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Abstract

Interval Exchange Transformations: Applications of Keane’s

Construction and Disjointness

by

Jon Chaika

This thesis is divided into two parts. The first part uses a family of Interval
Exchange Transformations constructed by Michael Keane to show that IETs can
have some particular behavior including:

1. IETs can be topologically mixing.

2. A minimal IET can have an ergodic measure with Hausdorff dimension « for

any « € [0,1].

3. The complement of the generic points for Lebesgue measure in a minimal non-
uniquely ergodic IET can have Hausdorff dimension 0. Note that this is a dense

G5 set.

The second part shows that almost every pair of IETs are different. In particular,
the product of almost every pair of IETSs is uniquely ergodic. In proving this we show
that any sequence of natural numbers of density 1 contains a rigidity sequence for

almost every IET, strengthening a result of Veech.
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Chapter 1

Introduction

1.1 Basic dynamics terminology

Let (X, B, ) be a measure space. If T : X — X is measurable and u(A) = u(T71A)
for all measurable sets A then T is said to be y measure preserving. If T is p measure
preserving and p(AAT(71A)) = 0 only when u(A) or p(A€) = 0 then T is said to be
p ergodic. (A denotes symmetric difference.) One of the primary motivations (and

tools) for studying ergodic transformations is the Birkhoff Ergodic Theorem.

Theorem 1. (Birkhoff) Let (X, B, 1) be a o-additive measure space. If T is p ergodic
N-1

then for all f € LY(X, B, 1) we have A;im % 2 f(T™(x)) = [y fdp for u almost every
=00 n=0

z.

Informally the Birkhoff Ergodic Theorem says that for ergodic transformations the

time average is equal to the space average. It also motivates the following definition:

Definition 1. Given T: [0,1] — [0,1], a p ergodic map, we say a point zo € [0,1] s



N—
generic for p of h %,— Z f(T™(zo)) fo fdu for every f € C([0,1)).

The definition requires that the limit exists. The generic points can be thought
of as an explicit set of u typical points.

In particular, B is a Borel o-algebra and if continuous functions with supremum
norm are separable (such as when (X, d) is a compact metric space) then there exist

generic points. To see this let f;, ... be a countable dense set in the sup norm topology.

Let
A= {z: hm sz (T™(z /deu}.
N-1
Ifz € ﬂ A; then for any continuous f € Li(X, B, 1) we have hm % > f(TM(x)) =
n=0
[x fap.

In this construction we use the fact that y is an ergodic measure for T. If u and v
are two different ergodic probability measures for 7', then “"2*—” is another probability
measure, and 7T is a f‘—“;—z measure preserving transformation. T is not ‘“;—” ergodic.
The set of £~ generic points has 3 measure 0. One should observe that the Birkhoff
Ergodic Theorem implies that if ,u and v are different ergodic measures of T then they
are singular, meaning that they have disjoint sets of full measure. If T" is a u ergodic
transformation and it has no other ergodic measures it is called uniquely ergodic.
Uniquely ergodic transformations have only 1 preserved measure.

Another important result in ergodic theory is the Poincaré Recurrence Theorem.

Theorem 2. (Poincaré) Let (X, B, u) be a finite measure space and T be a p mea-
sure preserving transformation. For any measurable set A, A = {r e A: T'(z) €

A for some n > 0} has u(AAA) = 0.



This helps justify an important construction in ergodic theory and this thesis,
the induced map. If T is p measure preserving and A is a measurable set, then the
Poincaré recurrence theorem tells us that for all but a measure zero set of x € A there
exists n, € N such that T"=(z) € A. Motivated by this we define the induced map of
T on A (or the Poincaré first return map) as T'|4: A — A by T|a(z) = T"*(z) where
r, = min{n € N: T"(x) € A}. T|4 is also 4 measure preserving. One can also check

that if B C A then T|B = (T|A)|B

1.2 What is an IET

Definition 2. Gwen L = (ly,ls,...,lq) where l; > 0, l; + ... +lg =1, we obtain d
subintervals of [0,1), [1 =[0,01), Lo =[l,l1+l2),....Ja= [l + ... + l4_1,1). Given a
permutation © on {1,2,...,d}, we obtain a d-Interval Exchange Transformation (d-
IET) T:[0,1) — [0,1) which exchanges the intervals I; according to w. That is, if

x € I; then

T(.’E) =X — Zlk + Z lk/.

k<j w(k")<m(3)

It follows from the definition that IETSs are Lebesgue measure preserving invertible
maps of [0,1). They are by construction continuous from the right and have at most
d — 1 discontinuities. The inverse of an IET is also an IET (often with a different
permutation.) Rotations can be viewed as 2-IETs with permutation (21).

Interval exchange transformations with a fixed permutation on d-letters are
parametrized by the standard simplex in RY, Ay = {(Iy,...,0s) : L > 0,51, = 1}.

In this paper, A denotes Lebesgue measure on the unit interval. The term “al-



most all” refers to Lebesgue measure on the disjoint union of the simplices corre-
sponding to the permutations that contain some IETs with dense orbits. That is,
n({1,...,k}) # {1,....,k} for k < d [14, Section 3|. These permutations are called
irreducible.

The following is one of the main results on IETs and was proven independently

by Masur [18] and Veech [23].

Theorem 3. (Masur, Veech) Let m be an irreducible permutation on d-letters. For
almost every (Li, Lo, ..., Lq) the IET determined by (L1,...,Lq) and m is uniquely

ergodic with respect to Lebesgue measure.

1.2.1 The induced map of an IET

Let A be a subinterval of [0,1). If T is a d-IET then T'|4 is at most a d + 2-IET. If
A is bounded by discontinuities then 7| 4 is at most a d-IET. These observations are
classical and follow from the simple fact that the discontinuities of T'|4 are pre-images

of discontinuities of T' or pre-images of endpoints.

Remark 1. If T| 4 is a d-IET then one can tabulate the number of hits the j* interval
of T| 4 makes in the i*" interval of T before first return as the i5®* entry of a matrix.
Notice that the travel of intervals of the induced of an induced map can be kept track
of by the product of two of these matrices. This will be used throughout this thesis.

We denote this matrix M (T, A).
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1.2.2 The Keane condition

An IET, T with discontinuities &;,...,84 1 is said to satisfy the Keane condition
(also called the infinite distinct orbit condition or idoc) if {&,76:,...,T%61,...},
{62, Tbq,...},....{04-1,T04—1, ...} are all disjoint infinite sets. The following 2 results

motivate introducing this condition [14, Section 3].

Proposition 1. (Keane) If T satisfies the Keane condition then for any x € [0,1)

the set {z,Tz,.....} is dense in [0,1).

Proposition 2. (Keane) If 7 is an irreducible permutation on {1,...,d} and
{L1,...,Lq} are linearly independent over Q then the IET they define satisfies the

Keane condition.

If 7 is not irreducible then there are no IETs with permutation 7 satisfying the

Keane condition.

1.3 Rauzy-Veech Induction

Our treatment of Rauzy-Veech induction will be the same as in [23, Section 7]. We
recall it here. Let T be a d-IET with permutation 7. Let §, be the rightmost discon-
tinuity of 7" and é_ be the rightmost discontinuity of T7!. Let 0pmqe, = max{d;,d_}.
Consider the induced map of T on [0, dmax) denoted T'os,.,)- If 04 # 0_ this is a
d-IET on a smaller interval, perhaps with a different permutation.

We can renormalize it so that it is once again a d-IET on [0,1). That is, let

R(T)(z) = T0,6msx)(T0maz)(Omaz)~". This is the Rauzy-Veech induction of T. To be
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explicit the Rauzy-Veech induction map is only defined if 6, # d_. If dynez = 04 we

say the first step in Rauzy-Veech induction is a. In this case the permutation of R(T)

is given by (
m(j) j<mi(d)
m(4) = 1 7(@) j=rNd)+1 (1.1)
7 —1)  otherwise

We keep track of what has happened under Rauzy-Veech induction by a matrix

M(T, 1) where
(51',]' j < W_l(d)

M(T, 1)[2]] = J 51‘,]‘—1 ] > W_l(d) and i 7& d' (1.2)

57r_1(d),j Z = d
\
If dppaz = 6_ we say the first step in Rauzy-Veech induction is b. In this case the

permutation of R(T) is given by

We keep track of what has happened under Rauzy-Veech induction by a matrix

1 i=dand j=n"1(d)
M(T,1)[ij] = : (1.4)

ds 5 otherwise
The matrices described above depend on whether the step is a or b and the permuta-

tion T has. The following well known lemmas which are immediate calculations help
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motivate the definition of M(T, 1).
Lemma 1. If R(T) = Sy, » then the length vector of T is comeasurable with M(T,1)L.
Let Ma = MR} N Ay Recall A, is the interior of the simplex in RY.

Lemma 2. An IET with lengths contained in M(T,1)a and permutation 7 has the

same first step of Rauzy-Veech induction as T.

We define the n'' matrix of Rauzy-Veech induction by
M(T,n) = M(T,n — 1)M(R"(T), 1).

All M(T,n) are in SLy(Z) and have non-negative entries. It follows from Lemma 2
that for an IET with length vector in M (T, n)a and permutation 7 the first n steps
of Rauzy-Veech induction agree with 7. If M is any matrix, C;(M) denotes the i
column and Cy,,, (M) denotes the column with the largest sum of entries. Let |C;(M )|
denote the sum of the entries in the :** column. Versions of the following lemma are

well known and we provide a proof for completeness.

Lemma 3. If M(R™(T), k) is a positive matriz and L = % then Sy, . agrees

with T through the first n steps of Rauzy-Veech induction.

Ci(M(R™(T),n+k—m))

Proof. By Lemma 1 the length vector for R™(Sg ) is 1L (B (R (T) m )]

for any

m where R™(Sy ) is defined. By our assumption on the positivity of M(R"(T), k)
the vector &(%Eﬁgg% is contained in Ad. The lemma follows by Lemma 2 and

induction. O

The next definition does not appear in [23] but is important for the last section.
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Definition 3. A matrix M is called v balanced if% < Ilg;((%;ll <v foralli and j.

Notice that if M is v balanced then |C;(M)| > wﬂl,’j—(w

We remarked earlier that Rauzy-Veech induction may send the IET to an IET
with a different permutation. Given a permutation 7, its Rauzy class is the set of all
permutations that can be reached by powers of Rauzy-Veech induction on IETs with
permutation 7.

Whether the operation of Rauzy-Veech induction is a or b is important. The
infinite sequence of a’s and b’s uniquely determines the IET if it is uniquely ergodic

with respect to Lebesgue measure.

1.4 Basic Measure Theory

Theorem 4. (Borel-Cantelli) Let . be a measure and Ay, As, ... be a sequence of p

measurable sets. If Z,u ) < 00 then uf A U A;) =0.

n=1 n=14{=n

Theorem 5. (Fubini) Let (X,B,u) and (Y,C,v) be two finite measure spaces

and f : X X Y be a measurable function of their product o-algebra. Then

TxUy f(@9)dv(y)du(z) = [, ([ fz,y)du(z))dv(y).

The assumption that these are finite measure spaces can be weakened to only

assume that they are o-finite.
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1.5 The Spectral Theorem

If f € L?(u) and T is a u measure preserving transformation then foT € L?(u),
with the same norm. Motivated by this let Uy denote the isometry on L?(yu) given
by Ur(f) = f oT. Notice that Ur preserves constant functions. If T has measure
preserving inverse then Uy is a unitary operator with U; = Ur-1.

The spectral theorem for unitary operators states that for each f € L?(u) there

exists a unique measure on the unit circle ps;, such that

/anO'f,T =< f,Urf > for all n.
T

In Chapter 3 the spectral theorem will be used to establish that IETSs are almost
surely different. We will briefly make some remarks that are helpful to motivate
this approach. Assume that there exists an increasing sequence of natural numbers
n1,ng, ... such that }H& fol [T™z — z|d\ = 0. It follows from either the Lebesgue
density theorem or Luzin’s theorem that U7’ f converges to f in L? norm. It follows
that Uy converges to the identity in the strong operator topology. It also follows that
}E& fT |z — 1|20 = 0. By the fact that convergence in norm implies convergence
almost everywhere along a subsequence it follows that there exists ¢;, s, ... such that
{z: jli»r& 2™ = 1} has full oy measure. This implies that spectral measures detect

information about the measure preserving transformations they are associated with.

This argument is developed further in Chapter 3.



Chapter 2

Keane type examples

Michael Keane introduced a construction of a minimal but not uniquely ergodic 4-
IET [15]. This construction is based on proving that there are orbits that have
asymptotically different distribution. It uses an inductive procedure that provides for
a great deal of control. This chapter uses Keane’s construction to show that there
exists a topologically mixing IET, results on the possible size of ergodic measures
in terms of Hausdorff dimension and exotic properties of the distribution of orbits.

These results make statements about topology, measure and metric respectively.

2.1 An introduction to Keane type examples

Consider IETs with permutation (4213). Observe that the second interval gets shifted
by 4 — ;. If this difference is small relative to I then much of I, gets sent to itself. At
the same time, pieces of I3 do not reach I until they have first reached I;. This is the

heart of the Keane construction. The details of the Keane construction are centered

15
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around iterating this procedure by the induced map. Keane considered the induced
map on the fourth interval, which we denote IV, The induced map on this interval
is once again a 4-IET. Keane showed that by choosing the lengths appropriately
one could ensure that this induced map had the permutation (2431). Name these
in reverse order and we once again get a (4213) IET. Motivated by this, we name
the 4 exchanged subintervals of (1) under Tl; in reverse order; that is, Il(l) 18 the
subinterval furthest to the right. Keane also showed that for any choice m,n € N one
can find an IET whose landing pattern of I;l) is given by the columns of following

matrix:

m-—1 m 0 0
Appr = ; mymneN={12 1}

In order to see this, pick lengths for /() and write it as a column vector. Now
assign lengths to the original IET by multiplying this column vector by A,,,. The
induced map will travel according to this matrix by construction. For instance, if one

chooses lengths [.25,.25,.25,.25] for IV one gets lengths of

2 2m — 1 4n -1 4
242m—-1+4n—-14+4"2m+4dn+4"2m+4n+4"2m+4n+4

[

)

for the original IET (after renormalizing). For any finite collection of matrices one
can iterate this construction. (Assign lengths for I*) by multiplying the lengths of

I+ by A multiply the resulting column vector by A, n,,... . &Y is

Mi41,Mk+17

defined inductively as the fourth interval of I(®).) Compactness (of P3, which can be
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thought of as the parameterizing space of (4213) IETs) ensures that we can pass to
an infinite sequence of these matrices.

Since the intervals are named in reverse order, the discontinuity (under the induced
map) between 12(1) and Iél) is given by T~!(6;) where §; denotes the discontinuity
between I; and I;. As the first row of the matrix suggests I} = T(If) U Iél)). The
discontinuity (under the induced map) between Il(l) and Iél) is given by T7™(d,)
where d, denotes the discontinuity between I, and I5. As the second row of the

matrix suggests
L=TIPururraPuryu . oI o Y u ().

The discontinuity (under the induced map) between 13(,1) and IV is given by T~""1(5;)
where d; denotes the discontinuity between I3 and I;. As the third row of the matrix

suggests
Iy =1IMyur iy P vy v Py u Ty u TP u YU
Loy rDygrmr fOyu (I u Yy o (EDyo e Iy o T D).
I, = Lil) U 19(,1) U 12(1) U ]1(1). As the columns of the matrix suggest, this is also

I, = T"+1(I3(1)) U Tm+n+1([2(1)) U Tm+n([1(1)) U T"“(LEI))-

To recap, the composition of I; can be given by the 4§t row of the matrix. The travel
before first return of I ;1) can be given by the j** column. Additionally, because the
intervals were named in reverse order, the permutation of the induced map is once

again (4213).
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It is important for this construction that everything be iterated. The composition

k+7)

of I ;k) in pieces of I is given by e} A A (where €] denotes the

Mg +1,Nk4+1" """ " Mtr Nkt r

k+r)

transpose pf e;). Likewise, the travel of / ]( under Ty before first return to 74+

is given by Am i nerr - Ampyrngsr €5

Definition 4. Let O(I;k)) denote the disjoint images under T of I;k) before first

return to 1),

Now for some explicit statements about the travel of subintervals of 7®®) under the
induced map Tyx. When Iék) returns to I it entirely covers I ik). It is a subset of
1PUI®). When I returns to I® it entirely covers I, It intersects I{"). Moreover
part of this intersection will stay in O(IQ(k)) for the next my41by o images (the other
part (mg41 — 1)bg2.) When Iék) returns to I(® it intersects Iék). Moreover this piece

of intersection will stay in O(Iék)) for the next ng,1bx 3 images.
Definition 5. b, is the first return time of Ii(k) to I,

Remark 2. by, is given by |Am,ns---Amgnc€il1- In particular, byo = mgbe—1o +
Nebk—1,3 + be—1.4 and by s = be_1,1 + (np — 1)bg_1,3 + br—1.4.
bii—1
Remark 3. O(I® =" Ti(1®).
i=1

Some facts to keep in mind:

1. The choice of nj has no effect on b, 5 for 7 < k.

2. The choice of ny has no effect on b; 5 for ¢ < k.

3. The choice of my has no effect on b, 5 for 7 < k.

4. The choice of m;, has no effect on b; 3 for 7 < k + 1.
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2.2 There exists a topologically mixing Keane IET

Definition 6. Let X be a topological space. A dynamical system T : X — X 1is said
to be topologically mixing if for nonempty open sets U, V there exists Nyy = N

such that T"(UYNV # 0 for alln > N.
Theorem 6. There exists a topologically mixing 4-1IET.

Remark 4. Tt is classical that aperiodic IETs are measurably conjugate to shift dy-
namical systems that are continuous. The example presented to prove Theorem 6 has
this conjugate system also topologically mixing. The proof is straightforward and will

not be presented in this thesis.

Conditions on by » and by 3 that ensure topological mixing:
1. by is prime for all k.
2. bi,2 ka’g for all i < k.
k k
3. The group of multiplicative units mod 'ljlbi’z has more than -5,1:[1@‘,2 elements.
4. biobri1s + bry13 + bga + be_14 < Mpg1be
5. brabra + bro < npg1big

Theorem 1 will be proven by showing that any Keane IET chosen in this way is

Topologically mixing. We first show that the set of such IETs is nonempty.

Lemma 4. One can choose by s and b3 to fulfill these conditions.
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Proof. By induction. Assume we have chosen ni,my, ng, ms,...,ng_1,mg_1; we de-

scribe how to choose ng and then given this nx how to choose my. Consider con-
k-1 o

gruence modulo g := II b;5. Choose a congruence class [f]| that is in the group of
i=1

multiplicative units and so that [f + bgk_13 — bk-11] is in the multiplicative group

of units. This can be done by pigeon hole principle (by condition 3). Pick n, so

that b3 € [f] and so that n, > b’“‘l'sbl’j;_lf:b’““’z. This can be done because bg_; 3

is relatively prime to the b, for all 7 < k. Next we pick my so that by is prime,

br_1,2bk,3+bk—1,4+bi3

- and condition 3 is satisfied. This is doable because we wish

mg >
to find a prime in the arithmetic progression ngby_1 3+bx—1,4+bx_1 2N and the starting
point and the increment are relatively prime and the other conditions merely require

choosing my, large enough. O

Let ¢ = bry12bkt23 + bkras + bkraa + bir14; die = bigo3braz 2 + brgo.

Let J contain at least one level of a tower over I*), This means that it contains at
least 1 level from each of the 4 towers over I*+2). For all j > k, i > ¢;, T*(J) intersects
every level of every tower over IU~1). This is proved in the following lemmas. In these

Lo , , (k+2) (k+2)
arguments it will be important to pick out a level from O(;" ") and O(I3" ). These

will be denoted J'.

I§k+2))

Lemma 5. At times ¢, to dy J', a level in O , intersects every level of

O(Iz(k+l)) '

Proof. There exists 0 < i < bgya3 (it is equal to by 3 for I§k+2) but for pieces of the

orbit it is less than) such that Iﬁk”) C Ti(J'). So Ti+berza( )N I £ 9. Also

Ti+bk+2,4+bk+l,4(J’) N I§k+1) 75 @
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In fact,

Ti+bk+2,4+bk+1,4+jbk+2,3(J’) ) IQ(k+l) 7& ¢

for j < nyy3 (notice, T|§(k+2)(1§k+2)) N I§k+2) 4 0 for j < muys). Pieces of IS are

i1

inserted into I, with a delay of bx423 which is coprime to bgt12. It follows that

T (J') intersects every level of O(IQ(HI)). By condition 5 it follows that 77(J’) inter-

sects every level of O(I§k+1)) for ¢, < r < dy (because ngi3bgi23 > di). Moreover, the

12(k+2))

pieces inserted take myobgi12 to leave O( . Because mgi1bk+12 > bii23bk412

(condition 4) the piece does not leave O(I§k+2) ) before another is inserted into its
level. a
Lemma 6. At times dy to ¢y J', a level in O(Iék”)), intersects every piece of

oI+

Proof. There exists 0 < ¢ < bgia2 (it is equal to bgig o for Ig(k+2) but for pieces of the
orbit it is less than) such that I{"*2 N Ti(J') # 0. Also It n Titdbeeaz(J) + ¢

for 7 < myys (notice, T|;(k)(lék+2)) N 12(k+2) # 0 for j < mys3). Because bryoo

is relatively prime to by,o3 we have T't7%+22(J') intersects each level of O(I§k+2))

k+2
L)

for j = bryos. It follows from condition 4 that T7( intersects each level of

O(I§k+2)) for dy < r < cpy1 (because myisbeia 2 > brio2bkiss). Moreover, the pieces

k
I?E 2)) Because (npy3—1)bry23 > bri2obrios

inserted take (ngio—1)bxio 3 to leave O(
(condition 5) the piece does not leave O(]ékH) ) before another is inserted into its

level. O

Proof of Theorem 6. For any two intervals Ji, Jz, eventually both contain some level

of a tower over I*0). This implies that they contain a level from each tower over
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I%®) for all k& > ko + 1. This implies that T™(J;) N Jp # 0 for n € [cx, di] because J;
contains a level of I§k+2) and J, contains a level of I§k+1). Also T™(J1) N J2 # O for
n € [dk, ck+1] because Jy contains a level of Iz(k”) and J, contains a level of I§k+2). It

follows that T™(J1) N J2 # @ for any n > cyy1- O

2.2.1 No IET is topologically mixing of all orders

The argument is a straightforward application of [13]. Let T be an d-IET. Observe
that a topologically mixing IET must be minimal (otherwise it splits into disjoint
invariant components). Let J, J' be any disjoint intervals bounded by discontinuities
of T! for some [, and nq,...,ng be natural numbers. We will find a violation of
topological mixing of order d? + 1 at bigger times. Pick an interval V such that all
of the first returns to V are greater than max{l,ny,...n4p}. We may also choose V so
that Ty is an s IET for some s < d. By our assumption that the return times to V
are larger than [, each level of a tower over V is either contained in J or disjoint from
J. Let Uy, Uy, ..., U, be its subintervals. Ty, is an s;-IET for s; < s. Call its intervals
Uii,...,Uss and their return times r;,,..7;5,. If £ € O(U;) and z € O(U;;) then
Tmi(z) € J. This is because z € T*(U;) C J for some k < r;, in fact z € T*(U, ;).
Trii~*(z) € U;. So TH(Tm57*(z)) € T*(U;) C J. Therefore 'Ifdﬁ Tris(J)yNnJ' = 0.

3,7=1

2.3 Measure estimates for Keane’s construction

The previous sections discussed the topological properties of Keane type IETs.

Keane’s construction of these IETs was motivated by their measure properties. In
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Keane’s example we have a non-uniquely ergodic minimal 4-IET T' with ergodic mea-

sure Ay and A3. To gain some further intuition consider the product:

0 0 1 1 a c+d

m—-1m 0 0 b (m—1)a+mb
n n n—1 n c : nla+b+c+d)—c
1 1 1 1 d a+b+c+d

Notice that if a = ¢ =d = 0, b = 1, m is much bigger than n and large then the
resulting column vector has small angle with the original. Likewise, if a = b=d =0,
¢ = 1 and n is large then the resulting column vector has small angle with the original.

Motivated by this, we introduce another piece of notation.

e e T A . . .
Definition 7. Let A, ,v = M—m”‘—;", where |w| is the sum of the entries in w.
m,n

Michael Keane showed that if 3n, < m; < %nkﬂ and n; > 9 then the IET given
by lim flm,ml ...flnr’mreg is minimal but not uniquely ergodic. In particular he showed
T—00
the limit exists. (It is not hard to see that one can remove the assumption on n; or

any finite number of matrices).

2.3.1 Estimates on the size of intervals with respect to the
two ergodic measures

In this section we bound )\i(IJ(k)) between two constants. Many of these are needed
in the later arguments. We include the rest for completeness.

In these computations, we use jth entry of partial products Ay... Ay .€; to estimate

k
M1

ST To complete these estimates we remark that b;; > A (I%)) > ;1#’2 (Lemma
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28) and by > A\3(I*)) > 5= (Lemma 27).

Remark 5. The proofs of these lemmas often provide better results than their state-
ments. Additionally, it is often straightforward to provide better estimates, especially
under stronger growth conditions on m; and n;. Lemma 14, for instance, would be

amenable to such an approach.

" A" : .z
Proposition 3. :\—1-%% = the jth entry of rlingoAmk+1>nk+l"'Amk+rynk+rei'

A3 (1) Mgt
A3(IF)) = 2nppingego”

Lemma 7.

MEe4+1

Proof. 1t suffices to show that the second entry of Aum, ,\ 1 Ay 263 > grii—.

This is a direct computation. O

As (1) 2mp 41
AR = (ngyot+1)(nep1+1)”

Lemma 8.

This result is in the proof of Lemma 3 of [15].

As(I$P) 1 3

Lemma 9. SWiC)IER Balwes

This is Lemma 3 of [15].

)\3(1516)) 1

Lemma 10. W S TL_k+T

]1(k+1) 12(16-0—1)’

Proof. Notice that I, ik) is the disjoint union of an image of , an image of
an image of Iék“) and an image of Iﬁkﬂ) and that I*) contains at least ngy; + 1

disjoint images of [ ;Hl) for each j. O

Aa(lik)) 1

Lemma 11. R0 2 T
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Ii(k+1)' (8

Proof. I ik) is made up of one disjoint image of each is made up of ngyq —1

)

disjoint images of I 3(k+1 and ng41 disjoint images of each of the other I, i(kH). Therefore,

) ) A ) he

and A3(IF)) 7 A(I®) ngyr

e k+1 k+1
because ny41 disjoint images of Ii U cover I:,E *

lemma follows by Lemma 9. O

A (1) 1
As(I0R)) = mpqq”

Lemma 12.

Proof. Il(k) is made up of a disjoint union of an image of I§k+l) and Iikﬂ) each of
which has at least nj,, + 1 disjoint images in 1), a
Lemma 13. 2ot L

M3 (IR = 3ngyq”
Proof. 1t follows from the composition of Ii(k) by subintervals of I*+1 that Ag(ll(k)) >

>\3(13(k+1)). The proof follows from Lemmas 11 and 9. a

A2 (1) 0.25myeq
Ao (I(k)) Ngyp1+tmep1+2°

Lemma 14.

Proof. Observe that if v € R} is positive, |v); = 1 and v[2] > .25 then

Apnnv[2] > .25 so long as m > 3n and n > %. By induction, it follows that

r

I1 Amt,nt62[2] > 0:25mugr O

n +m +2°
1 k+1 k41

M) _ dnga
Lemma 15. (1B = m‘

r

Proof. By the previous proof, [] Am,n.e2[2] > 1. It follows that [] Am,ne2(3] <

t=k+42 t=k+1
Nkl
O.25mk+1 : D
22UF) o ey
Lemma 16. DI 2 Impr
A — Nk+1 k41 A A .
P’I“OOf. Amk+1,nk+162[3] T Mrp1Fnep+l > 2kt and Amk+1,nk+162[3] < Amk+1mk+1el[3]
- A A A Tkt1
fori =1,3,4. Thus An, | neys (Ameyoimnnre - Amesrmgg.) 8] 2> TR O
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This proof is related to Lemma 24

X (I8F) 5 1
A2 (I(R)) 2mypqr”

Lemma 17.

Proof. There are at most mg41 + nge1 + 1 disjoint images of any I in I®). By

our standard assumptions ngr; + 1 < myy;. Also [ ikﬂ) is made up of one image of

each Ii(kH). O
e (I§F) 4
Lemma 18. N (1E) < .

Proof. By construction the fourth entry of Am, .\ neis (AmpismiioeAmpsrmess) 18 1.
By Lemma 14 the second entry is at least .25my 1. d

(I 16mgi0+16
Az (I(R)) Mg41ME+2

Lemma 19.

Proof. Il(k) is made up of one image of IékH) and one image of Lik“).

(k) (k+1) 7(k+1)
iy = MUl By the fact that 10+ = I, Lemmas 15 and

18 this is less than %4—"@. O
k+1 Mkg42
) N2
Lemma 20. W) > Tmrpamers
Proof. I*) contai i £ 16D By L 16, 22U o mesa gnq
roof. I;”’ contains one image of I3 /. By Lemma 16, SWILGED sma, and by
Lemma 17, A (I(E+1)) 1 O

oT®) 7 Zmern

2.4 Hausdorff dimension for ergodic measures in

Keane type examples

In Keane’s example we have a non-uniquely ergodic minimal 4-IET T with ergodic

measure Ay and As. If one assigns lengths to an IET by {; = cho (L) + (1 — ¢)As(1y),
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then the resultiﬁg [ETs all have the same topological dynamics (see [22, Section 1]
for more general discussion). They also all have two ergodic measures that assign the
same measure to the 4-subintervals. When ¢ = 1 then A, is Lebesgue measure and
A3 is singular with respect to Lebesgue measure. When ¢ = 0 then A3 is Lebesgue
measure and Ap is singular with respect to Lebesgue measure. In the intermediate
situation both are absolutely continuous with respect to Lebesgue measure. This is

discussed more in Remarks 8 and 10.
Theorem 7. (a)Hy; (A2, dy,) can take any value in [0, 1].

(b) Hyim(A3,dy,) can take any value in [0, 1]

This result answers a question in [3, Section 6]. If the Hausdorff dimension of an
ergodic measure for an IET is zero then the lengths of intervals are not all algebraic

[3, Corollary 6.9].

Theorem 8. (Hgim(A2,dz,), Haim(As,dy,)) can take wvalues (0,0),(1,0),(0,1) or
(1,1).
Theorem 9. If T is a Keane type IET let G3(T) be the set of A3 generic points.

There exists a Keane type IET T such that Hym(G3(T)¢, dy,) = 0.

This says that all but a set of Hausdorff dimension zero of the points behave A3

typically.

2.4.1 Definition of Hausdorff dimension

Let diam(U) = sup |z — y|. Consider a set S C [0,1). We say a collection of open
z,yelU

sets U = {U;}2, isad > 0 cover of Sif S C EJolUi and diam(U;) < § Vi. Let
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6—07t

H3(S) = inf{§1|Ui|s : {U;} is a & cover of S}. Let H°(S) = lim H§(S). Notice that
the limit exists. Let Hgn(S) = inf{s : H*(S) = 0}. This is equivalent to defining
Hygim(S) = sup{s : H%(S) = co}. We state a few well known properties of Hausdorff
dimension.

S;) = supHyim(S:).

Haim N Si < irilfHdim(Si)-
Definition 8. For a Borel Measure p we define the Hausdorff dimension of a prob-
ability measure p is

H g p) = inf{H g;;s(M): M is Borel and u(M) = 1}.

For upper bounds to Hausdorff dimension of a set, explicit constructions are often

all that is necessary. For lower bounds Frostman’s Lemma is useful.

Lemma 21. (Frostman) If B C [0,1) be a Borel set. H*(B) > 0 iff there exists a

finite radon measure on B, v, such that v(B(z,r)) < re.

see [19] p.112.

Corollary 1. If p is a measure on [0,1) and €, ... is a positive sequence tending

to 0 such that == < C for some C and all ¢ then p(B(z,¢;)) < C(e;)* implies

€i+1

Hdim(/”’) Z Q.

Lemma 22. If T is a piecewise isometry then H g (T(S)) < Hygim(S).

This holds for locally Lipshitz maps as well, but this is unnecessary for the present

paper.
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2.4.2 Estimates towards calculating the Hausdorff dimension
for ergodic measures of IETSs

For upper bounds to the Hausdorff dimension for an ergodic measure of an IET the

following proposition is useful.

Proposition 4. Let T be a p ergodic IET and the Hym(p) = t. If S is a set such

that Hym(S) < t then p(S) =0.

Proof. This follows from the countable stability of Hg,, and ergodicity. If u(S) > 0
then u(@olT “(8)) = 1 by ergodicity. However, by the countable stability of Hausdorff

dimension Hdim(ileTi(S )) = Hym(S) because T is a piecewise isometry. O

This proposition says that one needs to only prove upper bounds on part of the
measure. If 4(S) > 0 and HY(S) = 0 then Hyn(u) < t.
Below is a lemma based adapting Frostman’s Lemma to our particular circum-

stances to provide lower bounds for the Hausdorff dimension of an ergodic measure.

Lemma 23. If there exists C' such that C)\g(Ii(k))“ > )\Q(I,L'(k)) for any k and i €
{1,2,3,4} then Hyim(A2,dy,) > a. Likewise, if there exists a C such that C)\Q(Ii(k))a >

As(I8)) for any k and i € {1,2,3,4} then Hym(As, da,) > a.

Proof. By Frostman’s Lemma it suffices to show that for any interval J CA3(J)* >
A2(J). We will show that logy, ;) A2(J) is dominated by something comparable to
log, | 1) Az(lz(t). This follows form the fact that Iék) and Iék) are made up of repeating
images. To see this assume that we wish to estimate log,, ;) A2(J) mostly covered

by images of Ii(kH) and contained in IQ(k) . IQ(k) is made up of repeating unions of
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O+ gD )

so the maximum advantage is either by taking the whole I,

images of
or Iékﬂ) U Il(kH) U Iékﬂ). In either case, logy, ;) A2(J) is dominated by something
proportional to Iéj ) for some j. Likewise,if J C Iék) for pieces in images of I:gk) one
either covers by all of Iék) or Ig(kﬂ) U Iikﬂ) U IékH) U Il(kH) U Iz(k+1). Il(k) and Iik) are

made up of at most 1 image each of Ii(kﬂ) for ¢ € {1,2,3,4} and so reduce to these

cases. Similar arguments hold for log,, 5y Az(J). O
Lemma 24. byo > by; fori € {1,3,4}.

Proof. by > b1 because the second entry of A, n,€2 = mg > my —1 and my — 1
is the second entry of Ap, n,e1. Am, n.€2 agrees with A, , e in all other entries.
beo > by ; for j = 3,4 because A,,, n,€2 > Anm, n.€; in all entries but the first and
MkAmg 1 ne_1€2 > Amy_1n._ €1 in all entries (the second entry of A, ».e; is 0 and
the second entry of A,,, n €2 is myes and also the first entry of A, n.e; = 1). This
argument shows that A, | n._, Am, n.€2 has each entry greater than or equal to the

corresponding entries of A, | n  Amnce; for j =3,4. O
k

Lemma 25. b, < 'H12mi.
=

Proof. by = mpbr_12+nkbg_13+bk_14. By Lemma 24 b, , > b; ;. By our assumptions

m; > n; + 1. The lemma follows by induction. a

k
Lemma 26. [[n; < bys.

i=1
P’/‘OOf. bk73 = bk,1+(nk—l)bk_1’3+bk_1,4. Notice that bi,4 = bi_1,1+nibi_1,3+bi_1,4 > bi,3

implying that b3 > ngbk_1 3. The lemma follows by induction. O

Lemma 27. Ag(O(Iék))) > 1.
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Proof. ngp1brs > %bk,i for ¢ % 3. This follows from Lemmas 9, 25 and 26. O

This Lemma establishes that A3(I() is proportional to b;:l,)

Lemma 28. /\2(O(I§k))) > 1.
Proof. bes > by; (Lemma 24) so A2 (O(I{)) > A2 (1§") -
- bk > by 2(O(I ey

This Lemma establishes the A\o(I(*)) is proportional to b,;;

Proposition 5. Hym( A2, da,) < Hyim( & oLj O(Iék)),dxs).

n=1i=n

Remark 6. 1 U O(I{¥) has positive A, measure and is T invariant except for a set

n=1i=n

of measure zero (because )\z-(IQ(k)) — 0). By ergodicity it has full measure.
Proposition 6. Hy,(A2,dy,) < ligglf IogAa(Iék)) b,;;

Proof. Assume that ligg}f ]Og’\s(lék)) b,:é = s. It suffices to show that Hgm(Ae,dy,) <
s+eforall e > 0. Let ky, ko, ... be an increasing sequence of natural numbers such that

log, (1) b;:? < s+e¢ for all t. Consider nor_i ;Ljn O(Iéki)). It has positive A, measure by

0 0

Lemma 28. The naive covering shows that H*+<( N U O(I{*))) = 0. Thatisfixé > 0

n=1i=n

and choose n such that A;(I$?) < 6. We bound H;*( 1 U O(I{)) by covering

n=11i=n

each O(I{") by by, » images of I*). By the fact that log, k0, bty < s + ¢ for all i
2 19

it follows that Zbki’z(/\g(lék")))s”f < oo and therefore the proposition follows. [

=1

Lemma 29. Hym(Az,dy;) > liminflog, (,\2(]2(’“))),
3 k—oo A3(ly)
Proof. By Lemma 23 we have that

Ham(X2, drg) 2 mip lim inflog, 0 (Ao 1)y,

1<4 k—oo
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Consider
Ao (I k
lo (k) AW IOMN
g%’@%ks(ﬂk)) Ag (1)) )
(k)
To determine the ¢ that attains the minimum it suffices to consider log xg (1) %
“ PWHON
For all large k the smallest of these is log NON :—\\%E——ﬁf—,;% < log 2mg, % (see Section
)\B(I(k ) Nk+1Mk+2
2.3.1). O
I think this is also log__ mx11 bi I need to have
Pt 1ht2Pk,2
Proposition 7. Hy, (A3, dy,) < h;?ig.}f lOg)\z(Iék)) b,;é
The proof is similar to Proposition 6.
Lemma 30. Hy;,,()3,dy,) > lilzn inf logAz(I(’“))()\3(I§k)))-
—00 3
Proof. By Lemma 23 we have that
Hyim( 3, dy,) > 1r£lilél4ll]£1i£f log)\z(Il;k))(/\3(Ii ).
Consider
M) |
log, L g (1)),
2 rar®) Aa(IW)
(k)
To determine the ¢ that attains the minimum it suffices to consider log, ), (%ﬁ;)
A (1))
. A (1) .
The smallest of these is log,, 1<:>> ( %) < log ke (1-72) (see Section 2.3.1). [
A (1RY)

2.4.3 Proofs of Theorems

Proof of Theorem 8. Choosing m;, = n} implies that Hgy,(As,dy,) = 0. Likewise,

choosing nj,1; = my implies that Hym(A2,dy,) = 0. Choosing my = 4ny, implies
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that Hym(A3,dy,) = 1. Lastly, choosing ny1 = 4my implies that Hym (A2, dy,) = 1.
By suitable choices of my and n, any of the four possibilities in Theorem 8 can be

accomplished. O

Proof of Theorem 7(b). Hgim(A3,d),) can take any value in [0,1]. Pick a € [0,1].

1
k _ o 1 1 1
Choose my, Nk SO that ne > bk—1,2 and mg = |_’I’L]?J > < log%“ m < a—_:%‘.

a

Proof of Theorem 7(a). Hgym(X2,dy,) can take any value in [0,1]. Pick a € [0,1].

Notice that Hgim (A, dy,) = lim inf——ﬁg%’%———. Choose myy1 > (ngi1brs)® and

1
o8 Net+17k+25%,3 )
1

Nkt+2 = LmEHJ . O

2.4.4 Large sets of generic points

The result of this section is Theorem 9 that the As generic points can be the comple-
ment of a set of Hausdorff dimension 0. Theorem 9 holds in particular when my = 3n,

and ngy; = bf,.

Definition 9. Let tx(z) = min{n > 0: T"(z) € O(Il(k))}.

Proposition 8. Ifz € Ole jﬁo O(I) and klim
=1 k=n —00

b : .
t:(';) = 0 then z is A3 generic.

Proof. In the proof of Theorem 7 [15], Keane shows that kﬁlﬁmk,nkeg and kﬁ1Amk’nke4
converge to A3. Therefore under the conditions of the hypothesis x is generic for
Az. To see this, consider by_13 < s < bxs. x travels through O(I:,(,k—l)) a times
(a = E%—; — 1) then through O(I{* ") then through O(Il(k_l)) then it lands back

in O(Iék_l))). By our assumption on t; eventually the landing in O(Iék_l)) always

dominates, so = is Az-generic. O
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Proposition 9. Under appropriate assumptions, the set of points in U kﬂ O(Iék))

not satisfying the hypothesis of Proposition 8 is a set of Hausdorff dimension 0.
Proof. Iék) travel up to ngy; times through O(Iék)) before traveling through O(Iﬁk))
and then O(I¥). Therefore, the proportion of each level of O(I; (M) that have bk L <

€ is ﬁnkﬂbk,g. There are b3 such pieces. Therefore if niy; is chosen so that

(b’“1 )¥brs < % then the set of z € U n O(I( )) such that limsup bk’; > 0 has

Tk+1 n=1 k=n koo tie(z)

Hausdorff dimension 0. |

Proof of Theorem 9. By Lemmas 8, 10 and 12 and the independence 0f the choice of
ng+1 of the previous n; and m; (and therefore b; ; for i < k,j € {1,2,3,4}) that we
may also have O(Il(k)) U O(Iék)) U O(Iik)) have Hausdorff dimension 0 by choosing
ng+1 large enough (or myyo large enough relative to my; for O(IQ(’“)). The theorem

follows with the previous proposition. O

2.5 Exotic shrinking target properties for some

Keane type examples

2.5.1 Typical points with respect to one ergodic measure
that approximate typical points with respect to the
other ergodic measure poorly

First we show that Keane type IETs can have orbits that take a long time to become

e dense.
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Theorem 10. There exists T, a minimal 4-IET with 2 ergodic measures, Ay, A3 such

that for Ay X A3- a.e. pair (z,y) liminf n|T"(z) — y| = oco.

Compare it with Chebyshev’s Theorem ({17, Theorem 24]):
Theorem 11. (Chebyshev) For an arbitrary irrational number a and real number [

the inequality Inc — m — B| < 2 has an infinite number of integer solutions (n,m).
In the language of Theorem 10 Chebyshev’s Theorem states that if T, is an irra-

tional rotation, lim inf n|T2(z) — y| < 3 for any y.
n—o

We place the following conditions on my and ny.

1. (nk)B < My

2. (bk_lg)Q < My <:(bk—12)

3. (bk,2)222’“mk < My 1-

These conditions provide the following immediate consequences:

L. by > by ; for any j (Lemma 25).
2. (bp—12)® < bry12 < 4(bg_12)® (direct computation with condition 2).

3. M(0(IF) < @22—)5 (by Lemma 15)

converges (bxi1.2 > Mit1be2 and bea > br3).

ng4+1bk,3
bi+1,2

18

1

=
Il

Ik converges (condition 1).

ng
- X
Picking my and n, as above we choose T to be the IET with permutation (4213) and

78

=
1l

lengths ([ Am, n,)e3-
k=1
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. . oo oo bz (k)
Lemma 31. Ay a.e. point is in U kﬂ' ﬁlT_T(O(I2 )
i= =jr=

oo (k)
Proof. By condition 1 and Lemmas 15, 18 and 19 it follows that g%—)
converges. It then follows from the fact that by > bx; (Lemma 24) that
> ([0, 1)\0(12(k))) converges. The lemma follows from the Borel-Cantelli Theo-
k=1

rem with the additional observation that #H of the measure of O(IQ(k) ) leaves in the

first by o steps. O
Definition 10. Let Ay, v = {y: |T"(z) —y| < L for some N <n < M}

This example relies on showing that A3(A; . amn) is small (see Lemma 33) for a
A9 large set of . The following definition provides us with a class of z such that we
can control A\3(A, . mn) as seen by Lemma 33. This class is also A, large as seen by

Lemma 12.
Definition 11. z is called k-good if:
1. T™(z) € OIS for all 0 < n < by
2. T(z) € O(IS™) for allo < n < (nkbr—13)?

Lemma 31 shows that A almost every point satisfies condition (1) for k-good for

all k > N. The following lemma shows that condition (2) is also satisfied eventually.

Lemma 32. For Ay a.e. x there exists N such that z is k-good for all large enough

k.

Proof. The basic reason Ay a.e. x is eventually k-good for all large enough k is that

the images of O(Iz(k+1)) not in O(IQ(k)) are consecutive). This means we need to avoid
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12(1€+1))

Nq1bk3 + bra + (nkbi3)? image of O( . Because

Nk+1063 + bea + (Nepy1bes)? < (P41 + Db 2

bi+1,2 M-41bk 2
is a convergent sum, the Borel Cantelli Theorem implies A, almost every z is k-good
12(1c+1)

for all big enough k. (The left hand side is the proportion of the images of

which are not good.) O

The next lemma shows that if z is &£ + 1 good then A is small in terms

z)rvbk},z »bk+l,2

of Lebesgue measure.

Lemma 33. If z is k+1-good for all k > N then A3(Az rp, ,bes12) fOTMS @ convergent

sum.

Proof. This proof will be carried out by estimating the measure Az 4, ,5,,,, gains
when z lands in O(IQ(k)) and when it doesn’t. Since z is k + 1-good, the Lebesgue
gains by not landing in O(I{®) is less than

measure Axvr7bk,2»bk+l,2

2 2(nk+1bk 3+ 4bi_1 2) 4
——— (N 1bs + b < . == < )
(nk+1bk,3)2( ti1bea + bea) (Pie1br,3)? Nit1br3

When z lands in O(Iék)) it either lands in one of the bx_; » components of which are

images of Iz(kml) (this is 0(12(’“_1))) or it doesn’t. On each pass through of the orbit,

)

it lands mybk_1,2 in one of the first by_; o images of IQUC_1 , and ngb_1 3 + br_1 4 times

it doesn’t. We will estimate AI,T,I,M, by dividing up the orbit into these pieces.

br+1,2

When z lands in O(Ig(k_l)) the measure of the points its landings place in Az ;4 , 5i,10

is at most )\3(0(12(]“"1))) +b12g_rzbk—1’2' (There are by_;2 connected components of

o))
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Otherwise we approximate the measure by :

bry1,2/bk,2
2 — ngbg-13+br—14 _ Nibg—13 + br-14 Ngbr—13 + bp_1.4
— — = < : = In(by < : ~T7In(bgz)-
bes ;Zl - bea (brt1,2) bea (br,2)

The left hand side is given by estimating the measure gained by hits in
o(IPnouE (ngbg—13 + bg—14 hits each of which contributes at most 217210—2 on

the " pass and summing over each pass through O(IQ(k))). The first inequality is

bry1,2
k2

given by the fact that bgiq2 > The final inequality is given by consequence 2.

Collecting all of the measure, if z is k& + 1-good then

4 2 2r
As(Asr = b
3( . ,bk,2:bk+1,2) T Ngyibes * (bk,2)2 "

Ngbe—1,3 + bg—14

be-12 + 7In(by2)

bi2 b2

which forms a convergent series due to the at least exponential growth of b,,;. O

Proof of Theorem 10. g a.e. z is eventually k + 1-good. By Borel-Cantelli for each
of these z, Lebesgue a.e. y has nh_)rgo n|T™(z) — y| = oo. The set of all (z,y) such
that JLIEO n|T"(xz) — y| = 0o is measurable, and so has Ay X A3 measure 1 (by Fubini’s
Theorem). O

Remark 7. One can modify conditions 1-3 to achieve liminf n®|T"z — y| = oo for

O<a<l.

Remark 8. Following [22, Section 1], one can renormalize the IET by choosing the
pAs(L1) + (1 = p)Aa(f1)

pAs(l2) + (1 = p)Aa(l2) ,
IET S,, with length vector and permutation 4213. S,

pAs(Is) + (1 — p)ra(ls)

PAs(1y) + (1 — p)A2(14))
has the same symbolic dynamics and obeys the same Keane type induction procedure
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as T (with the same matrices). As a result S has two ergodic measures pg,, As, such
that ,usp(IJ(k)) for S, is the same as )\Q(Ij(k)) for T and )\Sp(Ij(k)) for S, is the same as
As(1 ;k)). Moreover, if 0 < p < 1 then ps, and As are both absolutely continuous and
supported on disjoint sets of Lebesgue measure 1 — p and p respectively. If p =1
the IET is T, if p = 0 then ug, is Lebesgue measure and Ag, is singular. As a
result the Lebesgue measure of I](k) for S5 is at least .5 max{)\g(lj(k)), )\Q(I](k))} for T
From this it follows that liﬂ&}fﬂS@(:ﬂ) — y| = oo on a set of (z,y) with measure .25

(corresponding to x being chosen from a set of pg full measure and y being chosen

from a set of \g). (See [22, Section 1] for more on renormalizing.)

2.5.2 Two ergodic measures that approximate each other dif-
ferently

Theorem 12. There exists a minimal 4-IET with two ergodic measures, Ao and A3
such that for any ¢ > 0 we have liminf n!=¢d(T"z,y) = 0 for Ay X X3 almost every

(z,y) and liminf n2*d(T"z,y) = 0o for A3 X Ay almost every (z,y).

This will be proved in two parts (the Az x A, statement and the Ay X A3 statement)
under the assumption that my = k?ny and ng; = bia and A; is Lebesgue measure

(that is d = dj,).

Remark 9. The % can be replaced by any ¢ € [0,1) with straightforward modification.

Proposition 10. For any € > 0 and A3 X Ay almost every point (z,y) we have

liminfn3te |Tre — y| = co.

n—oo
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0o oo |pzmk+ibis) *)
Lemma 34. \3( U N ( N THO(I37))) = 1.

r=1 k=r t=1

| 2 7k41b%,3)
Proof. Mg(* 1 THO(IM)) 2 (1 - &)A(OUI). Also

t=1

2
A3 (O(I(l)) U 0(1(2)) U 0(1(3))) i)(l _ L(2bk ka+1 bk:,4 n 1

k2 b3 Mpr1Mk42 nk+1 Ngt1

By our assumptions :,':—3 < 4% Therefore the proposition follows by the Borel-Cantelli

o0
Theorem with the observation that Z —17 o converge. (The convergence of z e

follows by our assumption on the growth of ny.) (]

Lz rk+1b%,3) *) L7z ket 1bk,3)
Lemma 35. If z € N T HO(I3")) then Ao U B(T*z,(%))) <

t=1 t=|_"—2'(k_11) nibr—1,3]
Ao (O(I5)) + (Beva + bemra + bio1.0)2e(| Frmbi-1,0]) ™
Proof. By our assumption z lies in O(Iék)) for time described, therefore the measure
of the set is at most the measure of a (| Znkt+1bk,3)) % neighborhood of o1,
The lemma follows from observing that Iék) travels n; times through O(I?Ek_l) once
(k=1) k=1 Ji&)
through O(I;" ) and once through O(I;"""’). One then groups the levels O(I3") by

the O(Ii(k—l)) that they lie in. O

Proof of Proposition 10. By our assumption on n, my, it follows that Y A (O(I8) +
k=1

2¢(bg—11+bk_14+bk—13)2( Lk—lznkbkﬂ,gj )%“ converges. By the Borel-Cantelli Theorem

it follows that for all such x we have Ay( A UB (T'z,£) = 0. By Fubini’s Theorem

n=1i=n

it follows that for all such z we havelimsupnz*€|T"z — y| = co. By Lemma 34 the

n—o
proposition follows. O
Proposition 11. For any € > 0 and Ay X A3 almost every point (z,y) we have

liminfn!~¢|T"z — y| = 0.

n—o0
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b, _ e
Lemma 36. If T'z € O(Iz(k)) fort < bis then Ag(}@jB(T%C, gkl;l )) > .5 for large

enough k.

Proof. By the assumption of the hypothesis {x, Tz, ..., T%2x} are at least \y(I*))
dense in O(I8™). (The condition of the hypothesis ensures that {z, Tz, ..., T?%2z}
has ny, hits in each level of O(Iék_l)) by examining T|;x-1 (z), O(I{¥) is Ao(I*)) dense
in O(IF ™)) A(I®) < ﬁ By our choice of my and ny, bra > by for all large

enough k. 0O

Lemma 37. The set of points satisfying the hypothesis of the above Lemma has Ao

measure at least %.

Proof. This follows from the fact that /\Z(O(IQ(IC))) > 1 (Lemma 28) and 1 — Z:—Z > 1
of these points satisfy the hypothesis of the lemma. 0
Proof of Proposition 11. The proof follows from Fubini and ergodicity. O

Remark 10. One can assign distance by nontrivial linear combinations of Ay and A3
Theorem 12 holds in these cases as well. (For d = d), the argument fails. See
Question 2). The reason why is that \3(I() < ﬁ and by our choice of my and ny,
bra > b,lcf; for all large enough k. The estimates in Proposition 10 are proportional
in this case. Perhaps the most interesting version of Theorem 12 is when d(z,y) =
2(Ma([z,y]) + As([z,y]) because the metric gives equal weights to the two measures,

but typical points still approach each other differently.
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2.6 Conclusion

Michael Keane devised a wonderful class of examples that provide very specified
behavior for IETs. The power of this example is its self similar structure and the
fact that much of its behavior can be captured by matrix multiplication. This helps
to make the behavior easy to understand and demonstrate. Additionally, because
the A,, m, arise as matrices of Rauzy-Veech induction these examples can provide
intuition to how Rauzy-Veech induction works. As this chapter suggests Keane’s
class of examples can construct IETs that also have fairly different behavior for their
ergodic components.
Question 1. For a given permutation what is the optimal order of topological mixing?
Question 2. Let S : [0,1) — [0,1) be a minimal IET and have ergodic measures u; and
po. Let di{z,y) = py([min{z, y}, max{z,y}]). Is it possible for lim inf n-%°d, (S"z,y) =
oo for py X py almost every (z,y)? What about with the additional stipulation that
liminf n!=¢d,(S™"z,y) = oo for pg X p; almost every (z,y) and lim inf nd; (S™z,y) = co
for py x py almost every (z,y)?

I suspect the answer to these questions is no. I suspect the answer is yes if we
remove the requirement that S is an IET.
Question 3. What is the Hausdorff dimension of the set of minimal IETs with an
ergodic measure having Hausdorff dimension less than 1?7 (We consider these IETs
as points in Az = {(Iy,l2,13,04) : 1; > 0,>_1; = 1}.)

For the case of 4-IETs the answer is expected to be 2.5.

Question 4. Can any residual set support an ergodic measure for a minimal IET?



Question 5. Can Hym (A2, dyy), Hiim(Xs, dy,) take any value in [0, 1]?7?
I suspect the answer is yes.

Question 6. Can one construct a smooth realization of a Keane type IET?

43



Chapter 3

IETSs are usually different

3.1 Statement of results

Definition 12. Two measure preserving systems (T, X, u) and (S,Y,v) are called
disjoint (or have trivial joinings) if u X v is the only invariant measure of

TxS: XxY—-XxY by (T xS)(z,y) =(Tz,Sy) with projections p and v.
The main result of this chapter is:

Theorem 13. Let T: X — X be p ergodic. (T, X, ) is disjoint from almost every

IET.

We remark that this is a strong way of saying that 2 IETs are different. T and
ST S~! have many nontrivial joinings, for instance (z, Sz) supports an invariant mea-
sure with both projections A (as does (z, ST"z)). This implies that if the transforma-
tions are conjugate then they won’t be disjoint. Similarly if 67 = fo and pS = fp

where f : X — X preserves u which satisfies u(A4) = A(o71(A4)) = A(p~1(A)) for

44
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all measurable A, then xgxa_l(x) X p~(z) supports an invariant measure of T x S
with projections A. This is said disjointness implies no common factors (a stronger
condition than not being conjugate). Note that if S and T are IETs ST'S™! is an
IET so every IET shares non-trivial joinings with uncountably many other IETs. We

prove Theorem 13 by the following criterion [12, Theorem 2.1], see also [21, Lemma

1] and [11, Theorem 6.28].

Theorem 14. (Hahn and Parry) If Ty and Ty are ergodic transformations of
(X1, B1,m1) and (X2, By, ma) respectively, and if Ur, and Ur, are spectrally singular

modulo constants then T1 and T, are disjoint.
A key result was established in proving Theorem 13 which requires a definition.

Definition 13. Let T : [0,1) — [0,1) be a u measure preserving transformation.

ni, N, ... 18 called a rigidity sequence for T if lim f[o 3 |T™x — z|du = 0.
i— 00 !

Theorem 15. Let A be a sequence of natural numbers with density 1. Almost every

IET has a rigidity sequence contained in A.

This a strengthening of an earlier Theorem of Veech ([24, Part I, Theorem 1.4])
which proved that almost every IET has a rigidity sequence (choose N; corresponding

to €; where lime; = 0).

1—0Q
Theorem 16. (Veech) For almost every interval exchange transformation T, with
irreducible permutation, and given € > 0 there are N € N, and an interval J C [0,1)

such that:

L JJNTY(J)=0 for0<n < N.
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2. T is continuous on T"(J) for0 <n < N.
N
3. A L_JIT”(J)) >1—e

4 NIV NT) > (1 - OAJ).

3.2 Proof of Theorem 15

Theorem 15 follows from the following proposition.

Proposition 12. Let A C N be a sequence of density 1. For every € > 0 and almost

every IET S, there exists n. € A such that fol |S™(x) — z|dX < e.

This proposition implies Theorem 15 because the countable intersection of sets of
full measure has full measure.

Motivated by this proposition if fol |T"(z) — z|d\ < € we say n is an € rigidity
time for T.

Throughout this section we will assume that the IETs are in a fixed Rauzy class R,
which contains d-IETs with some irreducible permutations. Let r denote the number
of different permutations IETs in R may have. Let mg denote Lebesgue measure on
R (the disjoint union of 7 simplices in R?).

Proposition 12 will be proved by showing that there is a particular reason for
e rigidity (called acceptable e rigidity) that occurs often in many P; := [2%,27+}]
(Proposition 15) but rarely occurs for any fixed n (Lemma 44). For every IET
S satisfying the Keane condition, and every i there exists some n such that

|Cmaz(M(S,n))| € P;. In general there can be more than one such n.
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For each of the permutations 7y, ...,7, that an I[ET in R may have, fix a finite
sequence of Rauzy-Veech induction steps w;, which gives a positive matrix. That
is each letter of w; will be one of the two types of Rauzy-Veech steps (a or b) and
the product of the sequence of the associated matrices starting from permutation
7; provides a positive Rauzy-Veech matrix. Let M(w;) denote this matrix. Let |w;]

denote the number of steps in w;. Let p; = mu(M (w;)a).

Definition 14. We say a pair (M,C..(M)) is acceptable if M = M(T,n),
R (T has permutation m; and M(R™ (T, |wi|) = M (w;).

If (M, Crae(M)) is an acceptable pair then M is called an acceptable matrix.

Informally, if M = M(T,n) then the pair (M, Ce.(M)) is acceptable if the last
steps in Rauzy-Veech induction for an IET with length vector in Ma agrees with

some w; and the permutation of R*™ (T is ;.

Remark 11. In the remainder of this section we will use the fact that if R*(T ,) has
permutation 7; then for any IET S with length vector in (M(Ty ., n)M(w;))a and

permutation 7 the pair (M (S,n + |w;|), Craa (M (S, n + |w;]))) is acceptable.
Lemma 38. There ezists v such that any acceptable matriz is v balanced.

Proof. Let M, be a positive matrix. Observe that if M, is a matrix with nonnegative

entries then M,M; is at worst ma]z(%—;[[%]l balanced. Since there are only finitely
7 ’

many M (w;) and they are all positive the lemma follows. In particular, we can chose

v = max max % 0
t i,k (we)[i.k]

Lemma 39. For any d-column C, |{M: (M,C) is an acceptable pair }| < r2.
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That is, any d-column can appear in at most 2 different acceptable pairs.

Proof. Assume C belongs to two different acceptable pairs (M(T,n),C), and
(M(S,n'),C) where both T" and S have permutation 7;. The acceptable sequence of
steps w; for T and wj: for S are different. This is because if w; = w; then the last |w;]|
steps of Rauzy-Veech induction are the same. However, since C = Cppr (M (T, n)) =
Crmaz(M(S,n')) and S and T have the same starting permutation, Lemma 3 implies
that all but the last |w;| steps of Rauzy-Veech induction are the same and therefore
M(T,n) = M(S,n'). Lemma 39 follows because there are r choices of w; and r choices

of starting permutation. O
Proposition 13. For my-almost every IET S, the set of natural numbers
{i: for some n, |Chrae(M(S,n))| € P, and
(M(S,n), Craz(M(S,n))) is an acceptable pair } (3.1)
has positive lower density.
The following two lemmas are used in the proof of Proposition 13.

Lemma 40. For mgx-almost every IET S, and all sufficiently large vy, the set of

natural numbers
G(S) := {1 : for some n, |Crae(M(S,n))| € P; and M(S,n) is vy balanced}
has positive lower density.

Remark 12. 1t is not claimed that a positive lower density of the Rauzy-Veech induc-

tion matrices are balanced.
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To prove this we use [16, Corollary 1.7].

Proposition 14. (Kerckhoff) At any stage of the [Rauzy-Veech] expansion of S the
columns of M(S) will become vy distributed [i.e. v balanced] with probability p before
the mazimum norm of the columns increases by a factor of K. vy and p are constants

depending only on K and d.

Remark 13. In [16] the term “vy distributed” has the same meaning in as “vp bal-

anced” has here.

Proof of Lemma 40. Consider the independent p distributed random variables

Fy, F5, ... where p takes value 1 with probability p and 0 with probability 1 — p.
_iFi(t)

By the strong law of large numbers, for yN-almost every ¢ we have lim =— = p.

By the previous proposition, given G(S) N [0, N] the conditional probability that

N +i € G(S) for some 0 < i < [dlog,(K)] is at least p. Thus for any natural

numbers nq, ng, ..., Ny

mx({S : [n;[dlogy(K)1, (n: + 1)][dlog,(K)]] N G(S) # Vi < k})

> uN({t: Fo (t) = 1Vi < k}). (3.2)

This implies that from me-almost every S, G(S) has lower density at least TJTJg%(‘R‘ﬁ'

O

Lemma 41. (Kerckhoff) If M is vy balanced and W C Ay is a measurable set, then

myp(W)  mpMW)
mo(B) < m(MAy) 0

This is [16, Corollary 1.2]. See [22, Section 5] for details.
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Proof of Proposition 13. By Lemma 41 if M (T, n) is vy balanced and R™(T') has per-

my (M(T,n) M (w;)Ag)

m (T TmA) 2 vy %pi. In words: given that M(T,n) is

mutation 7; then the
v balanced and that R"(T) has permutation m;, the conditional probability that
(M(T,n+|wi]), Crnae(M (T, n+ |ws]))) is an acceptable pair is at least v5 %p;. Consid-

ering each m;, the proposition follows analogously to Lemma 40. |

Definition 15. Let S be an IET. If (M(S,n), Crnae(M(S,n))) is acceptable and m =
|Crrax(M(S,n))| is an € rigidity time for S then m is called an acceptable e rigidity

time for S.

Proposition 15. For every € > 0, mp-almost every IET S, the set of natural num-
bers

G(S) := {i : P, contains an acceptable ¢ rigidity time for S}
has positive lower density.

Proof. Consider an IET Sy, . = S such that (M (S,n), C,(M(S,n))) is an acceptable
pair (in particular, Cyx(M(S,n)) = Chna(M(S,n))). For ease of notation let M' =
M(S,n). Let Wy = {(l1,la,....0a) : li > OVi, [ > 1 =531, =1} If L € W,
then T L has an e rigidity time of |C(M’)|. This is the reason for rigidity used
to prove Theorem 1.3 and 1.4 [24, pages 1337-1338]. If M’ is acceptable then Lemma
38 states that M’ is v balanced. It then follows by Lemma 41 that the proportion
of M}, which has |C(M’)| as an ¢ rigidity time is at least v~¢mu(Wy,). Thus if
i1 < %2 < ... € G(S) then the probability that i; € G.(S) is at least v~ %mup(Wj,)

regardless of which i, € G.(S) for ¥ < f. The proposition follows analogously to

Lemma 40. &
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Before proving Proposition 12 we provide the following lemmas.

Lemma 42. There exists b € R such that for any n € N,
{M: M is acceptable and |Cpqae(M)| = n}| < bnd=L.

Remark 14. The constant b depends only on our Rauzy class R. It is not claimed

that for every n € N there exists an acceptable matrix M with |Cpe(M)] = n.

Proof. By Lemma 39 each column C can be |Cpaq(M)] for at most r? different accept-
able matrices M. By induction on d, O(n?"!) different d-columns with non-negative

integer entries have the sum of their entries equal to n. O
Lemma 43. (Veech) If M is a matriz given by Rauzy-Veech induction, then
d -1
mp(Ma) = ex IL|Ci(M)[™.

This is [22, equation 5.5]. An immediate consequence of it is that any v bal-
anced Rauzy-Veech matrix M has mgp(Ma) < cpv® Y Chae(M)|™¢. The previous

two lemmas give the following result.

Lemma 44. The my-measure of IETs that have acceptable pairs with the same |Cipoz

is at most O(|Cpaz] ™).
Proof of Proposition 12. By Lemma 44 and the fact that A has density 1,

limmy({7: In with M(T,n) acceptable and |Cr,e. (M (T, n))} € P\A}) =0.

i—00
Therefore, Proposition 15 implies that for any € > 0, almost every IET has an accept-
able e rigidity time in A. In fact, almost every IET has an € rigidity time in P, N A

for a positive upper density set of 7. O
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Remark 15. To be explicit, Proposition 15 shows that for any sequence A with density
1, and any € > 0, for almost every IET the integer N in Veech’s Theorem 16 can be

chosen from A.

3.3 Consequences of Section 2

In this section we glean some consequences of the proofs in the previous section. One
of these (Corollary 5) follows from [1, Theorem A] and is used in the proof of Theorem

13. It is proven independently of [1, Theorem A] in this section.

Corollary 2. Let A be a sequence of natural numbers with density 1. A residual set

of IETs has a rigidity sequence contained in A.

Proof. Take the interior of the set Wy . considered in the proof of Proposition 15. In
this way one obtains that the set of IETs with an € rigidity time in A contains an
open set of full measure (therefore dense). Intersecting over e shows that a residual

set of IETs has a rigidity sequence in any sequence of density 1. O

The number of columns that can appear in Rauzy-Veech matrices grows at least
like uz R? (where the constant ux depends on 2R). Briefly, in order to collect a positive
measure of IETs having admissible matrices M, with |Cy,..(M)| € Py, Lemma 43
implies that there needs of be more than ux(2*)¢ admissible matrices with |Cyaz| €
P.. This provides a partial answer to the first question in [24, Part II, Questions 10.7]

which considers asymptotics for the growth of so called primitive IETSs.
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The next result provides a slight improvement of Theorem 15 and uses the follow-

ing definition.

Definition 16. Let S be an IET. We say m is an expected e rigidity time for S if

there exists an n such that that the following two conditions are met.

1. (M(S,n), Craz(M(S,n))) is acceptable and m = |Cyrar(M (S, n))|.

2. Craz(M(S,n)) = Cp(M(S,n)) and R™(S) lies in the set Wy defined in the

proof of Proposition 15.

Every expected € rigidity time is an acceptable € rigidity time.

Corollary 3. For every € > 0 and Rauzy class R there is a constant an(e) < 1 such
that any sequence of natural numbers A with density an(€) has a rigidity sequence for

all but a mym-measure € set of IETs.

Proof. First note that the set of IETs having a rigidity sequence contained in A is
measurable. Let ex(e) denote mu(Wi.). Let M = M(TL.,n) be an acceptable
matrix. By the bound on distortion in Lemma 41,

the conditional probability of an IET in Ma and permutation 7 having an expected
e rigidity time |Cna.(M)| is proportional to ex(e). This uses Lemma 38 which states
that if M is an acceptable matrix then M is v balanced. An analogous argument to

Lemma 40 shows that there exists ¢; > 0 such that the set

{i: 3m € P, which is an expected e rigidity time for T'}

has lower density at least ciem(e) for almost every T.
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Lemma 44 establishes that there exists ¢, > 0 such that
mu({T: n is an expected ¢ rigidity time for T}) < cyem(e)n™"

for all n. Thus, for any € > 0 a set of natural numbers with density 1 — ¢ contains an
€ expected rigidity time for all but a set of IETs of measure 262 and the corollary

follows. O

Remark 16. Recall that v depends on the choices of w; that define acceptable pairs.

The constants ¢; and ¢; depend on v.

Corollary 3 gives two further corollaries.

Corollary 4. Almost every IET has a rigidity sequence which is shared by a mgy -

measure zero set of IETs for all R simultaneously.

Proof. It suffices to show that for any § > 0 and Rauzy class R’ all but a set of mx-
measure 0 IETs have a rigidity sequence that is not a rigidity sequence for mgy-almost

every IET. Given €, €3 > 0 and a Rauzy class, PR’ consider the set

Agv(€1,€) = {n: n is an € rigidity time for a set of IETs of

myy-measure at least e;}. (3.3)

If €, > 0 and R’ are fixed then the density of this set goes to zero with €;. To see this,
observe that if n; and n, are € rigidity times for 7' then n; — ny is a 2e¢ rigidity time
for T. It follows that if € < %oglligan |T"xz — z|d\ then {r+ 1,7+ 2,...,7 + M} can
contain at most one € rigidity time for T. Choose €;(k) so that the (upper) density of

As(e1(k), 1) is less than 1—ax(8). By Corollary 3, all but a mx-measure 4 set of IETs
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have a rigidity sequence in the complement of Agv(€1(k), %) (which can be shared by
a set of IETs with mgy-measure at most %) Consider the countable intersection over
k of these nested sets of mx-measure 1 — §. For each IET T in this set let n; be a %

rigidity time for T lying in the complement of Agy(€(7), 1). Therefore, ny, n,, ... is a

rigidity sequence for T' that is not a rigidity sequence for mgy-almost every IET. [

2T

Corollary 5. For every a & Z, almost every IET does not have e as an eigenvalue.

We will prove this corollary independently of [1, Theorem A}, from which it im-

mediately follows.

Theorem 17. (Avila and Forni) If m is an irreducible permutation that is not a

rotation, then almost every IET with permutation © is weak mizing.

The proof is split into the case of rational a and the case of irrational «. If T has
e?™® as an eigenvalue for some rational a ¢ Z then it is not totally ergodic. This is

not the case for almost every IET [24, Part I, Theorem 1.7].
Theorem 18. (Veech) Almost every IET is totally ergodic.

It suffices to consider irrational a and show that for any § > 0 and fR, the set
of IETs having e*™® as an eigenvalue has mg-outer measure less than §. If €™ is
an eigenvalue for T then rotation by « is a factor of T. However, rigidity sequences
of a transformation are also rigidity sequences for the factor. For every irrational
o and e > 0 there is a sequence of density 1 — e that contains no rigidity sequence

for rotation by «. To see this, observe that if n; and n, are e rigidity times for T

then n; — ngy is a 2¢ rigidity time for 7. It follows that if € < %0 mi<an |T"x — z|dA
<n<
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then {k+ 1,k +2,...,k + M} can contain at most one ¢ rigidity time for 7. Choose
e < 1—an(d) and pick a sequence of density 1 — e containing no rigidity sequence for
rotation by «. The IETs having a rigidity sequence in this sequence have mx-measure

at least 1 — § and Corollary 5 follows.

Remark 17. Every sequence of density 1 contains a rigidity sequence for rotation

by a.

3.4 The spectral argument

Given a u measure preserving dynamical system 7', let Ur be the unitary operator on
L*(u) given by Up(f) = foT. Let L3(u) denote the set of L? functions with integral
zero. If f € L? let o;7 be the spectral measure for f and Ur, that is the unique

measure on T such that

/z"daf,T =< f,Urf > forall n.
T

Fix T: [0,1) — [0,1), a p ergodic transformation. We will show that for any S
in a full measure set of IETs oy is singular with respect to o, ¢ for any f,g € L3.
By Theorem 14, this establishes Theorem 13. Let Hp, be the closure of the subspace
of L2 spanned by non-constant eigenfunctions of Ur (where the spectral measures
are atomic) and H, be its orthogonal complement (where the spectral measures are

continuous).

Lemma 45. If f € H,, then for almost every IET S, o1 is singular with respect to

045 for any g € LE.



o7

Proof. Let f € Hyp. o1 is an atomic measure supported on the €™ that are eigen-
values of Ur. If ofr is nonsingular with respect to 0,5 then Ur and Ug share an
eigenvalue (other than the simple eigenvalue 1 corresponding to constant functions).
The set of eigenvalues of Uy is countable because H,, has a countable basis of eigen-
functions. The lemma follows from the fact that the set of IETSs having a particular
eigenvalue has measure zero (Corollary 5) and the countable union of measure zero

sets has measure zero. O

Lemma 46. If f € H. then for almost every IET S, o¢1 is singular with respect to

045 for any g € L2.

To prove this lemma we use Wiener’s Lemma (see e.g. [5, Lemma 4.10.2]) and its
immediate corollary.

Lemma 47. For a finite measure p on T set f(k) = [;28du(z).

n

-1
lim n7t S |A(k)|? = 0 iff u is continuous.

n—oo k=0
Corollary 6. For a finite continuous measure p on'T there exists a density 1 sequence

A, such that ]lcler% (k) =0.

Proof of Lemma 46. Decompose H, into the direct sum of mutually orthogonal Hy,,
where each H, is the cyclic subspace generated by f; under Ur (and Uz’ = U}). By
Corollary 6, for each 7 there exists a density 1 set of natural numbers B; such that
7116:%11 Jz 2"dog,r = 0. Choose N; increasing such that for each j we have n1>n£ 4|—B—i—ﬂ;&@—7ﬂ—| >

1-277. Let A; = U ([N;, Njsa], A B;+k). By construction, (A; — k)\B; is a finite
J= =-7

set for any k € Z. Therefore, li&l_ fT 2"*doy, r = 0 for any k € Z. Thus, for any
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h € Hy, it follows that 711615111_ JpZ¥T"donr = 0 for any k. This follows from the fact
that op 1 < oy, 1, the span of 2* is dense in Ly and | [} 2"du| < u(T). Since there are
only a countable number of Hy,, there exists a density 1 sequence A such that for any
i and h € Hy, we have that iie% Jp Z¥t"doyr = 0 for any k. (To see this pick M; such
that A}f‘fnlmnﬂ >1—27 for any i < j. Let A= ;JI[MJ-,M]-H] NAN...NA;) Tt
follows that for any h € H,, 7%161[141z fT ZF*ndoy, r = 0 for any k. This uses the fact that
if g; and g, lie in orthogonal cyclic subspaces then oy, g, 7 is 04, 7 + 04, 7.

Let S be any IET with a rigidity sequence contained in A, which almost every
IET has by Theorem 15. We now show that o, ¢ is singular with respect to oy
for any f € H. and g € L3()\). Notice that since nj, na, ... is a rigidity sequence
for 5, lim Jp12™ —=1%doy s = 0. Because L? convergence implies convergence almost
everywhere along a subsequence, it follows that there exists 4y, 73, ... such that g, s({ :
jllrgo 2" — 1}) = 0,5(T). However, ZEI& Joz%osr — 0 for any measurable C' C
T. This is because [,z"os;r = [;2"xc(2)osr and xc can be approximated in
Ly(osr) by polynomials. The construction of A in the previous paragraph shows

that linz fT p(z)z"dosr = 0 for any polynomial p. It follows that o, g is singular with
ne

respect to oy for any f € H, and g € L(\). d

Theorem 13 follows by considering the intersection of the two full measure sets of

IETs and the fact that if g € Hy, and go € H, then 04,49, 7 i 0g, 7 + g, .1

Remark 18. Motivating the proof is: If 4 and v are probability measures on S! such
that 2™ — f weakly in Lo(u) and z™ — g weakly in Ly(v) and f(z) # g(z) for all z

then v and p are singular.



59

Remark 19. A possibly more checkable result follows from the above proof. Assume A

is a mixing sequence for T" (that is, lin}‘ uw(BNT™(B")) = u(B)u(B’) for all measurable
ne

B and B') then any S having a rigidity sequence in A is disjoint from 7. Note that

weak mixing transformations have mixing sequences of density 1.

Remark 20. Given a family of transformations F with a measure n on F any p ergodic

T: X — X will be disjoint for n-almost every S € F if:
1. Any sequence of density 1 is a rigidity sequence for n-almost every S € F.
2. n({S € F: a is an eigenvalue for S}) =0 for any o # 1.

Additionally, the previous section shows that a slightly stronger version of condition
1 and n-almost sure total ergodicity implies condition 2. Condition 1 on its own does

not imply condition 2 (let F be the set of 1 element, rotation by ayg).

3.5 Concluding remarks

First, a consequence of Theorem 13 that is interesting in its own right.

Corollary 7. For almost every pair of IETs T, S the transformation T X S is uniquely

ergodic with respect to Lebesgue measure on [0,1)2.

Proof. This follows from the fact that almost every IET is uniquely ergodic ([18] and

[23]) and the following Lemma. O

Lemma 48. IfT and S are uniquely ergodic with respect to p and v respectively then

any preserved measure of T X S has projections p and v.
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Proof. Consider n, a preserved measure of T' x S.

NMAXY)=nT"x S™AxY))=n(T"(A) x Y).

Therefore, u;(A) := n(AxY) is preserved by T and so it is . For the other projection

the proof is similar. O

More is true in fact, for Leb Xx...x Leb almost every n-tuple of IETs (5, ...,S,),
S1 X ... X 5, is uniquely ergodic and S] is disjoint from Sy X S3 X ... X S,,.

Corollary 7 has an application. Consider T x S. In our context, unique ergodicity
implies minimality, which implies uniformly bounded return time to a fixed rectangle.
Therefore, if we choose a rectangle V' C [0,1) x [0,1) then the induced map of T x S
on V is almost surely (in (7, S) or even S if T' is uniquely ergodic) an exchange of a
finite number of rectangles.

Theorem 13 also strengthens Corollary 5 because transformations are not disjoint

from their factors.

Corollary 8. No transformation is a factor of a positive measure set of IETs.
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