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Abstract 

Today, most companies have more complex supply chain networks in a more 

volatile business environment due to global sourcing, outsourcing of production and 

serving customers all over the world with a complex distribution network that has 

several facilities linked by various activities. More companies involved within the value 

chain, means more nodes and links in the network. Therefore, globalization brings 

complexities and new challenges as enterprises increasingly benefit from global supply 

chains. In such a business environment, Supply Chain (SC) members must focus on the 

efficient management and coordination of material flow in the multi-echelon system to 

handle with these challenges. In many cases, the supply chain of a company includes 

various decisions at different planning levels, such as facility location, inventory and 

transportation. Each of these decisions plays a significant role in the overall 

performance and the relationship between them cannot be ignored. However, these 

decisions have been mostly studied individually. In recent years, numerous studies have 

emphasized the importance of integrating the decisions involved in supply chains. In 

this context, facility location, inventory and transportation decisions should be jointly 

considered in an optimization problem of distribution network design to produce more 

accurate results for the whole system. Furthermore, effective management of material 

flow across a supply chain is a difficult problem due to the dynamic environment with 

multiple objectives. In the past, the majority of the solution approaches used to solve 

multi-echelon supply chain problems were based on conventional methods using 

analytical techniques. However, they are insufficient to cope with the SC dynamics 

because of the inability to handle to the complex interactions between the SC members 

and to represent stochastic behaviors existing in many real world problems. Simulation 

modeling has recently become a major tool since an analytical model is unable to 

formulate a system that is subject to both variability and complexity. However, 

simulations require extensive runtime to evaluate many feasible solutions and to find 

the optimal one for a defined problem. To deal with this problem, simulation model 

needs to be integrated in optimization algorithms. 

In response to the aforementioned challenges, one of the primary objectives of this 

thesis is to propose a model and solution method for the optimal distribution network 

design of an integrated supply chain that takes into account the relationship between 

decisions at the different levels of planning horizon. The problem is formulated with 
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objective functions to maximize the customer coverage or minimize the maximal 

distance from the facilities to the demand points and minimize the total cost. In order to 

find optimal number, capacity and location of facilities, the Nondominated Sorting 

Genetic Algorithm II (NSGA-II) and Quantum-based Particle Swarm Optimization 

Algorithm (QPSO) are employed for solving this multiobjective optimization problem. 

Due to the complexities of multi-echelon system and the underlying uncertainty, 

optimizing inventories across the supply chain has become other major challenge to 

reduce the cost and to meet service requirements. In this context, the other aim of this 

thesis is to present a simulation-based optimization framework, in which the simulation 

is developed based on the object-oriented programming and the optimization utilizes 

multi-objective metaheuristic techniques, such as the well-known NSGA-II and 

MOPSO. In particular, the proposed framework suggests a great utility for the inventory 

optimization problem in multi-echelon supply chains, as well as for other logistics-

related problems. 
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 Chapter 1

Introduction 

1.1 Background and Motivation 

Increased competition, globalization in today’s market, products with shorter life 

cycles, and the high level of customer service have forced businesses to invest in, and 

focus attention, on their supply chains (Simchi-Levi et al., 2004). Generally, a supply 

chain (SC) is referred to as a network of facilities and business activities consisting of 

the design of new products, procurement of raw materials, transformation of such 

materials into semi-finished and finished products, and delivery of such products to the 

end customer. This definition, or a modified version of it, has been used by several 

researchers (see (Lee & Billington, 1993), (Swaminathan et al., 1998), and (Ganeshan & 

Harrison, 1995)).  Companies face a set of supply chain challenges due to some kind of 

uncertainty and variability. Today, most companies source globally, produce in various 

plants and serve customers dispersed over a large geography with a complex 

distribution network which has several stock points linked by various activities. This 

increase in globalization brings new challenges as well benefits. Decisions along a 

supply chain that should be coordinated contribute to the complexity of global logistic 

networks. In response to these challenges, companies need efficient approaches and 

methods helping in addressing uncertainty in their distribution network and validating 

their decisions that lead to achieve their objectives.  

The current trend in logistics is supply chain management (SCM) concerned with 

the coordination and synchronization of the material, informational and financial flows 

in a distribution network (Chopra & Meindl, 2004). Due to the growing complexity of 

these networks and rapid development of new technologies to manage them, interest in 

SCM has grown among both academicians and the practitioners over the last decades. 

One major issue of SCM is to find the best possible network configuration so that 

organizations can achieve effective and efficient logistics operations that improve the 
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performance of the company. This objective supports integrating facility location with 

different supply chain processes such as procurement, production, inventory, 

distribution, and transportation (Melo et al., 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If an item moves through more than one step before reaching the final customer, the 

supply chain is called multi-echelon or a multi-level production/distribution system 

(Chopra & Meindl, 2004). Figure 1-1 shows the structure of a typical multi-echelon 

supply chain. Although managing information and material flow in a global logistic 

system can be challenging, companies that learn how to design and manage their 

complex distribution network will have a substantial competitive advantage in their 

markets (Hugos, 2003). Reconfiguring the network of a supply channel can result in a 

logistics cost reduction of 5 to 15% while maintaining or improving customer service 

(Ballou, 2001). When solving such problems, a firm may have to determine optimal 

facility locations and their size, the transportation links among the members of the 

supply chain, and customer assignment to the selected facilities (Correia et al., 2012). 

Moreover, those companies are faced with some additional decisions that arise in 

designing logistics networks, such as determining how much inventory a facility should 

carry and when orders should be made (Ma, 2003).  

There are alternative approaches to solve the facility location problem. Traditionally 

Central 

Warehouses 

Plants 

Suppliers 

Distribution 

Centers 

Market 

(Retailers) 

Figure 1-1: Structure of a typical multi-echelon supply chain (Ghiani et al., 2004) 
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in Operational Research, analyses of different locations can be formulated based on two 

philosophies: all geographical points on a 2-dimensional plane are possible facility 

locations, or discrete location alternatives are given as a finite set. These models for 

finding optimal configurations are optimized by standard integer programming or 

network optimization techniques whose aim is to minimize total cost or maximize 

profit. However, in practice, facility location decisions often have multiple objectives 

that can add or reduce value to a potential configuration in the location choice (Daskin, 

1995). In the multiobjective network design, the basic problem is to construct a network 

optimally that satisfies the system’s additional constraints, such as space constraints, 

coverage distance, and time limits. In the case of more complex models with further 

constraints, more powerful solution techniques may be required. Furthermore, in recent 

years, numerous studies have emphasized the importance of integration of supply chain 

decisions for the distribution network design ( (Shen et al., 2003), (Daskin et al., 2002), 

(Shen & Qi, 2007)). Under this framework, the facility location, inventory and 

transportation costs are jointly considered in an optimization problem in order to have 

more accurate results for the whole system. Research in this vein underlines that 

ignoring the interdependency between these decisions can lead to suboptimal solution in 

the network design problem (Shen & Qi, 2007).  

Supply chain network design is often difficult to analyze due to complex supplier 

relationships, the coordination of numerous business processes, uncertainty in 

production and delivery, the complexity of modeling the individual entities, and the 

stochastic nature of demands. In the literature, many models have been formulated 

based on quantitative techniques for the improvement and optimization of SCs like 

linear programming, differentiation, and local gradient-based methods. Mixed integer 

linear programming (MILP) is the most widely used technique. The interested reader 

can refer to survey papers by Meixell and Gargeta (2005), and Vidaland and 

Goetschalckx (1997). However, due to the high complexity and difficulty of real world 

problems, these methods are usually not sufficient owing to the fact that most of the 

supply chain models are discrete, non-linear and multi-modal (Silva et al., 2009).  In 

addition, traditional exact methods need very high computational time to find the 

optimal solution for very large scale problems. Therefore, in recent years, metaheuristic 

algorithms such as Evolutionary Computation (EC), Simulated Annealing (SA), Tabu 

Search (TS), Particle Swarm Optimization (PSO), and others have been applied to 

various optimization problems as successful alternatives to classical techniques (Silva et 
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al., 2003) (Altiparmak et al., 2006). 

Two modeling approaches are widely used to evaluate the performance of such 

systems: simulation techniques and analytical modeling (Svensson, 1996). The 

operations research community also uses mathematical programming techniques (also 

called analytical or optimization techniques) such as Linear Programming and Mixed 

Integer Programming to formulate solutions to supply chain problems. However, these 

techniques are not able to deal efficiently with the uncertainty and SC dynamics because 

of their inability to represent stochastic behaviors or highly complex relations between 

the different entities existing in real-world problems (Mele et al., 2006). Unlike the 

traditional analytical methods, researchers also use simulation as a decision support tool 

to analyze the overall performance of a system without limiting assumptions. Since it 

can model the compound effects of uncertainty and non-linear relations in the system, 

the simulation model is normally preferable when an analytical model is not be able to 

formulate the system that is subject to both variability and complexity. However, 

simulation provides no concrete solutions to optimization problems, and users need to 

evaluate many feasible solutions in order to find an optimal solution to a problem 

(Güller et al., 2015). Thus researchers have attempted to combine simulation and 

optimization procedure. This approach is called simulation-optimization or simulation-

based optimization. Simulation-based optimization (SBO) can be defined as the process 

of finding the best input variable values from among all possibilities without explicitly 

evaluating each possibility and integrating optimization techniques into simulation 

where the simulation model is regarded as the evaluation mechanism (Carson & Maria, 

1997).  

1.2 Decision Levels in Supply Chains  

Planning processes of a SC are divided into three levels in terms of planning 

horizon: strategic level, tactical level and operational level (see Figure 1-2) (Chopra & 

Meindl, 2004). Designing the distribution network in an optimal way is at the core of 

strategic planning in supply chain management (SCM) and crucial for firms. According 

to Harrison (2005), up to 80% of the total cost of a product is driven by network design 

decisions. Furthermore, companies need to improve their network strategy in order to be 

more responsive to customer demand in today’s highly dynamic and competitive 

environment. This issue involves a number of questions to be addressed (Jayaraman, 

1998):  
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- How many facilities should be sited?  

- Where should each facility be located?  

- How should customer demand be allocated to each facility? 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2: The hierarchical framework of supply chain planning tasks (Rushton et al., 2010) 

The mid-term planning level (also called tactical decisions) deals with resource 

allocation and measuring performance against specified targets in order to achieve 

results outlined at the strategic level (Gunasekaran et al., 2004). The scope of the 

planning horizon is between 6 and 24 months (Rushton et al., 2010) (Silver et al., 1998). 

The most significant decisions to be made at this level are inventory control parameters, 

production and distribution coordination, order and freight consolidation, and delivery 

frequencies to customers. At this decision level, decision makers often face difficulty in 

finding the appropriate inventory level at each stage of a supply chain. Moreover, the 

difficulty increases in multi-echelon systems due to the stochastic nature of the demand, 

capacity, and lead time, as well as the complex interaction of ordering decisions 

between different stages and the dynamic interconnection of supply chain members. The 

objective of multi-echelon inventory management is often defined in terms of 

minimizing the inventory level of the system to decrease the total inventory cost while 

meeting the end customers’ service requirements.  

At the lowest planning level, all operations are required to ensure that the system 

continues to function towards its goal as specified and scheduled. The planning horizon 

at this level is typically one week, and decisions deal with operational routines such as 

workforce scheduling, vehicle routing and scheduling, material replenishment, and 
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packaging (Azambuja & O'Brien, 2008). These decisions obviously affect the 

distribution strategy and transportation cost. Transportation and inventory costs 

constitute the largest proportion of the total supply chain cost (Ballou, 2004). Based on 

estimates for the U.S. in 2002, transportation costs were $577 billion, and inventory 

carrying costs and warehousing costs were $298 billion. The total logistics costs were 

$910 billion, which was equivalent to 8.7% of the U.S. gross domestic product in 2002 

(Akca, 2010).  

The right combination of these decisions is vital for the optimization of overall 

supply chain performance. Traditionally, most approaches to supply chain network 

optimization in the literature consider decisions at different levels separately. For 

example, most of the optimization models concerning the configuration of the supply 

chain network focus their attention on trade-offs between transportation and fixed 

facility costs, disregarding inventory control decisions (Daskin, 1995). On the other 

hand, inventory decisions are optimized to balance the trade-off between inventory 

holding and fixed replenishment costs under a fixed supply chain network structure. 

However, there is a clear relationship between the inventory cost, transportation cost 

and the supply chain’s physical structure. This highlights a need for models that 

integrates strategic, tactical and operational decisions, known as an integrated supply 

chain design.  

1.3 Integrated Supply Chain Network Design 

Integration of the decision levels can be useful for different aspects of a company’s 

supply chain. According to Shapiro (2001), there are three dimensions to integration. 

a) Functional integration is concerned with purchasing, manufacturing, 

warehousing, and distribution activities within the company, and between the 

company and its suppliers and customers. 

b) Spatial integration is done over a target group of supply chain entities – vendors, 

manufacturing facilities, warehouses, and markets. 

c) Inter-temporal integration refers to integration of the overlapping decisions in 

the strategic, tactical and operational planning horizons. 

Goetschalckx and Fleischmann (2005) describe two key planning decisions for 

network design. These decisions are i) status of a particular facility or manufacturing 

line and relationships or allocations during a specific planning period and ii) the product 

flows and storage quantities (inventory) in the supply chain during a planning period. 
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Planning decisions of the strategic network design have both interrelated spatial and 

temporal characteristics. However, the planning and integration of decisions along a 

supply chain are difficult and complex tasks. Advanced Planning Systems (APS) can be 

used as a tool in order to provide reliable supply chain planning. APS is described as a 

decision support system that uses advanced optimization techniques and a planning 

matrix that decomposes the planning functions into the commonly used software 

modules. Furthermore, it introduces a hierarchical integration of different decision 

among various supply chain operations (Meyr et al., 2008). Figure 1-3 shows the 

interaction among value chains for optimizing a supply chain by using APS. APS uses 

advanced mathematical algorithms (e.g., genetic algorithms, linear programming, etc.) 

in order to provide nearly optimal solutions for supply chain planning issues (Selcuk, 

2007). These algorithms simultaneously consider a range of constraints to perform the 

optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3: Typical APS modules covering the SCM matrix (Meyr et al., 2008) 

This dissertation focuses on the strategic and tactical levels, i.e. strategic network 

design (SND) module and multi-site master planning (MMP) module as shown in 

Figure 1-3. The SND module determines the number of plants and distribution centers, 

their location and capacity, and the assignment of customers to each facility in the 

supply chain, as well as possible distribution channels as described in the previous 

section (Jonsson & Kjellsdotter, 2007). The Master Planning module synchronizes the 

flow of materials along the entire supply chain and coordinates production, 

    

O
p

er
at

io
n
al
 

Multi-site Master Planning 
  

Purchasing & 

Material 

Requirements 

Planning 

Production 

Planning 

Scheduling 

Distribution 

Planning 

Transport 

Planning 

Demand 

Planning 

Demand 

Fulfillment 

 Procurement  Production  Distribution  Sales 

S
tr

at
eg

ic
 

T
ac

ti
ca

l 

Supply 

Management 
Production 

Management 
Distribution 

Management 
Demand 

Management 

Strategic Network Design 



1.4  Research Questions and Objectives of the Dissertation 

8 

transportation, supply capacities, and seasonal stock. It also balances supply and 

demand. The decisions on production, inventory and transport quantities need to be 

addressed simultaneously (Jens & Michael, 2005). As a result of this synchronization, 

production and transportation entities are able to reduce the inventory level at stock 

points. 

Combining the relevant decisions that arise at the strategic, tactical and operational 

levels, one must consider all relevant costs including location, inventory and 

transportation costs in an integrated system. These three costs are highly related and, 

ideally, should be considered jointly when making network design decisions (Daskin et 

al., 2005). For example, a high number of distribution centers (DCs) reduces the cost of 

transporting product to retailers and ensures better service. However, under this model 

pooling effects increase the cost of holding inventory and increase the fixed costs 

associated with operating DCs (Erlebacher & Meller, 2000). The challenge is to find the 

right balance between installation DCs, inventory, and transportation costs that achieves 

customer service goals at the minimum total system-wide cost. Once the supply chain 

network is determined, the focus shifts to decisions at the Master Planning module 

(Shen, 2005). One of the major decisions related to the Master Planning module is 

inventory control. In this module, the goal is to determine the optimal number of 

shipments, shipment sizes, and inventory and transportation costs (Meyr et al., 2008). 

1.4 Research Questions and Objectives of the Dissertation 

Although there has been tremendous interest in supply chain design and inventory 

management for decades, the research on integrated approaches is quite scarce. Most 

practical optimization problems involve multiple and conflicting objectives that must be 

optimized simultaneously. Furthermore, uncertainty in demand and cost parameters is 

other factor that can contribute to the complexity of location/inventory problem and 

influence the effectiveness and responsiveness of the logistic network. In this context, 

the primary objective of this dissertation is firstly to propose a model and solution 

method for the optimal distribution network design of an integrated supply chain that 

takes into account the relationship between decisions at the different levels of planning 

horizon. The other purpose of the dissertation is to provide a modeling framework that 

integrates simulation models and multiobjective optimization methods to find the 

optimal inventory allocation policy for each facility in the supply chain under a 

stochastic environment. More specifically, this research proposes two multiobjective 
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metaheuristic optimization algorithms that find Pareto optimal solutions to the facility 

location problem and the multi echelon inventory allocation problem. 

The objectives of this research are: 

- To define and formulate a general methodology for an integrated supply chain 

network design in order to analyze the interactions between the planning decisions 

at different levels. This thesis presents a model to support strategic network design 

as well as two metaheuristics for solving the integrated facility location problem 

with multiple objectives. Specifically, it analyzes the impact of integrated decision-

making on overall cost, facility location decisions, and customer service level in 

terms of coverage distance.  

- To establish an experimental simulation environment (i.e., library using C-Sharp) 

for multi echelon system to investigate the impact of operational decisions on the 

performance and to address the stochastic nature of business environments. The 

proposed framework provides a flexibility allowing for quick modifications to 

research measures, such as the comparison of inventory policies, stochastic behavior 

of the supply chain variables, safety stock evaluations, and the effect of different 

inventory control parameters. 

- To develop a simulation-based inventory optimization framework, in which the 

simulation is developed based on the object-oriented programming and the 

optimization utilizes multi-objective metaheuristic techniques. For multi-objective 

optimization, two sets of objectives are defined for the inventory problem, i.e., the 

system wide cost and the customer service level. Two metaheuristic techniques are 

tested and analyzed as an optimization algorithm to find the best inventory control 

parameters.  

- To investigate the performance of metaheuristic techniques – particularly their 

ability to handle constraints – with the empirical study of multi-objective 

optimization techniques. Specifically, this dissertation compares the performance of 

existing algorithms NSGA-II and MOPSO based on computational time and 

convergence. 

1.5 Outline of Thesis 

Chapter 2 provides a brief overview of the existing literatures in the fields of 

integrated supply chain network design, multi-echelon inventory control, and applied 
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metaheuristic approaches. This chapter also surveys relevant literatures in the 

methodology of simulation on inventory control and simulation-based optimization.  

Chapter 3 introduces the basic concepts of metaheuristic techniques and different 

multiobjective optimization methods that are used to find Pareto optimal solutions. This 

work is mostly based on Genetic Algorithm (GA) and Particle Swarm Optimization 

(PSO).  The chapter also presents a brief introduction to Non-dominated Sorting 

Genetic Algorithm-II (NSGA-II) and Multi-Objective Particle Swarm Optimization 

(MOPSO).  

Chapter 4 presents the integrated distribution network design model for the food 

industry in detail and explains the solution technique using discrete metaheuristic 

optimization techniques. In this chapter, we present the problem statement and the 

mathematical formulation of the proposed integrated model. In this research we will 

apply the Non-dominated Sorting Genetic Algorithm (NSGA-II) and the Quantum-

based Multiobjective Particle Swarm Optimization to approximate the Pareto front to 

generate valid solutions for the network design problem. The applicability of the 

proposed algorithm and the efficiency of the proposed integrated approach are presented 

in a computational experiment for a large-scale network involving several factories’ 

warehouses, regional distribution centers and customers. To analyze the impact of 

optimization algorithm parameters and supply chain cost parameters, we empirically 

compare solutions over several variations. 

Chapter 5 discusses the framework architecture of the simulation model and the 

detailed structure of each individual package through a simplified model of inventory in 

a multi-echelon supply chain. It discusses the development and implementation of an 

object-oriented simulation package. 

Chapter 6 contains a brief description of the assumptions made during the 

simulations and experiments: in other words, input and output parameters of the 

simulation tool. The supply chain models that represent different inventory coordination 

mechanisms are developed and analyzed to compare their performances.  

Chapter 7 describes the methodology of simulation-based multi-objective 

optimization, which integrates the optimization tool into the simulation, and the 

simulation model is regarded as an objective function. After introducing the proposed 

optimization concepts for the stochastic inventory problem, the chapter presents several 

numerical examples. It compares different evolutionary approaches, such as NSGA-II 

and MOPSO, due to their ability to lead to efficient generation of Pareto sets and 
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computational time.     

Chapter 8 concludes the thesis by summarizing the main development, major 

contributions, and limitations of this study. Possible directions for further research and 

indications for potential applications are offered as well.  



 

 Chapter 2

Literature Review 

This literature review is divided into three sections: integrated supply chain network 

design, multi-echelon inventory system, and supply chain optimization models based on 

metaheuristic techniques. The review of integrated supply chain network design 

includes the models and algorithms of network design in an integrated environment and 

facility location problems, while the review of supply chain optimization models 

focuses on the metaheuristic techniques for global supply chain design and planning. 

2.1 Literature Review on Integrated Supply Chain Network Design 

In general, the classical facility location problem is concerned with selecting sites to 

install facilities and assign customers to these facilities in a way that minimizes the 

fixed facility location and transportation costs as well as all other relevant expenses. 

Shen (2007), (Daskin et al., 2002), Snyder (2007) and Melo et al. (2008)  offer a 

comprehensive review in the research area of supply chain design. There are several 

papers in the area of integrated facility location and inventory control. Nozick et al. 

(1998) present a linear approximation to the total safety stock in terms of the function of 

the number of DCs. Nozick et al. (2001) extend their previous model by considering the 

service responsiveness and uncertainty in delivery time to the DC.  The solution model 

consists of two sub-models. They first specify a minimum inventory level necessary to 

ensure a specified out-of-stock probability for a given product and propose an iterative 

updating scheme for solving optimal facility location. Shen et al. (2003) consider an 

integrated facility location/inventory location model to include nonlinear working 

inventory and safety stock costs for a two-stage network with multiple retailers under 

stochastic demand. The problem in their work is determining which retailers should 

serve as DCs and how much inventory these stocking points should hold. The model is 

initially formulated as a mixed integer nonlinear location allocation and solved with a 

column generation method.  
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The location-inventory problem has been solved widely by using Lagrangian 

relaxation based algorithms in literature ( (Daskin et al., 2002), (Shen et al., 2003), 

(Snyder et al., 2007), (Miranda & Garrido, 2006)). Daskin et al. (2002) consider a 

model similar to the one addressed in Shen et al. (2003), where the model incorporates 

working inventory and safety stock inventory costs at the distribution centers. They 

formulated the model as a non-linear integer-programming problem with binary 

assignment variables, and propose a Lagrangian relaxation method for the case in which 

the ratio of the variance of demand at the retailers to the mean demand is the same for 

all retailers. Snyder et al. (2007) introduce the stochastic location model with risk 

pooling that optimizes location, inventory, and allocation decisions simultaneously.  

Miranda and Garrido (2006) also propose solution methods based on Lagrangian 

relaxation for mixed-integer nonlinear models. They consider the order quantity for 

each warehouse as a decision variable that they are trying to optimize. The variable is 

transformed into a series of Capacitated Facility Location Problem (CFLP) and 

proposed solution involves a Lagrangian relaxation and the sub-gradient method. 

Erlebacher and Meller (2000) develop a non-linear integer inventory-location model 

for designing a two-level distribution system where customer demands are stochastic 

and rectilinear distances are used to represent the distances between the locations. The 

aim of their model is to decide on the number of distribution centers, their location and 

customer allocations that minimize the sum of the fixed operating costs of open DCs, 

inventory holding costs at DCs, total transportation costs from plants to DCs, and 

transportation costs from DCs to customers.  

Recently, Shu et al. (2005) propose a two-stage stochastic model for the design of 

integrated supply chain network decisions related to strategic sourcing and distribution, 

warehouse-retailer assignment, and facility location in an integrated multi-echelon 

supply chain distribution network. They consider the joint replenishment of inventory at 

both warehouses’ and retailers’ level to minimize the total expected system-wide multi-

echelon inventory, transportation, and facility location costs.  

2.2 Literature Review on Multi Echelon Inventory System 

Researchers have developed models to deal with a simplified single-vendor, single-

buyer inventory problem. However, it is not practical for the supply chain network to 

have only one vendor and one buyer all the time in real-world business. The purpose of 

this section is to introduce the modeling philosophy and convention of the multi-
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echelon inventory studies under a continuous review system. For a recent overview, see 

e.g. Axsäter (2003). 

A good review of the models dealing with continuous review policies for multi 

echelon inventory system can be found in Axsäter (1993). A well-known approach for 

multi-echelon inventory models is the METRIC method developed by Sherbrooke 

(1968). He describes a methodology for managing a two-echelon system for repairable 

items; however, the principles apply equally well to consumable items. The system 

consists of N identical retailers or bases at lower echelon and one warehouse at upper 

echelon that supplies the bases with repaired parts. It is assumed demand occurs only at 

the lower echelon and follows a simple Poisson process. All stock points apply a one-

for-one replenishment control policy (S-1, S). In this case, the warehouse observes a 

Poisson demand process. The objective of the model is to identify stocking policies at 

the bases and the depot to minimize backorders at the base level subject to a constraint 

on the inventory investment. Later, Deuermeyer and Schwarz (1981) develop an 

inventory model for a two-echelon inventory system that consists of one warehouse and 

N identical retailers that implement (R, Q) policies. They present an approximate model 

to calculate the system service levels, and develop an optimization framework to 

maximize the system fill-rate subject to a system safety stock constraint. 

De Bodt and Graves (1985) consider a multi-stage, serial inventory system under 

continuous review (Q, R) policy. They derive approximate performance measures with 

set-up cost under a nested policy assumption: whenever a stage receives a shipment, a 

batch must be immediately sent to its downstream stage. They do not make an 

assumption about the form of the demand distribution. In other words, the demand for 

the end item is stochastic and stationary. 

Andersson and Marklund (2000) study decentralized inventory control in a two-

level distribution system with a central warehouse and multiple non-identical retailers. 

In their model, all installations use continuous review installation stock (R, Q) policies. 

They present an approximate cost evaluation technique to minimize total inventory cost 

which also contains safety stock and backorder costs.  

Hoque (2006) focuses on a two-echelon serial inventory system consisting of a 

warehouse and a retailer under constant demand. Each inventory location follows a 

continuous review (s, Q) policy, and unfilled demands are completely backordered on a 

first-come, first-served basis. He extended the existing model by taking into account the 

transportation time of a batch. Mitra (2009) analyzes a two-echelon inventory system 
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with returns under generalized conditions, and developed a deterministic and a 

stochastic model for the system. 

There are other papers in the literature that present exact and approximate methods 

for a two-level inventory system consisting of one warehouse and multiple retailers 

under a continuous review (R, Q) policy. Forsberg (1996) evaluated holding and 

shortage costs for a two-level inventory system with one warehouse and different 

retailers. Axsäter (1998) presents methods for the exact evaluation of two retailers’ 

cases and an approximate evaluation for the case of more than two retailers. 

Moinzadeh (2002) considers a single product supply chain consisting of one 

supplier and multiple identical retailers. He proposed a supplier replenishment policy 

that incorporates information about the inventory position at each of the retailers and 

provides an exact analysis of the operating measures for such systems. Based on the 

numerical study, parameter settings are identified under which information sharing is 

most beneficial. Gürbüz et al (2007) present coordinated replenishment in a distribution 

system with multiple retailers, a single outside supplier, and one warehouse that holds 

no inventory.  They considered both inventory and transportation costs in a supply chain 

under stochastic demand and proposed a new policy – the hybrid policy – which 

combines a traditional echelon policy with a special type of can-order policy. They 

analyzed three coordinated replenishment policies (installation-based, echelon-based 

and time-based) and compared their performance. The numerical results suggest that the 

hybrid policy provides significant improvement over other replenishment policies. 

2.3 Literature Review on Metaheuristic Techniques for Multi-Echelon 

Supply Chain Problems 

Industrial decision makers face complex problems, including large numbers of 

integer or binary variables, non-linearities, stochasticity, non-standard underlying utility 

functions, and logical or non-standard constraints and feasibility conditions (Jones et al., 

2002). Researchers have proposed a variety of heuristic algorithms to address them. 

Heuristic algorithms are solution methods that do not guarantee an optimal solution, but 

in general can generate a near-optimal solution relatively quickly. In recent years, 

metaheuristic algorithms such as Ant Colony Optimization (ACO), Evolutionary 

Computation (EC), Simulated Annealing (SA), Tabu Search (TS), Stochastic 

Partitioning Methods (SPM), and others, are widely used to solve important logistic and 

combinatorial optimization problems that include in their mathematical formulation 
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uncertain, stochastic and dynamic information (Bianchi et al., 2006). They have been 

successful alternatives to the classical approach. According to Osman and Laporte 

(1996), the term metaheuristic describes an iterative search process that guides a 

subordinate heuristic by intelligently combining different concepts for exploring and 

exploiting the search space. The searcher employs learning strategies to structure 

information and find near-optimal solutions efficiently. 

The major problems in supply chain belong to the category of NP-hard problems 

and they are computationally difficult (Jaramillo et al., 2002).  As a result, much 

research effort has been devoted to develop an efficient solution methodology to find 

the optimal or near-optimal solution in the minimum computational time. Over the last 

few years, metaheuristic algorithms were successfully applied to large-scale and real-

life network design problems: tabu search (see (Lee & Dong, 2009), (Tuzun & Burke, 

1999)), genetic algorithms (see (Ko & Evans, 2007), (Min et al., 2006)), simulated 

annealing (see (Jayaraman et al., 2003)).  Tuzun and Burke (1999) introduce a two-

phase tabu search approach. The first phase searches for a good facility configuration, 

and the second phase searches for a good routing that corresponds to that configuration. 

Wu et al. (2002) proposed a decomposition-based heuristic method for solving the 

location-routing problem with capacitated depots. They used simulating annealing 

algorithm to solve decisions variables. 

Evolutionary algorithms are a particularly important subset of population-based 

metaheuristic search approaches. Among these methods, Genetic Algorithm (GA) is a 

solution method that was formally introduced in the United States in the 1970s by John 

Holland at University of Michigan. GA is an intelligent optimization technique that has 

the capacity to solve difficult problems in a variety of disciplines. Its simplicity permits 

us to use GA to solve NP-hard problems in acceptable computational time. 

GA has been applied to numerous supply chain management problems in many 

different configurations (Zhao & Xie, 2002).  New algorithms based on the GAs have 

been developed for the set-covering problem ( (Al-Sultan et al., 1996); (Beasley & Chu, 

1996)), and for location-allocation problems ( (Jaramillo et al., 2002); (Zhou et al., 

2002)). Zhou and Liu (2003) proposed a capacitated location-allocation problem with 

stochastic demands. For solving these stochastic models efficiently, the network 

simplex algorithm, stochastic simulation and genetic algorithm are integrated to produce 

a hybrid intelligent algorithm. Lin et al. (2007) compared flexible supply chains and 

traditional supply chains with a hybrid genetic algorithm. Liao and Hsieh (2009) 
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optimized the location decision for distribution centers with two objectives: 

minimization of total cost and maximization of customer service by using NSGA II 

algorithm.  

GAs has also been successfully used to find the optimal solutions for inventory 

optimization. Sarker and Newton (2002) investigate the use of genetic GAs for solving 

the batch size problem for a product, and purchasing policy of associated raw materials. 

In the mathematical model for this problem, they considered a constrained nonlinear 

integer program. Abdelmaguid et. al. (2006) have offered a fresh Genetic Algorithm 

(GA) approach for the Integrated Inventory Distribution Problem (IIDP). They have 

developed a genetic representation and utilized a randomized version of a previously 

developed construction heuristic in order to produce the initial random population. 

Their experimental results showed the significance of the GA approach. On average, 

GA outperforms the previously construction algorithm and generates solutions that are 

within 20% of the optimal solution. 

A genetic algorithm which has been adopted to cope with the production-inventory 

problem with backlog in the real situations was presented by Lo (2008). Lo offered a 

model that considers a dynamic production-inventory environment. Besides optimizing 

the number of production cycles to generate a (R, Q) inventory policy, an aggregate 

production plan can also minimize the total inventory cost on the basis of reproduction 

interval in a given time horizon. Daniel and Rajendran (2006) addressed the problem of 

determining base stock levels to be held at the different stages in a serial supply chain 

under a controlled periodic review inventory system. A GA is proposed to determine the 

best base-stock levels. They also considered different supply chain settings 

(deterministic and stochastic lead time) to simulate and analyze the performance of the 

supply chain; their result showed the proposed GA algorithm is not significantly 

different from the optimal solution. 

Radhakrishnan et. al. (2009) develop a novel and efficient approach using genetic 

algorithm to solve the complex inventory problem of the situation of multiple products 

and multiple members of the supply chain. They obtained the optimized stock levels for 

each member of the supply chain. Their approach to inventory management has 

minimized the total supply chain cost and determined the products that caused the 

supplier to incur additional holding cost or shortage cost. 

Particle swarm optimization (PSO) is a stochastic optimization technique based on 

population inspired by social behavior (Kennedy & Eberhart, 1995). Bachlaus et al 
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(2008) explored the integration of production, distribution and logistics activities at the 

strategic decision making level where the objective is to design a multi-echelon supply 

chain network considering agility as a key design criterion. They formulated the 

problem mathematically as a multi-objective optimization model that aims to minimize 

the cost (fixed and variable) and maximizes the plant flexibility and volume flexibility. 

In order to solve the underlying problem, they proposed a novel algorithm entitled 

hybrid taguchi-particle swarm optimization (HTPSO). Huang et al (2008) designed a 

supply chain network in uncertain environment, in which the demands of the customer 

are taken as random variables and the operation costs involved are programmed using 

fuzzy neural network and optimized by particle swarm optimization to solve the 

established model. Silva and Choelho (2007) developed an optimization model of a 

simplified supply chain, including stocks, production, transportation and distribution, in 

an integrated production-inventory-distribution system, introducing PSO in supply 

chain issues.  



 

 Chapter 3

Metaheuristic Techniques for Complex 

Optimization Problems 

Many well-known optimization problems with industrial applications are 

intractable. They are known as NP-Hard problems. For NP-hard optimization problems, 

it is often impossible to apply exact algorithms to large instances in order to obtain 

optimal solutions in a reasonable amount of computation time. Thus, in the past few 

decades, many heuristic algorithms have been proposed to solve complex combinatorial 

problems. Heuristic algorithms are solution methods that do not guarantee an optimal 

solution, but in general can generate a near-optimal solution relatively quickly, 

compared to exact algorithms. An important subclass of heuristics is metaheuristic 

algorithms, which was first introduced by Glover (1977). One of the definitions for 

metaheuristic is given by Osman and Laporte (1996): 

“A metaheuristic is an iterative generation process which guides a subordinate 

heuristic by combining intelligently different concepts for exploring and exploiting the 

search space, learning strategies are used to structure information in order to find 

efficiently near-optimal solutions.” 

In this chapter, the basic concepts of some metaheuristics such as Genetic Algorithm 

(GA) and Particle Swarm Optimization (PSO) are introduced. A brief description of GA 

and PSO is provided in Section 3.1 and Section 3.2 respectively. Section 3.3 briefly 

highlights Pareto-based multiobjective metaheuristics algorithms to achieve trade-off 

between conflicting objectives. 

3.1 Introduction to Genetic Algorithm 

Since the 1960s metaheuristics that are based on artificial reasoning have been 

widely used to develop powerful algorithms for difficult optimization problems (Gen & 

Cheng, 2000). Evolutionary algorithms are an important subset of random-based 
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solution space searching methods. These algorithms are derived from the process of 

evolution in biology. Among these methods, Genetic Algorithm (GA) is a metaheuristic 

search technique that belongs to the class of Evolutionary Algorithms inspired by 

principles from natural selection which had been formally introduced in the United 

States in the 1970s by John Holland at University of Michigan (Holland, 1975). Once 

the theoretical foundations of GAs were established, GAs became an intelligent 

optimization technique adopted to solve many difficult problems. The flowchart of a 

simple genetic algorithm is summarized in Figure 3-1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: Flowchart of a simple Genetic Algorithm (adapted from (Gen & Cheng, 2000))  

GAs operate in the same manner as biological evolution and the natural selection of 

organisms. In a simple genetic algorithm, the application starts with a set of solutions 

(initial population) created using some encoding method. Each candidate solution is 

represented as a chromosome or individual. The number of individuals in a population 

is called the population size. Traditionally, genetic algorithms have mostly used two 

common coding methods: binary representation and real number representation (Gen & 

Cheng, 2000). Once the initial population is generated, a fitness value is assigned using 

the objective function to each individual in order to obtain the quality of all individuals 

to survive and recombination. Then, the selection process is used to generate a mating 

pool. The highly fit individuals have a better chance of being selected. The 

recombination process starts by selecting parents from the mating pool and generating a 
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new population using genetic operators: crossover and mutation. The new population is 

evaluated further. This process is repeated a number of times, and typically leads to 

better and better individuals. In summary, the concept of a genetic algorithm has six 

fundamental steps: representation of solutions to the problem, initialization of 

population, an evaluation function rating solutions in terms of their fitness, selection, 

genetic operators that alter the genetic compositions of children during reproduction, 

and termination criteria. The pseudo code of a simple genetic algorithm is as follows 

(Goldberg, 1989): 

Algorithm 3-1: Basic genetic algorithm pseudo-code 

1: begin 

2:     for i = 1 to number of individuals do 

3:             initialize values of individuals 

4:    end 

5:    Evaluate Population P() 

6:    while generation < maxGenerations do 

7:                  Selection(); 

8:        Recombination (); 

9:                  Mutation (); 

10:                  Evaluate (); 

11:                  generation ++; 

12:    end while 

13:  end begin 

3.1.1 Genetic Algorithm Operations 

Selection 

The selection mechanism is one of the main components in GA and is the first 

operator applied on a population to produce a new generation. In programming, 

memory is opened in reserve for the individuals selected to breed. This memory is 

called the mating pool (Yu & Gen, 2010). Like in natural selection, better individuals 

have higher probabilities of breeding. There exist a number of selection operators in GA 

literature. In this section, three basic selection mechanisms will be briefly described: 

roulette wheel selection, rank-based selection and tournament selection. 

Roulette-wheel Selection: Roulette-wheel selection proposed by Holland is the one 

of most known selection methods among genetic algorithms (Gen & Cheng, 2000). The 

basic idea is to determine the selection probability or the relative fitness value for each 

chromosome proportional to the fitness value. This relative fitness value can be defined 

as follow: 
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In roulette wheel selection, the process is based on spinning the wheel a number of 

times equal to the population size by applying a random experiment, each time selecting 

an individual chosen by the roulette-wheel pointer. After obtaining a random number, 

whenever we find an individual that satisfies the random number between ∑ 𝑝𝑖
𝑘
𝑖  

and ∑ 𝑝𝑖
𝑘+1
𝑖 , the individual is selected into the mating pool (Yu & Gen, 2010). 

Rank-Based Selection: Baker (1985) introduced ranking selection. The population is 

sorted from best to worst based on the objective function value in order to rank 

individuals. Rather than using absolute values, selection probabilities are computed 

based on rank values. Ranking might be needed under two conditions (Gen & Cheng, 

2000). The first is that the exact fitness values cannot be determined. The second 

condition is that the population has an extremely fit individual. In that case, the 

extremely fit individual has a very high selection chance over all other individuals.  

Tournament Selection: Tournament selection operates by selecting m individuals 

randomly from the population. The value m is called the tournament size. The 

individual with the highest fitness is termed the winner. The best one wins the 

tournament and is selected into the mating pool (Miller & Goldberg, 1995). Tournament 

selection process is repeated until the mating pool equals the size of the population. For 

m=2, the selection procedure is called binary tournament selection. The main 

characteristics of tournament selection make it quite useful in some situations, such as 

multiobjective optimization (Yu & Gen, 2010). These properties are defined as follow: 

- Tournament selection only uses local information. 

- Tournament selection is very easy to implement and its time complexity is 

small. 

- Tournament selection can be easily implemented in a parallel environment. 

Selection pressure is an important factor of a selection algorithm because it directly 

affects the average problem-solving quality of the population (Xie et al., 2007).  In 

tournament selection, selection pressure is easily adjusted by using different tournament 

sizes; the larger the tournament size, the higher the selection pressure. At low selection 

pressure, the rate of convergence towards the optimum is likely to be slow (Legg et al., 

2004). At high selection pressure, the genetic algorithm converges too fast and it 

typically results in obtaining local optima. 

Recombination  
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Once individuals are selected, the next phase of genetic algorithm is the application 

of variation operators such as the crossover and mutation. Crossover is the main genetic 

operator of recombination process. The crossover operator combines (mates) two 

chromosomes (parents) to produce a new chromosome (offspring). A simple way to 

achieve crossover is one-point crossover (classical crossover) proposed by Holland 

(1975). 

 

 

a) One-point crossover 

 

b) Two-point crossover 

 

b) Uniform crossove 

Figure 3-2: Crossover 

The classical crossover operator takes two parents from a mating pool and chooses a 

random cut-point. It then generates offspring by interchanging two parent chromosomes 

at this point. In the literature, many different crossover types have been used such as 

two-point crossover, multi-point crossover and uniform crossover. In a two-point 

crossover two cut points are chosen randomly in parent chromosomes. The section 

between selected cut points is exchanged between two offspring. In most cases, the 

number of crossover points has been fixed at a very low constant value of 1 or 2 

(William, 1995). However, there are situations in which having a higher number of 

crossover points is more useful for solving optimization problems. The crossover rate is 

defined as the ratio of the number of offspring produced in each generation to the 

population size. A higher crossover rate allows deeper exploration of the solution space 

and reduces the chances of settling for a false optimum, but it also results in wasting a 

lot of computation time exploring the unpromising regions of the solution space (Gen & 

Cheng, 2000). 

The mutation operator is used to modify genes (decision variables) randomly in a 

selected chromosome with a certain probability in order to find new points in the search 

space. Mutation of each chromosome in the population occurs according to mutation 
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rate which is chosen by the user. Therefore, it is not applied to every chromosome in the 

population. The choice of mutation rate critically affects the performance of GAs. 

Figure 3-3 shows the main two mutation operations: one-point mutation and uniform 

mutation. In binary coded chromosomes, genes can have a value of either 0 or 1. On the 

other hand, for real-encoded chromosomes, the mutation operator may be uniform 

mutation, boundary mutation, real number creep mutation, or dynamic mutation (Park, 

2008).  

a) Point Mutation 

 

b) Uniform Mutation 

Figure 3-3: Mutation 

3.2 Introduction to Particle Swarm Optimization 

Swarm is generally used to describe social insects or social animals, e.g., ant 

colonies, bee colonies, fish schools, and bird flocks (Yu & Gen, 2010). Particle swarm 

optimization (PSO) is another stochastic population-based metaheuristic inspired by 

social behaviors of bird flocking or fish schooling (Kennedy & Eberhart, 1995). The 

main concept of PSO is very similar to other evolutionary computation techniques like 

GAs. However, it does not have genetic operators like mutation and crossover. The PSO 

algorithm consists of a swarm of particles, each represents a solution point in a 

multidimensional, real valued search space of possible solutions. These particles fly 

across the hyperspace based on the social psychological tendencies of individuals 

(Baghel, 2009). The position of each particle changes according to its own experience 

and the experience of neighboring particles. 

In the PSO algorithm, each particle maintains its position in the search space with 

the velocity influenced by the best solution found so far by each particle (the personal 

best) and the best solution found so far by the whole swarm (the global best) (Shi & 

Eberhart, 1999). The last part of the velocity considered in the algorithm is inertia: the 

particle’s memory of its previous velocity. Once the particle’s velocity along a 

dimension is adjusted, a new position is computed based on Equation 3-3. Each particle 

in a swarm begins randomly in the domain space of the function to be optimized. Once 

the particles are initialized, a loop starts to find an optimum solution. In the loop, the 

particles’ velocity and positions are updated as described above. The algorithm is 
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terminated with a predetermined stopping criterion. 

 

𝑋𝑡−1: current position, 𝑋𝑡
 : modified position, 𝑉𝑡−1: current velocity, 𝑉𝑡: modified velocity, 

𝑃𝑝𝑏𝑒𝑠𝑡: local best position, 𝑃𝑔𝑏𝑒𝑠𝑡: global best position 

Figure 3-4 Concept of modification of a searching point by PSO 

The complete algorithm for the PSO is listed in Algorithm 3-2. Shi and Eberhart 

(1998) introduce, in the n-th dimension of the search space, more widely used formulae 

to calculate each particle’s velocity (𝑉𝑛) and position (𝑋𝑛): 

 
𝑉𝑡

𝑛 = 𝑤 × 𝑉𝑡−1
𝑛 + 𝐶1 × 𝑟𝑎𝑛𝑑1 × (𝑃𝑝𝑏𝑒𝑠𝑡

𝑛 − 𝑋𝑡−1
𝑛 ) + 𝐶2 × 𝑟𝑎𝑛𝑑2

× (𝑃𝑔𝑏𝑒𝑠𝑡
𝑛 − 𝑋𝑡−1

𝑛 ) 
3-2 

 𝑋𝑡
𝑛 = 𝑋𝑡−1

𝑛 + 𝑉𝑡
𝑛 

3-3 

where   

n   number of elements in a particle, 

w  inertia weight of the particle, 

t  generation number, 

            𝐶1, 𝐶2  acceleration constants, 

            𝑟𝑎𝑛𝑑   random value between 0 and 1 

 𝑃𝑝𝑏𝑒𝑠𝑡
𝑛    local best position of the particle, 

𝑃𝑔𝑏𝑒𝑠𝑡
𝑛    global best position of particle in the swarm. 

Algorithm 3-2: PSO algorithm pseudo-code 

1: begin 

2:     for i = 1 to Number of particles do 

3:             initialize position and velocity randomly 

4:             Evaluate Particle() 

5:             Initialize Pbest() 

6:    end 

7:    while generation < maxGenerations do 

8:                        for each particle do 

9:                               selectLeader() 

10:                               updateVelocity() 

11:                               updatePosition() 

12:                               Evaluate() 
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13:                               Update Pbest() 

14:                        end for 
15:             Update Pgbest()      

16:            generation ++ 

17:    end while 

18: end begin 

3.2.1 Parameter Selection of PSO 

The inertia weight 𝑤 has an important role in the PSO algorithm. It is used to 

control the impact of the previous history of velocities on the current velocity. A large 

inertia weight factor encourages exploration of the entire search space while a lower 

value of inertia weight facilitates local exploration (Akbari & Ziarati, 2011). Therefore, 

the inertia weight proposed by Shi and Eberhard (1998) decrease linearly with the 

number of generations. This can be done using:  

 𝑤 =  𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
× 𝑡 3-4 

where  𝑤𝑚𝑎𝑥, 𝑤𝑚𝑖𝑛 is the maximum and minimum inertia weight, 𝑡 is iteration 

number and 𝑡𝑚𝑎𝑥 is the maximum iteration. 

Particles' velocities on each dimension are clamped by 𝑉𝑚𝑎𝑥, the maximum 

allowable velocity for particles to keep particles from moving too far beyond the search 

space. If 𝑉𝑚𝑎𝑥 is very low, a particle may not explore sufficiently, and if is too high, 

then particles may move beyond a good solution. In case the velocity of the particle 

exceeds  𝑉𝑚𝑎𝑥, then it is reduced to 𝑉𝑚𝑎𝑥. A maximum velocity 𝑉𝑚𝑎𝑥 proposed by Abido 

(2007) is calculated with a user-specified velocity clamping factor 𝑘 where the search 

space is bounded by [𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥] in the following formula: 

 𝑉𝑚𝑎𝑥 = 𝑘 × (
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

𝑁
) 3-5 

where N is a selected number of intervals. 

Parameters 𝐶1 and 𝐶2 control the movement of each particle towards its best 

position and the global best position, respectively. In other words, these two rates 

control the relative influence of the memory of the neighborhood and the memory of the 

particle. Recent work reports that choosing larger cognitive parameter, 𝐶1, than social 

parameter, 𝐶2, but with 𝐶1 + 𝐶1 ≤ 4,  produce a better performance (Ozcan & Mohan, 

1998). In this dissertation, the acceleration constants 𝐶1 and 𝐶2 are chosen 2 as default 

values. 
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3.2.2 Quantum Particle Swarm Optimization for Combinatorial Problems 

Since the original PSO algorithm can only optimize problems in which the elements 

of the solution are continuous real numbers, it is not possible to “throw to fly" particles 

in a discrete space (Kennedy & Eberhart, 1995). In recent years, several modifications 

of the PSO algorithm to solve discrete combinatorial optimization problems have been 

proposed in the literature ( (Kennedy & Eberhart, 1997), (Al-kazemi & Mohan, 2002), 

(Yang et al., 2004)). Han and Kim (2002) developed the philosophy of Quantum-

Inspired Evolutionary Algorithm for a class of combinatorial optimization problems. 

Based on the concept and principles of quantum computing, Quantum-Inspired 

Evolutionary Algorithm (QEA) uses Q-bit which is the smallest unit of information 

stored in a two state quantum system instead of using real numbers. In quantum 

computing, a Q-bit can be in “1” state, “0” state or in any superposition of state 0 and 1. 

i) Representing a Q-bit Individual 

The state of a Q-bit is defined as:  

 |𝜓𝑖〉 =  𝛼|0〉 + 𝛽|1〉 3-6 

where |𝛼| and |𝛽| are complex number which denote the probability of the 

corresponding states, and |𝛼|2 + |𝛽| 2 = 1. |𝛼|2 gives the probability that the qubit is in 

the state of "0", |𝛽| 2 gives the probability that the qubit is in the "1" state. A Q-bit 

individual as a string of n Q-bits can be represented as a Q-bit vector: 

 𝑞 = [
𝛼1 𝛼2

𝛽1 𝛽2
…

𝛼𝑛

𝛽𝑛
] 3-7 

Due to its capability to represent a linear superposition of states, Q-bit 

representation has better characteristic of population diversity during the search process 

of an evolutionary algorithm (Han & Kim, 2002). Like other evolutionary algorithms, 

QEA consists of the representation of individuals, evaluation functions as well as 

creating new generations. The first step of QEA is to initialize 𝑄(𝑡) which represents a 

group of Q-bit individuals, 𝑄(𝑡) = [𝑞1, 𝑞2, … , 𝑞𝑚], where m is the population size, and 

𝑞𝑗 is the j-th Q-bit individual. The 𝛼 and 𝛽 for each qubit are initialized with 1 √2⁄  in 

order to ensure that the probability of observing the state "0" and "1" are equal. Once a 

population of quantum individuals is created, these can be used to evaluate the fitness of 

the objective function. The initial best solution is then selected among individuals and 

stored.   
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ii) Updating a Q-individual 

In QEA, the state of a qubit can be updated by applying the operation with a 

quantum rotation gate U, which could be expressed as follows (Tayaran et al., 2011): 

 𝑈(Δ𝜃) = [
cos (Δ𝜃) −sin (Δ𝜃)
sin (Δ𝜃) cos (Δ𝜃)

] 3-8 

where Δθ is a rotation angle toward either 0 or 1 state and controls the speed of 

convergence. Each qubit from a quantum individual is updated as: 

 [
𝛼′

𝛽′] = [
cos (Δ𝜃) −sin (Δ𝜃)
sin (Δ𝜃) cos (Δ𝜃)

] [
𝛼
𝛽] 3-9 

Table 4-1: Lookup table of the rotation angle (Tayaran et al., 2011)  

𝑥𝑖 𝑏𝑖 𝑓(𝑥) ≥ 𝑓(𝑏) Δ𝜃 

0 0 𝑓𝑎𝑙𝑠𝑒 0 

0 0 𝑡𝑟𝑢𝑒 0 

0 1 𝑓𝑎𝑙𝑠𝑒 0.01 𝜋 

0 1 𝑡𝑟𝑢𝑒 0 

1 0 𝑓𝑎𝑙𝑠𝑒 −0.01 𝜋 

1 0 𝑡𝑟𝑢𝑒 0 

1 1 𝑓𝑎𝑙𝑠𝑒 0 

1 1 𝑡𝑟𝑢𝑒 0 

The idea in using the quantum rotation gate is to speed up the convergence by 

steering the direction of the individuals towards the better parts of the search space. 

Table 1 provides a convenient database for selecting the correct Δ𝜃, which is 

determined by the quantum chromosome, where 𝑥𝑖 is the i-th bit of the current binary 

solution, 𝑏𝑖 is the i-th bit of the current best solution. 

|�0〉 

|�1〉 

|�𝜓〉 

|�𝜓′ 〉 
 

α 

β 

 

Figure 3-5: Polar plot of rotation gate for qubit individuals 
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3.3 Multi-Objective Optimization 

In many real-world situations, decision-makers have encountered problems that are 

very complex and quite hard to solve using classical optimization techniques. It is easy 

to see that most practical optimization problem involve multiple and conflicting 

objectives that must be optimized simultaneously. For example, consider retailer stores 

stocked with inventories of material and replenished by a warehouse where one is trying 

to determine the optimal inventory control parameters. It is one of the most difficult 

planning decisions in all of logistics. Minimizing the overall cost will ultimately lead to 

reduced cycle stock at each stock point. But lower cycle stock leads to increase the 

number of cycles per year and correspondingly the number of times the company is 

exposed to the possibility for a stockout to occur. When only looking at one objective, 

the other objective suffers. However, in this case the goal may be to establish a policy 

that minimizes the level of their stocks without reducing availability. Thus, for such 

problems, multiple objectives need to be optimized together while satisfying the 

imposed constraints. A multiobjective optimization problem can be defined as follows 

(Gen & Cheng, 2000): 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 / 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑧1 = 𝑓1(𝑥), 𝑧2 = 𝑓2(𝑥), … , 𝑧𝑚 = 𝑓𝑚(𝑥)} 

𝑠. 𝑡.    𝑔𝑖(𝑥) ≤ 0,    𝑖 = 1, … , 𝑞 

                                                               ℎ𝑗(𝑥) = 0     𝑗 = 𝑞 + 1, … , 𝑘 

where x is called the decision vector, 𝑓𝑖 is objective 𝑖, 𝑔𝑖 is inequality constraint and 

ℎ𝑗  is equality constraint j.  

 

 

 

 

 

 

Figure 3-6 Components of a general stochastic search algorithm (Zitzler et al., 2004) 

Several solution methods have been used to solve multiobjective optimization 

problems in the literature. A general stochastic search algorithm consists of three parts: 

i) a working memory that contains the currently considered solution candidates, ii) a 
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Environmental 
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Memory Selection Variation 
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selection module, and iii) a variation module as shown in Figure 3-6 (Zitzler et al., 

2004). There is usually a set of solutions for the multiple objective cases that cannot 

simply be compared to one another. Such kinds of solutions are called non-dominated 

solutions or Pareto optimal solutions, for which no improvement in any objective 

function is possible without sacrificing at least one of the other objective functions (Gen 

& Cheng, 2000).  

 

Figure 3-7: The Pareto front of a set of solutions in a two objective space (adapted from (Sastry, 2007)) 

The non-dominated solutions are defined as solutions that dominate others but do 

not dominate themselves. A Solution X in objective space is said to be a Pareto-optimal 

(non-dominated solution), if and only if there is no other solution Y in the search space 

that could dominate X. In other words, X dominates Y if X is better than Y in at least 

one objective function and not worse with respect to all other objective functions (Yu & 

Gen, 2010). The set including all Pareto-optimal solutions is termed the Pareto set and 

represents the optimal trade-offs between objectives. Figure 3-7 illustrates these 

concepts for a two-objective minimization problem, where it is desirable to have small 

values for each objective. 

3.3.1 Multi-Objective Optimization with Genetic Algorithm 

Over the last two decades, many efficient multiobjective evolutionary algorithms 

that are possible to find Pareto optimal solutions have been proposed based on non-

dominated sorting suggested by Goldberg (1989). Among the most widespread 

methods, the algorithms maybe classified as follow: VEGA (Vector Evaluated Genetic 

Algorithm) (Schaffer, 1985), MOGA (Multi Objective Genetic Algorithm) (Fonseca & 

Fleming, 1993), NSGA (Non-dominated Sorting in Genetic Algorithm) (Srinavas & 

Deb, 1994) and SPEA (Strength Pareto Evolutionary Algorithm) (Zitzler & Thiele, 
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1999) . 

 

 

 

 

 

 

 

 

 

 

Figure 3-8: An example of the NSGA-II non-dominated sorting procedure (Sastry, 2007) 

The Non-dominated Sorting Genetic Algorithm (NSGA) is one of the first MOGAs 

using Pareto ranking-based fitness assignment. While retaining the same concept of 

genetic operations, the main goals in MOGAs are mating selection and elitism. 

Individuals in the current generation are sorted into fronts with a non-dominated sorting 

procedure to decide on their chances for survival in the next generation. Each front of 

Pareto solutions is called a rank. The procedure begins by evaluating each solution in 

the current population. First, the set of solutions that are not dominated by any other 

solution in the current population are assigned rank 1. The non-dominated solutions 

among the unassigned solutions are assigned rank 2. That is, all solutions with rank 2 

are dominated by at least one solution with rank 1, but are not dominated by others in 

the population. The above sorting and ranking procedure continues recursively until all 

fronts are identified. Figure 3-8 presents an example of the non-dominated sorting of 

population of ten solutions into three fronts (Sastry, 2007). 

NSGA-II algorithm developed by Deb et al. (2002) has proved to be quite efficient 

in many different applications. They used an improved multiobjective non-dominated 

sorting method that requires a significantly smaller number of comparisons. In their 

method, a non-dominated sorting concept is used for each solution and it ranks all 

solutions to form non-dominated fronts as describe above. Therefore, with respect to 

Pareto optimality, solutions with lower ranks should be given priority for the selection 

process in the genetic operator. NSGA-II involves an initial random population P of size 

N. Genetic operators (binary tournament selection, crossover and mutation) are used to 
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create an offspring population Q of size N. It then combines the parent population and 

the newly generated offspring population to create a combined population of size 2N. 

The combined population (P+Q) is sorted according to non-domination. Next, solutions 

from better non-dominated sets are chosen until N solutions have been chosen for the 

new population. To choose a new population with exactly N individuals, the solutions 

of the last front are sorted by using the crowded-comparison operator in descending 

order and choosing the best solutions needed to fill all population slots (see Figure 3-9). 

The resulting population is used for genetic operators to create the child population. 

 

Figure 3-9: Crowding distance calculation (Raquel & Naval, 2005) 

Apart from finding solutions in the Pareto front, it is essential to maximize the 

diversity of the achieved Pareto set approximation (Zitzler et al., 2004). While most 

recent multiobjective GAs (MOGA) use a niching mechanism to maintain the diversity 

among solutions in the objective space, the crowding distance technique, which is an 

estimate of the size of the largest cuboids enclosing that point without including any 

other point in the population, is applied in NSGA-II. It is calculated by taking the 

average distance of the two points on either side of the point in question along each of 

the objectives (Deb et al., 2002). The complete algorithm for NSGA-II is as follow: 

Algorithm 3-3: NSGA-II pseudo-code 

1: begin     

2:    for i = 1 to Number of individuals do 

3:             initialize values of individuals 

4:    end 

5:    while generation < maxGenerations do 

6:        Evaluate Population P(t) 

7:        Generate child population 

8:                  Tournament Selection() 

9:                  Recombination() 

10:                  Mutation() 
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11:        Combine parent and offspring population R(t)=P(t)∪Q(t); 

12:        Sort R(t) based on Pareto dominance 

13:        Obtain non-dominated Fronts 𝐹 =  {𝐹1, 𝐹2, … , 𝐹𝑛} 

14:         i←1  

15:              while |𝑃(𝑡 + 1)| + |𝐹𝑖| ≤ 𝑁 do 

16:                  P(t+1) ← P(t+1) ∪ 𝐹𝑖 

17:                  i ← i+1 

18:              end while 

19:        Sorting 𝐹𝑖 based on crowding distance 

20:        j←1 

21:             while |𝑃(𝑡 + 1)| < 𝑁 do 

22:                  P(t+1) ← P(t+1) ∪ 𝑠𝑗, where 𝑠𝑗𝜖𝐹𝑖 

23:                  j ← j+1 

24:              end while 

25:       generation ++ 

26:    end while 

27: end begin 

At each generation, NSGA-II employs crowded tournament selection operator 

which is a selection mechanism based on tournament selection. It randomly chooses a 

set of solutions from the mating pool. The tournament size generally equals two but it 

can be increased in order to obtain a better selection pressure (Xie et al., 2007). A 

comparison operator is used to compare the quality of two solutions based on their 

ranks. If the solutions are on the same non-dominated front or have the same rank, the 

selection is done based on their crowding distance, which is a measure of density of 

solutions in the neighborhood. (Deb et al. 2002). 

3.3.2 Multi-Objective Optimization with Swarm Intelligence 

Several multiobjective PSO techniques have been developed in the literature. One of 

the successful applications of PSO in multiobjective problems was proposed by (Sierra 

& Coello Coello, 2005). To apply a PSO algorithm in multiobjective optimization, the 

three main issues to be considered are (Sierra & Coello Coello, 2006): 

- How to select particles to be used as leaders 

- How to retain the non-dominated solutions found during the search process 

in order to report solutions 

- How to maintain diversity in the swarm in order to avoid convergence to a 

single solution 

Multiobjective Particle Swarm Optimization (MOPSO) proposes to use the Pareto 

dominance concept described in the previous section in order to handle multiobjective 

problems such as MOGA. The main challenge of MOPSO is to select the best global 
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particle for each particle of the swarm to update its position (Durillo et al., 2009). 

Compared with the original PSO, multiobjective PSO (MOPSO) uses a set of leaders 

usually stored separately from the swarm, which is called an external archive (leaders 

archive). The leaders archive includes the best non-dominated solutions found since the 

beginning of the optimization. These solutions are used to update the positions of 

particles in the swarm (Sierra & Coello Coello, 2006). In that case, the quality measure 

plays an important role in the selection of one leader from the archive. The most 

common approach to select a leader from the archive is the tournament selection in 

which every non-dominated solution is considered as a potential leader. The pseudo 

code of MOPSO is described as follows (Abido, 2010): 

Algorithm 3-4: MOPSO pseudo-code 

1: begin 

2:     for i = 1 to Number of particles do 

3:             initialize position and velocity randomly 

4:    end 

5:    Evaluate Particle Swarm() 

6:    Initialize Leaders External Archive() 

7:    Compute Crowding Distance Values() 

8:    Sort the non-dominated solutions according to crowding  distance() 

9:    generation = 0 

10:    while generation < maxGenerations do 

11:                        for each particle do 

12:                               selectLeader() 

13:                               updateVelocity() 

14:                               updatePosition() 

15:                               evaluation() 

16:                               updatePbest() 

17:                        end for 
18:            Update External Leaders Archive() 

19:            Compute Crowding Distance Values() 

20:            Sort archive according to the crowding distance() 

21:            generation ++ 

22:    end while 
23:    returnArchive() 

24: end begin 

Note that the external archive is limited in size in order to reduce computational 

time. The maximum size of the archive set is specified in advance. When the archive set 

is empty enough and a new non-dominated solution is detected, the new solution will 

enter the archive set. To decide which particles should remain in the archive when the 

maximum limit imposed on the size is reached, techniques such as the crowding 

distance concept are applied. The MOPSO steps can be defined as follow (Abido, 
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2010): 

Step 1: Initialize the population. Set the generation = 0 and generate randomly n 

Particles. 

Step 2: Time Updating. Update the iteration t = t+1. 

Step 3: Weight Updating. Update the inertia weight (Equation 3-4)  

Step 4: Velocity Updating. Compute the speed of each particle using the equation 3-

2. If a particle violates the velocity limits, set its velocity equal to the proper limit. 

Step 5: Position Updating. Compute the new positions of the particles adding the 

speed produced from the previous step according to the equation 3-3. 

Step 6: Non-Dominated Local Set Updating. The criterion for deciding what 

position from memory to retain is Pareto dominance (i.e., if the current position is 

dominated by the position in memory, then the position in memory is kept, otherwise, 

the current position replaces the one in memory. If neither of them is dominated by the 

other, then we select one of them randomly) 

Step 7: External Set Updating. This update consists of inserting all the currently 

non-dominated solutions into the leaders archive. The external particles are sorted into 

Pareto set and all dominated solutions are removed from the archive set. If the number 

of the individuals externally stored in the Pareto set exceeds the maximum size, the set 

is reduced according to the crowding distance concept. 

Step 8: Stop Criteria. If the number of iterations exceeds the maximum, then stop. 

Otherwise, go to step 2. 

 



 

 Chapter 4

Integrated Strategic Network Design for 

Multi-level Supply Chains  

Network design is a strategic decision that has a long-lasting impact on a company. 

To achieve an efficient supply chain, integrated distribution network design is essential. 

In this regard, suitable facility locations are a core part for a supply chain in the design 

of logistics systems (Li et al., 2011) (Blanchard, 2010). In general, optimally solving 

such an integrated network design problem in a reasonable computation time is a 

challenge, especially when inventory and routing are involved (Lei et al., 2003). In 

order to find out a good solution effectively, there is a need for new solution 

methodologies. The purpose of this chapter is to introduce an optimization model that 

explicitly captures the interdependency between different decision levels in supply 

chain (SC), while fulfilling the demand requirement, and to present computational 

results from extensive experiments that investigate the effects of several dynamic 

factors including stochastic demand and nonlinear cost functions. The network design 

problem is formulated as a multiobjective optimization problem taking into account the 

trade-off among transportation costs, facility location costs, inventory replenishment 

costs, and the service efficiency in terms of coverage distance. The service efficiency 

objective is to minimize the maximum distance between each covered customer and its 

closest opened DC to maximize demand satisfaction in a defined structure. The 

particular problem considered in this study contains a set of geographically dispersed 

retailers whose locations are known, and regional DCs located to help consolidate 

shipments and pool risk whose locations are unknown. Each retailer faces an 

independent distributed demand for a single product that must be met without shortage. 

This chapter begins with Section 4.1 presenting the formulation of integrated network 

design and logistic cost components. The next section introduces the notation and also 

provides a detailed formulation of the problem. Section 4.3 describes the solution 



Chapter 4 

37 

methodology based on multiobjective metaheuristic techniques. A decision support tool 

to optimize the problem under consideration is developed and the case study is 

introduced in Section 4.4. Finally, the key results are summarized in Section 4.5 and 

4.6. 

4.1 Integrated Supply Chain Network Design  

Integrated planning and control of a supply chain has three important dimensions 

(Shapiro, 2001). The first dimension is called as functional integration dealing with 

issues related to integration of purchasing, manufacturing and distribution activities 

within the company, between the company and its suppliers, and customers. The 

geographical integration refers to integration of these functions across various 

geographically distributed vendors, facilities and market. The third dimension is inter-

temporal integration, which also is called hierarchical planning, involves coordinating 

decisions across strategic, tactical and operational levels of the supply chain. 

Distribution network design is one of the major strategic level issues that influence 

tactical and operational decisions due to the interdependence between these levels 

(Goetschalckx & Fleischmann, 2005). However, most literatures on network design 

have traditionally considered strategic, tactical, and operational decisions separately. 

This classical approach leads to considerable excess costs because the supply chain is 

optimized locally but does not guarantee the global optimum for the whole system. 

However, in global optimization, the objective is to coordinate all supply chain 

activities so as to maximize system performance by reducing cost, increasing service 

level, reducing the bullwhip effect, and using resources more effectively (Simchi-Levi 

et al., 2004). Moreover, to sustain competitive advantage in highly volatile market, 

inter-temporal integration is critical to the firm (Shapiro, 2001). 

The integration and coordination of decisions at different planning horizons are 

quite difficult because it requires a complex trade-off analysis between various costs. 

For example, as the number of facilities in a supply chain increases, the inventory costs 

also increase due to increased safety stocks required to protect each distribution center 

against uncertainties in customer demands as shown in Figure 4-1 (Simchi-Levi et al., 

2004) (Teo & Shu, 2004). Increasing the number of facilities increases the inbound 

transportation cost. On the other hand, the outbound transportation costs decrease 

because facilities are located closer to the market. Thus, if the number of facilities is 

increased to a point where there is a significant loss of economies of scale in inbound 



4.1  Integrated Supply Chain Network Design 

38 

transportation, increasing the number of facilities increases total transportation cost 

(Chopra, 2003). Facility cost is decreased by reducing the number of facilities because 

of larger economies of scale. Moreover, it is often dependent on the capacity, as well as 

the location and demand characteristics (Teo & Shu, 2004). Consequently, integrating 

decisions affecting different planning horizons may lead to a better solution than non-

integrated decisions.  

 

 

 

 

 

 

 

 

Figure 4-1: Relationship between number of facilities and logistics cost (Chopra, 2003) 

Hence, the main components of distribution network design can be classified as: 

Facility location, Transportation, and Inventory (Perl & Sirisoponslip, 1988). As 

mentioned above, it is clear that these three key components are highly related; 

however, there has been limited available research on the integrated model. To illustrate 

the existing interactions between them and to achieve a better solution, these 

components should be jointly considered in the mathematical model. The first decision 

variable in the mathematical model includes the location issues that determine whether a 

facility should be located at a candidate facility site. The second decision contains the 

assignment variables that determine the allocation of zone demand to the open facilities. 

The last decision is how to manage the inventory at each open facility. Given a 

combination of these decisions, it is important to assign a set of performance indicators 

of the complete supply chain in order to identify the quality of the solution such as 

financial and logistics indicators (Ding et al., 2009).  Financial indicators include all the 

costs related to network design such as investment costs, transportation costs and 

inventory costs. Logistics indicators include average demand fill-rate, average demand 

cycle time, probability of on-time delivery, etc. 

As mentioned in Chapter 1, one of the purposes of this dissertation is related to the 

strategic network design (SND) module. Strategic Network Design module (SND) and 
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Cost 
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the flow of information between different levels are shown in Figure 4-2. SND employ 

decision support through metaheuristic algorithms (e.g., genetic algorithms, particle 

swarm, etc.) to provide (near) optimal solutions to the supply chain design problem 

jointly considering various operating constraints of each supply chain process. At the 

demand planning level, sales forecasts are calculated based on historical data. The 

forecasted demand from Demand Planning is imported into the Multisite Master 

Planning where the available capacity and inventory costs are calculated based on 

average inventory levels (Meyr et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4-2: Coordination and information flows between decision levels for strategic network design tool 

(adapted from (Meyr et al., 2005)) 

At the Transportation Planning level, a mathematical expression is used to predict 

the average travel distance according to a given network configuration. The planned 

capacity, average inventory costs, and estimated travel distance are given to the SND to 

determine the optimal network configuration. The outcome of the SND module is given 

to the optimization tool to improve the current network configuration. Next, each part of 

the costs related to network design is explained in detail. 

4.2 Model Notations and Problem Formulation 

In this section, an analytical model for the integrated distribution network design 

problem is introduced. The problem is formulated as a multiobjective mixed-integer 

non-linear programming model so as to explore the tradeoff between conflicting 

objectives. Total annual cost is the sum of the cost to open DCs, the inventory cost 
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(including ordering, holding and backorder costs) at the open DCs, and inbound and 

outbound transportation costs. It is assumed that the customers are uniformly scattered 

in a connected region, A. Each customer i ∈ M = {1,..., M} has an independent 

distributed demand according to normal distribution. In order to represent the DC 

locations, a binary decision variable 𝑋𝑘 is defined, which takes the value of 1 if the DC 

k is opened and 0 otherwise. In addition, to determine assignment of the retailer to DCs, 

another binary decision variable 𝑌𝑖𝑘 is used, which takes the value of 1 if the retailer i is 

assigned to DC k and 0 otherwise.  The following notation is used for the mathematical 

model: 

Variables Definition 

index  

i index for customers (i = 1… M) 

k index for candidate DCs (k = 1…K) 

parameters  

𝐷𝑘 average annual demand of point k 

𝐴 size of the service region (in square km) 

µ𝑖 average daily demand at customer i 

𝜎𝑖 standard deviation of daily demand at customer i 

𝜎𝑘 standard deviation of daily demand at DC k 

𝑓𝑘𝑛 fixed investment cost of locating a DC k at breakpoint n 

𝑐𝑘𝑛 variable operating cost of DC k at breakpoint n 

𝑉𝑘 amount of the space requirement of DC k 

𝑑𝑖𝑘 distance between DC k to customer i, for each 𝑖 𝜖 𝐼 and 𝑘 𝜖 𝐾  

𝛼 desired percentage of retailers orders satisfied (fill rate) 

𝑧𝛼 standard normal deviate such that 𝑃(𝑧 ≤ 𝑧𝛼) = 𝛼 

ℎ inventory holding cost per unit per day (€/unit-day) 

𝜈 variable delivery cost per km from DC to customers (€/km) 

𝐹𝑘 fixed cost of placing an order at DC k (€/order) 

𝑐𝑓𝑘 fixed shipment cost from external supplier to DC k (€/truck) 

𝑐𝑣𝑘 variable inbound shipment cost per unit from external supplier to DC k 

𝑄𝑘 order quantity at DC k 

𝑅𝑘 reorder point at DC k 

𝐿 lead time in days 

Wcap vehicle capacity 

𝜒 planning horizon (days in a year) 

4.2.1 Analysis of Facility Location Cost 
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Facility location costs for DCs or warehouses include three main components: 

handling costs, fixed costs for opening a new facility, and storage costs (Simchi-Levi et 

al., 2004). Handling costs include labor and utility costs, which involve the loading, 

moving, and unloading of materials. Handling costs due to the transit of products 

through the facility is often a direct function of the volume moved and depends on the 

characteristics of the product’s family (Battini, 2008). Storage costs represent inventory 

carrying costs that are proportional to the level of inventories held. Fixed costs include 

all cost components that are not proportional to the amount of material that flows 

through the warehouse, but proportional to warehouse size (capacity) (Figure 4.3).  

 

 

 

 

 

 

 

 

 

Figure 4-3: Fixed costs as a function of the warehouse capacity (Simchi-Levi et al., 2004) 

Most of the research in the areas of facility location has focus on the linear 

transportation costs and one fixed location cost for each possible facility (Holmberg, 

1994). However, the cost structure of a facility in the real-world problem can be more 

sophisticated than just considering fixed setup cost. To better suit real life situations, the 

facility location problem with staircase cost structure has been proposed by Holmberg 

(1994). This allows several fixed costs at different capacity levels, and also allows the 

linear operating cost coefficients to vary between different intervals of capacity amount. 

In this study, the cost open to DCs is categorized as a fixed investment cost that is in the 

unit of Euro (€) per year as well as a variable cost that is in Euro (€) per unit. Fixed 

investment cost is based on the DC’s space requirement, server number, inventory size, 

or machine capacity, which should be determined by the storage area in square meters 

(Huang et al., 2009). Variable operating cost is calculated based on the product volume 

passing through the DC in a year and represents economies-of-scale in capacity 

acquisition to be built-in at each new facility (Verter & Dincer, 1995). Thus, total 

facility cost is a function of assigned customer demand. Goh et al. (2001) consider the 
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warehouse sizing problem in the case where the model includes not only warehouse 

construction cost, but also inventory holding and replenishment cost. Similarly, to 

model the facility cost, it is assumed that only discrete choices of facility sizes are 

available, i.e., 𝑠0 < 𝑠1 < ⋯ < 𝑠𝑛−1 < 𝑠𝑛 are the possible DC sizes as shown in Figure 

4-4. 

𝑠0 𝑠1 𝑠2 𝑠𝑛−1 𝑠𝑛  

 Total 

Facility 

Cost 

Slope 1 

𝑓
1
 

𝑓
2
 

𝑓
𝑛

 

Facility Size 

Slope 2 

Slope n 

 

Figure 4-4: Operating Cost 𝐹(𝑉𝑘) of potential facility k versus facility size 

The DC size is measured as the total number of storage spaces. The main problem is 

how to estimate the required space based on the annual flow of product through a DC. 

Since every pallet requires an empty space in the distribution center as well as space for 

aisles, picking, sorting, processing facilities and AGVs, the required storage space is 

typically multiplied by a factor (Simchi-Levi et al., 2004). A typical factor used in 

practice is three (Bramel & Simchi-Levi, 1997). According to Rosenblatt (1988), the 

nominal capacity requirement is given by: 

 𝑉𝑘 = (𝑅𝑘 +
𝑄𝑘

2
) × 𝑑                  4-1 

 

where d is average capacity required per unit stored. Let us denote the cost of 

allocating 𝑉𝑘 units of capacity at facility k by F(𝑉𝑘). The total facility cost of DCs can 

be formulated as follow: 

 𝐶𝑂 = ∑ 𝐹(𝑉𝑘) =

𝐾

𝑘=1

∑ 𝑓𝑘𝑛 + 𝑐𝑘𝑛𝐷𝑘

𝐾

𝑘=1

,       𝑠𝑛−1 < 𝑉𝑘 < 𝑠𝑛 4-2 

 

where 𝑓𝑘𝑛 is the fixed charge cost for opening a DC k at capacity 𝑠𝑛 and 𝑐𝑘𝑛 is the 

corresponding variable operating cost per unit item for the capacity 𝑠𝑛. 
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4.2.2 Analysis of Transportation Costs  

Transportation refers to the efficiency of moving products from raw material to 

finished goods between different facilities in a supply chain (Ma, 2003). Transportation 

cost is directly related to the type of product, size of shipment, and movement distance.  

 

 

 

 

 

 

 

 

 

Figure 4-5: Inbound and Outbound Transportation of DCs 

In general, logistic activities are divided in two major groups as inbound and 

outbound logistics. Inbound logistics is defined as the process of receiving goods from 

the upstream suppliers of a supply chain member, while outbound logistics are the 

activities between the supply chain member and its downstream customers (Harrison & 

Van Hoek, 2005). In the light of this definition, total transportation cost for a member of 

a supply chain can be categorized as inbound and outbound transportation costs 

(Mangotra et al., 2009). Taking the regional DC as the point of reference, inbound 

transportation costs are costs associated with the movement of products from the 

warehouse to the regional DC. The cost of shipping products to the retailers located 

within a DC’s service area is referred to as the outbound transportation cost as shown in 

Figure 4-5. Both inbound and outbound transportation costs play one of the most 

significant roles in the establishment of the DC to a particular location. 
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The inbound transportation costs are classified into two categories (Bowersox et al., 

2002). The first category comprises fixed costs, which are not directly influenced by the 

shipment volume. Fixed costs include vehicles, terminals, rights-of-way, information 

systems, and support equipment. The second category is variable transportation cost, 

which depends on volume, distance, and services provided, and it includes the direct 

carrier cost associated with the movement of each load. Variable transportation cost is 

generally measured as a cost per mile or per unit of weight. The inbound transport costs 

can be modeled as the one-origin/one-destination situation (Daganzo, 2005). 

 𝐶𝐼𝑇 = ∑(𝑐𝑓𝑘 + 𝑐𝑣𝑘𝑄𝑘)
𝐷𝑘

𝑄𝑘

𝐾

𝑘=1

 4-3 

 

𝑐𝑓𝑘 is a fixed cost per shipment, 𝑐𝑣𝑘 is the rate at which the variable cost per 

shipment increases size. ( 𝑐𝑓𝑘 + 𝑐𝑣𝑘𝑄𝑘) express the inbound transportation cost incurred 

in a single shipment to a DC and 𝐷𝑘 𝑄𝑘⁄  is the expected number of inbound shipments 

to a DC during a year. 

Outbound Transportation Cost 

Outbound transportation refers to the movement of finished products to each retailer 

within the serving area of that particular DC. In many of distribution network design 

models, outbound transportation cost is simplified to the direct shipment (Shen & Qi, 

2007), which refers to delivering freight directly from the origin to the destination 

without visiting any intermediate point. If each vehicle visits more than one customer, 

the problem is termed a Vehicle Routing Problem (VRP). VRP is a problem of finding 

the optimal routes of delivery for vehicles to minimize the total distance traveled, where 

a route is a tour that starts at the DC, visits a subset of the customers and ends at the 

DC. All customers must be visited exactly once by one vehicle and the sum of the 

demands of the visited customers on a route must not exceed the vehicle capacity. 

A vehicle routing problem (VRP) is a well-known NP-hard (Non-deterministic 

Polynomial-time hard) problem and computational experience indicates that the VRP is 

difficult to solve to optimality within acceptable computation time. In the network 

design phase, it is only needed to estimate the total expected routing costs as a result of 

different facility locations instead of detailed route plan of vehicles (Shen & Qi, 2007). 

In this context, using continuous approximations, Daganzo ( (1984), (2005)) proposed a 

simple closed mathematical expression to predict the travel distance in capacitated 

vehicle routing problems. In Daganzo’s approach, the optimal tour length is estimated 
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by using the Euclidean distance between the center of the vehicle’s routing zone and 

DC, the number of routes needed, the distance between consecutive stops within the 

service area, the number of points or nodes, and parameters that depend on the shape of 

the service area. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6: Approximation of average tour length 

The continuous approximation technique (CA) has been applied to a variety of 

problems, e.g., the location-routing problem (Shen & Qi, 2007), production–distribution 

system design (Dasci & Verter, 2001), distribution-inventory planning (You et al., 

2011), and delivery-route planning (Geunes et al., 2007). In the most basic case, for a 

given district of area A and M visiting points, the expected travelling salesman problem 

(TSP) distance travelled by a vehicle can be approximated as (Novaes et al., 2000) 

(Daganzo, 1984): 

  𝑇𝑆𝑃 ≈ 𝑘𝑒√𝑀𝐴 4-4 

where 𝑘𝑒 is a proportionality constant equal to 0.75 when the Euclidean metric is 

considered. In this context, continuous approximation is used to estimate the length of 

routing between DCs and retailers without considering the detailed schedule. Daganzo 

(1984) proposes a simple and good approximation for the expected total tour length 

travelled by truck servicing M customers: 

 𝑉𝑅𝑃𝑘 ≈ 2 × 𝑙 ̅ ×
𝑀

𝑞
+ 𝑇𝑆𝑃 4-5 

In this expression, the average distance between the customers and the distribution 

center is 𝑙,̅ the maximum number of customers that can be served per truck is 𝑞. 
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Haimovich and Rinnooy Kan (1985) proposed the following formula to the upper bound 

of approximate the VRP tour distance: 

 𝑉𝑅𝑃𝑘 ≈ 2 ⌈
𝑀

𝑞
⌉ 𝑙 ̅ + (1 −

1

𝑞
) 𝑇𝑆𝑃 

4-6 

 

To address the expected tour length TSP, Shen and Qi (2007) divide A into two 

areas: 𝐴1 that is occupied by the customers assigned to DC k, and 𝐴2 that is occupied by 

the other 𝑀 − 𝑚 customers. With this new definition, the length of the tour in local 

delivery zone is defined by Shen and Qi (2007)  as follows: 

 𝑇𝑆𝑃 ≅ 𝑘𝑒√𝑚𝑚
𝐴

𝑀
√

𝑀

𝑚𝐴
= 𝑘𝑒𝑚√

𝐴

𝑀
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Thus the total delivery cost per year is calculated as follow: 

 𝑉𝑅𝑃𝑗 ≈ χ ν (2
(∑ 𝜇𝑖𝑑𝑖𝑗

𝑚
𝑖=1 )

𝑊𝑐𝑎𝑝
+ (1 −

1

𝑊𝑐𝑎𝑝
) 𝑘𝑒𝑚√

𝐴

𝑀
) 

4-8 

 

Shen and Qi (2007) test the performance of their approach using data sets from 

Christofides and Mingozzi (1979) and compare the solutions with those from a meta-

heuristic (Agarwal et al., 2004) that produce optimal solutions. In the case of more than 

50 customers, his computational results show the approximation error is bounded to 2% 

(Geunes et al., 2007). 

4.2.3 Analysis of Inventory Cost  

There are three fundamental questions that must be answered by a decision maker 

managing the inventory level at a location (Silver et al., 1998): 

- How often should the inventory status be determined? 

- When should a replenishment order be placed? 

- How large should the replenishment order be? 

In simplest terms, inventories can be categorized in five distinct forms: anticipation 

stock, cycle stock, safety stock, pipeline stock, and decoupling stock (Muckstadt & 

Sapra, 2010). A firm creates anticipation stocks not to meet immediate needs, but to 

meet requirements in the more distant future. Cycle stocks are necessary to meet current 

demand or to meet the average demand during the time between successive 
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replenishments. Safety stock is the amount of inventory to protect against deviations 

from average demand during lead time. Safety stock should be considered in addition to 

the regular stock; its volume depends on lead time, demand variability, and service 

level. Pipeline stock refers to inventories in transit between echelons of the supply chain 

channel. Pipeline stock is equal to the expected demand over the lead time. Decoupling 

stock is defined as another type of safety stock used in manufacturing settings. In order 

to protect against variation in processing times or machine breakdowns at a station, 

inventories are introduced between successive stations. These inventories are called 

decoupling stocks. Shortage costs are paid when customer orders are not fulfilled or are 

set to be satisfied later when the product becomes available. They can be divided into 

two models: backorder or lost sales models (Ghiani et al., 2004). 

- Lost sales costs: A lost sale is likely to occur if the unavailable items can be 

easily obtained from a competitor. Lost sales costs include the profit that 

would have made on the sale, and the negative effect that the shortage could 

have on future sales. 

- Backorder costs: When goods are difficult to replace, a shortage often results 

in a delayed sale. Apart from the negative effect on future sales, a back order 

could result in a penalty.  

For calculating the inventory holding cost at any located DC, a continuous review 

(R, Q) inventory policy is considered with service a level constraint that is a slight 

variation of the model proposed by Miranda and Garrido (2006). It means that a batch of 

size Q is ordered when the inventory position declines to R. If an order is submitted to 

the plant, the inventory level must cover the customers’ demand during lead time with 

probability 1 − 𝛼. The total mean demand assigned to a DC k is (∑ 𝐷𝑖𝑖𝜖𝑚 ) and 𝐷𝑖 is 

(∑ 𝜒𝜇𝑖), where m denotes the set of customers assigned to the DC. Since the customers’ 

demands are assumed to be independent and normally distributed, the safety stock held 

at a DC is given by (𝑧𝛼√𝐿√∑ 𝜎𝑖
2

𝑖∈𝑚 ). The average total annual inventory cost including 

fixed order cost, holding cost, safety stock cost and inbound transportation cost can be 

formulated as follow: 

 𝐹𝑘

𝐷𝑘

𝑄𝑘
+ 𝜒ℎ (

𝑄𝑘

2
+ 𝑧𝛼√𝐿 ∑ 𝜎𝑖

2

𝑖∈𝑚

) + (𝑐𝑓 + 𝑐𝑣𝑄𝑘)
𝐷𝑘

𝑄𝑘
 

4-9 

 

The first term in expression (1) is total fixed cost of placing orders per year. The 
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second term is average holding cost and the average cost associated with the safety 

stock kept at DC k ($/day). The third term is the expected inbound transportation cost at 

DC k. Minimizing the total costs, the optimal ordering quantity (𝑄𝑘
∗) for DC k with 

differentiating the objective function in terms of 𝑄𝑘 can be expressed by Eq.4-11, based 

on the known EOQ model: 

 𝑄𝑘
∗ = √

2𝐷𝑘(𝐹𝑘 + 𝑐𝑓)

𝜒ℎ
 

4-10 

 

Replacing this expression into the objective function produces the following 

expression: 

 √2𝜒ℎ(𝐹𝑘 + 𝑐𝑓)√𝐷𝑘 + 𝜒ℎ𝑧𝛼√𝐿√𝜎𝑘
2 + 𝑐𝑣𝐷𝑘 

4-11 

 

4.2.4 Integrated Supply Chain Network Design Function 

The Set Covering Problem (SCP) is one of the most popular discrete optimization 

problems among facility location models (Chanta et al., 2011). In the SCP, one of the 

objectives is to find the location and optimum number of facilities. An important 

consideration in selecting the location of these facilities is the constraint that requires 

that all demands must be covered by at least one facility. As a special case of the more 

general SCP, the objective in this study is to find the best number and location of DCs 

that minimizes total logistics costs and maximizes demand satisfaction in a defined 

structure so that each customer is covered by at least one facility. The following are the 

decision variables for the mathematical model: 

𝑋𝑘 = {
1, 𝑖𝑓 𝐷𝐶 𝑘 𝑖𝑠 𝑜𝑝𝑒𝑛𝑒𝑑
0, otherwise

 

𝑌𝑖𝑘 = {
1, 𝑖𝑓 𝐷𝐶 𝑘 𝑖𝑠 assigned to customer i
0, otherwise

 

The proposed analytical multiobjective mixed-integer non-linear programming 

model of integrated location-inventory can be formulated as: 
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Objective 1: 𝑚𝑖𝑛   𝑇𝐶 = ∑ {(𝑓𝑘𝑛 + 𝑐𝑘𝑛𝐷𝑘)𝑋𝑘 + 𝜃 [
𝐷𝑘

𝑄𝑘

(𝑔𝑘 + 𝑎𝑘𝑄𝑘)]

𝑘𝜖𝐾

+ 𝛽 [𝐹𝑘

𝐷𝑘

𝑄𝑘
+ 𝜒ℎ (

𝑄𝑘

2
+ 𝑧𝛼√𝐿√𝜎𝑘

2)]

+ 𝜃𝜒𝜈 [2
(∑ 𝜇𝑖𝑑𝑖𝑘𝑌𝑖𝑘

𝑀
𝑖=1 )

𝑊𝑐𝑎𝑝

+ (1 −
1

𝑊𝑐𝑎𝑝
) 𝑘𝑒 ∑ 𝑌𝑖𝑘

𝑀

𝑖=1

√
𝐴

𝑀
]} 

4-12 

 

Objective 2: min   𝐶𝐷 = {max(𝑑𝑖𝑗)𝑌𝑖𝑘} 

4-13 

 

 𝑠. 𝑡                                   ∑ 𝑌𝑖𝑘 = 1,

𝑘∈𝐾

   for each  𝑖 ∈ 𝐼 4-14 

 

 
  𝑌𝑖𝑘-𝑋𝑘≤0,        for each   𝑘 ∈ 𝐾 

4-15 

 

 
 𝐷𝑘 = ∑ 𝜒𝜇𝑖𝑌𝑖𝑘 ,        for each  𝑖 ∈ 𝐼    

4-16 

 

 
𝜎𝑘

2 = ∑ 𝜎𝑖
2𝑌𝑖𝑘 ,        for each  𝑖 ∈ 𝐼    

4-17 

 

 
∑ 𝜇𝑖𝑌𝑖𝑘 ≤ 𝐶𝑎𝑝𝑘𝑋𝑘

𝑖∈𝐼

       for each   𝑘 ∈ 𝐾 
4-18 

 

 
Xk∈{0,1}         for each  𝑘 ∈ 𝐾 

4-19 

 

 
                   𝑌ik∈{0,1}         for each  𝑘 ∈ 𝐾 𝑎𝑛𝑑 𝑖 ∈ 𝐼 

4-20 

 
The first term in the objective function (TC) (4-12) computes the fixed cost of locating 

facilities and the variable facility costs as a function of the facility size. The second term in 

the function computes the inventory costs with inbound transportation costs. The last term 

computes the transportation costs from the DCs to the customers. CD denotes the 

secondary objective that minimizes the maximum distance between each covered 

customer and its closest opened DC. β and θ are weight factors for inventory and 

transportation costs. Equation (4-14) ensures that each retailer is served by exactly one 

DC. Constraint (4-15) stipulates that the assignments can only be made to open DCs. 
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Expressions (4-16) and (4-17) compute the mean and variance of DC demand to mean 

(annual) and variance of customer demand (daily). Constraints (4-18) represent that the 

mean demand served does not exceed the DC’s capacity. Finally, expressions (4-19) 

and (4-20) indicate that the design variables (X and Y) are binary. 

4.3 Solution Methodology 

As with the most combinatorial problems, exact methods are computationally 

feasible only for small/medium-sized problems (Pullan, 2009). For larger instances, it is 

therefore necessary to use faster heuristic methods. Thus metaheuristic algorithms are 

use in Strategic Network Design module (Figure 4-7). In this study, population-based 

metaheuristics for solving the multiobjective facility location-allocation problem such 

as PSO are proposed. Firstly, it presents the quantum particle swarm optimization 

algorithm (QPSO) that can be used to efficiently solve the combinatorial problem.  

 

 

 

 

 

 

 

Figure 4-7: Strategic network optimization tool with metaheuristics 

4.3.1 Application of Quantum-PSO for Location-Inventory Problem 

The first step in a Quantum-PSO algorithm for a particular problem is to design 

individual particles representing the possible solutions and to avoid infeasible solutions 

in the population. The potential solution for the problem is encoded in a binary string 

with one position for every candidate location such that each binary encoding specifies 

the status of a candidate DC whether a given DC j is opened or closed (variables 𝑋𝑗). As 

“0” indicates that candidate site j is not to open, “1” in position j is interpreted to mean 
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that candidate site j is selected to open. Each particle of QPSO described consists of 

binary values whose length is equal to the number of candidate DC nodes in the 

problem. For example the 𝑘𝑡ℎ particle of the population for an n-location problem could 

be given as,  

𝐼𝑘 = {1, 0 , 0, 1, 0, 1, 0, 1, 1, 0} 

The above particle represents 10 candidate DCs such that DCs are identified by 1, 4, 

6, 8, 9 have been selected to open on the ten possible locations. The steps of algorithm 

QPSO applied to solve the problem is given below: 

Step 1: Initialize parameters. Load the parameters of M customers and K candidate 

DCs.  

Step 2: Initialize particle swarm. Randomly generate a particle swarm based on 

single dimensional array, which consists of K binary values representing decision 

variables related to open or close the DC. 

Step 3: Allocate customers to the open DC. A greedy heuristics used to assign 

customer to open DCs. This procedure assigns each customer to its nearest DCs. If it is 

not possible to assign a customer to its nearest DC because of excessive capacity, it is 

assigned to the second nearest DC with sufficient capacity, and so on.  

Step 4: Compute the fitness value. After allocation process, fitness values of each 

particle in swarm are calculated by using Equation 4-11 and 4-12. 

Step 5: Apply quantum particle swarm optimization steps described in previous 

section. 

Step 6: Obtain the optimal solution and the total cost of integrated facility location-

inventory problem. 

In this research, local search was not used, which improves the solution with the k-

change neighborhoods procedure. Daskin et al. (2005) introduced three main reasons for 

not considering the improvement of the cost by shifting assignments of customer to 

DCs: solution times remain relatively low; the number of demand nodes assigned to a 

site other than the nearest site is often very small; and the cost penalty paid for 

assigning demand volumes to the nearest facility as opposed to assigning them 

optimally is only a fraction of a percent. 

4.4 The Strategic Network Design Tool and Description of Experiment 

In making decisions concerning the strategic network design and identifying 
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decision opportunities, quantitative tools that measure supply chain performance in 

terms of cost, profit and service level play a major role. The research behind this 

dissertation developed a tool called SNDOptimizer that allows the user to address the 

network design problem for multi-echelon supply chains. The application is written in 

the C-Sharp programming language. Supply chain optimizers normally offer the 

capability to construct a graphical user interface and the ability to connect with the 

optimization engine. Figure 4-8 illustrates the general methodology of the optimization 

procedure and interaction between tools. 

The SNDOptimizer tool focuses on facility location and customer allocation 

problems. Metaheuristics are primarily used as an engine for solving the mixed non-

linear integer problem. It is possible to choose two metaheuristic approaches 

implemented by the platform SNDOptimizer to solve problem instances. Furthermore, it 

can import data from general database systems and spreadsheets like MS-Access and 

MS-Excel. In particular, data for multi-echelon supply chain problems include Plants’, 

Warehouses’, Candidate DCs’ and Customers’ information. All input data can be saved 

and opened as part of one project that is associated with an instance of the problem. 

SNDOptimizer automatically generates an instance of the problem and tries to solve it 

by the application of its solver. For planning and analysis for actual implementation, the 

tool supports graphical statistical outputs that are necessary to capture the value of the 

optimal solution. This tool provides the following as optimized output:  

- The location for each open DC. 

- The customer-to-DC assignments. 

- Optimal order quantities for each open DC 

- Demand levels satisfied at each open DC 

- Detailed cost summary for each open DC 

A typical network configuration problem involves large amounts of data. To design 

an integrated supply chain, the decision-maker needs to have information on at least the 

following items (Shen, 2005):  

- locations of customers and the candidate locations of Distribution Centers (DCs) 

- information (e.g., annual demand) about different products 

- cost parameters of opening and operating DCs, inventory, and transportation 

For facility location and demand allocation problems, the geographical parameters, 

base cost parameters and base constraints form an adequate input data set. The model 

includes the current network of central warehouses, potential distribution centers, and 
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retailers that respond to consumer demand for finished goods SKUs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8: Structure of a supply chain network optimizer  

4.4.1 Description of Strategic Network Design Experiment 
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(20 potential locations) of various retail companies and approximately more than 1000 a 

large set of geographically scattered retailers and customers. In such a network, 

products are transferred from plants to their warehouses, from warehouses to DCs, and 

from there, to retailers. It should be noted that warehouses are located at the plants. 
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Figure 4-9: Supply Chain distribution network of the case study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-10: Candidate DCs and customers’ location 
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their inventory levels. Each distribution center faces a stochastic customer demand from 

stores who carry negligible inventory of the products. Figure 4-10 illustrates the 

geographic location of candidate DCs (red square dots) and the location of demand 

points (blue circle dots). The main question is to find the optimal number, size, location, 

and service area of facilities that minimize the costs and maximize service efficiency to 

serve the customers. 

4.5 Model Results 

The goal of this section is to show the application of the mathematical model by 

numerical results obtained by solving instances of the location-inventory problem as a 

practical case study and to highlight several insights in response to varying the 

parameters. For each experiment, it is examined that how the network design decisions 

change with variable test parameters. These test parameters include the number of 

customers in the system, the average unit inventory holding cost, and the average unit 

transportation cost per km. All other parameters are considered common parameters and 

remain constant for all sample problems and the experimental data used is defined in 

Appendix D. All computational work was performed on a personal computer (32-bit 

operating system, 2.70 GHz CPU, and 8.00 GB.  

 

 

 

 

 

 

 

 

 

Figure 4-11: Location-Allocation Result of Integrated Network Design 

A typical experimental result for two optimization criteria incurred in designing the 

Cost: 3 049 635 € 
Coverage Distance: 221 km 

Cost: 2 610 228 € 
Coverage Distance: 432 km 
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distribution network is illustrated in Figure 4-11. The red squares represent DCs used in 

the solution as the black squares represent DCs that are located not to open. Allocation 

of demand to the corresponding DCs is shown with straight line. From the observed 

result, the cost is measured in 2,610,228 € for minimum cost criteria, while the cost is 

measured in 3,049,635 € for minimum coverage distance criteria. Figure 4-12 shows all 

the solution points in the Pareto front line that are found by minimizing the total cost 

while decreasing the maximum distance between uncovered demand and opened DCs. 

For example, it can be seen in the figure that two DCs are finally selected for 

minimizing cost, while 6 DCs are required for minimizing the maximum customer 

coverage distance. From the Figure 4-12, it can be also seen that for the cost values 

between 2,610,228 € and 3,049,635 € result in maximum coverage ranging between 432 

km and 221 km. Figure 4-13 shows the difference in performance for each cost 

component, based on the solutions with 2 DCs and 6 DCs opened. Clearly, and 

supported by the results, it can be seen the impacts of two decision criteria on the cost 

components and the number of the DC selection. Figure 4-14 illustrates the solution 

points of the model in terms of the trade-off between coverage and cost. According to 

Figure 4-14, a 48.84 % reduction in coverage distance is offset by a 16.83 % increase 

the total cost. It is worth mentioning solution 9 and solution 10, a 13.2 % reduction in 

coverage distance can be offset by a 0.1 % increase in total cost. The trade-off between 

coverage distance and cost provides a guideline for decision makers in selecting an 

efficient solution generated from a multi-objective facility location model. 

 

Figure 4-12: Non-dominated solutions of the model — first objective is to minimize the total cost and 

second objective is to minimize the distance between uncovered demand and opened DCs 
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Figure 4-13: Cost components performance comparison for the two configurations 

To evaluate the influence of transportation and inventory costs factors on DC 

selection and customer assignment, the values of β (weight factor for inventory cost) 

and θ (weight factor for transportation cost) are varied. To analyze the ratio between the 

unit transportation cost and the unit inventory cost, the case study scenario is modeled 

with 200 customers. Changing the weights of the costs leads the model to present a new 

optimal design, which is depicted in the Table 4-1. 

 

Figure 4-14: The trade-off between the cost and coverage distance 
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transportation costs versus inventory costs. As transportation cost becomes more 

important, the number of DCs increased. On the other hand, as β increases, the number 

of DCs decreases in order to take advantage of the collective safety stocking effect. 

Optimal solutions obtained from the Pareto front of efficient solutions based on two 

objective functions are illustrated in Figure 4-15 under integrated and non-integrated 

scenarios.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-15: Comparison of integrated and non-integrated (without inventory cost) network design 

According to the Figure 4-15, as cost minimization has an impact on the number of 

opened DC, the coverage distance objective has not an impact on the best solution. To 

evaluate the efficiency of the proposed algorithm, a comparative test was performed 

with multiobjective genetic algorithm (NSGA-II). NSGA-II (Elitist Non-Dominated 

Sorting Genetic Algorithm) is one of the most popularly used GA for multi-objective 

optimization. The testing network consists of 200 customers and 20 candidate 

distribution centers (DCs). For implementing GA, population size of 100 is taken and 

the maximum number of generations is taken as 100. Uniform crossover is used as the 
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recombination operator. As illustrated in Table 4-2, MO-QPSO is faster than NSGA-II 

for the average computational time. 

Table 4-1: Computational results of varying weight factors  

θ / β  Open DCs  Open Cost Routing 

Cost 

Inventory 

Cost 

Inbound 

Cost 

1 3 DCs 3% 67% 5% 25% 

0,5 2 DCs 4% 65% 8% 23% 

0,1 1 DCs 9% 53% 21% 17% 

Table 4-2: Solution times of different problem sets 

   NSGA-II MO-QPSO 

Problem Set 

No.  

Of Customer 

No. Of  

candidate DCs 

CPU Time 

(millisecond) 

 

CPU Time 

(millisecond) 

1 50 10 12030 3933 

2 100 10 47029 15004 

3 100 20 59462 22596 

4 200 20 184853 112368 

4.6 Summary 

In this chapter, the facility location problem has formulated as a mixed nonlinear 

integer programming model that takes into consideration nonlinear facility location 

costs, inventory costs and routing costs. Most of supply chain network designs in 

previous literature focused on minimizing total costs only. In real world problems, 

however, there are multiple objectives to be considered simultaneously and they are 

typically conflicting objectives. Thus, two objectives have been considered in this 

study. The one objective under consideration is to find the best number and location of 

DCs that minimizes total logistics costs. The second objective is to minimize the 

maximum distance between each covered customer and its closest opened DC to 

maximize demand satisfaction in a defined structure. As with most combinatorial 

problems, exact methods are limited in the size of the problem that they are able to 

solve within reasonable time. For larger instances, it is therefore necessary to use faster 

heuristic methods. Consequently, due to the complexity of the problem, optimization 

process of the mathematical model has been performed using metaheuristic algorithms. 

Quantum-based Particle Swarm Optimization (QPSO) technique has been applied as a 

solver to find the Pareto optimal solutions.  

The proposed model provides an insight into the simultaneous relationship between 

facility location, inventory, and transportation. All the results tend to highlight that the 
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distribution network design in the real world may be better analyzed when considering 

the interdependence between decision levels rather than considering each decision level 

individually. It has been also observed that the optimal network structure is quite 

different with (integrated) and without (non-integrated) considering inventory in the 

supply chain design. In this chapter, a strategic network design tool (SNDOptimizer) 

has been presented for the purpose of solving the multiobjective integrated supply chain 

problem. The proposed approach and models implemented by SNDOptimizer 

developed in C-Sharp to find feasible solutions closed as possible to the optimality. 



 

 Chapter 5

Object-Oriented Modeling for Inventory of 

Multi-Echelon Supply Chain 

In recent years, the efficient and effective management of material flow throughout 

the supply chain has become more important in order to improve customer service level 

and reduce costs for the whole system. In the past, the majority of the solution 

approaches used to solve multi-echelon supply chain problems were based on 

conventional methods using analytical techniques. However, they are insufficient to 

cope with the SC dynamics because of the inability to handle to the complex 

interactions between the SC members and to represent stochastic behaviors existing in 

many real world problems. Unlike the traditional methods, simulation has recently 

become a major computer-based tool that enables us to model complex systems without 

limiting assumptions, which are subject to both variability and complexity (Banks, 

2000). This chapter describes the design of an object-oriented simulation framework to 

analyze different inventory control strategies within a given supply chain. The primary 

objective of this chapter is the development and creation of a multi-echelon supply 

chain simulation framework primarily for use in inventory applications. A secondary 

objective is to describe an overview of how an object-oriented library for simulating 

inventory is implemented. The simulation toolbox is developed using Microsoft Visual 

C-Sharp programming language, which is one of the several languages that support 

object-oriented programming. The library classes consist of objects representing the 

nodes, an interconnection structure for a multi-echelon system, and a management 

system for moving the material between different nodes within the network. A brief 

description of different simulation modeling approaches is presented in Section 5.1. 

Section 5.2 presents a conceptual model to describe inventory processes of multi-

echelon supply chains. The details of the proposed object-oriented simulation model are 

given in Section 5.3. Section 5.4 presents the cost components of the simulation model. 
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In Section 5.5, we describe the performance measures identified through simulation. 

5.1 Major Supply Chain Simulation Approaches 

In today’s business environment, supply chains are faced with challenges to deliver 

high quality products and to bring products to the customer on time to achieve a 

competitive advantage. Demand variance, uncertainties in lead-time, forecast errors, and 

a dramatically changing production environment make supply chains more complicated 

to analyze. Developing a model that represents the supply chain characteristics and 

dynamics is an important issue to understand the mechanics and processes of a supply 

chain (Ramakrishnan & Wysk, 2002). In the literature, modeling of SC is classified into 

two main categories: analytical models and simulation models. According to Min and 

Zhou (2002), supply chain models can be classified as deterministic (non-probabilistic), 

stochastic (probabilistic), hybrid, and IT-driven. On the other hand, Sabri and Beamon 

(2000) classify supply chain modeling into four groups of deterministic analytical 

models, stochastic analytical models, economic models and simulation models. Since 

many analytical models are inadequate for the realistic representation of the system due 

to the fact that they lack the capability of handling variability and uncertainty, 

simulation is used as an effective way to model the supply chain because of its ability to 

incorporate uncertainties and dynamics of supply chain.   

Recently, simulation has been considered as a decision support tool offering an 

alternative method for detailed analysis of the complex real world systems and is 

defined as a representation of a real system that usually takes the form of a set of 

assumptions concerning the operation of that system (Banks, 2000) (Douraid et al., 

2012). There is several simulation methods used to study the dynamics that result from 

decisions made in such systems. In this context, four simulation types are distinguished 

by Kleijnen (2003): spreadsheet simulation, system dynamics (SD), discrete-event 

simulation (DES), and business games. Although the object-oriented simulation 

framework is chosen in this study, this section first discusses four common simulation 

methods known as spreadsheet simulation, SD, DES and agent-based simulation (ABS).  

5.1.1 Spreadsheet-Based Simulation 

Spreadsheet simulation refers to the use of a spreadsheet to represent the model and 

perform the simulation experiment (Seila, 2001). This kind of simulation is quite 

suitable for the user and an attractive platform for simulation, since developers and 
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users can easily pass simulation models to one another. However, assessing the results 

of proposing these simulation models with spreadsheets may prove too simple and 

unreal (Kleijnen & Smits, 2003). 

5.1.2 Systems Dynamics Based Simulation (SDS) 

System dynamics is a computer-aided approach to study and manage complex 

feedback systems like one finds in business and other social systems (Márquez, 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: Forrester’s Supply Chain Dynamics Model (Forrester, 1961) 

Forrester first applied system dynamics to industrial management problems in the 

early 1960s as a modeling and simulation methodology. The classic supply chain model 

used by Forrester is divided in four levels: retailer, wholesaler, distributor and 

manufacturing as shown in Figure 5-1. (Forrester, 1961). He studied how these links 

react to deviations between the current inventory levels and the target inventory levels. 

He found that ‘common sense’ strategies may amplify fluctuations in the demand by 

final customers up the SC (Kleijnen & Smits, 2003). In general, the main advantage of 

system dynamics (SD) is providing very effective modeling and analyzing complex 

dynamics affected by non-linearity, feedback loops and time delays, which significantly 
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impact the behavior of the whole system (Sterman, 2000). However, variables in SD 

models are generally usually represented as deterministic average values (Tako & 

Robinson, 2006). 

5.1.3 Discrete-Event Simulation (DES) 

Another widely used simulation technique is discrete-even simulation (DES). The 

use of DES for strategic, tactical and operational problems in manufacturing, logistics, 

and supply chain management has grown in recent decades. It has been used widely for 

network optimization, policy optimization, identification of the causes of uncertainties 

and their impact, and in the development of methods to reduce/eliminate these 

uncertainties (Ramakrishnan & Wysk, 2002). In DES, the simulation model has a given 

state at any point in time, and the simulation state remains unchanged unless a 

simulation event occurs (Altiok & Melamed, 2007). Each event is implemented as a 

procedure (computer code) whose execution can change state variables and possibly 

schedule other events. Main challenges in DES that supply chain analyst faces are (Lee 

et al., 2002):  i) reflection of the continuous nature of the process is not possible, ii) 

growing complexity for more detailed models, iii) too much simplification for small 

scaled models.     

5.1.4 Agent-Based Simulation (ABS) 

Recently, Agent Based Simulation (ABS) has been increasingly used to analyze 

business systems and supply chain management as a new modeling paradigm. In ABS, 

the model consists of a set of agents that represent the behaviors of the different 

individuals or entities within the supply chain network, e.g. customers, retailer, 

wholesaler, manufacturer, supplier or any other entity (Tah, 2005). In order to satisfy its 

own objectives, each agent has its own behaviors or algorithms to make its own 

decisions, a number of parameters or indicators to express its status (Sarker et al., 

2005). For example, a retailer (an agent) determines its market demand, calculates its 

own ordering quantity, places orders, receives products from the distributors, updates its 

status, calculates cost and sells to the market. According to Kodia (2010), the main 

advantages of the agent based simulation can be summarized as follows: i) it considers 

individual behavior, ii) takes into account actions and interactions between individuals, 

and iii) examines the emergence of collective phenomena.  
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5.2 Object-Oriented Framework for Multi-Echelon Inventory 

Simulation  

As mentioned in the previous section, supply chain modeling commonly implies 

simplified representation of the system with components or building blocks. To 

facilitate the modeling and analysis of different supply chain settings, an inventory 

simulation library is developed using an object oriented programming language that 

implement a set of suitable object classes. These classes are used as building blocks and 

a subsystem that can encapsulate a large number of system parameters within given 

instances. The class diagrams of the simulation framework in details are illustrated in 

Appendix B. The traditional approach in the simulation of a supply chain is to define 

the system as a network of different nodes (i.e., factories, warehouses, retailers and 

customers) and each of these nodes performs different functions. A link between nodes 

represents the flow of materials and information among the whole supply chain that 

makes possible the functions of procurement, processing (or manufacturing), storage, 

and distribution (Beamon & Chen, 2001). In the developed simulation framework, 

different object classes are defined to represent each type of node in the supply chain, 

such as customer class, retailer class, warehouse class, and factory class. Figure 5-2 and 

Table 5-1 provide a brief description of important classes in the presented simulation 

framework. This class hierarchy can be extended in many ways. Customer, which is at 

the lowest in the supply chain network, is an object class that represents the source of 

the original downstream demands. Factory is an object class that is responsible for 

transforming raw material into intermediate or finished products. In general, a factory 

receives orders from the warehouse. The main activity of the warehouse class is to 

manage storage and handling processes, and the retailer class is where an external 

customer buys the product. Transportation class represents the link between nodes, 

which is used to move product from one node to another in a supply chain. Every class 

object sends demands or order requests to the next class object in the upstream direction 

and ship products to the node that is downstream in the network. At the end of the 

simulation, every object related to inventory computes the service level and costs of the 

current scenario and adds the result to the value of overall costs. The following sections 

will discuss the classes within the inventory simulation tool. 
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Table 5-1: List of classes in supply chain simulation framework (Güller et al., 2015) 

No Class Name No Class Name 

1 SupplyChainMap 11 Retailer 

2 Simulation 12 Warehouse 

3 Clock 13 Factory 

4 Time 14 Transportation 

5 NodeEventAbstract 15 Location 

6 ArrivalEvent 16 Statistics 

7 OrderEvent 17 Inventory 

8 StockPointAbstract 18 InventoryPolicy 

9 Customer 19 Parameters 

10 ProductionPolicy 20 QueuePolicy 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2: UML class diagrams of simulation package (Güller et al., 2015) 
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5.3 Some Object Classes for Simulation of Multi-echelon Inventory 

System 

The object-oriented approach is one of the popular modeling techniques to design 

and simulate complex systems. According to Barcio (1996), the main advantages of 

using object-oriented techniques in modeling and simulation are: “(i) software reuse is 

enhanced when object-oriented techniques are applied efficiently in defining the system 

objects, (ii) objects in the system can be defined in close correspondence to real-world 

objects, (iii) the rapid development of new software is promoted, (iv) the use of 

inheritance enables the creation of new objects and associated methods with minimal 

effort, and, (v) the use of encapsulation provides the appropriate distinction between 

object boundaries and is effective in identifying and controlling the propagation of 

errors”. The general principle of Object Oriented Programming (OOP) is to formulate 

problem using interacting objects rather than a set of functions and to define these 

objects in terms of their attributes and methods (Güller et al., 2015) (Alfons et al., 

2010). In OOP, objects are categorized into classes and class hierarchies. The behavior 

and interactions of these objects are modeled with generic functions and methods 

(PressMan, 1997). Each supply chain members in the object-oriented framework of the 

multi-echelon system, such as supplier, factory, warehouse and customer, can be 

modeled independently from the coordinating simulation tool. Hence, object-oriented 

design makes it easier to customize individual elements, thereby allowing more 

flexibility in the design (Richardson, 2006). The most important concepts in OOP 

supporting the design of such systems are encapsulation, class inheritance, subclasses, 

and polymorphism (PressMan, 1997). Inheritance provides defining new classes from 

existing classes and allows inheriting the attributes and methods of their base classes to 

the new classes (Garrido, 2009).  In addition to the attributes and operations shared with 

base classes, subclasses (derived classes) can be defined by additional features. The 

encapsulation principle refers to information and the attributes of an object hiding and is 

considered as a protected mechanism with an imaginary protection wall. Hence, all data 

and functions in a class are protected from any unauthorized access. 

The specification of the object-oriented framework of a system begins with the 

identification of the key elements within the system, their roles, attributes, relationships 

with each other, and modeling and implementation issues (Rosetti & Nangia, 2007). 

The main packages needed within a generic inventory simulation in the framework are 
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the following: Event, Node, Queue, Simulation, and SupplyChain summarized in Table 

5-2. Since it is beyond the scope of this section to discuss in detail the implementation 

of packages and all classes, a brief description of important classes is provided in this 

chapter. 

Table 5-2 Supply chain inventory simulator packages 

Package Functional Description 

Node Classes that represent locations within the supply chain, such as a warehouse. 

Event 

The package consists of a collection of event classes, such as customer arrival, 

transportation, and order processing. Each event objects change a state and is 

responsible for scheduling other events that depend on that event. 

Queue 
The package consists of different kind of queue logic such as FIFO, LIFO and 

priority list. 

Simulation The package responsible for the scheduling and execution of simulation events. 

SupplyChain Classes represent the connections between nodes and structure of SC 

 

According to Biswas and Narahari (2004), the elements of the object library in a 

simulation model of multi-echelon supply chain can be classified into two categories: 

structural objects and policy objects. Whereas the structural objects define the physical 

entities of the network, the policy objects define the protocols used in logistics 

processes such procurement, manufacturing, transportation, and distribution (Biaswas & 

Narahari, 2004). The main classes of the structural object in the presented simulation 

framework are factory, warehouse, retailer, supplier, customer and vehicles. Table 5-3 

illustrates the responsibilities of these objects. 

Table 5-3 Main supply chain structural objects and entities (Biaswas & Narahari, 2004) 

Customer 

A customer can be either an internal customer that is the various entities of the 

network like the plants and the distributors or an external customer that is the 

consumers of the products (finished or semi-finished). This class may also contain 

information related to demand data. 

Supplier 

(Factory) 

A supplier provides a plant with raw materials or sub-assemblies. A supplier could 

be a manufacturing plant or a late-customization center or a full-fledged supply 

chain. 

Retailer 

An external customer generally buys the products from the retailer. A retailer has an 

associated stocking warehouse, where the inventories of the products are stored. A 

retailer can receive deliveries from distributor or plant central warehouses or late-

customization center or from some other retailer. The product is delivered to 

customer if it is available in the retailer's warehouse. Otherwise the order is added to 

a queue for the particular product, according to a pre-assigned priority. The order is 

delivered when the product is received (from distributor or plant or late-
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customization center as the case may be). 

Warehouse 

A warehouse is a storage facility that is characterized by the nature and capacity of 

the products it can store. It can be attached to the plant, the distributor, and the 

retailer.  

Vehicle 

(Truck) 

Vehicles transport products from one node of the network to another. Each vehicle 

has characteristics in terms of products it can carry, capacity (in volume or weight), 

costs, and speed. 

 

5.3.1 The Simulation Class 

To manage the simulation experiments and communicate with the optimization tool, 

a general control class, called Simulation, is utilized in this thesis. The Simulation class 

contains the definition of parameters that might be necessary within a simulation such 

as the period, number of nodes, location of nodes etc. (Güller et al., 2015). This class 

maintains a simulator’s clock recording the current simulation time and the next event 

that is retrieved from the event list, and starts executing the events in the appropriate 

order. Its methods serve to trigger the clock for simulation, stop the simulator’s clock, 

initialize the simulation, and read the simulation clock.  One of methods used in this 

class is the Run method that starts the execution of simulation based on the desired 

number of replications and run length. The simulation process continues until some pre-

specified stopping condition or no more items are on the event list. The parameter 

simulationPeriod defining the duration of a simulation experiment is a user-defined 

value. Execution ends with the creation of a Statistical Results window.  

5.3.2 The NodeEvent and Queue Classes 

The abstract class NodeEvent is being used to represent the collection of processes 

(events) related to the flow of material through a supply chain. Events are the result of a 

structural object’s action and are processed from the environment simulator. Each type 

of event should be defined as a subclass of the NodeEvent class. The fundamental 

constructed events in the library, occurring at supply chain members, are “order event” 

and “arrival event” (Güller et al., 2015). The main recorded data in such an order event 

are the quantity of ordered item, type of the sender and the receiver, and time properties 

associated with this event. When an order event is constructed, it is scheduled based on 

the duration of process and current simulation time. Arrival event is the process of 

accepting an order that has been filled.  

During the simulation run events are sorted on a time axis in increasing order of 
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simulation clock time. For this purpose, the IQueue interface is created with some queue 

policies, e.g. FIFO, LIFO and priority. According to the selected policy, the event list is 

sorted from top to bottom by ascending time or ascending priority in order to select 

future event to execute. As a result, the Queue class provides a mechanism to select 

events from the future event queue.  

5.3.3 The StockPoint Class 

The StockPoint abstract class and interface INode that encapsulates logistic activities 

are used to model the member of a supply chain that hold stocks, such as warehouses 

and retailers. User-defined stock point classes must be declared as extensions of the 

StockPoint class and INode interface. The class structure consists of the data 

declarations that will define the characteristics of the objects created from this class. 

Examples of StockPoint methods that are responsible for the functions and data related 

to the inventory are CheckIniventory(), StockGeneration(), MakeReplenishment(), and 

Initialize(). 

5.3.4 The Customer Class 

When dealing with modeling a supply chain, one of the most important issues is to 

define customer demand structure. The Customer class is an object class that is 

responsible for the functions and data related to the end-customer of a supply chain 

network. The Customer class generates the sampling of random demand by providing 

details of the customer requirements within the system. The demand inter-arrival time 

(or demand per unit time) and demand order sizes require three inputs: distribution, 

mean, and coefficient of variation (CV) or standard deviation. Distribution related to 

demand can follow either a discrete or continuous distribution. The normal distribution 

assumption is known to be a very good fit to describe many demand functions at the 

different levels of supply chains for the cases of fast-demand items. However, for very 

slow moving items, it is usually assumed that the demand process is Poisson distributed. 

A large number of studies assume a homogeneous normal distribution demand pattern 

in supply chain problems because of its convenient mathematical properties. However, 

actual customer demand may be better modelled with distributions that are asymmetric 

and positive skew shape (Cobb et al., 2013). Thus, the lognormal distribution is more 

suitable than the normal distribution when modelling non-negative demands (Juan et al., 

2014). As a result, Gamma, Beta and Lognormal distributions have been found to be of 
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considerable value in describing demand functions. For simplicity, customer demand is 

generated as accumulated demand per day, per week, per month, etc. 

5.3.5 The Retailer Class 

The Retailer class is an object class which represents a member in SC. The new 

Retailer object inherits from abstract class StockPoint and deals with external 

customers, but also deals with suppliers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3: Flowchart of (R, Q) Inventory Policy for Retailer Class 
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level, the demand is backordered, and inserted into a list called BackorderItems, which 

corresponds to a waiting queue for unsatisfied demands. The demand does not allow 

partial filling. Accumulated backorders in a queue are satisfied on the queue rule after 

the arrival of a replenishment order. The retailer objects are characterized by a list of 

parameters such as replenishment policy, leadtime, fixed order costs, stock holding 

costs, shortage costs, delivery costs, etc. For the purpose of supply chain inventory 

simulation, an inventory (replenishment) policy is assigned to a certain retailer object. 

Based on the inventory policy, the retailer places an order to its supplier (or its 

warehouse), whenever the inventory position goes below the predefined reorder point. 

An overview of the inventory control logic of retailer object is shown in Figure 5-3. 

5.3.6 The Warehouse Class 

This class models the warehouse, which is one of the structural objects of a supply 

chain. Warehouses, which are connected to the supplier and the retailer, go through a 

process of receiving products from the supplier, storing them and sending them to the 

retailer. The same architecture of the retailer class is implemented for the warehouse 

class with some different variables and modified methods. Objects of this class have an 

input to receive orders for products from retailers and an output to send requests to its 

suppliers. The two main logics implemented in warehouse objects are supplying retailer 

orders and controlling inventory.  

 

 

 

 

 

 

 

 

 

Figure 5-4: The supply operation flow chart for warehouse class 
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As described above the whole supply chain network is order-driven, which means 

that production or transportation is triggered by requests sent from nodes to their 

predecessors within the network (Almeder et al., 2009). Material flow processes in the 

Warehouse class is controlled by the Inventory class. In addition, the warehouse object 

consists of the Successor List that indicates the respective downstream members 

connected to each of this node. Warehouse instances operate according to the following 

logic. Once a warehouse receives a request from a retailer, the quantity required is 

compared with the on-hand inventory to meet the retailer demand. If a warehouse has 

enough stock to supply the order, the order is shipped from the warehouse to its retailer 

and the installation’s inventory level is updated by reducing the equivalent amount of 

the order from both on-hand inventory and inventory position levels.  

 

 

 

 

 

 

 

 

 

Figure 5-5: Flowchart of Process for Warehouse Inventory Control  

However, if there is not enough stock to supply the order, the unsatisfied demand 

becomes backlogged. It will only be satisfied once the warehouse receives adequate 

replenishment from the upper echelon. Backordered quantities are recorded to calculate 

the warehouse performance measures, such as fill rate. Figure 5-4 shows the supply 

operation flow chart of warehouse class. For each warehouse class object, a process is 

defined to review inventory position continuously or periodically depending upon the 

inventory control policy. Whenever the inventory level is less than the reorder point for 

the product, a predefined order is placed. This process is illustrated in Figure 5-5. Once 

Inventory 

control logic 

Inventory check 

schedule  
Check if the 

stock is enough  
No 

order 

Place 

replenishment 

order 

Lead-time for 

replenishment 

Recalculation 

the stock 

 
Queue of 

backorders 

If backorder 

exist 

Yes 

No 



5.4  The Simulation Model Cost Structure 

74 

the simulation has reached the maximum simulation period, the total cost of the 

warehouse is calculated using inventory holding cost, backorder cost, and ordering cost 

as well as the customer service level.  

5.3.7 The Inventory Class 

The Inventory class provides methods for requesting inventory and for filling 

demands (Rossetti et al., 2006). Every Inventory class is associated with an inventory 

policy that allows the description of rules to manage the material flow in the stock. 

Inventory class has several important methods, such as StockGeneration(), 

CheckInventory(), and UpdateInventory(). The StockGeneration() method updates the 

on-hand inventory level of the stock point, reduces it by the amount of filled demand, 

and updates the backordered item list. Orders are created with the inventory evaluation 

event using the CheckInventory() method. The method checks the current inventory 

level and places an order when it is necessary. The order receiving process is controlled 

by the UpdateInventory() method. Whenever orders that were placed at some point in 

the past arrive, the inventory information of the node is updated using this method. 

5.4 The Simulation Model Cost Structure 

In this section, a cost structure of the multi-echelon inventory system is developed. 

In a distribution chain, there are mainly two types of costs: inventory cost at each node 

and transportation cost between different nodes. The sum of logistic costs for all nodes 

in a network is expressed as (Güller et al., 2015): 

𝑇𝑆𝐶 =  𝑇𝑆𝐶𝐻 + 𝑇𝑆𝐶𝐵 + 𝑇𝑆𝐶𝑂 + 𝑇𝑆𝐶𝑇 

where TSCH  is the total holding cost,  TSCO is the total order cost, TSCB is the 

total backorder cost and TSCT is the total transportation cost. Next, each part of the cost 

is explained in detail. 

5.4.1 Inventory Cost Structure 

Each StockPoint object of a simulation model has its own inventory cost parameters. 

Inventory cost at a stock point comprises two types of costs: fixed cost for placing an 

order and variable cost for carrying the inventory. Storage of products leads to inventory 

cost, which incorporates cost functions depending on the stock levels. Inventory on 

hand and backorder, respectively, at a location i at the end of period t is given by: 
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 𝑂𝑛𝐻𝑎𝑛𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 = 𝐼𝑡
𝑖+ = (𝐼𝑡−1

𝑖 + 𝑄𝑡
𝑖 − 𝐷𝑡

𝑖)
+

      5-1 

 𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 = 𝐼𝑡
𝑖− = (𝐼𝑡−1

𝑖 + 𝑄𝑡
𝑖 − 𝐷𝑡

𝑖)
−

 5-2 

The inventory cost including holding cost, shortage cost, and order cost can be 

expressed as: 

 𝐼𝑛𝑣𝐶𝑜𝑠𝑡(𝑡) = 𝐶𝑎𝑟𝑟𝑦𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝑡) + 𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝑡) 
5-3 

 𝐶𝑎𝑟𝑟𝑦𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝑡) = {
ℎ × (𝑡 − 𝑡𝑝) × 𝐼𝑡          𝑖𝑓 𝐼𝑡 ≥ 0 

𝑝 × (𝑡 − 𝑡𝑝) × 𝐼𝑡         𝑖𝑓 𝐼𝑡 < 0 
 5-4 

 𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝑡) = 𝑑 × 𝐴 
5-5 

Where: ℎ is holding cost per unit item per unit time 

 𝑝 is shortage cost per unit item per unit time 

 𝐴 is fixed ordering cost 

 𝑡 is present time 

 𝑡𝑝 is time for previous demand 

 𝐼𝑡 is net inventory which equals to on hand inventory minus backordered 

demands. 

           {
𝑑 = 1 𝑖𝑓 𝑎𝑛 𝑖𝑡𝑒𝑚 𝑖𝑠 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑏𝑦 𝑜𝑏𝑗𝑒𝑐𝑡 𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑡𝑖𝑚𝑒

𝑑 = 0 𝑒𝑙𝑠𝑒
 

5.4.2 Activity-Based Cost Structure 

The Activity-Based Costing approach is used to establish the actual expense for the 

order processing. The method involves breaking down activities into individual tasks or 

cost drivers, which help in estimating the cost. The cost drivers of an order fulfillment 

per item are order picking, order packing, consolidating and loading/unloading. Table 

5-4 presents the activity-based cost components and related parameters. 

Table 5-4: Activity- based Cost Parameters at DCs 

Activity Cost Description 

Order Preparing 1.20 $ per Order 

Order Packing 0.05 $ per Carton 

Unloading 0.30 $ per Pallet 

Loading 0.20 $ per Pallet 

Consolidating 0.10 $ per Carton 

5.4.3 Transportation Cost Structure 

Even though current research in logistic management highlight that the integration 
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of production, inventory and transportation arising in a supplier–retailer logistic system 

has an increased importance, classical inventory management strategies usually have 

ignored transportation costs in the formulations or typically assumed that transportation 

cost is included in another cost such as setup cost (Mendoza & Ventura, 2011) (Zhao et 

al., 2004). Inventory models without taking into consideration quantity discounts are 

insufficient to analyze the impact of the shipment quantity on the per-shipment cost of 

transportation. Hence, inventory decisions made in supply chains, in which 

transportation cost, is neglected would fail to take advantage of the economies of scale 

(Güller et al., 2015). Moreover, the interrelationship between transportation cost, 

shipment sizes and transportation distance adds another dimension of complexity to 

incorporate the transportation cost into the inventory analysis. One of the fundamental 

issues of the incorporation of transportation costs into the analysis of order quantities is 

to assign the appropriate freight rate structure (Mendoza & Ventura, 2011).  

 

 

 

 

 

 

 

 

Figure 5-6: Two Transportation Cost Structures 

Different structure of shipping freight cost are typically categorized as non-linear 

Less-than-truckload (LTL) transportation cost function and Full Truckload (FTL) 

transportation cost function (see Figure 5-6). The LTL cost function includes multiple 

breakpoints in the quantity shipped where the per unit cost decreases. In contrast to 

LTL, the FTL rate is independent of the quantity shipped as it has a fixed cost that is 

incurred for each load up to a given capacity (Riksts & Ventura, 2010). If shipment 

quantities between supply chain members are relatively small and less than the vehicle 

capacity, multiple incremental quantity discounts are applied to the additional shipment 

quantities beyond the predetermined breakpoint (Xin, 2007). In this situation, decision-

makers face a basic tradeoff: make smaller shipments from the supplier more frequently 

at a higher per-unit shipping cost, or make larger shipments less frequently, which 
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increases the holding cost at the warehouses. Therefore, the objective of integrated 

inventory management is to find an optimal shipment quantity that includes the quantity 

discount effect and, at the same time, to control the inventory cost at the stock point. 

 

Figure 5-7: Distance-dependent Unit cost function (Janic, 2007) 

It is common knowledge that shipping costs are typically a function of the distance 

and the size of the shipment. The transportation cost per unit can be estimated in two 

ways. The first way is to determine the shipping cost per unit as a rational function. The 

second way is to generate rates over a realistic range of shipment quantities (Q) for a 

lane and then fit a curve having some functional form (Tyworth & Ruiz-Torres, 2000). 

This approach is effective when trucking companies offer discounts on the freight rate 

to encourage shippers to buy in large quantities. Tywort and Ruiz-Torres (2000) 

proposed the use of power function to model LTL freight rates as follow: 

 𝐹𝐿𝑇𝐿(𝑄) =  𝛼(𝑄𝑤)𝛽 5-6 

where 𝛼 and 𝛽 are the corresponding coefficients. These coefficients can be found 

using nonlinear regression analysis. In this research, the distance-dependent cost for 

trucks based on the full vehicle load is assumed to be 5,46 × (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)−0,278 vehicle-

km (Janic, 2007)(Figure 5-7). The LTL transportation cost rates offered by the 

transportation
 
third party for four major distances, which are approximately 100, 250, 

500 and 1,000 km in length, is illustrated in Figure 5-8 (Aldarrat, 2007). The estimated 

full truck load cost for the 100, 250, 500 and 1,000 km are, respectively, as follow: 150, 

300, 485 and 800.  
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Figure 5-8: Examples of Freight Rates (Distance-Shipment Based) (Güller et al., 2015) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-9: A dual-mode transportation cost structure for 1000 km distance (Güller et al., 2015) 

In order to contribute to incorporation transportation costs into inventory 

replenishment decisions, a dual mode transportation cost structure including full 

truckloads and a less than full truckload carrier is used as illustrated in Figure 5-9. The 

two-mode transportation cost structure can be interpreted as follows (Xin, 2007): For a 

quantity smaller than 𝑄1, the LTL transportation cost is adopted. If the shipment 

quantity falls between 𝑄1and 𝑄2, it is optimal to choose FTL transportation mode. As a 

consequence, the transportation cost is a constant value independent of the shipment 

quantity. Once the first truck is fully loaded, the warehouse chooses a combination of 

the two transportation modes by shipping the excess quantity in LTL transportation 
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mode. 

5.5 Supply Chain Performance Measures 

It is important to define appropriate performance measures in logistic network 

design and analysis.  A performance measure, or a set of performance measures, 

describes the feedback information to determine the efficiency and/or effectiveness of 

an existing system, or to compare alternative systems (Beoman, 1998). According to 

Beamon (1999), performance measures can be categorized as qualitative and 

quantitative. Qualitative performance measures are the measures that cannot be directly 

described numerically, such as customer satisfaction, flexibility, and supplier 

performance. Quantitative performance measures can be presented in numerical format. 

Quantitative supply chain performance measures may be associated with the objectives 

of the supply chain: cost, profit, and customer responsiveness. In this research, the 

performance measures identified through simulation are total system-wide cost, average 

waiting time in the system, average number of backorders and customer responsiveness.  

5.5.1 Notations 

In this section, the notations used in the multi-echelon inventory system are 

introduced as follows: 

Table 5-5: Notation explanation for the simulation model 

Variables Definition 

index  

j Plants index 

k Warehouse index 

l Distribution center index 

t Time index 

parameters  

J Number of plants 

K Number of warehouses  

L Number of distribution center 

𝐼𝑡
𝑖 Average inventory level of location i at time t 

𝐵𝑡
𝑘 Average backordered items of location i at time t 

T Planning period 

𝑂𝑡
𝑖 Number of placed order by location i at period t 

ℎ𝑖 Holding cost per item per time at location i 
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𝑝𝑖 Stockout cost per item per time at location i 

𝐴𝑖 Fixed order cost at location i 

𝑇𝑅𝑐 Truck Capacity 

𝑄𝑖 Replenishment quantity of location i in pallet unit 

𝐹𝑘𝑗() Transportation cost function between location k and j 

𝐷𝑡
𝑖 Total demand in location i’s customer zone during a period t 

𝑊𝑡 Waiting time 

𝐿𝑡 Lead-time 

𝑅𝑡 Replenishment time 

𝑃𝑡 Order placed time 

𝑂𝑃𝐾𝑖 Number of order-picking cartons at location i 

𝑂𝑃𝐾𝐶𝑖 Order-picking cost per carton at location i 

𝐿𝑜𝑎𝑑𝐶𝑖 Loading cost at location i 

𝑈𝐿𝑜𝑎𝑑𝐶𝑖 Unloading cost at location i 

𝑃𝑎𝑐𝑘𝐶𝑖 Packing cost at location i 

5.5.2 Measure Based on Cost 

The total cost function consists of five costs: holding cost, backorder cost, ordering 

cost, warehousing cost and shipping cost. The holding and backorder costs are 

composed of costs due to warehouses’ inventory and retailers’ inventory. Supply chain 

costs in this model consist of the following components:  

- Total Supply Chain Holding cost of products at all stock points.  

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 = 𝐼𝐴𝑙𝑙,𝑡 =
∑ ∑ 𝐼𝑡

𝑖𝑇
𝑡=1

𝐾
𝑘=1

𝑇
+

∑ ∑ 𝐼𝑡
𝑙𝑇

𝑡=1
𝐿
𝑙=1

𝑇
 5-7 

 
𝑇𝑆𝐶𝐻 = ∑ ∑(𝐼𝑡

𝑘 × ℎ𝑘)

𝐾

𝑘=1

𝑇

𝑡=1

+ ∑ ∑(𝐼𝑡
𝑙 × ℎ𝑙)

𝐿

𝑙=1

𝑇

𝑡=1

 
5-8 

- Total Supply Chain Stock-out cost of products. 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟 = 𝐵𝐴𝑙𝑙,𝑡 =
∑ ∑ 𝐵𝑡

𝑘𝑇
𝑡=1

𝐾
𝑘=1

𝑇
+

∑ ∑ 𝐵𝑡
𝑙𝑇

𝑡=1
𝐿
𝑙=1

𝑇
 5-9 

 
𝑇𝑆𝐶𝐵 = ∑ ∑(𝐵𝑡

𝑘 × 𝑝𝑘)

𝐾

𝑘=1

𝑇

𝑡=1

+ ∑ ∑(𝐵𝑡
𝑙 × 𝑝𝑙)

𝐿

𝑙=1

𝑇

𝑡=1
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- Total Supply Chain Ordering Cost (TSCO) 

 𝑇𝑆𝐶𝑂 = ∑ ∑ 𝑂𝑡
𝑘

𝑇

𝑡=1

× 𝐴𝑘

𝐾

𝑘=1

+ ∑ ∑ 𝑂𝑡
𝑙 × 𝐴𝑙

𝑇

𝑡=1

𝐿

𝑙=1

 
5-11 



Chapter 5 

81 

- Total Supply Chain Warehousing Cost = Loading + Unloading + Packing + 

Order Picking Costs 

 

𝑇𝑆𝐶𝑊 = ∑ ∑ 𝑂𝑃𝐾𝑘𝑙

𝐿

𝑙=1

× 𝑂𝑃𝐾𝐶𝑘𝑙

𝐾

𝑘=1

+ ∑ ∑ 𝑄𝑘𝑙 ×

𝐾

𝑘=1

𝐿

𝑙=1

𝐿𝑜𝑎𝑑𝐶𝑘𝑙

+ ∑ ∑ 𝑄𝑘𝑙 ×

𝐾

𝑘=1

𝐿

𝑙=1

𝑈𝐿𝑜𝑎𝑑𝐶𝑘𝑙

+ ∑ ∑ 𝑂𝑃𝐾𝑘𝑙 ×

𝐾

𝑘=1

𝐿

𝑙=1

𝑃𝑎𝑐𝑘𝐶𝑘𝑙 

5-12 

- Total Supply Chain Transportation cost of product shipped from 

Manufacturing Plants/Manufacturer’s Warehouses to Distribution Center and 

from Distribution Centers to Retailers 

 𝑇𝑆𝐶𝑇 = ∑ ∑ ∑ 𝐹𝑘𝑗(𝑄𝑘𝑗) × 𝑄𝑘𝑗

𝑇

𝑡=1

𝐽

𝑖=1

𝐾

𝑘=1

+ ∑ ∑ ∑ 𝐹𝑙𝑘(𝑄𝑙𝑘) × 𝑄𝑙𝑘

𝑇

𝑡=1

𝐾

𝑘=1

𝐿

𝑙=1

 
5-13 

Now the expected total cost function of the multi-echelon supply chain is the sum of 

the warehouse’s and the retailer's total cost equations given in Equations 5-7 and 5-13. 

In summary, the total integrated cost can be computed by adding up the cost 

components previously described and dividing by planning horizon as follows: 

 

 𝑇𝑆𝐶 =
𝑇𝑆𝐶𝐻 + 𝑇𝑆𝐶𝐵 + 𝑇𝑆𝐶𝑂 + 𝑇𝑆𝐶𝑊 + 𝑇𝑆𝐶𝑇

𝑇𝑑𝑎𝑦𝑠
 5-14 

5.5.3 Measure Based on Customer Service Level 

To measure customer satisfaction or the ability to effectively respond to customer 

demand, service levels are commonly used as a key performance indicator by an 

organization. The most common measures of service are (1) α service level, (2) β 

service level, and (3) γ service level (Silver et al., 1998), (Diks et al., 1996). The first 

type of service level is also called the cycle service level. It measures the probability 

that the net stock is non-negative at the end of an arbitrary period. The β service level, 

or fill rate, is a quantitative measure that represents the fraction of customer orders that 

is filled by on-hand inventory. The γ service level is one minus the ratio of the average 

backorder at a stock point immediately before arrival of a replenishment order to the 

average demand during an arbitrary replenishment cycle. 
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𝛽𝑖 = ( 
1

𝐿
∑ 𝛽

𝑖

𝐿

𝑖

+  
1

𝐾
∑ 𝛽

𝑖

𝐾

𝑖

) /2

= (
1

𝐿
(∑ (1 −

total number of backorders

total number of orders

𝐿

𝑖

))

+
1

𝐾
(∑ (1 −

total number of backorders

total number of orders

𝐾

𝑖

))) /2

= (
1

𝐿
∑ (1 −

∑ 𝐵𝑖
𝑡𝑇

𝑡=1

∑ 𝐷𝑖
𝑡𝑇

𝑡=1

) +
1

𝐾
∑ (1 −

∑ 𝐵𝑖
𝑡𝑇

𝑡=1

∑ 𝐷𝑖
𝑡𝑇

𝑡=1

)
𝐾

𝑖

𝐿

𝑖

) /2 
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5.5.4 Measure based on Order Response Time 

A node of a supply chain has five basic actions with regard to the life cycle of an 

order which may be performed differently depending on the type of node: order 

creation, order placement, order processing, order shipping, and order receiving 

(Chatfield et al., 2006). The length of time between the placement of an order and its 

receipt is called replenishment leadtime. Note that the replenishment leadtime is 

potentially variable and depends on the availability of on-hand inventory at the 

upstream supplier (Kaboli, 2013). In the event the central warehouse is out of stock, the 

DC waits an additional time, 𝑊𝑡, the time until the warehouse is replenished by one of 

its suppliers. Therefore, the total replenishment time of the distribution center, 𝑅𝑡, is: 

 𝑅𝑡 =  𝐿𝑡 + 𝑊𝑡 5-16 

In Equation 5.16, Lt is the transportation between the central warehouse and the DC. 

Again, even if the transportation time is deterministic, the waiting time is a random 

variable and therefore so is the actual lead time. The random variable lead-time demand 

is the key to determine the optimal inventory strategy (Zipkin, 2000). Since order 

response time is a time-based measure, it is also a key indicator of performance. 

Consequently, a service level measure based on response time for an order can be 

defined as the total number of products delivered on time: 

 𝑅𝑒𝑠𝑇𝑖𝑚𝑒𝑖 =
∑ (𝑅𝑡

𝑛 − 𝑃𝑡
𝑛)𝑁

𝑛=1

𝑁
 5-17 
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5.6 Summary  

In this chapter, a special library is described for the inventory simulation of multi-

echelon supply chain by using the object-oriented modeling approach (i.e., library using 

Microsoft Visual C-Sharp), in which any part of the system with a set of classes is 

presented. These classes include operations and objects representing nodes, interactions 

between nodes, and the management of moving material between the different nodes 

within the network. To define the performance measure of the supply chain, a cost 

structure and other indicators are introduced. The total cost function consists of five 

costs: holding cost, backorder cost, ordering cost, warehousing cost and transportation 

cost. For the transportation cost, two types of freight rate structures are presented: a 

non-linear Less-than-truckload (LTL) transportation cost function and a Full Truckload 

(FTL) transportation cost function. 

 



 

 Chapter 6

Multi-echelon Supply Chain Inventory 

Simulation Tool 

This chapter addresses the development of a graphical user interface that depicts the 

planning, managing and controlling of an inventory system; provides a brief description 

of input and output parameters of the simulation model; outlines the assumptions made 

during the simulation; and displays a pilot simulation environment for analyzing the 

behavior of different inventory control strategies. As an application example of 

developed object-oriented simulation framework a case study from the logistics domain 

is briefly introduced. The main purpose for the experiments and case study in this 

section is to show the effectiveness of the simulation model. By means of this 

simulation framework economic implications of alternative replenishment and queue 

strategies are analyzed and evaluated. The simulation experiment consists of the basic 

supply chain nodes, each of which has its own customers, suppliers, and inventory 

policy. The benefits of the tool are its capability to link with databases to import and 

export information, graphical user interface, and integration of the optimization tool. 

This tool provides broad functionality for optimization and analysis of output files. The 

rest of this chapter is organized as follows. Section 6.1 presents the simulation 

environment. Section 6.2 introduces the supply chain simulation case study and the 

experimental settings. The simulation study with numerical results is the subject of 

Section 6.3.  

6.1 Simulation Environment 

6.1.1 Simulation Tool Input Parameters 

Several input parameters are required to run the simulation model correctly. In 

particular, data on plants, central warehouses, DCs, retailers, and the transportation 
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specification are necessary. The simulation model is linked to MS Excel, MS Access 

and SQL Database where all parameters are entered, and then imported to the model at 

the start of the simulation. To implement the simulation model, the major inputs divided 

in five groups are described below: 

Geographical Parameters:  

- Customer or Market Area: Site name, city, zip code, location,  

- Plants, Warehouses, and Distribution Centers: Site name, city, zip code, location, 

- Design Parameters: Number of stages, number of facilities per stages, network type 

(convergent, divergent, serial, etc.). 

Network Policies and Strategies:  

- Inventory Policy: Determine inventory control policy (continuous or periodic) and 

inventory control parameters (order quantity, reorder point, safety stock, etc.),  

- Replenishment Strategy: Determine the replenishment order size (EOQ, Optimized) 

and inventory concept (installation or echelon concept),  

- Transportation Strategy: Determine transportation strategy, such as Less than Truck 

Load (LTL), Full Truck Load (FTL), or dual-mode transportation in which products 

can be shipped in two transportation modes. 

Cost Parameters: 

- Inventory Cost: In order to evaluate the cost of the proposed strategies, the 

following cost parameters need be inputted: a holding cost per unit per period, a 

backlog cost per unit time, order-processing cost, and activity-based cost 

parameters.  

- Transportation cost for possible transportation mode and freight rate costs. 

Operational Parameters: 

- Transportation times between the central warehouse and the distributors, the 

leadtime between the distributor and its customers. 

- Daily demands per customers, demand variances, and fitted distribution, 

- Production rate at factory, 

- Target fill rate for each installation. 

6.1.2 Simulation Tool Outputs 

The simulation tool provides the ability to compare output from various scenarios 

both graphically and textually. In order to compare the different strategies and to 

measure the results of simulation, numerous performance metrics are generated and 
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analyzed during the simulation. The summary file contains performance characteristics 

over all replications for each supply chain member and the whole system. Moreover, a 

detailed report and results are typically written to text files and exported to an Excel 

sheet after a simulation run. By clicking the corresponding "Simulation Result" button 

in the simulation tool, statistics associated with supply chain performance are displayed 

on the screen such as shown in Figure 6-1 and Figure 6-2.  

 

 

 

 

 

 

 

 

Figure 6-1: Inventory Simulation Output Screen 

One of the key output statistics for analysis is the inventory and backorder level 

chart. It shows the on-hand inventory, the backorder level, the reorder point, and the 

safety stock. Furthermore, graphically, demand per period of each node in a supply 

chain can be viewed as histograms and plots (see Figure 6-2). The free graphing library 

called ZedGraph is used to generate graphs. ZedGraph is an open source library written 

in C# for creating 2D line graphs, various curves and bar graphs based on arbitrary 

datasets (ZedGraph, 2009). In addition to total system-wide cost, some other important 

results designed for detailed analysis of each node include the following information: 

- Costs incurred at each of the nodes (holding cost, shortage cost, order cost, activity-

based cost and transportation cost),   

- Average inventory on hand and average backorder level,  

- Average replenishment cycle times,  

- Order lead times,  

- Average waiting time for orders,   

- Service levels and other related information, 
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- Number of orders placed on the upstream stage for the selected period. 

 

Figure 6-2: Example simulation graph outputs 

6.2 Illustrative Example and Simulation Settings 

In this section, a case study is conducted with the proposed simulation model. The 

modeling methodology is applied to the supply chain of a major food product company 

in Europe. A make-to-stock (MTS) supply chain network with manufacturers, finished 

goods warehouses, regional distribution centers with planned inventories and retailers 

were all considered. The given network consists of 3 manufacturing sites, 3 plant 

warehouses, 19 regional distribution centers, and approximately more than 1,000 

retailers spread over the country. From the plants’ warehouses the goods are shipped to 

the regional distribution centers from which they are delivered to the retail stores 

(Güller et al., 2015). Figure 6-3 illustrates the network considered under the study. 

Under the given supply chain network, products at plants are produced according to a 

constant production rate that is larger than the DC’s demand rate (𝑃 > 𝐷 where 

𝐷 = ∑ 𝐷𝑙). In other words, items are produced in batches at a finite rate at plants. The 

plants do not produce the same product types. Historical sales data reveals that the DCs’ 

a) Total Cost b) Demand Histogram 
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demand is split between the plant warehouses as follows: 62% of the demanded 

products supplied by plant-3; 28% of the products supplied by plant-1; and 12 % of the 

products supplied by plant-2. 

 

 

 

 

 

 

 

 

Figure 6-3: Given structure of the distribution network 

One of the main difficulties encountered in MTS is to define the remanufacturing 

point in inventory, where the production decision for an item at a plant is initiated. 

According to Figure 6-4, plants produce the final products with the production lot size 

𝑄0 where the lot size is a decision variable.  

 

 

 

 

 

 

Figure 6-4: Two echelon production-inventory system 

After the production process at plant, the products appear in its finished goods 

inventory and customer orders are typically filled from this existing stock. Continuous 

review system is considered at DCs, in which order quantity 𝑄𝑙and reorder point 𝑅𝑙 are 
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main decision variables. In this context, whenever the inventory level in DCs drops 

below the reorder point 𝑅𝑙, it triggers an order 𝑄𝑙. It is assumed that the replenishment 

orders are always placed at the end of the day and each distribution center receives daily 

orders of items from retailers. Any customer order that cannot be filled immediately is 

backordered. 

Data collection is a critical supply chain activity to quantify the associated system 

variables (De Sensi et al., 2008). The Data Collection step takes care of collecting data 

in each member of the supply chain as well as finding the most suitable input parameter 

for the simulation model. Each distribution center receives daily orders of different 

items from retailers and customers. The average daily demand for each item is fitted to 

some theoretical probability distributions using historical sales data of DCs.  

 

Figure 6-5: Percentage of each Probability Distribution of Demand for a Warehouse (Housein, 2007) 

A large number of studies assume a homogeneous normal distribution demand 

pattern in supply chain problems because of its convenient mathematical properties. 

However, actual customer demand may be better modelled with distributions that are 

asymmetric and positive skew shape (Cobb et al., 2013). According to Tyworth and 

O’Neill (1997), the normal approximation can lead to significant errors in safety stock. 

Figure 6-5 presents the percentage of fitted probability distribution of a domestic 

product for DCs. As shown in Figure 6-5, items are not homogeneous in terms of 

demand distribution. Figure 6-6 shows the aggregated daily average demand, the 

standard deviation, and the coefficient of variation (CV). Appendix C presents the fitted 

probability distribution for each distribution center in the considered supply chain. 
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Figure 6-6: Aggregated Average Daily Demand of DCs 

6.2.1 Simulation Model Assumptions 

Other assumptions made in the simulation study are listed briefly as follows:  

- Production rate 𝑃 at plants is fixed and is larger than the DC’s demand rate (𝑃 >

𝐷 where 𝐷 = ∑ 𝐷𝑖). 

- Continuous review inventory policy (R, Q) is used at each node of the supply chain 

and inventory is reviewed every day.   

- The initial inventory level of the stock points are assumed (𝑅 + 𝑄) to prevent the 

initial inventory status from being unrealistically “empty and idle” (Chen & Li, 

2009).  

- All unfilled orders are backordered, not lost sales, and delivered based on FIFO, 

LIFO or priority-based policy when adequate inventory is available. 

- High-capacity trucks, each of which has a loading capacity of 38 pallets, are used to 

move the full pallet product from the plant warehouses to regional distribution 

centers with Standard European Pallets with a height of 2.4 m height.   

- Due to the palletized shipment constraint, some parameters of the system must be 

converted to units of pallets. The replenished quantity for a stock point i (𝑄𝑖) 

rounded up to make a full pallet per item type. The minimum quantity is one pallet. 

6.2.2 Simulation Scenarios 

The simulation model previously described is used to simulate different scenarios 
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and strategies. Several experiments are conducted to analyze the responses total 

inventory cost and service level. The changing factors are inventory control parameters, 

capacity ratio, and queue policy for distribution centers’ orders. In simulation scenarios, 

a traditional model (referred to as decentralized decision making-process) is considered, 

in which information is not exchanged among supply chain members. In other words, in 

a decentralized system, the inventories at each installations of the supply chain are 

controlled independently based on local information. As described in the previous 

section, a Make-to-Stock (MTS) production-inventory system with backorders under 

the continuous-review (𝑄, 𝑅) policy is considered. In MTS strategy, the manufacturer 

has to decide when and how many items to produce to stock. Several strategies for the 

reorder point to find effective inventory levels are proposed in the literature. Banerjee 

et. al. (1996) describe four installation reorder point policies with no information 

sharing. 

- RSTD (Expt-Set-1): An order is triggered when the inventory position declines to a 

reorder point calculated for a given desired service level.  

 𝑅𝑘 = (∑ 𝐷𝑖

𝐿

𝑖=1
) × 𝐿𝑘 + 𝑘𝑘 × 𝜎𝑘 × √𝐿𝑘 6-1 

- RAVGQ (Expt-Set-2): An order is sent to a supplier when the inventory position 

declines to the average demand lot size from the downstream echelon. 

 𝑅𝑘 =
∑ 𝑄𝑖

𝐿
𝑖=1

𝐿
 6-2 

- RQMAX (Expt-Set-3): An order is sent to a supplier when the warehouse inventory 

position declines to the maximum demand lot size of the downstream echelon. 

 𝑅𝑘 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚{𝑄𝑙} 6-3 

- RHSUMQ (Expt-Set-4): An order is sent to a supplier when the warehouse 

inventory position declines to half the sum of all demand lot sizes from the 

downstream echelon. 

 𝑅𝑘 =
1

2
∑ 𝑄𝑖

𝐿

𝑖=1
 6-4 

Many inventory settings discussed in the literature assume that all customers have 

the same standards of service and, thus, customers are served based on a first-come, 

first-served basis (FCFS). In practice, however, there are cases with multiple demand 

classes having different service and price. With an advanced strategy, the warehouse can 

separate its downstream customers into multiple classes according to priority levels and 
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manage the inventory appropriately as shown in Figure 6-7. Iyer (2001) developed a 

queue model in which a non-preemptive priority (PR) is provided to orders from retailer 

locations with higher demand uncertainty. Under PR policy, the high priority customers 

will face a lead time with a smaller mean and variance, and the lower priority locations 

will face a lead time with a higher mean and variance as compared to FCFS. Rossetti 

and Xiang (2010) consider the backlog queue using a priority mechanism based on the 

amount demanded. Demands with fewer units demanded are placed at the front of the 

queue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-7: Multiple Demand Classes Inventory System 

Literature shows dividing the customers into different priority groups to be served 

increases companies’ performance and saves customers within the high-priority class 

time, which may increase their satisfaction. The challenge in this study is to analyze the 

impact of customer differentiation and multiple demand classes on the system 

performance in a multi-echelon production-inventory system. Order fulfillment rules 

become more important when the upstream location does not have enough inventories 

to satisfy all orders. As implied by the descending order of the priority parameter, the 

downstream customers are prioritized with class 1 having the highest priority, and class 

N having the lowest priority. The comparison between different rules is provided by 

simulation. The priority scenarios under consideration are: 

- Scenario-1 (FCFS-Policy): When a customer order for a product is received from 

downstream locations, the order is placed in queue based on the first come, first 
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served policy. Therefore, under this policy, completed items are allocated to the DC 

based on whose order has waited the longest time in the system. 

- Scenario-2 (Priority-CV-Policy): To develop a multiple demand-class inventory 

model, customers are prioritized based on demand uncertainty. As implied by the 

descending order of demand uncertainty, we prioritize downstream customers with 

class 1 having the highest priority, and class N having the lowest priority.  

- Scenario-3 (Priority-QMin-Policy): In this scenario the warehouse is assumed to 

meet the demands of its customers based on amount demanded. With this scheme 

the warehouse assigns a higher priority to its customer with lower batches 

demanded within a period.  

- Scenario-4 (Priority-QMax-Policy): In this scenario the warehouse assigns a higher 

priority to its customer with highest batches within a period. 

- Scenario-5 (Priority-QFreq-Policy): In this experiment, customers are prioritized 

based on order frequency. 

6.3 Simulation Results and Analysis 

In our experimental settings, each simulation run is replicated ten times. Simulation 

results are collected after running the model where the planning horizon is one year. It is 

out of the scope of this chapter to report all simulation results in detail. Some simulation 

results are reported and discussed at following sections. The base scenario is an 

experiment with the determination of the optimal safety stock setting given a 95% 

service level and order quantity calculated based on EOQ model (Appendix A). Figure 

6-9 and Figure 6-8 indicate the results from the base experiment. The target service 

level is compared with simulated service level of each RDC in Figure 6-10. The figure 

clearly demonstrates the simulated service levels differ from the target service level. 

Each bar represents the interval expected fill rate to the simulated fill rate at RDCs. 

Values larger than zero indicate that the service level reached is higher than expected. 

On the other hand, values smaller than zero (with red color) means that the target 

service level is not reached.  
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Figure 6-8: Simulated Total Supply Chain Costs of Plant-Warehouses for Base Experiment 

 

Figure 6-9: Simulated Total Supply Chain Costs of Each Local-DC 
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Figure 6-10: The Gap between Target Service Level and Simulated Service Level of DCs 

6.3.1 Analysis of Replenishment Strategies without Information Sharing 

The results of experimental sets are summarized in Table 6-1, where the numerical 

performance measures represent an arithmetic average of the ten replications. For 

continuous review policy without information sharing, we found that the best 

performance of the system is achieved with RHSUMQ policy. Although in this case the 

end-customer fill rate is better, the total system-wide cost is relatively small because of 

the lower stock-out level. The change in the relative fill rate performance of Exp-Set-4 

compared to the base experiment seems to be significant as the change in the cost is 

relatively low. In Figure 6-11, it can be seen that, under RQMAX (Exp-Set-3) and 

RAVGQ (Exp-Set-2) strategies, the average customer service level at RDCs decreases 

while total cost dramatically increases as a result of stockout penalties.  

In all the ordering policies without information sharing, there is a direct correlation 

between a warehouse’s order fill rate and a DC’s customer service level. Interestingly, 

some distribution centers perform very low in terms of service level in most of the 

experiments due to high variations in demand rate and stockout conditions at plant 

warehouses as shown in Figure 6-12 (for example RDC15). In other words, stockout 

level at Plant-WR has a significant impact on customer service level, depending on the 

order response time at the warehouse. In the event a warehouse goes out of stock, the 

regional-DCs wait an additional time. Since lead time of the DC’s replenishment order 

is a function of the expected waiting time due to a lack of stock at the higher echelon, 

the backorder fraction increases at the lower echelon by increasing lead time 

uncertainty. 
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Figure 6-11: Measures of performance for each uncoordinated strategy  

Table 6-1: Simulation performance summary for replenishment policies  

Experiment 

Average Order 

Waiting Time 

Order Fill 

Rate 

Customer Service 

Level 

Total Supply 

Chain Cost (€) 

Exp-Set-1* 0,04 0,97 94,4% 9,000,686 

Exp-Set-2 0,65 0,65 71,0% 19,795,051 

Exp-Set-3 0,57 0,67 72,7% 18,607,284 

Exp-Set-4 0,00 1 97,0% 9,031,041 

*Base Experiment 

 

Figure 6-12 illustrates that using FCFS strategy leads to unstable performance 

within the supply chain. This result confirms the extant literature on the First Come, 

First Served Rule ( (Axsäter, 2007) and (Iyer, 2001)). Once multiple orders appear in 

the same day and the order amount exceeds the on-hand inventory of plant-warehouse, 

the distribution centers receive products based on FCFS strategy. However, FCFS leads 

to long waiting times for the orders at the back of the queue (see Figure 6-12).   

Exp-Set-1* Exp-Set-2 Exp-Set-3 Exp-Set-4

ActivityB.Cost €2.043.333  €2.042.371  €2.050.596  €2.060.877  

TransportCost €4.939.929  €4.562.372  €4.615.980  €4.911.132  

OrderCost €923.680  €872.140  €880.600  €919.780  

ShortageCost €148.092  €11.752.984  €10.478.864  €54.611  

HoldingCost €945.652  €565.185  €581.244  €1.084.642  

Service Level 94,400% 71,000% 72,700% 97,000%
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Figure 6-12: Customer service level of each distribution center with different replenishment policy 

6.3.2 Analysis of Order Fulfillment Strategy  

In this section, the impact of different order fulfillment strategies on system 

performance is discussed. To analyze the effects of customer prioritization in a better 

way, it is only considered experimental sets that have a low order fill rate such as Exp-

Set-3. This assumption was made to understand the relationship between a random 

delay due to a stockout and the customer service level. With finite capacity, a plant that 

goes out of stock results in customers having to wait a long time. It also increases 

customers’ risks from uncertain inventory availability. 

Table 6-2: Cost Performance Measures of Exp-Set-1 under Different Queueing Policy 

Priority 

Holding 

Cost 

Shortage 

Cost 

Order 

Cost 

Transport 

Cost 

Activity 

Cost 

Total Cost 

(€) 

FCFS 11% 2% 10% 55% 23% 9,000,686 

CV 11% 2% 10% 55% 23% 9,010,048 

QMin 10% 4% 10% 53% 22% 9,133,102 

QFreq 10% 5% 10% 53% 22% 9,337,786 

QMax 11% 1% 10% 55% 23% 8,975,906 

The comparison between the performances of the FCFS, PRIORITY-CV, 

PRIORITY-QMin, PRIORITY-QFreq and PRIORITY-QMax order fulfillment polices 

are given in Table 6-2 and Table 6-3. Another important statistic collected in the 

experiment is the service levels within the network. These results are summarized in 

Figure 6-13 and Figure 6-14. The experimental results illustrate that order fulfillment 
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policy plays an important role in determining the customer service level. In order to 

gain a better understanding of the effect of order fulfillment strategy, the study selected 

three distribution centers to suffer from backorder: RDC6, RDC15, and RDC17. 

Although these policies do not make a substantial difference in the customer service 

levels of DCs, Figure 6-13 and Figure 6-14 show that the priority rule may have a 

significant impact on performance of selected RDCs. 

Table 6-3: Cost Performance Measures of Exp-Set-3 under Different Queueing Policy 

Priority 

Holding 

Cost 

Shortage 

Cost 

Order 

Cost 

Transport 

Cost 

Activity 

Cost 

Total Cost     

(€) 

FCFS 3% 56% 5% 25% 11%    18,607,284 

CV 3% 53% 5% 27% 12%    17,339,611  

QMin 3% 61% 4% 22% 10%    20,752,795  

QFreq 3% 61% 4% 22% 10%    20,696,718  

QMax 5% 26% 8% 43% 18%    11,272,318  

 

 

Figure 6-13: Performance of different order fulfillment strategies for RSDT replenishment policy 
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Figure 6-14: Performance of different order fulfillment strategies for RQMAX replenishment policy 

 

Figure 6-15: The Gap between Target Service Level and Simulated Service Level among the whole 

Supply Chain under RSDT replenishment policy 

One of the interesting observations from Figure 6-16 is that there are cases where 

the FCFS and PRIORITY-QFreq policy outperforms the other priority policies. 

Furthermore, in the cases that the FCFS and PRIORITY-QFreq policies result in a 

higher fill rate than the fill rate of the PRIORITY-QMax policy in multi-echelon 

inventory systems, the cost of PRIORITY-QMax policy is lower than the FCFS and 

PRIORITY-QFreq policies. The main reason is that the PRIORITY-QMax scenario has 

relatively low stock-out cost (see Table 6-2 and Table 6-3). The PRIORITY-QMax 

concept seems to have a stabilizing effect on the system’s service level performance. 
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Using this strategy, the average fill rate is increasing due to a decrease in the average 

waiting time at the upper echelon. To analyze this fact in more detail, Table 6-4 

summarizes performance measures for selected DCs. 

 

Figure 6-16: Comparison of Customer Prioritization on Performance 

Table 6-4: Service Level Performance Results for RDC6, RDC15, and RDC17 under Different 

Replenishment Policy and Order Fulfillment Strategy 
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QFreq 93% 84% 86% 86% 63% 77% 84% 49% 69% 

QMin 91% 83% 84% 85% 65% 72% 86% 54% 63% 

CV 94% 89% 92% 88% 71% 70% 88% 66% 68% 

QMax 95% 86% 90% 93% 89% 92% 95% 88% 93% 

FCFS* 92% 92% 92% 80% 70% 60% 88% 81% 80% 

*Base Experiment 

6.4 Summary 

This section has presented the simulation studies that compare the performance of 

different strategies for the multi-echelon production-inventory system. It has structured 

the model based on a multi stage divergent inventory system with a capacitated 

production facility. Firstly, the impact of different inventory allocation decisions of the 

plant-WRs on the supply chain performance measures is analyzed. These approaches 

involve the specification of the reorder point for upper echelons, such that the 
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predetermined lot size is triggered whenever the net stock position drops to the reorder 

point. It is found that for similar operating conditions and for similar performance 

records, the RHSUMQ policy tends to perform better than the corresponding reorder 

point policies. The change in the relative fill rate performance of RHSUMQ compared 

to the base experiment seems to be significant since the change in the cost is relatively 

low. In addition, a relationship between the order fulfillment policy and the customer 

service level has been showed. According to the experimental results, customer 

prioritization polices can reduce the total system cost in comparison to FCFS as they 

increase the customer service level. One of the key findings in this chapter is that using 

FCFS strategy can lead to unstable performance within the supply chain.  

 



 

 Chapter 7

Simulation-Based Optimization for Multi-

echelon Inventory Problems 

Simulation modeling has recently become a major tool since an analytical model is 

unable to formulate a system that is subject to both variability and complexity. 

However, simulations require extensive runtime to evaluate many feasible solutions and 

to find the optimal one for a defined problem. To deal with this problem, simulation 

model needs to be integrated in optimization algorithms. (Keskin et al., 2010). This 

chapter describes the design of a framework to carry out simulation-based optimization 

of the inventory parameters of a multi-echelon production-inventory system. A brief 

description of simulation-based optimization approach is presented in Section 7.1. 

Section 7.2 presents the classification of simulation-based optimization methods. The 

details of the proposed multi-objective metaheuristics for simulation-based optimization 

approach are given in Section 7.3. Section 7.4 demonstrates the application of the 

introduced framework for a simulation-based optimization with a real case study. 

7.1 Introduction to Simulation-Based Optimization 

Simulation-based optimization (SBO) is the process of obtaining optimal set of 

control variables, where the objective functions and performance of the system are 

generated as a result of the simulation model over the system (Olafsson & Kim, 2002). 

Figure 7-1 illustrates the general scheme of the simulation-based optimization 

procedure. In the context of SBO, the optimization engine includes upper and lower 

bounds for input parameter, the optimization objectives with corresponding constraints, 

and the optimization algorithms, while the simulation model incorporates the system 

parameters, the representation of the real system with its boundaries, the internal and 

external factors, and their relationship within the system (Aslam, 2013). In contrast to 

traditional optimization approaches, in SBO, the performance measure generated by a 
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simulation model becomes the output of objective function instead of an analytical 

function of decision variables (Ammeri et al., 2010), (Mele et al., 2006).  

 

Figure 7-1: Simulation-Based Optimization Scheme (adapted from (Borshchev & Filippov, 2004)) 

SBO is an iterative process that is used to find the best solution to stochastic 

problems among different sets of decision variables leading to optimal performance 

without explicitly evaluating each possibility (Carson & Maria, 1997). In the SBO 

environment, the input parameters and the structural assumptions associated with a 

simulation model are factors that become decision variables. The output performance 

measures are responses used to model an objective function and constraints (April et al., 

2003). While the main aim of simulation is to find out which factors have the greatest 

effect on a response, optimization seeks to identify the combination of factors that 

minimizes or maximizes a response. As mentioned earlier, the proposed SBO 

framework consists of two components as shown in Figure 7-1: an optimization tool and 

a simulation tool. In the context of SBO, the simulation is initiated through receiving a 

set of candidate decision variables generated by the optimization engine. After receiving 

the input values from the optimization engine, the simulation is executed to transform 

input variables into valuable information (performance measures) by evaluating of each 

candidate solution. The performance measures are then fed back to optimization engine 

to generate another set of new solutions for the decision variables that seeks to improve 

the performance of the system. This procedure is run iteratively until the pre-specified 

stop criterion is reached, which might be that objective values have been reached, a 

certain amount of time has passed or a requested number of loops has been performed 

(Syberfeldt, 2009).  
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7.2 Classification of the Simulation-Based Optimization Methods 

Carson and Maria (1997) identify 6 major categories for simulation optimization 

methods: 

- Gradient Based Search Methods 

- Stochastic Optimization (Simple Path Optimization) 

- Response Surface Methodology 

- A-Team 

- Statistical Methods 

- Heuristics Methods 

Gradient based search methods estimate the gradient of response function in order to 

determine a search direction and use deterministic mathematical programming 

techniques. Gradient based search methods are used for continuous variable problems 

due to its close relationship with the steepest descent gradient search (April et al., 2003). 

The well-known gradient estimation methods used in the literature are: finite difference 

estimates; perturbation analysis; frequency domain analysis; and likelihood ratio 

estimates.  

Stochastic optimization is a procedure of finding a local optimum for an objective 

function whose values are not known analytically but can be estimated or measured. 

This method use recursive schemes based on gradient estimation (Carson & Maria, 

1997). The main disadvantage of stochastic optimization is that a large number of 

iterations of the recursive formula is needed to come up with the optimum (Tekin & 

Sabuncuoglu, 2004). 

Response Surface Methodology (RSM) is a procedure for fitting a series of 

regression models to the output variable of a simulation model (by evaluating it at 

several input variable values) and optimizing the resulting regression function (Carson 

& Maria, 1997). The first step in RSM involves determining the order regression 

function. The steepest ascent or descent search method is then employed to reach the 

optimum. Once the region of the optimum has been found, this method can employ 

higher degree regression functions. In general, RSM is a relatively efficient method of 

simulation-based optimization in the number of simulation experiments needed, 

particularly when compared to gradient search methods (Tekin & Sabuncuoglu, 2004).  

Statistical methods are often used to solve integer valued optimization problems 

(Joshi et al., 1996). The most popular statistical methods are ranking and selection, 

multiple comparisons, and sampling methods. The basic idea of the sampling method is 
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to simulate the system with different underlying probability measures so as to increase 

the probability of simulating typical paths of interest (Carson & Maria, 1997). For each 

observation during the simulation, the estimated measure is multiplied by a correction 

factor to obtain an unbiased estimate of the measure in the original system. Ranking and 

selection methods are employed when comparisons among a finite and typically small 

number of systems are required (Ahmed & Alkhamis, 2002). A ranking and selection 

procedure selects the best system from a set of competing systems.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-2: Taxonomy of existing simulation-based optimization approaches (Carson & Maria, 1997) 

All of the techniques discussed above are local search techniques. Among the most 

practical approaches that employ SBO are metaheuristics methods, including genetic 

algorithms; ant colony optimization; tabu search; simulated annealing; scatter search; 

and random hill climbing. Metaheuristic methods are emerging as successful 

alternatives to traditional approaches for solving complex optimization problems with 

many local optima where other optimization methods have failed to be either effective 

or efficient (Olaffson, 2005). These methods start by obtaining an initial solution or an 

initial set of solutions, then initiating an improving search guided by a certain principle. 
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In the following we focus our interest on the metaheuristics approaches to the inventory 

optimization problem. 

7.3 Multi-Objective Optimization via Simulation 

Optimization problems with two or more conflicting objectives arise in the design, 

modeling, and planning of many complex real systems. One of the most important aims 

of multi-objective optimization is to obtain feasible solutions that balance several 

conflicting objectives. However, it is difficult to find such a solution due to the realities 

of addressing real-world problems. The time required to solve multi-objective supply 

chain problems stretches to become unpalatably long as the number of variables 

increases. To overcome this challenge, the use of metaheuristics has received increasing 

attention from the research community over the last decade. The motivation for using 

metaheuristic algorithms is to produce efficient solutions to supply chain optimization 

problems with a reasonable amount of computational time. One simple example of a 

class of supply chain multi-objective optimization problems is the inventory control 

problem. This section investigates the possibility of applying multi-objective 

metaheuristic algorithms to a simulation-based optimization approach for a multi-

echelon production-inventory system. Chapter 3 reviewed a number of general 

metaheuristic algorithms in the literature. An introduction to multi-objective 

metaheuristic algorithms based on GA and PSO used to find optimal solutions was 

given in Section 3.3. The two metaheuristic algorithms, which are under investigation in 

this section, are NSGA-II and MOPSO, which show strong performance in solving 

multi-objective optimization problems. In this study, both algorithms are developed in 

an object-oriented manner using C-Sharp for modeling flexibility and execution 

efficiency. Figure 7-3 shows the black-box approach to simulation based optimization 

for inventory problems. The methodology used for solving multi-objective inventory 

problems involves two phases (Niranjan, 2008): 

- At the first phase, to generate possible the reorder point and the order 

quantity of each stock point in the network based on the upper and lower 

bounds, NSGA-II and MOPSO algorithms are. 

- At the second phase, the developed object-oriented simulation model is used 

to compare the performance of system under different decision variables. 

The performance is measured according to different criteria: customer 

service level, fill rate, number of backordered items, and total cost. 
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Figure 7-3 Simulation-Based Optimization Scheme for Inventory Problem 

At the optimization phase, the optimization tool explores the search space within a 

loop. Each examined search space point (i.e., a set of decision variables) is delivered to 

the simulation model to estimate the performance of each location within the system. 

Once the simulation is complete, objective values are assigned to each location 

corresponding to their performance and exported from simulation phase into 

optimization phase. The result of a successfully terminated optimization phase is a list 

of decision variables. The optimization loop is repated until the stop criterion is 

fulfilled. The choice of stopping criteria can significantly influence the duration of an 

optimization run. There are three stopping criteria applied in the literature: i) stop with 

fitness value, ii) stop with fitness change,  and  iii) stop with time (maximum generation 

number) (Yu & Gen, 2010). The main difficulty in designing termination criteria is 

determining a reasonable value for that number such that convergence to the optimal 

solution is guaranteed with a certain confidence level (Safe et al., 2004). Due to varied 

stopping criteria, an optimization method might be unable to converge in a given 

termination condition, or the optimization method may waste computational resources 

because of processing unnecessary optimization runs.  
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7.3.1 Multi-Objective Simulation-based Optimization based on GA (NSGA-II-SO) 

The proposed framework named multi-objective simulation-based optimization 

using genetic algorithms (NSGA-II-SO) utilizes a population-based evolutionary 

algorithm. Each solution of NSGA-II algorithm is represented by an n-dimensional 

vector 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), where n is equal to the number of decision variables of the 

problem under study. A decision variable 𝑥𝑖 is randomly generated according to a given 

lower bound and upper bound. Figure 7-4 shows the flowchart of NSGA-II-SO. In 

Phase 1, which is the NSGA-II run, the algorithm starts the search by generating a 

population of candidate solutions. Each chromosome in the population is evaluated 

through simulation in Phase 2 and ranked to form non-dominated fronts according to the 

dominance concept. Evaluated and sorted chromosomes are then selected for 

recombination by using binary tournament selection. Under this scheme, two 

chromosomes are selected at random from the current population, and their fronts are 

compared. The chromosome, which is in a lower domination frontier set, is selected as a 

parent for crossover. During the selection, the crowding distance comparator is used to 

select chromosomes, if both chromosomes belong to the same front. Next, the algorithm 

applies crossover and mutation operators on selected parents to generate the next 

generation. The algorithm runs until user-defined termination is satisfied. 

7.3.2 Multi-Objective Simulation-based Optimization based on PSO (MOPSO-SO) 

Another metaheuristic under consideration in this research is multi-objective 

Particle Swarm Optimization (MOPSO). Using MOPSO as the mechanism to perform 

multi-objective simulation-based optimization requires implementing the form of 

NSGA-II-SO described in previous section with some modifications. Particle Swarm 

Optimization (PSO) is similar to the Genetic Algorithm (GA) in the sense that these two 

techniques are population-based search methods and they search for the optimal 

solution by updating generations (Panda & Padhy, 2008). Like NSGA-II-SO, MOPSO-

SO begins its search from a randomly generated population. After the positions and 

velocities of particles are initialized, the objective functions are evaluated via simulation 

for each particle, as described in NSGA-II-SO. The concept of Pareto dominance is 

applied to sort the solutions. The set of non-dominated solutions are all stored in an 

external archive, in which the best non-dominated solutions are kept. MOPSO-SO 

applies two operators to obtain its new population: velocity update and position update. 

Each particle randomly selects a non-dominated solution from the archive for the social 
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influence to update its velocity and position. The general flowchart of the simulation-

optimization based on MOPSO is illustrated in Figure 7-5. We refer the reader to the 

Section 3.3.2 for more details. 

 

Figure 7-4: Flowchart of the simulation optimization based on NSGA-II (NSGA-II-SO) 
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Figure 7-5: Flowchart of the simulation-optimization based on MOPSO (MOPSO-SO) 
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Figure 7-6: Two-echelon divergent production-inventory system 

The integrated approach combines the object-oriented simulation tool for 

performance evaluation with metaheuristics for optimization. We examine an inventory 

problem for a grocery product supply chain described previously by considering the 

problem as a multi-objective non-linear inventory optimization problem in which a 
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Plant-WR3, all offer different products to their local DCs as shown in Figure 7-6. To 

examine the method for obtaining a set of Pareto frontiers, the two primary objectives 

for optimizing the system are minimizing inventory level while maximizing customer 

service level. 
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Table 7-1: Search control parameters for NSGA-II and MOPSO 

Parameter for NSGA-II Value Parameter for MOPSO Value 

Population Size 100 Population Size 50 

Generation 100 Generation 100 

Crossover Rate 0.8 Archive Size 40 

Mutation Rate 0.2 Local Coefficient 2 

Elitism Count 2 Global Coefficient 2 

Crossover Type UNIFORM Velocity Interval 5 

Mutation Type UNIFORM Max. Inertia Weight 0,9 

  Min. Inertia Weight 0,2 

Simulation Period  365 days  

Simulation Replication  10 replications  

 

The upper bound for order quantity considers the physical warehouse stocking 

capacity, which equals 15 days of average daily demand. The lower bound is assumed 

to be one pallet. Reorder point limits are computed by accounting for customer demand, 

maximum replenishment lead time, and safety stock. The maximum replenishment lead 

time for a location is the sum of the replenishment lead time of the location itself and 

the lead time of all upstream locations (𝐿𝑒= echelon lead time). Maximum safety stock 

is calculated with maximum service level (𝑘 = 3,72).  Hence the upper limit of the 

reorder point is computed as below:  

 
𝑅1

𝑈𝐵 = 𝜇 × (𝐿𝑒) + 𝑘 × 𝜎 × √(𝐿𝑒) 7-1 

The proposed genetic algorithm and particle swarm optimization is implemented in 

C-Sharp under a Visual Studio.net environment. The control parameters for the real-

coded NSGA-II and MOPSO are summarized in Table 7-1. 

7.4.2 Experimental Results and Discussion 

The proposed MOPSO-SO and NSGA-II-SO approaches have been implemented to 

optimize daily inventory cost and customer service level objectives simultaneously 

considering the three plant-warehouses stated above.  The results report includes the 

optimal Pareto front and related inventory control parameters of each solution point in 

Pareto front. The distribution of the Pareto optimal set over the trade-off surface is 

shown in Figure 7-7, Figure 7-8 and Figure 7-9. The figures reveal that solutions are 

widely distributed over the Pareto-optimal front due to the diversity of the non-

dominated solutions in the proposed MOPSO-SO technique, and the problem of 

concern is solved effectively. Two non-dominated solutions that represent the best cost 
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and best customer service level with related inventory parameters are given in Table 7-

2. 

 

Figure 7-7: Final Pareto front of MOPSO-SO for the network of Plant-WR1 

 

Figure 7-8: Final Pareto front of MOPSO-SO for the network of Plant-WR2 
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Figure 7-9: Final Pareto front of MOPSO-SO for the network of plant-WR3  

For example, for Plant-WR3, the service level of 100% produced a daily cost of 

15,211 € while 90% service level produced a daily cost of 14,225 €. From the best 

identified inventory parameters in these tables, it can be seen that as the end-customer 

service level increases, the best identified reorder points also increase at each node. 

However, changes in order quantities are relatively small. 

Table 7-2: The Best Cost and Best Service Level of proposed MOPSO-SO for Network of Plant-WR1, 

Plant-WR2, and Plant-WR3 

Plant-WR1           

Daily Cost 6.827 €   Daily Cost 7.549 €   

FillRate 89%   FillRate 100%   

Node R Q Node R Q 

RDC1 24 75 RDC1 43 107 

RDC2 27 66 RDC2 39 81 

RDC3 37 81 RDC3 55 94 

RDC4 24 62 RDC4 37 81 

RDC5 5 100 RDC5 38 123 

RDC6 68 136 RDC6 101 184 

RDC7 30 109 RDC7 66 90 

RDC8 28 69 RDC8 63 43 

RDC9 48 79 RDC9 72 131 

RDC10 35 75 RDC10 45 95 

RDC11 43 91 RDC11 58 134 

RDC12 34 145 RDC12 64 145 

RDC13 34 102 RDC13 65 110 

RDC14 31 148 RDC14 63 110 

RDC15 90 149 RDC15 112 80 

RDC16 40 108 RDC16 71 108 
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RDC17 35 259 RDC17 92 216 

RDC18 53 137 RDC18 52 191 

RDC19 47 133 RDC19 68 129 

Plant-WR1 155 1523 Plant-WR1 837 2021 

Plant-WR2           

Daily Cost 2.844 €   Daily Cost 3.151 €   

FillRate 90%   FillRate 100%   

Node R Q Node R Q 

RDC1 11 34 RDC1 22 40 

RDC2 5 39 RDC2 11 25 

RDC3 10 78 RDC3 35 110 

RDC4 9 33 RDC4 12 43 

RDC5 13 35 RDC5 14 54 

RDC6 13 99 RDC6 46 92 

RDC7 20 62 RDC7 22 113 

RDC8 15 54 RDC8 17 50 

RDC9 11 60 RDC9 14 102 

RDC10 14 40 RDC10 16 66 

RDC11 10 37 RDC11 17 53 

RDC12 11 72 RDC12 24 87 

RDC13 14 67 RDC13 19 74 

RDC14 10 65 RDC14 20 59 

RDC15 30 77 RDC15 46 115 

RDC16 11 69 RDC16 29 43 

RDC17 16 78 RDC17 31 106 

RDC18 9 66 RDC18 19 72 

RDC19 22 102 RDC19 21 101 

Plant-WR2 130 1805 Plant-WR2 525 1186 

Plant-WR3           

Daily Cost 14.225 €   Daily Cost 15.211 €   

FillRate 90%   FillRate 100%   

Node R Q Node R Q 

RDC1 46 147 RDC1 85 88 

RDC2 50 136 RDC2 71 134 

RDC3 128 211 RDC3 146 212 

RDC4 58 110 RDC4 70 174 

RDC5 46 70 RDC5 68 129 

RDC6 150 281 RDC6 224 333 

RDC7 89 156 RDC7 144 174 

RDC8 65 144 RDC8 114 199 

RDC9 61 180 RDC9 105 217 

RDC10 63 211 RDC10 90 93 

RDC11 66 141 RDC11 98 184 

RDC12 104 132 RDC12 114 200 

RDC13 46 222 RDC13 89 236 

RDC14 58 198 RDC14 114 176 
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RDC15 226 241 RDC15 245 195 

RDC16 111 183 RDC16 150 224 

RDC17 88 224 RDC17 228 258 

RDC18 66 212 RDC18 108 198 

RDC19 87 214 RDC19 157 165 

Plant-WR3 926 1470 Plant-WR3 1600 1932 

7.4.3 Comparison of NSGA-II-SO and MOPSO-SO 

Evaluating the performance of developed optimization algorithms is a crucial task in 

order to compare with other algorithms. Many quantitative performance metrics have 

been proposed in the literature to address this issue. The main criteria in the 

multiobjective algorithm are the convergence to the Pareto front and with the respect to 

the diversity of the obtained solutions (Carrasqueira et al., 2015). Three quantitative 

measures have been commonly used in evolutionary algorithms literature, i.e., 

generational distance (GD), spacing metric (SP), and the number of non-dominated 

solutions (NSM). These performance measures show how the average or best fitness 

values or some other performance metric is varying with different parameter settings. In 

this section, the performance of the proposed approach is evaluated using mentioned 

metrics.  

Generational distance (GD): Van Veldhuizen and Lamont (1998) suggested the 

Generational Distance (GD) metric that determines if all of the solutions are also within 

the optimal Pareto front, which is given by 

 
𝐺𝐷 =  

1

𝑛
√∑ 𝑑𝑖

2 
7-2 

 

n is the number of vectors in the set of nondominated solutions found so far and 𝑑𝑖 

is the Euclidean distance between the solution 𝑖 and the nearest member of the Pareto 

optimal set. As it can be understood from its equation, the GD represents the average 

distance between the each solution in the Pareto front and its nearest neighbor in the 

optimal Pareto front. If the GD = 0, it means all the solutions generated are in the Pareto 

optimal front. If they are not contained in the Pareto front being evaluated, then the GD 

> 0, which indicates how “far” the solutions are from the optimal Pareto front. 

Spacing metric (SP): The Spacing Metric (SP) proposed by Schott (1995) is 

another way to measure the performance of a multiobjective algorithm, which indicates 

how uniformly the points in the approximation set are distributed in the objective space 

(Radhi & Barrans, 2012). It is mathematically expressed as: 



Chapter 7 

117 

 
𝑆𝑃 = √

1

𝑛 − 1
∑(𝑑̅ − 𝑑𝑖)

2
 

7-3 

 

where  𝑑𝑖 represents the Euclidean distance between two consecutive members in 

Pareto front and 𝑑̅ is the mean value of the distance measure. A smaller value for this 

metric is the ideal one and it indicates that all members of the Pareto front obtained so 

far are uniformly spread among the Pareto front.  

Non-dominated Solutions Metric (NSM): This metric compares the number of 

non-dominated solutions that are obtained by each algorithm. 

Figure 7-10 depicts the Pareto surfaces obtained using MOSP and NSGA-II to 

optimize daily inventory cost and customer service level. According to the Figure 7-10, 

it shown graphically that MOPSO-SO is able to finds better spread of solution set along 

the front and a better convergence measure than NSGA-II-SO. Table 7-3 show the 

means, variances and statistics of three performance metrics obtained over the 10 

independent runs using the two optimization algorithms. A point that should be 

highlighted from the table is that the MOPSO-SO gives better results with good 

diversity and convergence for lower number of population. 

 

Figure 7-10: The Pareto Fronts generated by Two Algorithms 

Performance metrics mentioned above are generally related to the diversity and 
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guarantee that solutions obtained will apply across diverse populations in the decision 

space (Güller et al., 2015). Several researchers in the literature have investigated that 

many existing evolutionary algorithms suffer from the premature 

convergence/stagnation phenomenon (Carter & Park, 1994) (Hu, 2004). As a matter of 

fact, population based algorithms tend to stagnate due to an inability to generate new 

promising search directions in large-scale problems (Weber et al., 2011).  In order to 

distinguish how the stagnation phenomenon may happen, the non-dominated solutions 

for RDC5 and RDC11 in the decision search space are selected (see Figure 7-11).   

Table 7-3: Comparison of results between NSGA-II-SO and MOPSO-SO 

 

MOPSO-SO     NSGA-II-SO   

  GP SP NSM GP SP NSM 

Best 0,054335995 0,0385161 27 0,059712 0,038969 27 

Worst 0,065091045 0,081419 22 0,073655 0,085233 21 

Average 0,06100552 0,058095 23,63 0,068712 0,062101 24,3 

Median 0,060711505 0,0603356 23,5 0,0714253 0,070983 24 

SD 0,0038454 0,0141848 1,7678 0,003414 0,009858 1,6517 

As it can be seen from the figure, as the non-dominated solutions of MOPS-SO 

spread among the search space, NSGA-II-SO leads to stagnation due to loss of diversity 

in the population. Further, the algorithms are also compared in terms of running time. 

The execution time of the two algorithms increases significantly when the population 

and generation numbers rise. It is important to notice the very high speed of MOPSO-

SO, which requires considerably less time than the NSGA-II-SO in the problem. 

Table 7-4: Comparison of CPU time between NSGA-II and MOPSO 

      NSGA-II MOPSO 

  Generation 
Population 

Size 

CPU Time 

(second) 

CPU 

Time 

(second) 

1 10 10 59.4 46.3 

2 50 10 312 233 

3 50 50 1867 1462 
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Figure 7-11: The position of non-dominated solutions for RDC5 and RDC 11 in the search space 

Many parameters that have great impact on performance and efficiency of the 

algorithm have to be set for any metaheuristic. In order to see the impact of the 

population size and the number of generation on the solution quality, the problem with 7 

random DCs was chosen as a test case. On the Figure 7-12 the objective function 

values, obtained during the 20, 50 and 100 runs, are shown. The graphical results show 

that the MOPSO-SO algorithm performed similarly at small and large numbers of 

iterations. However, as shown in Figure 7-12, the performance metrics of the Pareto 

front obtained by 100 generations is better than the solutions obtained by smaller 

generations in terms of the number of non-dominated solutions, the distance between 

the members of Pareto front, and the distribution of non-dominated solutions. 

According to Shi and Eberhart (1999), the performance of standard PSO algorithms is 

not too sensitive to the population size. However, larger population size in 

multiobjective optimization problem may be more powerful in exploring the search 

space and improvement of the quality in the Pareto front (Güller et al., 2015). As it can 
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be seen from Figure 7-13, as the population size grows, the diversity and convergence 

in the Pareto front obtained by MOPSO-SO also increases. 

 

Figure 7-12: Pareto Fronts obtained for different Generation Number 

 

Figure 7-13: Comparison of the Pareto Fronts obtained by different Swarm Sizes 
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metaheuristics generally applied to a simulation-optimization environment have been 

discussed, such as multiobjective particle swarm optimization (MOPSO) and 

multiobjective genetic algorithm (NSGA-II). Previously developed simulation model of 

multi echelon supply chain comprising customers, retailers, distribution centers, and 

factories was incorporated into the optimization algorithms to define the optimal 

inventory parameters for all stock points in a supply chain network. Different 

experiments were conducted to demonstrate the capabilities of simulation-based 

optimization model. Furthermore, the capacitated production system contributes to the 

complexity of lead time between manufacturing sites and local distribution centers. It 

has been shown that the MOPSO algorithm is a powerful optimization algorithm for 

multi-echelon inventory system under multiple objectives such as total cost and 

customer service level. In order to compare the proposed algorithm with commonly 

used NSGA-II, three performance metrics were considered, such as generational 

distance, spacing metric, and the number of nondominated solutions. According to the 

obtained results, the simulation-optimization approach based on MOPSO algorithm is 

efficient and able to generate a well-distributed set of nondominated solutions with 

good coverage to optimal Pareto fronts. 



 

 Chapter 8

Conclusion and Future Research 

This research contributes to two areas. First, it contributes to decision support for 

supply chain network decisions in an integrated environment. Most literatures on 

distribution network design have traditionally considered strategic, tactical, and 

operational decisions separately. This classical approach leads to considerable excess 

costs because the supply chain is optimized locally but does not guarantee the global 

optimum for the whole system. Moreover, in real world problems, there are multiple 

objectives that must be considered simultaneously, but that often have conflicting 

underlying objectives.  This is a challenging problem due to the complexity of the 

problems, the presence of uncertainty, and the interdependency between decisions. In 

this research, we discussed how to determine the number and the locations of DCs 

needed in an integrated supply chain. We formulated a mixed nonlinear mathematical 

model with objective functions to minimize total logistics costs and minimize the 

maximum distance from the opened facilities to the customers.  

Furthermore, we presented a heuristic based on Quantum-behaved Particle Swarm 

Optimization (QPSO) to solve the multi-objective location problems in an efficient 

manner. The solution was tested in the case of a major food product company in 

Germany. Our results indicate that QPSO can be used effectively to solve 

multiobjective optimization problems in a relatively simple way. The proposed 

approach for the multi-objective location problems performs reasonably in terms of 

computation time. Computational results demonstrate that optimal network structure of 

an integrated model is quite different from the nonintegrated supply chain. The results 

suggest that as the ratio between the unit transportation cost and the unit inventory cost 

decreases, the benefit of integrating the decisions becomes greater. 

Another main part of this dissertation is the simulation and optimization of a multi-

echelon production/inventory system. We implemented a toolbox developed by using an 

object-oriented simulation framework. The toolbox is capable of creating simulation 
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models for any kind of supply chain network setting and analyzing the inventory control 

policies of a given supply chain. The analysis was three fold: i) identified the impact of 

inventory allocation decisions on the supply chain performance measures under 

different coordination mechanisms; ii) identified the impact of different order 

fulfillment strategies on the system performance; and iii) developed the simulation-

optimization approach to obtain the best inventory parameters in the supply chain 

system that satisfy the required service level. We analyzed how the system would 

behave under different inventory allocation decisions and different order fulfillment 

policies at the upper echelon. In particular, we noted that FCFS strategy leads to 

unstable performance among the supply chain. According to the experimental results, 

customer prioritization polices can reduce the total cost of the system in comparison to 

FCFS as they increase the customer service level.  

In an effort to improve the performance of the multi-echelon supply chain, we 

presented a multiobjective simulation-based optimization approach in which the cost of 

all nodes in the system is minimized while the customer service level is maximized. 

This research presents two metaheuristics algorithms (fast NSGA-II and MOPSO) for 

dealing with the multiobjective inventory optimization problem. It has been shown that 

metaheuristic algorithms are powerful, intelligent optimization algorithms that are able 

to obtain non-dominated solutions of the multiobjective problem. Numerical results for 

the production/inventory problem with different Pareto optimality characteristics 

indicate that NSGA-II-SO and MOPSO-SO are capable of efficiently and effectively 

exploring the solution search space. 

8.1 Future Research 

The location model in this research has been limited to two objectives: minimizing 

total logistics costs and minimizing the maximum distance from the opened facilities to 

the customers. Although these objectives are important for network design, they are not 

the only important ones. This work did not discuss the sustainable design of supply 

chain networks given environmental restraints and concerns. An extension of this work 

could develop an adaptive model for the tradeoff between economic and environmental 

concerns in decision making framework. Another area for future research is how to 

improve the performance of the proposed multi-objective QPSO method. This method 

could improve in several ways. For example, this thesis has assumed that freight 

transport costs are proportional to the amount of commodities carried. Dismantling this 
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assumption and focusing on optimizing supply chains with variable transportation costs 

is yet another research topic for exploration. 

In this research we consider a system of manufacturers, warehouses, distribution 

centers, and retail outlets aiming to solve the inventory problem of a multi-echelon 

supply chain. It would be interesting to relax some of the assumptions to match the real-

world scenarios, such as capacity limitations, uncertain costs, raw material availabilities, 

and inventory allocation policies. Our model assumed a single product with random 

demand at each customer location. This assumption can be relaxed for multiple 

products. The simulation system may be extended to the network level with several 

supplier tiers in order to analyze the impact of the supplier selection process on the 

inventory system. 
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Appendix A 

1. Overview of Inventory Theory 

One of the main problems of supply chain resource planning is the optimization of 

lot sizes in order to minimize the costs of ordering and storage. 

Classical Lot Size Model (EOQ) 

The classic Economic Order Quantity (EOQ) developed by Harris in 1913 is the 

most fundamental model used to calculate lot sizes. The EOQ model describes an 

important conflict of costs between fixed ordering and holding costs.  

 

Figure 0-1: Change in inventory over time for the EOQ model 

In the EOQ model, since all the parameters are stationary over time, the order 

quantity, denoted by Q, also remains stationary. The EOQ can be easily determined by 

the formula: 

𝐸𝑂𝑄 =  √
2𝐾𝜆

ℎ
 

where,   λ = annual usage 

  K= fixed ordering (setup) cost 

  h = inventory carrying cost per unit of product per year   

Then, the optimal total cost per year TC* is 

𝑇𝐶∗ = √2𝐾𝜆ℎ 

Continuous Review Inventory Model 
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Figure 0-2 Continuous Review Inventory System 

EOQ model assume that demand is constant and known. In the majority of cases, 

though, demand is not constant but varies from day to day. One of the main functions of 

inventory management is to plan safety stock to protect each stock point uncertainties in 

customer demands. Considering a single-echelon inventory system with a continuous 

review control policy, a reorder point of R and batch size of Q, a constant lead time for 

replenishing orders, demand (per unit time) as a normal distribution with mean 𝜇 and 

standard deviation 𝜎 and backordered unsatisfied demand, formulae for the average 

stock level 𝐷(𝑄, 𝑅) and the average stockout level 𝐵(𝑄, 𝑅) (see (Axsäter, 2000), 

(Axsäter, 2006) and (Hadley & Whitin, 1963) for more details): 

𝐷(𝑄, 𝑅) =
𝑄

2
+ 𝑅 − 𝜇′ + 𝐵(𝑄, 𝑅) 

The reorder level consists of two quantities: the first is the average demand during 

lead time, and the second is the safety stock, which depends on lead time, demand 

variability, and service level. The expected number of backorders at the location is 

given by defined as: 

𝐸𝐵(𝑅) =  ∫ (𝑥 − 𝑅)𝑓(𝑥)𝑑𝑥
∞

𝑅

= ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

𝑅

− 𝑅𝐻(𝑥) 

= (𝜇𝐿 − 𝑅)[1 − 𝜙(𝑧)] + 𝜎𝐿𝜑(𝑧)      𝑤ℎ𝑒𝑟𝑒 𝑧 =  
(𝑅 − 𝜇𝐿)

𝜎𝐿
 

𝚽(𝐳): is the distribution function of the standardized normal distribution with mean 
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0 and standard deviation 1. 

𝝋(𝒛): is the density of the standardized normal distribution. 

With last definition, the total cost function can be expressed as follow: 

𝐶(𝑅, 𝑄) =
𝐴𝐷

𝑄
+ ℎ (

𝑄

2
+ 𝑅 − 𝜇′ + 𝐵(𝑄, 𝑅)) + 𝑝

𝐷

𝑄
𝐸𝐵(𝑅) 
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Appendix B 
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Appendix C 

Average daily demand of regional distribution centers and fitted distribution:  

DC 
Average Demand 

(Pallet/per day) 

Standard 

Deviation 
CV Fitted Distribution 

RDC-1 13 4 0,31 Erlang 

RDC-2 18 10 0,56 Gamma 

RDC-3 15 8 0,53 Weibull 

RDC-4 13 5 0,38 Normal 

RDC-5 16 9 0,56 Normal 

RDC-6 20 6 0,30 Gamma 

RDC-7 18 6 0,33 Normal 

RDC-8 37 20 0,54 Normal 

RDC-9 20 9 0,45 LogNormal 

RDC-10 17 8 0,47 Normal 

RDC-11 20 11 0,55 Gamma 

RDC-12 22 12 0,55 LogNormal 

RDC-13 25 11 0,44 Gamma 

RDC-14 14 6 0,43 Normal 

RDC-15 23 10 0,43 Normal 

RDC-16 7 3 0,43 Normal 

RDC-17 31 16 0,52 Normal 

RDC-18 26 14 0,54 Normal 

RDC-19 43 18 0,42 Beta 
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Appendix D 

Common parameters for the facility location problem: 

µ𝑖 average daily demand at customer i Uniform [5;20] 

𝜎𝑖 
standard deviation of daily demand at 

customer i 

25% of daily demand 

𝑓𝑘 
fixed investment cost of locating a 

distribution center k 

100 000 € 

150 000 € 

180 000 € 

𝑐𝑘 variable operating cost of DC k 

0,5 €/unit 

0,3 €/unit 

0,2 €/unit 

𝑑𝑖𝑘 
cost per unit to ship from DC j to 

customer i, for each 𝑖 𝜖 𝐼 and 𝑘 𝜖 𝐾  

0,15 €/km 

𝛼 
desired percentage of retailers orders 

satisfied (fill rate) 

Type 1 service level = 95% 

ℎ 
inventory holding cost per unit per day 

(€/unit-day) 

0,01 per unit per day 

𝐹𝑘 
fixed cost of placing an order at DC k 

(€/order) 

100 €/order 

𝑐𝑓𝑘 
fixed shipment cost from external supplier to 

DC k (€/truck) 

50 €/order 

𝑐𝑣𝑘 
per unit shipment cost from external supplier 

to DC k 

0,15 €/unit 

𝐿 Lead time in days 2 days 

𝜒 planning horizon (days in a year) 250 

 

 

 

 

 

 


