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Abstract 

Interval Exchange Transformations: Applications of Keane's 

Construction and Disjointness 

by 

Jon Chaika 

This thesis is divided into two parts. The first part uses a family of Interval 

Exchange Transformations constructed by Michael Keane to show that IETs can 

have some particular behavior including: 

1. IETs can be topologically mixing. 

2. A minimal IET can have an ergodic measure with Hausdorff dimension a for 

any a € [0,1]. 

3. The complement of the generic points for Lebesgue measure in a minimal non-

uniquely ergodic IET can have Hausdorff dimension 0. Note that this is a dense 

G& set. 

The second part shows that almost every pair of IETs are different. In particular, 

the product of almost every pair of IETs is uniquely ergodic. In proving this we show 

that any sequence of natural numbers of density 1 contains a rigidity sequence for 

almost every IET, strengthening a result of Veech. 
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Chapter 1 

Introduction 

1.1 Basic dynamics terminology 

Let (X, B, fi) be a measure space. If T : X —> X is measurable and /J,(A) = n(T~1A) 

for all measurable sets A then T is said to be \i measure preserving. If T is /i measure 

preserving and /x(AAr(_ 1A)) = 0 only when /J,(A) or fi(Ac) = 0 then T is said to be 

JJL ergodic. (A denotes symmetric difference.) One of the primary motivations (and 

tools) for studying ergodic transformations is the Birkhoff Ergodic Theorem. 

Theorem 1. (Birkhoff) Let (X, B, /i) be a a-additive measure space. IfT is fi ergodic 

J V - l 

then for all f G Ll(X, B, fi) we have lim jj J^ f(Tn(x)) = Jx jd\i for \i almost every 

x. 

Informally the Birkhoff Ergodic Theorem says that for ergodic transformations the 

time average is equal to the space average. It also motivates the following definition: 

Definition 1. Given T: [0,1] —» [0,1], a // ergodic map, we say a point x0 € [0,1] is 

6 
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N-l j 

generic for n if lim ^ X) f(Tn{xo)) = I0 fd» for everV f e C([Q> x))-

The definition requires that the limit exists. The generic points can be thought 

of as an explicit set of \i typical points. 

In particular, B is a Borel er-algebra and if continuous functions with supremum 

norm are separable (such as when (X, d) is a compact metric space) then there exist 

generic points. To see this let / i , . . . be a countable dense set in the sup norm topology. 

Let 
N-l 

A = {x: lim ^ / ( T " ( x ) ) = / /d/x}. 
71=0 - / A 

oo N-l 
If x G D Ai then for any continuous / G Li(X,B,fj.) we have lim 4? ^ f(Tn(x)) = 

i = l W-^oc.J n = 0 

In this construction we use the fact that /i is an ergodic measure for T. If [i and v 

are two different ergodic probability measures for T, then i~L is another probability 

measure, and T is a l ^ measure preserving transformation. T is not ^- ergodic. 

The set of i~L generic points has t ^ measure 0. One should observe that the Birkhoff 

Ergodic Theorem implies that if \i and v are different ergodic measures of T then they 

are singular, meaning that they have disjoint sets of full measure. If T is a [i ergodic 

transformation and it has no other ergodic measures it is called uniquely ergodic. 

Uniquely ergodic transformations have only 1 preserved measure. 

Another important result in ergodic theory is the Poincare Recurrence Theorem. 

T h e o r e m 2. (Poincare) Let (X, B, //) be a finite measure space and T be a /i mea­

sure preserving transformation. For any measurable set A, A = {x G A : Tn(x) G 

A for some n > 0} has /I(AAA) = 0. 
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This helps justify an important construction in ergodic theory and this thesis, 

the induced map. If T is /i measure preserving and A is a measurable set, then the 

Poincare recurrence theorem tells us that for all but a measure zero set of x G A there 

exists nx G N such that Tnx(x) G A. Motivated by this we define the induced map of 

T on A (or the Poincare first return map) as T\A '• A —• A by T\A(X) = TTx{x) where 

rx — min{n G N : Tn(x) G A}. T\A is also fi measure preserving. One can also check 

that if B C A then T\B = (T\A)\B. 

1.2 What is an IET 

Definition 2. Given L = (li,l2,...,ld) where U > 0, l\ + ... + Id — 1, we obtain d 

subintervals of [0,1), I\ = [0, l\), l2 = [h, h + h), --^d = [h + ••• + l<i-i, !)• Given a 

permutation -K on {1,2, ...,d}, we obtain a d-Interval Exchange Transformation (d-

IET) T: [0,1) —> [0,1) which exchanges the intervals Ii according to ir. That is, if 

x G Ij then 

T{x) = x~Y)k+ J2 lk'-
k<j 7r(fc')<7r(i) 

It follows from the definition that IETs are Lebesgue measure preserving invertible 

maps of [0,1). They are by construction continuous from the right and have at most 

d — 1 discontinuities. The inverse of an IET is also an IET (often with a different 

permutation.) Rotations can be viewed as 2-IETs with permutation (21). 

Interval exchange transformations with a fixed permutation on d-letters are 

parametrized by the standard simplex in Rd, A^ = {(h,...,ld) '• h > 0,^2k = 1}. 

In this paper, A denotes Lebesgue measure on the unit interval. The term "al-
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most all" refers to Lebesgue measure on the disjoint union of the simplices corre­

sponding to the permutations that contain some IETs with dense orbits. That is, 

7r({l,..., k}) ^ {l,...,k} for k < d [14, Section 3]. These permutations are called 

irreducible. 

The following is one of the main results on IETs and was proven independently 

by Masur [18] and Veech [23]. 

Theorem 3. (Masur, Veech) Let IT be an irreducible permutation on d-letters. For 

almost every (L\,Li2,...,Ld) the IET determined by (L\, ...,Ld) and -K is uniquely 

ergodic with respect to Lebesgue measure. 

1.2.1 The induced map of an IET 

Let A be a subinterval of [0,1). If T is a d-IET then T\A is at most a d + 2-IET. If 

A is bounded by discontinuities then T\A is at most a d-IET. These observations are 

classical and follow from the simple fact that the discontinuities of T\A are pre-images 

of discontinuities of T or pre-images of endpoints. 

Remark 1. If T\A is a d-IET then one can tabulate the number of hits the j t h interval 

of T\A makes in the ith interval of T before first return as the ijth entry of a matrix. 

Notice that the travel of intervals of the induced of an induced map can be kept track 

of by the product of two of these matrices. This will be used throughout this thesis. 

We denote this matrix M(T,A). 
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1.2.2 The Keane condition 

An IET, T with discontinuities 8i,...,8d-i is said to satisfy the Keane condition 

(also called the infinite distinct orbit condition or idoc) if {5i,T8i, ...,Tk5i,...}, 

{52,TS2,...},...,{8d-i,T5d-i, •••} are all disjoint infinite sets. The following 2 results 

motivate introducing this condition [14, Section 3]. 

Proposition 1. (Keane) If T satisfies the Keane condition then for any x € [0,1) 

the set {x,Tx, } is dense in [0,1). 

Proposition 2. (Keane) If IT is an irreducible permutation on {l,...,d} and 

{Li,...,Ld} are linearly independent over Q then the IET they define satisfies the 

Keane condition. 

If 7T is not irreducible then there are no IETs with permutation n satisfying the 

Keane condition. 

1.3 Rauzy-Veech Induction 

Our treatment of Rauzy-Veech induction will be the same as in [23, Section 7]. We 

recall it here. Let T be a d-IET with permutation n. Let <5+ be the rightmost discon­

tinuity of T and 8- be the rightmost discontinuity of T _ 1 . Let 8max = max{<5+,<5_}. 

Consider the induced map of T on [0,5max) denoted T\[Qjmaxy If 8+ ^ 5_ this is a 

d-IET on a smaller interval, perhaps with a different permutation. 

We can renormalize it so that it is once again a <i-IET on [0,1). That is, let 

R(T)(x) = T\[o,5in!iX)(x8max)(8max)~
1. This is the Rauzy-Veech induction of T. To be 
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explicit the Rauzy-Veech induction map is only denned if 5+ ^ £_. If Smax = 5+ we 

say the first step in Rauzy-Veech induction is a. In this case the permutation of R(T) 

is given by 

vr(j') j < ir-\d) 

*'ti)={ir(d) j = TT-1(d) + l- ( L 1 ) 

ir(j — 1) otherwise 

We keep track of what has happened under Rauzy-Veech induction by a matrix 

M(T,1) where 

M(T,l)[ij]={ 

Ki 3 < ^ 1(d) 

Sij-i j > ir~l(d) and i ^ d (1.2) 

K- ' M J i = d 

If Smax = 8- we say the first step in Rauzy-Veech induction is b. In this case the 

permutation of R(T) is given by 

7r(j) 7r(j) < Ad) 

*'(j)=\ir(j) + l ir(d) < ir{j) < d • ( L 3 ) 

n(d) + 1 7r(j) = d 

We keep track of what has happened under Rauzy-Veech induction by a matrix 

M(T,l)[ij] = { (1.4) 
1 i = d and j = ix 1(d) 

5ij otherwise 

The matrices described above depend on whether the step is a or b and the permuta­

tion T has. The following well known lemmas which are immediate calculations help 
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motivate the definition of M(T, 1). 

Lemma 1. If R(T) = 5x)7r then the length vector ofT is comeasurable with M(T, \)L. 

Let MA = M R j n Ad . Recall Ad is the interior of the simplex in Rd. 

Lemma 2. An IET with lengths contained in M{T, 1)A and permutation n has the 

same first step of Rauzy-Veech induction as T. 

We define the n t h matrix of Rauzy-Veech induction by 

M(T,n) = M{T,n- l )M(i2 n _ 1 (T) , 1). 

All M(T,ri) are in SL^i^) and have non-negative entries. It follows from Lemma 2 

that for an IET with length vector in M(T, TI)A and permutation n the first n steps 

of Rauzy-Veech induction agree with T. If M is any matrix, Ci(M) denotes the ith 

column and Cmax{M) denotes the column with the largest sum of entries. Let |Cj(M)| 

denote the sum of the entries in the ith column. Versions of the following lemma are 

well known and we provide a proof for completeness. 

Lemma 3. If M(Rn(T), k) is a positive matrix and L = . ^ ^ L ' ^ J j , then SL,TV agrees 

with T through the first n steps of Rauzy- Veech induction. 

Proof. By Lemma 1 the length vector for Rm(SLtir) is |c'(M(flm[r)'ntfc-m))i f o r a n y 

m where Rm(SL,n) is defined. By our assumption on the positivity of M(Rn(T),k) 

the vector . ^ ' ^ ^ J ^ ' J j , is contained in A^. The lemma follows by Lemma 2 and 

induction. • 

The next definition does not appear in [23] but is important for the last section. 
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Definition 3. A matrix M is called u balanced if \ < L ,Ml\ < v for all i and j . 

Notice that if M is v balanced then \Q(M)\ > |Cma^ (M)l. 

We remarked earlier that Rauzy-Veech induction may send the IET to an IET 

with a different permutation. Given a permutation 7r, its Rauzy class is the set of all 

permutations that can be reached by powers of Rauzy-Veech induction on IETs with 

permutation IT. 

Whether the operation of Rauzy-Veech induction is a or b is important. The 

infinite sequence of a's and 6's uniquely determines the IET if it is uniquely ergodic 

with respect to Lebesgue measure. 

1.4 Basic Measure Theory 

Theorem 4. (Borel-Cantelli) Let [i be a measure and A\,A2,..- be a sequence of [i 

°° 00 00 

measurable sets. If Yl^-^-i) < °° ^en M ^ .U ^ ) = 0-
n = l n=l i=n 

Theorem 5. (Fubini) Let (X,B,fi) and (Y,C,v) be two finite measure spaces 

and f : X x Y be a measurable function of their product a-algebra. Then 

IX(IY f(x>y)du(y))Mx) = IY(Ixf(x^y)d^))My)-

The assumption that these are finite measure spaces can be weakened to only 

assume that they are a-finite. 
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1.5 The Spectral Theorem 

If / G L2(fj.) and T is a fx measure preserving transformation then / o T G L2(/J,), 

with the same norm. Motivated by this let XJT denote the isometry on L2{\i) given 

by Ur(f) = / °T. Notice that UT preserves constant functions. If T has measure 

preserving inverse then UT is a unitary operator with U^ = UT-\. 

The spectral theorem for unitary operators states that for each / G L2(n) there 

exists a unique measure on the unit circle ///)t, such that 

/ zndaftT =< f, U£f > for all n. 

In Chapter 3 the spectral theorem will be used to establish that IETs are almost 

surely different. We will briefly make some remarks that are helpful to motivate 

this approach. Assume that there exists an increasing sequence of natural numbers 

ni,ri2,... such that lim L \Tnix — x\d\ = 0. It follows from either the Lebesgue 
i—>oo 

density theorem or Luzin's theorem that U^f converges to / in L2 norm. It follows 

that U?p converges to the identity in the strong operator topology. It also follows that 

lim L \zni — \\2<jftT = 0. By the fact that convergence in norm implies convergence 
i—>oo 

almost everywhere along a subsequence it follows that there exists i\,i2, ••• such that 

{z : \imznij = 1} has full a^T measure. This implies that spectral measures detect 
j—»oo 

information about the measure preserving transformations they are associated with. 

This argument is developed further in Chapter 3. 



Chapter 2 

Keane type examples 

Michael Keane introduced a construction of a minimal but not uniquely ergodic 4-

IET [15]. This construction is based on proving that there are orbits that have 

asymptotically different distribution. It uses an inductive procedure that provides for 

a great deal of control. This chapter uses Keane's construction to show that there 

exists a topologically mixing IET, results on the possible size of ergodic measures 

in terms of Hausdorff dimension and exotic properties of the distribution of orbits. 

These results make statements about topology, measure and metric respectively. 

2.1 An introduction to Keane type examples 

Consider IETs with permutation (4213). Observe that the second interval gets shifted 

by h — li- If this difference is small relative to l^ then much of I-i gets sent to itself. At 

the same time, pieces of ^3 do not reach I2 until they have first reached I4. This is the 

heart of the Keane construction. The details of the Keane construction are centered 

15 
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around iterating this procedure by the induced map. Keane considered the induced 

map on the fourth interval, which we denote I^\ The induced map on this interval 

is once again a 4-IET. Keane showed that by choosing the lengths appropriately 

one could ensure that this induced map had the permutation (2431). Name these 

in reverse order and we once again get a (4213) IET. Motivated by this, we name 

the 4 exchanged subintervals of 1^ under T|7(i) in reverse order; that is, l[ is the 

subinterval furthest to the right. Keane also showed that for any choice m , n £ N one 

can find an IET whose landing pattern of /• is given by the columns of following 

matrix: 

/ 

A — 

0 0 1 
\ 

m — 1 m 0 0 

n n n — 1 n 

1 

m n £ N = { l ,2 , . . .} . 

V l 1 A V 

In order to see this, pick lengths for 1^ and write it as a column vector. Now 

assign lengths to the original IET by multiplying this column vector by Am,n. The 

induced map will travel according to this matrix by construction. For instance, if one 

chooses lengths [.25, .25, .25, .25] for 1^ one gets lengths of 

2 m - 1 An- 1 

2 + 2m - 1 + An - 1 + 4 ' 2m + 4n + 4 ' 2m + 4n + 4 ' 2m + An + 4J 

for the original IET (after renormalizing). For any finite collection of matrices one 

can iterate this construction. (Assign lengths for 1^ by multiplying the lengths of 

/(fc+i) by Anfc+1,nfc+1, multiply the resulting column vector by Amktnic,... . I{k+l) is 

defined inductively as the fourth interval of I^k\) Compactness (of P3 , which can be 
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thought of as the parameterizing space of (4213) IETs) ensures that we can pass to 

an infinite sequence of these matrices. 

Since the intervals are named in reverse order, the discontinuity (under the induced 

map) between I2
 an<3 ^3 is given by T_1(<5i) where 5\ denotes the discontinuity 

between I\ and I2- As the first row of the matrix suggests I\ = T(l\ U /g ). The 

discontinuity (under the induced map) between l\ and I2 is given by T~m(52) 

where 52 denotes the discontinuity between I2 and J3. As the second row of the 

matrix suggests 

h = T{I{
2

1) U A(1)) U T2{I{
2

] U l[x)) U ... U Tm-\I^ U ij1*) U Tm(I2). 

The discontinuity (under the induced map) between 1% and IA is given by T~™_1(<53) 

where 53 denotes the discontinuity between I3 and I4. As the third row of the matrix 

suggests 

. . .uT m + n - 1 ( / fV T m + "(4 1 ) ) u r n (4 1 ) u 4 1 V T m + n (A ( 1 ) ) u r m + n + 1 (4 1 ) ) u T ' l + 1 ( / 4 1 ) ) -

I4 — I\ U l\ U I2 U l \ . As the columns of the matrix suggest, this is also 

U = T"+1(41}) u Tm+n+1(i^) u Tm+n(i[1]) u rn+2(/i1}). 

To recap, the composition of Ij can be given by the j t h row of the matrix. The travel 

before first return of /• ' can be given by the j t h column. Additionally, because the 

intervals were named in reverse order, the permutation of the induced map is once 

again (4213). 
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It is important for this construction that everything be iterated. The composition 

of lf] in pieces of 7(fc+r) is given by er
jAmk+unk+1...Amk+rink+r (where ej denotes the 

transpose pf &,). Likewise, the travel of r- +r' under TT(k) before first return to /(fc+r) 

is given by Amk+unk+1...Amk+rtnk+rej. 

Definition 4. Let 0(n ) denote the disjoint images under T of /• before first 

return to I^k'. 

Now for some explicit statements about the travel of subintervals of 1^ under the 

induced map Tj(k). When 1% returns to 1^ it entirely covers Jj f c ) . It is a subset of 

/g UI I . When l\ returns to 1^ it entirely covers if . It intersects I2 • Moreover 

part of this intersection will stay in 0(1^ ) for the next mk+ibk^ images (the other 

part (mfc+i — l)6fc,2-) When 7̂  returns to 1^ it intersects 1% . Moreover this piece 

of intersection will stay in 0(1% ) for the next nk+ibki3 images. 

Definition 5. bk^ is the first return time of l\ to I^h\ 

Remark 2. bk>i is given by \Amitni...Amktnicei\i. In particular, bky2 = mkbk^i<2 + 

rikbk-i,3 + bfc-i,4 and 6fe)3 = bk-i,i + {nk - l)fyt-i,3 + h-\A-

Remark 3. 0(l\k) = Tj~V(/7
(fc)). 

Some facts to keep in mind: 

1. The choice of nk has no effect on 6i)2 for i < k. 

2. The choice of nk has no effect on 6 i 3 for i < k. 

3. The choice of mk has no effect on 6,^ for i < k. 

4. The choice of mk has no effect on 6; 3 for i < k + 1. 
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2.2 There exists a topologically mixing Keane IET 

Definition 6. Let X be a topological space. A dynamical system T : X —• X is said 

to be topologically mixing if for nonempty open sets U, V there exists Nuy '•— N 

such that Tn(U) nV ^ 0 for all n> N. 

Theorem 6. There exists a topologically mixing J^-IET. 

Remark 4. It is classical that aperiodic IETs are measurably conjugate to shift dy­

namical systems that are continuous. The example presented to prove Theorem 6 has 

this conjugate system also topologically mixing. The proof is straightforward and will 

not be presented in this thesis. 

Conditions on 6fc,2 and 6/̂ 3 that ensure topological mixing: 

1. 6fc,2 is prime for all k. 

2- &i,2 J(bk,3 for all i < k. 

k k 

3. The group of multiplicative units mod IT bj 2 n a s more than .5 II 6j 2 elements. 
i=l ' i=\ 

4. 6fc,2&fc+l,3 ~*~ ̂ fc+1,3 + ^ , 4 + ftfe-1,4 < mk+lbk,2 

5. fcfc,3^fc,2 + h,2 < rik+ihfi 

Theorem 1 will be proven by showing that any Keane IET chosen in this way is 

Topologically mixing. We first show that the set of such IETs is nonempty. 

Lemma 4. One can choose bk,2 and bk$ to fulfill these conditions. 
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Proof. By induction. Assume we have chosen ni , mi, 712,7712, ...,nk-i,mk-i; we de­

scribe how to choose n^ and then given this n^ how to choose m/.. Consider con-

fe-i 
gruence modulo g : = II 6,,2- Choose a congruence class [/] that is in the group of 

i = l 

multiplicative units and so that [/ + 6*1-1,3 — &fc-i,i] i s m the multiplicative group 

of units. This can be done by pigeon hole principle (by condition 3). Pick nk so 

that 6fc,3 E [f] and so that nk > fc~1,3^~1'2+6'c~1'2. This can be done because 6/0-1,3 

is relatively prime to the 6*,2 for all i < k. Next we pick m^ so that 6̂ ,2 is prime, 

mi > k~1,2 kf+ k-l<i+ k'3 and condition 3 is satisfied. This is doable because we wish 

to find a prime in the arithmetic progression 7ifc6/c_i,3 + 6/c_i,4-|-6/c_i,2N and the starting 

point and the increment are relatively prime and the other conditions merely require 

choosing m*. large enough. • 

Let Cfc = 6^+1,26^+2,3 + 6fc+2,3 + 6̂ +2,4 + 6/0+1,4; dk = 6̂ +2,36/5+2,2 + 6̂ +2,2-

Let J contain at least one level of a tower over 1^. This means that it contains at 

least 1 level from each of the 4 towers over I(-k+2\ For all j > k, i > Cj, Tl(J) intersects 

every level of every tower over I^~l\ This is proved in the following lemmas. In these 

arguments it will be important to pick out a level from 0(1^ + ) and 0(1% + ). These 

will be denoted J'. 

Lemma 5. At times Ck to dk J', a level in 0(1% ) , intersects every level of 

0(1 f 1 ] ) . 

Proof. There exists 0 < i < 6/0+2,3 (it is equal to 6̂ +2,3 for /g + ' but for pieces of the 

orbit it is less than) such that if+2) c T\J'). So Ti+b*+^(J') n if+2) ± 0. Also 

J^i+bk+2,4+bk+l,4(J'\ p| j(k+l) -J. 0 
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In fact, 

jn+bk+2l4+bk+i,4+jbk+2,3fj'\ p | j ( f c + 1 ) -L 0 

for j < nM (notice, T\\{k+2){lf+2)) n /f4^ ^ 0 for j < n fc+3). Pieces of if+ 2 ) are 

inserted into Ig + with a delay of 6/0+2,3 which is coprime to 6̂ +1,2- It follows that 

TCk(J') intersects every level of 0 ( l f + 1 ) ) . By condition 5 it follows that Tr(f) inter­

sects every level of 0(1^ + ) for ck < r < dk (because ^+36^+2,3 > dk). Moreover, the 

pieces inserted take mfc+2&fc+i,2 to leave 0(^2 )• Because mfc+i6^+1,2 > f̂c+2,3^+1,2 

(condition 4) the piece does not leave 0(1^ + ) before another is inserted into its 

level. • 

Lemma 6. At times dk to ck+i J', a level in 0(1^, ) , intersects every piece of 

oat2))-

Proof. There exists 0 < i < bk+2,2 (it is equal to 6fc+2j2 for i j + but for pieces of the 

orbit it is less than) such that if+ 2 ) n T^J') ^ 0. Also I{^+2) n Ti+ih*+^{J') ^ 0 

for j < mk+3 (notice, T|^ ( fc)(/f+2)) D if+ 2 ) ^ 0 for j < mk+3). Because 6fc+2,2 

is relatively prime to 6̂ +2,3 we have T l+j6fc+2 '2(J /) intersects each level of 0(I3 ) 

for j = 6/0+2,3- It follows from condition 4 that Tr(l2 ) intersects each level of 

0 ( i f + 2 ) ) for dk <r < ck+1 (because mk+3bk+2,2 > ^+2,2^+3,3)- Moreover, the pieces 

inserted take (nfc+2-l)6fc+2,3 to leave 0(I3
 + '). Because (n fc+3-l)6 fc+2,3 > 6^+2,2^+2,3 

(condition 5) the piece does not leave 0(I3 ) before another is inserted into its 

level. • 

Proof of Theorem 6. For any two intervals J i , J2, eventually both contain some level 

of a tower over j(fc°). This implies that they contain a level from each tower over 
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/(fe) for all k > k0 + 1. This implies that Tn( Jx) n J2 7̂  0 for n G [cfc, 4 ] because Ji 

contains a level of Jg and J2 contains a level of i^ • Also Tn(Ji) C\ J2 7̂  0 for 

n G [dfc, Cfc+i] because Ji contains a level of I2
 + and J2 contains a level of ig . It 

follows that T n ( J i ) n J2 7̂  0 for any n > cko+l. • 

2.2.1 No IET is topologically mixing of all orders 

The argument is a straightforward application of [13]. Let T be an d-IET. Observe 

that a topologically mixing IET must be minimal (otherwise it splits into disjoint 

invariant components). Let J, J' be any disjoint intervals bounded by discontinuities 

of Tl for some I, and n1 ; . . . ,nd2 be natural numbers. We will find a violation of 

topological mixing of order d2 + 1 at bigger times. Pick an interval V such that all 

of the first returns to V are greater than max{Z, ni , ...ra^}. We may also choose V so 

that Ty is an s IET for some s < d. By our assumption that the return times to V 

are larger than I, each level of a tower over V is either contained in J or disjoint from 

J. Let Ui,U2,---,U3 be its subintervals. Tyi is an Sj-IET for S; < s. Call its intervals 

Uit\,---,UitSi and their return times riti,...ri>Si. If x € 0(Ui) and x G 0(Uitj) then 

T r i 'J(x) E J. This is because x € Tk(Ui) C J for some fc < r i ; in fact X e Tk(Uid). 

Tri^-k(x) € I7i. So Tfc(Tr'^-fc(a;)) € T f c(^) C J. Therefore n Tri^{J) n J ' = 0. 

2.3 Measure estimates for Keane's construction 

The previous sections discussed the topological properties of Keane type IETs. 

Keane's construction of these IETs was motivated by their measure properties. In 
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Keane's example we have a non-uniquely ergodic minimal 4-IET T with ergodic mea­

sure A2 and A3. To gain some further intuition consider the product: 

/ 
0 0 1 1 

\ 

m — 1 TO 0 0 

n n n — 1 n 

1 1 1 1 

/ \ / 

\dJ 

c + d 

(TO — l)a + mb 

n(a + b + c + d) — c 

a + b + c + d 

Notice that it a = c = d = 0, b = 1, m is much bigger than n and large then the 

resulting column vector has small angle with the original. Likewise, if a = b = d = 0, 

c = 1 and n is large then the resulting column vector has small angle with the original. 

Motivated by this, we introduce another piece of notation. 

Definition 7. Let Amnv = , ,m'nV,, where \w\ is the sum of the entries in w. 

Michael Keane showed that if 3rifc < m^ < ^n^+i and n\ > 9 then the IET given 

by lim ^4ni,mi---^nr,mr
e2 is minimal but not uniquely ergodic. In particular he showed 

r—»oo 

the limit exists. (It is not hard to see that one can remove the assumption on n\ or 

any finite number of matrices). 

2.3.1 Estimates on the size of intervals with respect to the 

two ergodic measures 

In this section we bound A;(/j ) between two constants. Many of these are needed 

in the later arguments. We include the rest for completeness. 

In these computations, we use jth entry of partial products Ak-..Ak+rei to estimate 

. To complete these estimates we remark that bk\ > A2(/^^) > -rr— (Lemma 
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28) and 6^j > A3(/(fc)) > ^ (Lemma 27). 

Remark 5. The proofs of these lemmas often provide better results than their state­

ments. Additionally, it is often straightforward to provide better estimates, especially 

under stronger growth conditions on m* and n*. Lemma 14, for instance, would be 

amenable to such an approach. 

^ • ( / ( * ) ) - -

Proposit ion 3. ' /(k)) = the jth entry of lim Amk+unk+1...Amk+T^k+rei. 

Lemma 7. ^ C r > , m*+1 • 

r—>oo 

"H+ i Proof. It suffices to show that the second entry of Amk+unk+1Amk+2:nic+2e3 > 2^fnk+2 

This is a direct computation. • 

Lemma 8. ^ ^ ^ < (nfc+3+1)(nfc+1+1) • 

This result is in the proof of Lemma 3 of [15]. 

Lemma 9. ^ C T T > 1 - ~J~-
A3(/C=)) — nk+1 

This is Lemma 3 of [15]. 

Lemma 10. * 3 & J < Ai(/W) - n f c + 1 ' 

Proof. Notice that / j is the disjoint union of an image of l\ , an image of ig , 

an image of 7g and an image of I\ and that 1^ contains at least n^+i + 1 

disjoint images of /• + ' for each j . D 

Lemma 11. ^ C r > 1 
A 3 ( /W) - 2n f e+1 
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r(fc) ;„ r(fc+l) i-(fc) Proof. I\ is made up of one disjoint image of each I\ . I\ is made up of nfc+i — 1 

disjoint images of l\ and rik+i disjoint images of each of the other l\ . Therefore, 

because rik+i disjoint images of l\ + cover ig + and A
3L^w > w/(fc)l~—• The 

lemma follows by Lemma 9. • 

Lemma 12. ^ 4 © < 
A 3 ( / W ) - nk+l • 

Proof. I[ is made up of a disjoint union of an image of if+ 1 ) and if+ 1 ) each of 

which has at least rik+\ + 1 disjoint images in 

Lemma 13. ^ C l > TJ~-
X3(n

k)) — 3nk+1 

Proof. It follows from the composition of I> ' by subintervals of /(fe+1) that A3(i| ') > 

A3(i3
 + '). The proof follows from Lemmas 11 and 9. • 

Lemma 14 Xa{I*k)) > °-25m*+i i ,emma 14. Aa(/(fc)) > n f c+ i+mfc+ i+2 . 

Proof. Observe that if v E R+ is positive, \v\\ = 1 and v[2] > .25 then 

^4m,n [̂2] > .25 so long as m > 2>n and n > | . By induction, it follows that 

n Amunte^\ > nk::^+2- • 
t=/c+i 

Lemma 15. ^ C r < f n i i l -

r _ r _ 

Proof. By the previous proof, fj Am(]„te2[2] > | . It follows that f j Am()n(e2[3] < 
t=fc+2 t=k+l 

0.25m f c + i ' 

Lemma 16. 444fSr > r s ± 1--
A 2 ( /CO) — 2mk+i 

D 

Proo/. i4mt+li„fc+1e2[3] = mk+^l+1+i > £ ^ and Amk+unk+1e2[3] < Amfc+1,nfc+1ei[3] 

for z = 1,3,4. Thus Amk+ltnk+l(Amk+^nk+2...Amk+r:nk+r)[3] > 2mtli' ^ 
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This proof is related to Lemma 24 

L e m m a 17. .2 i , J > ^ — . 

Proof. There are at most m^+i + n^+i + 1 disjoint images of any l\ in I^k\ By 

our standard assumptions n,k+i + 1 < mk+i. Also l\ is made up of one image of 

each l\h+l). • 

Lemma 18. ^ 4 T D < ~A~-
A 2 ( /W) mk+1 

Proof. By construction the fourth entry of Amk+unk+1(Amk+2ink+2...Amk+rink+r) is 1. 

By Lemma 14 the second entry is at least .25mk+i- D 

Lemma 19. $ $ S < !*a±a±!S. 
A2(/<*>) m f c + i m f c + 2 

Proof l[ is made up of one image of 1% + ' and one image of I\ + . 

SiSj = t ^ ) A 2 ( C ^ + 1 ) ) - Bythe fact that /(fc+1) = J i f c ) . L e m m a s 15 and 

18 this is less than 4 4"*+2+4, D 
"lfc + 1 ^ f c + 2 

Lemma 20. £ ^ > A "*+2 • 
A 2 ( /W) 4mk+imk+2 

Proof I{ contains one image of 1% '. By Lemma 16, x (Ifk+i)l > 2m
+2 and by 

Lemma 17, ^ ^ T > 2 ^ 7 ? D 

2.4 Hausdorff dimension for ergodic measures in 

Keane type examples 

In Keane's example we have a non-uniquely ergodic minimal 4-IET T with ergodic 

measure A2 and A3. If one assigns lengths to an IET by U = cX2(Ii) + (1 — c)A3(/i), 
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then the resulting IETs all have the same topological dynamics (see [22, Section 1] 

for more general discussion). They also all have two ergodic measures that assign the 

same measure to the 4-subintervals. When c = 1 then A2 is Lebesgue measure and 

A3 is singular with respect to Lebesgue measure. When c — 0 then A3 is Lebesgue 

measure and A2 is singular with respect to Lebesgue measure. In the intermediate 

situation both are absolutely continuous with respect to Lebesgue measure. This is 

discussed more in Remarks 8 and 10. 

Theorem 7. (a)Hdim{\2,d\3)
 can take any value in [0,1]. 

(b) HdimiXs, d\2) can take any value in [0,1] 

This result answers a question in [3, Section 6]. If the Hausdorff dimension of an 

ergodic measure for an IET is zero then the lengths of intervals are not all algebraic 

[3, Corollary 6.9]. 

Theorem 8. (Hdim(\2,dx3),Hdim(\3,dx2)) can take values (0,0), (1,0), (0,1) or 

(1,1)-

Theorem 9. If T is a Keane type IET let G^{T) be the set of A3 generic points. 

There exists a Keane type IET T such that Hdim{Gz{T)c,d\3) = 0. 

This says that all but a set of Hausdorff dimension zero of the points behave A3 

typically. 

2.4.1 Definition of Hausdorff dimension 

Let diam(U) = sup \x — y\. Consider a set S C [0,1). We say a collection of open 

00 

sets U = {Ui}°^x is a 8 > 0 cover of S if S C UUi and diam(Ui) < 5 Vi Let 
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oo 

H%(S) = i n f j E l ^ i l ' : {Ui) is a 5 cover of 5 } . Let HS(S) = lim # j ( S ) . Notice that 

the limit exists. Let Hdim(S) = inf{s : HS(S) = 0}. This is equivalent to defining 

Hdim{S) = sup{s : HS(S) = oo}. We state a few well known properties of Hausdorff 

dimension. 
oc 

Hdim{^ Si) = SUpHdim(Si). 
oo 

u, 
oo 

Hdim H Si < infHdimiSi)-

Definition 8. For a Borel Measure /j, we define the Hausdorff dimension of a prob­

ability measure /j, is 

Hdim{n) = ini{Hdim(M): M is Borel and /i(M) = 1}. 

For upper bounds to Hausdorff dimension of a set, explicit constructions are often 

all that is necessary. For lower bounds Frostman's Lemma is useful. 

Lemma 2 1 . (Frostman) If B C [0,1) be a Borel set. HS(B) > 0 iff there exists a 

finite radon measure on B, v, such that u(B(x,r)) < rs. 

see [19] p.112. 

Corollary 1. If /j, is a measure on [0,1) and t\,... is a positive sequence tending 

to 0 such that -^- < C for some C and all i then n(B(x,€i)) < C(ei)a implies 

Hdim(fJ-) > a. 

Lemma 22. If T is a piecewise isometry then H,nm(T(S)) < Hdim{S). 

This holds for locally Lipshitz maps as well, but this is unnecessary for the present 

paper. 
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2.4.2 Est imates towards calculating the Hausdorff dimension 

for ergodic measures of IETs 

For upper bounds to the Hausdorff dimension for an ergodic measure of an IET the 

following proposition is useful. 

Proposition 4. Let T be a [i ergodic IET and the Hdimin) = t. If S is a set such 

that Hdim{S) < t then //(£>) = 0. 

Proof. This follows from the countable stability of Hdim and ergodicity. If p(S) > 0 

oo 

then /J,(U Tl(S)) = 1 by ergodicity. However, by the countable stability of Hausdorff 

dimension Hdim{ U Tl(S)) = Hdim(S) because T is a piecewise isometry. • 

i = i 

This proposition says that one needs to only prove upper bounds on part of the 

measure. If n(S) > 0 and ^(S) = 0 then Hdimin) < t. 

Below is a lemma based adapting Frostman's Lemma to our particular circum­

stances to provide lower bounds for the Hausdorff dimension of an ergodic measure. 

Lemma 23. If there exists C such that C\^{l\ )Q > A2(/j ) for any k and i € 

{1,2,3,4} then Hdim(^2, d\3) > a. Likewise, if there exists a C such that C\2(l\ ) a > 

X3(Ii ) for any k and i e {1,2,3,4} then Hdim{\3,d\2) > a. 

Proof. By Frostman's Lemma it suffices to show that for any interval J CA3(J)Q > 

A2(J). We will show that logA3(j) A2(J) is dominated by something comparable to 

log. . (th Mil?, • This follows form the fact that /^ a n d 1^ are made up of repeating 

images. To see this assume that we wish to estimate logA3(n A2(J) mostly covered 

by images of I> and contained in i j . -4 1S m a d e up of repeating unions of 
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images of/ j f c + 1 )U/<*+ 1 )sothe maximum advantage is either by taking the whole JQ 

or /g U A U 2̂ • i n either case, logA3(j) M(J) is dominated by something 

proportional to 1^ for some j . Likewise,if J C 1% for pieces in images of 1$ one 

either covers by all of / f or /<fc+1) U /i f c + 1 ) U 4 f c + 1 ) U /f+1) U /<*+1). /<*> and j f > are 

made up of at most 1 image each of l\ for i € {1, 2,3,4} and so reduce to these 

cases. Similar arguments hold for log^ j ) A3( J ) . • 

Lemma 24. fcj.,2 > 6̂ $ / o r i 6 {1,3,4}. 

Proof. 6fc_2 > fyfc,i because the second entry of Amk^nke2 = m-k > m,k — 1 and m*. — 1 

is the second entry of Amk^nke\. Amkt1lke2 agrees with Amkinke\ in all other entries. 

bk,2 > bkj for j = 3,4 because AmktTlke2 > Amk>nkej in all entries but the first and 

mkAmk_1<nk_1e2 > Amk_ltnk_1ei in all entries (the second entry of Amktnkej is 0 and 

the second entry of AmktTlke2 is mkei and also the first entry of Amkt7lkej = 1). This 

argument shows that Amk_ltnk_1Amk^nke2 has each entry greater than or equal to the 

corresponding entries of Amk_link_1Amktnke jfor j = 3,4. D 

k 

Lemma 25. 6^2 < IT 2m;. 
i = l 

Proof. 6fc)2 = wifc6fc-i,2+^fcftfe-i,3+ftfe-i,4- By Lemma 24 6 i 2 > &ij- By our assumptions 

rrii > n,i + 1. The lemma follows by induction. • 

Lemma 26. Jin; < bk,3-

Proof. bk,3 = hti + (nk-l)bk-i,3+bk-i,4- Notice that biA = &j-i,i+rcj6i_i)3+&j_ii4 > bifl 

implying that bk$ > ^fe^fc-i,3- The lemma follows by induction. • 

Lemma 27. A 3 (0( i f } ) ) > | . 
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Proof, rifc+i&fĉ  > \bk,i for i ^ 3. This follows from Lemmas 9, 25 and 26. • 

This Lemma establishes that A3(/(
fc)) is proportional to b^\. 

Lemma 28. X2(0(I{
2

h))) > \. 

Proof. bk,2 > bkii (Lemma 24) so A 2 (0 ( / f >)) > g ^ l D 

This Lemma establishes the X2(I^) is proportional to 6fc2-

Proposition 5. Hdim(X2,dX3) < Hdim( n U 0(4 f c )),dA 3)-
n=li=n 

•^*-> WSJ ^^^ / u \ ^ ^ 

Remark 6. D U 0(I2 ) n a s positive A2 measure and is T invariant except for a set 
n=\i=n 

of measure zero (because A^ij ) ~* 0). By ergodicity it has full measure. 

Proposition 6. Hdim(X2,d\3) < liminflog (1{k),bk
l
2 

k—»oo = X3(I^)"k,2-

Proof. Assume that liminflog. ,.<*). 6fc2 = s. It suffices to show that Hdim(X2,d\3) < 

fc—>00 A 3 U 2 J ' 

s+e for all e > 0. Let ki, k2,... be an increasing sequence of natural numbers such that 

— 1 oo oo (k)\ 

l o g . , (fct. bT 2 < s + e for all £. Consider n U 0(I2 ). It has positive A2 measure by 
A3(^2 / ' ' n=l i=n 

OO OO (u \ 

Lemma 28. The naive covering shows that Hs+e( n U 0(1^ iJ)) = 0. That is fix 5 > 0 
n—1 i—n 

and choose n such that A3(J?a)) < 5. We bound #5
s+e( n U 0(1^)) by covering 

n=l i=n 

each 0(/2 ) by bki:2 images of Jg • By the fact that log ,7(*i)\ ^ / 2 < s + e for all z 
oo „ . 

it follows that ^2bku2(\3{I2 '•'))s+2£ < oo and therefore the proposition follows. • 

Lemma 29. Hdim(X2,dX3) > liminflog ,(,=),(A^J-f0)). 
k—»00 A3V J2 I 

Proof. By Lemma 23 we have that 

Hdim{\2)d\3) > minliminflog , {k)AX2(l\
k))). 

Kt<4 k—»oo 
3A3(/r')v 
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Consider 

los^>> ¥rmrMllk)) ^ A 3 ( / C = ) ) A 2 ( / ( f c ) ) ' 
A 3 ( / W > 

A2(/rj) To determine the i that attains the minimum it suffices to consider logA (*> x
2
(/(k)\ 

For all large k the smallest of these is logA (*> x
2
(I

2(k)\ < log 2mH1 | (see Section 
rlfc+lnfc+2 

2.3.1). D 

I think this is also log "^+1 ^ . I need to have 
nk+lnk+2bk,2 k'2 

Proposition 7. Hdim(X3,dX2) < liminf log , (fc). 6^3. 
fe—»oo ^ ^ v J 3 / ' 

The proof is similar to Proposition 6. 

Lemma 30. Hdim(X3,dX2) > liminf log w (A 3 (^ f c ) ) ) . 
k—>oo A 2 V J 3 J 

Proof. By Lemma 23 we have that 

Hdim(X3,dX2) > min liminf log ( f c)(A3(/f ))). 
l < i < 4 k—>oo A 2 U j J 

Consider 

l0«W> ,M ¥rrwMl{k)y 

4 i^A 2 ( /W) A3(/(
fc)) 

To determine the « that attains the minimum it suffices to consider logA (k) (w/'(fc)0 

A3(/jfc)). 

A2(/t*yy 

The smallest of these is log A (/(
fc))( wjfth) < log "fc+i (1 —^—) (see Section 2.3.1). D 

3^7fey 3 2mk+1 

2.4.3 Proofs of Theorems 

Proof of Theorem 8. Choosing rrik = n£ implies that Hdim(X3,d\2)
 = 0- Likewise, 

choosing rik+i = m£ implies that Hdim(X2,d\3) = 0. Choosing TO/. = 4n£ implies 
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that Hdim(\3,d\2) — 1. Lastly, choosing nk+\ = 4mfc implies that Hdim(\2,d\3) = 1. 

By suitable choices of mk and nk any of the four possibilities in Theorem 8 can be 

accomplished. • 

Proof of Theorem 7(b). H<nm{^3,d\2) can take any value in [0,1]. Pick a G [0,1]. 

\_ 
Choose mk,nk so that nk > bl_12 and rrik — \nk\. - < logi r^- < —W. 

' G bk,2 °fc,3 a ' fc 

n 

Proof of Theorem 7(a). Hdim(^2,d\3) can take any value in [0,1]. Pick a G [0,1]. 

Notice that Hdim(\2,d\3) = liminf —-^^f——. Choose mk+1 > ink+lbkfi)
k and 

nk+lnk+2bk,3 ' 

nfc+2 = Kt+iJ • D 

2.4.4 Large sets of generic points 

The result of this section is Theorem 9 that the A3 generic points can be the comple­

ment of a set of Hausdorff dimension 0. Theorem 9 holds in particular when mk = 3nk 

and nfc+i = bk
k2. 

Definition 9. Let tk{x) = min{n > 0 : Tn{x) G 0(l[k))}. 

Proposition 8. If x G U fl 0(1% ) and lim -rjK = 0 then x is A3 generic. 
n = l k=n k—>ook^x' 

00 _ 00 _ 

Proof. In the proof of Theorem 7 [15], Keane shows that I I A™fc,nfce3 and Y[Amk,nke4 
fc=i ' k=i 

converge to A3. Therefore under the conditions of the hypothesis x is generic for 

A3. To see this, consider 6fc_lj3 < s < 6^3. x travels through 0(1% ) a times 

(a = g ^ - 1) then through 0{lf ~l)) then through O^f* - 1 5) then it lands back 

in 0(ig ~ )). By our assumption on tk eventually the landing in 0 ( / 3 ~ ) always 

dominates, so x is A3-generic. • 
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not satisfying the hypothesis of Proposition 8 is a set of Hausdorff dimension 0. 

Proposition 9. Under appropriate assumptions, the set of points in U n 0(1^ ) 
n = l k=n 

Proof, 1% travel up to rik+i times through 0(^3 ) before traveling through 0(l[ ) 

and then 0(I{ ). Therefore, the proportion of each level of O ^ ') that have -j1 < 

e is -ff—nk+\bk,z- There are bk,3 such pieces. Therefore if rik+i is chosen so that 

( — ) ^ f c 3 < T. then the set of x G U n 0(lik)) such that limsupT^r > 0 has 
\nk+lJ ^ k n=lk=n V 3 ' k->oo k{x) 

Hausdorff dimension 0. • 

Proof of Theorem 9. By Lemmas 8, 10 and 12 and the independence of the choice of 

rik+i of the previous n* and m; (and therefore bij for i < k,j € {1,2,3,4}) that we 

may also have 0(I{ ) U 0(1^ ) U 0{l\ ) have Hausdorff dimension 0 by choosing 

nfe+i large enough (or nk+2 large enough relative to rrtk+i for 0(1^ ). The theorem 

follows with the previous proposition. • 

2.5 Exotic shrinking target properties for some 

Keane type examples 

2.5.1 Typical points with respect to one ergodic measure 

that approximate typical points with respect to the 

other ergodic measure poorly 

First we show that Keane type IETs can have orbits that take a long time to become 

e dense. 
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T h e o r e m 10. There exists T, a minimal 4-IET with 2 ergodic measures, A2, A3 such 

that for A2 x A3- a.e. pair (x,y) liminf n\Tn(x) — y\ = 00. 
n—>oo 

Compare it with Chebyshev's Theorem ([17, Theorem 24]): 

T h e o r e m 11 . (Chebyshev) For an arbitrary irrational number a and real number (3 

the inequality \na — m — /3\ < ^ has an infinite number of integer solutions (n, m). 

In the language of Theorem 10 Chebyshev's Theorem states that if Ta is an irra­

tional rotation, liminf n|T™(x) — y\ < 3 for any y. 
n—>oo 

We place the following conditions on mk and nk. 

1. {nkf < mk 

2. (fyfc-1,2)2 <mk< (6fc_li2)5 

3. {bka)
222kmk < nk+1. 

These conditions provide the following immediate consequences: 

1- frfc,2 > Hj f° r anY J (Lemma 25). 

2- (fyc-1,2)3 < fcfe+1,2 < 4(6/c_ii2)6 (direct computation with condition 2). 

3. A3(0(/2
fc)) < ^ (by Lemma 15) 

0 0 

4 J2n£\hf converges (6/0+1,2 > rnk+lbkt2 and 6fci2 > 6fc;3). 
k=\ + ' 

0 0 

5 _ ^ i ! ± . converges (condition 1). 
k=\mk 

Picking mk and nk as above we choose T to be the IET with permutation (4213) and 

0 0 _ 

lengths (n^m f c , n je 3 -
fc=i 
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OO OO k 2 /1 \ 

Lemma 3 1 . A2 a.e. point is in U n fi T~r{0{I^ ') 
j=l k=j r=\ 

oo \ (r(fc)\ r(kK 
Proof. By condition 1 and Lemmas 15, 18 and 19 it follows that X ^ A T / T ^ J ) 

k=l 

converges. It then follows from the fact that 6fc)2 > 6 ^ (Lemma 24) that 

oo . . 

^A 2 ( [0 , l ) \ 0 ( / 2 )) converges. The lemma follows from the Borel-Cantelli Theo-
fc=i 

rem with the additional observation that —— of the measure of Of/, ) leaves in the 
mk+i V 1 I 

first 6fci2 steps. D 

Definition 10. Let AX)TfM,N — {y '• \Tn(x) — y\ < ^ for some N < n < M} 

This example relies on showing that \^{AX^^M,N) is small (see Lemma 33) for a 

A2 large set of x. The following definition provides us with a class of x such that we 

can control \Z(AX^^M,N) as seen by Lemma 33. This class is also A2 large as seen by 

Lemma 12. 

Definition 11. x is called k-good if: 

1. Tn(x) e 0(I{
2

k)) for allO<n< bk>2. 

2. Tn{x) e 0 (4 f c _ 1 ) ) for allO<n< (n^ fe_1)3)2 

Lemma 31 shows that A2 almost every point satisfies condition (1) for k-good for 

all k > N. The following lemma shows that condition (2) is also satisfied eventually. 

Lemma 32. For A2 a.e. x there exists N such that x is k-good for all large enough 

k. 

Proof. The basic reason A2 a.e. x is eventually fc-good for all large enough k is that 

the images of 0 ( / 2 ) not in 0 ( / 2 ) are consecutive). This means we need to avoid 
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nk+ih,3 + h,A + (nkbkt3)
2 image of 0{lff+1)). Because 

n-k+ibk,3 + bkA + {nk+1bk>3)
2 (nfc+i + l)bfc,2 

fyfc+1,2 mk+\bk,2 

is a convergent sum, the Borel Cantelli Theorem implies A2 almost every x is fc-good 

for all big enough k. (The left hand side is the proportion of the images of I2 

which are not good.) • 

The next lemma shows that if x is k + 1 good then Ax<rf,k 2)6fc+12 is small in terms 

of Lebesgue measure. 

Lemma 33. If x is k + l-good for all k > N then \3(Ax>Ttbk 2,bk+12) forms a convergent 

sum. 

Proof. This proof will be carried out by estimating the measure AXirj,k 2,t,fc+12 gains 

when x lands in 0(1^ ) and when it doesn't. Since x is k + 1-good, the Lebesgue 

measure Az:,r,bfc2,bfc+12 gains by not landing in 0(1^ ) is less than 

2 , , , , v . 2(nk+1bkt3 + 46fc_1;2) 4 
;{nk+ibk,3 + ofe>4) < 7 r—rj < (nk+xbk^y [nk+ibk:3y nk+1bk}3 

When x lands in 0(1^ ) it either lands in one of the fefc-1,2 components of which are 

images of 1% (this is 0(1^ ~ )) or it doesn't. On each pass through of the orbit, 

it lands mkbk-i<2 in one of the first 6̂ —1,2 images of l\~ , and nkbk_i^ + 6fc_1)4 times 

it doesn't. We will estimate AXtTtbk2tbk+12 by dividing up the orbit into these pieces. 

When x lands in 0 ( i f - 1 ) ) the measure of the points its landings place in Axrbk 2)6fc+12 

is at most A3(0(i2 ~ )) +^r_ftfe-i,2- (There are 6fc-i,2 connected components of 

o{itl\) 
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Otherwise we approximate the measure by : 

"fc-f-1 2/^fc 2 

7— /> : < 7 ln(6/b+i,2) < r 71n(6fci2). 

The left hand side is given by estimating the measure gained by hits in 

fc/b-1,4 hits each of which contributes at most jr— on 

the ith pass and summing over each pass through 0 ( / 2 ))• The first inequality is 

given by the fact that 6fc+i,2 > %+1,2 • The final inequality is given by consequence 2. 

Collecting all of the measure, if x is k + 1-good then 

A3(4 •x,r,bk,2,bk+i,2. < + nk+ibk,3 ' {bk,2)2 ' bk,2 

2r
 L 

+ ; Ofc-1,2 + 

nkbk-i^ + 6fc_i,4 

3fc,2 
71n(6fci2) 

which forms a convergent series due to the at least exponential growth of bk^. • 

Proof of Theorem 10. A2 a.e. x is eventually k + 1-good. By Borel-Cantelli for each 

of these x, Lebesgue a.e. y has lim n\Tn(x) — y\ = oo. The set of all (x,y) such 
n—»oo 

that lim n\Tn(x) — y\ = oo is measurable, and so has A2 x A3 measure 1 (by Fubini's 
n—»oo 

Theorem). D 

Remark 7. One can modify conditions 1-3 to achieve liminf na\Tnx — y\ = oo for 
n—>oo 

0 < a < 1. 

Remark 8. Following [22, Section 1], one can renormalize the IET by choosing the 

IET Sp, with length vector 
pA3(/2) + ( l - p ) A 2 ( / 2 ) 

pA3(/3) + ( l - p ) A 2 ( / 3 ) 

V 

and permutation 4213. Sp 

pA3(I4) + ( l -p )A 2 ( J 4 ) ) 

has the same symbolic dynamics and obeys the same Keane type induction procedure 
J 
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as T (with the same matrices). As a result S has two ergodic measures nsp, Xsp
 s u c n 

that Hsp{Ij ) for Sp is the same as A2(/j ) for T and \sp(Ij ) for Sp is the same as 

^(Ij )• Moreover, if 0 < p < 1 then fisp
 a n d As are both absolutely continuous and 

supported on disjoint sets of Lebesgue measure 1 — p and p respectively. If p = 1 

the IET is T, if p = 0 then /is0 is Lebesgue measure and As0 is singular. As a 

result the Lebesgue measure of / j ' for 5.5 is at least .5max{A3(/j ), A2(/?- )} for T. 

From this it follows that liminf n|5^(a;) — y\ = 00 on a set of (x,y) with measure .25 
n—>oo 

(corresponding to x being chosen from a set of /^s full measure and y being chosen 

from a set of As). (See [22, Section 1] for more on renormalizing.) 

2.5.2 Two ergodic measures tha t approximate each other dif­

ferently 

Theorem 12. There exists a minimal 4-IET with two ergodic measures, A2 and A3 

such that for any e > 0 we have liminf n1~ed(Tnx,y) = 0 for A2 x A3 almost every 

(x,y) and liminf n2+£d(Tnx,y) = 00 for A3 x A2 almost every (x,y). 

This will be proved in two parts (the A3 x A2 statement and the A2 x A3 statement) 

under the assumption that m^ = k2nk and rik+\ = b\ 2 and A2 is Lebesgue measure 

(that is d = d\2). 

Remark 9. The \ can be replaced by any c € [0,1) with straightforward modification. 

Proposition 10. For any e > 0 and A3 x A2 almost every point (x, y) we have 

liminfn2+e \Tnx — y\ = 00. 
n—»oo 
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OO OO LtT"fc + l6fc,3j , , . 

Lemma 34. A3( U n ( D r-*(0(Jf } ) ) ) ) = 1. 
r = l fc=r t = l 

Froo/. \3(^nbk'3iT-t(0(4k)))) > (1 - ^ ) A 3 ( 0 ( / f ) ) . Also 

AsCOd?)) U 0(/<2>) U 0(/?>)) < 1 ) ( 1 - J - ( ^ ^ ± 1 + ^ i + - ! _ ) ) . 
K 0fc,3 nk+1nk+2 nk+x nk+1 

By our assumptions -^ < Ak. Therefore the proposition follows by the Borel-Cantelli 

OO OO 

Theorem with the observation that V) -k + —— converge. (The convergence of Y^ —— 
f-J kl nk+1 to V to L^d nk+1 

K = l fc=l 

follows by our assumption on the growth of nk.) • 

Lemma 35. / / x € n r - * ( 0 ( / r ; ) ) ^ e " M U 5(T*x,(^))) < J5. i / x e " - * . - . . 

X2(0(4k))) + (6fc_i,i + 6fe_i,4 + 6fc_1,3)2c(L^nfc6fc_1,3J)-Q. 

Proof. By our assumption re lies in 0 ( / 3 ) for time described, therefore the measure 

of the set is at most the measure of a (Lp^fc+i^fc.aJ)-0'5 neighborhood of 0 ( / 3 ). 

The lemma follows from observing that 73 travels nk times through 0 ( / 3 ~ ) once 

through 0 ( i f _ 1 ) ) and once through 0(I{
4

k_1)). One then groups the levels 0(I{
3

k)) by 

the 0{l\k~1]) that they lie in. • 

oo 

Proof of Proposition 10. By our assumption on nk, mk it follows that YJ A2(0(/3 )) + 
fc=i 

2c(6fe_iii + 6fe-i,4 + &fc-i,3)2( Lpfnfe f̂c+i,3j ) 5 + e converges. By the Borel-Cantelli Theorem 

oo oo . 

it follows that for all such x we have A2( fl U B(Tlx, 4 ) = 0. By Fubini's Theorem 
n = l i = n % 

it follows that for all such x we havelimsupn2+e|T"a; — y\ = oo. By Lemma 34 the 
n—>oo 

proposition follows. D 

Proposition 11. For am/ e > 0 and A2 x A3 almost every point (x,y) we have 

liminfn1_e \Tnx — y\ = 0. 
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Kfch f„r + / h. . -f^^ \J f'f -RlTirr- _ J _ 1 _ e 
Lemma 36. Z / T ^ G 0 ( 7 ^ ) /or t < ofc,3 tfien A3( U B(Tlx, j±- )) > .5 for large 

enough k. 

Proof. By the assumption of the hypothesis {x,Tx, ...,Tbk-2x} are at least A2(/
(fc)) 

dense in 0(1% ~ ). (The condition of the hypothesis ensures that {x,Tx, ...,Tbk-2x} 

has rik hits in each level of 0 ( / 3 ~~ ) by examining T\I(k-i)(x), 0 ( / 2 ) is X2(I^) dense 

in 0 ( / 3 ~ ).) A3( /^ ' ) < y—. By our choice of m^ and n/c, 6fc>4 > 6^ e for all large 

enough k. • 

Lemma 37. The set of points satisfying the hypothesis of the above Lemma has A2 

measure at least | . 

Proof. This follows from the fact that A2(0(4fc))) > \ (Lemma 28) and 1 - ^ > \ 

of these points satisfy the hypothesis of the lemma. • 

Proof of Proposition 11. The proof follows from Fubini and ergodicity. • 

Remark 10. One can assign distance by nontrivial linear combinations of A2 and A3 

Theorem 12 holds in these cases as well. (For d — d\3 the argument fails. See 

Question 2). The reason why is that A3(/(
fc)) < y— and by our choice of m^ and n^, 

bkA > °l~2 f° r a ^ l a r g e enough k. The estimates in Proposition 10 are proportional 

in this case. Perhaps the most interesting version of Theorem 12 is when d(x,y) — 

i(A2([x,y]) + A3([x,y]) because the metric gives equal weights to the two measures, 

but typical points still approach each other differently. 
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2.6 Conclusion 

Michael Keane devised a wonderful class of examples that provide very specified 

behavior for IETs. The power of this example is its self similar structure and the 

fact that much of its behavior can be captured by matrix multiplication. This helps 

to make the behavior easy to understand and demonstrate. Additionally, because 

the Aifc,mfe arise as matrices of Rauzy-Veech induction these examples can provide 

intuition to how Rauzy-Veech induction works. As this chapter suggests Keane's 

class of examples can construct IETs that also have fairly different behavior for their 

ergodic components. 

Question 1. For a given permutation what is the optimal order of topological mixing? 

Question 2. Let S : [0,1) —> [0,1) be a minimal IET and have ergodic measures n\ and 

/j,2- Letdi(x,y) = yu1([min{a;,y},max{x,y}]). Is it possible for liminf n"d 1(S '"x,y) = 

oo for /i! x /j,2 almost every (x,y)l What about with the additional stipulation that 

liminf n1~£di(Snx,y) = oo for fi2
 x/^i almost every (x,y) and limini ndi(Snx, y) = oo 

for Hi x Hi almost every {x,y)7 

I suspect the answer to these questions is no. I suspect the answer is yes if we 

remove the requirement that S is an IET. 

Question 3. What is the Hausdorff dimension of the set of minimal IETs with an 

ergodic measure having Hausdorff dimension less than 1? (We consider these IETs 

as points in A3 = {(h,l2,k,k) •k>0,Y^h = !}•) 

For the case of 4-IETs the answer is expected to be 2.5. 

Question 4. Can any residual set support an ergodic measure for a minimal IET? 
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Question 5. Can Hdim(^2, d\3), #dim(^3, d\2) take any value in [0, l]2? 

I suspect the answer is yes. 

Question 6. Can one construct a smooth realization of a Keane type IET? 



Chapter 3 

IETs are usually different 

3.1 Statement of results 

Definition 12. Two measure preserving systems (T,X,p) and (S,Y,u) are called 

disjoint (or have trivial joinings) if fi x u is the only invariant measure of 

TxS:XxY—*XxY by (T x S)(x,y) = (Tx, Sy) with projections p and v. 

The main result of this chapter is: 

Theorem 13. Let T: X —» X be p ergodic. (T,X,fi) is disjoint from almost every 

IET. 

We remark that this is a strong way of saying that 2 IETs are different. T and 

STS~l have many nontrivial joinings, for instance (x, Sx) supports an invariant mea­

sure with both projections A (as does (x, ST7x)). This implies that if the transforma­

tions are conjugate then they won't be disjoint. Similarly if aT = fa and pS = fp 

where / : X —> X preserves p which satisfies p{A) = \(a~1(A)) = \(p~1(A)) for 

44 
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all measurable A, then U o~~l(x) x p~1(x) supports an invariant measure of T x S 

with projections A. This is said disjointness implies no common factors (a stronger 

condition than not being conjugate). Note that if S and T are IETs STS~l is an 

IET so every IET shares non-trivial joinings with uncountably many other IETs. We 

prove Theorem 13 by the following criterion [12, Theorem 2.1], see also [21, Lemma 

1] and [11, Theorem 6.28]. 

Theorem 14. (Hahn and Parry) If 7\ and T2 are ergodic transformations of 

(X\,Bi,mi) and (X2,B2,m2) respectively, and if U^ and UT2 o-re spectrally singular 

modulo constants then T\ and T2 are disjoint. 

A key result was established in proving Theorem 13 which requires a definition. 

Definition 13. Let T : [0,1) —> [0,1) be a fj, measure preserving transformation. 

ni,ri2,... is called a rigidity sequence for T if lim L n \Tnix — x|d// = 0. 

Theorem 15. Let A be a sequence of natural numbers with density 1. Almost every 

IET has a rigidity sequence contained in A. 

This a strengthening of an earlier Theorem of Veech ([24, Part I, Theorem 1.4]) 

which proved that almost every IET has a rigidity sequence (choose ./Vj corresponding 

to Cj where lime; = 0). 
i—>oo 

Theorem 16. (Veech) For almost every interval exchange transformation T, with 

irreducible permutation, and given e > 0 there are N £ N, and an interval J C [0,1) 

such that: 

1. J n Tn(J) = 0 for 0 < n < N. 
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2. T is continuous on Tn(J) for 0 < n < N. 

3. A( U Tn{J)) > 1 - e. 
n = l 

I \{TN(J)nJ) > ( l - e ) A ( J ) . 

3.2 Proof of Theorem 15 

Theorem 15 follows from the following proposition. 

Proposition 12. Let A C N be a sequence of density 1. For every e > 0 and almost 

every IET S, there exists ne G A such that J0 \Sne(x) — x\d\ < e. 

This proposition implies Theorem 15 because the countable intersection of sets of 

full measure has full measure. 

Motivated by this proposition if J0 \Tn{x) — x\d\ < e we say n is an e rigidity 

time for T. 

Throughout this section we will assume that the IETs are in a fixed Rauzy class 9 ,̂ 

which contains d-IETs with some irreducible permutations. Let r denote the number 

of different permutations IETs in 9K may have. Let m ^ denote Lebesgue measure on 

9K (the disjoint union of r simplices in Rd). 

Proposition 12 will be proved by showing that there is a particular reason for 

e rigidity (called acceptable e rigidity) that occurs often in many Pj := [2l,2l+1] 

(Proposition 15) but rarely occurs for any fixed n (Lemma 44). For every IET 

S satisfying the Keane condition, and every i there exists some n such that 

\Cmax(M(S,n))\ G Pi. In general there can be more than one such n. 
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For each of the permutations 7Ti, ...,irr that an IET in 9\ may have, fix a finite 

sequence of Rauzy-Veech induction steps a;;, which gives a positive matrix. That 

is each letter of u>i will be one of the two types of Rauzy-Veech steps (a or b) and 

the product of the sequence of the associated matrices starting from permutation 

iTi provides a positive Rauzy-Veech matrix. Let M(CUJ) denote this matrix. Let |u>j| 

denote the number of steps in w;. Let pi = m^M(u>i)A). 

Definition 14. We say a pair (M,Cmax(M)) is acceptable if M = M(T,n), 

Rn-\^\(T) has permutation ?r» and M(Rn~^(T), \u)i\) = M(wi). 

If (M,Cmax(M)) is an acceptable pair then M is called an acceptable matrix. 

Informally, if M = M(T,n) then the pair (M,Cmax(M)) is acceptable if the last 

steps in Rauzy-Veech induction for an IET with length vector in M A agrees with 

some uji and the permutation of Rn~^(T) is 7T;. 

Remark 11. In the remainder of this section we will use the fact that if .Rn(T£)7r) has 

permutation 7Tj then for any IET S with length vector in (M(Ti>7r,n)M(o;i))A and 

permutation IT the pair (M(S, n + |WJ|), Cmax(M(S, n + | ^ | ) ) ) is acceptable. 

Lemma 38. There exists v such that any acceptable matrix is v balanced. 

Proof. Let Mj be a positive matrix. Observe that if M2 is a matrix with nonnegative 

entries then M2Mi is at worst max M'||;'
JA balanced. Since there are only finitely 

many M(uji) and they are all positive the lemma follows. In particular, we can chose 

v = max max .,; (\:JA. u 
t i,j,k MM[*M 

Lemma 39. For any d-column C, \{M: (M,C) is an acceptable pair }| < r2. 
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That is, any d-column can appear in at most r2 different acceptable pairs. 

Proof. Assume C belongs to two different acceptable pairs (M(T,n),C), and 

(M(S,n'),C) where both T and S have permutation 7Tj. The acceptable sequence of 

steps Uj for T and uiy for S are different. This is because if ujj — ujy then the last \ujj\ 

steps of Rauzy-Veech induction are the same. However, since C — Cmax(M(T,n)) = 

Cmax(M(S,n')) and 5 and T have the same starting permutation, Lemma 3 implies 

that all but the last \UJ\ steps of Rauzy-Veech induction are the same and therefore 

M(T, n) = M(S, n'). Lemma 39 follows because there are r choices oiuij and r choices 

of starting permutation. • 

Proposit ion 13. For m^-almost every IET S, the set of natural numbers 

{i : for some n, \Cma,x(M(S,n))\ £ Pi and 

(M(S',n), Cmax(M(S', n))) is an acceptable pair } (3.1) 

has positive lower density. 

The following two lemmas are used in the proof of Proposition 13. 

Lemma 40. For m^-almost every IET S, and all sufficiently large u0, the set of 

natural numbers 

G(S) := {i : for some n, \Cmax(M(S, n))\ G Pi and M(S,n) is u0 balanced} 

has positive lower density. 

Remark 12. It is not claimed that a positive lower density of the Rauzy-Veech induc­

tion matrices are balanced. 
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To prove this we use [16, Corollary 1.7]. 

Proposition 14. (Kerckhoff) At any stage of the [Rauzy-VeechJ expansion of S the 

columns of M(S) will become u0 distributed [i.e. u0 balanced] with probability p before 

the maximum norm of the columns increases by a factor of Kd. u0 and p are constants 

depending only on K and d. 

Remark 13. In [16] the term V0 distributed" has the same meaning in as V0 bal­

anced" has here. 

Proof of Lemma 40. Consider the independent p distributed random variables 

Fi,F2,... where p takes value 1 with probability p and 0 with probability 1 — p. 

Em 
By the strong law of large numbers, for // -almost every t we have lim — = p. 

n—»oo n 

By the previous proposition, given G(S) fl [0, N] the conditional probability that 

N + i G G(S) for some 0 < i < \dlog2(K)~\ is at least p. Thus for any natural 

numbers n\, n2,. •., n^ 

mn({S : [nz\dlog2(K)],(ni + l ^ l o g ^ ) ] ] D G(S) + 0Vz < k}) 

>pN({t:Fni(t) = lVi<k}). (3.2) 

This implies that from m^-almost every S, G(S) has lower density at least r^lo
 pIKX\ • 

D 

Lemma 4 1 . (Kerckhoff) If M is vQ balanced and W C A^ is a measurable set, then 

mn(W) mn(MW) d 

m i H (A d ) m , ( M A / o J • 

This is [16, Corollary 1.2]. See [22, Section 5] for details. 
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Proof of Proposition 13. By Lemma 41 if M(T, n) is u0 balanced and Rn(T) has per­

mutation TTi then the m w
r ^ (

( g ^ )
( ^ )

)
A d ) > v^d

Vi. In words: given that M(T,n) is 

v balanced and that Rn(T) has permutation 7r,, the conditional probability that 

(M(T,n+ \cui\),Cmax{M(T,n+ \u>i\))) is an acceptable pair is at least v^dpi. Consid­

ering each 7Ti, the proposition follows analogously to Lemma 40. • 

Definition 15. Let S be an IET. If (M(S,n),Cmax(M(S,n))) is acceptable andm = 

\Cmax{M(S, n))\ is an e rigidity time for S then m is called an acceptable e rigidity 

time for S. 

Proposition 15. For every e > 0, m.^-almost every IET S, the set of natural num­

bers 

Ge(S) := {i : Pi contains an acceptable e rigidity time for S} 

has positive lower density. 

Proof. Consider an IET SL:V = S such that (M(S,n),Ck(M(S,n))) is an acceptable 

pair (in particular, Ck(M(S,n)) = Cmax(M(S, n))). For ease of notation let M' — 

M(S,n). Let Wk,€ = {(lul2, ...,ld) : k > OVz, lk > 1 - f, £ h = 1}. If L G Wk^ 

then T M'L has an e rigidity time of |Cfc(M')|. This is the reason for rigidity used 
\M'L\ ,7r 

to prove Theorem 1.3 and 1.4 [24, pages 1337-1338]. If M' is acceptable then Lemma 

38 states that M' is v balanced. It then follows by Lemma 41 that the proportion 

of M'A which has \Ck{M')\ as an e rigidity time is at least v~dm<n(Wk,e). Thus if 

h < i-2 < ••• £ G(S) then the probability that if € Ge(S) is at least u~dra.^{W}t^) 

regardless of which ik £ Ge(S) for k < f. The proposition follows analogously to 

Lemma 40. • 
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Before proving Proposition 12 we provide the following lemmas. 

Lemma 42. There exists b G M such that for any n G N, 

\{M: M is acceptable and \Cmax(M)\ = n}\ < bnd~l. 

Remark 14. The constant b depends only on our Rauzy class VK. It is not claimed 

that for every n G N there exists an acceptable matrix M with \Cmax(M)\ — n. 

Proof. By Lemma 39 each column C can be \Cmax{M)\ for at most r2 different accept­

able matrices M. By induction on d, 0{nd~l) different ci-columns with non-negative 

integer entries have the sum of their entries equal to n. • 

Lemma 43. (Veech) If M is a matrix given by Rauzy-Veech induction, then 

m«(MA) = QHn|Ci(M)|-1. 

This is [22, equation 5.5]. An immediate consequence of it is that any u bal­

anced Rauzy-Veech matrix M has JXI^(MA) < c^ud~l\Cmax{M)\~d. The previous 

two lemmas give the following result. 

Lemma 44. The nv^-measure of IETs that have acceptable pairs with the same \Cmax\ 

is at most 0{\Cmax\~
l). 

Proof of Proposition 12. By Lemma 44 and the fact that A has density 1, 

limmO T({r: 3n with M{T,n) acceptable and \Cmax{M(T,n))\ G Pi\A}) = 0. 
i—>oo 

Therefore, Proposition 15 implies that for any e > 0, almost every IET has an accept­

able e rigidity time in A. In fact, almost every IET has an e rigidity time in Pj n A 

for a positive upper density set of i. • 
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Remark 15. To be explicit, Proposition 15 shows that for any sequence A with density 

1, and any e > 0, for almost every IET the integer N in Veech's Theorem 16 can be 

chosen from A. 

3.3 Consequences of Section 2 

In this section we glean some consequences of the proofs in the previous section. One 

of these (Corollary 5) follows from [1, Theorem A] and is used in the proof of Theorem 

13. It is proven independently of [1, Theorem A] in this section. 

Corollary 2. Let A be a sequence of natural numbers with density 1. A residual set 

of IETs has a rigidity sequence contained in A. 

Proof. Take the interior of the set Wk,e considered in the proof of Proposition 15. In 

this way one obtains that the set of IETs with an e rigidity time in A contains an 

open set of full measure (therefore dense). Intersecting over e shows that a residual 

set of IETs has a rigidity sequence in any sequence of density 1. • 

The number of columns that can appear in Rauzy-Veech matrices grows at least 

like uy{Rd (where the constant U<R depends on 9t). Briefly, in order to collect a positive 

measure of IETs having admissible matrices M, with \Cmax(M)\ G Pk, Lemma 43 

implies that there needs of be more than u^{2k)d admissible matrices with |Cm a x | G 

Pk- This provides a partial answer to the first question in [24, Part II, Questions 10.7] 

which considers asymptotics for the growth of so called primitive IETs. 
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The next result provides a slight improvement of Theorem 15 and uses the follow­

ing definition. 

Definition 16. Let S be an IET. We say m is an expected e rigidity time for S if 

there exists an n such that that the following two conditions are met. 

1. (M(S,n),Cmax(M(S,n))) is acceptable and m = \Cmax(M(S,n))\. 

2- Cmax(M (S, n)) = Ck(M(S,n)) and Rn(S) lies in the set Wk,£ defined in the 

proof of Proposition 15. 

Every expected e rigidity time is an acceptable e rigidity time. 

Corollary 3. For every e > 0 and Rauzy class D\ there is a constant a<n(e) < 1 such 

that any sequence of natural numbers A with density arn(e) has a rigidity sequence for 

all but a m^-measure e set of IETs. 

Proof. First note that the set of IETs having a rigidity sequence contained in A is 

measurable. Let e<n(e) denote m ^ W ^ ) . Let M = M(Ti )7 r ,n) be an acceptable 

matrix. By the bound on distortion in Lemma 41, 

the conditional probability of an IET in MA and permutation -K having an expected 

e rigidity time \Cmax(M)\ is proportional to e^e ) . This uses Lemma 38 which states 

that if M is an acceptable matrix then M is u balanced. An analogous argument to 

Lemma 40 shows that there exists c\ > 0 such that the set 

{i: 3m E Pi which is an expected e rigidity time for T} 

has lower density at least Cie^e) for almost every T. 
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Lemma 44 establishes that there exists c2 > 0 such that 

m<n({T: n is an expected e rigidity time for T}) < c2e<n(e)n_1 

for all n. Thus, for any e > 0 a set of natural numbers with density 1 — 5 contains an 

e expected rigidity time for all but a set of IETs of measure 2S92- and the corollary 

follows. • 

Remark 16. Recall that v depends on the choices of u>i that define acceptable pairs. 

The constants C\ and c2 depend on v. 

Corollary 3 gives two further corollaries. 

Corollary 4. Almost every IET has a rigidity sequence which is shared by a m^-

measure zero set of IETs for all 9V simultaneously. 

Proof. It suffices to show that for any 5 > 0 and Rauzy class Df all but a set of m^-

measure 6 IETs have a rigidity sequence that is not a rigidity sequence for m^-almost 

every IET. Given ei, e2 > 0 and a Rauzy class, 9V consider the set 

An'(ei) £2) = {n: n is an ei rigidity time for a set of IETs of 

mtH'-measure at least 62}- (3.3) 

If €2 > 0 and fH' are fixed then the density of this set goes to zero with ei. To see this, 

observe that if n\ and n2 are e rigidity times for T then nx — n2 is a 2e rigidity time 

for T. It follows that if e < ± min f \Tnx - x\d\ then {r + l , r + 2, ...,r + M] can 
20<n<MJ ' ' L J 

contain at most one e rigidity time for T. Choose t\{k) so that the (upper) density of 

Aw(ei(k), | ) is less than 1 —a<«(5). By Corollary 3, all but a m^-measure 5 set of IETs 
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have a rigidity sequence in the complement of Aw(ei(k), | ) (which can be shared by 

a set of IETs with m^-measure at most £). Consider the countable intersection over 

k of these nested sets of m^-measure 1 — 8. For each IET T in this set let n* be a \ 

rigidity time for T lying in the complement of Aw{€\(i), \). Therefore, ni,ri2, • •• is a 

rigidity sequence for T that is not a rigidity sequence for m^'-almost every IET. • 

Corollary 5. For every a ^ Z, almost every IET does not have e2mOL as an eigenvalue. 

We will prove this corollary independently of [1, Theorem A], from which it im­

mediately follows. 

Theorem 17. (Avila and Forni) If -K is an irreducible permutation that is not a 

rotation, then almost every IET with permutation ir is weak mixing. 

The proof is split into the case of rational a and the case of irrational a. If T has 

e2ma as an eigenvalue for some rational a £ Z then it is not totally ergodic. This is 

not the case for almost every IET [24, Part I, Theorem 1.7]. 

Theorem 18. (Veech) Almost every IET is totally ergodic. 

It suffices to consider irrational a and show that for any 5 > 0 and £K, the set 

of IETs having e2ma as an eigenvalue has m^-outer measure less than 5. If e2ma is 

an eigenvalue for T then rotation by a is a factor of T. However, rigidity sequences 

of a transformation are also rigidity sequences for the factor. For every irrational 

a and e > 0 there is a sequence of density 1 — e that contains no rigidity sequence 

for rotation by a. To see this, observe that if ni and n<i are e rigidity times for T 

then n\ — no is a 2e rigidity time for T. It follows that if e < \ min f \Tnx — x\d\ 
z0<n<MJ 
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then {k + 1, k + 2,..., k + M} can contain at most one e rigidity time for T. Choose 

e < 1 — a$K(J) and pick a sequence of density 1 — e containing no rigidity sequence for 

rotation by a. The IETs having a rigidity sequence in this sequence have m^-measure 

at least 1 — 5 and Corollary 5 follows. 

Remark 17. Every sequence of density 1 contains a rigidity sequence for rotation 

by a. 

3.4 The spectral argument 

Given a // measure preserving dynamical system T, let UT be the unitary operator on 

L2(/J,) given by Ur(f) = / °T. Let LQ([J,) denote the set of L2 functions with integral 

zero. If / € L2 let afyT be the spectral measure for / and UT, that is the unique 

measure on T such that 

/ zndaftT =< f, Uff > for all n. 

Fix T: [0,1) —> [0,1), a \i ergodic transformation. We will show that for any S 

in a full measure set of IETs 07^ is singular with respect to a9ts for any / , g € L\. 

By Theorem 14, this establishes Theorem 13. Let Hw be the closure of the subspace 

of LQ spanned by non-constant eigenfunctions of UT (where the spectral measures 

are atomic) and Hc be its orthogonal complement (where the spectral measures are 

continuous). 

Lemma 45. If f E Hpp then for almost every IET S, a/tT is singular with respect to 

crgts for any g E L\. 



57 

Proof. Let / G Hpp. OJ%T is an atomic measure supported on the e2ma that are eigen­

values of UT- If cr/,r is nonsingular with respect to ag^ then UT and C/5 share an 

eigenvalue (other than the simple eigenvalue 1 corresponding to constant functions). 

The set of eigenvalues of UT is countable because Hpp has a countable basis of eigen-

functions. The lemma follows from the fact that the set of IETs having a particular 

eigenvalue has measure zero (Corollary 5) and the countable union of measure zero 

sets has measure zero. • 

Lemma 46. If f £ Hc then for almost every IET S, Of^ is singular with respect to 

<TgtS for any g G L\. 

To prove this lemma we use Wiener's Lemma (see e.g. [5, Lemma 4.10.2]) and its 

immediate corollary. 

Lemma 47. For a finite measure ji on T set p,(k) = jTzkdn{z). 

n - l 

lim n _ 1 ^2 l/K^)|2 = 0 iff A4 is continuous. 

Corollary 6. For a finite continuous measure fj, on T there exists a density 1 sequence 

A, such that lim/t(fc) = 0. 
k£A 

Proof of Lemma 46. Decompose Hc into the direct sum of mutually orthogonal Hft, 

where each H^ is the cyclic subspace generated by /» under UT (and U^1 = UT). By 

Corollary 6, for each i there exists a density 1 set of natural numbers Bi such that 

lim L zndat. T = 0. Choose iV,- increasing such that for each j we have inf lgin[°-n]l > 
n€B.Jf f"1 ^ & J n>N. n 

OO j 

l-TK Let Ai := U ([Nj,Nj+1] n 5 ; + k). By construction, (At - k)\Bi is a finite 
3=1 k—-j 

set for any k G Z. Therefore, lim JJz
n+kdafiiT = 0 for any k G Z. Thus, for any 
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h G Hft it follows that lim JT zk+ndah,r = 0 for any k. This follows from the fact 

that C/IT <C <JfitT, the span of zk is dense in Li and | JT zTd{i\ < /i(T). Since there are 

only a countable number of Hft, there exists a density 1 sequence A such that for any 

i and h G Hf{ we have that lim JT zk+nd<7h,T — 0 for any fc. (To see this pick Mj such 

that inf ^ > 1 - 2~i for any i < j . Let A = U [Mj, Mj+1] f l ^ n ... n Aj.) It 

follows that for any h E Hc, lim J"T zk+ndah,r = 0 for any fc. This uses the fact that 

if g\ and g>2 lie in orthogonal cyclic subspaces then <7gi+92)r is C^ .T + ^ . r -

Let S be any IET with a rigidity sequence contained in A, which almost every 

IET has by Theorem 15. We now show that a9ts is singular with respect to ajtr 

for any / € Hc and g G LQ(X). Notice that since n 1 ; n 2 , . . . is a rigidity sequence 

for S, lim L \zni — l\2dags = 0. Because L2 convergence implies convergence almost 

everywhere along a subsequence, it follows that there exists i\, i<i,... such that <79ts{{z '• 

limznij —> 1}) = <7ffis(T). However, lim [cz
niOfj —> 0 for any measurable C C 

T. This is because jcz
ni<Jf,T = Jrz™ i^c '(z)cr/>T anc^ Xc c a n ^ e a P P r o x i m a t e d in 

-^(c/ . r ) by polynomials. The construction of A in the previous paragraph shows 

that lim Lp(z)znd<jf,T = 0 for any polynomial p. It follows that a9is is singular with 

respect to o;p for any / € Hc and # € Ll(X). • 

Theorem 13 follows by considering the intersection of the two full measure sets of 

IETs and the fact that if g\ G Hpp and #2 £ #c then agi+g2:r is c91,r + °g2,T-

Remark 18. Motivating the proof is: If n and f are probability measures on S1 such 

that zni —> f weakly in L2(/x) and zni —> g weakly in I^t^) a n d / (z ) 7̂  ffl-2) for a u -2 

then i/ and [i are singular. 
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Remark 19. A possibly more checkable result follows from the above proof. Assume A 

is a mixing sequence for T (that is, Urn /J,(B nTn(B')) = fj,(B)n(B') for all measurable 

B and B') then any S having a rigidity sequence in A is disjoint from T. Note that 

weak mixing transformations have mixing sequences of density 1. 

Remark 20. Given a family of transformations T with a measure r\ on T any /_/ ergodic 

T: X —> X will be disjoint for 77-almost every S G T if: 

1. Any sequence of density 1 is a rigidity sequence for 77-almost every S G T. 

2. r]({S G T : a is an eigenvalue for S}) = 0 for any a ^ l . 

Additionally, the previous section shows that a slightly stronger version of condition 

1 and 77-almost sure total ergodicity implies condition 2. Condition 1 on its own does 

not imply condition 2 (let T be the set of 1 element, rotation by cuo). 

3.5 Concluding remarks 

First, a consequence of Theorem 13 that is interesting in its own right. 

Corollary 7. For almost every pair of IETs T, S the transformation TxS is uniquely 

ergodic with respect to Lebesgue measure on [0, l ) 2 . 

Proof. This follows from the fact that almost every IET is uniquely ergodic ([18] and 

[23]) and the following Lemma. • 

Lemma 48. IfT and S are uniquely ergodic with respect to (i and u respectively then 

any preserved measure ofTxS has projections \i and v. 
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Proof. Consider 77, a preserved measure of T x S. 

r)(A xY) = n{T~n x S~n(A x Y)) = n{T-n{A) x Y). 

Therefore, //1 (A) := r](A x Y) is preserved by T and so it is fj.. For the other projection 

the proof is similar. • 

More is true in fact, for Leb x.. .x Leb almost every n-tuple of IETs (Si, ...,Sn), 

S\ x ... x Sn is uniquely ergodic and S\ is disjoint from S2 x 5*3 x ... x Sn. 

Corollary 7 has an application. Consider T x S. In our context, unique ergodicity 

implies minimality, which implies uniformly bounded return time to a fixed rectangle. 

Therefore, if we choose a rectangle V C [0,1) x [0,1) then the induced map of T x S 

on V is almost surely (in (T, S) or even S if T is uniquely ergodic) an exchange of a 

finite number of rectangles. 

Theorem 13 also strengthens Corollary 5 because transformations are not disjoint 

from their factors. 

Corollary 8. No transformation is a factor of a positive measure set of IETs. 
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