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r an irreducible, compact space X of pure dimension m .  The 
of meromorphic functions on X has a finite transcendence 
) over C with 0 S tr(X) 5 tn. The space X is called a MoiSezon 

olomorphic vector bundle E over X is said to be ample if finitely 
global holomorphic sections s,;..,s,, of E over X exist such that 
.,s,(x) generate the vector space Ex over C for each X E X .  Let 

fiber-dimension of E .  The refined vth Chern class E,(E) is defined 
l , . . . ,q  . Take rc = (rc,,...,lc,) where each K, is a non-negative 

The refined Chern class of type rc is defined by 

K) = m ,  the Chern number 

e rc is defined. A refined Chern class is said to be non-negative, if it 
presented by a non-negative form. 
owing results will be obtained: 
is ample, then E,(E) and EK(E) are non-negative; especially, the 

numbers of E are non-negative (Proposition 4.2). 
s result is due to  Bott and Chern [5 ] ,  section 5, but a less computa- 
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SF GP 29662 and NSF GP 20139. 



72 RICE UNIVERSITY STUDIES 

tional proof based on fiber integration will be provided here. The method 
may be of independent interest. 

11. If E is ample and if &(E) # 0, then tr(X) 2 a(rc). Especially, if a 
Chern number C,(E) of an ample bundle does not vanish, then X is a 
MoiBezon space (Theorem 5.5). 

111. Main Tlteorem. If a connected, compact Kaehler manifold X 
admits an ample holomorphic vector bundle E with at least one non- 
vanishing Chern number C,(E) # 0, then X is projective algebraic. 

IV. Let X be a connected, compact complex manifold of dimension m 
with Euler characteristic x(X). Let V(X) be the vector space of holomor- 
phic differential forms of bidegree (1,O). Then the dimension q ( X )  of 
V(X) over C is finite and is called the irregularity of X. Let T(x)  
be the holomorphic tangent bundle and T*(X) the holomorphic cotangent 
bundle. The Chern numbers of T(X) are called the Chern numbers of X 
and denoted by C,(X). If T*(X) is ample and q(X) = m + 1, then 
C,(X) = x(X) for all Chern numbers of X. If, in addition, X is Kaehlerian 
and x(X) # 0 ,  then X is projective algebraic (Proposition 6.6). 

V. Let A be an abelian variety of dimension m f 1 > 2. Then a con- 
nected, compact, projective algebraic, complex manifold X of pure di- 
mension m with irregularity q(X) = m + 1 _and characteristic x(X) # 0 
exists such that the following conditions are satisfied: 

a) The holomorphic cotangent bundle of X is ample. 
b) The Albanese variety A(X) of X is a covering group of A;  i.e., a 

finite subgroup D of A ( X )  exists such that 

(Theorem 6.7). 

51, DSfferential forms on complex spaces 

Recently, differential forms have been successfully used on complex 
spaces. Since this concept is new, a short outline shall be given here. See 
Bloom-Herrera [Z], Cowen [6], Herrera [9], and King [lo] for references. 

Let X be a complex space.' Let C(X) be the set of non-simple points 
of X. The set XO = X - Z(X) of simple points is a manifold which is 
open and dense in X , A biholomorphic map cc: U, -+ UL of an open sub- 
set U, # IZ( of X onto an analytic subset UL of an open subset G, of a 
complex vector space V, is called a patch (at a if a E U,). Let j,: UL -+ G, 
be the inclusion map. The embedding dimension of X at a is defined by 

e, = minidim v,/ a patch at a ) .  
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and p are patches at a with ea -- dim V,, an open neighborhood N' 
a) in G, and a smooth, injective, holomorphic map a: N' -t Uk 

such that o o j, o cr = jB o f i  on ( j ,  o a ) - ' ( ~ ' ) .  If also e, = 
, then a: N' -+ a ( N i )  is biholomorphic and o(N')  is open in Gg. 

t $ be a differential form of class Ch on X O .  Then II/ is calIed a 
ntial form of class Ck on X if and only if for every a G X  a patch 
and a form $ of class C' on G, exists such that (j, o a)*($) = @ 
If $ is a form of class Ck on X and if a is a patch at a ,  an open 

hborhood N of a in U ,  and an open neighborhood N' of cr(a) in G, 
a form of class Ck on N' exist such that j,(a(N)) E N' and 
a)*($) = II/ on N o .  Here, class ~"tands for any reasonable inter- 
ion, as k = 0: "continuous," 1 5 k 5 m :  "k-times differentiable," 
: "real analytic," k = w: "holomorphic." If @ has degree m ,  

eciively bidegree ( p , q ) ,  then $ &an be chosen to have degree rn, 
ectively bidegree ( p ,  q )  . This definition is consistent with the def- 
on of continuous functions on X and the definitions of classes of 

ons on complex manifolds. 
every open subset U # (ZI of X ,  let AfSq(U) be the vector space of 

s of class ~ " n d  bidegree (p, q) on U .  If V # is open in U ,  the 
lction map r:: Ag'YU) 4 AEsq(V) is defined. The coIlection A t q  = 

u),I.;) is a canonical presheaf of vector spaces. Then 

the presheaves of forms of class Ck and degree nz, respectively of forms 
lass ch on X .  Here A,  carries the structure of an exterior graded, 
ctively bigraded, algebra over the presheaf A! of functions of class 
ince the exterior product of forms of class Ck has class Ck. 
2 1 and if $ is a form of class CL on X ,  then d @ ,  a+, 81) and dL+ 

fined on X0 and are forms of class c"-' on X.  Here d = a + 8 and 
i(a - 6) with the usual properties, except PoincarC's Lemma. 

e presheaf A,  induces a sheaf '3, on X .  Each form II/ E Ak(X)  defines 
on in Sk. Herrera and King define this sheaf !Ilk first and then define 

as a section in '3,. The e!Tect is the same. Each form @ of class ck 
sheaf value II/, E ((LI,), for each x G X  , but a function value $(x) in 
propriate exterior power of the cotangent bundle exists only if x E XO. 

t f : X  -t Y be a holomorphic map between complex spaces. Let $ 
form of class Ck on Y. Then one and only one form f *(I)) of class Ck 
exists satisfying the condition: 
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(P) Let a and p be patches on X and Y respectively. Suppose that a 
holomorphic map J': G, -+ Gg exists such that 

f o j , o  u = jllo P O  f ,  

Suppose that a form 6 on G/, exists iuch that (j,o P)*($) = $. Then 

f *($I = (j, 0 u>*(f"*(l,b>) on u:. 

(For every point U E X ,  patches u at a and P a t  f ( a )  exist such that the 
extensionsfand $ exist as required in (P).) 

Because J(X) c C(Y) may occur, the existence o f f *  is not trivial. The 
existence is known. Tung [ZO] will contain an alternative proof. The pull 
back f * has the same categorial properties as in the category of manifolds. 
It preserves degree and bidegree and commutes with (1, d l ,  a, a and the 
exterior product. If f : X  -+ Y and g: Y +  Z are holomorphic, then 
( g o  f)* = f * o  g*.  

Let II/ be a differential form of bidegree (p,p) on X .  Then I) is said to 
be non-negative, i.e., 41/ 2 0,  (respectively positive, i.e., $ > 0) on X if 
and only if the following condition is satisfied: 

"Let M be a pure p-dimensional analytic subset of an open subset C 
of X with M 0  = M .  Let j :  M -+ X be the inclusion map. Then j*(II/) 3 0 
(respectiveIy j*(t,b) > 0) on M ." 

(Observe that j*(t,b) has degree 2p on the p-dimensional complex mani- 
fold M.  Hence j*(II/) 2 0 resp, j*(~//) > 0 are well-defined.) 

The form $ of bidegree (p,p) is non-negative on X if and only if for 
every holomorphic map f :  G -+ X of an open subset G of CP, the form 
f *($) is non-negative on G. If $ is non-negative on X ,  and if f: Y 4 X 
is holornorphic, then f * ($ )  is non-negative on Y. 

Let $ and x be non-negative forms on X .  If x has bidegree (1, l), then 
$ A x is non-negative. It is unknown if this remains true if 2 has bidegree 
(q, q) with q > 1 (Lelong conjecture). (Added in proof: Harvey disproved it.) 

Let X and Y be complex manifolds of pure dimensions m and n respec- 
tively with m - n = q 2 0 .  Let f :  X -+ Y be a regular2 holomorphic map. 
Then an operator f,, called integration over the fibers, is defined. See 
[17] and [19] for the properties of this operator. If I) is a form of bidegree 
(r, s) on X with r >= q and s 2 q ,  and iff I supp $ is proper, then the fiber 
integral f,$ exists and is a form of bidegree (r-q, s-  q) on Y. 

If rl/ has class C\ so does f,$. Unfortunately,f,($ A X) # f,($) A f * ( ~ ) ,  
as already degree comparison shows. Nevertheless, the fiber integral of an 
exterior product can be expressed as the exterior product of fiber integrals. 
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ce this seems to be unknown, and since this will be helpful Iater, it will 
here. 
N be complex manifolds of pure dimensions k ,  m,  and n res- 

vely with k -  n = p 2 0 and m - n = q >= 0 .  Let f : X  -t N and 
4 N be holomorphic maps. A holomorphic map 

is defined by ( f  x g ) ( x , ~ )  = ( f ( x ) , g ( y ) ) .  The diagonal 

alytic in N x N with 2 ( A N )  = @. A biholomorphic map 6 , : A N  -, N 
fined by 6 , ( z , z )  = z .  The inclusion map j N : A ,  -, N x N is holo- 

phic and smooth. The set 

tic in X x Y. The inclusion map j :  Z 4 X x Y is holomorphic. 
( f  x g)(Z) E A N ,  a hololnorphic map 

is defined. Then 71,: Z -+ X and n,: Z + Y are holomorphic such that the 
diagram 

commutes. If z E N ,  if x E X ,  and if Y E  Y, then 
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Lemma 1.1. I f f  and g are regular, then Z is a sinooth, closed, complex 
submanifold of X x Y ancl the maps  f A g,n, and n ,  are regular. Z has 
pure dimension n $. p + q . 

Proof. Take ( a ,  b )  E Z . Define c = (j '  A g )  ( a ,  O) = f ( z )  = g(b)  . Then 
open subsets U,, U D ,  U ,  UL, U i  of X ,  Y, N ,  CP, C4 respectively and biholo- 
morphic maps a :  U ,  -+ UA x  U and p :  U p  -+ U/; x  U exist with p ,  o ci = f 
and p, o p = g ,  where p , :  Uk x  U -+ U  and p,: U/; x  U  -+ U are the 
projections and where a E U ,  and b E UD and c E U  . Then 

is a smooth, closed, complex submanifold of U k  x  U  x U i  x  U .  The 

map 
a x p : U , x u , , + U j x U x u ~ x u  

is biholomorphic with (u x  p ) (Z  n ( U ,  x  U,)) = 2 ' .  A biholomorphic 
map E :  2' -+ U j  x U i  x U  is defined by ~ ( x ,  z ,  y ,  z )  = ( x ,  y ,  2 ) .  The map 

is biholomorphic. Therefore, the analytic subset Z of X x Y is a closed, 
smooth, complex submanifold of X x Y. Let p, ,p , ,p ,  be the projections 
of UL x UL x U  onto U ,  U: x  U ,  U i  x  U respectively. Then p, o y = f A g 
and p, o y s a  o n ,  and p ,  o y = o n2  on Z n ( U ,  x  U p ) .  Therefore, 
the maps f A g ,  n ,  and n2 are regular; Q.E.D. 

Theorem 1.2. Let  X, Y and N  be c o ~ n p l e x  manifolds of pure climen- 
sion k ,  m ,  and n respectively witlz k - n = p > 0 and m - n = q > 0 .  
Let f: X -+ N and g :  Y-+ N be regular, holornorplzic maps.  Dejne  
d iagram (1 . I ) .  Let $ and x be continuotts forms  o f  degree r on X and of 
degrees on Yrespectively with 2k I r 2 2 p  ancl 2in 3 s 3 2q.  Suppose tlzat 
f 1 suppi) and gl suppx are proper. T h e n  

Here f A g supp nT($) A n;(X) is proper. 

Proof. The results of [ l 7 ]  Appendix 11 will be used frequently. At 
first, observe that 
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q < s -I- r, then A R ~ ( X )  = 0 and f,($) A g,(x) = 0. 
re, the theorem is true in this case. 

ow assume 2n f 2p + 2q 2 s + r .  Consider diagram (1.1). Take a E X .  
t j,: g-'(b) -, Y and ~ : r t ; ' ( a )  + Z be the inclusion 

- 1 u,: n1 (a) = ( a )  x f l ( b )  -t g- ' (b)  

oiolnorphic with r2 o IC = jb  G 1 1 , .  By [I71 Theorem A 11 4.15 
exists with nl,nzx = f*g,x. Now, [I71 Lemma A II 4.6 implies 

n ,  ,(nT($) A ~ T ( j l ) )  = ~b A nl*(n3x) )  = $ A f *(g,(x)) 

Because 

map j A gl S = 6,o ( f ' x  g)l S is proper. Hence nT(@) A is 
integrable over the fibers of f' A g . 
ain, [ l y ]  Theorem A 11 4.15 implies 

is result also holds in the category of oriented differentiable manifolds, 
great care has to be taken abo~lt  signs and orientations. Let X, Y, and 

iented, real manifolds of class C" with pure, real dimensions k ,  
17 respectively. Assume k - n = p > 0 and m - n = q > 0. Let 

-+ N and g : Y -+ N be regular maps of class C" . Then Z is a closed, 
smooth submanifold of X x Y such that y is an orientation 

erving ditl'eomorphism i f  a and /? are. Let $ and x be forms of degree r 
nd of degree s on Y respectively. Assume p S r 5 /c and q 5 s 5 m. 

se that f (supp~/ '  and g (supp x are proper. Then 

roilary 1.3. Let N be a complex manijold oj' pure dimension n .  
ch ;i = 0 ,  1 ,  ..., i n ,  let X, be a corriplex tnatzifolcl of' dimension 

ith k,  - t~ = p, r 0 and let j*: X, + N be a regular, Izolomo~.phic 
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map. Let $ be a continuous, non-negative form of bidegree (r,,r,) on Xo 
with p, 5 r, 5 k, such that f, I supp$ is proper. For each p = l ; . - ,m,  
let xi, be a continuous, non-negative forin of bidegree (1,l)  on X, suclz 
that f, [suppx,, is proper. Take I;E Z with p,, 5 r;, k,. Tlten 

fo*($> A fl*(x;') A . * .  A f,,*(x',m> 2 0 

is non-negative on N .  

Proof. By induction the following statement will be proven for 
jt = O,l , . . .m . 

(S,). A complex manifold Y,, of pure dimension t , ,  a regular holomorphic 
map g,: Y, -+ N with q, = t, - n 2 0 and a non-negative, continuous 
form 4, of bidegree (s,,,~,,) withs,, 2 q, exist such that g,  1 supp 4, is proper 
and such that 

(So) is correct by [ IT]  Lemma 11 6.8, with Yo = X,, go = fb, to = k,, 

90 = P O ,  40 = $ 3  SO = YO. 
Assume that (S,) is correct, then (S,,,,) will be proven if p + 1 5 m.  

According to Lemma 1 . l ,  

is a complex manifold of pure dimension t,,+ , = t,, i- p, . Let n, : Y,+ , + Y, 
and 7t2:y1+ -, X,+, be the projections. The map g,+, = g,, A A,+,: 
XI+, -+ N is holomorphic and regular. The form 

is continuous, non-negative and has bidegree (s,+,,s,+,) with 

According to Theorem 1.2, g,+, I supp$,+, is proper and 

According to [I71 Lemma A I1 6.8, (g,+,),(4,+ ,) 2 0 .  Hence the induction 
is completed. Statement S ,  is proved and implies the Corollary; Q.E.D. 
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Holomorphic vector bundles 

t E be a holomorphic vector bundle of fiber dimension q over the 
lex space X .  Then s = (s,; . . ,~,)  is called a holomorphic frame 
the open set U of X ,  if and only if each s,: U 4 E is a holomorphic 

on of E over U and if s(x) = (s,(x),  ..., sq(x)) is a basis for the vector 
e E, over C for each x E U .  
hermitian metric along the fibers of E is a function 

( ~ ) : E o E + c  

ass C" on the direct sum E @ E such that the restriction 

er over x is a positive definite hermitian form for each x e M. 
orphic vector bundle together with a hermitian metric along its 
called a hermitian vector bundle. Each holornorphic vector bundle 

s a hermitian metric along its fibers. 
t A be a hermitian vector bundle. Let s = (s, , . . . ,~,)  be a holomorphic 
e over the open subset U of X .  The function g,,, = (s,l s,) has class 

4 

c(E,s) = C c,(E,s) = det 
v=o 

ell defined on U in the sense of section 1. Here I is the unit matrix 
he form cv(E,s) has bidegree (v,v) and class Cm on U. These forms 
s) and c(E,  s) do not depend on the choices of s and U . Because 
en sets U carrying a holomorphic frame of E over U make up 
n covering of X,  global forms c,(E) of bidegree (v ,  v )  and class 
e uniqueIy defined on X such that cv(E)I U = c,(E,s) for each 

e s .  The form cv(E) is called the vth Chern form of the hermitian 
r bundle E .  The direct sum c(E) = C%=oc,(E) is called the total 

rm of the hermitian vector bundle E .  Here dcv(E) = 0 for each v .  
define cv(E) = 0. The Chern forms depend on the choice of the 

an metric ( I ) along the fibers of E. If ( I )' is another choice, then 
p, of bidegree (v- 1 ,v -  1) and of class Ca exists on X such that 
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on X.  These properties are proved in Bott and Chern [5] for manifolds; 
the same proofs work on complex spaces, see Cowen [6] .  

Take K = ( x , , . . . , ~ , )  with 0 5 I C , E Z  for v = l; . . ,q. Define: 

'I 

I T ( I c )  = r. V K y .  
v = = 1  

Then 
ct i (E)  = cI(E)IC1 A A c y ( ~ j t i Q  

(where cV(E)O = 1) is called a Chern form of type rc. Obviously, c,(E) 
has bidegree (cr(rc),u(rc)) and class C" on X such that 

If another hermitian metric ( I ) '  along the fibers of E is chosen, a form 
p, of bidegree (a(rc) - 1, a(/<) - 1 )  and of class Cm exists on X such that 

provided a ( / < )  2 1 . 
Let A P ' 9 e  the complex vector space of forms of bidegree ( p , q )  and 

of class C" on X .  Then 

Define the refined de Rham groups by 

AP(.Y)  = ker d p / d d L ~ P - l , p -  if p > 0 ,  

fi0(x) = ker r l ,  if p = 0 .  

Let p :  kerd, + H P ( X )  be the residual map. Then 

t , , ( E )  = p(cv(E))  E A V ( X )  

is called the vth refined Chern class of E and 

L',(E) = t l ( E ) K 1  A - - +  A C"q(E)h'q = p(c,(E)) G A"'")(x) 

is called the refined Chern class of type I C .  By (2.1) and (2.3) these refined 
Chern cIasses do not depend on the choice of the hermitian metric along 
the fibers of E .  They are invariants of the holornorphic vector bundle E, 
well defined for each holomorphic vector bundle. 

Consider the case where X is compact and has pure dimension m .  
Take K = (rcl;..,rcq) with0 r c , ~ Z f o r  p = 1,. . - ,q suchthat o ( ~ )  = rn. 
According to Lelong [Ill, the so called Chern number of type K 
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and is independent of the choice of the hermitian metric along the 
ofE(Stokes's Theorem). They are invariants of the holomorphic 
bundle E ,  well defined for each holomorphic vector bundle on the 

act complex space X .  According to Stokes's Theorem (Lelong 
, C,(E) # 0 implies iK(E) # 0 .  

is a compact complex manifold of pure dimension in and if E = T ( X )  
holomorphic tangent bundle, then 

led the Chern number of type h: of X . 
gain, let E be a holomorphic vector bundle of fiber dimension q over 
complex space X . Let E* be the dual bundle. For each hermitian metric 

the fibers of E, one and onIy one hermitian metric along the fibers 
, called the dual metric, exists such that E: carries the dual metric 
metric on E x .  Hence the hermitian vector bundle E defines canonically 
ual hermitian vector bundle E*. An easy computation shows 

= ( K ~ ,  '.. , K,,) with 0 5 i;,, c 2 ,  If X  is compact and has pure dimen- 
m = ( T ( I C ) ,  then 

C,(E*) = ( - l)"'C,(E) . 

et 2 and X be complex spaces. Let n :  E -+ X be a holomorphic vector 
dle over X. Let f : X  -+ X be a holomorphic map. Then a holomorphic 
or bundle it: E + 2 and a holomorphic map f: E - ,  E exist such 
the diagram 

Utes and such that the restricti'on fx = J  -+ EJ(,, is a linear 
rphism for each x EX. This pull back is uniqueIy determined by 

nditions up to a holomorphic isomorphism of the diagram (2.4). 
ssible choice within the isomorphic models is 
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where 5 :  E  -, X and f :  B -+ E are the projections. 
Take a hermitian metric ( 1  ) along the fibers of E.  One and only one 

hermitian metric ( / ) along the fibers of E ,  called the pull back, is defined 
by (el,e2)" = ( f (e1) , f (e2) )  if ( e , , e 2 ) ~ 2  O 

Let s  = (s,, . . . , s,) be a holomorphic frame of E over the open subset 
U of X with 0 = f -'(u) # @ . Define ill: 0 + l? by Sll(x) = f ~ ' ( s , ( f  (x ) ) )  
for x E 0.  Then S = (S,, -.. , jq )  is a holomorphic frame of ,!? over 0 with 
s,,o f =yo ,s;, for ,LL = i;..,q. Then 

implies 

Hence 

if ti = ( t i l , . . . , ~ , )  with 0 5 K,,EZ for ,LL = I , . . . ,  q .  
Consider a short exact sequence 

of hermitian vector bundles over X .  Then a form p = p, + f pqdl  
of class Cm with bidegree p = (v ,  v) for v = 0, .. . , q - 1 exists on X such that 

for A = O,... ,q . (For manifolds, see Bott and Chern [5 ] ,  for complex 
spaces, see Cowen [6] )  

Assume that (2.7) is only a short exact sequence of holomorphic vector 
bundles over X .  Assume a hermitian metric ( 1  ) along the fibers of E is 
given. It restricts to a hermitian metric along the fibers of D.  Differentia- 
bly, the exact sequence (2.7) splits into an exact sequence 
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h that j and a are differentiable bundle homomorphisms with a o  I., 
j ,  t o a + j  o p being identity maps and such that ( j ( f )  (t(d)),  = 0  

11 f  E F,, d E D, and x E X . Then F can be considered as a subbundle 
The hermitian metric ( 1 ) along the fibers of E restricts to  a hermitian 

along the fibers of F. Hence a hermitian metric along the fibers of 
duces hermitian metrics along the fibers of D and F by this process, 
h shall be called orthonormal metrization, 

V be a complex vector space of finite dimension. A positive definite 
tian form ( 1  ) on V is called a hermitian metric on V, A complex 
space together with a hermitian metric is called a hermitian vector 

. If E = X x Vis the trivial bundle, a hermitian metric on Vdefines 
mitian metric along the fibers of X x V by 

- 
The norm of z  E V is defined by 1 z ( = J ( z  1 z). 

Grassmann manifo/ds 

et V be a complex vector space of dimension n $. 1 with n  > 0. On 
{0),  an equivalence relation is defined by "a -b if and only if a A b =O." 
equivalence class of a is denoted by P(a). If A s  V, define 

P(A) = P(A - ( 0 ) ) .  The quotient space P(V) is a connected, compact, 
lex manifold of dimension n ,  called the projective space associated 

The residual map 

P :  v- ( 0 )  4 P(V) 

omorphic, I-fibering, regular, and surjective. If Wis a linear subspace 
ension p + 1 of V with p 2 0 ,  then P(  W )  is a p-dimensional, smooth, 

pact, complex submanifold of P(V) ,  called a projective plane of di- 
p .  Let 2 J V )  be the set of all p-dimensional linear subspaces 

t Qp(V)  be the set of all p-dimensional projective planes in P(V). 
p-fold exterior product of V is denoted by vtP1 = V A .-. A V. 

p < n ,  the Grassmann cone 

Gp(V) = A ..- A D , ( D , €  V} 

analytic subset of v ~ ~ + ~ ~ .  The Grassmann manifold Gp(V) = 
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P(~,(v)) is a connected, compact, sn~ooth, coinplex submsnifoId of 
p ( ~ ~ ~ ' ~ ~ )  with dimension 

k(p) = (n -p ) (p  + 1) 
and with degree 

If a E G,(V),  then 0 # a E G , ( V )  with P(a) = a exists. Then 

are well-defined. I f  n = a, A A a,, then 

z(rr) = C a ,  + . . . +- C a p .  
The maps 

E: G,(V) + 2 ,+ , (V)  and E ;  G,(V) -t Q,(V) 

are bijective. Note G,(V) = P(V). 
Let T ( V )  be the set of all bases a = (a,, ..., a,,) of V .  Define the matrix 

space 

For a = (a,, ..., a,) E r ( V ) ,  define 

According to [15] Lemma 2.1, Z, is open in G,(V) and a biholomorphic 

map 

is defined as follows: "Define holomorphic vector functions 
0,: C , " 4  V - {O) for p = O , . - . , p  by 

I, 

D ~ ( z ) =  a,,+ C z,,a, for ZEC;. 
v = p +  1 

Then 
5 ,  = Do A AD,: C: -+ 2, - (0) 

is holomorphic and 
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lomorphic." Define la = 5,': Z, -t C,". Then {~,},,,(,, is a corn- 
las of Gp(V), because {Z,},, ,(,, is an open covering of Gp(V). 
ordinate functions C,, = l;, of the matrix functions 5, are holo- 
ic on 2, .  Holomorphic vectors m,,:Z, 4 V are defined by 

P(mo(x) A ... A m,(x)) = i, 0 = x 

11 x E 2,. Hence 

E(x) = Cmo(x) + ... + Cm,(x) if x E Z, . 

Sp(V)= U { x } x E ( x ) =  {(x,D)€Gp(V)x VID€.G(X)}. 
* E GP(!') 

ernrna 3.1. S,(V) is  a lzoloilzorphic subbundle of tlte trivial bundle 
x v .  

roof. Take any a = (a,; . . ,a,)~r(V). Then 

,. Hence a biholomorphic map 

qh,:z, x cn+'+ Z ,  x v 

+,,(x, zo, - -., z.)= (x, 5 z,.mg) + i zl,a,). 
11 = 1 u = p +  1 

ctor bundle isomorphism. Moreover, 

x cP'"{0)) = s,(V) n (Z ,  x Y ) .  

is an open covering of G,(V) x V, the set S,(V) 
ubmanifold of G,(V) x V. 
ap $ , : Z , X C ~ ~ ~ - ) .  S,(V)n(Z,xV)isdefinedby 

x,zo,~~~,z,,O,..~,O).Letj:Sp(V)-+ Gp(V) x V bethe 
jl(x, z) = (x, z,O) for (x, Z )  E Za x cP+l with 0 E C ~ - ~ .  
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commutes, wilere n, no,  n;, n' are the projections. The maps $,, g,, j and j 
are linear on the fibers of the projections. Since [Z,),,r(,, is an open 
covering of G,(V), these diagrams show that S,(V) is a holomorphic 
vector subbundle of G,(V) x V ;  Q.E.D. 

Let Q,(V) be the quotient bundle. A short exact sequence 

of hololllorphic vector bundles over G,(V) is constructed, called the clas- 
sifying sequence. 

According to [lfil, Lemlila 1.1, the flag manifolds 

Fjh = ((x, z )  E Gj(V)  x Gh(V)l E(x)  2 E ( z ) }  if 0 5 k 5 j 5 n 

are smooth, connected, compact, complex submanifolds of G,(V) x G,(V) 
and the projections 

n :  F,, -t G,(V) z: F, -+ G j ( V )  

are surjective, holomorphic, and regular. The map 

Id x P:G,(V) x ( V -  (0) )  -+ G,(V) x P ( V )  

restricts to 
Id x P: S,(V) -?3 -+ Fp0 

where D is the zero section of S,(V). Hence F,, is the associated projec- 
tive bundle P(S,(V)) to S,(V).  
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ke a hermitian metric on the vector space V .  It defines a hermitian 
ric along the fibers of G,(V) x V .  The process of orthonormal metri- 

defines herinitian metrics along the fibers of S,(V) and Q,(V). The 
forms of these hermitian vector bundles will be considered. 

e exterior product vEpl becomes a hermitian vector space with 

( a ,  lb,), -..,(a,] b,) 
(a ,  A ... A a,lb, A ... A b,) = 

and only one positive for111 h,, of bidegree ( I ,  1) and class C" exists 
( v E p +  11) such that 

1 
P*(G,)(3) = ;j-dLcl log] 31 for 0 z 3 E v~~~~~ '. 7I 

: G,(V) -+ P(v["+ 'I) be the inclusion. Then o, = j*(Q,) is a positive 
of bidegree (1,l) and of class Cw on G,(V). Obviously, w,  = 13,. 

degree of G,(V) is given by3 

d ( p ,  1 1 )  = 1 w",crl. 
G P ( V )  

presentation Theorrt,i of Borr onrl Clzel.17. For 0 g q q p g n con- 
the diagram 

d ( ~ -  1 > q - l)ci,(Qp(V)) = ~*~*(c j r+p-q(Qq)  A ~ f - ~ ) ' )  

= O,...,n-p . If q = 0,  then 

c,l(Qp(v>) = ~*r*(w",'") 

ark 1. For p = rz - p ,  the theorem was stated first in Bott and 
er, their statement is wrong for q > 0 as degree 

complete theorem was announced in [IS] .  A proof 



8 8 RICE UNIVERSITY STUDIES 

Remark 3. The form cog+" is positive. Hence n*(oP,+") 2 0 .  By [IY] 
Lemma A I1 6.8, c,(Q,(V)) = ~ , n * ( o ~ " )  2 0 .  Hence the pth Chern 
form of Q,(V) is non-negative for ,LL = 0,1, -*., n-p. Take K = (K,, ...,K,-,) 
with 0 r c , ~ Z .  According to Corollary 1.3, the Chern form 0 c,(Q,(V)) 
= L .~ (Q, (V) )~ '  A ..- A C , , - ~ ( Q ~ ( V ) ) ~ " - J '  of type K is non-negative. 

Remark 4. Take another hermitian metric ( 1  )' on V .  Distinguish 
the derived forms by ' .  A positive frtnction g of class C m  is defined on 

P ( V )  by g(z )  = 1 311/1 3 1  if EP-'(z).  Hence 

where y,+, is a form of bidegree ( p  + p - 1,p + p - 1) and of class C4. 
The Representation Theorem and [17] Lemma A I1 6.7 imply 

with p ,,,,, = r~n*(y, ,+, ,) .  A~SO 

L.:(Q,,( V ) )  = C,(Q,(V)) + (lLclpti, 

where p, is a form of bidegree (a(rc) - I ,  a(/<) - 1 )  and of class C4 . 
Remark 5. The forms c,,(Q,(V)) and c,(Q,(V)) are closed because, 

LIC,~(Q,~( V ) )  = dr*n*(wGf ") = ~*n*(dw$'")  

- x,n*(O) = 0 

The results of Remarks 3, 4, and 5 also follow from the complicated 
computations in Bott and Chert1 [rj] Sections 3 and 5. 

$4. T h e  clnssifj~ing vpace for ample vector bur7rIles 

Let E be a holomorphic vector bundle of fiber dimension q on the complex 
space X . Then E is said to be ampIe if and only if E is the quotient bundle 
of a trivial bundle, i.e., a finite dimensional complex vector space V and a 
surjective, holo~norpl~ic, vector bundle homomorphism 

exists. For each u E V ,  a holo~norphic section E, in E over X is defined 
by E,(x) = (x, D). Let T ( X ,  E) be the conlplex vector space of global holo- 
morphic sections s :  X -+ E .  A linear map cr: V 4 T(X, E) is defined by 
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= E ~ .  The image W = o(V) is a finite dimensionaI linear subspace 
(X, E). A surjective, holomorphic vector bundle homomorphism 

e : X x  W - t E  

iven by e(x,s) = s(x) if S E  W,  called the evaluation map. Obviously 
e o  (Id x CJ). Therefore (4.2) gives an alternative definition for E to 

ample. Obviously, an equivalent condition is the requirement that 
tely many sections so, ..., s,, in T ( X ,  E )  exist such that so(x), .. . , s,(x) 
erate Ex over C for each X E  X .  Also, if X is compact, E is ample if 

only if for every x E X at least one holomorphic sections in E over X 
ts such that s(x) # 0. 
gain, consider the situation (4.1) with dim V = n + 1 .  The kernel S 
has fiber dimension p + 1 with p = it - q . Then 

short exact sequence of holomorphic vector bundles over X called an 
ation of E by V. To each such amplification, a so-called classifying 

f :  X 3 Gp(V) 

(4.5) E(f(x)) = P(S,) if X E X .  

Observe, that S,EU,+,(V) and P(S,) E@,(V). Since E: Gp(V) -+ QP(V) 
is bijective, f (x) E G,(V) is well defined. 

roposition 4.1. Tlze classifying rnap f is holomorphic. The ampli- 
ion (4.3) is the pull back of the classifying sequence (3.1) under f; 

O j S  + X x V + E d O  

.To, are b~lndle Izomomorphisms over f ,  isomorphic in each 

f. Take a E X .  A base a = (a,, ,..,a,,) of V exists such that 
a),  fa) is a basis for E,. Abbreviate s, = E*,, for p = 0, ..-,n. 
en neighborhood U of a exists such that sP+,(x),~~.,s,(x) is a base 
for each x E U .  HoEomorphic functions b,,, exist on U such that 
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for I.L = 0, . . . , p if x E U . Holomorphic vector functions 

are defined. If x E U ,  then r),(x), ...,gp( x )  are linearly independent over C. 
Hence a holomorphic map 

is defined by 

g(x) = P(r),(x) A ,., A qP(x)) for x E U .  

Moreover 

Hence q,(x),~~~,q,(x) is a base of S,. Therefore 

which implies 

if x E U .  Because E is bijective, f 1 U = g :  U -. G,(V) is holomorphic. 
The map f is holomorphic. 

The matrix function 

is holomorphic. Then q,, = o,,o b and 

where 2, is open in Gp(V).  Hence 5, of = b: U -+ C% which implies 

If X E  U ,  then 
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= i f  ( x ) )  x (Cmo(J ' (x )  + ... + C a , ( f  (x))) = Sp (V . ' ) f ( x~  

ause this is tru: for some neighborhood U of an arbitrary point a E X, 
bundle homomorphism f = f x Id: X x V -+ G,(V) x V restricts to 

S -+ S,(V). Since the quotient bundle is i~niqrlely defined up to isomor- 
sms, the diagram (4.6) is established; Q.E.D. 

~ 1 7  immediate consequence is 

oposition 4.2. Let E be an atizple holor~zorplzic vector bundle of 
dimension g otier the co~np l ex  space X .  Let (4.3) be a n  ampl i . ca t ion  
rvitll dim V = n $ 1 and p = 11 - q  > 0 ,  Let f :  X + Gp(V)  be the 

ciatetl c1assif:~ling m a p .  Talce cr hernzitiatz metric on V .  I t  defines 
rmitiarz ~ne t r i c  along the f ibers  of' X x V and G p ( V )  x V .  B y  ortlzo- 

r~tzal metrizat ion,  kel.r?zitiati 17zetr.i~~ along the fibers of S ,  E ,  S p ( V )  
,(V) are clejinecl. With these rizetrics the following stdtetnents hold. 
T h e  prh Chern for117 c,,(E) oj' E is noiz-negative and given by  

. If' ~c = ( / i t ,  -",/iq) lvitll 0 5 I ~ , E Z ,  then the Chern form c,(E) OJ 

e rc is non-negative anrl given hy  

If X is cornpact arzll pure m-dimensional, if K = (K~ , . . . ,K , )  with 
I{ ,  E Z  and a(rc) = nz,  then the Chern number  C,(E) of t ype  K is  non- 

I f  another hertnitian metric  ( I )' on V is gilien and if the associated 
distinguislzerl b y  ' , then 

c,:(E) = c,,(E) + ddLyJl 

cL(E) = c.,(E) + ddLy, 

y,, and y, are  fbrtns oJ' class Cm and bidegree (p -1 ,p -1 )  and 
- l , o ( ~ )  - 1 )  respectively. I f  X is cottipact and pure dimensional 
hertz nunzbers renzain unchanged. 
e proof follows immediately from Proposition 4.1, from (2.5) and 

nd from Remarks 3,4, and 5 in Section 3. The results of Proposition 
llow also from the difficult cornputation of Bott and Chern [q. 

, they are obtained from the classifying sequence, an idea already 
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indicated in Bott and Chern [5], and which can be carried further, see 
[18] Section 14. 

$5. MoiSezon spaces 

Let 3(X)  be the field of meromorphic functions on the irreducible complex 
space X .  The transcendence degree of R(X) over C is denoted by tr(X). 
If X is compact, then tr(X) =< dimX.  The case, tr(X) = dimX,  has been 
extensively studied by MoiSezon [13] and is not far from the algebraic 
case. Hence, a compact, irreducible complex space X is called a MoiSezon 
space if and only if tr(X) = dimX.  If, in addition, X = X0 is a manifold, 
then X is called a MoiSezon manifold. A complex space is said to be pro- 
jective algebraic if and only if it is biholomorphical1y equivalent to an 
analytic subset of a projective complex space. According to a deep result 
of MoiSezon [13], a MoiSezon manifold is projective algebraic if and only 
if it is a Kaehler manifold. 

Let X and Y be complex spaces. Suppose that X is pure dimensionaI. 
Let f: X -+ Y be a hoIomorphic map. The rank off at x 6 X is defined by 

rank, j' = dim,X - dim, f - ' f (x)  

The global rank off  is defined by 

rank f = sup (rank, f I x E X )  

Then 0 g rank f =< min(dim X, dim Y) . If 0 5 p E 2 ,  then 

E(p) = (x E X I rank, f =< pj 

is analytic in X .  If X is irreducible. then 

is a thin analytic subset of X (See [I] Section 1). 

Lemma 5.1. Let X and Y be irreclucible, compact, complex spaces 
of dimeusion nz and n respectively. Let f': X 4 Y be a holornorphic map 
of global rank n .  Suppose that Y is a Mois"ezorz space. Then tr(X) >= n. 
Especially, $ m = n then X is a MoiSezon space. 

Proof. Because dim Y = rank,, the homomorphism f* : A(Y) -t S(X) 
is injective. Hence f *%(Y) is a subfield of transcendence degree n of S(X). 
Therefore tr(X) 2 n .  If n = m ,  then n = nz ;iir, tr(X) 2 r z .  Hence X is 
a MoiSezon space; Q.E.D. 
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emma 5.2. An irreclircible, projectioe algebraic, conzplex space is 
j?ezon space. 

roof. Let X be an irreducible, analytic subset of a colnplex projective 
P(V) with dimX = n~ . Here, V is a complex vector space of dimen- 

12 + 1.Thenii-m = p 2 0 .  I f p  = 0 ,  thenX = P(V)is a MoiSezon 
Assume the statement is proved for p-l >= 0 .  Take X with 
= 177 = 11 - p.  Take a E P(V) - X. Let Z = P(W) E 8,,- ,(V) be a 

ective plane of dimelision 11 - 1 in P(V) with a E P(V) - Z . For each 
, one and only one projective plane L, r (5,(V) of dimension I ex~sts 
{ a , x )  E L, because a # x .  Since a $ 2 ,  one and only one point 
L, n Z  exists. Because a $ L ,  nX = n - ' ~ ( x ) ,  the l~olomorphic 
rr:X 4 Z has rank 1 1 2 .  Since X is compact and irreducible, 

rr(X) is an ~n-dimensional, irreducible analytic subset of Z with 
2 - 1 1 2  = p- 1. By the i~lductioll assumption, Y is a MoiSezon space. 

estriction rr: X -+ Y has rank ~ n .  According to Lemma 5.1, X is a 
zon space; Q.F.D. 

ma 5.3. Let X be a cornpact, irreducible, co~np l ex  space of di- 
ion 111. Let Y be a projective algebraic c o ~ n p l e x  space. Let f: X + Y 
holo~norphic ,nap of rarzk p.  T h e n  tr(X) >= p .  Especially, i f p  = In, 
X is a Moi.?ezorz space. 

of. According to the Relnmert proper mapping theorem, the image 
f(X) is a compact, irreducible, analytic subset of Y with dimN = p .  
e N is projective algebraic. By Lemma 5.2, N is a MoiSezon space, 

triction f ' :  X -+ N has rank p . By Lemma 5.1, tr(X) 1_ p .  If p = rn , 
is a MoiSezon space; Q.E.D. 

mma 5.4. Let  X ancl Y be co~np l ex  spaces. Let f : X  -+ Y be a holo- 
tnap. Assurne that  X is irre(1ucible. Suppose I// is a continuous 

tial f i r m  o f  rlegree 2 p  on Y strc.11 that  f*($) + 0 otz X .  Then 

of. Define tz = rankj  . Suppose that n < p . Take a E X  - Df . 
k,f = n for all x E X - D,. . According to Remmert [14],  open 
oods V of a in X - Df and W off ( z )  in Y exist such that Z = f (X) 

ure n-dimensional, analytic subset of W. (Also see [ I ] ,  Proposition 
Hence f = j o f, , where j :  Z -+ Y is the inclusion and where f, : V-+ Z 
restriction. Then 
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Now deg$ = 2p  > 211 and il = din1 Z imply j*($) = 0 .  Hence f *($) I V -= 0.  
Therefore f "($1 = 0 on X - Df . Because Dl is thin, f *((/I) = 0 ,  which 
is wrong. Therefore 11 >= p ;  Q.E.D. 

Theorem 5.5. Let X be a coinpact, irreducible coinplex space of 
dirnerzsiorl 171.  Let E be art aiizple holo~norphic vector bunrlle on X .  Sup- 
pose that a I-efiilerl Chern class E,(E) # 0 exist., with o(ii) = r > 0 .  Then 
tr(x) 2 i.. 

Proof. Take an hermitian vector space V of dimension n + 1 such that 
(4.3) is an amplification of E .  Then X x V is a hermitian vector bundle. 
Introduce hermitian metrics along the fibers of S and E by orthonormal 
metrization. Let g be the fiber dimension of E .  Define p = n - q .  Then S 
has fiber dimension p + 1 . Let f : X  -+ G,(V) be the classifying map as- 
sociated to the amplification (4.3). Then 

by Proposition 4.2. Because th(E) # 0 ,  also c,(E) TL 0 .  According to Lem- 
ma 5.4, rank f >= r = o(/i). Since G,(V) is projective algebraic, Lemma 5.3 
implies tr(X) 2 rank f' >= r ; Q.E.D. 

Theorem 5.6. Let X be cr coinpact, irreducible, coiilplex space. Let 
E be an ample  holonzorpliic vector buitclle on X .  Suppose tltat at  least 
one Chern number C,(E) # 0 .  The17 X is a Moi?ezon space. 

Proof. Define ti7 = d imX.  Then ~ ( r i )  = 177 and c,(E) # 0 ,  since 
C,(E) f 0 .  Theorem 5.5 implies tr(X) L_ 171.  Therefore tr(X)=m; Q.E.D. 

Main Theorem. Lei X be a connected, compact Kaehler maitifolrl. 
Let E be a n  atizple holonzorphic uectoi btriltlle on X .  Suppose tlzat E 
has at  least one Cherrz number C,(E) # 0 .  Then  X is projective algebraic. 

Proof. By Theorem 5.6, X is a MoiSezon space; hence X is projective 
algebraic according to MoiSezon [l,?]; Q.E.D. 

96. Manifblds with arizple holontorphic tangent uncl cotaizgent bundles 

Let X be a complex manifold of pure dimension m .  Let T(X) be the 
holomorphic tangent bundle of X .  Its sections are the holomorphic forms 
of bidegree (1,O). The set of all biholomorphic maps o :  X -+ X is a group 
Aut(X) caIIed the automorphism group of X .  The complex manifold X 
is said to be homogeneous if and only if Aut(X) operates transitively on 
X .  The following lemma is well-known. 
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ma 6.1. Let X be n connected, contpact, complex manifold. 
is Izomogeneour if and  only if the holoilzorphic ta t~gent  bundle 

e case of ho~nogeneous cornpact complex manifolds is well studied. 
following theorem is known. (See Goto [?I, Bore1 and Re~nmert  [PI  
G r a ~ ~ e r t  and Remmcrt [a].) It can be obtained easily fro111 the ampli- 
on sequence : 

eorern 6.2. A coiiiiectec/, c o i l ~ l ~ ~ c f ,  /101~~og~vzeol1$ cni??p/ex rna~zifold 
it11 tlon-zero Euler c1iuracter.istic x(X) # 0 is projective algebraic 
ucli C l i e r ~ ~  nz1171ber of X is tlo/l-t~eg~ttiue. 

of. Because the Cliern numbers of X are the Chern numbers ~f the 
holomorphic tangent bundle T ( X ) ,  they are  non-negative by Pro- 
n 4.2. Let V = T(X, ?'(X)) bc the vector space of all hoIomorphic 

r fields on X . Then tz + I = din1 V < + oo . Define rtz = dim X . 
use T(X) is ample, an amplification is defined by 

e is the evaluation map. Because x(X) # 0 ,  the map is not iso- 
I~ic. Hence n + I > tn . Define p = iiz - tz 2 0 .  The kernel S has fiber 
sion IJ + 1 . Let f :  X -t G,(V) be the associated classifying nlap. 
a l~erlnitian nletric on V. I t  defines a hermitian metric along the 
of X x V which induces hermitian metrics along the fibers of S and 
by orthonormal inetrization. Then 

j~(c,,,(Q,(V))) + 0 .  Lemma 5.4 implies rank f' >= 171, hence rank 
Therefore, Y = j(X) is a compact, irreducible, 111-dimensional 
subset of G,(V). It shall be shown that Yis a smooth, homogeneous, 

ex subtnanifold of G,(V) and that f: X+ Y is locally biholomorphic. 
this purpose, consider the operations of the group Aut(X). Take 

) .  Then a :  X + X is billolomorpl~ic and induces a holomorphic 
undle isomorpl~ism o:,: T(X) -+ T ( X )  over o .  i t  defines a linear 

rphisri~ a,: V-t V which extends to an  isomorphism 

oh = a x a , : X  x V - + X  x V 

hat a,  o e = e o  a,. Hence a,  restricts to  a,  : S -+ S . An automor- 
of (6.1) is defined 
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If t E N ,  the lineal- isomorpllism o,: V -+ V extends a,: v[']+ V [ ' ]  
sucl~ that o,(ul A * . .  A 0,) = rr:,(l~,) A ... A cr,;(u,). This isomorphism de- 
fines 11 hiholotnorphic  nap 

such that rr., i) P = Po rr:!:, wliich reslricts to 

If a E GI- , ( V ) ,  then o,(,!?(a)) = Z(~:,(N)). Hence 

Take x E X . The11 f ( s )  E G,(V). TIiel-efore 

Consequently, cr,: o J = f o  r r .  Hence 

lience (T*: G',,(V) + G,(V) restricts to a bil~olomorphic nlap 

I f  y , , ~  Y, then s , , ~  Y with y,, = /(s,,) exist For ~i = 1,2. Take @eAut(X) 
with o(x,) = x 2 .  Then o,(!.,) = o,(f (xi)) = f ( ~ ( x , ) )  = f(x,)  = y . There- 
fore Y is l~ot~~ogeneous. Becatise each a,: Y + Y is the restriction of a 
bil~olornorpl~ic map  o,: G,,(V) + C,,(V),  the compact, in-dimensional ir- 
reducible analytic subset Y of G,(V) is a connected smooth complex sub- 
manifold of G,(V). Because Ailt(X) operates transtiively on X and Y and 
com~il~ttes with J :  X -, Y, the rank of the Jacobian tnatrix off  is constant 
and eq~ials the global rank o f f  which is 171 = dim X = dim Y. Hence f' is 
locally bil~olomorphic, Beca~~se f is also proper and because Y is projective 
algebraic, the covering space X is projective algebraic; Q.E.D. 

Now the case of an  ample holomorphic cotangent bundle will be con- 
sidered. 
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ma 6.3. Let X ar~ri Y be pure cliniensional cornplex manifolds. 
-t Y be a srnooth Irolortzorplzic map (i.e., a holornorphic irrzmer- 
T*(Y) is artzple, then T*(X) is ample. 

of. Let wo,-..,w,, be finitely many holomorphic forms of bidegree 
on Y such that wo(y), -.., w,,(y) generate T,*(Y) over C for each y E Y. 

E X  , Take a E 7[;*(X). Define y = f (x-) . Since f is smooth, the in- 
linear map J":IT:(Y) + T,*(x) is surjective. Hence b E T;(Y) with 

= a exists. Then b = bowo(y) + -.. f b,,w,,(y) implies a = f(b) = 

o) Cx) + ... + b,, f'*(w,,) (x) . Hence f'*(wo)Cx), . * a ,  f *(w,,)(x) generate 
over C for each X E  X. The vector bundle T"(X) is ample; Q.E.D. 

X be a connected, compact, complex manifold of dimension m .  

Then q ( X )  is said to be the irregularity of X . If X is Kaehlerian, then 
2q(X) is the first Betti number of X .  Now, assume that X is Kaehlerian. 
Then the Albanese Torus and the Jacobi map will be defined by the method 
of Weil [22/ .  The dual vector space V" will be called the AIbanese vector 
space. Let H,(X, Z), H,(X,R) and H , ( X ,  C) be the first (singular) homology 
groups of X with coefficients in Z, R, and C respectively. The inclusions 
Z r R E C define homomorphisms 

Here r, is an R-linear monomorphism. The rank of H,(X, Z) is 2q and the 
dimensions of H,(X,R) over R and H ,(X, C) over C are 2q . An R-linear 
homomorphism a :  H,(X,R) -+ V* is defined as follows. Take c eH,(X,R). 
Represent c as a differentiable cocycle y with coefficients in R. Take any 
w E V. Then 

is well-defined, independent of the choice of y. Hence u(c): V 4 Cis C-linear. 
Therefore a :  H , ( X , R )  + V* is defined and obviously R-linear. If a(c) = 0, 
then j"?w = 0 and JrG = 0 for all W E V .  By de Rham, y - 0  over C, 
hence I,(c) = 0 .  Because r ,  is injective c = 0. Hence a is injective. Con- 
sideration of dimensions shows 
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is a n  R-linear isomorphism. Now L,(H,(X,Z)) is a lattice in H,(X, R) 
(i.e., a discrete additive srtbgroup which generates H l ( X ,  R) over R), 
Hence 

A = o l I ( H  ,(X, Z))  

is a lattice in V*. The complex to r~ i s  

is called the Albanese variety associated to X. Let p :  V" -t A(X) be the 
residual map. 

Now, a holomorphic map J: X -+ A ( X )  called the Jacobi map will be 
defined. Let 1//:2 -+ X be the universal covering of X .  Take a E X  alld 
L ~ E  2 wit11 i / / ( ( i )  = a .  At first, a Iiolomorphic map j :  2 + V" wifl be de- 
fined. Take S E  2. Then j ( s ) :  V + C has to be defined as  a C-linear map. 
Take W E  V. Then cl~//*(w) = ~//*(do) = 0 .  Hence, one and only one 11olo- 
morphic function 1': 8 + C exists stlch that f (CI) = 0 and tlf' = t//*(w). 
Define j(.u) (w) = f '(x) . Obviously, j (x)  is C-linear. Hence 1: 2 -+ Va: is 
defined. Let w,,. .- ,w, be a base of V. Let COT, ...,w; be the dual base of 
V * ,  Then holomorphic f~ulctions fl: X -+ C exist such that rlf; I ~~"(w,,)  

and such that ,f,(6) = 0 .  Hence 

for all x ~ f .  Therefore j is holomorphic. Observe j (4)  = 0 .  
Let G be the group of all bi1~olomorphic maps g : 2  + 2 with r,b o g = ik. 

A map p :  G -t V* is defined by /?(g) = J(g(ci))  for g G G .  Obviously, 
/?(Id) = 0 .  Take g G G and h E G .  Take o E V .  Then I ~ * ( o )  = clf' with 
j(6) = 0 .  Then 

d(f  o h)  = h*(clf') = h*n*(w) = ( n o  h)*(o) = z*(w) = r l f ' .  

Hence J' = J'o h - J'(h(a)) which implies 

Hence, B,lt o g )  = p(g) + p(h). Therefore /?: G + V* is a homomorphism. 
Let n,(X,a)  be the fundamentaI group of X a t  a .  An isomorphism 
6: n l ( X ,  a) -t G is defined as follows. Take u G n,(X, a ) .  Represent v by 
a curve d, from n to a ,  which lifts t o  a curve 4 from Z t o  x with I// 6 6 = 4 .  
Then 6(v) E G is utliquely defined by x = G(v)(6). A homomorp l i i s~~~  
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, (X ,a )  -t is defined. Let C be the commutator subgroup of 
,a ) .  Then an epimorphism 8 :  n, (X ,  a )  -+ H 1 ( X , Z )  is defined with 

el C .  Obviously, the kernel of p o 6 contains C .  Hence, a homo- 

11:  H , ( X , Z )  + V Q  

efined such that q c = 0 6. Now, vi = a o L is claimed. Take 
, ( X , Z ) .  Then c = ~ ( u ) ,  where v E n,(X, a) .  Represent v by a closed, 
entiable cilrve 4 from a to a .  Then 4 can be considered to be a sin- 
1-simplex. As such it represents c  in H , ( X , Z )  and i,(c) in H, (X ,R ) .  

( a o ~ , ( c ) ) ( w ) =  

urve, 4 lifts to a curve 6 from ci to x in 2 such that $ o 6 = 4 .  I f  
then I)*(o) = clf' with f(6) = 0.  Hence 

1, = Jlb'cw, = lbdf = f (x) , 

Now, x = G(u) ( r i ) .  Therefore 

rl(c) = a o l , (c) and il = CA o i l  . Therefore 

se G operates transitively on the fibers of I). Take g E G .  Take w E V. 
(w)  + df with f'(ri) = 0 .  Then f = f o g - f (g (2) ) .  Take x E 2. 

3 o g - J^ = P(g) E A is constant, which implies p o 3 o g = p o ,f. 
use G opzrates transitively on all the fibers of $, one and only one 

: X -t A ( X ) ,  called the Jacobi map, exists such that f o I) = p o j. 
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Because $ is locally biholomorphic, J is holoinorpl~ic. The following corn. 
mutative diagram is established: 

Uotll 11 and pare locally bihoiornorphic covering maps. V* and A ( X )  are 
conlplex Lie groups under addition and p is a holomorphic homomorphism 
with 0 = p(0) = J ( a ) .  Because p o 4 does not depend on the choice of 
ri in lk- ' (a) ,  the Jacobi map J depends on the choice of a E X  only. 

Now consider tile case where X i s  a coinplex torus. Then 8 is a complex 
vector space and 111 is an additive homomorphism with kernel A, = 11-'(0). 
If  t E 2, define the translation g,: 8+ 8 by g,(x) = x + t .  Then 
G = {g ,  1 t GA,)  is the group of covering transformations of *. Take 
a = 0 = $(O)EX  and 6 = O E ~ .  Take w E V. Then I//:"co) = df with 

f :  8 -+ C holomorpl~ic and with f'(0) = 0 .  Since f = f o g,  - f ( t )  for all 
t € A O ,  and since A, is a lattice in 8, the l~olomorphic function f is linear. 
A map V + X* is defined by ].(a) = f .  Obviously, 1, is linear. If ?,(a) = 0, 
then I):"w) = di,(w) = 0 .  Hence w = 0 .  So IL is injective. If f~ X" , then 
.f = f o  g, - f ( t )  for all t E 8. Hence, o E V exists such that $'"a) = tlf'. 
Therefore, f = i , (o) .  The map 1. is an isomorpl~isin. The dual map A": X 4 V* 
is also isomorphic. Take x E 8 and w E V* . Then 

/ 1 : y X )  ( 0 )  = L(W) ( x )  = S ( x )  ( a )  

'Therefore, = A;? J? -+ V* is a litlear isomorphism. The kernel A, of@ 
is mapped onto the kernel A = S ( I / ) - ~ ( O ) )  = S(A,) of p. Therefore 
J :  X -+ A ( X )  is a Lie group isomorphism. In this sense, a complex torus 
is its own Albanese variety. 

Proposition 6.4. Let X be a connected, compact Kaehler. mani$old. 
Then  the lzolo~norphic cotangent burzdle T"(x) is ample  if and only ij 
X can be holorno~phically  imlnersed into a cotnplex torus. 

Proof. The cotangent bundle o f a  complex torus is ample. Hence, if X 
is holomorphically immersed into a compiex torus, then T * ( X )  is ample 
by Lemma 6.3. Assume that T"(X)  is ample. Consider diagram (6.3). It 
will be shown that J is  smooth. Because I// and p are locally biholomorpl~ic, 



AMPLE VECTOR BUNDLES 101 

es to show that 1 is smooth. Take R E 8 and define x = t,b(R). Take 

w,, a,  of Vsuch that w,(x), .-., o,,,(x) is a base of T~*(X). Because 
cally bil~olomorphic, $"(o,) (i), ..., t,b'"(o,,)(.?) is a base of ~;*(k).  
t)*(o,) = clf, with ji(li) = 0 for ,LL = 1 ,  . . - , q .  Let w;, ...,&: be the 

base to o,, ..., o,. Then is given by (6.2). Because 

cobiail matrix of J^ has at least rank rn (hence rank rn) at 2. Therefore 
mooth; Q.E.D. 

eorem 6.5. Let X be a compact, connected, cornplex rnanijoltl 
alnple holofnorphic cotnt7gent bundle. Take  ii  = (I<,, -..,ti,) with 
Z and with o(/i) = m = d imX.  Tiler? 

( - t)Y"(X) 2 0. 

ver, i j  X is Kaehlerian and i f a t  least otle Chet-n t7~~17tber C,(X) # 0 
zero, then X is projective nlgebraic. 

rk. Bochner proved (- J)"k(X) 2 0 in [$I. 
. Because T Y X )  is ample, Proposition 4.2 implies 

aining statement follows from the Main Theorem, Q.E.D. 
be a connected, compact KaehIer manifold of dimension 171 with 

cotangent bundle. Then I J I  2 q ( X ) .  If q ( X )  = 172, then X is a co~nplex 
because in this case the Jacobi map is biholomorphic. Now the case 

= 111 + 1 will be studied. At first a preparation: 

rnrna 6.6. Let X be a cotnplex spuce. Lel 

exact seqtlet?ce of holomorphic vector burzdles rvhere E and L have 
ions p a n d 1  respectively and where Vhns  ciir~zerzsion tz = p + 1 .  

terior product oil forrns induces a n  exterior procluct orz the direct 
tlze i.e$rzed de Rhanz groups. Tkerz Cv(E) = C;(E)" ,for v = I , . , . ,p .  
(ul, .-.,1c4) wi th  0 2 IC,EZ, the11 

ĉ ,(E) = C,(E)"'"'. 

By Bott and Chern [5], Proposition 1.5 
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Hence 

d,(E) f E,-l(E) A E,(L) = 0 for v > 0. 

Especially, C,(E) = -c",(L) which implies 

Ev(E) = E1(E)" for I+ = 1, ..., 1). 

Because ( T ( I ~ J  = C := V K , ,  this implies 

P 

i , (~ )  = rj c,(E)"("' = c,(E)"'"'; Q.E.D. 
v =  1 

Proposition 6.7. Let X be (in rn-~l imensional ,  cotzrzected, compact, 
cornplex nzanijold wit11 a n  ainple holornorpl~ic cotarzgent bundle and 
with irregulari ty  q ( X )  = 171 f 1 .  Let x ( X )  be the Euler clzaracteristic 
of X .  T a k e  a n y  ic = (ic,, .... ic,,,) w i t h  0 K,,EZ and ~ ( r c )  = rn. Tlletl 

Proof. Define V = f (X,  T X ( X ) )  . An a~nplification 

is given, where e is the evaluation map. Because dim V = q ( X )  = m + 1 
and because T e ( X )  has fiber dimension m ,  the bundle S is a line bundle. 
Hence E,(T*(X)) = C,(T*(X))'" for all K with o(rc) = in. Because E,(X) 
= (-  l ) ' Y C , ( T X ( X ) )  all the Chern class of T ( X )  are the same. Hence all the 
Chern numbers of X are the same, which implies 

C,(X)  = J c.,(X) = x ( X )  ; Q.E.D. 
X 

I f  the holomorphic cotangent bundle of a connected, compact Kaehler 
manifold X of dimension in is ample and if q ( X )  = m + 1 ,  then X is im- 
mersed into the Albanese variety A ( X ) ,  which is a complex torus of dimen- 
sion m + 1 .  Moreover, if x ( X )  .f 0, then X is projective algebraic, and, 
consequently, A(X)  is projective aIgebraic (Weil [21]). Now it will be 
shown that every projective algebraic torus of dimension 2 3  can be almost 
realized this way: 

Theorem 6.8. Let B be a n  abelian vat-lety of dinzension nz + I > 2. 
T h e n  a connected, compact ,  nr-dirnensioizal, projective algebraic nrarifolli 
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q(X)  = m + 1 and x ( X )  f 0 exisrs such that the kolomoi.phic 
ent bundle of X is ample. Moreover, a finite subgroup D of the 
se uariety A ( X )  of X  exists such that B = A(X)/D.  

f. Because B  is projective algebraic, it can be considered to be a 
, compact, complex submanifoId of complex projective space. Ac- 
to the theorem of Bertini, a hyperplane section Y exists in B such that 
mpact, connected, m-dimensional, smooth, complex submanifold 
all that the torus B  is a complex Lie group under addition. Take 

t a E Y. Define a biholomorphic map ,u : B -+ B by p(x) = x - a for 
Then X  = y(Y) is a compact, connected, nz-dimensional, smooth, 

]ex submanifold of B. Since B  is projective algebraic, X  is projective 
. The l~olomorphic cotangent bundle T * ( X )  o f X  is ample by Pro- 
6.4. Observe that 0 = p ( n ) ~ X .  According to the Lefschetz 

m (Milnor [12]), the vth Betti n~lmbers for v = 0, I ,  ..., m- 1 are 

112 > 1 by assumption, b,(X) = b,(B) = 2(1n + 1 ) .  Hence 
b , ( X )  = ni + I .  Poincare duality implies 

0,1;..,m-1. Therefore 

2 m 

C ( -  1 jVb,(X) 
v = o  

Because brf1(X) 2 b,,,(B), the characteristic x ( X )  is not zero. 



Since B  is a complex torus, a cornplex vector space W of dimensioti 
172 + 1 and a lattice A, in W exist such that B  = WlA,.  Let q :  W -+ B  be 
the residual map. Let V(B)  and V ( X )  be the vector spaces of kolomorphic 
forms of bidegree ( 1 , O )  on B  anc! X  respectively. Let j: X  -+ B  be the inclu- 
sion map. Then j*: V (B)  -t V ( X )  is a linear homomorphism. I t  is claimed 
that j* is a n  isomorphism. 

Take o E V(B)  with j*(o) = 0 .  Then q*(o) = clp with P(0) = 0 .  The 
map  p :  W -+ C is lineas. Assunie that p $ 0. Because O E  X ,  tlie inverse 
image q- ' ( X )  has a component L  with 0  E L .  Let j,: L -+ W be the inclusion. 
L  is a smooth complex submanifold of dimension 17.1 of W. The covering 
map q :  W -+ B  restricts to a covering map q,: L  + X ,  wirh j  o q, = q  o jt. 
Therefore 

Hence /lo j, is constant. Because [j o ~ ~ ( 0 )  = p(0) = 0 ,  the function 
P o  jL 0  vanishes. Hence L G k e r p .  B e c a ~ ~ s e  k e r p  is a linear subspace 
of dimension 17.1, and ditn L = 172, this implies L  = k e r p .  The linear 
subspace L is a s~~bl i iodule  of W.  Hence X = q(L) is a s ~ l b g r o ~ ~ p  of B. 
The sequence 

is exact. Therefore X  is a complex torus. Since %(XI # 0 ,  this is impossible. 
Hence p = 0 ,  which implies q*(o) = 0 and w = 0 .  The map j" is injective. 
B e c a ~ ~ s e  V(B)  and V ( X )  have dimension 171 + 1 

is an  isotnorphism. Define the dual isomorphism as 

The iilcl~lsion map j :  X  + B  induces l~omomorphisms j ,  o n  the homology 
groups. The following diagram is established. 
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h i  o j ,  = j ,  o L ,  . Take c E H , ( X ,  R) .  Represent c by a differentiable 
c1e with coefficients in R . Take o E V ( B )  . Then 

.i*(a(c)) (m) = 4 c > ( j * ( o > )  = j* (o)  = o = a(j,(c) ( o )  S, i., 
efore j ,  o or = cr o j,. The diagram (6.5) commutes. Let A(X) and 
be the Albanese lattices of X and B respectively. Then 

A homomorphism of exact sequences is defined 

e j ,  : V * ( X )  -+ V*(B)  is an isomorphism, j ,  : A ( X )  -, A(B)  is sur- 
Because A ( X )  and A(B)  have the same dimension in + 1 ,  and 
all fibers of j ,  have the same number of points, the surjective 
phic map j, is light. Hence the kernel D of j ,  is finite. Because B 
plex torus the Jacobi map J,: B -+ A(B) defined a t  O E B  is a Lie 

somorphism. Define = J,' o j , .  An exact sequence 

is defined, where 1, is a Lie group homomorphism, Q.E.D. 

NOTES 

y reduced complex spaces with a countable base of open sets are admitted in 
r. 
olomorphic map f:X -+ Y is said to be regular, if its Jacobian matrix has con- 
k n with n =  dim Y, 

y/  is a form, define I,/' - ~y A .-. A y (/-times). 
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