RICE UNIVERSITY

Interval Exchange Transformations: Applications of Keane's Construction and Disjointness

by

Jon Chaika

A Thesis Submitted
in Partial Fulfillment of the Requirements for the Degree

Doctor of Philosophy
Approved, Thesis Committee:

Michael Boshernitzan, Chair Professor of Mathematics

Houston, Texas
April, 2010

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

Dissertation Publishing
UMI 3421391
Copyright 2010 by ProQuest LLC.
All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

Abstract

Interval Exchange Transformations: Applications of Keane's Construction and Disjointness

by
Jon Chaika

This thesis is divided into two parts. The first part uses a family of Interval Exchange Transformations constructed by Michael Keane to show that IETs can have some particular behavior including:

1. IETs can be topologically mixing.
2. A minimal IET can have an ergodic measure with Hausdorff dimension α for any $\alpha \in[0,1]$.
3. The complement of the generic points for Lebesgue measure in a minimal nonuniquely ergodic IET can have Hausdorff dimension 0. Note that this is a dense G_{δ} set.

The second part shows that almost every pair of IETs are different. In particular, the product of almost every pair of IETs is uniquely ergodic. In proving this we show that any sequence of natural numbers of density 1 contains a rigidity sequence for almost every IET, strengthening a result of Veech.

Acknowledgments

I would like to thank my advisor M. Boshernitzan. I could not have imagined a better advisor. His constant encouragement and joy for mathematics made my graduate experience a pleasure. He carefully chose problems that were original, interesting and continue to open doors for me. Moreover, he has shown me an amazing number of deep insights that inform my understanding of mathematics in general and ergodic theory in particular.

I would like to thank A. Bufetov, D. Damanik and W. Veech for being so wonderful. They were generous with their insights and time. They were always willing to listen to me talk, even when I was not particularly coherent. They helped motivate me and I learned so much from them. I would like to thank R. Hardt and S. Semmes for teaching me a lot and often helping me.

I would like to thank all of my fellow grad students for being such a great community and teaching me so much math. I will avoid naming them for fear of length and omissions.

I would like to thank M. Boshernitzan for posing the questions answered in the second chapter. I would like to thank A. Bufetov for posing the question answered in the third chapter. I would like to thank M. Boshernitzan, A. Bufetov, S. Cox and W. Veech for serving on my thesis committee.

I would like to thank B. Hausman, M. Magee and M. Turner for their frequent assistance during my graduate career.

I would like to thank Evelyn for making every day delightful.

Contents

Abstract 2
Acknowledgments 3
1 Introduction 6
1.1 Basic dynamics terminology 6
1.2 What is an IET 8
1.2.1 The induced map of an IET 9
1.2.2 The Keane condition 10
1.3 Rauzy-Veech Induction 10
1.4 Basic Measure Theory 13
1.5 The Spectral Theorem 14
2 Keane type examples 15
2.1 An introduction to Keane type examples 15
2.2 There exists a topologically mixing Keane IET 19
2.2.1 No IET is topologically mixing of all orders 22
2.3 Measure estimates for Keane's construction 22
2.3.1 Estimates on the size of intervals with respect to the two ergodic
measures 23
2.4 Hausdorff dimension for ergodic measures in Keane type examples 26
2.4.1 Definition of Hausdorff dimension 27
2.4.2 Estimates towards calculating the Hausdorff dimension for er-
godic measures of IETs 29
2.4.3 Proofs of Theorems 32
2.4.4 Large sets of generic points 33
2.5 Exotic shrinking target properties for some Keane type examples 34
2.5.1 Typical points with respect to one ergodic measure that approx- imate typical points with respect to the other ergodic measure poorly 34
2.5.2 Two ergodic measures that approximate each other differently 39
2.6 Conclusion 42
3 IETs are usually different 44
3.1 Statement of results 44
3.2 Proof of Theorem 15 46
3.3 Consequences of Section 2 52
3.4 The spectral argument 56
3.5 Concluding remarks 59

Chapter 1

Introduction

1.1 Basic dynamics terminology

Let (X, \mathcal{B}, μ) be a measure space. If $T: X \rightarrow X$ is measurable and $\mu(A)=\mu\left(T^{-1} A\right)$ for all measurable sets A then T is said to be μ measure preserving. If T is μ measure preserving and $\mu\left(A \Delta T\left({ }^{-1} A\right)\right)=0$ only when $\mu(A)$ or $\mu\left(A^{c}\right)=0$ then T is said to be μ ergodic. (Δ denotes symmetric difference.) One of the primary motivations (and tools) for studying ergodic transformations is the Birkhoff Ergodic Theorem.

Theorem 1. (Birkhoff) Let (X, \mathcal{B}, μ) be a σ-additive measure space. If T is μ ergodic then for all $f \in L^{1}(X, \mathcal{B}, \mu)$ we have $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f\left(T^{n}(x)\right)=\int_{X}$ fd μ for μ almost every x.

Informally the Birkhoff Ergodic Theorem says that for ergodic transformations the time average is equal to the space average. It also motivates the following definition:

Definition 1. Given $T:[0,1] \rightarrow[0,1]$, a μ ergodic map, we say a point $x_{0} \in[0,1]$ is
generic for μ if $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f\left(T^{n}\left(x_{0}\right)\right)=\int_{0}^{1} f d \mu$ for every $f \in C([0,1])$.
The definition requires that the limit exists. The generic points can be thought of as an explicit set of μ typical points.

In particular, \mathcal{B} is a Borel σ-algebra and if continuous functions with supremum norm are separable (such as when (X, d) is a compact metric space) then there exist generic points. To see this let f_{1}, \ldots be a countable dense set in the sup norm topology. Let

$$
A_{i}=\left\{x: \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f\left(T^{n}(x)\right)=\int_{X} f d \mu\right\}
$$

If $x \in \bigcap_{i=1}^{\infty} A_{i}$ then for any continuous $f \in L_{1}(X, \mathcal{B}, \mu)$ we have $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f\left(T^{n}(x)\right)=$ $\int_{X} f d \mu$.

In this construction we use the fact that μ is an ergodic measure for T. If μ and ν are two different ergodic probability measures for T, then $\frac{\mu+\nu}{2}$ is another probability measure, and T is a $\frac{\mu+\nu}{2}$ measure preserving transformation. T is not $\frac{\mu+\nu}{2}$ ergodic. The set of $\frac{\mu+\nu}{2}$ generic points has $\frac{\mu+\nu}{2}$ measure 0 . One should observe that the Birkhoff Ergodic Theorem implies that if μ and ν are different ergodic measures of T then they are singular, meaning that they have disjoint sets of full measure. If T is a μ ergodic transformation and it has no other ergodic measures it is called uniquely ergodic. Uniquely ergodic transformations have only 1 preserved measure.

Another important result in ergodic theory is the Poincaré Recurrence Theorem.

Theorem 2. (Poincaré) Let (X, \mathcal{B}, μ) be a finite measure space and T be a μ measure preserving transformation. For any measurable set $A, \hat{A}=\left\{x \in A: T^{n}(x) \in\right.$ A for some $n>0\}$ has $\mu(A \Delta \hat{A})=0$.

This helps justify an important construction in ergodic theory and this thesis, the induced map. If T is μ measure preserving and A is a measurable set, then the Poincaré recurrence theorem tells us that for all but a measure zero set of $x \in A$ there exists $n_{x} \in \mathbb{N}$ such that $T^{n_{x}}(x) \in A$. Motivated by this we define the induced map of T on A (or the Poincaré first return map) as $\left.T\right|_{A}: A \rightarrow A$ by $\left.T\right|_{A}(x)=T^{r_{x}}(x)$ where $r_{x}=\min \left\{n \in \mathbb{N}: T^{n}(x) \in A\right\} .\left.T\right|_{A}$ is also μ measure preserving. One can also check that if $B \subset A$ then $\left.T\right|_{B}=\left.\left(\left.T\right|_{A}\right)\right|_{B}$.

1.2 What is an IET

Definition 2. Given $L=\left(l_{1}, l_{2}, \ldots, l_{d}\right)$ where $l_{i} \geq 0, l_{1}+\ldots+l_{d}=1$, we obtain d subintervals of $[0,1), I_{1}=\left[0, l_{1}\right), I_{2}=\left[l_{1}, l_{1}+l_{2}\right), \ldots, I_{d}=\left[l_{1}+\ldots+l_{d-1}, 1\right)$. Given a permutation π on $\{1,2, \ldots, d\}$, we obtain a d-Interval Exchange Transformation (d IET) $T:[0,1) \rightarrow[0,1)$ which exchanges the intervals I_{i} according to π. That is, if $x \in I_{j}$ then

$$
T(x)=x-\sum_{k<j} l_{k}+\sum_{\pi\left(k^{\prime}\right)<\pi(j)} l_{k^{\prime}}
$$

It follows from the definition that IETs are Lebesgue measure preserving invertible maps of $[0,1)$. They are by construction continuous from the right and have at most $d-1$ discontinuities. The inverse of an IET is also an IET (often with a different permutation.) Rotations can be viewed as 2-IETs with permutation (21).

Interval exchange transformations with a fixed permutation on d-letters are parametrized by the standard simplex in $\mathbb{R}^{d}, \Delta_{d}=\left\{\left(l_{1}, \ldots, l_{d}\right): l_{i} \geq 0, \sum l_{i}=1\right\}$. In this paper, λ denotes Lebesgue measure on the unit interval. The term "al-
most all" refers to Lebesgue measure on the disjoint union of the simplices corresponding to the permutations that contain some IETs with dense orbits. That is, $\pi(\{1, \ldots, k\}) \neq\{1, \ldots, k\}$ for $k<d[14$, Section 3$]$. These permutations are called irreducible.

The following is one of the main results on IETs and was proven independently by Masur [18] and Veech [23].

Theorem 3. (Masur, Veech) Let π be an irreducible permutation on d-letters. For almost every $\left(L_{1}, L_{2}, \ldots, L_{d}\right)$ the IET determined by $\left(L_{1}, \ldots, L_{d}\right)$ and π is uniquely ergodic with respect to Lebesgue measure.

1.2.1 The induced map of an IET

Let A be a subinterval of $[0,1)$. If T is a d-IET then $\left.T\right|_{A}$ is at most a $d+2$-IET. If A is bounded by discontinuities then $\left.T\right|_{A}$ is at most a d-IET. These observations are classical and follow from the simple fact that the discontinuities of $\left.T\right|_{A}$ are pre-images of discontinuities of T or pre-images of endpoints.

Remark 1. If $\left.T\right|_{A}$ is a d-IET then one can tabulate the number of hits the $j^{\text {th }}$ interval of $\left.T\right|_{A}$ makes in the $i^{t h}$ interval of T before first return as the $i j^{t h}$ entry of a matrix. Notice that the travel of intervals of the induced of an induced map can be kept track of by the product of two of these matrices. This will be used throughout this thesis. We denote this matrix $M(T, A)$.

1.2.2 The Keane condition

An IET, T with discontinuities $\delta_{1}, \ldots, \delta_{d-1}$ is said to satisfy the Keane condition (also called the infinite distinct orbit condition or idoc) if $\left\{\delta_{1}, T \delta_{1}, \ldots, T^{k} \delta_{1}, \ldots\right\}$, $\left\{\delta_{2}, T \delta_{2}, \ldots\right\}, \ldots,\left\{\delta_{d-1}, T \delta_{d-1}, \ldots\right\}$ are all disjoint infinite sets. The following 2 results motivate introducing this condition [14, Section 3].

Proposition 1. (Keane) If T satisfies the Keane condition then for any $x \in[0,1)$ the set $\{x, T x, \ldots$.$\} is dense in [0,1)$.

Proposition 2. (Keane) If π is an irreducible permutation on $\{1, \ldots, d\}$ and $\left\{L_{1}, \ldots, L_{d}\right\}$ are linearly independent over \mathbb{Q} then the IET they define satisfies the Keane condition.

If π is not irreducible then there are no IETs with permutation π satisfying the Keane condition.

1.3 Rauzy-Veech Induction

Our treatment of Rauzy-Veech induction will be the same as in [23, Section 7]. We recall it here. Let T be a d-IET with permutation π. Let δ_{+}be the rightmost discontinuity of T and δ_{-}be the rightmost discontinuity of T^{-1}. Let $\delta_{\max }=\max \left\{\delta_{+}, \delta_{-}\right\}$. Consider the induced map of T on $\left[0, \delta_{\max }\right)$ denoted $\left.T\right|_{\left[0, \delta_{\max }\right)}$. If $\delta_{+} \neq \delta_{-}$this is a d-IET on a smaller interval, perhaps with a different permutation.

We can renormalize it so that it is once again a d-IET on $[0,1)$. That is, let $R(T)(x)=\left.T\right|_{\left[0, \delta_{\max }\right)}\left(x \delta_{\max }\right)\left(\delta_{\max }\right)^{-1}$. This is the Rauzy-Veech induction of T. To be
explicit the Rauzy-Veech induction map is only defined if $\delta_{+} \neq \delta_{-}$. If $\delta_{\max }=\delta_{+}$we say the first step in Rauzy-Veech induction is a. In this case the permutation of $R(T)$ is given by

$$
\pi^{\prime}(j)= \begin{cases}\pi(j) & j \leq \pi^{-1}(d) \tag{1.1}\\ \pi(d) & j=\pi^{-1}(d)+1 \\ \pi(j-1) & \text { otherwise }\end{cases}
$$

We keep track of what has happened under Rauzy-Veech induction by a matrix $M(T, 1)$ where

$$
M(T, 1)[i j]= \begin{cases}\delta_{i, j} & j \leq \pi^{-1}(d) \tag{1.2}\\ \delta_{i, j-1} & j>\pi^{-1}(d) \text { and } i \neq d \\ \delta_{\pi^{-1}(d), j} & i=d\end{cases}
$$

If $\delta_{\max }=\delta_{-}$we say the first step in Rauzy-Veech induction is b. In this case the permutation of $R(T)$ is given by

$$
\pi^{\prime}(j)= \begin{cases}\pi(j) & \pi(j) \leq \pi(d) \tag{1.3}\\ \pi(j)+1 & \pi(d)<\pi(j)<d \\ \pi(d)+1 & \pi(j)=d\end{cases}
$$

We keep track of what has happened under Rauzy-Veech induction by a matrix

$$
M(T, 1)[i j]= \begin{cases}1 & i=d \text { and } j=\pi^{-1}(d) \tag{1.4}\\ \delta_{i, j} & \text { otherwise }\end{cases}
$$

The matrices described above depend on whether the step is a or b and the permutation T has. The following well known lemmas which are immediate calculations help
motivate the definition of $M(T, 1)$.

Lemma 1. If $R(T)=S_{L, \pi}$ then the length vector of T is comeasurable with $M(T, 1) L$.

Let $M_{\Delta}=M \mathbb{R}_{d}^{+} \cap \stackrel{\circ}{\Delta}_{d}$. Recall $\stackrel{\Delta}{d}_{d}$ is the interior of the simplex in \mathbb{R}^{d}.

Lemma 2. An IET with lengths contained in $M(T, 1)_{\Delta}$ and permutation π has the same first step of Rauzy-Veech induction as T.

We define the $n^{\text {th }}$ matrix of Rauzy-Veech induction by

$$
M(T, n)=M(T, n-1) M\left(R^{n-1}(T), 1\right)
$$

All $M(T, n)$ are in $S L_{2}(\mathbb{Z})$ and have non-negative entries. It follows from Lemma 2 that for an IET with length vector in $M(T, n)_{\Delta}$ and permutation π the first n steps of Rauzy-Veech induction agree with T. If M is any matrix, $C_{i}(M)$ denotes the $i^{\text {th }}$ column and $C_{\max }(M)$ denotes the column with the largest sum of entries. Let $\left|C_{i}(M)\right|$ denote the sum of the entries in the $i^{\text {th }}$ column. Versions of the following lemma are well known and we provide a proof for completeness.

Lemma 3. If $M\left(R^{n}(T), k\right)$ is a positive matrix and $L=\frac{C_{i}(M(T, n+k))}{\mid C_{i}(M(T, n+k) \mid}$ then $S_{L, \pi}$ agrees with T through the first n steps of Rauzy-Veech induction.

Proof. By Lemma 1 the length vector for $R^{m}\left(S_{L, \pi}\right)$ is $\frac{C_{i}\left(M\left(R^{m}(T), n+k-m\right)\right)}{\left|C_{i}\left(M\left(R^{m}(T), n+k-m\right)\right)\right|}$ for any m where $R^{m}\left(S_{L, \pi}\right)$ is defined. By our assumption on the positivity of $M\left(R^{n}(T), k\right)$ the vector $\frac{C_{i}\left(M\left(R^{n}(T), k\right)\right)}{\mid C_{i}\left(M\left(R^{n}(T), k\right)| |\right.}$ is contained in \AA_{d}. The lemma follows by Lemma 2 and induction.

The next definition does not appear in [23] but is important for the last section.

Definition 3. A matrix M is called ν balanced if $\frac{1}{\nu}<\frac{\left|C_{2}(M)\right|}{\left|C_{j}(M)\right|}<\nu$ for all i and j.

Notice that if M is ν balanced then $\left|C_{i}(M)\right|>\frac{\left|C_{\max }(M)\right|}{\nu}$.
We remarked earlier that Rauzy-Veech induction may send the IET to an IET with a different permutation. Given a permutation π, its Rauzy class is the set of all permutations that can be reached by powers of Rauzy-Veech induction on IETs with permutation π.

Whether the operation of Rauzy-Veech induction is a or b is important. The infinite sequence of a 's and b 's uniquely determines the IET if it is uniquely ergodic with respect to Lebesgue measure.

1.4 Basic Measure Theory

Theorem 4. (Borel-Cantelli) Let μ be a measure and A_{1}, A_{2}, \ldots be a sequence of μ measurable sets. If $\sum_{n=1}^{\infty} \mu\left(A_{i}\right)<\infty$ then $\mu\left(\bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_{i}\right)=0$.

Theorem 5. (Fubini) Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be two finite measure spaces and $f: X \times Y$ be a measurable function of their product σ-algebra. Then $\int_{X}\left(\int_{Y} f(x, y) d \nu(y)\right) d \mu(x)=\int_{Y}\left(\int_{X} f(x, y) d \mu(x)\right) d \nu(y)$.

The assumption that these are finite measure spaces can be weakened to only assume that they are σ-finite.

1.5 The Spectral Theorem

If $f \in L^{2}(\mu)$ and T is a μ measure preserving transformation then $f \circ T \in L^{2}(\mu)$, with the same norm. Motivated by this let U_{T} denote the isometry on $L^{2}(\mu)$ given by $U_{T}(f)=f \circ T$. Notice that U_{T} preserves constant functions. If T has measure preserving inverse then U_{T} is a unitary operator with $U_{T}^{*}=U_{T^{-1}}$.

The spectral theorem for unitary operators states that for each $f \in L^{2}(\mu)$ there exists a unique measure on the unit circle $\mu_{f, t}$, such that

$$
\int_{\mathbb{T}} z^{n} d \sigma_{f, T}=<f, U_{T}^{n} f>\text { for all } n
$$

In Chapter 3 the spectral theorem will be used to establish that IETs are almost surely different. We will briefly make some remarks that are helpful to motivate this approach. Assume that there exists an increasing sequence of natural numbers n_{1}, n_{2}, \ldots such that $\lim _{i \rightarrow \infty} \int_{0}^{1}\left|T^{n_{i}} x-x\right| d \lambda=0$. It follows from either the Lebesgue density theorem or Luzin's theorem that $U_{T}^{n_{i}} f$ converges to f in L^{2} norm. It follows that $U_{T}^{n_{i}}$ converges to the identity in the strong operator topology. It also follows that $\lim _{i \rightarrow \infty} \int_{\mathbb{T}}\left|z^{n_{i}}-1\right|^{2} \sigma_{f, T}=0$. By the fact that convergence in norm implies convergence almost everywhere along a subsequence it follows that there exists i_{1}, i_{2}, \ldots such that $\left\{z: \lim _{j \rightarrow \infty} z^{n_{i j}}=1\right\}$ has full $\sigma_{f, T}$ measure. This implies that spectral measures detect information about the measure preserving transformations they are associated with. This argument is developed further in Chapter 3.

Chapter 2

Keane type examples

Michael Keane introduced a construction of a minimal but not uniquely ergodic 4IET [15]. This construction is based on proving that there are orbits that have asymptotically different distribution. It uses an inductive procedure that provides for a great deal of control. This chapter uses Keane's construction to show that there exists a topologically mixing IET, results on the possible size of ergodic measures in terms of Hausdorff dimension and exotic properties of the distribution of orbits. These results make statements about topology, measure and metric respectively.

2.1 An introduction to Keane type examples

Consider IETs with permutation (4213). Observe that the second interval gets shifted by $l_{4}-l_{1}$. If this difference is small relative to l_{2} then much of I_{2} gets sent to itself. At the same time, pieces of I_{3} do not reach I_{2} until they have first reached I_{4}. This is the heart of the Keane construction. The details of the Keane construction are centered
around iterating this procedure by the induced map. Keane considered the induced map on the fourth interval, which we denote $I^{(1)}$. The induced map on this interval is once again a 4-IET. Keane showed that by choosing the lengths appropriately one could ensure that this induced map had the permutation (2431). Name these in reverse order and we once again get a (4213) IET. Motivated by this, we name the 4 exchanged subintervals of $I^{(1)}$ under $\left.T\right|_{I^{(1)}}$ in reverse order; that is, $I_{1}^{(1)}$ is the subinterval furthest to the right. Keane also showed that for any choice $m, n \in \mathbb{N}$ one can find an IET whose landing pattern of $I_{j}^{(1)}$ is given by the columns of following matrix:

$$
A_{m, n}=\left(\begin{array}{cccc}
0 & 0 & 1 & 1 \\
m-1 & m & 0 & 0 \\
n & n & n-1 & n \\
1 & 1 & 1 & 1
\end{array}\right) ; \quad m, n \in \mathbb{N}=\{1,2, \ldots\} .
$$

In order to see this, pick lengths for $I^{(1)}$ and write it as a column vector. Now assign lengths to the original IET by multiplying this column vector by $A_{m, n}$. The induced map will travel according to this matrix by construction. For instance, if one chooses lengths $[.25, .25, .25, .25]$ for $I^{(1)}$ one gets lengths of

$$
\left[\frac{2}{2+2 m-1+4 n-1+4}, \frac{2 m-1}{2 m+4 n+4}, \frac{4 n-1}{2 m+4 n+4}, \frac{4}{2 m+4 n+4}\right]
$$

for the original IET (after renormalizing). For any finite collection of matrices one can iterate this construction. (Assign lengths for $I^{(k)}$ by multiplying the lengths of $I^{(k+1)}$ by $A_{m_{k+1}, n_{k+1}}$, multiply the resulting column vector by $A_{m_{k}, n_{k}}, \ldots . I^{(k+1)}$ is defined inductively as the fourth interval of $I^{(k)}$.) Compactness (of \mathbb{P}^{3}, which can be
thought of as the parameterizing space of (4213) IETs) ensures that we can pass to an infinite sequence of these matrices.

Since the intervals are named in reverse order, the discontinuity (under the induced map) between $I_{2}^{(1)}$ and $I_{3}^{(1)}$ is given by $T^{-1}\left(\delta_{1}\right)$ where δ_{1} denotes the discontinuity between I_{1} and I_{2}. As the first row of the matrix suggests $I_{1}=T\left(I_{4}^{(1)} \cup I_{3}^{(1)}\right)$. The discontinuity (under the induced map) between $I_{1}^{(1)}$ and $I_{2}^{(1)}$ is given by $T^{-m}\left(\delta_{2}\right)$ where δ_{2} denotes the discontinuity between I_{2} and I_{3}. As the second row of the matrix suggests

$$
I_{2}=T\left(I_{2}^{(1)} \cup I_{1}^{(1)}\right) \cup T^{2}\left(I_{2}^{(1)} \cup I_{1}^{(1)}\right) \cup \ldots \cup T^{m-1}\left(I_{2}^{(1)} \cup I_{1}^{(1)}\right) \cup T^{m}\left(I_{2}\right)
$$

The discontinuity (under the induced map) between $I_{3}^{(1)}$ and $I_{4}^{(1)}$ is given by $T^{-n-1}\left(\delta_{3}\right)$ where δ_{3} denotes the discontinuity between I_{3} and I_{4}. As the third row of the matrix suggests
$I_{3}=T^{m}\left(I_{1}^{(1)}\right) \cup T^{m+1}\left(I_{2}^{(1)}\right) \cup T^{2}\left(I_{4}^{(1)} \cup I_{3}^{(1)}\right) \cup T^{m+1}\left(I_{1}^{(1)}\right) \cup T^{m+2}\left(I_{2}^{(1)}\right) \cup T^{3}\left(I_{4}^{(1)} \cup I_{3}^{(1)}\right) \cup$
$\ldots \cup T^{m+n-1}\left(I_{1}^{(1)}\right) \cup T^{m+n}\left(I_{2}^{(1)}\right) \cup T^{n}\left(I_{4}^{(1)} \cup I_{3}^{(1)}\right) \cup T^{m+n}\left(I_{1}^{(1)}\right) \cup T^{m+n+1}\left(I_{2}^{(1)}\right) \cup T^{n+1}\left(I_{4}^{(1)}\right)$. $I_{4}=I_{4}^{(1)} \cup I_{3}^{(1)} \cup I_{2}^{(1)} \cup I_{1}^{(1)}$. As the columns of the matrix suggest, this is also

$$
I_{4}=T^{n+1}\left(I_{3}^{(1)}\right) \cup T^{m+n+1}\left(I_{2}^{(1)}\right) \cup T^{m+n}\left(I_{1}^{(1)}\right) \cup T^{n+2}\left(I_{4}^{(1)}\right)
$$

To recap, the composition of I_{j} can be given by the $j^{\text {th }}$ row of the matrix. The travel before first return of $I_{j}^{(1)}$ can be given by the $j^{\text {th }}$ column. Additionally, because the intervals were named in reverse order, the permutation of the induced map is once again (4213).

It is important for this construction that everything be iterated. The composition of $I_{j}^{(k)}$ in pieces of $I^{(k+r)}$ is given by $e_{j}^{\tau} A_{m_{k+1}, n_{k+1}} \ldots A_{m_{k+r}, n_{k+r}}$ (where e_{j}^{τ} denotes the transpose pf e_{j}). Likewise, the travel of $I_{j}^{(k+r)}$ under $T_{I^{(k)}}$ before first return to $I^{(k+r)}$ is given by $A_{m_{k+1}, n_{k+1}} \ldots A_{m_{k+r}, n_{k+r}} e_{j}$.

Definition 4. Let $O\left(I_{j}^{(k)}\right)$ denote the disjoint images under T of $I_{j}^{(k)}$ before first return to $I^{(k)}$.

Now for some explicit statements about the travel of subintervals of $I^{(k)}$ under the induced map $T_{I^{(k)}}$. When $I_{3}^{(k)}$ returns to $I^{(k)}$ it entirely covers $I_{4}^{(k)}$. It is a subset of $I_{3}^{(k)} \cup I_{4}^{(k)}$. When $I_{4}^{(k)}$ returns to $I^{(k)}$ it entirely covers $I_{1}^{(k)}$. It intersects $I_{2}^{(k)}$. Moreover part of this intersection will stay in $O\left(I_{2}^{(k)}\right)$ for the next $m_{k+1} b_{k, 2}$ images (the other part $\left(m_{k+1}-1\right) b_{k, 2}$.) When $I_{2}^{(k)}$ returns to $I^{(k)}$ it intersects $I_{3}^{(k)}$. Moreover this piece of intersection will stay in $O\left(I_{3}^{(k)}\right)$ for the next $n_{k+1} b_{k, 3}$ images.

Definition 5. $b_{k, i}$ is the first return time of $I_{i}^{(k)}$ to $I^{(k)}$.
 $n_{k} b_{k-1,3}+b_{k-1,4}$ and $b_{k, 3}=b_{k-1,1}+\left(n_{k}-1\right) b_{k-1,3}+b_{k-1,4}$.

Remark 3. $O\left(I_{i}^{(k)}=\bigcup_{i=1}^{b_{k, i}-1} T^{i}\left(I_{j}^{(k)}\right)\right.$.
Some facts to keep in mind:

1. The choice of n_{k} has no effect on $b_{i, 2}$ for $i<k$.
2. The choice of n_{k} has no effect on $b_{i, 3}$ for $i<k$.
3. The choice of m_{k} has no effect on $b_{i, 2}$ for $i<k$.
4. The choice of m_{k} has no effect on $b_{i, 3}$ for $i<k+1$.

2.2 There exists a topologically mixing Keane IET

Definition 6. Let X be a topological space. A dynamical system $T: X \rightarrow X$ is said to be topologically mixing if for nonempty open sets U, V there exists $N_{U, V}:=N$ such that $T^{n}(U) \cap V \neq \emptyset$ for all $n \geq N$.

Theorem 6. There exists a topologically mixing 4-IET.

Remark 4. It is classical that aperiodic IETs are measurably conjugate to shift dynamical systems that are continuous. The example presented to prove Theorem 6 has this conjugate system also topologically mixing. The proof is straightforward and will not be presented in this thesis.

Conditions on $b_{k, 2}$ and $b_{k, 3}$ that ensure topological mixing:

1. $b_{k, 2}$ is prime for all k.
2. $b_{i, 2} \not \backslash b_{k, 3}$ for all $i<k$.
3. The group of multiplicative units mod $\prod_{i=1}^{k} b_{i, 2}$ has more than $.5 \prod_{i=1}^{k} b_{i, 2}$ elements.
4. $b_{k, 2} b_{k+1,3}+b_{k+1,3}+b_{k, 4}+b_{k-1,4}<m_{k+1} b_{k, 2}$
5. $b_{k, 3} b_{k, 2}+b_{k, 2}<n_{k+1} b_{k, 3}$

Theorem 1 will be proven by showing that any Keane IET chosen in this way is Topologically mixing. We first show that the set of such IETs is nonempty.

Lemma 4. One can choose $b_{k, 2}$ and $b_{k, 3}$ to fulfill these conditions.

Proof. By induction. Assume we have chosen $n_{1}, m_{1}, n_{2}, m_{2}, \ldots, n_{k-1}, m_{k-1}$; we describe how to choose n_{k} and then given this n_{k} how to choose m_{k}. Consider congruence modulo $g:=\prod_{i=1}^{k-1} b_{i, 2}$. Choose a congruence class [f] that is in the group of multiplicative units and so that $\left[f+b_{k-1,3}-b_{k-1,1}\right]$ is in the multiplicative group of units. This can be done by pigeon hole principle (by condition 3). Pick n_{k} so that $b_{k, 3} \in[f]$ and so that $n_{k}>\frac{b_{k-1,3} b_{k-1,2}+b_{k-1,2}}{b_{k-1,3}}$. This can be done because $b_{k-1,3}$ is relatively prime to the $b_{i, 2}$ for all $i<k$. Next we pick m_{k} so that $b_{k, 2}$ is prime, $m_{k}>\frac{b_{k-1,2} b_{k, 3}+b_{k-1,4}+b_{k, 3}}{b_{k-1,2}}$ and condition 3 is satisfied. This is doable because we wish to find a prime in the arithmetic progression $n_{k} b_{k-1,3}+b_{k-1,4}+b_{k-1,2} \mathbb{N}$ and the starting point and the increment are relatively prime and the other conditions merely require choosing m_{k} large enough.

Let $c_{k}=b_{k+1,2} b_{k+2,3}+b_{k+2,3}+b_{k+2,4}+b_{k+1,4} ; d_{k}=b_{k+2,3} b_{k+2,2}+b_{k+2,2}$.
Let J contain at least one level of a tower over $I^{(k)}$. This means that it contains at least 1 level from each of the 4 towers over $I^{(k+2)}$. For all $j>k, i>c_{j}, T^{i}(J)$ intersects every level of every tower over $I^{(j-1)}$. This is proved in the following lemmas. In these arguments it will be important to pick out a level from $O\left(I_{2}^{(k+2)}\right)$ and $O\left(I_{3}^{(k+2)}\right)$. These will be denoted J^{\prime}.

Lemma 5. At times c_{k} to $d_{k} J^{\prime}$, a level in $O\left(I_{3}^{(k+2)}\right)$, intersects every level of $O\left(I_{2}^{(k+1)}\right)$.

Proof. There exists $0<i \leq b_{k+2,3}$ (it is equal to $b_{k+2,3}$ for $I_{3}^{(k+2)}$ but for pieces of the orbit it is less than) such that $I_{4}^{(k+2)} \subset T^{i}\left(J^{\prime}\right)$. So $T^{i+b_{k+2,4}}\left(J^{\prime}\right) \cap I_{2}^{(k+2)} \neq \emptyset$. Also

$$
T^{i+b_{k+2,4}+b_{k+1,4}}\left(J^{\prime}\right) \cap I_{2}^{(k+1)} \neq \emptyset
$$

In fact,

$$
T^{i+b_{k+2,4}+b_{k+1,4}+j b_{k+2,3}}\left(J^{\prime}\right) \cap I_{2}^{(k+1)} \neq \emptyset
$$

for $j<n_{k+3}$ (notice, $\left.T\right|_{I^{(k+2)}} ^{j}\left(I_{3}^{(k+2)}\right) \cap I_{3}^{(k+2)} \neq \emptyset$ for $\left.j<n_{k+3}\right)$. Pieces of $I_{3}^{(k+2)}$ are inserted into $I_{2}^{(k+1)}$ with a delay of $b_{k+2,3}$ which is coprime to $b_{k+1,2}$. It follows that $T^{c_{k}}\left(J^{\prime}\right)$ intersects every level of $O\left(I_{2}^{(k+1)}\right)$. By condition 5 it follows that $T^{r}\left(J^{\prime}\right)$ intersects every level of $O\left(I_{2}^{(k+1)}\right)$ for $c_{k} \leq r \leq d_{k}$ (because $n_{k+3} b_{k+2,3}>d_{k}$). Moreover, the pieces inserted take $m_{k+2} b_{k+1,2}$ to leave $O\left(I_{2}^{(k+2)}\right)$. Because $m_{k+1} b_{k+1,2}>b_{k+2,3} b_{k+1,2}$ (condition 4) the piece does not leave $O\left(I_{2}^{(k+2)}\right)$ before another is inserted into its level.

Lemma 6. At times d_{k} to $c_{k+1} J^{\prime}$, a level in $O\left(I_{2}^{(k+2)}\right)$, intersects every piece of $O\left(I_{3}^{(k+2)}\right)$.

Proof. There exists $0<i \leq b_{k+2,2}$ (it is equal to $b_{k+2,2}$ for $I_{2}^{(k+2)}$ but for pieces of the orbit it is less than) such that $I_{3}^{(k+2)} \cap T^{i}\left(J^{\prime}\right) \neq \emptyset$. Also $I_{3}^{(k+2)} \cap T^{i+j b_{k+2,2}}\left(J^{\prime}\right) \neq \emptyset$ for $j<m_{k+3}$ (notice, $\left.T\right|_{I^{(k)}} ^{j}\left(I_{2}^{(k+2)}\right) \cap I_{2}^{(k+2)} \neq \emptyset$ for $j \leq m_{k+3}$). Because $b_{k+2,2}$ is relatively prime to $b_{k+2,3}$ we have $T^{i+j b_{k+2,2}}\left(J^{\prime}\right)$ intersects each level of $O\left(I_{3}^{(k+2)}\right)$ for $j=b_{k+2,3}$. It follows from condition 4 that $T^{r}\left(I_{2}^{(k+2)}\right)$ intersects each level of $O\left(I_{3}^{(k+2)}\right)$ for $d_{k} \leq r \leq c_{k+1}$ (because $m_{k+3} b_{k+2,2}>b_{k+2,2} b_{k+3,3}$). Moreover, the pieces inserted take $\left(n_{k+2}-1\right) b_{k+2,3}$ to leave $O\left(I_{3}^{(k+2)}\right)$. Because $\left(n_{k+3}-1\right) b_{k+2,3}>b_{k+2,2} b_{k+2,3}$ (condition 5) the piece does not leave $O\left(I_{3}^{(k+1)}\right)$ before another is inserted into its level.

Proof of Theorem 6. For any two intervals J_{1}, J_{2}, eventually both contain some level of a tower over $I^{\left(k_{0}\right)}$. This implies that they contain a level from each tower over
$I^{(k)}$ for all $k>k_{0}+1$. This implies that $T^{n}\left(J_{1}\right) \cap J_{2} \neq \emptyset$ for $n \in\left[c_{k}, d_{k}\right]$ because J_{1} contains a level of $I_{3}^{(k+2)}$ and J_{2} contains a level of $I_{2}^{(k+1)}$. Also $T^{n}\left(J_{1}\right) \cap J_{2} \neq \emptyset$ for $n \in\left[d_{k}, c_{k+1}\right]$ because J_{1} contains a level of $I_{2}^{(k+2)}$ and J_{2} contains a level of $I_{3}^{(k+2)}$. It follows that $T^{n}\left(J_{1}\right) \cap J_{2} \neq \emptyset$ for any $n>c_{k_{0}+1}$.

2.2.1 No IET is topologically mixing of all orders

The argument is a straightforward application of [13]. Let T be an d-IET. Observe that a topologically mixing IET must be minimal (otherwise it splits into disjoint invariant components). Let J, J^{\prime} be any disjoint intervals bounded by discontinuities of T^{l} for some l, and $n_{1}, \ldots, n_{d^{2}}$ be natural numbers. We will find a violation of topological mixing of order $d^{2}+1$ at bigger times. Pick an interval V such that all of the first returns to V are greater than $\max \left\{l, n_{1}, \ldots n_{d^{2}}\right\}$. We may also choose V so that T_{V} is an s IET for some $s \leq d$. By our assumption that the return times to V are larger than l, each level of a tower over V is either contained in J or disjoint from J. Let $U_{1}, U_{2}, \ldots, U_{s}$ be its subintervals. $T_{U_{i}}$ is an s_{i}-IET for $s_{i} \leq s$. Call its intervals $U_{i, 1}, \ldots, U_{i, s_{i}}$ and their return times $r_{i, 1}, \ldots r_{i, s_{i}}$. If $x \in O\left(U_{i}\right)$ and $x \in O\left(U_{i, j}\right)$ then $T^{r_{i, j}}(x) \in J$. This is because $x \in T^{k}\left(U_{i}\right) \subset J$ for some $k<r_{i}$, in fact $x \in T^{k}\left(U_{i, j}\right)$. $T^{r_{i, j}-k}(x) \in U_{i}$. So $T^{k}\left(T^{r_{i, j}-k}(x)\right) \in T^{k}\left(U_{i}\right) \subset J$. Therefore $\stackrel{\bigcap}{i, j=1}_{d} T^{r_{i, j}}(J) \cap J^{\prime}=\emptyset$.

2.3 Measure estimates for Keane's construction

The previous sections discussed the topological properties of Keane type IETs. Keane's construction of these IETs was motivated by their measure properties. In

Keane's example we have a non-uniquely ergodic minimal 4-IET T with ergodic measure λ_{2} and λ_{3}. To gain some further intuition consider the product:

$$
\left(\begin{array}{cccc}
0 & 0 & 1 & 1 \\
m-1 & m & 0 & 0 \\
n & n & n-1 & n \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{c}
c+d \\
(m-1) a+m b \\
n(a+b+c+d)-c \\
a+b+c+d
\end{array}\right)
$$

Notice that if $a=c=d=0, b=1, m$ is much bigger than n and large then the resulting column vector has small angle with the original. Likewise, if $a=b=d=0$, $c=1$ and n is large then the resulting column vector has small angle with the original. Motivated by this, we introduce another piece of notation.

Definition 7. Let $\bar{A}_{m, n} v=\frac{A_{m, n} v}{\left|A_{m, n} v\right|}$, where $|w|$ is the sum of the entries in w.

Michael Keane showed that if $3 n_{k} \leq m_{k} \leq \frac{1}{2} n_{k+1}$ and $n_{1} \geq 9$ then the IET given by $\lim _{r \rightarrow \infty} \bar{A}_{n_{1}, m_{1}} \ldots \bar{A}_{n_{r}, m_{r}} e_{2}$ is minimal but not uniquely ergodic. In particular he showed the limit exists. (It is not hard to see that one can remove the assumption on n_{1} or any finite number of matrices).

2.3.1 Estimates on the size of intervals with respect to the two ergodic measures

In this section we bound $\lambda_{i}\left(I_{j}^{(k)}\right)$ between two constants. Many of these are needed in the later arguments. We include the rest for completeness.

In these computations, we use j th entry of partial products $\bar{A}_{k} \ldots \bar{A}_{k+r} e_{i}$ to estimate $\frac{\lambda_{i}\left(I_{j}^{(k)}\right)}{\lambda_{i}\left(I^{(k)}\right)}$. To complete these estimates we remark that $b_{k, 2}^{-1}>\lambda_{2}\left(I^{(k)}\right)>\frac{1}{4 b_{k, 2}}$ (Lemma
28) and $b_{k, 3}^{-1}>\lambda_{3}\left(I^{(k)}\right)>\frac{1}{8 b_{k, 3}}$ (Lemma 27).

Remark 5. The proofs of these lemmas often provide better results than their statements. Additionally, it is often straightforward to provide better estimates, especially under stronger growth conditions on m_{i} and n_{i}. Lemma 14, for instance, would be amenable to such an approach.

Proposition 3. $\frac{\lambda_{i}\left(I_{I}^{(k)}\right)}{\lambda_{i}\left(I^{(k)}\right)}=$ the j th entry of $\lim _{r \rightarrow \infty} \bar{A}_{m_{k+1}, n_{k+1}} \ldots \bar{A}_{m_{k+r}, n_{k+r}} e_{i}$.
Lemma 7. $\frac{\lambda_{3}\left(I_{2}^{(k)}\right)}{\lambda_{3}\left(I^{(k)}\right)} \geq \frac{m_{k+1}}{2 n_{k+1} n_{k+2}}$.

Proof. It suffices to show that the second entry of $\bar{A}_{m_{k+1}, n_{k+1}} \bar{A}_{m_{k+2}, n_{k+2}} e_{3}>\frac{m_{k+1}}{2 n_{k+1} n_{k+2}}$. This is a direct computation.

Lemma 8. $\frac{\lambda_{3}\left(I_{2}^{(k)}\right)}{\lambda_{3}\left(I^{(k)}\right)} \leq \frac{2 m_{k+1}}{\left(n_{k+2}+1\right)\left(n_{k+1}+1\right)}$.

This result is in the proof of Lemma 3 of [15].

Lemma 9. $\frac{\lambda_{3}\left(I_{3}^{(k)}\right)}{\lambda_{3}\left(I^{(k)}\right)} \geq 1-\frac{3}{n_{k+1}}$.

This is Lemma 3 of [15].
Lemma 10. $\frac{\lambda_{3}\left(I_{4}^{(k)}\right)}{\lambda_{i}\left(I^{(k)}\right)} \leq \frac{1}{n_{k+1}}$.

Proof. Notice that $I_{4}^{(k)}$ is the disjoint union of an image of $I_{1}^{(k+1)}$, an image of $I_{2}^{(k+1)}$, an image of $I_{3}^{(k+1)}$ and an image of $I_{4}^{(k+1)}$ and that $I^{(k)}$ contains at least $n_{k+1}+1$ disjoint images of $I_{j}^{(k+1)}$ for each j.

Lemma 11. $\frac{\lambda_{3}\left(I_{4}^{(k)}\right)}{\lambda_{3}\left(I^{(k)}\right)} \geq \frac{1}{2 n_{k+1}}$.

Proof. $I_{4}^{(k)}$ is made up of one disjoint image of each $I_{i}^{(k+1)} . I_{3}^{(k)}$ is made up of $n_{k+1}-1$ disjoint images of $I_{3}^{(k+1)}$ and n_{k+1} disjoint images of each of the other $I_{i}^{(k+1)}$. Therefore, because n_{k+1} disjoint images of $I_{4}^{(k+1)}$ cover $I_{3}^{(k+1)}$ and $\frac{\lambda_{3}\left(I_{4}^{(k)}\right)}{\lambda_{3}\left(I^{(k)}\right)}>\frac{\lambda_{3}\left(I_{3}^{(k)}\right)}{\lambda_{3}\left(I^{(k)}\right)} \frac{1}{n_{k+1}}$. The lemma follows by Lemma 9.

Lemma 12. $\frac{\lambda_{3}\left(I_{1}^{(k)}\right)}{\lambda_{3}\left(I^{(k)}\right)} \leq \frac{1}{n_{k+1}}$.
Proof. $I_{1}^{(k)}$ is made up of a disjoint union of an image of $I_{3}^{(k+1)}$ and $I_{4}^{(k+1)}$ each of which has at least $n_{k+1}+1$ disjoint images in $I^{(k)}$.

Lemma 13. $\frac{\lambda_{3}\left(I_{1}^{(k)}\right)}{\lambda_{3}\left(I^{(k)}\right)} \geq \frac{1}{3 n_{k+1}}$.
Proof. It follows from the composition of $I_{i}^{(k)}$ by subintervals of $I^{(k+1)}$ that $\lambda_{3}\left(I_{1}^{(k)}\right) \geq$ $\lambda_{3}\left(I_{3}^{(k+1)}\right)$. The proof follows from Lemmas 11 and 9.

Lemma 14. $\frac{\lambda_{2}\left(I_{2}^{(k)}\right)}{\lambda_{2}\left(I^{(k)}\right)}>\frac{0.25 m_{k+1}}{n_{k+1}+m_{k+1}+2}$.
Proof. Observe that if $v \in \mathbb{R}_{+}^{4}$ is positive, $|v|_{1}=1$ and $v[2]>.25$ then $\bar{A}_{m, n} v[2]>.25$ so long as $m \geq 3 n$ and $n>\frac{8}{5}$. By induction, it follows that $\prod_{t=k+1}^{r} \bar{A}_{m_{t}, n_{t}} e_{2}[2]>\frac{0.25 m_{k+1}}{n_{k+1}+m_{k+1}+2}$.
Lemma 15. $\frac{\lambda_{2}\left(I_{3}^{(k)}\right)}{\lambda_{2}\left(I^{(k)}\right)} \leq \frac{4 n_{k+1}}{m_{k+1}}$.
Proof. By the previous proof, $\prod_{t=k+2}^{r} \bar{A}_{m_{t}, n_{t}} e_{2}[2]>\frac{1}{4}$. It follows that $\prod_{t=k+1}^{r} \bar{A}_{m_{t}, n_{t}} e_{2}[3]<$ $\frac{n_{k+1}}{0.25 m_{k+1}}$.

Lemma 16. $\frac{\lambda_{2}\left(I_{3}^{(k)}\right)}{\lambda_{2}\left(I^{(k)}\right)} \geq \frac{n_{k+1}}{2 m_{k+1}}$.
Proof. $\bar{A}_{m_{k+1}, n_{k+1}} e_{2}[3]=\frac{n_{k+1}}{m_{k+1}+n_{k+1}+1}>\frac{n_{k+1}}{2 m_{k+1}}$ and $\bar{A}_{m_{k+1}, n_{k+1}} e_{2}[3]<\bar{A}_{m_{k+1}, n_{k+1}} e_{i}[3]$ for $i=1,3,4$. Thus $\bar{A}_{m_{k+1}, n_{k+1}}\left(\bar{A}_{m_{k+2}, n_{k+2}} \ldots \bar{A}_{m_{k+r}, n_{k+r}}\right)[3] \geq \frac{n_{k+1}}{2 m_{k+1}}$.

This proof is related to Lemma 24

Lemmar 17. $\frac{\lambda_{2}\left(I_{4}^{(k)}\right)}{\lambda_{2}\left(I^{(k)}\right)}>\frac{1}{2 m_{k+1}}$.
Proof. There are at most $m_{k+1}+n_{k+1}+1$ disjoint images of any $I_{i}^{(k+1)}$ in $I^{(k)}$. By our standard assumptions $n_{k+1}+1<m_{k+1}$. Also $I_{4}^{(k+1)}$ is made up of one image of each $I_{i}^{(k+1)}$.

Lemma 18. $\frac{\lambda_{2}\left(I_{4}^{(k)}\right)}{\lambda_{2}\left(I^{(k)}\right)}<\frac{4}{m_{k+1}}$.
Proof. By construction the fourth entry of $A_{m_{k+1}, n_{k+1}}\left(\bar{A}_{m_{k+2}, n_{k+2}} \ldots \bar{A}_{m_{k+r}, n_{k+r}}\right)$ is 1 . By Lemma 14 the second entry is at least $.25 m_{k+1}$.

Lemma 19. $\frac{\lambda_{2}\left(I_{1}^{(k)}\right)}{\lambda_{2}\left(I^{(k)}\right)}<\frac{16 n_{k+2}+16}{m_{k+1} m_{k+2}}$.
Proof. $I_{1}^{(k)}$ is made up of one image of $I_{3}^{(k+1)}$ and one image of $I_{4}^{(k+1)}$. $\frac{\lambda_{2}\left(I_{1}^{(k)}\right)}{\lambda_{2}\left(I^{(k)}\right)}=\frac{\lambda_{2}\left(I^{(k+1)}\right.}{\lambda_{2}\left(I^{(k)}\right)} \frac{\lambda_{2}\left(I_{3}^{(k+1)}\left(I_{4}^{(k+1)}\right)\right.}{\lambda_{2}\left(I^{(k+1)}\right)}$. By the fact that $I^{(k+1)}=I_{4}^{(k)}$, Lemmas 15 and 18 this is less than $\frac{4}{m_{k+1}} \frac{4 n_{k+2}+4}{m_{k+2}}$.

Lemma 20. $\frac{\lambda_{2}\left(I_{1}^{(k)}\right)}{\lambda_{2}\left(I^{(k)}\right)}>\frac{n_{k+2}}{4 m_{k+1} m_{k+2}}$.
Proof. $I_{1}^{(k)}$ contains one image of $I_{3}^{(k+1)}$. By Lemma $16, \frac{\lambda_{2}\left(I_{3}^{(k+1)}\right)}{\lambda_{2}\left(I^{(k+1)}\right)}>\frac{n_{k+2}}{2 m_{k+2}}$ and by Lemma 17, $\frac{\lambda_{2}\left(I^{(k+1)}\right)}{\lambda_{2}\left(I^{(k)}\right)}>\frac{1}{2 m_{k+1}}$.

2.4 Hausdorff dimension for ergodic measures in

Keane type examples

In Keane's example we have a non-uniquely ergodic minimal 4-IET T with ergodic measure λ_{2} and λ_{3}. If one assigns lengths to an IET by $l_{i}=c \lambda_{2}\left(I_{i}\right)+(1-c) \lambda_{3}\left(I_{i}\right)$,
then the resulting IETs all have the same topological dynamics (see [22, Section 1] for more general discussion). They also all have two ergodic measures that assign the same measure to the 4 -subintervals. When $c=1$ then λ_{2} is Lebesgue measure and λ_{3} is singular with respect to Lebesgue measure. When $c=0$ then λ_{3} is Lebesgue measure and λ_{2} is singular with respect to Lebesgue measure. In the intermediate situation both are absolutely continuous with respect to Lebesgue measure. This is discussed more in Remarks 8 and 10.

Theorem 7. (a) $H_{\text {dim }}\left(\lambda_{2}, d_{\lambda_{3}}\right)$ can take any value in $[0,1]$.
(b) $H_{\text {dim }}\left(\lambda_{3}, d_{\lambda_{2}}\right)$ can take any value in $[0,1]$

This result answers a question in [3, Section 6]. If the Hausdorff dimension of an ergodic measure for an IET is zero then the lengths of intervals are not all algebraic [3, Corollary 6.9].

Theorem 8. $\left(H_{\text {dim }}\left(\lambda_{2}, d_{\lambda_{3}}\right), H_{\text {dim }}\left(\lambda_{3}, d_{\lambda_{2}}\right)\right)$ can take values $(0,0),(1,0),(0,1)$ or $(1,1)$.

Theorem 9. If T is a Keane type IET let $G_{3}(T)$ be the set of λ_{3} generic points. There exists a Keane type IET T such that $H_{\text {dim }}\left(G_{3}(T)^{c}, d_{\lambda_{3}}\right)=0$.

This says that all but a set of Hausdorff dimension zero of the points behave λ_{3} typically.

2.4.1 Definition of Hausdorff dimension

Let $\operatorname{diam}(U)=\sup _{x, y \in U}|x-y|$. Consider a set $S \subset[0,1)$. We say a collection of open sets $\mathcal{U}=\left\{U_{i}\right\}_{i=1}^{\infty}$ is a $\delta>0$ cover of S if $S \subset \bigcup_{i=1}^{\infty} U_{i}$ and $\operatorname{diam}\left(U_{i}\right) \leq \delta \forall i$. Let
$H_{\delta}^{s}(S)=\inf \left\{\sum_{i=1}^{\infty}\left|U_{i}\right|^{s}:\left\{U_{i}\right\}\right.$ is a δ cover of $\left.S\right\}$. Let $H^{s}(S)=\lim _{\delta \rightarrow 0^{+}} H_{\delta}^{s}(S)$. Notice that the limit exists. Let $H_{\text {dim }}(S)=\inf \left\{s: H^{s}(S)=0\right\}$. This is equivalent to defining $H_{\text {dim }}(S)=\sup \left\{s: H^{s}(S)=\infty\right\}$. We state a few well known properties of Hausdorff dimension.

$$
\begin{aligned}
& H_{\operatorname{dim}}\left(\bigcup_{i=1}^{\infty} S_{i}\right)=\sup _{i} H_{\operatorname{dim}}\left(S_{i}\right) . \\
& H_{\operatorname{dim}} \bigcap_{i=1}^{\infty} S_{i} \leq \inf _{i} H_{\operatorname{dim}}\left(S_{i}\right)
\end{aligned}
$$

Definition 8. For a Borel Measure μ we define the Hausdorff dimension of a probability measure μ is

$$
H_{\operatorname{dim}}(\mu)=\inf \left\{H_{\operatorname{dim}}(M): M \text { is Borel and } \mu(M)=1\right\} .
$$

For upper bounds to Hausdorff dimension of a set, explicit constructions are often all that is necessary. For lower bounds Frostman's Lemma is useful.

Lemma 21. (Frostman) If $B \subset[0,1)$ be a Borel set. $H^{s}(B)>0$ iff there exists a finite radon measure on B, ν, such that $\nu(B(x, r)) \leq r^{s}$.
see [19] p. 112.

Corollary 1. If μ is a measure on $[0,1)$ and ϵ_{1}, \ldots is a positive sequence tending to 0 such that $\frac{\epsilon_{i}}{\epsilon_{i+1}}<C$ for some C and all i then $\mu\left(B\left(x, \epsilon_{i}\right)\right)<C\left(\epsilon_{i}\right)^{\alpha}$ implies $H_{\text {dim }}(\mu) \geq \alpha$.

Lemma 22. If T is a piecewise isometry then $H_{\text {dim }}(T(S)) \leq H_{d i m}(S)$.

This holds for locally Lipshitz maps as well, but this is unnecessary for the present paper.

2.4.2 Estimates towards calculating the Hausdorff dimension for ergodic measures of IETs

For upper bounds to the Hausdorff dimension for an ergodic measure of an IET the following proposition is useful.

Proposition 4. Let T be a μ ergodic IET and the $H_{\text {dim }}(\mu)=t$. If S is a set such that $H_{\text {dim }}(S)<t$ then $\mu(S)=0$.

Proof. This follows from the countable stability of $H_{\text {dim }}$ and ergodicity. If $\mu(S)>0$ then $\mu\left(\bigcup_{i=1}^{\infty} T^{i}(S)\right)=1$ by ergodicity. However, by the countable stability of Hausdorff dimension $H_{\text {dim }}\left(\bigcup_{i=1}^{\infty} T^{i}(S)\right)=H_{\text {dim }}(S)$ because T is a piecewise isometry.

This proposition says that one needs to only prove upper bounds on part of the measure. If $\mu(S)>0$ and $H^{t}(S)=0$ then $H_{\text {dim }}(\mu) \leq t$.

Below is a lemma based adapting Frostman's Lemma to our particular circumstances to provide lower bounds for the Hausdorff dimension of an ergodic measure.

Lemma 23. If there exists C such that $C \lambda_{3}\left(I_{i}^{(k)}\right)^{\alpha}>\lambda_{2}\left(I_{i}^{(k)}\right)$ for any k and $i \in$ $\{1,2,3,4\}$ then $H_{\text {dim }}\left(\lambda_{2}, d_{\lambda_{3}}\right) \geq \alpha$. Likewise, if there exists a C such that $C \lambda_{2}\left(I_{i}^{(k)}\right)^{\alpha}>$ $\lambda_{3}\left(I_{i}^{(k)}\right)$ for any k and $i \in\{1,2,3,4\}$ then $H_{\text {dim }}\left(\lambda_{3}, d_{\lambda_{2}}\right) \geq \alpha$.

Proof. By Frostman's Lemma it suffices to show that for any interval $J C \lambda_{3}(J)^{\alpha}>$ $\lambda_{2}(J)$. We will show that $\log _{\lambda_{3}(J)} \lambda_{2}(J)$ is dominated by something comparable to $\log _{\lambda_{3}\left(I_{2}^{(t)}\right)} \lambda_{2}\left(I_{2}^{(t)}\right.$. This follows form the fact that $I_{2}^{(k)}$ and $I_{3}^{(k)}$ are made up of repeating images. To see this assume that we wish to estimate $\log _{\lambda_{3}(J)} \lambda_{2}(J)$ mostly covered by images of $I_{i}^{(k+1)}$ and contained in $I_{2}^{(k)} . I_{2}^{(k)}$ is made up of repeating unions of
images of $I_{1}^{(k+1)} \cup I_{2}^{(k+1)}$ so the maximum advantage is either by taking the whole $I_{2}^{(k)}$ or $I_{2}^{(k+1)} \cup I_{1}^{(k+1)} \cup I_{2}^{(k+1)}$. In either case, $\log _{\lambda_{3}(J)} \lambda_{2}(J)$ is dominated by something proportional to $I_{2}^{(j)}$ for some j. Likewise, if $J \subset I_{3}^{(k)}$ for pieces in images of $I_{3}^{(k)}$ one either covers by all of $I_{3}^{(k)}$ or $I_{2}^{(k+1)} \cup I_{4}^{(k+1)} \cup I_{3}^{(k+1)} \cup I_{1}^{(k+1)} \cup I_{2}^{(k+1)} . I_{1}^{(k)}$ and $I_{4}^{(k)}$ are made up of at most 1 image each of $I_{i}^{(k+1)}$ for $i \in\{1,2,3,4\}$ and so reduce to these cases. Similar arguments hold for $\log _{\lambda_{2}(J)} \lambda_{3}(J)$.

Lemma 24. $b_{k, 2}>b_{k, i}$ for $i \in\{1,3,4\}$.

Proof. $b_{k, 2}>b_{k, 1}$ because the second entry of $A_{m_{k}, n_{k}} e_{2}=m_{k}>m_{k}-1$ and $m_{k}-1$ is the second entry of $A_{m_{k}, n_{k}} e_{1} . A_{m_{k}, n_{k}} e_{2}$ agrees with $A_{m_{k}, n_{k}} e_{1}$ in all other entries. $b_{k, 2} \geq b_{k, j}$ for $j=3,4$ because $A_{m_{k}, n_{k}} e_{2} \geq A_{m_{k}, n_{k}} e_{j}$ in all entries but the first and $m_{k} A_{m_{k-1}, n_{k-1}} e_{2}>A_{m_{k-1}, n_{k-1}} e_{1}$ in all entries (the second entry of $A_{m_{k}, n_{k}} e_{j}$ is 0 and the second entry of $A_{m_{k}, n_{k}} e_{2}$ is $m_{k} e_{2}$ and also the first entry of $A_{m_{k}, n_{k}} e_{j}=1$). This argument shows that $A_{m_{k-1}, n_{k-1}} A_{m_{k}, n_{k}} e_{2}$ has each entry greater than or equal to the corresponding entries of $A_{m_{k-1}, n_{k-1}} A_{m_{k}, n_{k}} e_{j}$ for $j=3,4$.

Lemma 25. $b_{k, 2} \leq \prod_{i=1}^{k} 2 m_{i}$.
Proof. $b_{k, 2}=m_{k} b_{k-1,2}+n_{k} b_{k-1,3}+b_{k-1,4}$. By Lemma $24 b_{i, 2} \geq b_{i, j}$. By our assumptions $m_{i}>n_{i}+1$. The lemma follows by induction.

Lemma 26. $\prod_{i=1}^{k} n_{i}<b_{k, 3}$.
Proof. $b_{k, 3}=b_{k, 1}+\left(n_{k}-1\right) b_{k-1,3}+b_{k-1,4}$. Notice that $b_{i, 4}=b_{i-1,1}+n_{i} b_{i-1,3}+b_{i-1,4}>b_{i, 3}$ implying that $b_{k, 3}>n_{k} b_{k-1,3}$. The lemma follows by induction.

Lemma 27. $\lambda_{3}\left(O\left(I_{3}^{(k)}\right)\right)>\frac{1}{8}$.

Proof. $n_{k+1} b_{k, 3}>\frac{1}{2} b_{k, i}$ for $i \neq 3$. This follows from Lemmas 9, 25 and 26.

This Lemma establishes that $\lambda_{3}\left(I^{(k)}\right)$ is proportional to $b_{k, 3}^{-1}$.

Lemma 28. $\lambda_{2}\left(O\left(I_{2}^{(k)}\right)\right)>\frac{1}{4}$.
Proof. $b_{k, 2}>b_{k, i}\left(\right.$ Lemma 24) so $\lambda_{2}\left(O\left(I_{2}^{(k)}\right)\right)>\frac{\lambda_{2}\left(I_{2}^{(k)}\right)}{\lambda_{2}\left(I^{(k)}\right)}$.
This Lemma establishes the $\lambda_{2}\left(I^{(k)}\right)$ is proportional to $b_{k, 2}^{-1}$.
Proposition 5. $H_{\text {dim }}\left(\lambda_{2}, d_{\lambda_{3}}\right) \leq H_{\operatorname{dim}}\left(\bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} O\left(I_{2}^{(k)}\right), d_{\lambda_{3}}\right)$.
Remark 6. $\bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} O\left(I_{2}^{(k)}\right)$ has positive λ_{2} measure and is T invariant except for a set of measure zero (because $\lambda_{i}\left(I_{2}^{(k)}\right) \rightarrow 0$). By ergodicity it has full measure.

Proposition 6. $H_{\operatorname{dim}}\left(\lambda_{2}, d_{\lambda_{3}}\right) \leq \liminf _{k \rightarrow \infty} \log _{\lambda_{3}\left(I_{2}^{(k)}\right)} b_{k, 2}^{-1}$.

Proof. Assume that $\liminf _{k \rightarrow \infty} \log _{\lambda_{3}\left(I_{2}^{(k)}\right)}, b_{k, 2}^{-1}=s$. It suffices to show that $H_{d i m}\left(\lambda_{2}, d_{\lambda_{3}}\right)<$ $s+\epsilon$ for all $\epsilon>0$. Let k_{1}, k_{2}, \ldots be an increasing sequence of natural numbers such that $\log _{\lambda_{3}\left(I_{2}^{\left(k_{t}\right)}\right.} b_{k_{t}, 2}^{-1}<s+\epsilon$ for all t. Consider $\bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} O\left(I_{2}^{\left(k_{i}\right)}\right)$. It has positive λ_{2} measure by Lemma 28. The naive covering shows that $H^{s+\epsilon}\left(\bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} O\left(I_{2}^{\left(k_{i}\right)}\right)\right)=0$. That is fix $\delta>0$ and choose n such that $\lambda_{3}\left(I_{2}^{\left(k_{2}\right)}\right)<\delta$. We bound $H_{\delta}^{s+\epsilon}\left(\bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} O\left(I_{2}^{\left(k_{i}\right)}\right)\right)$ by covering each $O\left(I_{2}^{\left(k_{i}\right)}\right)$ by $b_{k_{i}, 2}$ images of $I_{2}^{\left(k_{i}\right)}$. By the fact that $\log _{\lambda_{3}\left(I_{2}^{\left(k_{i}\right)}\right)} b_{k_{i}, 2}^{-1}<s+\epsilon$ for all i it follows that $\sum_{i=1}^{\infty} b_{k_{i}, 2}\left(\lambda_{3}\left(I_{2}^{\left(k_{i}\right)}\right)\right)^{s+2 \epsilon}<\infty$ and therefore the proposition follows.

Lemma 29. $H_{\text {dim }}\left(\lambda_{2}, d_{\lambda_{3}}\right) \geq \liminf _{k \rightarrow \infty} \log _{\lambda_{3}\left(I_{2}^{(k)}\right)}\left(\lambda_{2}\left(I_{2}^{(k)}\right)\right)$.

Proof. By Lemma 23 we have that

$$
H_{\operatorname{dim}}\left(\lambda_{2}, d_{\lambda_{3}}\right) \geq \min _{1 \leq i \leq 4} \liminf _{k \rightarrow \infty} \log _{\lambda_{3}\left(I_{i}^{(k)}\right)}\left(\lambda_{2}\left(I_{i}^{(k)}\right)\right)
$$

Consider

$$
\log _{\frac{\lambda_{3}\left(I_{i}^{(k)}\right)}{\lambda_{3}\left(I^{(k)}\right)} \lambda_{3}\left(I^{(k)}\right)} \frac{\lambda_{2}\left(I_{i}^{(k)}\right)}{\lambda_{2}\left(I^{(k)}\right)} \lambda_{2}\left(I^{(k)}\right) .
$$

To determine the i that attains the minimum it suffices to consider $\log _{\frac{\lambda_{3}\left(I_{k}^{(k)}\right)}{\lambda_{3}\left(I^{(k)}\right)}} \frac{\lambda_{2}\left(I_{i}^{(k)}\right)}{\lambda_{2}\left(I^{(k)}\right)}$.
For all large k the smallest of these is $\log _{\frac{\lambda_{3}\left(I_{2}^{(k)}\right)}{\lambda_{3}\left(I^{(k)}\right)}} \frac{\lambda_{2}\left(I_{k}^{(k)}\right)}{\lambda_{2}\left(I^{(k)}\right)}<\log _{\frac{2 m_{k+1}}{n_{k+1} n_{k+2}}} \frac{1}{4}$ (see Section 2.3.1).

I think this is also $\log \frac{m_{k+1}}{n_{n_{k+1} 1^{n}+2^{b}, 2}} \frac{1}{b_{k, 2}}$. I need to have
Proposition 7. $H_{\text {dim }}\left(\lambda_{3}, d_{\lambda_{2}}\right) \leq \liminf _{k \rightarrow \infty} \log _{\lambda_{2}\left(I_{3}^{(k)}\right)} b_{k, 3}^{-1}$.

The proof is similar to Proposition 6.

Lemma 30. $H_{\text {dim }}\left(\lambda_{3}, d_{\lambda_{2}}\right) \geq \liminf _{k \rightarrow \infty} \log _{\lambda_{2}\left(I_{3}^{(k)}\right)}\left(\lambda_{3}\left(I_{3}^{(k)}\right)\right)$.

Proof. By Lemma 23 we have that

$$
H_{\operatorname{dim}}\left(\lambda_{3}, d_{\lambda_{2}}\right) \geq \min _{1 \leq i \leq 4} \liminf _{k \rightarrow \infty} \log _{\lambda_{2}\left(I_{i}^{(k)}\right)}\left(\lambda_{3}\left(I_{i}^{(k)}\right)\right)
$$

Consider

$$
\log _{\frac{\lambda_{2}\left(I_{i}^{(k)}\right.}{\lambda_{2}\left(I^{(k)}\right)} \lambda_{2}\left(I^{(k)}\right)} \frac{\lambda_{3}\left(I_{i}^{(k)}\right)}{\lambda_{3}\left(I^{(k)}\right)} \lambda_{3}\left(I^{(k)}\right) .
$$

To determine the i that attains the minimum it suffices to consider $\log _{\frac{\lambda_{2}\left(I I_{(k)}^{(k)}\right)}{\lambda_{2}\left(I^{(k)}\right)}}\left(\frac{\lambda_{3}\left(I_{i}^{(k)}\right)}{\lambda_{3}\left(I^{(k)}\right)}\right)$.
The smallest of these is $\log _{\frac{\lambda_{2}\left(I_{3}^{(k)}\right)}{\lambda_{2}\left(I^{(k)}\right)}}\left(\frac{\lambda_{3}\left(I_{3}^{(k)}\right)}{\lambda_{3}\left(I^{(k)}\right)}\right)<\log _{\frac{n_{k+1}}{2 m_{k+1}}}\left(1-\frac{3}{n_{k+1}}\right)$ (see Section 2.3.1).

2.4.3 Proofs of Theorems

Proof of Theorem 8. Choosing $m_{k}=n_{k}^{k}$ implies that $H_{\text {dim }}\left(\lambda_{3}, d_{\lambda_{2}}\right)=0$. Likewise, choosing $n_{k+1}=m_{k}^{k}$ implies that $H_{\text {dim }}\left(\lambda_{2}, d_{\lambda_{3}}\right)=0$. Choosing $m_{k}=4 n_{k}$ implies
that $H_{\operatorname{dim}}\left(\lambda_{3}, d_{\lambda_{2}}\right)=1$. Lastly, choosing $n_{k+1}=4 m_{k}$ implies that $H_{\text {dim }}\left(\lambda_{2}, d_{\lambda_{3}}\right)=1$. By suitable choices of m_{k} and n_{k} any of the four possibilities in Theorem 8 can be accomplished.

Proof of Theorem 7(b). $H_{\text {dim }}\left(\lambda_{3}, d_{\lambda_{2}}\right)$ can take any value in $[0,1]$. Pick $\alpha \in[0,1]$. Choose m_{k}, n_{k} so that $n_{k}>b_{k-1,2}^{k}$ and $m_{k}=\left\lfloor n_{k}^{\frac{1}{\alpha}}\right\rfloor . \frac{1}{\alpha}<\log _{\frac{1}{b} k, 2} \frac{1}{b_{k, 3}}<\frac{1}{\alpha+\frac{2}{k}}$.

Proof of Theorem 7(a). $H_{\text {dim }}\left(\lambda_{2}, d_{\lambda_{3}}\right)$ can take any value in $[0,1]$. Pick $\alpha \in[0,1]$. Notice that $\left.H_{\text {dim }}\left(\lambda_{2}, d_{\lambda_{3}}\right)=\lim \inf \frac{\log \left(b_{k, 2}\right)}{\log \left(\frac{m_{k+1}}{n_{k+1} n_{k+2}{ }^{b} k, 3}\right.}\right)$. Choose $m_{k+1}>\left(n_{k+1} b_{k, 3}\right)^{k}$ and $n_{k+2}=\left\lfloor m_{k+1}^{\frac{1}{\alpha}}\right\rfloor$.

2.4.4 Large sets of generic points

The result of this section is Theorem 9 that the λ_{3} generic points can be the complement of a set of Hausdorff dimension 0. Theorem 9 holds in particular when $m_{k}=3 n_{k}$ and $n_{k+1}=b_{k, 2}^{k}$.

Definition 9. Let $t_{k}(x)=\min \left\{n \geq 0: T^{n}(x) \in O\left(I_{1}^{(k)}\right)\right\}$.
Proposition 8. If $x \in \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} O\left(I_{3}^{(k)}\right)$ and $\lim _{k \rightarrow \infty} \frac{b_{k, 1}}{t_{k}(x)}=0$ then x is λ_{3} generic.
Proof. In the proof of Theorem 7 [15], Keane shows that $\prod_{k=1}^{\infty} \bar{A}_{m_{k}, n_{k}} e_{3}$ and $\prod_{k=1}^{\infty} \bar{A}_{m_{k}, n_{k}} e_{4}$ converge to λ_{3}. Therefore under the conditions of the hypothesis x is generic for λ_{3}. To see this, consider $b_{k-1,3}<s<b_{k, 3} . \quad x$ travels through $O\left(I_{3}^{(k-1)}\right) a$ times $\left(a=\frac{t_{k}}{b_{k-1,3}}-1\right)$ then through $O\left(I_{4}^{(k-1)}\right)$ then through $O\left(I_{1}^{(k-1)}\right)$ then it lands back in $O\left(I_{3}^{(k-1)}\right)$). By our assumption on t_{k} eventually the landing in $O\left(I_{3}^{(k-1)}\right)$ always dominates, so x is λ_{3}-generic.

Proposition 9. Under appropriate assumptions, the set of points in $\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} O\left(I_{3}^{(k)}\right)$ not satisfying the hypothesis of Proposition 8 is a set of Hausdorff dimension 0.

Proof. $I_{3}^{(k)}$ travel up to n_{k+1} times through $O\left(I_{3}^{(k)}\right)$ before traveling through $O\left(I_{4}^{(k)}\right)$ and then $O\left(I_{1}^{(k)}\right)$. Therefore, the proportion of each level of $O\left(I_{3}^{(k)}\right)$ that have $\frac{b_{k, 1}}{t_{k}}<$ ϵ is $\frac{\epsilon}{b_{k, 1}} n_{k+1} b_{k, 3}$. There are $b_{k, 3}$ such pieces. Therefore if n_{k+1} is chosen so that $\left(\frac{b_{k, 1}}{n_{k+1}}\right)^{\frac{1}{k}} b_{k, 3}<\frac{1}{k}$ then the set of $x \in \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} O\left(I_{3}^{(k)}\right)$ such that $\limsup _{k \rightarrow \infty} \frac{b_{k, 1}}{t_{k}(x)}>0$ has Hausdorff dimension 0.

Proof of Theorem 9. By Lemmas 8, 10 and 12 and the independence of the choice of n_{k+1} of the previous n_{i} and m_{i} (and therefore $b_{i, j}$ for $i \leq k, j \in\{1,2,3,4\}$) that we may also have $O\left(I_{1}^{(k)}\right) \cup O\left(I_{2}^{(k)}\right) \cup O\left(I_{4}^{(k)}\right)$ have Hausdorff dimension 0 by choosing n_{k+1} large enough (or n_{k+2} large enough relative to m_{k+1} for $O\left(I_{2}^{(k)}\right)$. The theorem follows with the previous proposition.

2.5 Exotic shrinking target properties for some Keane type examples

2.5.1 Typical points with respect to one ergodic measure

 that approximate typical points with respect to the other ergodic measure poorlyFirst we show that Keane type IETs can have orbits that take a long time to become ϵ dense.

Theorem 10. There exists T, a minimal 4-IET with 2 ergodic measures, λ_{2}, λ_{3} such that for $\lambda_{2} \times \lambda_{3^{-}}$a.e. pair $(x, y) \liminf _{n \rightarrow \infty} n\left|T^{n}(x)-y\right|=\infty$.

Compare it with Chebyshev's Theorem ([17, Theorem 24]):

Theorem 11. (Chebyshev) For an arbitrary irrational number α and real number β the inequality $|n \alpha-m-\beta|<\frac{3}{n}$ has an infinite number of integer solutions (n, m).

In the language of Theorem 10 Chebyshev's Theorem states that if T_{α} is an irrational rotation, $\liminf _{n \rightarrow \infty} n\left|T_{\alpha}^{n}(x)-y\right| \leq 3$ for any y.

We place the following conditions on m_{k} and n_{k}.

1. $\left(n_{k}\right)^{3}<m_{k}$
2. $\left(b_{k-1,2}\right)^{2}<m_{k}<\left(b_{k-1,2}\right)^{5}$
3. $\left(b_{k, 2}\right)^{2} 2^{2 k} m_{k}<n_{k+1}$.

These conditions provide the following immediate consequences:

1. $b_{k, 2} \geq b_{k, j}$ for any j (Lemma 25).
2. $\left(b_{k-1,2}\right)^{3}<b_{k+1,2}<4\left(b_{k-1,2}\right)^{6}$ (direct computation with condition 2).
3. $\lambda_{3}\left(O\left(I_{2}^{k}\right)\right)<\frac{2}{\left(b_{k, 2}\right)^{2}}$ (by Lemma 15)
4. $\sum_{k=1}^{\infty} \frac{n_{k+1} b_{k, 3}}{b_{k+1,2}}$ converges $\left(b_{k+1,2}>m_{k+1} b_{k, 2}\right.$ and $\left.b_{k, 2}>b_{k, 3}\right)$.
5. $\sum_{k=1}^{\infty} \frac{n_{k}}{m_{k}}$ converges (condition 1).

Picking m_{k} and n_{k} as above we choose T to be the IET with permutation (4213) and lengths $\left(\prod_{k=1}^{\infty} \bar{A}_{m_{k}, n_{k}}\right) e_{3}$.

Lemma 31. λ_{2} a.e. point is in $\bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} \bigcap_{r=1}^{b_{k, 2}} T^{-r}\left(O\left(I_{2}^{(k)}\right)\right.$
Proof. By condition 1 and Lemmas 15, 18 and 19 it follows that $\sum_{k=1}^{\infty} \frac{\lambda_{2}\left(I^{(k)} \backslash I_{2}^{(k)}\right)}{\lambda_{2}\left(I^{k \prime)}\right)}$ converges. It then follows from the fact that $b_{k, 2} \geq b_{k, i}$ (Lemma 24) that $\sum_{k=1}^{\infty} \lambda_{2}\left([0,1) \backslash O\left(I_{2}^{(k)}\right)\right)$ converges. The lemma follows from the Borel-Cantelli Theorem with the additional observation that $\frac{1}{m_{k+1}}$ of the measure of $O\left(I_{2}^{(k)}\right)$ leaves in the first $b_{k, 2}$ steps.

Definition 10. Let $A_{x, r, M, N}=\left\{y:\left|T^{n}(x)-y\right|<\frac{r}{n}\right.$ for some $\left.N<n \leq M\right\}$

This example relies on showing that $\lambda_{3}\left(A_{x, r, M, N}\right)$ is small (see Lemma 33) for a λ_{2} large set of x. The following definition provides us with a class of x such that we can control $\lambda_{3}\left(A_{x, r, M, N}\right)$ as seen by Lemma 33. This class is also λ_{2} large as seen by Lemma 12.

Definition 11. x is called k-good if:

1. $T^{n}(x) \in O\left(I_{2}^{(k)}\right)$ for all $0 \leq n \leq b_{k, 2}$.
2. $T^{n}(x) \in O\left(I_{2}^{(k-1)}\right)$ for all $0 \leq n \leq\left(n_{k} b_{k-1,3}\right)^{2}$

Lemma 31 shows that λ_{2} almost every point satisfies condition (1) for k-good for all $k>N$. The following lemma shows that condition (2) is also satisfied eventually.

Lemma 32. For λ_{2} a.e. x there exists N such that x is k-good for all large enough k.

Proof. The basic reason λ_{2} a.e. x is eventually k-good for all large enough k is that the images of $O\left(I_{2}^{(k+1)}\right)$ not in $O\left(I_{2}^{(k)}\right)$ are consecutive). This means we need to avoid
$n_{k+1} b_{k, 3}+b_{k, 4}+\left(n_{k} b_{k, 3}\right)^{2}$ image of $O\left(I_{2}^{(k+1)}\right)$. Because

$$
\frac{n_{k+1} b_{k, 3}+b_{k, 4}+\left(n_{k+1} b_{k, 3}\right)^{2}}{b_{k+1,2}}<\frac{\left(n_{k+1}+1\right) b_{k, 2}}{m_{k+1} b_{k, 2}}
$$

is a convergent sum, the Borel Cantelli Theorem implies λ_{2} almost every x is k-good for all big enough k. (The left hand side is the proportion of the images of $I_{2}^{(k+1)}$ which are not good.)

The next lemma shows that if x is $k+1$ good then $A_{x, r, b_{k, 2}, b_{k+1,2}}$ is small in terms of Lebesgue measure.

Lemma 33. If x is $k+1$-good for all $k>N$ then $\lambda_{3}\left(A_{x, r, b_{k, 2}, b_{k+1,2}}\right)$ forms a convergent sum.

Proof. This proof will be carried out by estimating the measure $A_{x, r, b_{k, 2}, b_{k+1,2}}$ gains when x lands in $O\left(I_{2}^{(k)}\right)$ and when it doesn't. Since x is $k+1$-good, the Lebesgue measure $A_{x, r, b_{k, 2}, b_{k+1,2}}$ gains by not landing in $O\left(I_{2}^{(k)}\right)$ is less than

$$
\frac{2}{\left(n_{k+1} b_{k, 3}\right)^{2}}\left(n_{k+1} b_{k, 3}+b_{k, 4}\right) \leq \frac{2\left(n_{k+1} b_{k, 3}+4 b_{k-1,2}\right)}{\left(n_{k+1} b_{k, 3}\right)^{2}} \leq \frac{4}{n_{k+1} b_{k, 3}} .
$$

When x lands in $O\left(I_{2}^{(k)}\right)$ it either lands in one of the $b_{k-1,2}$ components of which are images of $I_{2}^{(k-1)}$ (this is $O\left(I_{2}^{(k-1)}\right)$) or it doesn't. On each pass through of the orbit, it lands $m_{k} b_{k-1,2}$ in one of the first $b_{k-1,2}$ images of $I_{2}^{(k-1)}$, and $n_{k} b_{k-1,3}+b_{k-1,4}$ times it doesn't. We will estimate $A_{x, r, b_{k, 2}, b_{k+1,2}}$ by dividing up the orbit into these pieces. When x lands in $O\left(I_{2}^{(k-1)}\right)$ the measure of the points its landings place in $A_{x, r, b_{k, 2}, b_{k+1,2}}$ is at most $\lambda_{3}\left(O\left(I_{2}^{(k-1)}\right)\right)+\frac{2 r}{b_{k, 2}} b_{k-1,2}$. (There are $b_{k-1,2}$ connected components of $\left.O\left(I_{2}^{(k-1)}\right).\right)$

Otherwise we approximate the measure by :
$\frac{2}{b_{k, 2}} \sum_{i=1}^{b_{k+1,2} / b_{k, 2}} \frac{n_{k} b_{k-1,3}+b_{k-1,4}}{i} \leq \frac{n_{k} b_{k-1,3}+b_{k-1,4}}{b_{k, 2}} \ln \left(b_{k+1,2}\right) \leq \frac{n_{k} b_{k-1,3}+b_{k-1,4}}{b_{k, 2}} 7 \ln \left(b_{k, 2}\right)$.
The left hand side is given by estimating the measure gained by hits in $O\left(I_{2}^{(k)}\right) \backslash O\left(I_{2}^{(k-1)}\left(n_{k} b_{k-1,3}+b_{k-1,4}\right.\right.$ hits each of which contributes at most $\frac{2}{i b_{k, 2}}$ on the $i^{\text {th }}$ pass and summing over each pass through $\left.O\left(I_{2}^{(k)}\right)\right)$. The first inequality is given by the fact that $b_{k+1,2}>\frac{b_{k+1,2}}{b_{k, 2}}$. The final inequality is given by consequence 2 . Collecting all of the measure, if x is $k+1$-good then

$$
\lambda_{3}\left(A_{x, r, b_{k, 2}, b_{k+1,2}}\right) \leq \frac{4}{n_{k+1} b_{k, 3}}+\frac{2}{\left(b_{k, 2}\right)^{2}}+\frac{2 r}{b_{k, 2}} b_{k-1,2}+\frac{n_{k} b_{k-1,3}+b_{k-1,4}}{b_{k, 2}} 7 \ln \left(b_{k, 2}\right)
$$

which forms a convergent series due to the at least exponential growth of $b_{k, i}$.

Proof of Theorem 10. λ_{2} a.e. x is eventually $k+1$-good. By Borel-Cantelli for each of these x, Lebesgue a.e. y has $\lim _{n \rightarrow \infty} n\left|T^{n}(x)-y\right|=\infty$. The set of all (x, y) such that $\lim _{n \rightarrow \infty} n\left|T^{n}(x)-y\right|=\infty$ is measurable, and so has $\lambda_{2} \times \lambda_{3}$ measure 1 (by Fubini's Theorem).

Remark 7. One can modify conditions 1-3 to achieve $\liminf _{n \rightarrow \infty} n^{\alpha}\left|T^{n} x-y\right|=\infty$ for $0<\alpha<1$.

Remark 8. Following [22, Section 1], one can renormalize the IET by choosing the

IET S_{p}, with length vector

$$
\left(\begin{array}{l}
p \lambda_{3}\left(I_{1}\right)+(1-p) \lambda_{2}\left(I_{1}\right) \\
p \lambda_{3}\left(I_{2}\right)+(1-p) \lambda_{2}\left(I_{2}\right) \\
p \lambda_{3}\left(I_{3}\right)+(1-p) \lambda_{2}\left(I_{3}\right) \\
\left.p \lambda_{3}\left(I_{4}\right)+(1-p) \lambda_{2}\left(I_{4}\right)\right)
\end{array}\right) \text { and permutation 4213. } S_{p}
$$

has the same symbolic dynamics and obeys the same Keane type induction procedure
as T (with the same matrices). As a result S has two ergodic measures $\mu_{S_{p}}, \lambda_{S_{p}}$ such that $\mu_{S_{p}}\left(I_{j}^{(k)}\right)$ for S_{p} is the same as $\lambda_{2}\left(I_{j}^{(k)}\right)$ for T and $\lambda_{S_{p}}\left(I_{j}^{(k)}\right)$ for S_{p} is the same as $\lambda_{3}\left(I_{j}^{(k)}\right)$. Moreover, if $0<p<1$ then $\mu_{S_{p}}$ and λ_{S} are both absolutely continuous and supported on disjoint sets of Lebesgue measure $1-p$ and p respectively. If $p=1$ the IET is T, if $p=0$ then $\mu_{S_{0}}$ is Lebesgue measure and $\lambda_{S_{0}}$ is singular. As a result the Lebesgue measure of $I_{j}^{(k)}$ for $S_{.5}$ is at least $.5 \max \left\{\lambda_{3}\left(I_{j}^{(k)}\right), \lambda_{2}\left(I_{j}^{(k)}\right)\right\}$ for T. From this it follows that $\liminf _{n \rightarrow \infty} n\left|S_{5}^{n}(x)-y\right|=\infty$ on a set of (x, y) with measure .25 (corresponding to x being chosen from a set of μ_{S} full measure and y being chosen from a set of λ_{S}). (See [22, Section 1] for more on renormalizing.)

2.5.2 Two ergodic measures that approximate each other dif-

ferently

Theorem 12. There exists a minimal 4-IET with two ergodic measures, λ_{2} and λ_{3} such that for any $\epsilon>0$ we have $\liminf n^{1-\epsilon} d\left(T^{n} x, y\right)=0$ for $\lambda_{2} \times \lambda_{3}$ almost every (x, y) and $\lim \inf n^{\frac{1}{2}+\epsilon} d\left(T^{n} x, y\right)=\infty$ for $\lambda_{3} \times \lambda_{2}$ almost every (x, y).

This will be proved in two parts (the $\lambda_{3} \times \lambda_{2}$ statement and the $\lambda_{2} \times \lambda_{3}$ statement) under the assumption that $m_{k}=k^{2} n_{k}$ and $n_{k+1}=b_{k, 2}^{2}$ and λ_{2} is Lebesgue measure (that is $d=d_{\lambda_{2}}$).

Remark 9. The $\frac{1}{2}$ can be replaced by any $c \in[0,1)$ with straightforward modification.

Proposition 10. For any $\epsilon>0$ and $\lambda_{3} \times \lambda_{2}$ almost every point (x, y) we have $\underset{n \rightarrow \infty}{\liminf } n^{\frac{1}{2}+\epsilon}\left|T^{n} x-y\right|=\infty$.

Lemma 34. $\lambda_{3}\left(\bigcup_{r=1}^{\infty} \bigcap_{k=r}^{\infty}\left(\bigcap_{t=1}^{\left\lfloor\frac{1}{k^{2}} n_{k+1} b_{k, 3}\right\rfloor} T^{-t}\left(O\left(I_{3}^{(k)}\right)\right)\right)\right)=1$.
Proof. $\lambda_{3}\left(\bigcap_{t=1}^{\left\lfloor\frac{1}{k^{2}} n_{k+1} b_{k, 3}\right\rfloor} T^{-t}\left(O\left(I_{3}^{(k)}\right)\right)\right) \geq\left(1-\frac{1}{k^{2}}\right) \lambda_{3}\left(O\left(I_{3}^{(k)}\right)\right)$. Also

$$
\left.\lambda_{3}\left(O\left(I_{2}^{(1)}\right) \cup O\left(I_{2}^{(2)}\right) \cup O\left(I_{2}^{(3)}\right)\right) \leq \frac{1}{k^{2}}\right)\left(1-\frac{1}{b_{k, 3}}\left(\frac{2 b_{k, 2} m_{k+1}}{n_{k+1} n_{k+2}}+\frac{2 b_{k, 4}}{n_{k+1}}+\frac{1}{n_{k+1}}\right)\right) .
$$

By our assumptions $\frac{b_{k, i}}{b_{k, 3}}<4^{k}$. Therefore the proposition follows by the Borel-Cantelli Theorem with the observation that $\sum_{k=1}^{\infty} \frac{1}{k^{2}}+\frac{4^{k}}{n_{k+1}}$ converge. (The convergence of $\sum_{k=1}^{\infty} \frac{4^{k}}{n_{k+1}}$ follows by our assumption on the growth of n_{k}.)

Lemma 35. If $x \in \underset{t=1}{\left\lfloor\frac{1}{k^{2}} n_{k+1} b_{k, 3}\right\rfloor} T^{-t}\left(O\left(I_{3}^{(k)}\right)\right)$ then $\lambda_{2}\left(\underset{t=\left\lfloor\frac{1}{(k-1)^{2}} n_{k} b_{k-1,3}\right\rfloor}{\left\lfloor\frac{1}{k^{2}} n_{k+1} b_{k, 3}\right\rfloor} B\left(T^{t} x,\left(\frac{c}{t^{\alpha}}\right)\right)\right) \leq$ $\lambda_{2}\left(O\left(I_{3}^{(k)}\right)\right)+\left(b_{k-1,1}+b_{k-1,4}+b_{k-1,3}\right) 2 c\left(\left\lfloor\frac{1}{k^{2}} n_{k} b_{k-1,3}\right\rfloor\right)^{-\alpha}$.

Proof. By our assumption x lies in $O\left(I_{3}^{(k)}\right)$ for time described, therefore the measure of the set is at most the measure of a $\left(\left\lfloor\frac{1}{k^{2}} n_{k+1} b_{k, 3}\right\rfloor\right)^{-0.5}$ neighborhood of $O\left(I_{3}^{(k)}\right)$. The lemma follows from observing that $I_{3}^{(k)}$ travels n_{k} times through $O\left(I_{3}^{(k-1}\right)$ once through $O\left(I_{1}^{(k-1)}\right)$ and once through $O\left(I_{4}^{(k-1)}\right)$. One then groups the levels $O\left(I_{3}^{(k)}\right)$ by the $O\left(I_{i}^{(k-1)}\right)$ that they lie in.

Proof of Proposition 10. By our assumption on n_{k}, m_{k} it follows that $\sum_{k=1}^{\infty} \lambda_{2}\left(O\left(I_{3}^{(k)}\right)\right)+$ $2 c\left(b_{k-1,1}+b_{k-1,4}+b_{k-1,3}\right) 2\left(\left\lfloor\frac{1}{k^{2}} n_{k} b_{k+1,3}\right\rfloor\right)^{\frac{1}{2}+\epsilon}$ converges. By the Borel-Cantelli Theorem it follows that for all such x we have $\lambda_{2}\left(\bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} B\left(T^{i} x, \frac{c}{i^{\alpha}}\right)=0\right.$. By Fubini's Theorem it follows that for all such x we havelimsup $n_{n \rightarrow \infty} n^{\frac{1}{2}+\epsilon}\left|T^{n} x-y\right|=\infty$. By Lemma 34 the proposition follows.

Proposition 11. For any $\epsilon>0$ and $\lambda_{2} \times \lambda_{3}$ almost every point (x, y) we have $\liminf _{n \rightarrow \infty} n^{1-\epsilon}\left|T^{n} x-y\right|=0$.

Lemma 36. If $T^{t} x \in O\left(I_{2}^{(k)}\right)$ for $t<b_{k, 3}$ then $\lambda_{3}\left(\bigcup_{i=1}^{b_{k, 2}} B\left(T^{i} x,{\frac{1}{b_{k, 2}}}^{1-\epsilon}\right)\right)>.5$ for large enough k.

Proof. By the assumption of the hypothesis $\left\{x, T x, \ldots, T^{b_{k, 2}} x\right\}$ are at least $\lambda_{2}\left(I^{(k)}\right)$ dense in $O\left(I_{3}^{(k-1)}\right)$. (The condition of the hypothesis ensures that $\left\{x, T x, \ldots, T^{b_{k, 2}} x\right\}$ has n_{k} hits in each level of $O\left(I_{3}^{(k-1)}\right)$ by examining $\left.T\right|_{I^{(k-1)}}(x), O\left(I_{2}^{(k)}\right)$ is $\lambda_{2}\left(I^{(k)}\right)$ dense in $O\left(I_{3}^{(k-1)}\right)$.) $\lambda_{3}\left(I^{(k)}\right)<\frac{1}{b_{k, 4}}$. By our choice of m_{k} and $n_{k}, b_{k, 4}>b_{k, 2}^{1-\epsilon}$ for all large enough k.

Lemma 37. The set of points satisfying the hypothesis of the above Lemma has λ_{2} measure at least $\frac{1}{8}$.

Proof. This follows from the fact that $\lambda_{2}\left(O\left(I_{2}^{(k)}\right)\right)>\frac{1}{4}$ (Lemma 28) and $1-\frac{b_{k, 3}}{b_{k, 2}}>\frac{1}{2}$ of these points satisfy the hypothesis of the lemma.

Proof of Proposition 11. The proof follows from Fubini and ergodicity.

Remark 10. One can assign distance by nontrivial linear combinations of λ_{2} and λ_{3} Theorem 12 holds in these cases as well. (For $d=d_{\lambda_{3}}$ the argument fails. See Question 2). The reason why is that $\lambda_{3}\left(I^{(k)}\right)<\frac{1}{b_{k, 4}}$ and by our choice of m_{k} and n_{k}, $b_{k, 4}>b_{k, 2}^{1-\epsilon}$ for all large enough k. The estimates in Proposition 10 are proportional in this case. Perhaps the most interesting version of Theorem 12 is when $d(x, y)=$ $\frac{1}{2}\left(\lambda_{2}([x, y])+\lambda_{3}([x, y])\right.$ because the metric gives equal weights to the two measures, but typical points still approach each other differently.

2.6 Conclusion

Michael Keane devised a wonderful class of examples that provide very specified behavior for IETs. The power of this example is its self similar structure and the fact that much of its behavior can be captured by matrix multiplication. This helps to make the behavior easy to understand and demonstrate. Additionally, because the $A_{n_{k}, m_{k}}$ arise as matrices of Rauzy-Veech induction these examples can provide intuition to how Rauzy-Veech induction works. As this chapter suggests Keane's class of examples can construct IETs that also have fairly different behavior for their ergodic components.

Question 1. For a given permutation what is the optimal order of topological mixing?

Question 2. Let $S:[0,1) \rightarrow[0,1)$ be a minimal IET and have ergodic measures μ_{1} and μ_{2}. Let $d_{1}(x, y)=\mu_{1}([\min \{x, y\}, \max \{x, y\}])$. Is it possible for $\lim \inf n^{.99} d_{1}\left(S^{n} x, y\right)=$ ∞ for $\mu_{1} \times \mu_{2}$ almost every (x, y) ? What about with the additional stipulation that $\liminf n^{1-\epsilon} d_{1}\left(S^{n} x, y\right)=\infty$ for $\mu_{2} \times \mu_{1}$ almost every (x, y) and $\liminf n d_{1}\left(S^{n} x, y\right)=\infty$ for $\mu_{1} \times \mu_{1}$ almost every (x, y) ?

I suspect the answer to these questions is no. I suspect the answer is yes if we remove the requirement that S is an IET.

Question 3. What is the Hausdorff dimension of the set of minimal IETs with an ergodic measure having Hausdorff dimension less than 1? (We consider these IETs as points in $\Delta_{3}=\left\{\left(l_{1}, l_{2}, l_{3}, l_{4}\right): l_{i}>0, \sum l_{i}=1\right\}$.)

For the case of 4-IETs the answer is expected to be 2.5 .

Question 4. Can any residual set support an ergodic measure for a minimal IET?

Question 5. Can $H_{\text {dim }}\left(\lambda_{2}, d_{\lambda_{3}}\right), H_{\text {dim }}\left(\lambda_{3}, d_{\lambda_{2}}\right)$ take any value in $[0,1]^{2}$?

I suspect the answer is yes.

Question 6. Can one construct a smooth realization of a Keane type IET?

Chapter 3

IETs are usually different

3.1 Statement of results

Definition 12. Two measure preserving systems (T, X, μ) and (S, Y, ν) are called disjoint (or have trivial joinings) if $\mu \times \nu$ is the only invariant measure of $T \times S: X \times Y \rightarrow X \times Y$ by $(T \times S)(x, y)=(T x, S y)$ with projections μ and ν.

The main result of this chapter is:

Theorem 13. Let $T: X \rightarrow X$ be μ ergodic. (T, X, μ) is disjoint from almost every IET.

We remark that this is a strong way of saying that 2 IETs are different. T and $S T S^{-1}$ have many nontrivial joinings, for instance $(x, S x)$ supports an invariant measure with both projections λ (as does $\left(x, S T^{7} x\right)$). This implies that if the transformations are conjugate then they won't be disjoint. Similarly if $\sigma T=f \sigma$ and $\rho S=f \rho$ where $f: X \rightarrow X$ preserves μ which satisfies $\mu(A)=\lambda\left(\sigma^{-1}(A)\right)=\lambda\left(\rho^{-1}(A)\right)$ for
all measurable A, then $\underset{x \in X}{\cup} \sigma^{-1}(x) \times \rho^{-1}(x)$ supports an invariant measure of $T \times S$ with projections λ. This is said disjointness implies no common factors (a stronger condition than not being conjugate). Note that if S and T are IETs $S T S^{-1}$ is an IET so every IET shares non-trivial joinings with uncountably many other IETs. We prove Theorem 13 by the following criterion [12, Theorem 2.1], see also [21, Lemma 1] and [11, Theorem 6.28].

Theorem 14. (Hahn and Parry) If T_{1} and T_{2} are ergodic transformations of $\left(X_{1}, B_{1}, m_{1}\right)$ and $\left(X_{2}, B_{2}, m_{2}\right)$ respectively, and if $U_{T_{1}}$ and $U_{T_{2}}$ are spectrally singular modulo constants then T_{1} and T_{2} are disjoint.

A key result was established in proving Theorem 13 which requires a definition.

Definition 13. Let $T:[0,1) \rightarrow[0,1)$ be a μ measure preserving transformation. n_{1}, n_{2}, \ldots is called a rigidity sequence for T if $\lim _{i \rightarrow \infty} \int_{[0,1)}\left|T^{n_{i}} x-x\right| d \mu=0$.

Theorem 15. Let A be a sequence of natural numbers with density 1. Almost every IET has a rigidity sequence contained in A.

This a strengthening of an earlier Theorem of Veech ([24, Part I, Theorem 1.4]) which proved that almost every IET has a rigidity sequence (choose N_{i} corresponding to ϵ_{i} where $\lim _{i \rightarrow \infty} \epsilon_{i}=0$).

Theorem 16. (Veech) For almost every interval exchange transformation T, with irreducible permutation, and given $\epsilon>0$ there are $N \in \mathbb{N}$, and an interval $J \subset[0,1)$ such that:

$$
\text { 1. } J \cap T^{n}(J)=\emptyset \text { for } 0<n<N \text {. }
$$

2. T is continuous on $T^{n}(J)$ for $0 \leq n<N$.
3. $\lambda\left(\bigcup_{n=1}^{N} T^{n}(J)\right)>1-\epsilon$.
4. $\lambda\left(T^{N}(J) \cap J\right)>(1-\epsilon) \lambda(J)$.

3.2 Proof of Theorem 15

Theorem 15 follows from the following proposition.

Proposition 12. Let $A \subset \mathbb{N}$ be a sequence of density 1. For every $\epsilon>0$ and almost every IET S, there exists $n_{\epsilon} \in A$ such that $\int_{0}^{1}\left|S^{n_{\epsilon}}(x)-x\right| d \lambda<\epsilon$.

This proposition implies Theorem 15 because the countable intersection of sets of full measure has full measure.

Motivated by this proposition if $\int_{0}^{1}\left|T^{n}(x)-x\right| d \lambda<\epsilon$ we say n is an ϵ rigidity time for T.

Throughout this section we will assume that the IETs are in a fixed Rauzy class \mathfrak{R}, which contains d-IETs with some irreducible permutations. Let r denote the number of different permutations IETs in \mathfrak{R} may have. Let \mathbf{m}_{\Re} denote Lebesgue measure on \mathfrak{R} (the disjoint union of r simplices in \mathbb{R}^{d}).

Proposition 12 will be proved by showing that there is a particular reason for ϵ rigidity (called acceptable ϵ rigidity) that occurs often in many $P_{i}:=\left[2^{i}, 2^{i+1}\right]$ (Proposition 15) but rarely occurs for any fixed n (Lemma 44). For every IET S satisfying the Keane condition, and every i there exists some n such that $\left|C_{\max }(M(S, n))\right| \in P_{i}$. In general there can be more than one such n.

For each of the permutations π_{1}, \ldots, π_{r} that an IET in \mathfrak{R} may have, fix a finite sequence of Rauzy-Veech induction steps ω_{i}, which gives a positive matrix. That is each letter of ω_{i} will be one of the two types of Rauzy-Veech steps (a or b) and the product of the sequence of the associated matrices starting from permutation π_{i} provides a positive Rauzy-Veech matrix. Let $M\left(\omega_{i}\right)$ denote this matrix. Let $\left|\omega_{i}\right|$ denote the number of steps in ω_{i}. Let $p_{i}=\mathbf{m}_{\mathfrak{R}}\left(M\left(\omega_{i}\right)_{\Delta}\right)$.

Definition 14. We say a pair $\left(M, C_{\max }(M)\right)$ is acceptable if $M=M(T, n)$, $R^{n-\left|\omega_{i}\right|}(T)$ has permutation π_{i} and $M\left(R^{n-\left|\omega_{i}\right|}(T),\left|\omega_{i}\right|\right)=M\left(\omega_{i}\right)$.

If $\left(M, C_{\max }(M)\right)$ is an acceptable pair then M is called an acceptable matrix.

Informally, if $M=M(T, n)$ then the pair $\left(M, C_{\max }(M)\right)$ is acceptable if the last steps in Rauzy-Veech induction for an IET with length vector in M_{Δ} agrees with some ω_{i} and the permutation of $R^{n-\left|\omega_{i}\right|}(T)$ is π_{i}.

Remark 11. In the remainder of this section we will use the fact that if $R^{n}\left(T_{L, \pi}\right)$ has permutation π_{i} then for any IET S with length vector in $\left(M\left(T_{L, \pi}, n\right) M\left(\omega_{i}\right)\right)_{\Delta}$ and permutation π the pair $\left(M\left(S, n+\left|\omega_{i}\right|\right), C_{\max }\left(M\left(S, n+\left|\omega_{i}\right|\right)\right)\right)$ is acceptable.

Lemma 38. There exists ν such that any acceptable matrix is ν balanced.

Proof. Let M_{1} be a positive matrix. Observe that if M_{2} is a matrix with nonnegative entries then $M_{2} M_{1}$ is at worst $\max _{i, j, k} \frac{M_{1}[i, j]}{M_{1}[i, k]}$ balanced. Since there are only finitely many $M\left(\omega_{i}\right)$ and they are all positive the lemma follows. In particular, we can chose $\nu=\max _{t} \max _{i, j, k} \frac{M\left(\omega_{t}\right)[i, j]}{M\left(\omega_{t}\right)[i, k]}$.

Lemma 39. For any d-column $C, \mid\{M:(M, C)$ is an acceptable pair $\} \mid \leq r^{2}$.

That is, any d-column can appear in at most r^{2} different acceptable pairs.

Proof. Assume C belongs to two different acceptable pairs $(M(T, n), C)$, and ($M\left(S, n^{\prime}\right), C$) where both T and S have permutation π_{i}. The acceptable sequence of steps ω_{j} for T and $\omega_{j^{\prime}}$ for S are different. This is because if $\omega_{j}=\omega_{j^{\prime}}$ then the last $\left|\omega_{j}\right|$ steps of Rauzy-Veech induction are the same. However, since $C=C_{\max }(M(T, n))=$ $C_{m a x}\left(M\left(S, n^{\prime}\right)\right)$ and S and T have the same starting permutation, Lemma 3 implies that all but the last $\left|\omega_{j}\right|$ steps of Rauzy-Veech induction are the same and therefore $M(T, n)=M\left(S, n^{\prime}\right)$. Lemma 39 follows because there are r choices of ω_{j} and r choices of starting permutation.

Proposition 13. For $\mathbf{m}_{\mathfrak{R}}$-almost every IET S, the set of natural numbers

$$
\begin{align*}
& \left\{i \text { : for some } n,\left|C_{\max }(M(S, n))\right| \in P_{i}\right. \text { and } \\
& \left.\qquad\left(M(S, n), C_{\max }(M(S, n))\right) \text { is an acceptable pair }\right\} \tag{3.1}
\end{align*}
$$

has positive lower density.

The following two lemmas are used in the proof of Proposition 13.

Lemma 40. For $\mathbf{m}_{\mathfrak{R}}$-almost every IET S, and all sufficiently large ν_{0}, the set of natural numbers
$G(S):=\left\{i:\right.$ for some $n,\left|C_{\max }(M(S, n))\right| \in P_{i}$ and $M(S, n)$ is ν_{0} balanced $\}$
has positive lower density.

Remark 12. It is not claimed that a positive lower density of the Rauzy-Veech induction matrices are balanced.

To prove this we use [16, Corollary 1.7].

Proposition 14. (Kerckhoff) At any stage of the [Rauzy-Veech] expansion of S the columns of $M(S)$ will become ν_{0} distributed [i.e. ν_{0} balanced] with probability ρ before the maximum norm of the columns increases by a factor of $K^{d} . \nu_{0}$ and ρ are constants depending only on K and d.

Remark 13. In [16] the term " ν_{0} distributed" has the same meaning in as " ν_{0} balanced" has here.

Proof of Lemma 40. Consider the independent μ distributed random variables F_{1}, F_{2}, \ldots where μ takes value 1 with probability ρ and 0 with probability $1-\rho$. By the strong law of large numbers, for $\mu^{\mathbb{N}}$-almost every t we have $\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} F_{i}(t)}{n}=\rho$. By the previous proposition, given $G(S) \cap[0, N]$ the conditional probability that $N+i \in G(S)$ for some $0<i \leq\left\lceil d \log _{2}(K)\right\rceil$ is at least ρ. Thus for any natural numbers $n_{1}, n_{2}, \ldots, n_{k}$

$$
\begin{align*}
&\left.\mathbf{m}_{\mathfrak{R}}\left(\left\{S:\left[n_{i}\left\lceil d \log _{2}(K)\right\rceil,\left(n_{i}+1\right)\right]\left\lceil d \log _{2}(K)\right\rceil\right] \cap G(S) \neq \emptyset \forall i \leq k\right\}\right) \\
& \geq \mu^{\mathbb{N}}\left(\left\{t: F_{n_{i}}(t)=1 \forall i \leq k\right\}\right) . \tag{3.2}
\end{align*}
$$

This implies that from $\mathbf{m}_{\mathfrak{R}}$-almost every $S, G(S)$ has lower density at least $\frac{\rho}{\left\lceil d \log _{2}(K)\right\rceil}$.

Lemma 41. (Kerckhoff) If M is ν_{0} balanced and $W \subset \Delta_{d}$ is a measurable set, then

$$
\frac{\mathbf{m}_{\mathfrak{R}}(W)}{\mathbf{m}_{\mathfrak{R}}\left(\Delta_{d}\right)}<\frac{\mathbf{m}_{\mathfrak{R}}(M W)}{\mathbf{m}_{\mathfrak{R}}\left(M \Delta_{d}\right)}\left(\nu_{0}\right)^{-d} .
$$

This is [16, Corollary 1.2]. See [22, Section 5] for details.

Proof of Proposition 13. By Lemma 41 if $M(T, n)$ is ν_{0} balanced and $R^{n}(T)$ has permutation π_{i} then the $\frac{\mathbf{m}_{\mathfrak{R}}\left(M(T, n) M\left(\omega_{i}\right) \Delta_{d}\right)}{\mathbf{m}_{\mathfrak{R}}\left(M(T, n) \Delta_{d}\right)} \geq \nu_{0}^{-d} p_{i}$. In words: given that $M(T, n)$ is ν balanced and that $R^{n}(T)$ has permutation π_{i}, the conditional probability that $\left(M\left(T, n+\left|\omega_{i}\right|\right), C_{\max }\left(M\left(T, n+\left|\omega_{i}\right|\right)\right)\right)$ is an acceptable pair is at least $\nu_{0}^{-d} p_{i}$. Considering each π_{i}, the proposition follows analogously to Lemma 40 .

Definition 15. Let S be an IET. If $\left(M(S, n), C_{\max }(M(S, n))\right)$ is acceptable and $m=$ $\left|C_{m a x}(M(S, n))\right|$ is an ϵ rigidity time for S then m is called an acceptable ϵ rigidity time for S.

Proposition 15. For every $\epsilon>0, \mathbf{m}_{\mathfrak{R}}$-almost every IET S, the set of natural numbers
$G_{\epsilon}(S):=\left\{i: P_{i}\right.$ contains an acceptable ϵ rigidity time for $\left.S\right\}$
has positive lower density.

Proof. Consider an IET $S_{L, \pi}=S$ such that $\left(M(S, n), C_{k}(M(S, n))\right)$ is an acceptable pair (in particular, $C_{k}(M(S, n))=C_{\max }(M(S, n))$). For ease of notation let $M^{\prime}=$ $M(S, n)$. Let $W_{k, \epsilon}=\left\{\left(l_{1}, l_{2}, \ldots, l_{d}\right): l_{i}>0 \forall i, l_{k}>1-\frac{\epsilon}{3}, \sum l_{i}=1\right\}$. If $L \in W_{k, \epsilon}$ then $T_{\frac{M^{\prime} L}{\mid M^{L} L}, \pi}$ has an ϵ rigidity time of $\left|C_{k}\left(M^{\prime}\right)\right|$. This is the reason for rigidity used to prove Theorem 1.3 and 1.4 [24, pages 1337-1338]. If M^{\prime} is acceptable then Lemma 38 states that M^{\prime} is ν balanced. It then follows by Lemma 41 that the proportion of M_{Δ}^{\prime} which has $\left|C_{k}\left(M^{\prime}\right)\right|$ as an ϵ rigidity time is at least $\nu^{-d} \mathbf{m}_{\mathfrak{R}}\left(W_{k, \epsilon}\right)$. Thus if $i_{1}<i_{2}<\ldots \in G(S)$ then the probability that $i_{f} \in G_{\epsilon}(S)$ is at least $\nu^{-d} \mathrm{~m}_{\mathfrak{R}}\left(W_{k, \epsilon}\right)$ regardless of which $i_{k} \in G_{\epsilon}(S)$ for $k<f$. The proposition follows analogously to Lemma 40.

Before proving Proposition 12 we provide the following lemmas.

Lemma 42. There exists $b \in \mathbb{R}$ such that for any $n \in \mathbb{N}$,

$$
\mid\left\{M: M \text { is acceptable and }\left|C_{\max }(M)\right|=n\right\} \mid \leq b n^{d-1}
$$

Remark 14. The constant b depends only on our Rauzy class \mathfrak{R}. It is not claimed that for every $n \in \mathbb{N}$ there exists an acceptable matrix M with $\left|C_{\max }(M)\right|=n$.

Proof. By Lemma 39 each column C can be $\left|C_{m a x}(M)\right|$ for at most r^{2} different acceptable matrices M. By induction on $d, O\left(n^{d-1}\right)$ different d-columns with non-negative integer entries have the sum of their entries equal to n.

Lemma 43. (Veech) If M is a matrix given by Rauzy-Veech induction, then

$$
\mathbf{m}_{\mathfrak{R}}\left(M_{\Delta}\right)=c_{\mathfrak{R}} \prod_{i=1}^{d}\left|C_{i}(M)\right|^{-1}
$$

This is [22, equation 5.5]. An immediate consequence of it is that any ν balanced Rauzy-Veech matrix M has $\mathbf{m}_{\mathfrak{R}}\left(M_{\Delta}\right) \leq c_{\mathfrak{R}} \nu^{d-1}\left|C_{m a x}(M)\right|^{-d}$. The previous two lemmas give the following result.

Lemma 44. The $\mathbf{m}_{\mathfrak{R}}$-measure of IETs that have acceptable pairs with the same $\left|C_{m a x}\right|$ is at most $O\left(\left|C_{\max }\right|^{-1}\right)$.

Proof of Proposition 12. By Lemma 44 and the fact that A has density 1,

$$
\lim _{i \rightarrow \infty} \mathbf{m}_{\mathfrak{R}}\left(\left\{T: \exists n \text { with } M(T, n) \text { acceptable and }\left|C_{\max }(M(T, n))\right| \in P_{i} \backslash A\right\}\right)=0
$$

Therefore, Proposition 15 implies that for any $\epsilon>0$, almost every IET has an acceptable ϵ rigidity time in A. In fact, almost every IET has an ϵ rigidity time in $P_{i} \cap A$ for a positive upper density set of i.

Remark 15. To be explicit, Proposition 15 shows that for any sequence A with density 1 , and any $\epsilon>0$, for almost every IET the integer N in Veech's Theorem 16 can be chosen from A.

3.3 Consequences of Section 2

In this section we glean some consequences of the proofs in the previous section. One of these (Corollary 5) follows from [1, Theorem A] and is used in the proof of Theorem 13. It is proven independently of $[1$, Theorem $A]$ in this section.

Corollary 2. Let A be a sequence of natural numbers with density 1. A residual set of IET's has a rigidity sequence contained in A.

Proof. Take the interior of the set $W_{k, \epsilon}$ considered in the proof of Proposition 15. In this way one obtains that the set of IETs with an ϵ rigidity time in A contains an open set of full measure (therefore dense). Intersecting over ϵ shows that a residual set of IETs has a rigidity sequence in any sequence of density 1.

The number of columns that can appear in Rauzy-Veech matrices grows at least like $u_{\mathfrak{R}} R^{d}$ (where the constant $u_{\mathfrak{R}}$ depends on \mathfrak{R}). Briefly, in order to collect a positive measure of IETs having admissible matrices M, with $\left|C_{\max }(M)\right| \in P_{k}$, Lemma 43 implies that there needs of be more than $u_{\mathfrak{R}}\left(2^{k}\right)^{d}$ admissible matrices with $\left|C_{\max }\right| \in$ P_{k}. This provides a partial answer to the first question in [24, Part II, Questions 10.7] which considers asymptotics for the growth of so called primitive IETs.

The next result provides a slight improvement of Theorem 15 and uses the following definition.

Definition 16. Let S be an IET. We say m is an expected ϵ rigidity time for S if there exists an n such that that the following two conditions are met.

1. $\left(M(S, n), C_{\max }(M(S, n))\right)$ is acceptable and $m=\left|C_{\max }(M(S, n))\right|$.
2. $C_{\max }(M(S, n))=C_{k}(M(S, n))$ and $R^{n}(S)$ lies in the set $W_{k, \epsilon}$ defined in the proof of Proposition 15.

Every expected ϵ rigidity time is an acceptable ϵ rigidity time.

Corollary 3. For every $\epsilon>0$ and Rauzy class \mathfrak{R} there is a constant $a_{\mathfrak{R}}(\epsilon)<1$ such that any sequence of natural numbers A with density $a_{\mathfrak{R}}(\epsilon)$ has a rigidity sequence for all but a $\mathbf{m}_{\mathfrak{R}}$-measure ϵ set of IETs.

Proof. First note that the set of IETs having a rigidity sequence contained in A is measurable. Let $e_{\mathfrak{R}}(\epsilon)$ denote $\mathbf{m}_{\mathfrak{R}}\left(W_{k, \epsilon}\right)$. Let $M=M\left(T_{L, \pi}, n\right)$ be an acceptable matrix. By the bound on distortion in Lemma 41,
the conditional probability of an IET in M_{Δ} and permutation π having an expected ϵ rigidity time $\left|C_{\max }(M)\right|$ is proportional to $e_{\mathfrak{R}}(\epsilon)$. This uses Lemma 38 which states that if M is an acceptable matrix then M is ν balanced. An analogous argument to Lemma 40 shows that there exists $c_{1}>0$ such that the set

$$
\left\{i: \exists m \in P_{i} \text { which is an expected } \epsilon \text { rigidity time for } T\right\}
$$

has lower density at least $c_{1} e_{\mathfrak{R}}(\epsilon)$ for almost every T.

Lemma 44 establishes that there exists $c_{2}>0$ such that
$\mathbf{m}_{\mathfrak{R}}(\{T: n$ is an expected ϵ rigidity time for $T\})<c_{2} e_{\mathfrak{R}}(\epsilon) n^{-1}$
for all n. Thus, for any $\epsilon>0$ a set of natural numbers with density $1-\delta$ contains an ϵ expected rigidity time for all but a set of IETs of measure $2 \delta \frac{c_{2}}{c_{1}}$ and the corollary follows.

Remark 16. Recall that ν depends on the choices of ω_{i} that define acceptable pairs. The constants c_{1} and c_{2} depend on ν.

Corollary 3 gives two further corollaries.

Corollary 4. Almost every IET has a rigidity sequence which is shared by a $\mathbf{m}_{\mathfrak{R}^{\prime}}$ measure zero set of IETs for all \mathfrak{R}^{\prime} simultaneously.

Proof. It suffices to show that for any $\delta>0$ and Rauzy class \mathfrak{R}^{\prime} all but a set of $\mathbf{m}_{\mathfrak{R}^{-}}$ measure δ IETs have a rigidity sequence that is not a rigidity sequence for $\mathbf{m}_{\mathfrak{R}^{\prime}}$-almost every IET. Given $\epsilon_{1}, \epsilon_{2}>0$ and a Rauzy class, \mathfrak{R}^{\prime} consider the set
$A_{\mathfrak{P}^{\prime}}\left(\epsilon_{1}, \epsilon_{2}\right)=\left\{n: n\right.$ is an ϵ_{1} rigidity time for a set of IETs of

$$
\begin{equation*}
\left.\mathbf{m}_{\Re^{\prime}} \text {-measure at least } \epsilon_{2}\right\} \text {. } \tag{3.3}
\end{equation*}
$$

If $\epsilon_{2}>0$ and \mathfrak{R}^{\prime} are fixed then the density of this set goes to zero with ϵ_{1}. To see this, observe that if n_{1} and n_{2} are ϵ rigidity times for T then $n_{1}-n_{2}$ is a 2ϵ rigidity time for T. It follows that if $\epsilon<\frac{1}{2} \min _{0<n \leq M} \int\left|T^{n} x-x\right| d \lambda$ then $\{r+1, r+2, \ldots, r+M\}$ can contain at most one ϵ rigidity time for T. Choose $\epsilon_{1}(k)$ so that the (upper) density of $A_{\mathfrak{R}^{\prime}}\left(\epsilon_{1}(k), \frac{1}{k}\right)$ is less than $1-a_{\mathfrak{R}}(\delta)$. By Corollary 3 , all but a $\mathbf{m}_{\mathfrak{R}}$-measure δ set of IETs
have a rigidity sequence in the complement of $A_{\mathfrak{R}^{\prime}}\left(\epsilon_{1}(k), \frac{1}{k}\right)$ (which can be shared by a set of IETs with $\mathbf{m}_{\mathfrak{H}^{\prime}}$-measure at most $\frac{1}{k}$). Consider the countable intersection over k of these nested sets of \mathbf{m}_{\Re}-measure $1-\delta$. For each IET T in this set let n_{i} be a $\frac{1}{i}$ rigidity time for T lying in the complement of $A_{\mathfrak{R}^{\prime}}\left(\epsilon_{1}(i), \frac{1}{i}\right)$. Therefore, n_{1}, n_{2}, \ldots is a rigidity sequence for T that is not a rigidity sequence for $\mathbf{m}_{\Re^{\prime}}$-almost every IET.

Corollary 5. For every $\alpha \notin \mathbb{Z}$, almost every IET does not have $e^{2 \pi i \alpha}$ as an eigenvalue.

We will prove this corollary independently of [1, Theorem A], from which it immediately follows.

Theorem 17. (Avila and Forni) If π is an irreducible permutation that is not a rotation, then almost every IET with permutation π is weak mixing.

The proof is split into the case of rational α and the case of irrational α. If T has $e^{2 \pi i \alpha}$ as an eigenvalue for some rational $\alpha \notin \mathbb{Z}$ then it is not totally ergodic. This is not the case for almost every IET [24, Part I, Theorem 1.7].

Theorem 18. (Veech) Almost every IET is totally ergodic.

It suffices to consider irrational α and show that for any $\delta>0$ and \mathfrak{R}, the set of IETs having $e^{2 \pi i \alpha}$ as an eigenvalue has $\mathbf{m}_{\mathfrak{R}}$-outer measure less than δ. If $e^{2 \pi i \alpha}$ is an eigenvalue for T then rotation by α is a factor of T. However, rigidity sequences of a transformation are also rigidity sequences for the factor. For every irrational α and $e>0$ there is a sequence of density $1-e$ that contains no rigidity sequence for rotation by α. To see this, observe that if n_{1} and n_{2} are ϵ rigidity times for T then $n_{1}-n_{2}$ is a 2ϵ rigidity time for T. It follows that if $\epsilon<\frac{1}{2} \min _{0<n \leq M} \int\left|T^{n} x-x\right| d \lambda$
then $\{k+1, k+2, \ldots, k+M\}$ can contain at most one ϵ rigidity time for T. Choose $e<1-a_{\mathfrak{R}}(\delta)$ and pick a sequence of density $1-e$ containing no rigidity sequence for rotation by α. The IETs having a rigidity sequence in this sequence have $\mathbf{m}_{\mathfrak{R}}$-measure at least $1-\delta$ and Corollary 5 follows.

Remark 17. Every sequence of density 1 contains a rigidity sequence for rotation by α.

3.4 The spectral argument

Given a μ measure preserving dynamical system T, let U_{T} be the unitary operator on $L^{2}(\mu)$ given by $U_{T}(f)=f \circ T$. Let $L_{0}^{2}(\mu)$ denote the set of L^{2} functions with integral zero. If $f \in L^{2}$ let $\sigma_{f, T}$ be the spectral measure for f and U_{T}, that is the unique measure on \mathbb{T} such that

$$
\int_{\mathbb{T}} z^{n} d \sigma_{f, T}=<f, U_{T}^{n} f>\text { for all } n
$$

Fix $T:[0,1) \rightarrow[0,1)$, a μ ergodic transformation. We will show that for any S in a full measure set of $\operatorname{IETs} \sigma_{f, T}$ is singular with respect to $\sigma_{g, S}$ for any $f, g \in L_{0}^{2}$. By Theorem 14, this establishes Theorem 13. Let $H_{p p}$ be the closure of the subspace of L_{0}^{2} spanned by non-constant eigenfunctions of U_{T} (where the spectral measures are atomic) and H_{c} be its orthogonal complement (where the spectral measures are continuous).

Lemma 45. If $f \in H_{p p}$ then for almost every IET $S, \sigma_{f, T}$ is singular with respect to $\sigma_{g, S}$ for any $g \in L_{0}^{2}$.

Proof. Let $f \in H_{p p} . \sigma_{f, T}$ is an atomic measure supported on the $e^{2 \pi i \alpha}$ that are eigenvalues of U_{T}. If $\sigma_{f, T}$ is nonsingular with respect to $\sigma_{g, S}$ then U_{T} and U_{S} share an eigenvalue (other than the simple eigenvalue 1 corresponding to constant functions). The set of eigenvalues of U_{T} is countable because $H_{p p}$ has a countable basis of eigenfunctions. The lemma follows from the fact that the set of IETs having a particular eigenvalue has measure zero (Corollary 5) and the countable union of measure zero sets has measure zero.

Lemma 46. If $f \in H_{c}$ then for almost every IET $S, \sigma_{f, T}$ is singular with respect to $\sigma_{g, S}$ for any $g \in L_{0}^{2}$.

To prove this lemma we use Wiener's Lemma (see e.g. [5, Lemma 4.10.2]) and its immediate corollary.

Lemma 47. For a finite measure μ on \mathbb{T} set $\hat{\mu}(k)=\int_{\mathbb{T}} z^{k} d \mu(z)$. $\lim _{n \rightarrow \infty} n^{-1} \sum_{k=0}^{n-1}|\hat{\mu}(k)|^{2}=0$ iff μ is continuous.

Corollary 6. For a finite continuous measure μ on \mathbb{T} there exists a density 1 sequence A, such that $\lim _{k \in A} \hat{\mu}(k)=0$.

Proof of Lemma 46. Decompose H_{c} into the direct sum of mutually orthogonal $H_{f_{i}}$, where each $H_{f_{i}}$ is the cyclic subspace generated by f_{i} under U_{T} (and $U_{T}^{-1}=U_{T}^{*}$). By Corollary 6 , for each i there exists a density 1 set of natural numbers B_{i} such that $\lim _{n \in B_{i}} \int_{\mathbb{T}} z^{n} d \sigma_{f_{i}, T}=0$. Choose N_{j} increasing such that for each j we have $\inf _{n>N_{j}} \frac{\mid B_{i} \cap[0, n| |}{n}>$ $1-2^{-j}$. Let $A_{i}:=\bigcup_{j=1}^{\infty}\left(\left[N_{j}, N_{j+1}\right] \bigcap_{k=-j}^{j} B_{i}+k\right)$. By construction, $\left(A_{i}-k\right) \backslash B_{i}$ is a finite set for any $k \in \mathbb{Z}$. Therefore, $\lim _{n \in A_{i}} \int_{\mathbb{T}} z^{n+k} d \sigma_{f_{i}, T}=0$ for any $k \in \mathbb{Z}$. Thus, for any
$h \in H_{f_{i}}$ it follows that $\lim _{n \in A_{i}} \int_{\mathbb{T}} z^{k+n} d \sigma_{h, T}=0$ for any k. This follows from the fact that $\sigma_{h, T} \ll \sigma_{f_{i}, T}$, the span of z^{k} is dense in L_{2} and $\left|\int_{\mathbb{T}} z^{r} d \mu\right| \leq \mu(\mathbb{T})$. Since there are only a countable number of $H_{f_{i}}$, there exists a density 1 sequence A such that for any i and $h \in H_{f_{i}}$ we have that $\lim _{n \in A_{i}} \int_{\mathbb{T}} z^{k+n} d \sigma_{h, T}=0$ for any k. (To see this pick M_{j} such that $\inf _{M_{j}<n} \frac{\mid A_{i} \cap[0, n| |}{n}>1-2^{-j}$ for any $i \leq j$. Let $A=\bigcup_{j=1}^{\infty}\left[M_{j}, M_{j+1}\right] \cap A_{1} \cap \ldots \cap A_{j}$.) It follows that for any $h \in H_{c}, \lim _{n \in A_{i}} \int_{\mathbb{T}} z^{k+n} d \sigma_{h, T}=0$ for any k. This uses the fact that if g_{1} and g_{2} lie in orthogonal cyclic subspaces then $\sigma_{g_{1}+g_{2}, T}$ is $\sigma_{g_{1}, T}+\sigma_{g_{2}, T}$.

Let S be any IET with a rigidity sequence contained in A, which almost every IET has by Theorem 15 . We now show that $\sigma_{g, S}$ is singular with respect to $\sigma_{f, T}$ for any $f \in H_{c}$ and $g \in L_{0}^{2}(\lambda)$. Notice that since n_{1}, n_{2}, \ldots is a rigidity sequence for $S, \lim _{i \rightarrow \infty} \int_{\mathbb{T}}\left|z^{n_{i}}-1\right|^{2} d \sigma_{g, S}=0$. Because L^{2} convergence implies convergence almost everywhere along a subsequence, it follows that there exists i_{1}, i_{2}, \ldots such that $\sigma_{g, S}(\{z$: $\left.\lim _{j \rightarrow \infty} z^{n_{i j}} \rightarrow 1\right\}$) $=\sigma_{g, S}(\mathbb{T})$. However, $\lim _{i \rightarrow \infty} \int_{C} z^{n_{i}} \sigma_{f, T} \rightarrow 0$ for any measurable $C \subset$ \mathbb{T}. This is because $\int_{C} z^{n_{i}} \sigma_{f, T}=\int_{\mathbb{T}} z^{n_{i}} \chi_{C}(z) \sigma_{f, T}$ and χ_{C} can be approximated in $L_{2}\left(\sigma_{f, T}\right)$ by polynomials. The construction of A in the previous paragraph shows that $\lim _{n \in A} \int_{\mathbb{T}} p(z) z^{n} d \sigma_{f, T}=0$ for any polynomial p. It follows that $\sigma_{g, S}$ is singular with respect to $\sigma_{f, T}$ for any $f \in H_{c}$ and $g \in L_{0}^{2}(\lambda)$.

Theorem 13 follows by considering the intersection of the two full measure sets of IETs and the fact that if $g_{1} \in H_{p p}$ and $g_{2} \in H_{c}$ then $\sigma_{g_{1}+g_{2}, T}$ is $\sigma_{g_{1}, T}+\sigma_{g_{2}, T}$.

Remark 18. Motivating the proof is: If μ and ν are probability measures on S^{1} such that $z^{n_{i}} \rightarrow f$ weakly in $L_{2}(\mu)$ and $z^{n_{i}} \rightarrow g$ weakly in $L_{2}(\nu)$ and $f(z) \neq g(z)$ for all z then ν and μ are singular.

Remark 19. A possibly more checkable result follows from the above proof. Assume A is a mixing sequence for T (that is, $\lim _{n \in A} \mu\left(B \cap T^{n}\left(B^{\prime}\right)\right)=\mu(B) \mu\left(B^{\prime}\right)$ for all measurable B and B^{\prime}) then any S having a rigidity sequence in A is disjoint from T. Note that weak mixing transformations have mixing sequences of density 1 .

Remark 20. Given a family of transformations \mathcal{F} with a measure η on \mathcal{F} any μ ergodic $T: X \rightarrow X$ will be disjoint for η-almost every $S \in \mathcal{F}$ if:

1. Any sequence of density 1 is a rigidity sequence for η-almost every $S \in \mathcal{F}$.
2. $\eta(\{S \in \mathcal{F}: \alpha$ is an eigenvalue for $S\})=0$ for any $\alpha \neq 1$.

Additionally, the previous section shows that a slightly stronger version of condition 1 and η-almost sure total ergodicity implies condition 2. Condition 1 on its own does not imply condition 2 (let \mathcal{F} be the set of 1 element, rotation by α_{0}).

3.5 Concluding remarks

First, a consequence of Theorem 13 that is interesting in its own right.

Corollary 7. For almost every pair of IETs T, S the transformation $T \times S$ is uniquely ergodic with respect to Lebesgue measure on $[0,1)^{2}$.

Proof. This follows from the fact that almost every IET is uniquely ergodic ([18] and [23]) and the following Lemma.

Lemma 48. If T and S are uniquely ergodic with respect to μ and ν respectively then any preserved measure of $T \times S$ has projections μ and ν.

Proof. Consider η, a preserved measure of $T \times S$.

$$
\eta(A \times Y)=\eta\left(T^{-n} \times S^{-n}(A \times Y)\right)=\eta\left(T^{-n}(A) \times Y\right)
$$

Therefore, $\mu_{1}(A):=\eta(A \times Y)$ is preserved by T and so it is μ. For the other projection the proof is similar.

More is true in fact, for Leb $\times \ldots \times$ Leb almost every n-tuple of IETs $\left(S_{1}, \ldots, S_{n}\right)$, $S_{1} \times \ldots \times S_{n}$ is uniquely ergodic and S_{1} is disjoint from $S_{2} \times S_{3} \times \ldots \times S_{n}$.

Corollary 7 has an application. Consider $T \times S$. In our context, unique ergodicity implies minimality, which implies uniformly bounded return time to a fixed rectangle. Therefore, if we choose a rectangle $V \subset[0,1) \times[0,1)$ then the induced map of $T \times S$ on V is almost surely (in (T, S) or even S if T is uniquely ergodic) an exchange of a finite number of rectangles.

Theorem 13 also strengthens Corollary 5 because transformations are not disjoint from their factors.

Corollary 8. No transformation is a factor of a positive measure set of IETs.

Bibliography

[1] Avila, A; Forni, G: Weak mixing for interval exchange transformations and translation flows, Ann. of Math. (2) 165 (2007), 637-664.
[2] Berthe, V; Chekhova, N; Ferenczi, S: Covering numbers: arithmetics and dynamics for rotations and interval exchanges. J. D'Analyse Math. 791 (1999) 1-31
[3] Boshernitzan, M: Quantitative recurrence results. Invent. Math. 113 (1993), no. 3, 617-631.
[4] Boshernitzan, M; Chaika, J: Diophantine properties of IETs and general systems: Quantitative proximality and connectivity. Preprint.
[5] Brin, M; Stuck, G: Introduction to dynamical systems. Cambridge University Press, Cambridge, 2002.
[6] Bufetov, A: Decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmller flow on the moduli space of abelian differentials. J. Amer. Math. Soc. 19 (2006), no. 3, 579-623
[7] Cornfeld I. P; Fomin S. V; Sinai, Ya. G: Ergodic theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 245. Springer-Verlag, New York, 1982.
[8] del Junco, Andrs: Disjointness of measure-preserving transformations, minimal self-joinings and category. I (College Park, Md., 1979-80), pp. 81-89, Progr. Math., 10, Birkhuser, Boston, Mass., 1981.
[9] El Abdalaoui, El Houcein: La singularité mutuelle presque sûre du spectre des transformations d'Ornstein. Israel J. Math. 112 (1999), 135-155
[10] Fraczek, Krzysztof; Lemanczyk, Mariusz: On disjointness properties of some smooth flows. Fund. Math. 185 (2005), no. 2, 117-142
[11] Glasner, E: Ergodic theory via joinings. Mathematical Surveys and Monographs, 101. American Mathematical Society, Providence, RI, 2003.
[12] Hahn, F; Parry, W: Some Characteristic Properties of dynamical systems with quasi discrete spectrum. Math. Systems Theory 2 (1968) 179-190.
[13] Katok, A: Interval exchange transformations and some special flows are not mixing, Israel J. Math 35 (4) (1980) 301-310
[14] Keane, M: Interval exchange transformations, Math. Z. 141, 25-31 (1975)
[15] Keane, M: Non-ergodic interval exchange transformations, Israel J. Math. 26 (2) (1977) 188-196.
[16] Kerckhoff, S. P: Simplicial systems for interval exchange maps and measured foliation. Ergod. Th. \& Dynam. Sys. 5 (1985), 257-271
[17] Khinchin, A: Continued Fractions, Dover.
[18] Masur, H: Interval exchange transformations and measured foliations. Ann. of Math. (2) 115 (1982) 168-200.
[19] Mattila, P: Geometry of sets and measures in Euclidean spaces. Cambridge University Press 1995.
[20] Sinai, Y; Ulcigrai, C: Renewal-type limit theorem for the Gauss map and continued fractions. Ergod Th. 63 Dynam. Sys. 28 (2008), no. 2, 643-655.
[21] Thouvenot, J.-P: Some properties and applications of joinings in ergodic theory. Ergodic theory and its connections with harmonic analysis (Alexandria, 1993), 207-235, London Math. Soc. Lecture Note Ser., 205, Cambridge Univ. Press, Cambridge, 1995.
[22] Veech, W: Interval exchange transformations. J. D'Analyse Math. 33 (1978) 222-272.
[23] Veech, W: Gauss measures for transformations on the space of interval exchange maps. Ann. of Math. (2) 115 (1982) 201-242.
[24] Veech W: The Metric Theory of interval exchange transformations, American Journal of Mathematics 106 (6) (1984) 1331-1422.
[25] Viana, M: Ergodic theory of interval exchange maps. Rev. Mat. Complut. 19 (2006), no. 1, 7100.

