THE RISE OF FUNCTIONS*

by Salomon Bochner

Summary. The heart of analysis is the concept of function, and functions
“belong” to analysis, even if, nowadays, they occur everywhere and any-
where, in and out of mathematics, in thought, cognition, even perception.

Functions came into being in “modern” mathematics, that is, in mathe-
matics since the Renaissance. By a rough division into centuries, the 17th
and 18th centuries made various preparations, the 19th century created
functions of one variable, real and complex, and the 20th century has turned
to functions in several variables, real and complex. In the realm of complex
variables, the 20th century has been largely working on themes set by the
19th century, some themes beguiling and pleasant, others harsh and un-
pleasant. Automorphic functions in several variables are intriguing, be-
guiling, and pleasant; singularities of functions or of manifolds of several
variables are harsh, forbidding, and most unpleasant. Which of the two
topics will last longer, and perdure into the 21st century is another ques-
tion; probably the unpleasant one.

For both real and complex variables, the 19th century molded the general
concept of function and also created large classes of special functions, but
there was a difference between the cases of real and complex variables.
In the case of real variables the molding of the general concept of functions
and the creation of special classes of functions proceeded independently
from each other and were performed by different authors, even though
both activities received their motivations from mechanics and physics.
In the case of complex variables, however, the molding of the concept of
function and the creation of special classes of functions were proceeding
in close intimacy and interaction, with Bernhard Riemann being the chief
architect of the dual enterprise.

It is this which made the 19th century into an era of analytic functions
par excellence. Also, in memory of this, the word “Funktionentheorie” in
the title of German books used to indicate, and still indicates, the theme
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of functions of complex variables, and of no other; it being understood that
functions of a real variable will expressly identify themselves as such. Thus,
C. Carathéodory, a leading 20th century master of the theory of functions
of a real variable, published in 1918 a large “Theorie der Funktionen einer
reellen Verdnderlichen.” But, as recently as in 1950, a treatise of his on
complex variables appeared under the title “Funktionentheorie,” fout court.
It is true that the treatise was put through publication posthumously. But
this title was undoubtedly so found in the author’s papers, and would have
most likely become Carathéodory’s own, had he lived.

The 19th century also created an in-between topic, namely the topic of
the “Poisson summation formula” so-called (this appellation is a 20th
century coinage), which seems to fall between real and complex variables,
combining the two with each other and with the analytic theory of arith-
metical forms and of algebraic numbers. Among other things, the Poisson
summation formula generates, by way of “‘theta relations,” a very remark-
able class of special functions. These are the so-called zeta functions of
number theory, algebraic geometry, and the theory of automorphic functions.
When viewed by themselves, zeta functions appear to be rather isolated
objects of analysis, but the Poisson summation formula as a substantive
background links them with analysis at large.

In a very broad sense, the Poisson summation formula is the key to all
and any “‘dualities” and “‘reciprocities” in mathematics, and hence also in
mathematical physics. Dirichlet injected the formula into number theory,
for all time to come, when he demonstrated that, by using the formula, it
becomes “‘child’s play” to fully derive the reciprocity law for Gaussian
sums, over which Gauss had labored long and hard. The formula is also
the natural setup for dealing with the remainder term in so-called lattice
point problems for euclidean space. Finally, and most gloriously, Erich
Hecke used the formula, and only this formula, for the derivation of the
Riemann-Hecke functional equation for zeta functions over algebraic
number fields.

Regrettably, there is no book as yet dealing with the derivation of various
known zeta functions by means of the Poisson summation formula.

Antiquity. The Greeks, mathematicians and others, did not have the
concept of a (mathematical) function in their thinking. It is not possible to
discern in the body of Greek mathematics something that could be inter-
preted to be an adumbration of the notion of a function y = f(x) as we
know it today, or, at least, as it is discernible in the mathematics of the 16th
and 17th centuries, say.
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The Greeks did, of course, have some familiarity with categories of
cognition such as ‘“‘correspondence,” ‘“dependence,” “mapping,” even
“binary relation,” which enter into our present-day notion of a function.
But the mere occurrence of such categories does not yet make for the
presence of functions. Even the occurrence of assertions or conclusions
which can be readily translated or transliterated into functional relations is
not yet enough. It is still necessary, and this is decisive, that something
also be “done” with those functions, or with the trains of reasoning corre-
sponding to them, that is, that some kind of “mathematical” operations
be performed with, or on, those functions, or with the trains of reasoning
that ““stand in” for functions. Now, it is this kind of “operational” activity,
or only attitude, which it is difficult to discern in the realm of Greek thought,
mathematical or other.

Thus, although the Greeks — and, in fact, Aristotle single-handedly —
created the syllogistic aspects of our modes of formal deduction, they never
broke through to a satisfactory conception of “relation,” binary or n-nary,
reflexive, invertive, or correlative. Book 5 of Aristotle’s Metaphysics is a
dictionary of some basic philosophical terms, and among others it has a
lengthy entry on “relation” (pros ti). But the content of the entry is so
embarrassingly ordinary that philosophers and logicians in general are not
aware of it, and only *all-inclusive” commentaries of Aristotle take note
of it. And of an algebra of relations, as begun by Leibniz (1646-1716) and
insisted upon by the American mathematician-philosopher Charles Sanders
Peirce (1839-1914), there is hardly a trace among the Greeks. Furthermore,
historians of logic have been recently asserting, even heatedly, that the
Greeks remained creative in the field of logic even after Aristotle, and that,
specifically, some principles of our *“*modern” propositional modes of
implication were already discovered by some of the Stoics [/, pp. 6-8].
But, here again, of propositional functions, that is of propositional schemes
that involve “all” or “any,” there is no trace [2, p. 32].

Even the great Archimedes does not have functions in his thinking,
meaningfully that is. Isaac Newton’s treatise on mechanics [3] is ostensibly
composed in the style of Archimedes, that is, in terms of curves and geo-
metric paths, all without coordinates. Yet Newton’s treatise is, by ifs
internal direction, function-oriented, whereas the work of Archimedes is not.
For instance, Newton views the tangent to a planetary orbit at a point as
the limiting position of a secant through this fixed point and a variable
neighboring point of the orbit, meaning that he performs the operation of
differentiation on ‘hidden” coordinate functions. Archimedes however
adheres to the euclidean definition that a tangent to a curve is a straight line
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which globally intersects the curve at one point only, and he pretends to
observe this definition even in his essay on (archimedean) spirals r = ¢f
(polar coordinates). Archimedes is aware of the fact that any straight line
in the plane of the spiral intersects it in more than one point, and he ap-
parently observes the euclidean requirement only half-globally, for a half-
coil of the curve. But there is no tendency in the essay to make the require-
ment a properly local one.

Furthermore, Archimedes’ law of the lever is a “conservation law” for
the rotational momentum

(1) fp.h=p-,
(I =length of the arm, p = the suspended weight), meaning that
(2) pi-h=p2lh.

However, Archimedes could not envisage ‘“operationally” a “function”
like (1). Thus, he was unable to conceptualize the physical datum of rota-
tional momentum, and he had to express the equality (2) in the euclidean
(that is, Greek) manner as a proportion

Pripa=1l .

This explanation of the intellectual limitation of Archimedes is seemingly
different from, yet in fact very cognate with, our previous explanation that
Archimedes was unable to conceptualize a product like p - / as a ring opera-
tion within the semi-ring of positive real numbers [4, pp. 181 ff.].

We note that this ring operation was first introduced by Descartes at the
head of his La Géométrie (1637), and that the first formal definition of a
mechanical momentum was given by Newton in his treatise. Newton
introduced not the rotational momentum but the translational momentum.
He called it “quantity of motion” and characterized it as the product of
mass and velocity [4, p. 1], or rather as a bilinear functional on the cartesian
product of mass and velocity.

Middle Ages. In the Middle Ages there were some stirrings of the kind
of analysis in which functions are domiciled, and the most function-oriented
medieval mathematician was Nicole Oresme (1323-1382). He devised a ver-
sion of graphing for which he is renowned, and he also envisaged exponen-
tiation a” (for fractional exponents r = p/q) [5, pp. 288-295]. These two
achievements, when taken together, certainly suggest functions of the kind
that occur in later developments. Oswald Spengler in his Decline of the West
(1922-1924) — whatever the shortcomings of the work as a whole —
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rightly insists that with Oresme’s anticipation of functions something very
new was added to the classical Greek mathematics of Euclid, Archimedes,
and Apollonius.

Since the second half of the 19th century, Oresme’s standing as a harbinger
of analysis in general and of the concept of function in particular has been
steadily on the rise. But, on hard tangible evidence, it seems impossible to
assay what Oresme’s effect on subsequent developments of analysis actually
was. His works were known in the 15th and 16th centuries [6, p. 88]. But he,
or his mathematical works, are apparently never mentioned by name in the
decisive 17th or 18th centuries [6, p. 165], and may have been unfamiliar
to them. It can only be recorded that in the 19th century the Great Reha-
bilitation of the Middle Ages, which had become a state of mind, somehow
remembered Oresme and began to restore his achievements one by one.

Renaissance. It may be said that in the 16th and 17th centuries almost
anything mathematics achieved stimulated the eventual emergence of
functions. Thus, the rise of formulaic algebraic expressions undoubtedly
contributed to the rise of functions which can be given by such expressions.
Also, the intensive preoccupation with logarithms could not but lead to
the introduction of the pair of functions {log x, ¢*} and to the realization
that these functions are inverses of each other, Finally, trigonometrists may
have sensed that the addition theorem

sin(x + y) = sinxcosy + cos xsiny

is a “functional equation” by which to define sin x and cos x for angles
greater than 360°; this suggested itself to me when reading the great work
of von Braunmiihl [7], although I would not be able to adduce a specific
reference.

It can be said even more affirmatively that the analysts of the 17th century,
certainly beginning with Descartes and Fermat, always had functions in
their thinking, even though they spoke of “‘curves,” as they had to. (The
term “function,” a dictionary word since the 16th century, began to be
used as a mathematical term only in 1694, in a publication of Leibniz.)
Thus, Fermat certainly dealt with functions in his famous paper on maxima
and minima, which he composed sometime between 1629 and 1638 (and in
which the word “analyst” occurs several times). He considers a general
*parabola”

¥y = P(x),

in which P(x) is a polynomial of any degree, and he asserts that its maxima
and minima occur among those points for which
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dP(x)
3 =0

Now, Fermat does not actually form a derivative by a limiting process,
and he does not express his condition as we have just done; but he applies
an operational procedure which ought to delight an algebraist of today.
He replaces the variable x by x + E, forms the expansion

P(x + E)=P(x) + P(x)* E+ -~ + P,(x)- E",

and asserts that the maxima and minima are among those points for
which

(4) Py(x) =0,

[8, pp. 183 fI.]; [5, p. 382]. The algebraic purity of the procedure is com-
mendable, but there is a price on it. With this derivation of his criterion (4),
Fermat cannot properly prove his assertion, and he knows it. And so he
exorcizes the ghost of (the “algebraist™) Diophantus (ca. 250 A.D.) to stand
mathematical surety for him that his assertion is all right. The editors of the
collected works of Fermat were apparently puzzled by this invocation of the
shades of Diophantus, and in a terse footnote they seem to make Diophantus
into an analyst for the nonce. Moritz Cantor, however, observes perspica-
ciously that to Fermat “even infinitesimal considerations were emanations
of number theoretic conceptionalizations™ [9, p. 858]. Yet as late as 1934
an editor of a German translation of Fermat’s essay most gratuitously
remarks that “Diophantus employs the word ‘approximation procedure’
(Arithmetica, v. 14 and 17) in a sense different from Fermat’s” [10, p. 44].

Continuity. Leibniz was apparently the first knowingly to associate with
the notion of function the attribute of continuity. This was a meaningful
“first,” and we are going to make some remarks on the meaning of it. It must
be stated however that, in the main, Leibniz reflected on this association
philosophically rather than mathematically, so that working mathematicians
probably did not become aware of this association, directly, that is. In-
directly they may have indeed been influenced by it, but it would be difficult
to establish this. Specifically, it would not be easy to trace back Cauchy’s pre-
occupation with the phenomenon of continuity of functions in working
mathematics to Leibniz’ reflections, over a century before, on continuity
of functions in natural and other philosophy.

We must return to the Greeks for a proper beginning. Greek rationality
was aware of continuity from the first [11], and the Greeks had a standard
word for “continuous™ (synechés), which, literally, can best be rendered by
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“holding together,” or “interlocking.” The word occurs already in Homer
in both a spatial and a temporal sense, and in its temporal sense, that is,
when referring to the flow of time, its meaning is already semi-figurative,
foreshadowing the connotations of meaning of today.

Centuries later the word appears, even profusely, as a technical term in
Aristotle’s Physics, in the kind of technical meaning which it might have in a
scientific or philosophical context of today. The meaning of synechés in
Aristotle might not be exactly the same as the meaning of continuous is
today, but in a cursory reading of the Physics the translation of synechés by
continuous is good enough.

As against this, there is the remarkable fact, which cannot be sufficiently
stressed or overinterpreted, that Greek mathematics proper, that is, the
Greek mathematics as it is known from the works of Euclid, Archimedes,
Apollonius, Heron, Ptolemy, etc., never, but never, states, asserts, suggests,
or negates that something in mathematics is synechés in a technical mean-
ing of the term, nor does it ever take recourse to an obvious verbal equivalent
of it.

In the Physics, however, synechés, when used technically, occurs in a
manner which would be recognizably mathematical nowadays. When
occurring there, it is intended to describe, in rather involved thought patterns
of Aristotle, the essential mathematical feature of the linear continuum
(— oo, o) of today, namely its “completeness” in the sense of Dedekind
and Cantor. Aristotle has great difficulties separating denseness from
completeness, but even professional mathematicians in the 17th and 18th
centuries might have had such difficulties too.

This is all the continuity that Aristotle is aware of. He never mentions
“topological” continuity, that is, continuity of a function or of a “*mapping”’
of any kind, except that he is aware of the fact (which he labors most re-
petitively) that in a uniform motion x = ¢f the continuity structures of the
spatial continuum {x} and the temporal continuum {¢} are isomorphic.

The absence of topological continuity from Western thought lasted very
long. In fact, topological continuity is discernible for the first time only in
Leibniz, not in straight working mathematics, but in many expostulations
of something which Leibniz called a Law of Continuity (/ex continui). This
Law was not really a hypothesis or principle of the metaphysics of Leibniz,
but rather a leitmotif of it. Among other things the Law asserted, or only
implied, that the data and features of the universe are all continuous, whether
asserted individually, in mutual correlation, or in functional dependence.
Thus, anybody so disposed may detect in Leibniz insights of the following
kind: the rudiments of a conception of space as a Hausdorff neighborhood
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space, together with the corresponding definition of continuous (function or)
mapping in terms of neighborhoods; the rudiments of the fact that for a
system of differential and other functional equations the solution usually
depends continuously on initial conditions and other parameters; the
rudiments of the hypothesis that the mathematical laws of physics are
constant in space and time, or at most vary continuously; the rudiments
of the law that biological species evolve continuously; etc.

After Leibniz, among philosophers and mathematician-philosophers,
the greatest proponent of a universal law of continuity was C. S. Peirce,
whom we have already mentioned above. Like some other 19th century
philosophers before him (J. F. Herbarth, G. T. Fechner), he spoke not of
continuity but of synechism, and he did not acknowledge any indebtedness
to Leibniz. Peirce was familiar with the work of Georg Cantor and with the
methodology of working mathematics, and through the length of his
philosophical career he endeavored to find a conception and principle of
continuity that would apply to mathematics and ontology both. In this he
utterly failed, as he was bound to, because no ontology worthy of its name
is a mere “extension” of mathematics, and because in mathematics con-
tinuity may vary with the context and purpose, even freely so, whereas in
ontology proper this freedom is greatly curtailed if it is present at all.

Piecewise Analytic Functions. In the 18th century, working mathe-
maticians of the stature of Euler, d’Alembert, and Lagrange were trying
to find out what functions are or ought to be, and how and when they are
“given,” and mathematicians even began to classify functions, somewhat
ingenuously at times. Somehow their findings were uncertain, ambiguous,
and inconclusive, so much so that even historical accounts of them do not
quite agree with each other, or, at any rate, try to be as circumspect as
they can. There is a reason for this. In the 18th century “there was a near-
perfect, richly yielding, fusion of mathematics and mechanics” {4, p. 7],
so that a mathematical function was not only an object of mathematics, but,
by equal priority, also an object of mechanics, and thus had to satisfy
needs and expectations of both in equal measure. For instance, it seems that
in the thinking of Lagrange an analytic function was, in equal parts,
a function likely to occur in mathematical analysis and a function likely to
occur in a typical situation of his Mécanique analytique. Now a rather
simple situation arises if one throws a ball against a wall from which it
bounces back. The coordinates of the ball, as functions of time, cease to
be analytic at the time point of impact but are analytic in the adjoining time
intervals. Thus, Lagrange would have had difficulty in firmly deciding
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whether an analytic function of ¢ has to be indeed analytic throughout, or
may be only piecewise analytic in finitely many adjoining intervals
[4, pp. 287-288].

At first glance, the formation of a functional object by putting together
pieces of analytic or other “well-defined” functions may appear to be,
mathematically, a makeshift operation, an ingenuous one. But the 19th
century learned to respect, explore, and exploit such formations; and in the
20th century there would hardly be any topology if it were not for simplicial
and related decompositions and approximations.

Trigonometric Series. Amidst all its uncertainties about the nature of a
function, the 18th century somehow managed to make the capital discovery
— which, in a way, has been unmatched since — that functions of a very
“general” class can be represented in the form

(5) f(x)= ta,+ Z (a,cosnx + b,sinnx).
n=1

In the early 19th century, Fourier greatly emphasized what had been
known before, that for a given f(x) the corresponding “Fourier coefficients”
in the expansion (5) usually have the values

1 ¥ 1 *
(6) ay = — f(x)cosnxdx, b, = = f(x)sinnxdx,
and he also greatly emphasized that “any” function f(x) has a representation
(5), even if the function is absolument arbitraire.

As it turned out, this absolument arbifraire was a great “challenge”
(2 la Toynbee), and, in a sense, the creation of the theory of functions of a
real variable was a “response” to this challenge.

Firstly, Dirichlet made the following contributions (1829-1837):

(i) He gave his famed “definition” of a truly “arbitrary” numerical
function y = f(x), as a “general” correspondence from x to y.

(i) He introduced — perhaps for the first time —a specific class of
functions of a real variable to a specific purpose. It was the class of piecewise
monotone functions; and Dirichlet established the fact that for such a
function the Fourier series converges at all points.

(After the rise of set theory, towards the end of the 19th century, these
functions of Dirichlet “engendered” functions of bounded variation and
also rectifiable curves.)

Secondly, Riemann made the following contributions (1854, published
1867):
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(iii) He was the first to create a precise class of integrable functions,
so as to be able to define the Fourier coefficients (6). Furthermore, in pre-
senting his criterion for (Riemann) integrability, he prominently used,
probably for the first time, the notion of “‘a necessary and sufficient” con-
dition, literally so.

(iv) He sharply distinguished between a frigonometric series

(7) tas+ X (a,cosnx + b,sinnx)

n=1
and a Fourier series. For the latter the coefficients {a, b,} are given by the
formulas (6) by means of some function f(x), but in the first case no such
formulas are assumed at all.

(v) For a Fourier series he created the concept of “localization” of
convergence (and he also conceived the Riemann-Lebesgue lemma), thus
creating the concept of a “local” property for mathematics at large.

(vi) For any trigonometric series, with

aﬂ’ b" = 05

he introduced the sum function

o .
a,Cosnx + b, sinnx
F(X) = _A_“O‘\,Z = E n . n
n=1 i

and treated it as a present-day Schwartz distribution of level 2. That is,
he introduced “testing” functions” ¢(x) and “defined”

J’ $(x) d*F(x)

dx

J @"(x)F(x)dx.

(I venture to remark that, long before Schwartz, such “distributions” were
introduced by myself as “generalized” Fourier transforms; see [12, Ch. VI].)
Thirdly, and very decisively, Georg Cantor, after studying closely the
work of Riemann, added the following proposition:
(vii) If the trigonometric series (7) is convergent, and to the limit value 0,
at all points of the interval —n £ x £ =, then the series is identically 0,
meaning thata, =5, =0, n=0,1,2,3,..
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This last proposition was a very technical statement from working
mathematics having no unusual features at all and yet it had the following
momentous consequences. After proving the proposition, Cantor asked
himself whether, in the hypothesis, the convergence to 0 has to indeed
be known for all points x of the interval, or whether there might not be in
the interval an “‘exceptional” set E for the points of which nothing is stipu-
lated. Cantor found, successively, that the following sets are exceptional:
(a set consisting of) a single point; a finite number of points; a set having
a single accumulation point (and Cantor defines an accumulation point
for the occasion); a set having finitely many accumulation points; a set E
whose set of accumulation points £’ has a single accumulation point or
finitely many accumulation points; etc.

This led Cantor to the conception of a transfinite ordinal number, and
thence to the conception and theory of pointsets and also of general aggre-
gates; and the world of thought, of any thought, has not been the same
since.

Orthogonal Systems. The trigonometric representation (5) of f{(x) is an
expansion of f(x) into an orthogonal system, and it is remarkable that
mathematicians did not realize this feature of trigonometric functions for
a century or longer. The 19th century discovered many other complete
orthogonal systems among various families of special functions, functions
of Bessel, Lamé, Lagrange, Laguerre, Hermite, Jacobi, Heine, Gegenbauer,
and others. It was discovered for each such system separately that general
functions can be expanded in terms of it, and it was even known, after a
fashion, that every system was a complete set of eigenfunctions associated
with an elliptic differential equation. But somehow in the 19th century these
separate facts were not properly linked up; the accumulated knowledge was
broad and eclectic rather than compact and systematic and did not contribute
to the general theory of functions of a real variable. Riemann, for instance,
took no notice of the special functions of this kind (except for hypergeomet-
ric functions, which, however, were holomorphic functions for him), and
there does not seem to be a single “Riemann formula” about them.

But after the turn of the century the study of orthogonality suddenly
became a serious mathematical occupation. Its achievements were spear-
headed by the Riesz-Fischer theorem, which was a great triumph of the
newly conceived Lebesgue integral, and above all by Hilbert’s spectral
decomposition of a bounded self-adjoint operator in Hilbert space. This in
turn led to L,-spaces, Banach spaces, and functional analysis.

Early functional analysis in the 19th century distinguished between
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“functions,” ‘“‘functionals,” ‘“‘operators”, etc., as if they were entirely
heterogeneous objects [13, passim]. But the 20th gradually realized that
they are all functions in a broad sense, if a function y = f(x) is conceived
to be a mapping from a general set X : {x} into a general set Y : {y}, with
no relations between the sets X, Y stipulated. Logicians maintain that some
such broad definition of a function had already been anticipated by the
logician Gottlob Frege in the 1870°s. Maybe so. But even if this was so,
it is most unlikely that working mathematicians were aware of it, or in-
fluenced by it. Rather, they arrived at their insight by their own *“*hard” way.

Riemann Surfaces. In the realm of complex variables, the pioneering
achievement of Bernhard Riemann (1826-1866) was to characterize certain
classes of functions, which are initially given in the complex plane in terms
of certain expressions, by overall properties of the functions on suitable
compact Riemann surfaces, or, as later developments explicated it, on the
universal covering surfaces of the compact ones. A leading case, in which
the universal covering surface need not be envisaged, is the following.

Consider an equation

P(w,z) =0,

in which P(w, z) is an irreducible polynomial of the two variables w and z,
where z varies over the Gaussian sphere S. The solution w = w(z) of the
equation is an n-valued algebraic function (n is the degree of the polynomial
in w), and with it we can form the class of functions

Fy = {R(w(2), 2)},

for all possible rational functions R(w, z). Now, Riemann characterizes
the class F; as follows. He forms the n-sheeted Riemann surface T over S,
on which w(z) is properly defined and memorphic, and he considers the
class F, of all those functions which are defined and meromorphic on T.
Then,

It is easy to see that F, = F,, and the burden of the assertion is that also
F, < F,; for a present-day proof see [14, p. 155], and note that this proof
does not proceed by mere “talking” and “cerebration” but also by a re-
course to the Lagrange interpolation formula. Also, if for some element
1(z) in F, and some z, in S over which T is not ramified, the » functional
elements of #(z) over z, are different from cach other, then w(z) is also a
rational function of {#(2), z}.
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On one occasion Felix Klein gave an evaluation of Riemann’s originality
which mixed much admiration with a dose of incomprehension [/5, pp.
118-119]. We translate it thus:

Riemann invariably investigates functions thus: at the head of the investigation
he places their defining properties, and from these propertics he deduced every-
thing else, especially the formulas holding for the functions.

This procedure of Riemann appears difficult only aslong as it does not lean on any
concrete knowledge. As soon as the latter takes place [that is, the leaning], it appears
most peculiarly simple and transparent.

We could also express this in the following way: Riemann’s procedure is scienti-
fically excellent, but pedagogically unusable [wibrauchbar]. One must not begin
with it, but bring it at the end. A first example of this Riemannian treatment is his
theory of abelian integrals; he defines them as functions which by a closed circum-
ambulation on the Riemann surface vary only by an additive constant. A second
topic which Riemann treats in this way is linear differential equations. .. .

According to Riemann, in the theory of linear differential equations, one considers
simultaneously »n functions yy, ..., ¥,, which, on the Riemann surface, experience
linear transformations after encircling certain “points of ramification™ as also
closed circumambulations.

Klein’s criticism of Riemann, even if limited to “pedagogy,” was not
prophetically inspired because in the second half of the 20th century, a
hundred years after Riemann’s death, his “procedure” is flourishing with a
vengeance. There is an expanding mathematical “industry” which for any
compact complex manifold — algebraic or not, in one or several variables —
conceives and examines all sorts of classes of objects, scalar or tensorial,
tangential or fibral, holomorphic or meromorphic, *“‘periodic” or auto-
morphic; and generally each of the classes has some kind of finite basis,
additive, multiplicative, or algebraic. Also, from time to time the name of
Riemann injects itself into the context.

Analytic Continuation. Riemann showed little interest in “‘arbitrary”
analytic functions, that is, in functions not “generated” in some algebraic
manner from the complex variable z. He knew, even for arbitrary functions,
that their analytic continuation is unique, but he did not make much of
the fact. Thus, Riemann never formulated the statement, of which he was
undoubtedly aware, that a holomorphic (or meromorphic) function in a
domain D of the complex plane — for instance, in a disc — gives rise by
analytic continuation along paths in the complex plane to a unique maximal
Riemann (covering) surface D over the complex plane into which f(z) can be
analytically continued (and similarly for the Gaussian sphere instead of
the complex plane). We will call this analytic continuation of f(z) from D
into D its “Weierstrass continuation” and denote it on D by f{(z).
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As we have already noted before in [16], there seem to be some misunder-
standings as to the meaning and extent of the feature of uniqueness with which
the Weierstrass continuation is endowed. The fact is that this uniqueness is
much less “absolute” than sometimes vaguely taken for granted, and we
are going to explain what we mean by this. Our present explanation will be
somewhat different from and more detailed than the one given in [16].

Let D, be a bounded simply connected domain in the z-plane, and D,
such a domain in the w-plane; let

(®) w = ¢(2)

be a one-one holomorphic mapping from D, to D,; let f,(w) be a holo-
morphic function on D,, and let f,(z) = f5(¢(z)) be its preimage on D,. If
we form the two ensembles

® {Di.f1}, {Da.f2}

then (8) is also a holomorphic transformation of the first ensemble into the
second, in an obvious sense. We now form the Weierstrass continuation
of each of the functions f, /5. This gives rise to two “larger” ensembles

(10) {Du. i}, {Da, /),

and, contrary to what one might vaguely expect, these two larger ensembles
need no longer be holomorphic images of each other, either by the mapping
(8) itself, or by any other mapping. One can easily construct counter-
examples, and we now choose the following.

Let D, be the disc

an D, :|z| <1

Let D, be the interior of a Jordan curve B, no arc of which is real-analytic,
and let

fo(w)

i
=

Then
Ji(2) = ¢(2).

By known properties of conformal mapping, the function ¢(z) has no
analytic continuation at all, so that

(12) {51sf1} = {Dlafl}-

But f5(w) = w can be continued analytically from D, into all of C'(w),
so that
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(13) {EZ)f;} = {C'(w), f2}.

Now there is no conformal mapping from the disc (11) into all of C!, and
thus the two ensembles (10), as given by (12) and (13), cannot be homeo-
morphic.

The conclusion to be drawn from this counterexample is this: that the
Weierstrass continuation process does not at all apply to an “abstract”
ensemble

14 {D.f},

in which D is an *“abstract” Riemann surface and /' a holomorphic function
on it. But if one does start out with an abstract ensemble (14), then the
process does become applicable if there is given an additional Riemann
surface S (which in the “classical” case of Weierstrass is the complex plane
or the Gaussian sphere, but which, in fact, can be quite general) and a
holomorphic wunbranched mapping of D into S. In fact, if we denote this
mapping by g, then the process applies not to the ensemble (14) but to the
greater ensemble

(15) {D.f.2)
and the assertion is that this greater ensemble has a continuation
(16) D, 1. &}

which is both maximal and wnique. Also, the symbol f in (15) need not
represent a single holomorphic function, but may represent an assemblage
of holomorphic functions, or, in fact, of scalar or tensorial holomorphic
objects, and may also subsume mappings into some complex spaces, which
need not have anything to do with the fixed space S. Also, the scalar or
tensorial objects need not be strictly holomorphic, but they may also be
meromorphic, provided they are so both in (15) and (16).

All this follows readily by adapting the reasoning in Chapter 1 of Weyl’s
book [I4]. It also applies to the case of several complex variables, if D, S
are equidimensional and they and their extensions are assumed to be arcwise
connected. It should be noted that for n = 2 general complex spaces like
D, S need not be separable, and if they are indeed not separable then
uncountably many sheets of D may be lying over the same points of S.
If however D and S happen to be separable, then D will be so too, and
there will be only countably many sheets of D spread over S.

We have noted before that the object f in (15) may subsume general
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holomorphic mappings into unspecified complex spaces. This suggests that
it ought to be possible to dispense with the “special” unbranched mapping
g into an equidimensional space S and to put some “general” restriction
in its place. Now, we have found in [/6] that it suffices instead to demand
that the totality of objects { '} separates points on D in the following sense.

We assume that in any holomorphic coordinate system around any point
of D, every object fis characterized by a set of components each of which is
a holomorphic function in the given coordinates. Now, take any two points
P, P’ on D, different or not, a coordinate neighborhood N : {z} of P, and a
coordinate neighborhood N’ : {z'} of P’, such that there exists a one-one
holomorphic mapping z’ = ¢(z) from N to N'. Take all functional elements
{f(z")} in N’, and form their transforms {g(z)} = {f(¢(2))} in N. Now, our
hypothesis is that whenever the totality of elements {g(z)} is the same,
object by object, as the totality of elements {/(z)}, then the two points P, P’
are identical, the coordinate systems {z}, {z'} are identical, and ¢(z) is the
identity mapping.

With this definition we proved in [/6] the following proposition.

It follows from mere analyticity of the data that any ensemble {D,f}
whatsoever always has maximal extensions {D, f}, but there are usually
many such. If however the ensemble {D,f} has the separation property
Jjust described, and if we consider extensions {D, f} with the same separation
property, then the maximal extension is unique.

For complex dimension # = 2 an interesting case of non uniqueness
can be exhibited by use of the Hopf blow-up as follows. Let V" be a compact
complex manifold, say algebraic, and let P° be a point on it. Let D be the
manifold V" — PO (that is, ¥" minus the one point P%), and let f represent
all meromorphic functions on V" which are non singular at P°, The “natural”
maximal extension is D = V", and the resulting {D, f} is indeed maximal
because D, being compact, is non continuable. However, instead of adding
merely the point P° we can also add, by performing a Hopf blow-up, a
projective space P"~* of n — 1 complex dimensions. The resulting complex
manifold

D = {Vn e PD} U pr-1
is again compact, and there is a corresponding maximal extension
{07},

in which f7(P) arises from f{P) by assigning to all points P of P"~! the
constant value f(P°). In this new maximal extension, {/*} no longer separates
points.
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We remark that a quotient of holomorphic functions at P, can be similarly
extended from a neighborhood of P° to a neighborhood of P*~* by extending
numerator and denominator separately, so that it was not even necessary
to exclude from the class {f} meromorphic functions on ¥” that are non
regular at P°.

If now we couple this remark with the observation that the Hopf blow-up
of an algebraic variety is again algebraic [/7], we arrive at the following
insight which ought to have a sobering effect on any devotee of functional
analysis of our times. A compact complex manifold V", of complex dimension
n = 2, even when algebraic, cannot be “completely characterized” by the
assemblage of (holomorphic and) meromorphic functions on it, even if to the
scalar functions all possible tensorial functions (that is, tangential veector
bundles) be added. For n = 3, even non tangential holomorphic vector bundles
may be added (see [18, pp. 192-195)).

A Parting Thought. The statement just made and its rationale exemplify
a developing trend that bids fair to take over and prevail in geometrically
oriented analysis for decades to come. During nearly a hundred years, since
after 1870, geometrically controlled analysis was searching for and striving
to articulate “harmonies,” ‘“‘symmetries,” ‘“homogeneities”; and among
cognoscenti, the credal inspiration for this mathematical state of mind drew
from something called the Erlanger Program, whatever that was. Mighty
achievements ensued: the theories of Lie groups, Lie algebras, symmetric
spaces, even, in part, of automorphic functions among such. And yet, all
along, something new and different was burgeoning, something that tried
to overcome, or at least to make itself independent of, the “retrogressive”
seeking of bigger and better symmetries and homogeneities. All truly
exciting achievements in analytical and differential topology of recent years,
beginning with the pioneering efforts of Marston Morse decades ago, have
been of this novel kind, and they seem to be a truer fulfillment of the general
aspirations of our century than that which had preceded. And there is
wisdom to such aspirations. For instance, in the realm of several complex
variables, nothing is less accessible to present-day analysis than a compact
complex manifold that is simply connected and does not have a single
complex automorphism acting upon it. Yet a “random” compact complex
manifold is probably of this kind, and it is crying out for something to be
done about it.

In the second half of the 20th century, our universe of thought, feeling,
perception, and physical and cosmological reality somehow refuses to be
placidly “symmetrical,” and if it is symmetrical, then only in a crude surface
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approximation with innumerably many ‘‘local” deformations (like Hopf
blow-up) deeply affecting, if not totally destroying, whatever “pleasant”
consequences symmetries might entail. Such are facts of our life, mathe-
matical and other, and the oncoming generations of mathematicians will
simply have to cope with them.
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