AMPLE VECTOR BUNDLES ON COMPACT
COMPLEX SPACES*

by Yozo Matsushima and Wilhelm Stoll

Consider an irreducible, compact space X of pure dimension m. The
field K(X) of meromorphic functions on X has a finite transcendence
degree tr(X) over C with 0 < tr(X) < m. The space X is called a Moisezon
space if tr(X) = m.

A holomorphic vector bundle E over X is said to be ample if finitely
many global holomorphic sections s,,-:-,s, of E over X exist such that
so(x), +++58,(x) generate the vector space E, over C for each xeX. Let
g be the fiber-dimension of E. The refined vth Chern class é,(E) is defined
for v=1,---,q. Take x = (x;,--+,k,) where each k, is a non-negative
integer. Define

q
oK) = X vk,.

v=1

‘The refined Chern class of type x is defined by

6(E) = ﬁ E(E).

v=1

If o(k) = m, the Chern number

e = | @

of type « is defined. A refined Chern class is said to be non-negative, if it
" can be represented by a non-negative form.
The following results will be obtained:
I. If E is ample, then é,(E) and é(E) are non-negative; especially, the
Chern numbers of E are non-negative (Proposition 4.2).
This result is due to Bott and Chern [5], section 5, but a less computa-
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tional proof based on fiber integration will be provided here. The method
may be of independent interest.

II. If E is ample and if é(E) # 0, then tr(X) = o(x). Especially, if a
Chern number C (E) of an ample bundle does not vanish, then X is a
Moigezon space (Theorem 5.5).

III. Main Theorem. If a connected, compact Kaehler manifold X
admits an ample holomorphic vector bundle E with at least one non-
vanishing Chern number C_(E) # 0, then X is projective algebraic.

IV. Let X be a connected, compact complex manifold of dimension m
with Euler characteristic y(X). Let V(X) be the vector space of holomor-
phic differential forms of bidegree (1,0). Then the dimension g(X) of
V(X) over C is finite and is called the irregularity of X. Let T(x)
be the holomorphic tangent bundle and T*(X) the holomorphic cotangent
bundle. The Chern numbers of T(X) are called the Chern numbers of X
and denoted by C.(X). If T*(X) is ample and g(X) = m+ 1, then
C(X) = y(X) for all Chern numbers of X. If, in addition, X is Kaehlerian
and x(X) # 0, then X is projective algebraic (Proposition 6.6).

V. Let A be an abelian variety of dimension m + 1 > 2. Then a con-
nected, compact, projective algebraic, complex manifold X of pure di-
mension m with irregularity g(X) = m + 1 and characteristic y(X) # 0
exists such that the following conditions are satisfied:

a) The holomorphic cotangent bundle of X is ample.

b) The Albanese variety A(X) of X is a covering group of A4; ie., a
finite subgroup D of 4(X) exists such that

A = A(X)/D.
(Theorem 6.7).
§1. Differential forms on complex spaces

Recently, differential forms have been successfully used on complex
spaces. Since this concept is new, a short outline shall be given here. See
Bloom-Herrera [2], Cowen [6], Herrera [9], and King [10] for references.

Let X be a complex space.! Let £(X) be the set of non-simple points
of X. The set X° = X —5(X) of simple points is a manifold which is
open and dense in X . A biholomorphic map «: U, — U, of an open sub-
set U, # & of X onto an analytic subset U, of an open subset G, of a
complex vector space V, is called a patch (at a if ae U,). Let j,: U, — G,
be the inclusion map. The embedding dimension of X at a is defined by

e, = min{dim V,| « patch at a}.
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if « and f are patches at a with e, = dim V,, an open neighborhood N’
of «(a) in G, and a smooth, injective, holomorphic map ¢: N’ — Uy
exists such that oo j,oa=j,0p8 on (j,0)"'(N'). If also e, =
dim ¥, then o: N' — o(N') is biholomorphic and o(N’) is open in Gj.

Let i be a differential form of class C* on X°. Then y is called a
differential form of class C* on X if and only if for every ae X a patch
g at a and a form ¥ of class C* on G, exists such that (j,0 a)*(\J) = ¢
on UP. If Y is a form of class C* on X and if « is a patch at a, an open
neighborhood N of a in U, and an open neighborhood N’ of «(a) in G,
and a form § of class C* on N’ exist such that j(a(N)) € N’ and
(ju© @)*(f) = y on N°. Here, class C* stands for any reasonable inter-
pretation, as k = 0: *‘continuous,” 1 < k < oo: “*k-times differentiable,”
k = p: ‘‘real analytic,” k = w: “holomorphic.”” If  has degree m,
respectively bidegree (p,q), then 1}7 c¢an be chosen to have degree m,
respectively bidegree (p,q). This definition is consistent with the def-
inition of continuous functions on X and the definitions of classes of
functions on complex manifolds.

For every open subset U # ¢f of X, let AP*%U) be the vector space of
forms of class C* and bidegree (p,q) on U. If V # ¥ is open in U, the
restriction map ry: A2YU) — A24V) is defined. The collection AP =
{Ai""(U),rE} is a canonical presheaf of vector spaces. Then

A = @ AP%and 4, = P A7

pta=m m=0

are the presheaves of forms of class C* and degree m, respectively of forms
of class C* on X . Here A, carries the structure of an exterior graded,
respectively bigraded, algebra over the presheaf A7 of functions of class
C*, since the exterior product of forms of class C* has class C*.

If k = 1 and if  is a form of class C* on X, then dyr, oy, oy and d*y
are defined on X° and are forms of class C*"! on X. Here d = 8 + 0 and
d* = i(0 — J) with the usual properties, except Poincaré’s Lemma.

The presheaf A4, induces a sheaf U, on X . Each form y € 4,(X) defines
a section in . Herrera and King define this sheaf 9, first and then define
a form as a section in 2. The effect is the same. Each form y of class C*
has a sheaf value ¥, e (), for each xe X, but a function value y(x) in
the appropriate exterior power of the cotangent bundle exists only if x € X°.

Let f:X — Y be a holomorphic map between complex spaces. Let
be a form of class C* on Y. Then one and only one form f*() of class C*
on X exists satisfying the condition:
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(P) Let « and B be patches on X and Y respectively. Suppose that a
holomorphic map f: G, — G exists such that

foj,oa = jyo Bof.
Suppose that a form § on G, exists Such that (jzo f)*(J) = . Then

W) = (a0 )*(/*W)  on U,

(For every point ae X, patches o at @ and f# at f(a) exist such that the
extensions f'and { exist as required in (P).)

Because f(X) < Z(Y) may occur, the existence of f* is not trivial. The
existence is known. Tung [20] will contain an alternative proof. The pull
back f* has the same categorial properties as in the category of manifolds,
It preserves degree and bidegree and commutes with d, d*, 4, 0 and the
exterior product. If f:X - Y and ¢:Y— Z are holomorphic, then
(gof)* =f*og*.

Let i be a differential form of bidegree (p,p) on X . Then  is said to
be non-negative, i.e., ¥ = 0, (respectively positive, i.e., ¥ >0) on X if
and only if the following condition is satisfied:

“Let M be a pure p-dimensional analytic subset of an open subset G
of X with M® = M. Let j: M — X be the inclusion map. Then j*() = 0
(respectively j*(i) > 0) on M .” _

(Observe that j*(if) has degree 2p on the p-dimensional complex mani-
fold M. Hence j*(y) = 0 resp. j*(i)) > 0 are well-defined.)

The form i of bidegree (p, p) is non-negative on X if and only if for
every holomorphic map f: G — X of an open subset G of C?, the form
f*Qf) is non-negative on G. If y is non-negative on X, and if f: Y- X
is holomorphic, then f*(})) is non-negative on Y.

Let i and y be non-negative forms on X . If ¥ has bidegree (1,1), then
W A y is non-negative. It is unknown if this remains true if y has bidegree
(g, q) with ¢> 1 (Lelong conjecture). (Added in proof: Harvey disproved it.)

Let X and Y be complex manifolds of pure dimensions m and n respec-
tively with m —n = g = 0. Let f: X — Y be a regular? holomorphic map.
Then an operator f,, called integration over the fibers, is defined. See
[17] and [19] for the properties of this operator. If i is a form of bidegree
(r,s)on X withr = gand s = ¢, and iff[supp i/ is proper, then the fiber
integral f. exists and is a form of bidegree (r—g,s—gq) on Y.

If y has class C*, so does f,i . Unfortunately, f,(¥ A ) # fu(¥) A fu(0),
as already degree comparison shows. Nevertheless, the fiber integral of an
exterior product can be expressed as the exterior product of fiber integrals.
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Since this seems to be unknown, and since this will be helpful later, it will
be proven here.

Let X, Y, N be complex manifolds of pure dimensions k, m, and n res-
pectively with k—n=p =0 and m—n=¢g =0. Let f:X - N and
g: Y — N be holomorphic maps. A holomorphic map

fxg: X xY—-NxN
is defined by (f x g)(x,») = (f(x),9(y)). The diagonal
Ay = {(z,2)| ze N}

is analytic in N x N with £(Ay) = ¢#. A biholomorphic map dy:Ay = N
is defined by dy(z,z) = z. The inclusion map jy:Ay — N x N is holo-
morphic and smooth. The set

2 Xfx Y = (f x9) '(Ay) = {(x, 0] f(x) = g(»)}

is anaytic in X x Y. The inclusion map j:Z - X x Y is holomorphic.
Because (f x g)(Z) < Ay, a holomorphic map

fang=dyo(fxg)ojiZ X

is defined. Then n,: Z— X and n,: Z - Y are holomorphic such that the
diagram

Y
N

commutes. If zeN, if xeX, and if ye Y, then
(fag)™ '@ =2 xg7'(2)
ny ' (x) {x} x ¢7'(f(x)
73 () () * {y}.

I
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Lemma 1.1. Iffand g are regular, then Z is a smooth, closed, complex
submanifold of X x Y and the maps f A g,n, and n, are regular. Z has
pure dimension n +p+q.

Proof. Take (a,b)eZ. Define ¢ = (f A g)(a,b) = f(z) = g(b). Then
open subsets U,, Uy, U, U,, Uy of X, Y, N, C?, C* respectively and biholo-
morphic maps «: U, = U, x U and B: Uy — Uy x U exist with p;o o =f
and p,o =g, where p;:U;x U - U and p,:U;x U —» U are the
projections and where ae U, and be U; and ce U. Then

Z' ={x,z,y,2)|xe U, ze U;, ye U}

is a smooth, closed, complex submanifold of U, x U x U}; x U. The
map
aXf:U,xUp— UyxUxUpxU

is biholomorphic with (x x B)(Z N(U, x Uy)) = Z'. A biholomorphic
map &:Z' » U, x Uy x U is defined by &(x,z,y,2z) = (x,y,z). The map

y=eo(@xXprZNU,xUp)->U,xUsxU

is biholomorphic. Therefore, the analytic subset Z of X x Y is a closed,
smooth, complex submanifold of X x Y. Let p;, p,,ps be the projections
of U, x Uyx U onto U, U, x U, Uy x U respectively. Then p;0y=f A ¢
and p,oy=aom and psoy = fomnm, on ZN(U, x Uy). Therefore,
the maps f A g, m; and &, are regular; Q.E.D.

Theorem 1.2. Let X, Y and N be complex manifolds of pure dimen-
sion k, m,and n respectively with k—n=p>0 and m—n =g >0,
Let f: X - N and g:Y— N be regular, holomorphic maps. Define
diagram (1.1). Let s and y be continuous forms of degree r on X and of
degree s on Yrespectively with2k Zr = 2p and 2m = s = 2q. Suppose that
f|suppy and g|suppy are proper. Then

(f A @u(miW) A 75(0) = F4() A 94(2).
Here f A g|suppr}(y) A n3(x) is proper.

Proof. The results of [17] Appendix 1I will be used frequently. At
first, observe that

deg(niy Am3y) = s+r
deg(ful A guyx) = s+r—2p—2g
dimZ =n+p+gq, dimY = n.



AMPLE VECTOR BUNDLES F

Henceif 2n + 2p + 2q < s + r, then 73 () A 73(x) = 0 and f,(¥) A g4(x) = 0.
Therefore, the theorem is true in this case.

Now assume 2n + 2p + 2q = s + r. Consider diagram (1.1). Take ae X.
Define b = f(z). Let j,: g7(b) > Y and «:7y'(a) » Z be the inclusion
map. The projection

u, g (@) = {ay x g~ "(b) » g~ ' (b)

is biholomorphic with 7,0 k = j,0o u,. By [I7] Theorem A I1I 4.15
71 Tay exists with my,myy = f*g,x. Now, [17] Lemma A II 4.6 implies

T A 75(10) = ¥ A (m30) = ¥ A S*g.(0)
Fellh A f*(g4(0)) L) A g ().

Because

S = supp(ni(¥) A m3(0) E Z N(suppy x supp )

the map fAg|S =0dyo0(fxg)|S is proper. Hence ni(¥) A n3(x) is
fiber integrable over the fibers of f' A g.
Again, [17] Theorem A Il 4.15 implies

(f A DuEIW) A 7320

Fam W7 (W) N 73(0)
Tl A f*g4(2))

= f«) A g4();  QE.D.

This result also holds in the category of oriented differentiable manifolds,
only great care has to be taken about signs and orientations. Let X, ¥, and
N be oriented, real manifolds of class C* with pure, real dimensions k,
m, and n respectively. Assume k—n=p>0 and m—n=¢g>0. Let
fiX - Nand g: Y - N be regular maps of class C*. Then Z is a closed,
oriented, smooth submanifold of X x Y such that y is an orientation
preserving diffeomorphism if « and f§ are. Let i and y be forms of degree r
on X and of degree s on Y respectively. Assume p = r < kand g =5 = m.
Suppose that f |suppy and g|supp y are proper. Then

Il

(f A @(miW) A T3(0) = (DP9 () A g4(x).

Corollary 1.3. Let N be a complex manifold of pure dimension n.
For each p=0,1,--,m, let X, be a complex manifold of dimension
k, with k,—n = p,>0 and let f,: X, - N be a regular, holomorphic
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map. Let  be a continuous, non-negative form of bidegree (ry,r,) on X,
with py < ro < ko such that f, ] supp ¥ is proper. For each p = 1,--- m,
let y, be a continuous, non-negative form of bidegree (1,1) on X, such
that f”'supp Xy is proper. Take r,eZ with p, < r, < k,. Then

Jos) ASia(xt) A - A fulitm) 2 0
is non-negative on N.

Proof. By induction the following statement will be proven for
p=0,1,-m.

(S,). A complex manifold Y, of pure dimension 7, a regular holomorphic
map g,:Y, - N with g, =1,—n =0 and a non-negative, continuous
form ¢, of bidegree (s,,s,) withs, = g, exist such that g, | supp ¢, is proper
and such that

0 < guu(®) = foulW) A fral1) A -+ A LX)

(So) is correct by [17] Lemma Il 6.8, with Y, = X, go = f5, to = ko,

do = Po> Po =¥, So = Iy
Assume that (S,) is correct, then (S,,,) will be proven if u+1 < m.

According to Lemma 1.1,

Ygl-i-l = }:t X X;.H-]

Gur Sy

is a complex manifold of pure dimensiont,,;, =1, +p,. Letn:¥,,;, > Y,
and m,:Y,,y = X,4, be the projections. The map g,.; = g, A fu41:
Y,+1 — N is holomorphic and regular. The form

A
Burr = () A TE(0AT) = () A T3t )™
is continuous, non-negative and has bidegree (s, ,5,+) with
Sprt =St Zqut Py =l =Nt p, =l — = Gy
According to Theorem 1.2, ng]supp ¢,+1 is proper and
(Gus )(bus1) = (Gu A fur DT A 73004))
Gus D) A Sw 0525 1)
= fo#('f’) Afl#(Xi) AN f\fu*(xi“) A (fy+1)*(X:;"++l1 .

According to [17] Lemma A II 6.8, (9,4 1)4(¢,+1) = 0. Hence the induction
is completed. Statement S,, is proved and implies the Corollary; Q.E.D.

I
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§2. Holomorphic vector bundles

Let E be a holomorphic vector bundle of fiber dimension g over the
complex space X. Then s = (s;,---,s,) is called a holomorphic frame
over the open set U of X, if and only if each s,: U — E is a holomorphic
section of E over U and if s(x) = (s,(x),--,5,(x)) is a basis for the vector
space E, over C for ecach xeU.

A hermitian metric along the fibers of E is a function

(| ):E®@E-C

of class C*® on the direct sum E @ E such that the restriction
(|)eiE. x E,>» C

to the fiber over x is a positive definite hermitian form for each xe M.
A holomorphic vector bundle together with a hermitian metric along its
fibers is called a hermitian vector bundle. Each holomorphic vector bundle
admits a hermitian metric along its fibers.

Let A be a hermitian vector bundle. Let s = (sy,--+,s,) be a holomorphic
frame over the open subset U of X . The function g,, = (s,|s,) has class
C® on U. Hence

9115 "5 G1q
Hs = (: H )

gqls '"!gqq
n, = (GH)H. "

Q, = d’is“’?sf\fis

g .
AE,s) = 3 cE,s) = det(! . Qs)
v=0 2n
are well defined on U in the sense of section 1. Here [ is the unit matrix
and the form ¢ (E,s) has bidegree (v,v) and class C* on U. These forms
¢,(E,s) and c¢(E,s) do not depend on the choices of s and U. Because
the open sets U carrying a holomorphic frame of E over U make up
an open covering of X, global forms ¢,(E) of bidegree (v,v) and class
C® are uniquely defined on X such that cv(E)|U = ¢,(E,s) for each
frame s. The form ¢, (E) is called the vth Chern form of the hermitian
vector bundle E. The direct sum ¢(E) = X%_,c¢,(E) is called the total
Chern form of the hermitian vector bundle E. Here d¢(E) = 0 for each v.
If v> g, define ¢,(E) = 0. The Chern forms depend on the choice of the
hermitian metric ( | ) along the fibers of E. If (| )’ is another choice, then
a form p, of bidegree (v—1,v—1) and of class C*® exists on X such that
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2.1) ¢(E) — ¢(E) = dd*p,

on X . These properties are proved in Bott and Chern [§] for manifolds;
the same proofs work on complex spaces, sece Cowen [6].
Take k = (iy,--,k,) with 0 < k,eZ for v = I,---,q. Define:
4§
olk) = X vk,.

v=1
Then
¢E) = ¢ |(E)*' A -+ A c(E)*

(where ¢,(E)° = 1) is called a Chern form of type k. Obviously, c¢.(E)
has bidegree (a(k),o(x)) and class C* on X such that

2.2) de(E) = 0.

If another hermitian metric (|)’ along the fibers of E is chosen, a form
p, of bidegree (o(x) — |, o(x) — 1) and of class C* exists on X such that

(2.3) ¢(E) — cu(E) = dd*p,

provided a(x) = 1.
Let A™“ be the complex vector space of forms of bidegree (p,q) and
of class C* on X. Then

d=d,: A"? - AP 1P @ 4P,

Define the refined de Rham groups by

A?(X) = kerd,[dd*4"""*"' if p>0,

HX) = kerd, if p=0.
Let p: kerd, — H"(X) be the residual map. Then

¢(E) = p(c(E) e H(X)
is called the vth refined Chern class of E and
¢dE) = E(E)* A -+ A C(E)** = p(c(E)) e H"™(X)

is called the refined Chern class of type x. By (2.1) and (2.3) these refined
Chern classes do not depend on the choice of the hermitian metric along
the fibers of E. They are invariants of the holomorphic vector bundle E,
well defined for each holomorphic vector bundle.

Consider the case where X is compact and has pure dimension m.
Take & = (xy,,%,) With 0 < k,€Z for p = 1,---,4 such that o(x) = m.
According to Lelong [11], the so called Chern number of type x
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m

C.(E) = chx(E)

exists and is independent of the choice of the hermitian metric along the
fibers of E (Stokes’s Theorem). They are invariants of the holomorphic
vector bundle E, well defined for each holomorphic vector bundle on the
compact complex space X . According to Stokes’s Theorem (Lelong
[11]), C(E) # 0 implies ¢(E) # 0.

If X is a compact complex manifold of pure dimension m and if E = T(X)
is the holomorphic tangent bundle, then

C(X) = C(T(X))

is called the Chern number of type x of X.

Again, let E be a holomorphic vector bundle of fiber dimension g4 over
the complex space X . Let E* be the dual bundle. For each hermitian metric
along the fibers of E, one and only one hermitian metric along the fibers
of E*, called the dual metric, exists such that E} carries the dual metric
to the metric on E, . Hence the hermitian vector bundle E defines canonically
the dual hermitian vector bundle E*. An easy computation shows

¢ (E*) = (—1)’%,(E) (v =0,1,-,9)
¢E*) = (—=1Y""%c(E)

if k= (icy,+-,k,) with 0 £ x,€Z. If X is compact and has pure dimen-
sion m = o(x), then
CAE*) = (-1)"C{E).

Let X and X be complex spaces. Let 7: E — X be a holomorphic vector
bundle over X. Let f: ¥ — X be a holomorphic map. Then a holomorphic
vector bundle #: E —» X and a holomorphic map f: E — E exist such
that the diagram
o
K

E
2.4)
it X
F

=
S o— by

commutes and such that the restriction f, = f: E, » Ej, is a linear
isomorphism for each xe X. This pull back is uniquely determined by
these conditions up to a holomorphic isomorphism of the diagram (2.4).
One possible choice within the isomorphic models is
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E=X x E={(x,0)e X x E| f(x) = n(e)}
fn

where #: £ — X and f: E — E are the projections.

Take a hermitian metric ({) along the fibers of E. One and only one
hermitian metric ( |) along the fibers of E, called the pull back, is defined
by (ey,e))” = (fle)),f(ey) if (e1,e0)cE® E.

Let s = (s;,:-,8,) be a holomorphic frame of E over the open subset
U of X with O = f~'(U) # . Define 5,: U - E by 5,(x) = f; (s,(f(x)))
for xe U. Then § = (§;,+,§,) is a holomorphic frame of £ over U with
s,of=fo§, for u=1,-,q. Then

g = Gul5)7 = (fo§,|f035)
= (s,of|s,0f) = guof

implies

Hy = Hyoof ns = 1*01)

Q = f*Q ¢(E.5) = f*(c,(E,s)).
Hence
2.5) cE) = f*(efE))  for v =1,.,q,
(26) e(E) = f¥(ed(E)),

if k¥ = (kq,,%,) with 0 £ k,€Z for p=1,--,4.
Consider a short exact sequence

2.7 0-DLHESLHF-0

of hermitian vector bundles over X. Then a form p = po+ - + p,—4
of class C® with bidegree p = (v,v) forv = 0,---,q—1 exists on X such that

¢(E) = e(D) A o(F) + dd*p, ie.,
c.l(E) = E Cu(D) A CV(E) +dd Pi-1

pty=4i
for A =0,-+,q. (For manifolds, see Bott and Chern [5], for complex
spaces, see Cowen [6])

Assume that (2.7) is only a short exact sequence of holomorphic vector
bundles over X. Assume a hermitian metric (| ) along the fibers of E is
given. It restricts to a hermitian metric along the fibers of D. Differentia-
bly, the exact sequence (2.7) splits into an exact sequence
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BB 4% B D=wD

such that j and ¢ are differentiable bundle homomorphisms with oo t,
poj, 100 +jo p being identity maps and such that (j(f)|ud)), = 0
forall feF,., deD, and xe X. Then F can be considered as a subbundle
of E. The hermitian metric ( | ) along the fibers of E restricts to a hermitian
metric along the fibers of F. Hence a hermitian metric along the fibers of
E induces hermitian metrics along the fibers of D and F by this process,
which shall be called orthonormal metrization.

Let ¥ be a complex vector space of finite dimension. A positive definite
hermitian form (|) on V is called a hermitian metric on V. A complex
vector space together with a hermitian metric is called a hermitian vector
space. If E = X x Vis the trivial bundle, a hermitian metric on V defines
a hermitian metric along the fibers of X x V by

(%, 0)[(x,w) = (v|w) if xeX, veV, weV.
The norm of z € Vis defined by |z| = /(z|2).

§3. Grassmann manifolds

Let ¥ be a complex vector space of dimension n + 1 with # > 0. On
¥ — {0}, an equivalence relation is defined by “‘a ~b ifand onlyifa A b=0."
The equivalence class of a is denoted by P(a). If A< V, define

P(4) = {P(0)|0 # acV}.

Note P(4) = P(A4 — {0}). The quotient space P(V) is a connected, compact,
complex manifold of dimension n, called the projective space associated
to ¥. The residual map

P: V- {0} > P(V)

is holomorphic, 1-fibering, regular, and surjective. If Wis a linear subspace
of dimension p + 1 of Vwith p = 0, then P(W)is a p-dimensional, smooth,
compact, complex submanifold of P(V), called a projective plane of di-
mension p. Let £,(V) be the set of all p-dimensional linear subspaces
of V. Let ®,(V) be the set of all p-dimensional projective planes in P(V).

The p-fold exterior product of V¥ is denoted by VPPl =V A - A V.
For 0 £ p<n, the Grassmann cone

G, (V) = {vo A - AD,|0, €V}

is an analytic subset of V"', The Grassmann manifold G,(V) =
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P(G,(V)) is a connected, compact, smooth, complex submanifold of
P(V'?* ') with dimension

k(p) = (n=p)(p+ 1)

and with degree
ple-11
TR

If ae G,(V), then 0 # ae G (V) with P(a) = a exists. Then

d(p,n) =

Fla) = {3eV]|3na=0}e &,.,(V)
E(a) = P(E(a))e G, (V)
are well-defined. If a = ag A+ A q,, then

E(a) = Cap + -+ + Ca,.
The maps

E:G(V)—> £,.1(V) and E: G(V) - G(V)

are bijective. Note Gy(V) = P(V).
Let T'(V) be the set of all bases a = (ag,-+,q,) of V. Define the matrix

space
:&pfl!'”\ Z0,n
C = { ( ; )
P -
Zpaptls s Zpon

For a = (ag, *-,a,) € I(V), define

Z,= {peG,(V)|o AGys; A Aq, #* 0}
Z, = P(2)c G (V).
According to [15] Lemma 2.1, Z_ is open in G,(V) and a biholomorphic
map
gt C:, - Z,
is defined as follows: *“‘Define holomorphic vector functions
v,:C,— V—{0} for g = 0,---,p by

vfz)=a,+ X 2z,a, for zeCj.
v=p+1
Then
{o =100 A AD,:Ch— Z, — {0}

is holomorphic and
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(,=Po{,:C,~Z,

s biholomorphic.”” Define &, = (% Z, —» CJ. Then {¢a}aerp is a com-

plex atlas of G,(V), because {Z },crw) is an open covering of G,(V).

The coordinate functions &,, = j, of the matrix functions ¢, are holo-

morphic on Z,. Holomorphic vectors w,:Z, — V are defined by

w, =w) =p,0¢&, =q,+ é § s
y=p+1
Then
' P(g(x) A -+ AWL(X)) = {,0 E(x) = x
for all xeZ,. Hence
E(x) = Cwo(x) + - + Cw,(x) if xeZ,.
Define
s, M= U }{x} x E(x) = {(x,0)e G,(V) x V| ve E(X)).

xe Gp(V

Lemma 3.1. S,(V) is a holomorphic subbundle of the trivial bundle
G, (V) x V.

Proof. Take any a = (ag,'*,a,)e (V). Then
WA AW AQ A AR, #0
on Z,. Hence a biholomorphic map
$.2 2, O s o ¥
. is defined by

P n
Q.I)n()C,ZO,"',Z"} = (.‘C, Z zumn(x) + X zuaﬂ)‘

n=1 u=p+1

Obviously, ¢, is a vector bundle isomorphism. Moreover,
P(Z,x CP* —{0}) = S, (V) N(Z, x V).

Because {Z, x V}neF(V) is an open covering of G, (V) x V, the set S, (V)
is a smooth complex submanifold of G, (V) x V.

A biholomorphic map ¥ :Z,x C**' = S, (V) N(Z,x V) is defined by
Vo(%:20,04,2p) = Pa(X,205:+,2p,0,+++,0). Let j: S (V) = G(V) x V be the
inclusion. Define j’ by j’(x, z) = (x,z,0) for (x,z)e Z, x C**! with 0 C""2.
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J
SN (z,xV) —p Z, XV
Ty 7
Ve 2. R
4 '
¥  {
an C;:-H ;_ zax CnH
j!

commutes, where n, m,, ng, 7’ are the projections. The maps ¥, ¢, j and j
are linear on the fibers of the projections. Since {Z },er,) is an open
covering of G,(V), these diagrams show that S, (V) is a holomorphic
vector subbundle of G (V) x V; Q.E.D.

Let Q,(V) be the quotient bundle. A short exact sequence

3.1) 0 S,(V) = G(V) x V = Qy(V) = 0

of holomorphic vector bundles over G,(V¥) is constructed, called the clas-
sifying sequence.
According to [167], Lemma 1.1, the flag manifolds

Fi = {(x,2)€G6,(V) x G(V)|E(x) 2 E(2)} if 0S k< j<n

are smooth, connected, compact, complex submanifolds of G(V) x Gy(V)
and the projections

J'I!ij-—)Gk(V) T:ij_’ J.(V)
are surjective, holomorphic, and regular. The map
Id x P:G,(V) x (V= {0}) = G, (V) x P(V)

restricts to
[dxP:S(V)—0 = Fy

where O is the zero section of S, (V). Hence F,, is the associated projec-
tive bundle P(S,(V)) to S,(V).
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Take a hermitian metric on the vector space V. It defines a hermitian
metric along the fibers of G (V) x V. The process of orthonormal metri-
zation defines hermitian metrics along the fibers of S (V) and Q,( V). The
Chern forms of these hermitian vector bundles will be considered.

The exterior product V1 becomes a hermitian vector space with

(a, |I)[)"“.‘(al |bp)

(ag A= AQ, Dy A AD,) =

(@,]51), (@, |B,)

One and only one positive form @, of bidegree (1,1) and class C*® exists
on P(V¥?*1) such that

P*(6,)(3) = %cﬁd]ogl‘ﬂ for 0 # 3¢ pr+)

Let j: G,(V) = P(Y¥* 1) be the inclusion. Then w, = j*(®,) is a positive
form of bidegree (1,1) and of class C* on G (V). Obviously, w, = @,.
The degree of G,(V) is given by*

~d(p,n) = f wf,(p].
Gp(V)
Representation Theorem of Bott and Chern. For 0 £ g < p < n con-

sider the diagram
Fpy ——5 G/V)
JI
G,(V)

If g >0, then

: dip—1,9— l)Cn(Qp(V)) = r*n*(cu+p_q(Qq) A w‘(;"q}q)
for p = 0,-,n—p. If g = 0, then

@D 6@ V) = Tum*(B )

for p = 0,-,n—p.

Remark 1. For g = n — p, the theorem was stated first in Bott and
Chern [§] (10.5); however, their statement is wrong for ¢ > 0 as degree
comparison shows.

Remark 2. The complete theorem was announced in [19]. A proof
will be given elsewhere.
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Remark 3. The form w§™ is positive. Hence n*(w§™) = 0. By [17]
Lemma A II 6.8, ¢, (Q,(V)) = 1, n*(wh™) = 0. Hence the pth Chern
form of Q,(V) is non-negative for u = 0,1,-+-,n—p. Take & = (ky, "+, K,_ )
with 0 £ k,€Z. According to Corollary 1.3, the Chern form 0 < ¢ (Q,(V))
= ¢ (Q V) A == A ¢, ) (Q,(V))"~ 7 of type k is non-negative.

Remark 4. Take another hermitian metric (])’ on V. Distinguish
the derived forms by ’. A positive function g of class C* is defined on
P(V) by g(z) =|3|’/| 3] if 3¢ P~"'(z). Hence

¥

1
we = Wy + ﬂdl'dlogg

or
’ S FLRLET A 5
()" ™ = g™ + d"dy,s,

where y,,, is a form of bidegree (p+ p — 1,p + p — 1) and of class C*,
The Representation Theorem and [/7] Lemma A II 6.7 imply

@ V) = ¢ (Q, (V) +ddp,.,
= T, (7, +4). Also
(@ V)) = edQ, V) + d*d p,,

where p,. is a form of bidegree (a(x)—1,0(x) — 1) and of class C*®.

with p

pta

Remark 5. The forms ¢,(Q,(V)) and ¢ (Q,(V)) are closed because,
de V) = dryr* (™) = ter*(dwd™)
= 1, m*0) = 0.

The results of Remarks 3, 4, and 5 also follow from the complicated
computations in Bott and Chern [5] Sections 3 and 5.

§4. The classifying space for ample vector bundles

Let E be a holomorphic vector bundle of fiber dimension g on the complex
space X . Then E is said to be ample if and only if E is the quotient bundle
of a trivial bundle, i.e., a finite dimensional complex vector space ¥ and a
surjective, holomorphic, vector bundle homomorphism

(4.1) e: X x V- E

exists. For each veV, a holomorphic section ¢, in E over X is defined
by e,(x) = (x,v). Let ['(X, E) be the complex vector space of global holo-
morphic sections s: X — E. A linear map o: V — I'(X,E) is defined by
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o(v) = &,. The image W = o(V) is a finite dimensional linear subspace
of I'(X, E). A surjective, holomorphic vector bundle homomorphism

(4.2) e:X x W = E

is given by e(x,s) = s(x) if se W, called the evaluation map. Obviously
¢ = eo (Id x 0). Therefore (4.2) gives an alternative definition for E to
be ample. Obviously, an equivalent condition is the requirement that
finitely many sections sg,::+,s, in I'(X, E) exist such that sy(x),-,s,(x)
generate E, over C for each xe X . Also, if X is compact, E is ample if
and only if for every x € X at least one holomorphic section sin E over X
exists such that s(x) # 0.

Again, consider the situation (4.1) with dim ¥V = n + 1. The kernel S
of ¢ has fiber dimension p + 1 with p = n—¢. Then

(4.3) 0->S>XxV3 E-Q

is a short exact sequence of holomorphic vector bundles over X called an
amplification of E by V. To each such amplification, a so-called classifying
map

4.4) Ji X = Gy(V)

is associated by

(4.5) E(f(x)) = P(S,) if xeX.

Observe, that S,e8,.,(V) and P(S,)e (V). Since E: G,(V) = G,(V)
is bijective, f(x)e G, (V) is well defined.

Proposition 4.1. The classifying map f is holomorphic. The ampli-
fication (4.3) is the pull back of the classifying sequence (3.1) under f;
Le.,

0 —S —X%xV—>E — 0

lfa lf'=fx Idlf;
0 ——5S,(V) —> G,(V) x V=0 (V) —> 0

where fy, f, fi are bundle homomorphisms over f, isomorphic in each

fiber.

Proof. Take acX. A base a = (ay,-+,a,) of V exists such that
eapﬂ(a),-‘-,e““(a) isa basis for E,. Abbreviate 5, = Eap for p =0,:-,n.
An open neighborhood U of g exists such that s, (x),-,5,(x) is a base
of E, for each xe U. Holomorphic functions b,, exist on U such that
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Sll(x) = % b.ltv(x)sv(x)
' 1

v=pt

for 4 = 0,-+,p if xe U. Holomorphic vector functions

D =qp + % bnv(x]uv: U=V

v=p+1

are defined. If x e U, then y4(x), -+, 9,(x) are linearly independent over C.
Hence a holomorphic map

g:U = G,(V)
is defined by
9(x) = P(o(x) A --- Ay(x)) for xeU.

Moreover

el ess B Butdnes b,
1

st
Hence 1o(x),,1,(x) is a base of S,. Therefore

S = Cyo(x) + -+ + Cy(x) = E(PWo(x) A -+ A Dy(x)),
which implies

E(f(x)) = P(S,) = E(P(no(x) A -+ A D,(x))) = E(g(x))

if xeU. Because E is bijective, f| U = g: U -~ G,(V) is holomorphic.
The map f is holomorphic.
The matrix function

5o (f_:o.p“,---,i?o.,.)l b 58
T L . !
is holomorphic. Then y, = v, 0 b and
flU=g=PobA-AD,0b)={,0b0U=>Z,
where Z, is open in G,(V). Hence {,0 f= b:U — C; which implies
=00t of=wofill=V.

If xeU, then
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(S0 = J({x} x (Cyo(x) + -+ + Cy,(x))
= {f(x)} x (Cno(x) + --- + Cy,(x))
= {f(20)} x (Coo(f(x) + - + Cw,(f(x) = S,(V)sx) -

Because this is truz for some neighborhood U of an arbitrary point ae X,
the bundle homomorphism f=fx Id: X x V = G, (V) x V restricts to
fo: S = S,(V). Since the quotient bundle is uniquely defined up to isomor-
phisms, the diagram (4.6) is established; Q.E.D.

An immediate consequence is

Proposition 4.2. Let E be an ample holomorphic vector bundle of
. fiber dimension g over the complex space X . Let (4.3) be an amplification
of E with dimV =n+1 and p=n—q>0. Let f:X - G (V) be the
gssociated classifying map. Take a hermitian metric on V. It defines
a hermitian metric along the fibers of X x V and G, (V) x V. By ortho-
normal metrization, hermitian metrics along the fibers of S, E, S,(V)
and Q (V) are defined. With these metrics the following statements hold.
I. The pth Chern form c¢,(E) of E is non-negative and given by

¢l E) = F¥c,(Qp(V)) 2 0 with dc,(E) = 0.

2. If k= (ry,,x,) with 0 Zx,€Z, then the Chern form cJ(E) of
type K is non-negative and given by

¢E) = [H(e0V)) =2 0 with de(E) = 0.

3. If X is compact and pure m-dimensional, if & = (ky, -+, Kk,) with
0 = i,€Z and o(x) = m, then the Chern number C(E) of type i is non-
negative.

4. If another hermitian metric (| ) on V'is given and if the associated
Jforms are distinguished by ', then

c,(E) = ¢, (E)+ dd*y,

Il

cuE) = () + dd*y,

where 7y, and 7y, are forms of class C* and bidegree (u—1,p—1) and
(o(k) — 1,0(x) — 1) respectively. If X is compact and pure dimensional
the Chern numbers remain unchanged.

The proof follows immediately from Proposition 4.1, from (2.5) and
(2.6) and from Remarks 3,4,and 5 in Section 3. The results of Proposition
4.2 follow also from the difficult computation of Bott and Chern [§].
Here, they are obtained from the classifying sequence, an idea already
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indicated in Bott and Chern [§], and which can be carried further, see
[Z8] Section 14.

§5. MoiSezon spaces

Let &(X) be the field of meromorphic functions on the irreducible complex
space X . The transcendence degree of {(X) over C is denoted by tr(X),
If X is compact, then tr(X) < dim X . The case, tr(X) = dim X, has been
extensively studied by Moisezon [13] and is not far from the algebraic
case. Hence, a compact, irreducible complex space X is called a MoiSezon
space if and only if tr(X) = dim X . If, in addition, X = X° is a manifold,
then X is called a MoiSezon manifold. A complex space is said to be pro-
jective algebraic if and only if it is biholomorphically equivalent to an
analytic subset of a projective complex space. According to a deep result
of Moi3ezon [13], a Moisezon manifold is projective algebraic if and only
if it is a Kaehler manifold.

Let X and Y be complex spaces. Suppose that X is pure dimensional.
Let f: X — Y be a holomorphic map. The rank of f at xe X is defined by

rank,f = dim, X — dim,f "' f(x).
The global rank of f is defined by
rankf = sup {rank.f|xe X}.
Then 0 < rankf < min(dim X,dimY). If 0 < peZ, then
E(p) = {x€ X|rank,f < p}
is analytic in X . If X is irreducible. then
D, = {xeX|rank.f < rankf}
is a thin analytic subset of X (See [1] Section 1).

Lemma 5.1. Let X and Y be irreducible, compact, complex spaces
of dimension m and n respectively. Let f: X — Y be a holomorphic map
of global rank n. Suppose that Y is a MoiSezon space. Then tr(X) = n.
Especially, if m = n then X is a Moifezon space.

Proof. Because dim Y = rank,, the homomorphism f*: Q(Y) - K(X)
is injective. Hence f*®(¥) is a subfield of transcendence degree n of K(X).
Therefore tr(X) = n. If n = m, then n = m = tr(X) = n. Hence X is
a Moisezon space; Q.E.D.
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Lemma 5.2. An irreducible, projective algebraic, complex space is
a MoiSezon space.

Proof. Let X be an irreducible, analytic subset of a complex projective
space P(V) with dim X = m. Here, Vis a complex vector space of dimen-
sionn+ 1. Thenn—m=p=0.1f p =0, then X = P(V) is a Moisezon
space. Assume the statement is proved for p—1 = 0. Take X with
dimX = m=n—p. Take aeP(V)— X. Let Z =P(W)e (,_(V) be a
projective plane of dimension n—1 in P(V) with aeP(V) — Z. For each
e X, one and only one projective plane L, e ®,(V) of dimension 1 exists
with {a,x} = L, because a # x. Since a ¢Z, one and only one point
n(x)eL, NZ exists. Because a¢L . NX = n~'n(x), the holomorphic
map 7:X — Z has rank m. Since X is compact and irreducible,
Y = n(X) is an m-dimensional, irreducible analytic subset of Z with
dimZ—m = p—1. By the induction assumption, Y is a MoiSezon space.
‘The restriction 7: X — Y has rank m. According to Lemma 5.1, X is a
Moisezon space; Q.E.D.

Lemma 5.3. Let X be a compact, irreducible, complex space of di-
mension m. Let Y be a projective algebraic complex space. Let f: X — Y
be a holomorphic map of rank p. Then tr(X) = p. Especially, if p = m,
then X is a Moifezon space.

Proof. According to the Remmert proper mapping theorem, the image
N = f(X) is a compact, irreducible, analytic subset of Y with dimN = p.
Hence N is projective algebraic. By Lemma 5.2, N is a MoiSezon space.
The restriction f: X — N has rank p. By Lemma 5.1, tr(X) = p. If p = m,
then X is a MoiSezon space; Q.E.D.

Lemma 5.4. Let X and Y be complex spaces. Let f: X — Y be a holo-
~morphic map. Assume that X is irreducible. Suppose  is a continuous
differential form of degree 2p on Y such that f*(f) # 0 on X. Then
rank f = p.

Proof. Define n = rankf. Suppose that n<p. Take aeX — D,.
Then rank,f = n for all xe X — D,. According to Remmert [74], open
neighborhoods V of a in X — D, and W of f(z) in Y exist such that Z = f(X)
is a pure n-dimensional, analytic subset of W. (Also see [I], Proposition
1.21). Hence f = jo f,, where j: Z — Y is the inclusion and where fo: V— Z
is the restriction. Then

¥V = fe(7*W))-
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Now degy = 2p > 2nand n = dim Z imply j*(i)) =0. Hencef*(t)‘/)| V=0,
Therefore f*() = 0 on X — D,. Because D, is thin, f*(i) = 0, which
is wrong. Therefore n = p: Q.E.D.

Theorem 5.5. Let X be a compact, irreducible complex space of
dimension m. Let E be an ample holomorphic vector bundle on X . Sup-
pose that a refined Chern elass é(E) s 0 exists with o(x) = r > 0. Then
tr(x) =z r.

Proof. Take an hermitian vector space V of dimension n + 1 such that
(4.3) is an amplification of E. Then X x V is a hermitian vector bundle.
Introduce hermitian metrics along the fibers of S and E by orthonormal
metrization. Let g be the fiber dimension of E. Define p = n—¢q. Then §
has fiber dimension p + 1. Let f: X — G,(V) be the classifying map as-
sociated to the amplification (4.3). Then

¢(E) = f¥(c (Q(V))

.

by Proposition 4.2. Because é,(E) # 0, also ¢,(E) # 0. According to Lem-

ma 5.4, rank f = r = a(i). Since G,(V) is projective algebraic, Lemma 5.3
implies tr(X) = rankf = r; Q.E.D.

Theorem 5.6. Let X be a compact, irreducible, complex space. Let
E be an ample holomorphic vector bundle on X . Suppose that at least
one Chern number C.(E) # 0. Then X is a MoiSezon space.

Proof. Define m = dimX. Then o(x) =m and c¢J(E) # 0, since
C.(E) # 0. Theorem 5.5 implies tr(X) = m. Therefore tr(X)=m; Q.E.D.

Main Theorem. Let X be a connected, compact Kaehler manifold.
Let E be an ample holomorphic vector bundle on X. Suppose that E
has at least one Chern number C(E) # 0. Then X is projective algebraic.

Proof. By Theorem 5.6, X is a MoiSezon space; hence X is projective
algebraic according to Moisezon [13]; Q.E.D.

§6. Manifolds with ample holomorphic tangent and cotangent bundles

Let X be a complex manifold of pure dimension m. Let T(X) be the
holomorphic tangent bundle of X . Its sections are the holomorphic forms
of bidegree (1,0). The set of all biholomorphic maps ¢: X — X is a group
Aut(X) called the automorphism group of X . The complex manifold X
is said to be homogeneous if and only if Aut(X) operates transitively on
X . The following lemma is well-known.
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Lemma 6.1. Let X be a connected, compact, complex manifold.
Then X is homogeneous if and only if the holomorphic tangent bundle
7(X) is ample.

The case of homogeneous compact complex manifolds is well studied.
The following theorem is known. (See Goto [7], Borel and Remmert [4]
and Grauert and Remmert [8].) It can be obtained easily from the ampli-
feation sequence:

Theorem 6.2. A connected, compact, homogeneous complex manifold
X with non-zero Euler characteristic y(X) # 0 is projective algebraic
and each Chern number of X is non-negative.

Proof. Because the Chern numbers of X are the Chern numbers of the
ample holomorphic tangent bundle T(X), they are non-negative by Pro-
position 4.2, Let V = I'(X, T(X)) be the vector space of all holomorphic
vector fields on X. Then n+ | =dimV< + . Define m =dimX.
Because T(X) is ample, an amplification is defined by

(6.1) 0->S—=XxVS5TX)=0

where e is the evaluation map. Because y»(X) # 0, the map is not iso-
morphic. Hence n + 1 > m. Define p = m—n = 0. The kernel S has fiber
dimension p+ 1. Let f: X — G,(V) be the associated classifying map.
Take a hermitian metric on V. It defines a hermitian metric along the
fibers of X x V which induces hermitian metrics along the fibers of S and
T(X) by orthonormal metrization. Then

Bt ey = f e(T(X)) = J Fen(@,(V)).
X X

Hence f*(c,(Q,(V)) = 0. Lemma 5.4 implies rank f = m, hence rank
f = m. Therefore, Y = f(X) is a compact, irreducible, m-dimensional
analytic subset of G (V). It shall be shown that Yis a smooth, homogeneous,
complex submanifold of G (V) and that f: X—Y is locally biholomorphic.

For this purpose, consider the operations of the group Aut(X). Take
gcAut(X). Then ¢: X — X is biholomorphic and induces a holomorphic
vector bundle isomorphism o,: T(X) — T(X) over ¢. It defines a linear
isomorphism g,: V' — V which extends to an isomorphism

G, =0 X0, X xV=>XxV

such that ¢, 0 e =eoa,. Hence g, restricts to ,:5—S. An automor-
phism of (6.1) is defined
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0 —3> S —3 XxV —3 T(X) —> 0

R
b B aen Xn ¥ o5 T =D

If teN, the linear isomorphism o,:V — V extends o,: V- yi
such that o.(v; A -+ A v) = au(v)) A Ac(y). This isomorphism de-
fines a biholomorphic map

o, P(VI'Yy 5 p(irty
such that g, 0 P = P« g, which restricts to
042 Gie (V) = G, y(¥).
If aeG,_(V), then a (E(a)) = E(a,(a)). Hence
oyl E(a)) = E(o.(a)).
Take xe X. Then f(x)e G,(V). Therefore
E(o.(/(x)) = o04(E(f(x)) = 0.(P(S)) = P(ou(S,)
= P(Sss) = E(f(o(x)).
Consequently, ¢, 0 f = fo ¢. Hence
a(Y) = 0, (f(X)) = f(a(X)) = f(X) = Y.
Hence o,: G (V) = G, (V) restricts to a biholomorphic map

o, ¥V = Y.

If y,eY, then x, e Y with p, = f(x,) exist for g = 1,2. Take o€ Aut(X)
with 6(x,) = x;. Then o,(y,) = a4(f(x\)) = f(6(x,)) = f(x2) = y. There-
fore Y is homogeneous. Because each o,: Y — Y is the restriction of a
biholomorphic map o0,:G (V) = G,(V), the compact, m-dimensional ir-
reducible analytic subset Y of G,(V) is a connected smooth complex sub-
manifold of G (V). Because Aut(X) operates transtiively on X and ¥ and
commutes with f: X — Y, the rank of the Jacobian matrix of f is constant
and equals the global rank of f which is m = dim X = dim Y. Hence f is
locally biholomorphic. Because f is also proper and because Y is projective
algebraic, the covering space X is projective algebraic; Q.E.D.

Now the case of an ample holomorphic cotangent bundle will be con-
sidered.
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Lemma 6.3. Let X and Y be pure dimensional complex manifolds.
Let f: X — Y be a smooth holomorphic map (i.e., a holomorphic immer-
sion). If T*(Y) is ample, then T*(X) is ample.

Proof. Let wg,--,w, be finitely many holomorphic forms of bidegree
(1,0) on Y such that we(y), -+, w,(y) generate T,*(Y) over C for each ye Y.
Take x€ X . Take a € T(X). Define y = f(x). Since f is smooth, the in-
duced linear map f:lTy*(Y) — T*(X) is surjective. Hence beTy*(Y) with
f(b) = a exists. Then b = bowe(y) + -+ + b,w,(y) implies a = f(b) =
boSF(wo) (x) + -+ + b, f*(w,)(x). Hence f*(wo)(x), -, *(w,)(x) generate
TH(X) over C for each xe X. The vector bundle T*(X) isample; Q.E.D.
~ Let X be a connected, compact, complex manifold of dimension m.

Define
V = V(X) = I'(X, TXX)),
¢ = g(X)=dimV(X)<ow.

Then ¢(X) is said to be the irregularity of X . If X is Kaehlerian, then
2g(X) is the first Betti number of X . Now, assume that X is Kaehlerian.
Then the Albanese Torus and the Jacobi map will be defined by the method
of Weil [22|. The dual vector space V* will be called the Albanese vector
space. Let H(X,Z), H{(X,R) and H (X, C) be the first (singular) homology
groups of X with coefficients in Z, R, and C respectively. The inclusions
Z = R < Cdefine homomorphisms

Hy(X,Z) - Hy(X,R) & H,(X,C).

Here 1, is an R-linear monomorphism. The rank of H (X, Z) is 2¢q and the
dimensions of H,;(X,R) over R and H (X, C) over C are 2g. An R-linear
homomorphism a: H,(X,R) — V* is defined as follows. Take ce H,(X,R).
Represent ¢ as a differentiable cocycle y with coefficients in R. Take any
wel. Then

a(e)(w) = f weC

¥ 4

is well-defined, independent of the choice of y. Hence a(c): V¥ — Cis C-linear.
Therefore «: H (X,R) — V* is defined and obviously R-linear.If «(c) = 0,
then [,w = 0 and [,& = 0 for all we V. By de Rham, y ~0 over C,
hence 1,(c) = 0. Because 1, is injective ¢ = 0. Hence « is injective. Con-
sideration of dimensions shows

o: H(X,R) = V*
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is an R-linear isomorphism. Now ¢,(H,(X,Z)) is a lattice in H (X, R)
(i.e., a discrete additive subgroup which generates H,(X, R) over R)
Hence

A = a0 y(H(X,Z))
is a lattice in V*. The complex torus
A(X) = V*A

is called the Albanese variety associated to X. Let p: V* — A(X) be the
residual map.

Now, a holomorphic map J: X — A(X) called the Jacobi map will be
defined. Let y: X — X be the universal covering of X. Take ae X and
de X with (a4) = a. At first, a holomorphic map J: X — V* will be de-
fined. Take xe X. Then J(x): ¥ - C has to be defined as a C-linear map,
Take we V. Then dy*(w) = *(dw) = 0. Hence, one and only one holo-
morphic function f:X — C exists such that f(4) = 0 and df = P w).
Define J(x)(w) = f(x). Obviously, J(x) is C-linear. Hence J: ¥ — V* is
defined. Let wy, --,w, be a base of V. Let wf,---,w; be the dua}l base of
V*. Then holomorphic functions f,: X — C exist such that df, = y*w,)
and such that f(4) = 0. Hence

p q
(6.2) Jx) = Z I (ol = Z fx)wr
v=1 v=1

for all xe X. Therefore J is holomorphic. Observe J(d) = 0.

Let G be the group of all biholomorphic maps g: X — X with o g = y.
A map f:G - V* is defined by f(g) = J(g(@)) for geG. Obviously,
B(dd) = 0. Take geG and heG. Take we V. Then Y*(w) = df with
f(@ = 0. Then

d(fo h) = h¥(df) = h*n*(w) = (7o hY*w) = nXw) = df.
Hence [ = fo h — f(h(a)) which implies
Blho g)(w) = J(h(g(@)(w) = f(h(g(a)) = f(g(d)) + 1 (h(@))
= J(g(@)() + (@) (w) = (B(g) + Bh)(w).

Hence, fi{l o g) = P(g) + B(h). Therefore f:G — V* is a homomorphism.
Let m,(X,a) be the fundamental group of X at a. An isomorphism
6:7my(X,a) - G is defined as follows. Take ven,(X,a). Represent v by
a curve ¢ from a to a, which lifts to a curve ¢ from dto x with y o ¢ = 4.
Then d(v)e G is uniquely defined by x = §(v)(d). A homomorphism
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god: n(X,a) = V* is defined. Let C be the commutator subgroup of
7,(X,a). Then an epimorphism &: 7,(X,a) - H,(X,Z) is defined with
kernel C. Obviously, the kernel of fo é contains C. Hence, a homo-
morphism
n:Hy(X,Z) —» v+

is defined such that poe = fod. Now, y = oo tis claimed. Take
ce H(X,Z). Then ¢ = &v), where ver,(X,a). Represent v by a closed,
differentiable curve ¢ from a to a. Then ¢ can be considered to be a sin-
gular 1-simplex. As such it represents ¢ in H,(X,Z) and ¢,(c) in H(X,R).
Hence

(o () (w) = fw if weV.
®

As a curve, ¢ lifts to a curve ¢ from d to x in X such that yod=¢.If
“weV, then Y*(w) = df with f(d) = 0. Hence

J;, “= J;w{w) = Ldf———f(xj.

Now, x = d(v)(d). Therefore

ne)(w) = fo d)w) = J6W)(@)(w) = J(x) ()

= /0= [ o= (@owe W

Ja

Hence y(c) = 2o ¢(¢) and n = ¢ o ¢,. Therefore
A= ao(H(X,Z)) = nH(X,Z)) = fod(n(X,a))
= B(G) = {J(g(a)| g€G} = J(~"(a)

because G operates transitively on the fibers of \y. Take ge G. Take we V.
Then ¢*(w) + df with f(d) = 0. Then f = fo g — f(g9(d)). Take xe X.

J(g(x) (@) = flg(x) = f(x)+f(g(d)
= J(x)(0) + J(g(a))(w)
= (J(x) + fg) ().

Hence Jo g —J = B(g)eA is constant, which implies po Jo g = po J.
Because G operates transitively on all the fibers of v, one and only one
map J: X — A(X), called the Jacobi map, exists such that f oy = po J.
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Because 1 is locally biholomorphic, J is holomorphic. The following com-
mutative diagram is established:

= i) 7

(6.3) l W l p

ac X —J—)- A(X)
Both  and parelocally biholomorphic covering maps. V* and A(X) are
complex Lie groups under addition and p is a holomorphic homomorphism
with 0 = p(0) = J(a). Because po J does not depend on the choice of
@ in ¥~ %(a), the Jacobi map J depends on the choice of a € X only.

Now consider the case where X isa complex torus. Then X isa complex
vector space and 1 is an additive homomorphism with kernel Ay = 1 ='(0),
If te X, define the translation g,: ¥ - X by g,(x)=x+1t. Then
G = {g, | teA,} is the group of covering transformations of . Take
a=0=yY(0)eX and 4 =0eX. Take weV. Then Y*(w) = df with
f: X — C holomorphic and with f(0) = 0. Since f = fo g, — f(t) forall
teA,, and since A, is a lattice in X, the holomorphic function f is linear.
A map A: V — X¥ is defined by A(w) = f. Obviously, 4islinear. If {w) = 0,
then y*(w) = di(w) = 0. Hence w = 0. So Ais injective. If fe X*, then
f=fog,—f@t) for all te X. Hence, we V exists such that y*(w) = df.
Therefore, f = A(w). The map A is an isomorphism. The dual map A*: X — V*
is also isomorphic. Take xe X and we V*. Then

2Hx)(w) = Aw)(x) = J(x)(w)

Therefore, J = A*: X — V* is a linear isomorphism. The kernel A, ofi
is mapped onto the kernel A = J(y='(0)) = J(A,) of p. Therefore
J: X — A(X) is a Lie group isomorphism. In this sense, a complex torus
is its own Albanese variety.

Proposition 6.4. Let X be a connected, compact Kaehler manifold.
Then the holomorphic cotangent bundle T*(x) is ample if and only if
X can be holomorphically immersed into a complex torus.

Proof. The cotangent bundle of a complex torus is ample. Hence, if X
is holomorphically immersed into a complex torus, then T#(X) is ample
by Lemma 6.3. Assume that T%(X) is ample. Consider diagram (6.3). It
will be shown that Jis smooth. Because iy and p are locally biholomorphic,
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.t suffices to show that J is smooth, Take £ X and define x = (£). Take
a base @y, -+, @, of Vsuch that w,(x), ---,w,(x) is a base of T.¥(X). Because
y is locally biholomorphic, y*(w;)(£), -, *(w,)(£) isa base of TF(X).
Now, ¥¥(w,) = df, with f,(@) =0 for g =1,--,g. Let of, -, d bethe
dual base to @y, -, w,. Then J is given by (6.2). Because
(df)E) A A (E) = PR )(X) A - A YHw,)(#) # 0

.fhc Jacobian matrix of J has at least rank m (hence rank m)at X. Therefore
J is smooth; Q.E.D.

Theorem 6.5. Let X be a compact, connected, complex manifold
with an ample holomorphic cotangent bundle. Take x = (kcyy-=e, ky) with
0 < k,€Z and with o(x) = m = dimX. Then

(6:4) (=DH"C(X) = 0.

Moreover, if X is Kaehlerian and if at least one Chern number C(X) # 0
is not zero, then X is projective algebraic.

Remark. Bochner proved (—1)"y(X) = 0 in [3].
Proof. Because T*(X) is ample, Proposition 4,2 implies
(= D)"CyX) = CUTH(X)) 2 0.

The remaining statement follows from the Main Theorem, Q.E.D.

Let X be a connected, compact Kaehler manifold of dimension m with
ample cotangent bundle. Then m £ ¢(X).If g(X) = m, then X isa complex
torus, because in this case the Jacobi map is biholomorphic. Now the case
q(X) = m + | will be studied. At first a preparation:

~ Lemma 6.6. Let X be a complex space. Let
0=-LoXxV5S5E-Q

be an exact sequence of holomorphic vector bundles where E and L have
Jfiber dimensions p and 1 respectively and where V has dimensionn = p + 1.
The exterior product on forms induces an exterior product on the direct
sum of the refined de Rham groups. Then é(E) = ¢,(E)” for v = 1,--+,p.
If k = (11, 5,) with 0 = k,€Z, then
¢AE) = &y(E)"™.
Proof. By Bott and Chern [4], Proposition 1.5

EE)AE(L) = é(X x V) = L.
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Hence
é(E) + é,-1(E) A é(L) =0 for v>0.
Especially, ¢,(E) = —¢&;(L) which implies
¢(E) = &,-((E) A &,(E).
By induction
E.(E) = .Ei(E) for v = 1,-,p.

Because o(k) = X%2_,vk,, this implies
P
E(E) = T[] é(E)™ = é(E)’™; Q.E.D.
v=1
Proposition 6.7. Let X be an m-dimensional, connected, compact,
complex manifold with an ample holomorphic cotangent bundle and
with irregularity q(X) = m + L. Let y(X) be the Euler characteristic
of X. Take any x = (ky, ., x,) with 0 £ k,€Z and o(k) = m. Then

CUX) = UX).
Proof. Define V = (X, T*(X)). An amplification
0=>S—=>XxV5S5 THX)—=0

is given, where e is the evaluation map. Because dim V = g(X)=m + |
and because T#(X) has fiber dimension m, the bundle S is a line bundle.
Hence é(T*(X)) = &é,(T*X))" for all x with a(i) = m. Because ¢(X)
= (—=1)"¢(T*(X)) all the Chern class of T(X) are the same. Hence all the
Chern numbers of X are the same, which implies

CK{X} = f C;:|{X) = Z(X); Q'E‘D'
X

If the holomorphic cotangent bundle of a connected, compact Kaehler
manifold X of dimension m is ample and if ¢(X) = m + 1, then X is im-
mersed into the Albanese variety A(X), which is a complex torus of dimen-
sion m + 1. Moreover, if y(X) # 0, then X is projective algebraic, and,
consequently, A(X) is projective algebraic (Weil [21]). Now it will be
shown that every projective algebraic torus of dimension =3 can be almost
realized this way:

Theorem 6.8. Let B be an abelian variety of dimension m + 1> 2.
Then a connected, compact, m-dimensional, projective algebraic manifold
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X with ¢(X) = m+ 1 and y(X) # 0 exists such that the holomorphic
cotangent bundle of X is ample. Moreover, a finite subgroup D of the
Albanese variety A(X) of X exists such that B = A(X)/D.

proof. Because B is projective algebraic, it can be considered to be a
smooth, compact, complex submanifold of complex projective space. Ac-
cording to the theorem of Bertini,a hyperplane section Yexists in B such that
Y is a compact, connected, m-dimensional, smooth, complex submanifold
of B. Recall that the torus B is a complex Lie group under addition. Take
a point ae Y. Define a biholomorphic map u:B — B by pu(x) = x—afor
xeB. Then X = p(Y) is a compact, connected, m-dimensional, smooth,
complex submanifold of B. Since B is projective algebraic, X is projective
algebraic. The holomorphic cotangent bundle T*(X) of X is ample by Pro-
position 6.4, Observe that 0 = u(a)e X. According to the Lefschetz
theorem (Milnor [12]), the vth Betti numbers for v = 0,1,---,m—1 are

2
bux) = ba¥) = by = (*"F 2),

bo(X) = b,(Y) = b(B) = (

2m + 27
m ) ’

Since m > I by assumption, b(X)=b,(B)=2(m+1). Hence
q(X) = +by(X) = m + 1. Poincaré duality implies

2m + 2 2m+2
b,’.’.m‘—v(x) == b"(X) = ( V ) - (2m +2 — V)

for v=0,1,-,m—1. Therefore

2m

(X = 2 (=1'byX)
v=0
m=1 . 3 2 . m=1 2 2 ]
= T (T ) oo+ By (o 00 )
e ARSR of2m + 2 & 2m + 2 2m + 2
= T (e a2y = (2" )+(m_l)

2m + 2
B ( m -+ 2))
T _Gm+2)
= U (bm(X) bm(B) +(m+1)!(m+2)!) %

Because b,(X) = b,(B), the characteristic ¥(X) is not zero.
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Since B is a complex torus, a complex vector space W of dimension
m + 1 and a lattice Ay in W exist such that B = W [A,. Let y: W — B be
the residual map. Let V(B) and V(X) be the vector spaces of holomorphic
forms of bidegree (1,0) on B and X respectively. Let j: X — B be the inclu-
sion map. Then j*: V(B) — V(X) is a linear homomorphism. It is claimed
that j* is an isomorphism.

Take we V(B) with j¥(w) = 0. Then p*(w) = df with f(0) = 0. The
map f: W — C is linear. Assume that f# 2 0. Because Oe X, the inverse
image n~'(X) has a component L with 0e L. Let j, : L — W be the inclusion.
L is a smooth complex submanifold of dimension m of W. The covering
map y: W — Brestricts to a covering map ,: L = X, withjo 5, = no j,.
Therefore

dBo j, = jidB = jio n¥w) = (12 j)*w)
= (jo n)*w) = gilji(w)) = 7i0) = 0.

Hence fo j, is constant. Because fo j (0) = f(0) =0, the function
Bo j. =0 vanishes. Hence L < kerfi. Because kerf§ is a linear subspace
of dimension m, and dimL = m, this implies L = kerf. The linear
subspace L is a submodule of W. Hence X = n(L) is a subgroup of B.
The sequence

DHABF\L—>L£'X—»0

is exact. Therefore X is a complex torus. Since y(X) 7 0, this is impossible.
Hence # = 0, which implies n*(w) = 0 and w = 0. The map j* is injective.
Because V(B) and V(X) have dimension m + |

J*: V(B) = V(X)
is an isomorphism. Define the dual isomorphism as
Jx = (9*: V(X)* - V(B)*.

The inclusion map j: X — B induces homomorphisms j, on the homology
groups. The following diagram is established.

H,(X,Z) =L H(X,R) —23 V*(X)

©6.5) f*l lf* lj*

H(B,Z) ‘_I.‘—). H(B,R) '—a—) V*(B)
1
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with ¢, © j« = jy 0 t;. Take ce H (X, R). Represent ¢ by a differentiable
cocycle with coefficients in R. Take we V(B). Then

@) = @) = [ P = [ 0=a0w
¥ f Y
Therefore j, o0 o = ao j,. The diagram (6.5) commutes. Let A(X) and
A(B) be the Albanese lattices of X and B respectively. Then

Ju(AX)) = jyo a0 (H(X,Z)) = 20 1, 0 ju(H,(X,Z))
ao (H(B,Z)) = A(B)

in

A homomorphism of exact sequences is defined

0 — ALXY —3 PHE) —h AL —S ©

lj* lf* J/j*

0 — > A(B) —> VHB) ——> A(B) —> 0

Because j,: V¥(X) — V*(B) is an isomorphism, j,:A(X) — A(B) is sur-
jective. Because A(X) and A(B) have the same dimension m + 1, and
because all fibers of j, have the same number of points, the surjective
holomorphic map j, is light. Hence the kernel D of j, is finite. Because B
is a complex torus the Jacobi map J,;: B — A(B) defined at 0e B is a Lie
group isomorphism. Define 2 = J;' 0 j,. An exact sequence

05D - AX)S B0

is defined, where 1 is a Lie group homomorphism, Q.E.D.

NOTES
1. Only reduced complex spaces with a countable base of open sets are admitted in
this paper.
2. A holomorphic map f: X — Y is said to be regular, if its Jacobian matrix has con-
stant rank n with n= dim Y.

3. If w is a form, define ' =w A -+ A w (s-times).
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