HOLOMORPHIC HULLS AND HOLOMORPHIC
CONVEXITY

by R. O. Wells, Jr.

1. Introduction

It is a well-known theorem of Hartogs that any function f holomorphic
on a neighborhood of the boundary M of the unit ball Bin C*, n > 1, can
be continued analytically to the interior of B. This phenomenon can also
occur locally. Consider, for example, alocally defined strictly pseudoconvex
hypersurface M in C?, then it is well known that there is an open set U in C2
such that any function holomorphic on a neighborhood of M can be contin-
ued analytically to U (see, e.g., Lewy [7]). In each case we say that the open
set to which we continue is contained in the holomorphic hull (or envelope
of holomorphy) of the set M.

These examples, among others, have led to recent investigations by
various people to create a theory of holomorphic hulls and holomorphic
convexity of subsets of C" (or of any complex manifold) of any dimension.
The classical theory for domains in C” (or spread over C”, or Stein manifolds)
satisfactorily accounts for the case when the subsets of C" are open. On the
other hand, the theory for lower dimensional sets is still in its infancy, but
seems capable of developing into a sufficiently ample theory to account for
the fundamental examples. One restriction we can make is to require that
the lower dimensional sets be real submanifolds of C", as in the case of the
two examples above.

In Section 2 we develop some definitions and formalism in which the
basic results known so far can be easily expressed.

In Section 3 we state some results concerning global and local holo-
morphic convexity of real submanifolds of a complex manifold. The first
result in this section deals with the case that the fibre dimension of H(M),
the holomorphic tangent bundle to M (see Section 2), is identically zero, and
M is a compact real C* submanifold of a complex manifold X. Under
these conditions M is necessarily holomorphically convex, and, in fact,
M can be expressed as {x e X:¢(x) = 0}, where ¢ is a strictly plurisubhar-
monic function defined near M. Our second result here is that a locally
defined C® submanifold M of C" with a vanishing Levi form is locally
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holomorphically convex. For a “‘generic’’ type of manifold this condition is
also necessary.

Section 4 deals with the problem of showing that a local submanifold is
extendible (has a non trivial local holomorphic hull) under certain geometric
conditions (namely that the Levi form be non-zero). Recently, Greenfield [3]
has proved that generic real C* submanifolds of C" with a non-vanishing
Levi form are extendible to a submanifold of one higher dimension
(Theorem 3.7). All of the techniques for proving extendibility of real sub-
manifolds stem from Bishop’s important paper [2]. In this section we give
a brief outline of Bishop’s technique for embedding analytic disks and
show how it can be utilized in proving extension theorems. One needs a
type of Hartogs’ theorem for parametrized families of analytic disks in order
to use Bishop’s technique. One such result is proved in [11], and we indicate
how it can be used in obtaining the desired analytic continuation.

In Section 5 we indicate some open problems which arise naturally from
the course of events outlined in the previous sections.

2. Preliminaries

Let X be a complex manifold with structure sheaf @. If K is compact in X,
let C(K) be the Banach algebra of continuous complex-valued functions on K
with the maximum norm. Let ¢(K) = I'(K, @) be the ring of sections of ¢
on K, and let A(K) be the closure of @(K)|K in C(K). Let E(K) be the
spectrum (maximal ideal space) of the algebra A(K) (see, e.g., Gunning and
Rossi [4] for definitions used here).

We say that K is a holomorphic set in X (S; set) if K is the intersection
of open Stein submanifolds of X, and we say that K is holomorphically
convex if K = E(K), identifying K with its image in E(K) by the evaluation
map. A holomorphic set is holomorphically convex (see [9]), but the converse
is unknown, except that it is true in special cases.

Let K< X be connected, and suppose K’ is connected and K’ = K.
Then K is extendible to K' if the restriction map

i O(K') - O(K)

is surjective. K is extendible if there is such a K’ = K such that K is ex-
: i 7
tendible to K’.

Suppose now that M is a real C* submanifold of X with real tangent
bundle T(M). Let J be the canonical almost complex tensor given by the
complex structure of X. Then J acts naturally on T(M) considered as a real
subbundle of T(X). Define
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the vector space of holomorphic tangent vectors at xe M. H (M) is a C-
linear subspace of T,(X), and we define

h(M) = dimcH (M).
If h(M) is constant ( = h(M)) on a connected M, then

HM) = ) H{(M)

xeM

can be given the structure of a complex vector bundle over M with fibre
isomorphic to C**0, the holomorphic tangent bundle to M.

If we consider the complexification T(M) ® C (tensor over R), the almost
complex tensor J induces a natural splitting (assuming a holomorphic
tangent bundle exists on M)

HM)® C=T"°(M)® T*'(M),

where we can identify T'°(M) with H(M) and T°'(M) with H(M), the
conjugates of H(M) (well defined in H(M)® C). We write simply

H(M)® C =~ HM)® HM).
Under these conditions we can define the Levi form at any point x e M,
L(M): H(M)— T(M)® C/H(M)® A(M).

Let se H (M), then there is a C* section Y e [(H(M)), such that Y, =s.
Let =, be the natural projection

1 T(M)® C = T(M) ® C/H (M) ® H(M).
Then set
L(M)(s) = mn,[Y, Y],

where the brackets denote the commutator of the vector fields Y and Y.
This definition is independent of the choice of Y (cf. [5]).

3. Holomorphic Convexity of Differentiable Submanifolds

In this section we want to study holomorphic convexity of real C*
submanifolds M embedded in a complex manifold X. We have first the
following useful definition.

Definition 3.1. Let M be a real C” submanifold of a complex manifold X,
M is said to be totally real it h(M)=0on M.
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Examples of totally real submanifolds:

1) Let M be a real C* submanifold of R", where R" is canonically embedded
in its complexification C", and thus M is a real C* submanifold of C”.
If te T(M), then Jt L R", but teR", hence T,(M)NJT(M)=0, for any
xeM, and M is totally real.

2) Let M be a smooth (real) curve in C* If te T,(M), then t and Jt are
linearly independent since (t,Jt> =0 in the standard inner product of
R*" = C". Hence Jt ¢ T(M) since T, (M) is 1-dimensional. Thus M is totally
real,

3) Let M ={zeC": |z,-| =1, i=1,---,n} be the standard torus in C".
Then by using simple arguments similar to those above it follows that M is
totally real.

The following lemma is a useful tool concerning totally real submanifolds.

Lemma 3.1. Let M be a compact totally real submanifold of a complex
manifold X. Then there exists a neighborhood U of M and a strictly
plurisubharmonic C* function ¢ defined in U such that

M = {xeU:¢(x)=0}.

The proof of this is not hard. ¢ is first constructed locally, using a con-
venient choice of coordinates, and then the local functions are pieced together
by using a partition of unity (see [12]). It follows from this lemma that a
totally real compact submanifold is holomorphic, since there is a sequence
&;— 0 such that U;={xeU: ¢(x) <g¢;} are strongly pseudoconvex sub-

o

domains of X, and () U; = M. But it is a well-known theorem of Grauert
j=1
that each U; is an open Stein manifold in X, and hence M is holomorphic

(see [4]). Thus we have

Theorem 3.2. If M is a totally real compact submanifold of X, then M
is a holomorphic set, and consequently holomorphically convex.

Actually, much more is true. Namely, one can prove that a totally real
compact C” submanifold M has the property that A(M) = C(M), which is
a much stronger result, and implies immediately that M is holomorphically
convex (see [&8] and the article by R. Nirenbergin these proceedings). Lemma
3.1 plays an important role in proving this stronger theorem.

We want to consider now submanifolds M with well-defined holomorphic
tangent bundles, i.e., h(M)=const on each component of M. We shall
follow the terminology introduced by Greenfield [3].
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Definition 3.2. Let M be a connected real C*” submanifold of a complex
manifold X.

1) If hy(M) = max(0,dimyg M — dim¢ X), then M is generic al xe M.

2) If h(M) is constant on M, then M is called a C-R submanifold of X.

3) Misa generic submanifold of X if M is generic at each x € M.

Remarks. 1) C-R submanifold refers to the fact that there are well-
defined induced Cauchy-Riemann equations on M, which relate to some
interesting unsolved problems.

2) A generic submanifold is automatically a C-R submanifold, and if
M is generic at x, then M is generic near x.

Examples of generic submanifolds:

1) Let M be a real C* hypersurface in a complex manifold X with
dimoX =n, dimgM =2n—1. Then M is a generic submanifold with

h(M)=n—1.

2) Let M={zeC? |z,|* + '22]2_ [, |z3|=1}. Then dimgM =4,

h(M)=1. This is a compact generic submanifold which is not totally real,
and hence provides an example for Theorem 3.4 below.

3) A totally real submanifold of C" is necessarily a generic submanifold.

Restricting ourselves to generic submanifolds of C" we can state a converse
to Theorem 3.2.

Theorem 3.3. Let M be a compact generic submanifold of X. If M is
holomorphically convex, then M is totally real.

This theorem is presumably true without the genericity assumption, but
the present techniques do not seem to carry over to the non-generic casc.
Namely, the above theorem is a trivial consequence of the following one,
the proof of which uses strongly the assumption of genericity and is outlined
in Section 4.

Theorem 3.4. If M is a connected compact generic submanifold of u
complex manifold X, and if (M) > 0, then M is extendible. Moreover, M
is extendible to a subset of X which contains a submanifold N of one higher
real dimension than M.

To obtain Theorem 3.3, we merely notc that an extendible set cannot be
holomorphic or holomorphically convex.

So for compact submanifolds, being totally real is “‘essentially” the
geometric characterization of being holomorphically convex. However,
locally holomorphically convex submanifolds do not have to be locally
totally real, and here we use the Levi form as a geometric measure of local
holomorphic convexity.
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Theorem 3.5. Let M be a C-R submanifold of an open set U< C.
Suppose xe M. If L(M)=0, for y near x on M, then M is locally holo-
morphic, and hence locally holomorphically convex.

This is proved geometrically, similar to the proof of Theorem 3.2,
by constructing locally a plurisubharmonic function which vanishes only
on M (this function is not strictly plurisubharmonic in general). This
gives then a sequence of pseudoconvex domains whose intersection is a
sufficiently small compact neighborhood of x in M. The solution to the
Levi problem in C" (pseudoconvex domains are domains of holomorphy,
see [6]) then implies that M is locally holomorphically convex (see [13]
for a complete proof).

Restricting ourselves to generic submanifolds again, we obtain a charac-
terization of locally holomorphically convex submanifolds.

Theorem 3.6. Let M be a generic submanifold of an open setU = C”,
and let xe M, then the following are equivalent:

(i) L/M)=0 for y near x on M.

(ii) M is locally holomorphic.

(iii) M is locally holomorphically convex.

As we remarked in Section 2, it is unknown in general whether holomorphic
sets and holomorphically convex sets are the same class of sets, but the
above theorem shows that the localization of these concepts agree on the
class of generic submanifolds.

The above theorem is a consequence of the following result.

Theorem 3.7. Let M be a generic submanifold of an open set U < C,
n> 1 If L{M)s0 at xe M, then M is locally extendible at x. Moreover,
M is extendible to a submanifold of C" of at least one higher real
dimension.

The proof of this theorem is due to Greenfield [3]. A special case was
proved in [73], and the first part of the theorem was stated in [ /7], but an
incorrect proofl was given.

4. Holomorphic Hulls and Extendibility of Submanifolds

The object of this section is to discuss the local extendibility of submani-
folds of C" under appropriate geometric hypotheses. To carry out the
analytic continuation involved we use a type of Kontinuitdtssatz with a
parametrized family of analytic disks.

Let A={{eC: IC' < 1} be the open unit disk.

Definition 4.1. Let T be a g-dimensional C* manifold, and let
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F:AxT-C"

be a continuous map, where n > 1, 1 £ ¢ £ 2n — 2. Suppose F'A wlisa
holomorphic map for each fixed te T, then F is a continuous family of
analytic disks in C" parametrized by T.

Theorem 4.1. Suppose no(T) = n(T) = 0. Let F:A x T — C" be a
continuous family of analytic disks such that for some tye T, F(A x t3) is a
point in C", then F(3A x T) is extendible to F(A x T).

This theorem is proved (in a slightly more general case) in [71]. The proof
depends upon the classical Cartan-Thullen Theorem and a form of the
Kontinuitétssatz due to Behnke and Sommer (see [/7] for references).

If we want to show that a certain submanifold M = C" is extendible we can
then try to find a family of analytic disks in C" whose boundaries lie on M,
whose interiors do not lie entirely in M, and such that for some value
of the parameter the analytic disks shrink to a point. This is what
Bishop’s construction [2] allows us to do at a generic point of a sub-
manifold of C". Whether the interiors of such a family lie on M or not
depends upon the geometric hypothesis at hand (the Levi form).

Suppose M is a submanifold of C" which is generic at x e M. Assume
(without loss of generality) that x is the origin in C". If M is totally real
(ho(M) = 0) near 0, then it follows from Theorem 3.2 that M is locally
holomorphically convex at 0. To obtain a local extension of M near 0, we
must then assume that h,(M) > 0.

Suppose dimy M = k, then M is defined near 0 by local coordinates

:R¥=C"

YR =MnNU
where U is open in C", and (0) = 0e U. Using the techniques originated
by Bishop (see [2], [11], [13], [10], [3]), one can construct an appropriate
family of analytic disks. Namely, let I be a closed interval, and I' denotes the
I-fold Cartesian product of I. We find continuous_ maps f, F to obtain the
following commutative diagram

Rk 'Ib Cn

I E
oA x ' Ly A x [Ft,
where i is the natural injection, and such that F is a continuous family of

analytic disks parametrized by I*"?, and such that F(A x t,) =0, for some
to€ I*~'. We solve for f, F in the following manner. For each fixed te ¥},
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Y- f is to be the boundary value of a holomorphic map of the unit disk
into C". This requires that Re(i - f) be (up to an additive constant) the
Hilbert transform of Im (i « f) on 8A for each fixed tel* ' By making a
linear change of coordinates in C", the non-linear equation (H denotes the
Hilbert transform on 0A)

Re(y - f) = H(Im() - f)) + const

can be solved by a convergent iterative process (successive approximations)
for sufficiently small values of (i - f) in some Sobolev norm on the unit
circle. Changing the value of ¢ changes the parameters in this integral equation
and the constant term. One can show (by using the Sobolev lemma) that the
solution f =f|6A x t is at least C* with respect to the parameter t.

Once we have f, we obtain F by using the Cauchy integral formula in
terms of Y - f. If we assume that Lo(M)s£0, then we can compute the
Jacobian matrix of the map F and see that, except for a lower dimensional
set, this matrix has maximal rank on A x I*"* (see [3] and [13]). Thus
Q=F(A x I*¥") is (except for the singular set) a (k+ 1)-dimensional
real C' manifold immersed in C" Moreover, bQ = F(@A x I* VY M
since F(OA x I*') = y(f(0A x I*~')). Thus we see that if N is a compact
neighborhood of 0 in M such that N o F(dA x I*™'), then the restriction
map O(N U Q) — O(N) is surjective. This follows from the following com-
mutative diagram (with natural restriction maps)

O(N U Q) ——> O(N)

|,

0(Q) —— 0(bQ)

and the fact that 7 is surjective, from Theorem 4.1. This then is a brief outline
of the proof of Theorem 3.7.

Theorem 3.4 follows from this result (Theorem 3.7) by applying Bishop’s
Peak Point Theorem [I] to conclude that, on the compact submanifold M,
there is at least one point x € M such that L,(M) 5 0. Namely, if L (M) =0
on M, then through each point x € M, there passes a complex submanifold
of C" embedded in M. But this contradicts the Peak Point Theorem, since
in a neighborhood of a peak point there can be no complex submanifolds,
by the maximum principle.

5. Open Problems
A. Can the hypothesis of genericity be removed in Theorem 3.7? For
instance, are the theorems of Section 3 true for C-R submanifolds?
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B. Can the compact generic submanifolds of C" be classified in some
geometric or topological manner? For instance, if M? is an orientable
compact 2-manifold in “‘general position’” in C2, then a necessary condition
that M? be totally real (and hence generic in this case) is that the Euler
characteristic y(M?) = 0. In other words M? must be a torus (see [2]).

C. What can be said about extendibility of submanifolds which are not
C-R? For instance, if S? (the 2-sphere) is embedded in C?, is it necessarily
extendible? Itis known that S? = C2 cannot have a well-defined holomorphic
tangent bundle, since there is at least one point xe S? where h,(S?) =1
(see [2]), and we cannot have h(S?) =1 on S?, since then S? would be a
complex submanifold of C? which is impossible.

D. If K is a holomorphically convex set in a Stein manifold X, then is K
a holomorphic set in X?? Note that the sense in which we use ‘‘holomorphi-
cally convex’’ is weaker than that used in Gunning and Rossi [4], where
“holomorphic convexity’” there means ‘‘holomorphically convex with
respect to X, i.e., convex with respect to the family of functions ¢(X).

REFERENCES

[1] BisHop, E., A minimal boundary for function algebras, Pacific J. Math.
9 (1959), 629-642.

, Differentiable manifolds in complex Euclidean space, Duke
Math. J. 32 (1965), 1-22.

[3] GREENFIELD, S., Cauchy-Riemann Equations in Several Variables, Ph. D.
thesis, Brandeis University (1967).

[4] GuNNING, R. and H. Rosst, Analytic Functions of Several Complex
Variables, Englewood Cliffs, N.J. (1965).

[6] HeErMmaNN, R., Convexity and pseudoconvexity for complex manifolds,
J. Math. Mech. 13 (1964), 667-672.

[6] HORMANDER, L., An Introduction to Complex Analysis in Several
Variables, Princeton (1966).

[7] Lewy, H., On the local character of the solution of an atypical linear
differential equation in three variables and a related theorem for
regular functions of two complex variables, Ann. of Math. 64
(1956), 514-522.

[8] NIRENBERG, R. and R. O. WELLS, Jr., Holomorphic approximation
on real submanifolds of a complex manifold, Bull. Amer, Math.
Soc. 73 (1967), 378-381.

[9] Rossi, H., Holomorphically convex sets in several complex variables,
Ann, of Math. 74 (1961), 470-493.

{21




84 RICE UNIVERSITY STUDIES

[/0] WEINSTOCK, B., On Holomorphic Extension from Real Submanifolds
of Complex Euclidean Space, Ph. D. thesis, M. 1. T. (1966).

[11] WELLs, R. O., Ir., On the local holomorphic hull of a real submanifold
in several complex variables, Comm. Pure Appl. Math. 19 (1966),
145-165.

[12) , Holomorphic approximation on real-analytic submanifolds of
a complex manifold, Proc. Amer. Math. Soc, 17 (1966), 1272-1275.
[13] , Holomorphic hulls and holomorphic convexity of differentiable

submanifolds, Trans. Amer. Math. Soc. 132 (1968), 245-262.

RICE UNIVERSITY



	article_RIP5440075RIP540337.tif
	article_RIP5440075RIP540338.tif
	article_RIP5440075RIP540339.tif
	article_RIP5440075RIP540340.tif
	article_RIP5440075RIP540341.tif
	article_RIP5440075RIP540342.tif
	article_RIP5440075RIP540343.tif
	article_RIP5440075RIP540344.tif
	article_RIP5440075RIP540345.tif
	article_RIP5440075RIP540346.tif

