉 (9)

and

ūiσ = 〈ϕiσ(r)|uiσ(r)|ϕiσ(r)〉 (10)

The so-called orbital shifts ψ∗iσ(r) are linked to the Kohn-
Sham orbitals via

(
ĥKSσ − εiσ

)
ψ∗iσ(r) = − [vxcσ(r) − uiσ(r)

− (v̄xciσ − ūiσ)]ϕ∗iσ(r), (11)



2

where ĥKSσ denotes the Kohn-Sham single-particle hamilto-
nian for spin σ.

Due to Eq. (7),(8) and (11) the xc potential, the functional
derivative and the orbital shift can be regarded as functions of
the complete set of occupation numbers, i.e.:

vxcσ(r) = vxcσ

({
g jν

}
, r

)
, (12)

uiσ(r) = uiσ

({
g jν

}
, r

)
. (13)

and

ψ∗iσ(r) = ψ∗iσ(r)
({

g jν

}
, r

)
. (14)

These relations are used in order to evaluate Eq. (4), i.e.,
the OSIE for orbital-dependent functionals. Relying on the
occupation-number formalism in Eq. (5) and the full OEP ex-
pression of Eq. (7), we can write the central equation of this
derivation:

vxcσ[|ϕiσ(r)|2, 0] = vxcσ[{ϕ jν[n]}]
∣∣∣

n|g jν=δi jδσν
= vxcσ

({
g jν

}
, r

)∣∣∣∣
g jν=δi jδσν

=


1

2nσ(r)

∞∑

j=1

g jσ

{[
u jσ ({gkτ} , r) +

(
v̄xc jσ ({gkτ}) − ū jσ ({gkτ})

)]
|ϕ jσ(r)|2

−∇ ·
(
ψ∗jσ ({gkτ} , r)∇ϕ jσ(r)

)}
+ c.c.

]∣∣∣∣
g jν=δi jδσν

(15)

=
1

2|ϕiσ(r)|2
{[

uiσ ({gkτ} , r)|gkτ=δikδστ
+

(
v̄xciσ ({gkτ})|gkτ=δikδστ

− ūiσ ({gkτ})|gkτ=δikδστ

)]
|ϕiσ(r)|2

−∇ ·
(
ψ∗jσ ({gkτ} , r)

∣∣∣
gkτ=δikδστ

∇ϕiσ(r)
)}

+ c.c. (16)

= uiσ ({gkτ} , r)|gkτ=δikδστ
+

(
v̄xciσ ({gkτ})|gkτ=δikδστ

− ūiσ ({gkτ})|gkτ=δikδστ

)

−
[
∇ ·

(
ψ∗jσ ({gkτ} , r)

∣∣∣
gkτ=δikδστ

∇ϕiσ(r)
)]

(17)

At this point, a selfconsistent solution has to be found to the
OEP equation, as the xc potential appears both on the LHS-
and RHSe (as an orbital average). We find that the following
ansatz leads to a such a solution:

vxcσ[|ϕiσ(r)|2, 0] = uiσ ({gkτ} , r)|gkτ=δikδστ
+ const. (18)

This can be shown easily: Taking the orbital average of the
ansatz results in

v̄xciσ ({gkτ})|gkτ=δikδστ
− ūiσ ({gkτ})|gkτ=δikδστ

= const., (19)

leading to a vanishing orbital shift ψ∗iσ(r) in Eq. (11). Thus,
the last term on the right-hand side of Eq. (17) disappears,
leading back to the inserted ansatz and therefore providing a
consistent answer.

As the ansatz Eq. (18) suggests, the xc potential of orbital-
dependent functionals evaluated on one-spin-orbital densi-
ties is determined by the corresponding functional derivative,
evaluated on the same spin-orbital only, up to a physically ir-
relevant constant, which is in the following set to zero:

vxcσ[|ϕiσ(r)|2, 0] = uiσ ({gkτ} , r)|gkτ=δikδστ
(20)

This is the central result of this derivation. Its consequences
for the OSIE will be discussed in the following for both global
and local hybrid functionals, i.e., functionals that employ

amounts of exact exchange (EXX) and consequently rely in
one way or another on the functional derivative:

ϕ∗jσ(r) uexx
jσ (r) = −

∞∑

k

gkσ ϕ
∗
kσ(r)

∫ ϕ∗jσ(r′)ϕ jσ(r′)
|r − r′| d3r′.

(21)

B. Orbital self-interaction error for global hybrid functionals

Global hybrids [7–9] are given in their simpliest form by

Egh
xc (a) = a Eex

x + (1 − a)Esl
x + Esl

c , (22)

where Eex
x is the EXX, Esl

x and Esl
c represent (semi-)local ex-

change and correlation energies and a ∈ [0, 1] gives the con-
stant amount of EXX. For the latter functional components,
evaluating the xc potential of the (semi-)local exchange and
correlation parts on one-spin-orbital densities is straightfor-
ward in the sense of Eq. (3). Based on Eq. (20) together with
Eq. (21), also the remaining non-local EXX contribution to
the potential can be determined and one finds for the complete
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potential:

vgh
xcσ[|ϕiσ(r)|2, 0] = a uexx

iσ ({gkτ} , r)
∣∣∣
gkτ=δikδστ

+(1 − a)vsl
xσ[|ϕiσ(r)|2, 0]

+vsl
cσ[|ϕiσ(r)|2, 0] (23)

= −a
∫ |ϕiσ(r′)|2
|r − r′| d3r′ + vsl

cσ[|ϕiσ(r)|2, 0] +

(1 − a)vsl
xσ[|ϕiσ(r)|2, 0] (24)

As the first term in Eq. (24) equals vH[|ϕiσ|2] multiplied by −a,
we find for the OSIE of global hybrid functionals:

egh
iσ(a) = (1 − a)

[
〈ϕiσ|vH[|ϕiσ|2]|ϕiσ〉

+〈ϕiσ|vsl
xσ[|ϕiσ|2, 0]|ϕiσ〉

]

+〈ϕiσ|vsl
cσ[|ϕiσ|2, 0]|ϕiσ〉 (25)

The OSIE now is a function of the functional parameter a, and
Eq. (25) suggests that the lowest OSIE is to be expected for
a = 1. In this case, i.e., using 100 % EXX combined with
(semi-)local correlation, the Hartree term is completely can-
celed by EXX and no (semi-local) exchange is used, leaving
only the (usually small) OSIE from the (semi-)local correla-
tion.

C. Orbital self-interaction error for local hybrid functionals

Local hybrid functionals are based on expressing the xc en-
ergy (in the standard gauge) as

Elh
xc(c) =

∫ [
eex

x (r) + fx(c, r)
(
esl

x (r) − eex
x (r)

)
+

fc(r) esl
c (r)

]
n(r) d3r, (26)

where eex
x (r), esl

x (r) and esl
c (r) are the energy densities per par-

ticle corresponding to the respective energy terms in Eq. (22)
and fx,c(r) are the so-called local mixing functions (LMFs).
These functions are often designed to detect regions of space
in which single orbitals dominate, reducing the xc energy to
pure EXX in said regions. In Ref. [10] the ISO-functional was
introduced, which uses

fx(c, r) =
1 − τW(r)

τ(r) ζ
2(r)

1 + ct2(r)
(27)

and

fc(r) = 1 − τW(r)
τ(r)

ζ2(r) (28)

where c is a functional parameter, τW(r) = |∇n(r)|2/(8n(r))
is the von Weizsäcker kinetic energy density, τ(r) =
1
2
∑
σ

∑Nσ

i=1 |∇ϕiσ(r)|2 is the Kohn-Sham kinetic energy density
and t2(r) is the reduced density gradient [11] with

t2(r) =

(
π

3

)1/3 a0

16Φ2(ζ(r))
|∇n(r)|2
n7/3(r)

. (29)

Here, a0 is the Bohr radius, Φ(ζ(r)) =
1
2

(
(1 + ζ)2/3 + (1 − ζ)2/3

)
and ζ(r) = (n↑(r) − n↓(r))/(n↑(r) +

n↓(r)) is the spin polarization.
For the evaluation of the OSIE according to Eq. (20) the

full functional derivative ulh
iσ is needed. In the appendix of

Ref. [10], the complete derivative was given for the ISO func-
tional. Note that both fx(c, r) and fc(r) vanish by construction
for single orbital densities, because then

τW(r)
τ(r)

∣∣∣∣∣
n(r)=|ϕiσ(r)|2

= 1. (30)

Together with a spin polarization of one, this results in van-
ishing LMFs independent of the choice of the functional pa-
rameter c in Eq. (27):

fx(c, r)|n(r)=|ϕiσ(r)|2 = fc(r)|n(r)=|ϕiσ(r)|2 = 0. (31)

In this case, it can be seen from the structure of ulh
iσ(r) that the

functional derivative reduces to the EXX equivalent evaluated
with the corresponding orbital densities:

vlh
xcσ [|ϕiσ(r)|2, 0] = ulh

iσ ({gkτ})
∣∣∣
gkτ=δikδστ

= uexx
iσ ({gkτ})

∣∣∣
gkτ=δikδστ

(32)

= −
∫ |ϕiσ(r′)|2
|r − r′| d3r′ (33)

Consequently, the OSIE of local hybrid functionals that are
designed with vanishing LMFs in one-spin-orbital regions,
per definitionem vanishes for all spin-orbital densities, as the
EXX contribution completely cancels the Hartree term

elh
iσ(c) = 〈ϕiσ|vH[|ϕiσ|2]|ϕiσ〉 + 〈ϕiσ|vlh

xcσ[|ϕiσ|2, 0]|ϕiσ〉
= 0 (34)

for any choice of the functional parameter c.

II. COMPARISON OF EIGENVALUES FOR THE LOCAL
HYBRID FUNCTIONALS

The main article features many results that were obtained
by using both the ISO functional as introduced in Ref. [10]
as well as its modified form ISOII. These local hybrid func-
tionals were implemented in the Bayreuth version [12] of the
program package PARSEC [13] and numerically evaluated us-
ing exact-exchange pseudo-potentials (PPs).

However, as mentioned in the maintext, we find that mak-
ing use of these PPs for local hybrid functionals only leads
to reasonable agreement with all-electron calculations for the
Kohn-Sham eigenvalues if the core-density nc(r) is explicitly
taken into account in the computation of the corresponding
local mixing function and the following functional derivative.

The following tables provide numerical information to un-
derline this point. They show the valence state eigenvalues for
three diatomic molecules (CO, N2 and NH) computed with
the ISO and ISOII local hybrids as a function of the respective
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functional parameter. The comparison is made between all-
electron DARSEC [10, 14] and pseudopotential PARSEC calcu-
lations. The use of exact-exchange PPs with explicit consid-
eration of the core-density is denoted PP-EXX + cd.

Besides the Kohn-Sham eigenvalues, also the asymptotical
slope γσ of the local, multiplicative exchange-correlation po-
tential of the local hybrid functionals according to Ref. [15]
is shown, i.e.,

vxcσ(r) −→
|r|→∞

−γσ|r| , (35)

where γσ is

γσ = 1 − 1
2

∫
|ϕNσσ(r)|2 fx(r) d3r. (36)

This quantity can readily be used to check for disagreement of
the local mixing function between the all-electron reference
and the PP calculation.

The Tables I-VI list this information in the following way:
In the header, the considered system is specified together with
the functional employed. The first column gives the value of
the functional parameter c for ISO and c∗ for ISOII. In the
second column, the Kohn-Sham state is specified, with the
highest occupied state marked in bold. Note that the CO and
N2 molecule are spin-unpolarized and no spin index is con-
sidered, while the NH tables explicitly distinguishes between
spin channels.

The third, fourth and fifth column give the negative val-
ues of the corresponding eigenvalue, i.e., −εiσ, in eV, for
the all-electron, PP-EXX and PP-EXX + cd calculation, re-
spectively. The sixth and seventh column then list the eigen-
value difference with respect to the all-electron calculation,
i.e., ∆εiσ = εall−electron

iσ −εPP
iσ for both the PP-EXX and PP-EXX

+ cd calculation. After listing the Kohn-Sham eigenvalues up
to the first unoccupied state, the average of the absolute val-
ues of the difference with respect to the all-electron reference
is listed for both PP-EXX and PP-EXX + cd:

∅+ =
1

Nσ + 1

Nσ+1∑

i=1

|∆εiσ |. (37)

In this form, Eq.(37) enables a direct comparison of all-
electron and PP numbers using only a single number, and
thus marking the quality of the occupied and first unoccupied
Kohn-Sham eigenstates that were obtained with the PPs.

Note that the second column in the tables is not only used
for indicating the number of the Kohn-Sham orbital, but also
for indicating whether the corresponding row is used for list-
ing the asmyptotical slope γσ or the mean absolute eigenvalue
difference ∅+. No explicit value of γ is given (”—” in the ta-
ble) in cases where the local mixing function reduces to 1 and
therefore Eq. (36) does not apply.

TABLE I: Comparison of all-electron and pseudopotential calcula-
tions for the CO molecule with a bondlength of R0 = 2.1322 Bohr,
calculated with ISO.

−εi [eV] ∆εi [eV]
val-state all- PP-EXX PP-EXX PP-EXX PP-EXX

i electron + cd + cd
c = 0 1 29.257 29.724 29.724 0.468 0.468

2 14.191 14.328 14.328 0.138 0.138
3 12.119 12.058 12.058 -0.062 -0.062
4 12.119 12.058 12.058 -0.062 -0.062
5 9.117 9.089 9.089 -0.029 -0.029
6 2.253 2.088 2.088 -0.165 -0.165
∅+ 0.154 0.154

γ — — — — —
c = 0.5 1 31.209 31.055 31.398 -0.154 0.189

2 16.016 15.842 16.062 -0.174 0.045
3 13.591 13.431 13.720 -0.160 0.129
4 13.591 13.431 13.720 -0.160 0.129
5 10.737 10.497 10.741 -0.240 0.004
6 3.590 3.444 3.654 -0.146 0.063
∅+ 0.172 0.093

γ 0.634 0.618 0.634 0.016 0.000
c = 1.0 1 32.237 31.971 32.399 -0.266 0.161

2 17.060 16.789 17.033 -0.271 -0.027
3 14.572 14.335 14.713 -0.237 0.140
4 14.572 14.335 14.713 -0.237 0.140
5 11.725 11.402 11.724 -0.323 -0.002
6 4.528 4.327 4.599 -0.201 0.071
∅+ 0.256 0.090

γ 0.699 0.679 0.700 0.020 0.000
c = 2.5 1 33.879 33.520 34.015 -0.359 0.136

2 18.682 18.281 18.483 -0.401 -0.199
3 16.154 15.821 16.300 -0.333 0.145
4 16.154 15.821 16.300 -0.333 0.145
5 13.269 12.837 13.251 -0.432 -0.018
6 6.000 5.728 6.070 -0.271 0.070
∅+ 0.355 0.119

γ 0.796 0.771 0.797 0.025 -0.001
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TABLE II: Comparison of all-electron and pseudopotential calcula-
tions for the CO molecule with a bondlength of R0 = 2.1322 Bohr,
calculated with ISOII.

−εi [eV] ∆εi [eV]
val-state all- PP-EXX PP-EXX PP-EXX PP-EXX

i electron + cd + cd
c∗ = 0 1 33.213 33.144 33.459 -0.069 0.245

2 18.158 18.074 18.279 -0.083 0.121
3 15.713 15.658 15.877 -0.056 0.163
4 15.713 15.658 15.877 -0.056 0.163
5 12.811 12.617 12.866 -0.194 0.055
6 5.683 5.678 5.793 -0.005 0.110
∅+ 0.077 0.143

γ 0.827 0.817 0.827 0.010 0.000
c∗ = 0.5 1 34.145 33.817 34.330 -0.328 0.185

2 19.022 18.696 18.969 -0.326 -0.053
3 16.561 16.282 16.666 -0.280 0.105
4 16.561 16.282 16.666 -0.280 0.105
5 13.545 13.142 13.533 -0.403 -0.012
6 6.422 6.221 6.452 -0.202 0.030
∅+ 0.303 0.082

γ 0.871 0.851 0.871 0.020 0.000
c∗ = 1.0 1 34.629 34.249 34.802 -0.380 0.173

2 19.459 19.050 19.301 -0.409 -0.158
3 17.002 16.655 17.098 -0.347 0.096
4 17.002 16.655 17.098 -0.347 0.096
5 13.921 13.444 13.886 -0.477 -0.035
6 6.790 6.531 6.803 -0.259 0.013
∅+ 0.370 0.095

γ 0.894 0.871 0.893 0.023 0.000
c∗ = 2.5 1 35.368 34.972 35.539 -0.397 0.171

2 20.105 19.590 19.760 -0.515 -0.345
3 17.675 17.264 17.775 -0.411 0.100
4 17.675 17.264 17.775 -0.411 0.100
5 14.472 13.915 14.413 -0.557 -0.059
6 7.326 7.019 7.336 -0.308 0.010
∅+ 0.433 0.131

γ 0.928 0.902 0.927 0.026 0.000

TABLE III: Comparison of all-electron and pseudopotential calcula-
tions for the N2 molecule with a bondlength of R0 = 2.0743 Bohr,
calculated with ISO.

−εi [eV] ∆εi [eV]
val-state all- PP-EXX PP-EXX PP-EXX PP-EXX

i electron + cd + cd
c = 0 1 28.239 28.640 28.640 0.401 0.401

2 13.433 13.664 13.664 0.230 0.230
3 11.889 11.807 11.807 -0.083 -0.083
4 11.889 11.807 11.807 -0.083 -0.083
5 10.408 10.374 10.374 -0.035 -0.035
6 2.207 2.031 2.031 -0.176 -0.176
∅+ 0.168 0.168

γ — — — — —
c = 0.5 1 30.207 29.984 30.388 -0.222 0.181

2 15.514 15.273 15.589 -0.241 0.075
3 13.466 13.274 13.546 -0.193 0.079
4 13.466 13.274 13.546 -0.193 0.079
5 12.126 11.896 12.186 -0.230 0.061
6 3.724 3.549 3.778 -0.176 0.054
∅+ 0.209 0.088

γ 0.635 0.615 0.633 0.020 0.002
c = 1.0 1 31.245 30.844 31.419 -0.402 0.174

2 16.597 16.235 16.670 -0.362 0.073
3 14.478 14.230 14.556 -0.248 0.079
4 14.478 14.230 14.556 -0.248 0.079
5 13.194 12.867 13.238 -0.327 0.044
6 4.743 4.528 4.798 -0.215 0.055
∅+ 0.300 0.084

γ 0.698 0.673 0.696 0.025 0.002
c = 2.5 1 32.896 32.183 33.066 -0.713 0.171

2 18.244 17.686 18.306 -0.557 0.063
3 16.082 15.831 16.136 -0.251 0.053
4 16.082 15.831 16.136 -0.251 0.053
5 14.865 14.431 14.870 -0.434 0.005
6 6.324 6.116 6.351 -0.208 0.027
∅+ 0.402 0.062

γ 0.791 0.760 0.788 0.031 0.003
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TABLE IV: Comparison of all-electron and pseudopotential calcula-
tions for the N2 molecule with a bondlength of R0 = 2.0743 Bohr,
calculated with ISOII.

−εi [eV] ∆εi [eV]
val-state all- PP-EXX PP-EXX PP-EXX PP-EXX

i electron + cd + cd
c∗ = 0 1 32.129 31.982 32.338 -0.147 0.209

2 17.599 17.478 17.736 -0.122 0.136
3 15.527 15.442 15.663 -0.086 0.136
4 15.527 15.442 15.663 -0.086 0.136
5 14.132 13.946 14.268 -0.186 0.136
6 5.773 5.726 5.889 -0.048 0.115
∅+ 0.112 0.145

γ 0.791 0.776 0.790 0.015 0.001
c∗ = 0.5 1 33.079 32.615 33.264 -0.465 0.185

2 18.468 18.098 18.564 -0.369 0.097
3 16.422 16.122 16.475 -0.300 0.053
4 16.422 16.122 16.475 -0.300 0.053
5 15.037 14.581 15.065 -0.456 0.027
6 6.637 6.388 6.655 -0.249 0.017
∅+ 0.357 0.072

γ 0.842 0.816 0.840 0.027 0.002
c∗ = 1.0 1 33.586 32.862 33.764 -0.723 0.178

2 18.911 18.374 18.988 -0.538 0.077
3 16.889 16.628 16.911 -0.262 0.021
4 16.889 16.628 16.911 -0.262 0.021
5 15.505 15.021 15.487 -0.484 -0.018
6 7.072 6.859 7.052 -0.212 -0.019
∅+ 0.413 0.056

γ 0.867 0.838 0.864 0.030 0.003
c∗ = 2.5 1 34.380 33.578 34.568 -0.802 0.187

2 19.570 18.968 19.626 -0.602 0.056
3 17.610 17.276 17.590 -0.334 -0.020
4 17.610 17.276 17.590 -0.334 -0.020
5 16.210 15.566 16.161 -0.644 -0.049
6 7.716 7.441 7.647 -0.275 -0.069
∅+ 0.498 0.067

γ 0.906 0.873 0.903 0.033 0.003

TABLE V: Comparison of all-electron and pseudopotential calcula-
tions for the NH molecule with a bondlength of R0 = 1.9600 Bohr,
calculated with ISO.

−εiσ [eV] ∆εiσ [eV]
val-state all- PP-EXX PP-EXX PP-EXX PP-EXX
σ i electron + cd + cd

c = 0 ↑ 1 21.722 22.098 22.143 0.376 0.421
2 10.843 10.880 10.951 0.037 0.108
3 9.074 9.046 9.059 -0.029 -0.015
4 9.074 9.046 9.059 -0.029 -0.015
5 1.764 1.758 1.820 -0.006 0.056
∅+ 0.095 0.123
γ↑ 0.575 0.576 0.581 -0.001 -0.006

↓ 1 18.345 18.523 18.627 0.177 0.282
2 8.592 8.586 8.667 -0.006 0.075
3 4.320 4.104 4.258 -0.216 -0.062
∅+ 0.133 0.140
γ↓ 0.522 0.522 0.523 0.000 -0.001

c = 0.5 ↑ 1 23.450 23.244 23.559 -0.206 0.109
2 12.281 12.035 12.356 -0.246 0.075
3 10.302 10.115 10.362 -0.187 0.059
4 10.302 10.115 10.362 -0.187 0.059
5 2.624 2.449 2.608 -0.174 -0.016
∅+ 0.200 0.064
γ↑ 0.696 0.674 0.696 0.022 0.000

↓ 1 20.005 19.934 20.170 -0.071 0.165
2 10.259 10.065 10.312 -0.193 0.053
3 5.837 5.756 6.010 -0.081 0.173
∅+ 0.115 0.130
γ↓ 0.656 0.643 0.655 0.013 0.001

c = 1.0 ↑ 1 24.316 24.001 24.406 -0.315 0.090
2 13.139 12.795 13.203 -0.345 0.063
3 11.137 10.869 11.190 -0.268 0.053
4 11.137 10.869 11.190 -0.268 0.053
5 3.189 2.964 3.166 -0.225 -0.023
∅+ 0.284 0.056
γ↑ 0.754 0.725 0.753 0.028 0.001

↓ 1 20.908 20.797 21.079 -0.111 0.171
2 11.203 10.949 11.253 -0.254 0.051
3 6.791 6.678 6.963 -0.113 0.172
∅+ 0.159 0.131
γ↓ 0.722 0.704 0.720 0.018 0.002

c = 2.5 ↑ 1 25.647 25.229 25.727 -0.418 0.079
2 14.474 13.999 14.504 -0.475 0.030
3 12.466 12.102 12.495 -0.364 0.029
4 12.466 12.102 12.495 -0.364 0.029
5 4.015 3.720 3.972 -0.295 -0.043
∅+ 0.383 0.042
γ↑ 0.837 0.802 0.836 0.035 0.001

↓ 1 22.306 22.134 22.472 -0.172 0.165
2 12.633 12.290 12.667 -0.343 0.034
3 8.221 8.032 8.352 -0.190 0.130
∅+ 0.235 0.110
γ↓ 0.815 0.792 0.812 0.023 0.003
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TABLE VI: Comparison of all-electron and pseudopotential calcula-
tions for the NH molecule with a bondlength of R0 = 1.9600 Bohr,
calculated with ISOII.

−εiσ [eV] ∆εiσ [eV]
val-state all- PP-EXX PP-EXX PP-EXX PP-EXX
σ i electron + cd + cd

c = 0 ↑ 1 24.635 24.580 24.807 -0.055 0.172
2 13.259 13.181 13.417 -0.077 0.158
3 11.532 11.532 11.720 0.000 0.188
4 11.532 11.532 11.720 0.000 0.188
5 3.199 3.097 3.206 -0.102 0.007
∅+ 0.047 0.143
γ↑ 0.781 0.764 0.780 0.017 0.002

↓ 1 21.521 21.458 21.570 -0.063 0.049
2 11.775 11.572 11.725 -0.204 -0.051
3 7.228 7.105 7.194 -0.123 -0.034
∅+ 0.130 0.044
γ↓ 0.828 0.819 0.828 0.009 0.000

c = 0.5 ↑ 1 25.702 25.425 25.866 -0.277 0.164
2 14.300 13.969 14.401 -0.331 0.102
3 12.664 12.422 12.774 -0.242 0.110
4 12.664 12.422 12.774 -0.242 0.110
5 3.942 3.701 3.910 -0.241 -0.032
∅+ 0.267 0.104
γ↑ 0.847 0.817 0.845 0.031 0.002

↓ 1 22.097 21.959 22.180 -0.138 0.083
2 12.414 12.109 12.389 -0.305 -0.025
3 7.762 7.556 7.739 -0.206 -0.023
∅+ 0.216 0.044
γ↓ 0.876 0.858 0.875 0.018 0.001

c = 1.0 ↑ 1 26.232 25.890 26.390 -0.343 0.158
2 14.813 14.391 14.884 -0.422 0.071
3 13.222 12.903 13.301 -0.320 0.079
4 13.222 12.903 13.301 -0.320 0.079
5 4.249 3.964 4.203 -0.285 -0.046
∅+ 0.338 0.087
γ↑ 0.878 0.843 0.875 0.035 0.002

↓ 1 22.405 22.238 22.494 -0.167 0.089
2 12.750 12.402 12.726 -0.348 -0.024
3 8.055 7.817 8.028 -0.238 -0.028
∅+ 0.251 0.047
γ↓ 0.899 0.878 0.897 0.021 0.002

c = 2.5 ↑ 1 26.999 26.605 27.147 -0.394 0.148
2 15.550 15.022 15.573 -0.528 0.023
3 14.022 13.623 14.053 -0.399 0.031
4 14.022 13.623 14.053 -0.399 0.031
5 4.655 4.327 4.593 -0.328 -0.063
∅+ 0.410 0.059
γ↑ 0.921 0.882 0.918 0.038 0.003

↓ 1 22.870 22.673 22.965 -0.198 0.095
2 13.247 12.843 13.212 -0.404 -0.035
3 8.491 8.216 8.451 -0.274 -0.040
∅+ 0.292 0.057
γ↓ 0.932 0.908 0.930 0.024 0.002

In the following we show the Kohn-Sham DOS (eigenval-
ues broadened with a Gaussian with a standard deviation of
0.08 eV) for pentacene and perylene (see main article).

III. DENSITY OF STATES OF PENTACENE AND
PERYLENE
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FIG. 1: Kohn-Sham DOS for pentacene obtained from different func-
tionals compared to the experimental gas phase photoemission spec-
trum [16]
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[12] M. Mundt, S. Kümmel, B. Huber, and M. Moseler, Phys. Rev.

B 73, 205407 (2006).
[13] L. Kronik, A. Makmal, M. L. Tiago, M. M. G. Alemany,

M. Jain, X. Huang, Y. Saad, and J. R. Chelikowsky, Phys. Status
Solidi 243, 1063 (2006).
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Abstract:  

The conservation of our global element resources is a challenge of the utmost urgency. Since 

aliphatic and aromatic alcohols are accessible from abundant indigestible kinds of biomass, 

first and foremost lignocellulose, the development of novel chemical reactions converting 

alcohols into important classes of compounds is a particularly attractive carbon conservation 

and CO2-emission reduction strategy. Herein, we report a conceptually novel sustainable 

synthesis of polycyclic aromatic N-heterocycles: the catalytic condensation of phenols and 

aminoalcohols or aminophenols. This reaction proceeds via hydrogenation and multiple 

dehydrogenation–condensation steps, mediated by novel reusable catalysts in a most efficient 

manner. The scope of the concept is exemplarily demonstrated by the synthesis of indoles, 

carbazoles, quinolines and acridines, the structural motifs of which figure prominently in 

many important natural products, drugs and materials.  

 

One sentence summary: Biomass derived building blocks can be linked via a novel catalytic 

condensation reaction to important azaarene motifs found in many natural products, drugs and 

materials. 

 

Main Text: The sustainable use of the resources of our planet has become a necessity and one 

of the great challenges of our time. For chemistry, with its enormous demand for carbon, the 

move away from the currently dominating technologies consuming oil and related fossil 

resources towards more sustainable strategies is indispensable in the longer term. An 

attractive alternative carbon source, if responsibly chosen, is biomass. Lignocellulose, a class 

of biomass that is abundantly available, barely used and indigestible (1) can be converted to 

aliphatic alcohols via pyrolysis and hydrogenation steps (2). Phenols can be obtained from 

just lignin via aryl ether hydrogenolysis (3). Thus, alcohols can be regarded as the sustainable 
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alternative to oil crack products, which are the basis of many of the chemical compounds 

produced today. Consequently, the development of novel reactions that convert alcohols to 

important classes of compounds is a central topic in chemistry (4). Catalysis, with its capacity 

to accelerate specific reaction pathways, is a promising tool to discover and hone such 

reactions. Sustainable or green reactions of this type will be even more appealing if the scope 

of methodologies already in place can be significantly extended rather than abandoned and 

replaced by an altogether different technology. Such a new extended chemistry should 

encourage and accelerate the move away from the current fossil-based chemistry we are still 

exploiting.  

 

Figure 1. Sustainable catalytic synthesis of aromatic N-heterocycles and the novel synthesis of 

polycyclic azaarenes disclosed here. A) Known sustainable two-, three-, and four-component 

reactions linking alcohols to important aromatic N-heterocyclic compounds. The synthetic pathway is 

shown for the pyridine synthesis (R = substituents). B) The combination of dehydrogenation and 

condensation permits the selective formation of C-C and C-N multiple bonds in these coupling 

reactions. The alcohols are deoxygenated in the condensation step, while the dehydrogenation step 

leads to aromatization ([M] = transition metal catalysts; X = CH or N). C) Catalytic reaction of phenols 

and aminoalcohols or aminophenols to polycyclic aromatic compounds disclosed here – sustainable 

synthesis of indoles, carbazoles, quinolines and acridines via catalytic condensation (*in addition, H2 is 

liberated in some reactions; indoles and aciridines 1 equiv. and quinolines 2 equiv.).  
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A concept has been introduced recently by which the combination of dehydrogenation and 

condensation steps permits the synthesis of important aromatic N-heterocycles, such as 

pyrroles (4,5,6,7,8,9), pyridines (10,11,12), pyrimidines (13) and others (14,15,16,17), 

starting from alcohols (Figure 1, A) (18,19). In this concept, condensation steps deoxygenate 

the alcohols and dehydrogenations enable aromatization (Figure 1, B). The liberation of H2 in 

the course of these reactions is appealing to us, because it allows for novel synthesis concepts 

where additional steps dovetail with the liberation of hydrogen and use it for reductive 

substrate activation before it is released. 

Herein, we report on a novel concept of a sustainable synthesis in which phenols are 

catalytically functionalized by reaction with aminoalcohols or aminophenols (Figure 1, C). 

This process involves hydrogenation as well as multiple dehydrogenation and condensation 

steps. We exemplarily applied this concept to the synthesis of indoles, carbazoles, quinolines 

and acridines to demonstrate its broad scope. We first hydrogenate the phenols. In the next 

step, a dehydrogenation–condensation sequence is applied giving rise to polycyclic 

compounds combining saturated and aromatic rings. Finally, dehydrogenation leads to purely 

aromatic polycyclic N-heterocyclic compounds. The reaction proceeds via polycyclic pyrrole 

and pyridine intermediates, interesting compounds which can be isolated if desired. The 

overall reaction may be run without isolation of the intermediates by just adding or removing 

the catalyst for the anticipated reaction step. We developed efficient reusable catalysts for this 

purpose. The concept is also suitable to meet the challenges associated with aryl ether 

hydrogenolysis, a key step of lignin valorization (3), by feeding the hydrogenated phenols into 

the reactions discussed herein. The target polycyclic aromatic N-heterocycles have a wide 

range of conceivable applications in medicine and materials science. Indoles, which feature a 

“privileged structure” due to their biosynthesis from sugars and amino acids, frequently show 

a high degree of bioactivity when part of pharmaceuticals, fragrances, agrochemicals and dye 

pigments (20). Carbazoles are used as antitumor drugs (21) and in organic solar cell 

applications (22).  

The simple condensation of phenols and aminophenols to carbazoles becomes explicable by 

presuming a reaction sequence, as shown in Figure 2, A. In the first step, the two starting 

phenols are hydrogenated. The resulting cyclohexanols could undergo an acceptorless 

dehydrogenative condensation (ADC, 4) to afford an octahydrocarbazole intermediate which, 

in turn, is dehydrogenated to give the final carbazole product. To run such reaction sequences 

as a hassle-free procedure without the need for isolating intermediates, easy to separate 

reusable catalysts would be advantageous. Based on the recently made progress in ADC 

reactions and the many catalysts described to mediate such reactions (4-14), we focused, 

firstly, on the development of efficient hydrogenation and dehydrogenation catalysts. A 

comparison of commercially available ruthenium (Ru), palladium (Pd) and iridium (Ir) 

catalysts revealed only low conversions (maximum 34 %) under the conditions given: 

hydrogenation of phenol at 50 °C applying 3 bar H2 pressure for 5 h with a catalyst loading of 

0.03 mol% active metal (Figure 2, B). Since Ru catalysts showed the highest activity and very 

small metal nanoparticles had previously been generated in a silicon carbonitride (SiCN) 

matrix (23), we now developed a Ru-SiCN nanocomposite catalyst (Ru@SiCN). This 
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Ru@SiCN catalyst achieved 80 % conversion for the hydrogenation of phenol under the 

screening conditions given and was, thus, identified as the most active catalyst under scrutiny. 

 

Figure 2. Proposed reaction sequence for the catalytic condensation of phenols and 

aminophenoles to carbazoles, and catalyst identification for the necessary dehydrogenation 

and the hydrogenation step. A) The condensation of phenols and aminophenols via hydrogenation 

and multiple dehydrogenation/condensation steps. B) Identification of an efficient hydrogenation and 

dehydrogenation catalyst. Reaction conditions: hydrogenation of phenol: 1 mmol phenol, 50 °C, 3 bar 

H2, 0.03 mol% active Ru, 1 mL H2O, 5 h. Dehydrogenation of octahydrocarbazole: 1 mmol substance, 

0.75 mL diglyme, 0.18 mol% active metal, 190 °C, Ar flow (4-6 mL/min). C) TEM analysis and Ru 

nanoparticle distribution of the Ru@SiCN catalyst. D) TEM analysis and Pd nanoparticle distribution of 

the Pd@SiCN catalyst. 

Ru@SiCN was synthesized in a two-step procedure. The commercially available allyl-

cycloocta-1,5-diene Ru complex [(C3H5)2Ru(C8H12)] and the commercially available 

polysilazane HTT 1800 were mixed in tetrahydrofuran, followed by crosslinking using 

dicumylperoxide and solvent evaporation at 120 °C. Secondly, pyrolysis of the crosslinked 

Ru-polymer at 900 °C under a nitrogen atmosphere generated a porous Ru-SiCN 

nanocomposite. A specific surface area (Brunauer-Emmett-Teller model) of 208 m²/g (metal 

mediated porosity 24) was observed. Transmission electron microscopy (TEM) revealed 

metallic nanoparticles homogenously distributed in the SiCN matrix, a mean particle size 

below 1 nm and a narrow particle size distribution. The existence of the metallic Ru phase 

was verified by high-resolution TEM. A d-spacing of 205.6 ± 1.7 pm is in accordance with 

the theoretical value of 204.9 pm for the (101)-reflex of hexagonal crystalline Ru. Similar to 

Ru@SiCN, a palladium-SiCN nano composite catalyst (Pd@SiCN) was identified as the most 

active dehydrogenation catalyst (Figure 2, B). For its synthesis, a Pd aminopyridinato 

complex was employed as the Pd-precursor (25). The existence of Pd nanoparticles with a 

mean diameter of 1.8 nm could be verified by powder X-ray diffraction and TEM analysis. In 
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addition, we examined the electronic structure of Pd@SiCN with a combination of methods 

strategy. This involved, firstly, the determination of the atomic coordinates in a classical MD 

simulation of a 3 nm Pd particle embedded in SiCN. Next, we calculated the electronic 

density of states (DOS) for subsystems of increasing size at the Pd-SiCN interface with first 

principles density functional theory. We systematically varied the amount of exact exchange 

in the exchange-correlation approximation to make sure that we obtained a realistic 

impression of the d-electron contribution to the DOS. Please see the Supplementary Materials 

for details. The calculations clearly indicate that Pd retains its electronic structure if 

embedded in the SiCN matrix. The latter can, therefore, be seen as a support that efficiently 

stabilizes the metal nanoparticles, while preserving the electronic structure features that are 

beneficial to catalysis. 

Having efficient catalysts for the hydrogenation and the dehydrogenation step available, we 

studied the scope of the novel catalytic condensation concept. We used Ir catalysts, 

preferentially a reusable Ir@SiCN catalyst (9) or PN5P-pincer catalysts (4), both introduced 

by our group recently, for the ADC step. Firstly, different phenols were coupled with 2-

amino-3-phenylpropan-1-ol to synthesize indoles with different substituents at the six-

membered ring of this important structural motive. We also isolated the pyrrole intermediates, 

which could then be dehydrogenated to the corresponding indoles at 172 °C (Table 1, 1a-h). 

Maximum overall yields of 79 % could be obtained. The overall yield is usually determined 

by the ADC step, meaning that the corresponding pyrroles were isolated in similar yields. By 

keeping phenol as the constant building block and varying the 1,2-aminoalcohol, different 

substituents at the five-membered ring were introduced. Five indoles (and the corresponding 

pyrrole intermediates) could be obtained in good isolated yields up to 76 % (Table 1, 1i-m). 

The utilization of 2-aminophenol as the phenol building block permits the introduction of 

substituents at the five-membered ring of the indole motive via abundantly available 

secondary alcohols. Three examples of products were isolated in overall yields between 70 

and 73 % (Table 1, 1n-p). The use of cyclic alcohols in combination with 2-aminophenol 

allowed the synthesis of tricyclic indoles. Different ring sizes could be applied and indoles in 

very good to excellent yields were obtained: 93 % for the eight- and 89 % for the seven-

membered ring (Table 1, 1q-s). The 12-membered ring compound (decahydro-5H-

cyclododeca[b]indole) could still be isolated in 50 % overall yield. As mentioned above 

(Figure 2, A), the combination of phenols and 2-amino-phenols generates carbazoles as an 

example of a further substance class addressable with our synthesis concept. The 

dehydrogenation of the octahydrocarbazole intermediates required a slightly higher reaction 

temperature of 190 °C and gave an almost quantitative yield for the dehydrogenation step. 

Carbazole was isolated in an overall yield of 81 % and 11H-benzo[a]carbazole in 51 % 

(Table 1, 2a,c). 3-Methylcarbazole is a common precursor for carbazole alkaloids in plants 

(21), and could be isolated in 70 % (Table 1, 2b). The formation of quinolines and acridines 

becomes feasible by applying 1,3- instead of 1,2-aminoalcohols. The reaction conditions for 

the ADC reaction step were optimized at first. To our delight, the reusable Ir@SiCN catalyst 

was more efficient than the homogeneous Ir pincer catalyst. A somewhat higher catalyst 

loading than that used for the indole and carbazole synthesis and a reaction temperature of 

140 °C were necessary to mediate the ADC step. The functionalization of phenol with various 

1,3-aminoalcohol components resulted in the formation of quinolines in overall isolated yields 
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of 58 – 77 % (Table 1, 3a-e). Again, the pyridine intermediates could be isolated in similar 

yields. The utilization of 2-aminobenzylalcohol resulted in the formation of acridines (Table 

1, 4a-f). 

 

Table 1. Synthesis of indoles, carbazoles, quinolines and acridinesa) 

 

 

1a: R = H; 79 % 
1b: R = 7-methyl; 54 % 
1c: R = 5-methyl; 61 % 
1d: R = 7-ethyl; 61 % 
1e: R = 5-tert-butyl;  

      46 % 
1f: R = 4,6-dimethyl;  

     63 % 

 

1g: R = H; 79 % 
1h: R = methoxy; 59 % 

 

1i: R´= ethyl; 76 % 
1j: R´= sec-butyl; 70 % 
1k: R´= isobutyl; 60 % 
1l: R´= isopropyl; 48 % 

1m: R´= ; 43 % 

 

 

1n: R = phenyl; 73 % 
1o: R = n-hexyl; 73 % 
1p: R = 4-

methoxyphenyl; 70 % 

 

1q: x = 2; 93 % 
1r:  x = 3; 89 % 
1s: x = 7; 50 % 

 

 

 

2a: 81 % 

 

2b: R = 3-Me; 70 % 

 

2c: 53 % 

 

 

3a: R = H; 58 % 
3b: R = C11H23; 72 % 
3c: R = p-tolyl; 72 % 
3d: R = 3,4-

dimethoxyphenyl; 77 % 
3e: R = pyridine-3-yl; 

62 % 

 

 

4a: R = H; 79 % 
4b: R = 2-tert-butyl; 

87 % 
4c: R = 2-methyl; 68 % 
4d: R = 4-methyl; 65 % 

 

4e: R = H, 88 % 
4f:  R = methoxy, 79 % 

 

  
Reaction conditions:  Step 1: Hydrogenation of phenol using Ru@SiCN. Step 2: ADC 

reaction of the cyclohexanol from step 1 and 1,2- or 1,3-aminoalcohol to the 

corresponding intermediate pyrrole, pyridine, tetrahydrocarbazole or tetrahydroacridine 

product. Step 3: Acceptorless dehydrogenation using Pd@SiCN at 170 – 190 °C. a) 

Overall isolated yields.  
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Since it is possible to apply reusable catalysts for most of the reaction steps, the overall 

reaction sequence can be performed without isolating the intermediate products (Figure 3). 

The hydrogenation of phenol is now performed in tetrahydrofuran, since the presence of water 

is detrimental to the second step involving condensation reactions. The Ru@SiCN catalyst 

was separated by centrifugation and a mixture of Ir@SiCN catalyst, KOtBu, diglyme and 2-

aminobenzylalcohol was added to the cyclohexanol solution. The mixture was evacuated and 

flushed with argon three times and stirred at 140 °C for 22 h. Water was added to more easily 

remove the ADC catalyst (Ir@SiCN). The Pd@SiCN catalyst was added to the organic phase 

and the low boiling solvents were evaporated. The acceptorless dehydrogenation at elevated 

temperature finally yielded the acridine product in overall yields between 79 and 84 %. The 

catalysts for all reaction steps were purified by centrifugation and the entire procedure was 

repeated three times to demonstrate the reusability of the Ru@SiCN, Ir@SiCN and Pd@SiCN 

catalysts (Figure 3).  

 

Figure 3. Direct synthesis of acridine without isolation of any of the intermediates 

and reusability of the employed catalysts. A) 12 mmol, 25 mg (0.096 mol% active 

metal) Ru@SiCN, 1.5 mL THF, p(H2) = 20 bar, T = 50 °C, 24 h. The catalyst was 

removed by centrifugation and the supernatant solution was added to B) 3  mmol 2-

aminobenzylalcohol, 6 mmol KO tBu, 3 mL diglylme, 150 mg (0.50 mol% active metal) 

Ir@SiCN, T = 140 °C, 20 h. Catalyst was removed by addition of water and the organic 

phase was collected. After adding the mixture to 100 mg (0.12 mol% active metal)  

Pd@SiCN, the solvents were removed under reduced pressure  and then heated at 

190 °C for 36 h at an slight Ar f low of 4 – 6 mL/min.  
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