POINTWISE SO₄ SYMMETRY OF THE BPST PSEUDOPARTICLE SOLUTION

by Chen Ning Yang

ABSTRACT

The BPST pseudoparticle solution is shown to be everywhere pointwise SO_4 symmetrical. It is further shown that on flat Euclidean space R_4 , the only SU_2 gauge field that is everywhere SO_4 symmetrical is a BPST pseudoparticle solution.

I. INTRODUCTION

In a recent generalization' of the Dirac monopole to SU_2 gauge fields, it was found that the concept of "pointwise SO_4 symmetry." is useful. The meaning of this concept² can be explained in the following way:

Consider a four-dimensional manifold with a Riemannian geometry having + + + signature. Let P be a point on the manifold. Consider an SU_2 gauge field with field strengths $(f^i_{\mu\nu})_P$ at the point P. Does $(f^i_{\mu\nu})_P$ serve to differentiate between the various directions from P? If it does not, we say the field has pointwise SO_4 symmetry at P. To be more precise, choose coordinates so that the metric at P is $g_{\mu\nu} = \delta_{\mu\nu}$. If any SO_4 rotation for the indices μ, ν in $(f^i_{\mu\nu})_P$ can be compensated for by a gauge transformation on the index *i*, the field has pointwise SO_4 symmetry at P.

In this paper I show that the pseudoparticle solution³ of Belavin, Polyakov, Schwartz, and Tynpkin, to be called the BPST solution, is everywhere pointwise SO_4 symmetrical. I then show that the only gauge field (sourceless or not) on R_4 , (i.e., on flat + + + + space), that is everywhere pointwise SO_4 symmetrical is the BPST solution.

Chen Ning Yang is Director of the Institute of Theoretical Physics and Professor of Physics at the State University of New York, Stony Brook.

II. POINTWISE SO4 SYMMETRY OF BPST SOLUTION

It was shown in the appendix of reference 1 that the following statements are identical

- (a) $f_{\mu\nu}^{i}$ is pointwise SO₄ symmetrical at P, (also called orthogonal or regular at P),
- (b) $f_{\mu\nu}^{i}f^{j\lambda\nu} = a^{2}\delta^{ij}\delta_{\mu}^{\lambda} + a\epsilon^{ijk}f_{\mu}^{k\cdot\lambda}$ at P, (c) $f_{\mu\nu}^{i}f^{j\lambda\nu} + f_{\mu\nu}^{j}f^{i\lambda\nu} = 2a^{2}\delta^{ij}\delta_{\mu}^{\lambda}$ at P,

where a is a scalar function on the manifold. It is further easy to show from lemmas 1α , 1β and 4 of reference 1 that these statements are also identical to

(d) $f_{\mu\nu}^{i}$ is self dual or self antidual at P, and in a coordinate system for which $g_{\mu\nu} = \delta_{\mu\nu}$ at P,

$$\tilde{\mathcal{E}} \mathcal{E} = \tilde{\mathcal{K}} \mathcal{K} = a^2$$

Theorem 1. The BPST solution is everywhere pointwise SO₄ symmetrical.

Proof: By a straightforward evaluation of the field strengths & and K for the BPST solution, we easily verify property (d) above. Hence the theorem is proved.

The square of the field strength, a^2 , is easily computed to be

$$a^2 = \frac{16K^2}{[x^2 + K]^4}$$
 (K > 0).

where $x^2 = x_1^2 + x_2^2 + x_3^2 + x_4^2$ and x_{μ} are the Cartesian coordinates. This function peaks at x = 0. Around a point P where $x \neq 0$, a SO₄ rotation of the whole field changes the magnitude of the field strength squared at most points. So the field is not SO₄ symmetrical at P. But it is pointwise SO₄ symmetrical at P in that if one considers only the value of $f_{\mu\nu}^i$ at P, then the rotation of the field strengths is equivalent to a gauge transformation of the original field strengths. Thus the value of $f^i_{\mu\nu}$ at P does not serve to choose an SO_4 frame around P.

Theorem 2. The BPST solution is the only SU_2 gauge field that is everywhere pointwise SO_4 symmetrical on R_4 , the flat 4-dimensional Euclidean space.

Proof: (1) According to Appendix A of reference 1, a field that is pointwise SO_4 symmetrical can be gauge transformed to the standard form, with only one parameter, a, its amplitude. For a field that is everywhere pointwise SO_4 symmetrical, the field strengths in the proper gauge are of the standard form (IA10) or (IA11) everywhere. The amplitude a is a function of the x's. We shall write these equations in the following form

$$f^i_{\mu\nu} = a\eta^i_{\mu\nu} \quad , \tag{1}$$

or

$$f^i_{\mu\nu} = a\bar{\eta}^i_{\mu\nu} \quad , \tag{2}$$

where η and $\overline{\eta}$ are the symbols introduced by 't Hooft':

$$\eta^{i}_{\mu\nu} = \epsilon_{i\mu\nu4} + \delta_{\mu i}\delta_{\nu4} - \delta_{\nu i}\delta_{\mu4} \quad , \qquad (3)$$

$$\bar{\eta}^{i}_{\mu\nu} = \epsilon_{i\mu\nu4} - \delta_{\mu i}\delta_{\nu4} + \delta_{\nu i}\delta_{\mu4} \qquad (4)$$

For the self-dual case (1), the Bianchi identity becomes⁵

$$\eta^{\xi\mu\nu\lambda}\left(\eta^{i}_{\mu\nu}a_{,\lambda}-aC^{i}_{jk}\eta^{j}_{\mu\nu}b^{k}_{\lambda}\right) = 0 \qquad . \tag{5}$$

Since $\eta^i_{\mu\nu}$ is self dual, this becomes

$$\eta^{i\xi\lambda}a_{,\lambda} - aC^{i}_{jk}\eta^{j\xi\lambda}b^{k}_{\lambda} = 0 \qquad . \tag{6}$$

(2) Now define a matrix M and columns Δ and b by

$$\langle i\xi | M | k\lambda \rangle = C^{i}_{jk} \eta^{j\xi\lambda}$$
, (7)

$$\langle i\xi | \Delta \rangle = \eta^{i\xi\lambda}a_{,\lambda}$$
 (8)

$$\langle k\lambda | b \rangle = b_{\lambda}^{k}$$
 (9)

Eq. (6) becomes

$$\Delta - aMb = 0 \qquad . \tag{10}$$

Using⁴·1

$$\eta^{i}_{\alpha\lambda}\eta^{j}_{\beta\lambda} = \epsilon^{ijk}\eta_{\alpha\beta} + \delta^{ij}\delta_{\alpha\beta}$$
(11)

we can prove

245

RICE UNIVERSITY STUDIES

(M+1)M = 2 . (12)

Thus

 $b = a^{-1}(M+1)\Delta/2$

Or

$$b_{\xi}^{i} = -a_{,\mu}\eta_{\xi\mu}(2a)^{-1} \qquad (13)$$

(3) Substituting this into the equation for $f^{i}_{\mu\nu}$ in terms of b^{i}_{ξ} and its derivatives, we obtain as necessary and sufficient conditions for (1):

$$A_{,\mu\nu} = \delta_{\mu\nu}B + A_{,\mu}A_{,\nu} \qquad , \qquad (14)$$

$$2a = -A_{,\mu\mu} - (A_{,\mu})^2 , \qquad (15)$$

where

$$A = \frac{1}{2} ln |a| \qquad , \tag{16}$$

and B is a scalar function of the coordinates. Putting

$$G = \exp(-A) \quad , \tag{17}$$

(14) becomes

 $G_{,ij} = 0, (i \neq j) ,$

and

$$G_{,11} = G_{,22} = G_{,33} = G_{,44}$$

These equations can be integrated, giving

$$G = \alpha (x - c)^2 + \beta \tag{18}$$

where c_{μ} is a point in R_4 , and α and β are numbers. Substitution into (10), (16), and (17) gives

$$a = \frac{\pm 1}{(\alpha(x-c)^2+\beta)^2}$$

246

To avoid singularities in $f_{\mu\nu}^{i}$, a must remain finite. Thus $\alpha\beta < 0$. Eq. (15) gives then $4\alpha\beta = 1$, and we obtain, with $K = \beta \alpha^{-1} > 0$,

$$a = \frac{4K}{[(x-c)^2 + K]^2} , \qquad (19)$$

and

$$b_{\xi}^{i} = -a_{,\mu} \eta_{\xi\mu}^{i} (2a)^{-1} \qquad (20)$$

These two equations give exactly the BPST solution.³ (20) is precisely in the form of the Corrigan-Fairlie-Wilczek-'t Hooft Ansatz.⁶

(4) The proof for the antiself dual case is entirely similar.

ACKNOWLEDGMENT

This work is supported in part by the National Science Foundation under Grant No. PHY-76-15328.

REFERENCES

- 1. Chen Ning Yang, J. Math. Phys. 19, 320 (1978). Formulas in this paper will be referred to as (12), (1A11), etc.
- 2. In reference 1, this concept was applied only to points P where the underlying geometry is SO_4 symmetrical at the point P. The concept is actually applicable to any point on any Riemannian geometry of signature + + + +.
- 3. Belavin, Polyakov, Schwartz, and Tynpkin, Phys. Lett. 59B, 85 (1975).
- 4. G. 't Hooft, Phys. Rev. D14, 3432 (1976).
- 5. We use the notation that $\eta^{\xi\mu\nu\lambda} = \sqrt{g} \epsilon^{\xi\mu\nu\lambda}$ where $\epsilon = \pm 1$ is the antisymmetrical tensor. All notations follow that of reference 1.
- E. Corrigan and D. B. Fairlie, Phys. Lett. 67B, 69 (1977); F. Wilczek, in Quark Confinement and Field Theory, ed. by D. Stump and D. Weingarten (Wiley, New York, 1977); 't Hooft, unpublished.

247