
NODES AND NETS: EXPLORATIONS IN 
RELATIONAL NETWORK NOTATION 

by Rudiger Schreyer 

INTRODUCTION 

A theory of language, like any other theory, must be coherent and consistent. 
Vague theoretical statements make it impossible to determine coherence or 
consistency. One way of escaping the danger of vagueness is to  formalize 
theoretical statements. The strong trend towards formalized linguistic models 
that we have been witnessing in the past two decades is at least partly due to a 
serious attempt to  improve the quality of linguistic models. True, the prestige 
of formalization has produced "a bull-market in pseudo-mathematical and 
quasi-scientific gadgetry" (Mey 1972: 1 16), but it has also led to the creation of 
some formal linguistic models of great sophistication. In the minds of some 
linguists, Stratificational Grammar (SG) is one of them. Sampson (1970: lo), 
for instance, calls it "the most highly developed theory . . . of communica- 
tional descriptions of language" known to him. This praise of SG is in strange 
contrast with Mey's (1972: 115) statement that SG "is rejected by most of the 
theoretical grammarians on purely formal grounds." The question whether SG 
is or is not a.for.r??al model of language, is, perhaps, not easy to answer. It is 
hoped that the following examination of some fundamental aspects of the 
relational network notation used in SG will contribute to a clearer understand- 
ing of the principles underlying the formal mechanism employed. I shall raise 
some questions to which I have no answer. Whether they will lead to the 
creation of better networks in a formal sense remains to be seen. 

1. STRATIFlCATlONAL THEORY AND NOTATION 

Students of Stratificational Grammar consider language as a code that 
enables the conversion of non-linear semantic structures into linear phonetic 
structures and vice versa. This code is described as  a network of relationships 
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connecting meaning and sound. Like its original, the relational network model 
is a highly complex information-processing system. It is constructed by com- 
bining a limited number of nodes, each representing a basic relationship. 
Although more than just two relationships are involved, "the basic dichotomy is 
between A N D  and OR" (Lamb 1974:215). The nets of SG are somewhat remi- 
niscent of the graphic representation of nerve nets, but there is no  suggestion 
that today's stratificational networks are models of real nerve nets. Lamb 
(1 974: 195) believes that "in the actual n~en ta l s t t~uc tu r~~  involved we will some 
day find the same kind ofneural configurations."On the other hand, thereare 
warnings "NOT to interpret the relational network approach as a neurological 
theory of language" but rather "as a formal system within which a few neuro- 
logically motivated restrictions can be incorporated, but which must stand 
and fall entirely with its ability to  handle linguistic and psycholinguistic data" 
(Reich 1973a:90-91). Virtually the same point is made by Christie (1977: 18). 
In addition to relational network notation, S G  uses an algebraic notation. 
Lamb (1974.215) does, however, regard the former as the principal mode of 
representation, and he emphasizes that "there is no reason graphic networks 
cannot be formalized to just as high a degree of refinement as algebraic 
notation." 

Stratificationalists take notation seriously. They refuse to believe that the 
only thing that "really counts are the thoughts and ideas, and that the means 
of expressing them is relatively unimportant" (Lamb 1974:203). This concern 
with notation finds expression in the changes of the overall structure of net- 
works, in the addition of new types of nodes, in the discussion of node 
properties, in the development of a simplicity measure of linguistic description 
based on these properties, and in micronode analysis. Relational networks are 
not just notational devices; they are intended to be models of language. This is 
the reason why the notation has been devised, and, one might add, is being 
changed "in such a way that it is as close as possible to the actual structure we 
are trying to represent" (Lamb 1974:203). Stratificationalists, then, d o  aim at a 
structural similarity between their networks and the linguistic code. For SG the 
question "whether graphic representation occupies in linguistic theory the place 
of models in scientific theory" (Stewart 1976:llO) must be answered in the 
affirmative. Furthermore, researchers do  explore the "neutral analogy" offered 
by the model by, for instance, extending it t o  describe linguistic change (Christie 
1977). The following statement certainly fits Stratificational Grammar, at least 
in its intention: 

A notlon may be fleettng, doubtfut, vague, once ~t 1s codtfted as a method of rcpresenta- 
tlon, a figure, it must be reckoned with In all its ~mplacablcdeta~l  Craphtc represcntatlon 
influences sclenf~frc theory In two ways. In ~ t s  extenslon and tn 11s development The 
extenslon of a theory 1s ~ t s  appltcatton to more ktnds of data than that for whlch tt ortglnated, 
the development of a theory IS ~ t s  artlculafton In progressively greater dcta~l, and ~ t s  mod~fi- 
catlon. (Stewart 1976.82) 
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Lamb (3974:203) notes that notation influences thinking, and that this is 
necessarily so: "One cannot think without having the information stored in 
some way. Information has to be in some kind of medium and any scientist 
uses his notation as a primary medium in which he does his thinking."On the 
other hand, if "one thinks in terms of the notation that one uses" (Lamb 
1974:203) there is a very real danger of the notational representations replacing 
reality. 

, it may be the ease that the operations that have been "established" (or, rather, assumed) 
to prop up the inturt~ve statements do not seem to be connected with the latter except by the 
author's w~shful thinkrng. So, upon encounterrng t h ~ s  krnd of "formal~red" statement, the 
well-adv~sed reader should keep In mind the age-old truth that "Saytn'lt don't make rt so." 
(Mey 1972 112) 

Necessary and useful as it may be, model-building is not without its hazards. 
T o  avoid the pitfalls outlined above, the model (whether algebraic or graphic) 
must be tested against the data both in its conception and in its subsequent 
detailed development, and particularly in its extension. In Iinguistic modeling 
this poses a host of theoretical and practical questions. But they will have to be 
tackled lest linguistic theory be nothing but "a product of its representation" 
(Stewart 1976:s 1). 

In this study I shall take up the point made by Mey: i.e., that it must be 
ensured that the suggested formalization is, in actual fact, a formalization of 
the intuitive statements to be represented. If a network model of the linguistic 
code is to be of any value, its building blocks-the relationships represented by 
individual nodes-must be well-defined. In other words, there must be a 
systematic connection between the verbal definition and the relationship to be 
defined. This also means that there must be a uniform definitional principle for 
a11 nodes. 

Most works on SG contain definitions of the nodes employed, but even a 
superficial examination wilI reveal that not all definitions have been executed 
with the same clarity and that not all nodes are equally well-defined. In many 
definitions the proponents apparently try to kill two birds with one stone: they 
attempt to define a given relation while at the same time explaining its linguistic 
relevance. This is often done only at the cost of definitional clarity and consis- 
tency. Even a study that specifically addresses the problem of node definition 
(Sullivan 1977:395-399) is not exempt from this criticism (cf. Schreyer Ms.). 

Along the crooked path of progress of Stratificational Linguistics, more and 
more nodes have been introduced to cope with the exigencies of linguistic 
description or with the performance requirements of the network (Sampson 
1970: 17; Lockwood 1972:3 1-73; Reich 1973a; Johannesson 1976: 100-105; 
Christie 1977:4- 13). It is, however, not always easy to decide whether the new 
nodes improve the relational network description. or whether they only compli- 
cate it. It  would be advisable to follow the principle that relationships should 
not be multiplied beyond necessity. But how can we determine whether that 
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necessity exists? I suggest that no new node should be introduced that can be 
defined by a combination of the basic nodes.' 

In sum, there seem to be several good reasons for studying the relational 
networks of SG as formal systems, and it seems to me useful t o  begin by 
examining in detail the node definitions offered by stratificational linguists. 

11. DEFINITION OF T H E  BASIC NODES 

In this section, I examine the verbal definitions of the relationships repre- 
sented by the four nodes commonly accepted as basic: the ordered and 
unordered OR and AND.' My goal is to establish as accurately as  possible the 
relations they are meant to stand for. I do not distinguish between upward 
and downward nodes, since this distinction does not increase the basic types 
of relationship. But as SG nodes are considered two-way nodes that operate 
in a downward direction in encoding (meaning into sound) and in an upward 
direction in decoding (sound into meaning), one must distinguish between an 
upward and a downward definition for each node. 

Networks can be described by their inputs and outputs; Lamb's (1966: lO,42) 
dynamic interpretation of a network assumes that the lines connecting the nodes 
can be activated, an activation being the movement of an impulse along that 
line: 

If I is a top l ~ n e  of a Ilngulst~c graph G, then a ~ O W V W A K D  Oui f>Uf OF i T H R O U G H  C IS a 
specific c o m b ~ n a t ~ o n  of (one or more) I~ne-act~vatlons of bottom lines of G that can result 
from a downward ~mpulse along r .  Sim~larly, ~f h is a bottom llne of G, then a n  U P W A R D  

OUT I'IJ'I OF h 7 HROLIGH G IS a s p e c ~ f ~ c  c o m b ~ n a t ~ o n  of (one or more) 11ne activations of top  
l~nes of G that can result from an upward impulse along b. (Lamb 1966:42) 

Nodes being elementary networks, they can also be understood as input- 
output systems. In fact, Lamb (1966:lO) suggests that the relationships 
symbolized by the nodes "are perhaps most easily understood in terms of the 
dynamic interpretation," and his are still the most systematic definitions with 
reference to  inputs and outputs.' This type of definition is, in my opinion, the 
clearest that has been suggested so far. I shall show that a t  least three of the 
basic nodes' input-output relations allow us t o  identify them with certain 
logical formulae. 

1. Unordered OR- Simple disjunction 
Do~wbt~ard clqfnition. Lamb's (1966: 10) definition states 

7T 
that a goes to h or r.. He emphasizes that the node represents 
a n  exclusive OR (XOR), Lockwood's ( 1972:34-36) exampIes 
and Christie's (1977) and Sullivan's (1977:395) verbal defini- 
tions, as well as Sampson's (1970:25) mathematical definition, 

b suggest the same. 
FIG. A. Upwarc/ definition. According t o  Lamb (1966: lo), h or  r. 

goes to a. Lockwood (I972:34-36), Johannesson (1976: 102) 
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and Christie (1977:4- 13) do not give a behavioral upward definition, but ifthe 
node is assumed to behave like the upward unordered O R  in encoding, it must 
be concluded that we areagain dealing with an XOR. Sullivan's (1977:395) and 
Sampson's (1970:25) definitions confirm this conclusion. 

We arrive thus at the following input-output relations: 

Doun~,ard definition. An input at a will produce an output either at b or it, 
but not at both h and c. 

Upward definition. An input at h or c., but not at both h and c, will produce 
an output at a. 

2. Ordered OR-Precedence disjunction 
Downward definition. In Lamb's (1966: 10) definition, a 

goes to b if possible, or else to c. He explains, "that which 

IT comes first takes priority over the second if both are possible." 
Lockwood (1972:48-49) points out that the node handles 
conditioned choice. He stresses that the conditions governing 
the choice must be explicitly provided for.4 Christie (1977:5-7) 

b c and Sullivan (l977:397-398) agree with this view. Johannesson 
FIG B. (1976: 103) actually incorporates the conditioning factor in his 

diagram. 
Upward definition. According to Lamb (1966:10), b or cgoes to a. Neither 

Lockwood nor Johannesson offers a behavioral definition. Sullivan (1977:398) 
states explicitly that the node behaves like the unordered OR. Christie's down- 
ward definition of the upward ordered OR points to  the same conclusion: 
either a or b is realized as a. 

This leads to the following definitions: 

Downward definition. Under condition a,, an input a t  a ,  will produce an out- 
put at 6. In the absence of a ,  an input at a,will produce an output at c. 

U@ward definition. If there is an input at either b or c there will be an output 
at a,. 

3. Unordered AND-Conjunction 
Downward definition. Lamb (1966: lo), Johannesson 

A (1976: 100) and Christie (197757) offer the following defini- 
tion: an impulse at a leads to the simultaneous output of 
impulses at b and c. Lockwood (1972:31) and Sullivan 
(1977:396) do not describe the outputs as necessarily simul- 

b c taneous, but as in no specified (discernible) order. The point 
FIG. c seems to be that the order is irrelevant. 

Upward depnition. According t o  Lamb (1966:10) b and c together go to a. 
Johannesson (1976: 100) stipulates that the inputs at b and c must be simul- 
taneous. Lockwood, Sullivan, and Christie do not have a definition, but their 
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downward definition of the upward unordered AND suggests that the order 
of inputs at b and c is irrelevant (Lockwood 1972:31; Sullivan 1977:396; 
Christie 1977:5). The relation between inputs and outputs may, therefore, be 
described as follows: 

Downward definition. If there is an input at a there will be an output at both 
b and c. 

Upward definition. If there is an input at both b and c there will be an output 
a t  a. 

4. Ordered AND-Concatenation 
Downward definition. In Lamb's (1966: 10) definition, a 

A 
goes to  b and then (afterwards) to c. Lockwood's (1972:33), 
Johannesson's ( 1976: I OO), Sullivan's (1 977:396-397), and 
Christie's (19775-7) definitions, although phrased differently, 
all suggest a temporal sequence of the outputs: first there is an 

b output at 6,  and then there is an output a t  c. 

FIG D. Upward definition. According to  Lamb (1966:10), 6 ,  and 
after it c, goes to  a. Lockwood, Johannesson, and Christie 

d o  not give a definition. Their downward definitions of the upward ordered 
AND indicate that if b is followed by c, they are together realized as a. This is 
confirmed by Sullivan (1977:397). 

We arrive, then, at the following definitions: 

Downward definition. If there is an input at a, there will be an output at b at  
time t ,  followed by one at c at time t+x. 

Upward definition. If there is an input at b at time t, followed by one at c a t  
time t+x, there will be an output a t  a. 

5. Conclusion 
The examination of the verbal definitions of the four basic nodes reveals 

certain differences in the phrasing, a few inconsistencies in the definitional 
method, and some omissions in the upward definitions. But there is enough 
similarity to make possible an input-output definition if we assume the 
upward definition of downward nodes to be identical with the downward 
definition of upward nodes. As regards precedence disjunction, scholars now 
state clearly that the factor conditioning the choice of b must be made explicit. 
But there seems to  be some disagreement about thesimultaneity ofthe inputs 
(outputs) at the plural terminal of the conjunction node. There appears to  be 
a tendency to consider temporal order as irrelevant. In concatenation, temporal 
order is clearly important. From this vantage point, one may recognize another 
fundamental distinction between the nodes discussed. On the one hand we have 
the combinatorial node type (disjunction, precedence disjunction, conjunction) 
for which timing is inconsequential, and on the other we have the sequential 
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type, represented only by concatenation, for which time is essential. Since SG 
nets are made up of both types of nodes, they must be classed as mixed com- 
binatorial and sequential networks. 

111. NODES INTERPRETED AS INPUT-OUTPUT SYSTEMS 

Figure 1.1 is a general representation of the typical SG node. It has a singular 
side (one terminal) and a plural side (two terminals). The node is bidirectional. 
In encoding, inputs are from the top (figure 1.2), in decoding from the bottom 
(figure 1.3). This is why behavioral definitions divide a bidirectional node into 
two unidirectional nodes. For either of these nodes, the output is defined as a 
function of the input(s). In SG, inputs and outputs can assume two values only. 
The value is 1 when there is an input or output, and 0 when there is not. 

I .  One input terminal-two output terminals 
If the input is from the singular side, we have one independent input variable 

and two dependent output variables. In this case figure 2.1-4 and table 1 provide 
an exhaustive account of all possible relations between input and outputs. 

1 2 3 4 

TABLE I 

Figure 2.1 

Figure 2.2 

Figure 2.3 

Figure 2.4 

Input 
a 

0 
1 

0 
1 

0 
1 

0 
1 

Outputs 
b c 

0 0 
1 1 

0 1 
1 0 

1 0 
0 1 

1 1 
0 0 
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Outputs may have the same value a s  the input (figure 2. I), they may have 
the opposite value (figure 2.4), and last, one output may have the same, the 
other the opposite value of the input (figures 2.2, 2.3). As all output values 
depend solely on the input value of a, they can be written as functions of a(see 
the formulae under figures 2.1-4, where a in the output stands for the same, 
and Tfor  the opposite value of the input). 

2, Two input terminals-one output terminal 
If the input is from the plural side of the node and the output at the singular 

side, output is a function of two independent variables. The sixteen possible 
functions are represented in table 2. 

TABLE 2 

Not all functions are equally important: a,  and a16 are evidently independent 
of the input variables, and a13 (=b), a4 (=@, a! I (=c) and as (=Z) depend on one 
variable only. The remaining functions depend on both variables. 

Inputs 
b c 

1 

IV. UPWARD DEFINITIONS OF DISJUNCTION, CONJUNCTION, 

AND INTERJUNCTION 

Outputs 
al a2 a3 a4 as as a7 as as a10 a11 alz a13 a1.r ars ai6 

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1  
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1  
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1  

l 0 0 0 0 0 0 0 0 1 l l l l 1 l l  

Table 2 lists a11 possible functions of two input variables. Consequently the 
upward definitions of all combinatorial SG nodes discussed here must match 
one of these functions. 
It is easily recognized that a7 corresponds to  the upward definition of both the 
ordered and the unordered OR (figure 3, table 3). In logic this function is 
commonly called disjunction. The OR is often referred to as XOR (exclusive 
OR) in contradistinction to  adjunction (inclusive OR). The symbol y will be 
used as a representation of XOR. Thus the upward definition of the node 
depicted in figure 3 reads a : b c. 
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TABLE 4 

The upward definition of the unordered AND corresponds to  function as 
(figure 4, table 4). This function will be represented by the symbol A: AND 

defined as a  : b A c. 
We have seen that the three upward definitions of the nodes considered so 

far can be expressed by two functions. If we assume that these are not sufficient 
to express all input-output relations necessary in a relational network model of 
natural language, how can any other functions be represented? The answer is 
that AND and XOR may be combined to  produce some, but not all, of the 
functions in table 2. As the nodes are nothing but graphic representations of 
AND and XOR, any logical representation employing y and A must also be 
representable by a corresponding network of A N D  and XOR nodes. 

By way of example, I shall present a definition of interjunction (see Schreyer 
1977: 142) using A N D  and XOR. It has the following upward definition: there is 
an output at a  except when there is no input a t  both b and c (figure 5). 

TABLE 5 

Table 5 shows that the upward definition of interjunction corresponds to 
adjunction (inclusive OR) in logic. This is the designation of function a l s ,  
which is often represented by the symbol v :  Adjunction definition a  : b v c. 
Adjunction may be represented by the formula ( b y  c) y ( b  A c), as table 6 will 
prove. 

a 
TABLE 6 

1 2  3 4 5 

Y 
Elc,, 6. 
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Columns 1 and 2 give the input values for the independent variables b and c, 
3 and 5 the output values of the two bracketed expressions, and 4 the output 
values for the combination of these values. It will be seen that column 5 is 
identical with afs. The formula can easily be converted into the network of 
figure 6, which also represents adjunction as a combination of AND and XOR: 

input at b will produce output at a along a,, input at c will do the same. Input 
at both b and c will produce an output at a along a,.. Zero input will not 
produce any output. Because of the logical properties of AND and XOR, 
different formulae and different nets may also be expressions of the inclusive 
OR. The structural principle is, however, always the same: the output of one 
node provides the input of another. Other functions expressible by a com- 
bination of AND and XOR are: 

The number of functions to be expressed by combining AND and XOR is, 
however, limited: functions a3, as, a,, as, and a15 exhaust a11 combinatorial 
possibilities. The question whether they are sufficient to  build a network 
model of natural language is an empirical one and can only be answered with 
reference to the data. 

V. DIGRESSION: BOOLEAN ALGEBRA AND THE CHOICE 

OF  PRIMARY FUNCTIONS 

Two of the functions listed in table 2 hold a special position: a2 and as. Each 
by itself is able to  express all other functions in the table. Boolean algebra, the 
most elaborate system to express all functions, employs AND (conjunction), 
OR (adjunction), and negation. It is widely used in computer science, and is 
isomorphic with switching logic, a network representation of the same func- 
tions. Boolean algebra is therefore a genuine alternative to a system employing 
AND and XOR. It may even be considered superior, as it is capable of repre- 
senting a11 possible functions of two variables. 

It is important to recognize that the logic underlying SG is not the only one 
possible. A different choice of primary functions can be used to construct 
formulae and networks that have the same input-output relations as SG 
networks, although their internal structure is differems For the same reason 
Boolean logic may be used to define combinatory SG nodes. The next sections 
will be devoted to a definition of these nodes using terms of Boolean algebra. 

VI. THE DOWNWARD DEFINITIONS O F  CONJUNCTION, 

SIMPLE DISJUNCTION, AND PRECEDENCE DISJUNCTION 

In the downward definitions of section 11, the nodes under discussion are 
regarded as consisting of one input and two output terminals. Thus they ought 
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to correspond to one of the general types analyzed in section 111. I. The down- 
ward definition of the unordered AND clearly attributes the node to the type 
represented in figure 1.1: input at a produces outputs at b and c. This will be 
represented by a simple branching of lines (figure 7). 

For the downward definition of the unordered OR, none ofthe figures 1.1-4 
seems to be an obvious choice. In the definition it is stipulated that for an input 
at a there must be an output at either b or c, but not at both. The definition 
does not specify where the output will actually be. Sullivan (1977:395-396) 
recognizes that, without any additional information, the output is indeter- 
minate. But his solution of simply changing the (logical) definition avoids the 
problem and, furthermore, creates a discrepancy between his verbal and his 
logical definition. The solution suggested by Reich (Schreyer 1977:139-141) 
seems to me the better approach. Reich proposes the introduction of a new 
node, the so-called random choice disjunction, to take care of the possibility 
of freevariation among the outputs (figure 8). It is evident that this node will 
produce new definitional problems. As we have enough of these already I will 
not discuss the node here, aIthough I can see no other way of integrating free 
variation into the network. For cases of conditioned variation among outputs, 
Reich suggests the use of additional ANDs (figures 9.1-3) which are to provide 
for the conditioningfactors. This solution is based on the assumption that the 
presence or absence of an output at the b or c terminal of a node depends on 
more than one input variable. Nevertheless Reich's solution does not solve 
all the problems. In figure 9.1, if there is an input at a ,  and a,, there will be not 
only the desired output at b but also the undesired output at c. Or, in figure 
9.3, if there is an input at all pertinent terminals, how can the node decide 
whether to put out b or c? 
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The network as it stands is incapable of handling these difficulties. One 
obvious solution consists in specifying which terminal takes precedence over 
the other in such cases of indetermina~y.~ This means that in cases of condi- 
tioned choice, the simple disjunction node would have to  be replaced by the 
precedence disjunction node (figures 10.1-3). To  give a logical definition of 
the networks of figure 10, it is useful to set down the conditions governing the 
choice of the b and the c terminals in an input-output table (truth table). Table 
7 corresponds to figure 10.1, table 8 to figure 10.2, and table 9 to figure 10.3. 
A look at tables 7 and 8 shows that the output columns are the same for both, 
with the only difference that b and c are interchanged. For our purpose it will 
therefore be sufficient to construct the logical formula for one table. If there is 
only a small number of input variables this can be done by using Veitch dia- 
grams or by converting the table into its so-called adjunctive normal form, 
which can then be simplified by applying the laws of Boolean algebra. As the 
networks are very simple I shall use the latter method. 

In table 7 the output values for b show that there is an output only if 
there is an input at both a ,  and a , .  This corresponds to  function as of table 2: 
a, A a,. One can obtain the same formula by joining the two variables respon- 
sible for an output of I at the b terminal by an AND: a .A a ,.. For the c terminal 
the output is 1 only if a ,  is negative (0) and a, positive (I). In this case then, we 
arrive at the formula a, A a,. 

TABLE 7 TABLE 8 TABLE 9 

a,  a ,  a,  

0 0 0 0 0  
O O I O O  
O I O O O  
0 1 1 0 0  
1 0 0 0 0  
1 0 1 0 1  
1 1 0 1 0  
i l l 1 0  

b c 
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The foregoing discussion of precedence disjunction leads to the following 
downward definition: 

b : a, A a,, 

This analysis of precedence disjunction fulfills all the specifications of the 
input-output definition. There will be no output unless there is an input at a,. 
If there is an additional input at a, ,  output will be at b, otherwise at c. Table 7 
makes plain that the choice of the output terminal depends solely on the 
presence or absence of an input at a, .  The formulae for b and c show that a,, 
furnishes the positive condition for b and the negative condition for c. 

We have seen that precedence disjunction admits of a downward definition 
if the conditioning factor is included. We have also seen that it may be repre- 
sented by a combination of AND and negation. There is, however, no direct 
conversion of the Boolean formula into an SG network, since SG has no 
negator element. But I cannot see any objection to its being introduced (at 
least for the sake of argument). If we represent negation by a small circle at the 
beginning or end of a line, the network of figure I1 would be a direct conversion 
of the Boolean definition of precedence disjunction. The net should be inter- 
preted as follows: Input at a, will go down the two branches to AND 1 and 
AND 2. Input at a,  will also go down to AND 1 and AND?, but thesignal down 
the AND 2 branch is negated (or inverted) before it reaches the node: the line 
will have zero output. Thus only AND 1 has the correct input, and the output 
will be at b. If there is an input at a, and not at a,., only AND 2 has the correct 
input: the negative input signal from a,  will be inverted. There are, then, two 
positive signals at AND 2 that will produce an output at c. 

Note that figure 11 employs only those input-output relations aIlowed in 
section 111. I: a, is equivalent to  figure I .  1, a, to figure 1.2. The fact that 
outputs are uniquely determined by the input is represented by simple 
branching of lines. A separate node is not needed. 

Larger networks can also be defined and simplified in the same fashion. 
Table 9, for instance, lists the input-output relations of the net of figure 10.3 
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(3 input terminals, 2 output terminals). From this we derive the adjunctive 
normal form for b: 

b : ( a , ~ a , ~ 2 L ) v ( a , ~ a , A a 3 .  

c : a , ~ Z , n a ~  

These are represented in the diagram of figure 13. 

By applying the laws of Boolean algebra, we may simplify this formula, and 
we obtain: b : a,A a,. For c no simplification of the adjunctive normal form is 
necessary: c : a, A a, A a,. Figure 12 is a graphic representation of this defi- 
nition. The problem of simple disjunction discussed at the beginning of this 

TABLE 1 0  section (figure 9.3) becomes much clearer when we 
try to establish its input-output table (table 10). There 

VII. SUMMARY: THE DEFINITIONS OF COMBINATORY SG NODES 

a,  a ,  a, 

O O 
O 
O I  O 
O ' ' ' O O 
I O I ' I  O 
I l l ? ?  

The results of the foregoing analysis of conjunction, disjunction, and 
precedence disjunction are collected in table I I .  

The downward definitions employ only the functions allowed in section 111. 
Choice between particular branches is made by the conditioningfactors a,  or 
a:, which must be present in the logical definition and its graphic representa- 
tion. If we assume that the output is completely determined by the inputs (i.e., 
if we ignore the possibility of random selection), no branch of an XOR must be 
without the selection mechanism provided by the upward AND and the negator. 
The upward definitions employ the familiar symbols with arrows indicating the 
direction. These nodes suffice as long as it is stipulated that there be no upward 
outputs along the wires leading to the conditioning factors. 

In accordance with the verbal definitions of the ordered and unordered x o ~ s ,  
there is no upward distinction between them. It is, however, obvious that the 
node is not a direct representation of the definition formula: in Boolean algebra 
XOR is not a primary function and has, therefore, a complex structure. It must 
be expressed as a combination of AND, OR, and negator. This can also be done 
in SG if interjunction is used as a primary function. As I mentioned, inter- 

b  c is no difficulty until we reach the last row; then the 
question marks have to be eliminated. They cannot 

O O both be replaced by 1. This would contradict the ver- 
O O bal definition of the node. If we replace one question 
O mark by I, the other by 0, we have a case ofprecedence 
O O disjunction as in table 9. The only alternative left is to 
O O substitute a 0 for each question mark. There would be 
O ' 

no output if there was an input at both a,, and a,. The 
I O emended table 10 converts to the following definitions: 

b:a,ha,h& 
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junction (figure 5) is identical with Boolean adjunction and 
can therefore be employed for directly converting the XOR 

formula into a network (figure 14). 

VIII. THE DEFINITION O F  CONCATENATION (Ordered AND) 

The logical definition of the ordered AND poses very specific problems. The 
following discussion should, therefore, be considered as an attempt to define 
the problem, rather than an attempt to define the node. 

The definitions of the unordered AND and of both the ordered and the un- 
ordered OR have no specific reference to time. This is why they were considered 
as purely combinatory nodes. The ordered AND, on the other hand, is clearly 
sequential, Without this node the linearization of non-linear structures would 
not be possible. In the downward definition an output at c can occur only 
after there has been an output at b. In the upward definition an output at a is 
possible only if the input at c occurs ajier the input at 6 ,  Any logical definition 
that ignores these sequential requirements is therefore bound to be wrong. 
Christie's (1978:248) criticism of Sullivan's (1977:396-397) definition using 
propositional calculus makes precisely this point: 

The predicate [sic] calculus is by its very nature an atemporal system. As such it is inher- 
ently incapable of describing the d~fference between simultaneous and successive occur- 
rences of conjuncts. Since natural language operates In time, with d~fferences between 
simultaneous and successwe occurrences, it is inadequateas a descr~ption ofthe operation 
of a Iingu~stic system. 

I do  not share Christie's belief that Sullivan's logical definitions were in- 
tended as a mere description of the competence of the system. Sullivan 
f 1977:397,299,403 n. 5) certainly makes an effort to show how his definitions 
of concatenation can produce the desired sequential outputs. For this purpose 
he introduces specific performance considerations, which are, however, extra- 
neous to the laws of predicate calculus (see Schreyer 1979). Furthermore, it 
should be recognized that a model of competence completely divorced from 
performance is alien to the aims of SG. The aim of stratificational linguistics has 
always been the construction of "a competence model that can serve as a basis 
of a model of performance" (Christie 1978:248). Thus, a network model that 
makes no explicit provision for temporal sequence must be inadequate. 
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The nodes discussed so far are, by definition, atemporal and can therefore be 
defined both in Fitch's logic (Fitch 1952) and in Boolean algebra; the ordered 
A N D  cannot. This does not mean that propositional calculus is a bad tool for 
defining SG nodes; it only means that it is not rich enough to define all nodes. 
It is certain that a t  least for concatenation some kind of timing device must 
be incorporated into the network. The following definitions are an  attempt 
to include the time factor: 

Upward definition. a : b(t) A 6(t+l . . . x) A F(l) A c(t+l . . . x)  

Downward definition. b(t) : a 
c ( t + 1  . . .  x) : a 

The ordered A N D  must have a more complicated internal structure than the 
combinatorial nodes, as there must be a time delay between the outputs (and 
inputs) a t  the b and the c terminals of the node. If one assumes that c must 
follow b with a delay of one time unit, it will be sufficient to  insert a delay node 
(delay time = I unit) in the appropriate places (figure 15). The delay element 
would insure the sequentiality of downward output and of upward input. 
Simple as it may be, this solution will probably not work, since it is hard to  
believe that inputs (outputs) will always follow each other at intervals of one 
time unit, whatever its definition. Delay time may be different for different 
concatenation nodes in the network, but also for the same node, depending on 
which downward path the signals from the b and c terminals are taking. 

A second way of dealing with sequentiality is by internal feedback. In the 
downward processing of a concatenation node N, an  input a t  a will produce 
an output a t  6. The node will then change from a n  initial state 0 to  state 1. In 
this state it wilI not accept any input from a. When all outputs along b have 
been completed, a feedback signal to Nwill trigger the outputs down c. Nnow 
changes to  state 2. When all outputs down path c have been completed, a 
second feedback signal comes up line c. This causes N to put out a feedback 
signal at a. At the same time the node is switched back to its initial state 0. The 
node is now ready to process new input from a (figure 16). This is basically 
Reich's (1969935) analysis of the ordered AND.  He regards the node as a finite 
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state device with three states.' Clearly, such a node must "remember" the state 
it is in: its micronotation must be given a memory.' This is the solution 
adopted in Christie's micronotation(1977: 1 1-12; 19781252) of which figure 17 
is a replica. The circles marked 1 are memory nodes. They can be switched on 
by a signal along the lines marked "plus"; they can be switched off by asignal 
along the lines marked "minus." 

In downward processing input at a leads to output at b and excites the 
bottom memory node. Feedback from b produces an output down c, switches 
off the bottom memory node and excites thetop one. Feedback from ccauses 
feedback at a and switches off the top memory node. 

In upward processing, N must be able t o  distinguish between the sequence 
bc (output at a = 1) and cb (output at a = 0): it must not process an input at c 
unless it is preceded by an input at b. Figure 17 fulfills this requirement on the 
assumption that the feedback lines are also used in decoding. An input at b, 
and only at b, excites the top memory node, without which no upward output 
is possible. Subsequent input at c then causes an output at a. 

By introducing memory nodes, Christie's microanalysis of concatenation 
provides for the sequencing of inputs and outputs. These nodes keep alive 
signals until they are needed at a later time. This analysis is compatible with 
the verbal definition of the ordered AND, and it avoids the difficulties a 
definition in terms of propositional calculus runs into.9 

It should be pointed out that Christie's micronotation bears a strong 
resemblance to Boolean algebra. The cells with a threshold of 2 are equivalent 
to conjunction, those with a threshold of I are equivalent to adjunction, and 
the inhibitory terminals are related to negation (see George 1962:I 19-123; 
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Klaus 1966: 129-137). The only real difference seems to be the introduction of 
the memory cell, which, once activated, keeps firing itself. If we add the 
memory eIement to a network notation that employs AND (conjunction), OR 
(adjunction, interjunction), and negation, we obtain the network offigure 18, 
which is equivalent to that of figure 17. 

In this notation the memory node has the structure depicted in figure 19: 
input at a produces outputs along lines b and c. The c output loops back by 
way of the AND node and provides the input of the OR. Thus the OR will 
produce outputs until an input from d interrupts the process. 

IX. SUMMARY 

This study presents a necessarily preliminary analysis of SG nodes as 
input-output systems. It offers a more rigorous definition of the combinatorial 
nodes by establishing input-output tables that allow a systematic conversion 
into logical expression in Boolean algebra. To set up these tables, a bidirectional 
SG node is divided into two unidirectional nodes, and separate definitions are 
suggested for the upward and downward processing of signals. Outputs are 
regarded and defined as functions of the inputs. These definitions are valid only 
as long as sequentiality does not come into play. The ordered AND is clearly 
sequential, a fact that can be accounted for only by introducing a timing 
element into its algebraic and network representation. 

There are many problems that the present study only touches upon. Further 
detailed analysis of the performative aspects of SG networks will no doubt 
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bring improvements in the construction and simplification of the sequential 
networks SG is working with. 

NOTES 

I .  In some cases it may beexpedlent to replace a well-defined constellation of basic nodes by 
one new, secondary node, particularly ~f ~t makes the network easier to  read. But it is lmperatlve 
that the equivalence between the secondary node and the network replaced by it be exprcssly 
stated; for unless the higher complexity of a secondary node is taken Into consideration in calcu- 
lating the structural complexity of larger networks, one w~l l  arrive at the wrong result, and the 
algorithms for slmplify~ng networks may no  longer work (see Schreyer 1977:131-132, 142-143). 

2. The question as to whlch of the remalnlng nodes are baslc and which are derlved 1s st111 
open and will not concern us here. It is hoped that a clearer understand~ngof the basic nodes will 
shed some light on that problem. 

3. GIeason also suggested a definlt~on uslng lnputs and outputs: "concatenation, AND-OR, 

and dlsjunctlon can all be thought of as the same function of two variables-the minimum number 
of successful downward outputs, and the maxlmum number of same Inconcatenation the mlnl- 
mum and the maxlmum are both 2. In AND-OR the min~mum IS I and the maxlmum 1s 2 In dl$- 
junction the mlnimum and the maxlmumare both I"  (Re~ch  1973b: 1 15, n. 8) Sampson's mathe- 
matrcal deflnit~ons seem to Implement this suggestion for some of the nodes. 

4. Lockwood's (1972:63) enabler was specifically introduced to incorporate condlrion~ng 
environment into the relational network. 

5. If the same input-output relation can be represented by logical expressions and networks 
employing different prlmary funct~ons, a new questlon arlses: which functions should be chosen 
for a model of the linguistic code and which criteria determine that choice? 

6. Other solutions to the problem of figure 9.3: one could introduce random choice, or one 
could ensure further up in the network that a, and a: cannot both occur. For yet anothersolu- 
tion, see page 176. 

7. For a more sophisticated analysis, which also accounts for looping, see Reich (1969) and 
Christ~e (1976). 

8. Furthermore, the network must have a device that trlggers the feedback signals Inother 
words, it must be spec~fied at which point in the network the downward output counts as completed. 

9 Nevertheless, more research into the internal structure of theconcatenation node will be 
necessary. How, for Instance, does the network of flgure 17 react to input at a while the node 1s 
still processing the previous Input? 
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