
Implementation of a 3GPP LTE Turbo Decoder
Accelerator on GPU

Michael Wu, Yang Sun, and Joseph R. Cavallaro

Electrical and Computer Engineering

Rice University, Houston, Texas 77005

{mbw2, ysun, cavallar}@rice.edu

Abstract—This paper presents a 3GPP LTE compliant turbo
decoder accelerator on GPU. The challenge of implementing a
turbo decoder is finding an efficient mapping of the decoder
algorithm on GPU, e.g. finding a good way to parallelize workload
across cores and allocate and use fast on-die memory to improve
throughput. In our implementation, we increase throughput through
1) distributing the decoding workload for a codeword across
multiple cores, 2) decoding multiple codewords simultaneously
to increase concurrency and 3) employing memory optimization
techniques to reduce memory bandwidth requirements. In addition,
we analyze how different MAP algorithm approximations affect
both throughput and bit error rate (BER) performance of this
decoder.

I. INTRODUCTION

Turbo codes [1] have become one of the most important

research topics in coding theory for wireless communication

systems. As a practical code that approaches channel capacity,

turbo codes are widely used in many 3G and 4G wireless

standards such as CDMA2000, WCDMA/UMTS, IEEE 802.16e

WiMax, and 3GPP LTE (long term evolution). However, low

BER performance comes at a price – the inherently large

decoding latency and a complex iterative decoding algorithm

have made it very difficult to achieve high throughput in general

purpose processors or digital signal processors. As a result, turbo

decoders are often implemented in ASIC or FPGA [2–8].

The Graphic Processing Unit (GPU) is an another alternative

as it provides high computational power while maintaining

flexibility. GPUs deliver extremely high computation throughput

by employing many cores running in parallel. Similar to general

purpose processors, GPUs are flexible enough to handle general

purpose computations. In fact, a number of processing intensive

communication algorithms have been implemented on GPU.

GPU implementations of LDPC decoder are capable of real

time throughput [9]. In addition, both a hard decision MIMO

detector [10] as well as a soft decision MIMO detector [11]

have been implemented on GPU.

In this paper, we aim to provide an alternative – a turbo

decoder defined entirely in software on GPU that reduces the

design cycle and delivers good throughput. Particularly, we

partition the decoding workload across cores and pre-fetch data

to reduce memory stalls. However, parallelization of the decoding

algorithm can improve throughput of a decoder at the expense

of decoder BER performance. In this paper, we also provide

both throughput and BER performance of the decoder and show

that we can parallelize the workload on GPU while maintaining

reasonable BER performance. Although ASIC and FPGA designs

are more power efficient and can offer higher throughput than our

GPU design [12], this work will allow us to accelerate simulation

as well as to implement a complete iterative MIMO receiver in

software in wireless test-bed platform such as WARPLAB[13].

The rest of the paper is organized as follows: In section II

and section III, we give an overview of the CUDA architecture

and turbo decoding algorithm. In section IV, we will discuss the

implementation aspects on GPU. Finally, we will present BER

performance and throughput results and analyses in section V

and conclude in section VI.

II. COMPUTE UNIFIED DEVICE ARCHITECTURE (CUDA)

Compute Unified Device Architecture [14] is a software pro-

gramming model that allows the programmer to harness the

massive computation potential offered by the programmable

GPU. The programming model is explicitly parallel. The pro-

grammer explicitly specifies the parallelism, i.e. how operations

are applied to a set of data, in a kernel. At runtime, multiple

threads are spawned, where each thread runs the operations

defined by the kernel on a data set. In this programming model,

threads are completely independent. However, threads within a

block can share computation through barrier synchronization and

shared memory. Thread blocks are completely independent and

only can be synchronized through writing to the global memory

and terminating the kernel.

Compared to traditional general purpose processors, a pro-

grammable GPU has much higher peak computation throughput.

The computation power is enabled by many cores on the GPU.

There are multiple stream multiprocessors (SM), where each SM

is an 8 ALU single instruction multiple data (SIMD) core. A

kernel is mapped onto the device by mapping each thread block

to an SM. CUDA divides threads within a thread block into

blocks of 32 threads. When all 32 threads are doing the same

set of operations, these 32 threads, also known as a WARP,

are executed as a group on an SM over 4 cycles. Otherwise,

threads are executed serially. There are a number of reasons for

stalls to occur. As data is not cached, an SM can stall waiting

for data. Furthermore, the floating point pipeline is long and

register to register dependency can cause a stall in the pipeline.

To keep cores utilized, multiple thread blocks, or concurrent

thread blocks, are mapped onto an SM and executed on an SM

at the same time. Since the GPU can switch between WARP

instructions with zero-overhead, the GPU can minimize stalls by

192978-1-4244-8933-6/10/$26.00 ©2010 IEEE SiPS 2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at Rice University

https://core.ac.uk/display/4467229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

switching over to another independent WARP instruction on a

stall.

Computation throughput can still become I/O limited if mem-

ory bandwidth is low. Fortunately, fast on-chip resources, such

as registers, shared memory and constant memory, can be used

in place of off-chip device memory to keep the computation

throughput high. Shared memory is especially useful. It can

reduce memory access time by keeping data on-chip and reduce

redundant calculations by allowing data sharing among indepen-

dent threads. However, shared memory on each SM has 16 access

ports. It takes one cycle if 16 consecutive threads access the same

port (broadcast) or none of the threads access the same port (one

to one). However, a random layout with some broadcast and

some one-to-one accesses will be serialized and cause a stall.

There are several other limitations with shared memory. First,

only threads within a block can share data among themselves

and threads between blocks can not share data through shared

memory. Second, there are only (16KB) of shared memory on

each stream multiprocessor and shared memory is divided among

the concurrent thread blocks on an SM. Using too much shared

memory can reduce the number of concurrent thread blocks

mapped onto an SM.

As a result, it is a challenging task to implement an algorithm

that keeps the GPU cores from idling–we need to partition the

workload across cores, while effectively using shared memory,

and ensuring a sufficient number of concurrently executing thread

blocks.

III. MAP DECODING ALGORITHM

The principle of Turbo decoding is based on the BCJR or MAP

(maximum a posteriori) algorithms [15]. The structure of a MAP

decoder is shown in Figure 1. One iteration of the decoding

process consists of one pass through both decoders. Although

both decoders perform the same set of computations, the two

decoders have different inputs. The inputs of the first decoder

are the deinterleaved extrinsic log-likelihood ratios (LLRs) from

the second decoder and the input LLRs from the channel. The

inputs of the second decoder are the interleaved extrinsic LLRs

from the first decoder and the input LLRs from the channel.

Π-1

Π Decoder 1Decoder 0Lc(ys)

Lc(yp0)

Lc(yp1)

La Le

La+LchLe+Lch

Fig. 1: Overview of turbo decoding

To decode a codeword with N information bits, each decoder

performs a forward traversal followed by a backward traversal

through an N -stage trellis to compute an extrinsic LLR for each

bit. The trellis structure, or the connections between two stages

of the trellis, is defined by the encoder. Figure 2 shows the trellis

structure for the 3GPP LTE turbo code, where each state has two

incoming paths, one path for ub = 0 and one path for ub = 1.

Let sk be a state at stage k, the branch metric (or transition

probability) is defined as:

γk(sk−1, sk) = (Lc(y
s
k) + La(y

s
k))uk + Lc(y

p
k)pk, (1)

where uk, the information bit, and pk, the parity bit, are de-

pendent on the path taken (sk+1, sk). Lc(y
s
k) is the systematic

channel LLR, La(y
s
k) is the a priori LLR, and Lc(y

p
k) is the

parity bit channel LLR at stage k. The decoder first performs

Fig. 2: 3GPP LTE turbo code trellis with 8 states

a forward traversal to compute αk, the forward state metrics for

the trellis state in stage k. The state metrics αk are computed

recursively as the computation depends on αk−1. The forward

state metric for a state sk at stage k, αk(sk), is defined as:

αk(sk) = max∗sk−1∈K(αk−1(sk−1) + γ(sk−1, sk)), (2)

where K is the set of paths that connect a state in stage k − 1
to state sk in stage k.

After the decoder performs a forward traversal, the decoder

performs a backward traversal to compute βk, the backward state

metrics for the trellis state in stage k. The backward state metric

for state sk at stage k, βk(sk), is defined as:

βk(sk) = max∗sk+1∈K(βk+1(sk+1) + γ(sk+1, sk)). (3)

Although the computation is the same as the computation for

αk, the state transitions are different. In this case, K is the set

of paths that connect a state in stage k + 1 to state sk in stage

k.

After computing βk, the state metrics for all states in stage k,

we compute two LLRs per trellis state. We compute one state

LLR per state sk, Λ(sk|uk = 0), for the incoming path that is

connected to state sk which corresponds to uk = 0. In addition,

we also compute one state LLR per state sk, Λ(sk|ub = 1), for

the incoming path that is connected to state sk which corresponds

to uk = 1. The state LLR, Λ(sk|ub = 0), is defined as:

Λ(sk|ub = 0) = ak−1(sk−1) + γ(sk−1, sk) + βk(sk), (4)

where the path from sk−1 to sk with ub = 0 is used in the

computation. Similarly, the state LLR, Λ(sk|ub = 1), is defined

as:

Λ(sk|ub = 1) = ak−1(sk−1) + γ(sk−1, sk) + βk(sk), (5)

where the path from sk−1 to sk with ub = 1 is used in the

computation.

193

To compute the extrinsic LLR for uk, we perform the follow-

ing computation:

Le(k) = max∗sk∈K(Λ(sk|ub = 0)− Λ(sk|ub = 1))

−La(y
s
k)− Lc(y

s
k), (6)

where K is the set of all possible states and max∗() is defined

as max∗(S) = ln(
∑

s∈S es).
In the next section, we will describe how this algorithm is

mapped onto GPU in detail.

IV. IMPLEMENTATION OF MAP DECODER ON GPU

A straight-forward implementation of the decoding algorithm

requires the completion of N stages of αk computation before

the start of βk computation. Throughput of such a decoder would

be low on a GPU. First, the parallelism of this decoder would be

low; since we would spawn only one thread block with 8 threads

to traverse the trellis in parallel. Second, the memory required

to save N stages of αk is significantly larger than the shared

memory size. Finally, a traversal from stage 0 to stage N − 1
takes many cycles to complete and leads to very long decoding

delay.

Figure 3 provides an overview of our implementation. At the

beginning of the decoding process, the inputs of the decoder,

LLRs from the channel, are copied from the host memory to

device memory. Instead of spawning only one thread-block per

codeword to perform decoding, a codeword is split into P sub-

blocks and uses P independent thread blocks in parallel. We

still assign 8 threads per each thread block as there are only

8 trellis states. However, both the amount of shared memory

required and the decoding latency are reduced as a thread-

block only needs to traverse through N
P stages. After each half

decoding iteration, thread blocks are synchronized by writing

extrinsic LLRs to device memory and terminating the kernel.

In the device memory, we allocate memory for both extrinsic

LLRs from the first half iteration and extrinsic LLRs from the

second half iteration. During the first half iteration, the P thread

blocks read from extrinsic LLRs from the second half iteration.

During the second half of the iteration, the direction is reversed.

Although a sliding window with training sequence [16] can be

used to improve the BER performance of the decoder, it is not

supported by the current design. As the length of sub-blocks is

very small with large P , a sliding window would add significant

overhead. However, the next iteration initialization technique is

used to improve BER performance. The α and β values between

neighboring thread-blocks are exchanged between iterations.

Only one MAP kernel is needed as each half iteration of the

MAP decoding algorithm performs the same sequence of compu-

tations. However, since the input changes and the output changes

between each half iteration, the kernel needs to be reconfigurable.

Specifically, the first half iteration reads a priori LLRs and writes

extrinsic LLRs without any interleaving or deinterleaving. The

second half iteration reads a priori LLRs interleaved and writes

extrinsic LLRs deinterleaved. The kernel handles reconfiguration

easily with a couple of simple conditional reads and writes

at the beginning and the end of the kernel. Therefore, this

kernel executes twice per iteration. The implementation details

D0 D1 D2 DP-1

Host Memory

Device Memory

Lc(ys), Lc(p0), Lc(p1)

…..

2
cy

cl
es

 =
 1

 it
er

at
io

n

Fig. 3: Overview of our MAP decoder implementation

of the reconfigurable MAP kernel are described in the following

subsections.

A. Shared Memory Allocation

To increase locality of the data, our implementation attempts to

prefetch data from device memory into shared memory and keep

intermediate results on die. Since the backward traversal depends

on the results from the forward traversal, we save N
P stages of αk

values in shared memory from the forward traversal. Since there

are 8 threads, one per trellis state, each thread block requires
8N
P floats for α. Similarly, we need to save βk to compute βk−1,

which requires 8 floats. In order to increase thread utilization

during extrinsic LLR computation, we save up to 8 stages of

Λk(sk|ub = 0) and Λk(sk|ub = 1), which requires 128 floats.

In addition, at the start of the kernel, we prefetch N
P LLRs

from the channel and N
P a priori LLRs into shared memory

for more efficient access. A total of 10N
P +196 floats is allocated

per thread-block. Since we only have 16KB of shared memory

which is divided among concurrent executing thread blocks,

small P increases the amount of shared memory required per

thread block which reduces the number of concurrent executing

thread blocks significantly.

B. Forward Traversal

During the forward traversal, each thread block first traverses

through the trellis to compute α. We assign one thread to

each trellis level; each thread evaluates two incoming paths and

updates αk(sj) for the current trellis stage using αk−1, the

forward metrics from the previous trellis stage k−1. The decoder

use Equation (2) to compute αk. The computation, however,

depends on the path taken (sk−1, sk). The two incoming paths

are known a priori since the connections are defined by the trellis

structure as shown in Figure 2. Table I summarizes operands

needed for α computation. The indices of the αk are stored in

constant memory. Each thread loads the indices and the values

pk|ub = 0 and pk|ub = 1 at the start of the kernel. The

pseudo-code for one iteration of αk computation is shown in

Algorithm 1. The memory access pattern is very regular for the

forward traversal. Threads access values of αk−1 in different

memory banks. Since all threads access the same a priori LLR

and parity LLR in each iteration, memory accesses are broadcast

reads. Therefore, there are no shared memory conflicts in either

case, that is memory reads and writes are handled efficiently by

shared memory.

194

TABLE I: Operands for αk computation

ub = 0 ub = 1
Thread id (i) sk−1 pk sk−1 pk

0 0 0 1 1
1 3 1 2 0
2 4 1 5 0
3 7 0 6 1
4 1 0 0 1
5 2 1 3 0
6 5 1 4 0
7 6 0 7 1

Algorithm 1 thread i computes αk(i)

a0 ← αk−1(sk−1|ub = 0) + Lc(y
s
k) ∗ (pk|ub = 0)

a1 ← αk−1(sk−1|ub = 1) + (Lc(y
s
k) + La(k))

+Lc(p
s
k)(pk|ub = 1)

αk(i) = max∗(a0, a1)
SYNC

C. Backward Traversal and LLR Computation

After the forward traversal, each thread block traverses through

the trellis backward to compute β. We assign one thread to each

trellis level to compute β, followed by computing Λ0 and Λ1

shown in Algorithm 2. The indices of βk+1 and values of pk are

summarized in Table II. Similar to the forward traversal, there

are no shared memory bank conflicts since each thread accesses

an element of α or β in a different bank.

TABLE II: Operands for βk computation

ub = 0 ub = 1
Thread id (i) sk+1 pk sk+1 pk

0 0 0 4 1
1 4 0 0 1
2 5 1 1 0
3 1 1 5 0
4 2 1 6 0
5 6 1 2 0
6 7 0 3 1
7 3 0 7 1

Algorithm 2 thread i computes βk(i) and Λ0(i) and Λ1(i)

b0 ← αk+1(sk+1|ub = 0) + Lc(y
s
k) ∗ (pk|ub = 0)

b1 ← αk+1(sk+1|ub = 1) + (Lc(y
s
k) + La(k))

+Lc(p
s
k)(pk|ub = 1)

βk(i) = max∗(b0, b1)
SYNC

Λ0(i) = αk(i) + Lp(i)pk + βk+1(i)
Λ1(i) = αk(i) + (Lc(k) + La(k)) + Lp(sk)pk + βk(i)

After computing Λ0 and Λ1 for stage k, we can compute the

extrinsic LLR for stage k. However, there are 8 threads avail-

able to compute the single LLR, which introduces parallelism

overhead. Instead of computing one extrinsic LLR for stage k
as soon as the decoder computes βk, we allow the threads to

traverse through the trellis and save 8 stages of Λ0 and Λ1

before performing extrinsic LLR computations. By saving eight

stages of Λ0 and Λ1, we allow all 8 threads to compute LLRs in

parallel efficiently. Each thread handles one stage of Λ0 and Λ1

to compute an LLR. Although this increases thread utilization,

threads need to avoid accessing the same bank when computing

extrinsic LLR. For example, 8 elements of Λ0 for each stage are

stored in 8 consecutive addresses. Since there are 16 memory

banks, elements of even stages Λ0 or Λ1 with the same index

would share the same memory bank. Likewise, this is true for

even stages of Λ0. Hence, sequential accesses to Λ0 or Λ1 to

compute extrinsic LLR will result in four-way memory bank

conflicts. To alleviate this problem, we permute the access pattern

based on thread ID as shown in Algorithm 3.

Algorithm 3 thread i computes Le(i)

λ0 = Λ0(i)
λ1 = Λ1(i)
for j = 1 to 7 do
index = (i+ j)&7
λ0 = max∗(λ0,Λ0(index))
λ1 = max∗(λ1,Λ1(index))
Le = λ1 − λ0

Compute write address

Write Le to device memory

end for

D. Interleaver

The interleaver is used in the second half iteration of the MAP

decoding algorithm. In our implementation, a quadratic permu-

tation polynomial (QPP) interleaver [17], which is proposed in

the 3GPP LTE standard was used. Although the QPP interleaver

is contention free since it can guarantee bank free memory

access, where each sub-block accesses a different memory bank.

However, the memory access pattern is still random. Since the

inputs are shared in device memory, memory accesses are not

necessarily coalesced. We reduce latency by pre-fetching data

into the shared memory. The QPP interleaver is defined as:

Π(x) = f1x+ f2x
2 (mod N). (7)

Direct computation of Π(x) using Equation (7) can cause over-

flow. For example, 61432 can not be represented as a 32-bit

integer. The following equation is used to compute Π(x) instead:

Π(x) = (f1 + f2x (mod N)) · x (mod N) (8)

Another alternative is to compute Π(x) recursively [6], which

requires Π(x) to be computed before we can compute Π(x+1).
This is not efficient for our design as we need to compute several

interleaved addresses in parallel. For example, during the second

half of the iteration to store extrinsic LLR values, 8 threads need

to compute 8 interleaved address in parallel. Equation (8) allows

efficient address computation in parallel.

Although our decoder is configured for the 3GPP LTE stan-

dard, one can replace the current interleaver function with

195

another function to support other standards. Furthermore, we

can define multiple interleavers and switch between them on-

the-fly since the interleaver is defined in software in our GPU

implementation.

E. max∗ Function
Both natural logarithm and natural exponential are supported

on CUDA. We support full-log-MAP as well as max-log-MAP

[18]. We compute full-log-MAP by:

∗
max(a, b) = max(a, b) + ln(1 + e−|b−a|) (9)

and max-log-MAP is defined as:

∗
max(a, b) = max(a, b). (10)

Throughput of full-log-MAP will be slower than the throughput

of max-log-MAP. Not only is the number of instructions required

for full-log-MAP greater than the number of instructions required

for max-log-MAP, but also the natural logarithm and natural

exponential instructions take longer to execute on the GPU

compared to common floating operations, e.g. multiply and add.

An alternative is using a lookup table in constant memory.

However, this is even less efficient as multiple threads access

different entries in the lookup table simultaneously and only the

first entry will be a cached read.

V. BER PERFORMANCE AND THROUGHPUT RESULTS

We evaluated accuracy of our decoder by comparing it against

a reference standard C Viterbi implementation. To evaluate the

BER performance and throughput of our turbo decoder, we tested

our turbo decoder on a Linux platform with 8GB DDR2 memory

running at 800 MHz and an Intel Core 2 Quad Q6600 running at

2.4Ghz. The GPU used in our experiment is the Nvidia TESLA

C1060 graphic card, which has 240 stream processors running

at 1.3GHz with 4GB of GDDR3 memory running at 1600 MHz.

A. Decoder BER Performance
Since our decoder can change P , which is the number of

sub-blocks to be decoded in parallel, we first look at how the

number of parallel sub-blocks affects the overall decoder BER

performance. In our setup, the host computer first generates

the random bits and encodes the random bits using a 3GPP

LTE turbo encoder. After passing the input symbols through

the channel with AWGN noise, the host generates LLR values

which are fed into the decoding kernel running on GPU. For this

experiment, we tested our decoder with P = 32, 64, 96, 128 for

a 3GPP LTE turbo code with N = 6144. In addition, we tested

both full-log-MAP as well as max-log-MAP with the decoder

performing 6 decoding iterations.
Figure 4 shows the bit error rate (BER) performance of the

our decoder using full-log-MAP, while Figure 5 shows the BER

performance of our decoder using max-log-MAP. In both cases,

BER performance of the decoder decreases as we increase P .

The BER performance of the decoder is significantly better

when full-log-MAP is used. Furthermore, we see that even with

parallelism of 96, where each sub-block is only 64 stages long,

the decoder provides BER performance that is within 0.1dB of

the performance of the optimal case (P = 1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/No [dB]

B
it

E
rr

or
 R

at
e

(B
E

R
)

P=1
P=32
P=64
P=96
P=128

Fig. 4: BER performance (BPSK, full-log-MAP)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No [dB]

B
it

E
rr

or
 R

at
e

(B
E

R
)

P=1
P=32
P=64
P=96
P=128

Fig. 5: BER performance (BPSK, max-log-MAP)

B. Decoder Throughput

We measure the time it takes for the decoder to decode a batch

of 100 codewords using event management in the CUDA runtime

API. The runtimes measured include both memory transfers

and kernel execution. Since our decoder can support various

code sizes, we can decode N = 64, 1024, 2048, 6144 with

various numbers of decoding iterations and parallelism P . The

throughput of the decoder is only dependent on W = N
P as

decoding time is linearly dependent on the number of trellis

stages traversed. Therefore, we report the decoder throughput

as a function of W which can be used to find the throughput

of different decoder configurations. For example, if N = 6144,

P = 64, and the decoder performs 1 iteration, the throughput of

the decoder is the throughput when W = 96. The throughput

of the decoder is summarized in Table III. We see that the

throughput of the decoder is inversely proportional to the number

of iterations performed. The throughput of the decoder after

m iterations can be approximated as T0/m, where T0 is the

throughput of the decoder after 1 iteration.

Although throughput of full-log-MAP is slower than max-log-

MAP as expected, the difference is small while full-log-MAP

196

TABLE III: Throughput vs W

Max-log-MAP throughput/ Full-log-MAP throughput (Mbps)
Iter W=32 W=64 W=96 W=128

1 49.02/36.59 34.75/23.87 26.32/19.50 17.95/12.19
2 24.14/18.09 17.09/12.72 12.98/9.62 8.82/5.59
3 16.01/12.00 11.34/8.45 8.57/6.39 5.85/3.97
4 11.98/9.01 8.48/6.51 6.41/4.78 4.37/2.97
5 9.57/7.19 6.77/5.2 5.12/3.82 3.49/2.37
6 7.97/5.99 5.64/4.33 4.26/3.18 2.91/1.97

improves the BER performance of the decoder significantly.

Therefore, full-log-MAP is a better choice for this design.

C. Architecture Comparison

Table IV compares our decoder with other programmable turbo

decoders. Our decoder with W = 64 compares favorably in

terms of throughput and BER performance. We can support both

the full-log-MAP (FLM) algorithm and the simplified max-log-

MAP (MLM) algorithm while most other solutions only support

the sub-optimal max-log-MAP algorithm.

TABLE IV: Our decoder vs other programmable turbo decoders

Work Architecture MAP Algorithm Throughput Iter.
[19] Intel Pentium 3 MLM/FLM 366 Kbps/51Kbps 1
[20] Motorola 56603 MLM 48.6 Kbps 5
[20] STM VLIW DSP FLM 200 Kbps 5
[21] TigerSHARC DSP MLM 2.399 Mbps 4
[22] TMS320C6201 DSP MLM 500 Kbps 4
[5] 32-wide SIMD MLM 2.08 Mbps 5

ours Nvidia C1060 MLM/FLM 6.77/5.2Mbps 5

VI. CONCLUSION

In this paper, we presented a 3GPP LTE compliant turbo
decoder implemented on GPU. We portion the workload across
cores on the GPU by dividing the codeword into many sub-
blocks to be decoded in parallel. Furthermore, all computation
is completely parallel for each sub-block. To reduce the memory
bandwidth needed to keep the cores fed, we prefetch data into
shared memory and keep immediate data in shared memory.
As different sub-block sizes can lead to BER performance
degradation, we presented how both BER performance and
throughput is affected by sub-block size. We show that our
decoder provides faster throughput even though the full-log-
MAP algorithm is used. As the decoder is done in software, we
can easily change the QPP interleaver and trellis structure states
to support other codes. Future work includes other partitioning
and memory strategies to improve throughput of the decoder.
Furthermore, we will implement a completely iterative MIMO
receiver by combining this decoder with a MIMO detector on
the GPU.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon
limit error-correcting coding and decoding: Turbo-Codes,” in IEEE
International Conference on Communication, May 1993.

[2] D. Garrett, B. Xu, and C. Nicol, “Energy efficient turbo decod-
ing for 3G mobile,” in International symposium on Low power
electronics and design. ACM, 2001, pp. 328–333.

[3] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A
24Mb/s radix-4 logMAP turbo decoder for 3GPP-HSDPA mobile
wireless,” in IEEE Int. Solid-State Circuit Conf. (ISSCC), Feb.
2003.

[4] M. Shin and I. Park, “SIMD processor-based turbo decoder sup-
porting multiple third-generation wireless standards,” IEEE Trans.
on VLSI, vol. vol.15, pp. pp.801–810, Jun. 2007.

[5] Y. Lin, S. Mahlke, T. Mudge, C. Chakrabarti, A. Reid, and
K. Flautner, “Design and implementation of turbo decoders for
software defined radio,” in IEEE Workshop on Signal Processing
Design and Implementation (SIPS), Oct. 2006.

[6] Y. Sun, Y. Zhu, M. Goel, and J. R. Cavallaro, “Configurable and
Scalable High Throughput Turbo Decoder Architecture for Mul-
tiple 4G Wireless Standards,” in IEEE International Conference
on Application-Specific Systems, Architectures and Processors
(ASAP), July 2008, pp. 209–214.

[7] P. Salmela, H. Sorokin, and J. Takala, “A Programmable Max-Log-
MAP Turbo Decoder Implementation,” Hindawi VLSI Design, vol.
vol.2008, pp. pp. 636–640, 2008.

[8] C.-C. Wong, Y.-Y. Lee, and H.-C. Chang, “A 188-size 2.1mm2

reconfigurable turbo decoder chip with parallel architecture for
3GPP LTE system,” in 2009 Symposium on VLSI Circuits, June
2009, pp. 288–289.

[9] G. Falcão, V. Silva, and L. Sousa, “How GPUs Can Outperform
ASICs for Fast LDPC Decoding,” in ICS ’09: Proceedings of the
23rd International Conference on Supercomputing, pp. 390–399.

[10] M. Wu, S. Gupta, Y. Sun, and J. R. Cavallaro, “A GPU Imple-
mentation of A Real-Time MIMO Detector,” in IEEE Workshop
on Signal Processing Systems (SiPS’09), Oct. 2009.

[11] M. Wu, Y. Sun, and J. R. Cavallaro, “Reconfigurable Real-time
MIMO Detector on GPU,” in IEEE 43rd Asilomar Conference on
Signals, Systems and Computers (ASILOMAR’09), Nov. 2009.

[12] Xilinx Corporation, 3GPP LTE Turbo Decoder v2.0, 2008.
[Online]. Available: http://www.xilinx.com/products/ipcenter/DO-
DI-TCCDEC-LTE.htm

[13] K. Amiri, Y. Sun, P. Murphy, C. Hunter, J. R. Cavallaro, and
A. Sabharwal, “Warp, a unified wireless network testbed for edu-
cation and research,” in MSE ’07: Proceedings of the 2007 IEEE
International Conference on Microelectronic Systems Education,
June 2007.

[14] NVIDIA Corporation, CUDA Compute Unified Device
Architecture Programming Guide, 2008. [Online]. Available:
http://www.nvidia.com/object/cuda_develop.html

[15] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of
Linear Codes for Minimizing Symbol Error Rate,” IEEE Transac-
tions on Information Theory, vol. IT-20, pp. 284–287, Mar. 1974.

[16] F. Naessens, B. Bougard, S. Bressinck, L. Hollevoet, P. Raghavan,
L. V. der Perre, and F. Catthoor, “A unified instruction set
programmable architecture for multi-standard advanced forward
error correction,” in IEEE Workshop on Signal Processing Sys-
tems(SIPS), October 2008.

[17] J. Sun and O. Takeshita, “Interleavers for turbo codes using
permutation polynomials over integer rings,” IEEE Trans. Inform.
Theory, vol. vol.51, pp. 101–119, Jan. 2005.

[18] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of
optimal and sub-optimal MAP decoding algorithm operating in the
log domain,” in IEEE Int. Conf. Commun., 1995, pp. 1009–1013.

[19] M. Valenti and J. Sun, “The UMTS Turbo Code and a Efficient
Decoder Implementation Suitable for Software-Defined Radios,”
International Journal of Wireless Information Networks, vol. 8,
no. 4, pp. 203–215, Oct. 2001.

[20] H. Michel, A. Worm, M. Munch, and N. Wehn, “Hardware soft-
ware trade-offs for advanced 3G channel coding,” in Proceedings
of Design, Automation and Test in Europe, 2002.

[21] K. Loo, T. Alukaidey, and S. Jimaa, “High performance paral-
lelised 3GPP turbo decoder,” in IEEE Personal Mobile Communi-
cations Conference, April 2003, pp. 337–342.

[22] Y. Song, G. Liu, and Huiyang, “The implementation of turbo
decoder on DSP in W-CDMA system,” in International Conference
on Wireless Communications, Networking and Mobile Computing,
Dec. 2005, pp. 1281–1283.

197

