POINTWISE SO_{4} SYMMETRY OF THE BPST PSEUDOPARTICLE SOLUTION

by Chen Ning Yang

Abstract

The BPST pseudoparticle solution is shown to be everywhere pointwise SO_{4} symmetrical. It is further shown that on flat Euclidean space R_{4}, the only $S U_{2}$ gauge field that is everywhere SO_{4} symmetrical is a BPST pseudoparticle solution.

I. INTRODUCTION

In a recent generalization' of the Dirac monopole to SU_{2} gauge fields, it was found that the concept of "pointwise SO_{4} symmetry." is useful. The meaning of this concept ${ }^{2}$ can be explained in the following way:

Consider a four-dimensional manifold with a Riemannian geometry having ++++ signature. Let P be a point on the manifold. Consider an $S U_{2}$ gauge field with field strengths $\left(f_{\mu \nu}^{i}\right)_{P}$ at the point P. Does $\left(f_{\mu \nu}^{i}\right)_{P}$ serve to differentiate between the various directions from P ? If it does not, we say the field has pointwise SO_{4} symmetry at P. To be more precise, choose coordinates so that the metric at P is $g_{\mu \nu}=\delta_{\mu \nu}$. If any SO_{4} rotation for the indices μ, ν in $\left(f_{\mu \nu}^{i}\right)_{P}$ can be compensated for by a gauge transformation on the index i, the field has pointwise SO_{4} symmetry at P.

In this paper I show that the pseudoparticle solution ${ }^{3}$ of Belavin, Polyakov, Schwartz, and Tynpkin, to be called the BPST solution, is everywhere pointwise SO_{4} symmetrical. I then show that the only gauge field (sourceless or not) on R_{4}, (i.e., on flat ++++ space), that is everywhere pointwise SO_{4} symmetrical is the BPST solution.

[^0]
II. POINTWISE S_{-}SYMMETRY OF BPST SOLUTION

It was shown in the appendix of reference 1 that the following statements are identical
(a) $f_{\mu \nu}^{i}$ is pointwise SO_{4} symmetrical at P, (also called orthogonal or regular at P),
(b) $f_{\mu \nu}^{i} f^{j \lambda \nu}=a^{2} \delta^{i j} \delta_{\mu}^{\lambda}+a \epsilon^{i j k} f_{\mu}^{k \cdot \lambda}$ at P,
(c) $f_{\mu \nu}^{i} f^{j \lambda \nu}+f_{\mu \nu}^{j} f^{i \lambda \nu}=2 a^{2} \delta^{i j} \delta_{\mu}^{\lambda}$ at P,
where a is a scalar function on the manifold. It is further easy to show from lemmas $1 \alpha, 1 \beta$ and 4 of reference 1 that these statements are also identical to
(d) $f_{\mu \nu}^{i}$ is self dual or self antidual at P, and in a coordinate system for which $g_{\mu \nu}=\delta_{\mu \nu}$ at P,

$$
\tilde{\mathscr{E}} \mathcal{E}=\tilde{\mathscr{K}} \mathscr{K}=a^{2}
$$

Theorem 1. The BPST solution is everywhere pointwise SO_{4} symmetrical.

Proof: By a straightforward evaluation of the field strengths \mathcal{E} and \mathscr{H} for the BPST solution, we easily verify property (d) above. Hence the theorem is proved.

The square of the field strength, a^{2}, is easily computed to be

$$
a^{2}=\frac{16 K^{2}}{\left[x^{2}+K\right]^{4}}(K>0)
$$

where $x^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$ and x_{μ} are the Cartesian coordinates. This function peaks at $x=0$. Around a point P where $x \neq 0$, a SO_{4} rotation of the whole field changes the magnitude of the field strength squared at most points. So the field is not SO_{4} symmetrical at P. But it is pointwise SO_{4} symmetrical at P in that if one considers only the value of $f_{\mu \nu}^{i}$ at P, then the rotation of the field strengths is equivalent to a gauge transformation of the original field strengths. Thus the value of $f_{\mu \nu}^{i}$ at P does not serve to choose an SO_{4} frame around P.

Theorem 2. The BPST solution is the only $S U_{2}$ gauge field that is everywhere pointwise SO_{4} symmetrical on R_{4}, the flat 4-dimensional Euclidean space.

Proof: (1) According to Appendix A of reference 1, a field that is pointwise SO_{4} symmetrical can be gauge transformed to the standard form,
with only one parameter, a, its amplitude. For a field that is everywhere pointwise SO_{4} symmetrical, the field strengths in the proper gauge are of the standard form (IA10) or (IA11) everywhere. The amplitude a is a function of the x 's. We shall write these equations in the following form

$$
\begin{equation*}
f_{\mu \nu}^{i}=a \eta_{\mu \nu}^{i} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
f_{\mu \nu}^{i}=a \bar{\eta}_{\mu \nu}^{i} \tag{2}
\end{equation*}
$$

where η and $\bar{\eta}$ are the symbols introduced by 't Hooft ${ }^{4}$:

$$
\begin{align*}
& \eta_{\mu \nu}^{i}=\epsilon_{i \mu \nu 4}+\delta_{\mu i} \delta_{\nu 4}-\delta_{\nu i} \delta_{\mu 4} \tag{3}\\
& \bar{\eta}_{\mu \nu}^{i}=\epsilon_{i \mu \nu 4}-\delta_{\mu i} \delta_{\nu 4}+\delta_{\nu i} \delta_{\mu 4} \tag{4}
\end{align*}
$$

For the self-dual case (1), the Bianchi identity becomes ${ }^{5}$

$$
\begin{equation*}
\eta^{\xi \mu \nu \lambda}\left(\eta_{\mu \nu}^{i} a, \lambda-a C_{j k}^{i} \eta_{\mu \nu}^{j} b_{\lambda}^{k}\right)=0 \tag{5}
\end{equation*}
$$

Since $\eta_{\mu \nu}^{i}$ is self dual, this becomes

$$
\begin{equation*}
\eta^{i \xi \lambda} a, \lambda-a C_{j k}^{i} \eta^{j \xi \lambda} b_{\lambda}^{k}=0 \tag{6}
\end{equation*}
$$

(2) Now define a matrix M and columns Δ and b by

$$
\begin{align*}
<i \xi|M| k \lambda> & =C_{j k}^{i} \eta^{j \xi \lambda} \tag{7}\\
<i \xi \mid \Delta> & =\eta^{i \xi \lambda} a, \lambda \tag{8}\\
<k \lambda \mid b> & =b_{\lambda}^{k} \tag{9}
\end{align*}
$$

Eq. (6) becomes

$$
\begin{equation*}
\Delta-a M b=0 \tag{10}
\end{equation*}
$$

Using ${ }^{4.1}$

$$
\begin{equation*}
\eta_{\alpha \lambda}^{i} \eta_{\beta \lambda}^{j}=\epsilon^{i j k} \eta_{\alpha \beta}+\delta^{i j} \delta_{\alpha \beta} \tag{11}
\end{equation*}
$$

we can prove

$$
\begin{equation*}
(M+1) M=2 . \tag{12}
\end{equation*}
$$

Thus

$$
b=a^{-1}(M+1) \Delta / 2
$$

Or

$$
\begin{equation*}
b_{\xi}^{i}=-a, \mu \eta \xi \mu(2 a)^{-1} \tag{13}
\end{equation*}
$$

(3) Substituting this into the equation for $f_{\mu \nu}^{i}$ in terms of b_{ξ}^{i} and its derivatives, we obtain as necessary and sufficient conditions for (1):

$$
\begin{align*}
& A, \mu \nu=\delta_{\mu \nu} B+A, \mu A, \nu \tag{14}\\
& 2 a=-A, \mu \mu-(A, \mu)^{2} \tag{15}
\end{align*}
$$

where

$$
\begin{equation*}
A=\frac{1}{2} \ln |a| \tag{16}
\end{equation*}
$$

and B is a scalar function of the coordinates. Putting

$$
\begin{equation*}
G=\exp (-A) \tag{17}
\end{equation*}
$$

(14) becomes

$$
G, i j=0,(i \neq j),
$$

and

$$
G,_{11}=G, 22=G, 33=G, 44 .
$$

These equations can be integrated, giving

$$
\begin{equation*}
G=\alpha(x-c)^{2}+\beta \tag{18}
\end{equation*}
$$

where c_{μ} is a point in R_{4}, and α and β are numbers. Substitution into (10), (16), and (17) gives

$$
a=\frac{ \pm 1}{\left(\alpha(x-c)^{2}+\beta\right)^{2}}
$$

To avoid singularities in $f_{\mu \nu}^{i}, a$ must remain finite. Thus $\alpha \beta \nless 0$. Eq. (15) gives then $4 \alpha \beta=1$, and we obtain, with $K=\beta \alpha^{-1}>0$,

$$
\begin{equation*}
a=\frac{4 K}{\left[(x-c)^{2}+K\right]^{2}} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{\xi}^{i}=-a, \mu \eta_{\xi \mu}^{i}(2 a)^{-1} \tag{20}
\end{equation*}
$$

These two equations give exactly the BPST solution. ${ }^{3}(20)$ is precisely in the form of the Corrigan-Fairlie-Wilczek-'t Hooft Ansatz. ${ }^{6}$
(4) The proof for the antiself dual case is entirely similar.

ACKNOWLEDGMENT

This work is supported in part by the National Science Foundation under Grant No. PHY-76-15328.

REFERENCES

1. Chen Ning Yang, J. Math. Phys. 19, 320 (1978). Formulas in this paper will be referred to as (I2), (IA11), etc.
2. In reference 1 , this concept was applied only to points P where the underlying geometry is SO_{4} symmetrical at the point P. The concept is actually applicable to any point on any Riemannian geometry of signature ++++ .
3. Belavin, Polyakov, Schwartz, and Tynpkin, Phys. Lett. 59B, 85 (1975).
4. G. 't Hooft, Phys. Rev. D14, 3432 (1976).
5. We use the notation that $\eta^{\xi \mu \nu \lambda}=\sqrt{g} \xi^{\xi \mu \nu \lambda}$ where $\epsilon= \pm 1$ is the antisymmetrical tensor. All notations follow that of reference 1 .
6. E. Corrigan and D. B. Fairlie, Phys. Lett. 67B, 69 (1977); F. Wilczek, in Quark Confinement and Field Theory, ed. by D. Stump and D. Weingarten (Wiley, New York, 1977); 't Hooft, unpublished.

[^0]: Chen Ning Yang is Director of the Institute of Theoretical Physics and Professor of Physics at the State University of New York, Stony Brook.

