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ABSTRACT 

Plasmonic Properties of Metallic Nanostructures with 

Reduced Symmetry 

by 

Yanpeng Wu 

In this thesis, we theoretically study the plasmonic properties of metallic nanos-

tructures with reduced symmetry using the Plasmon Hybridization (PH) and the 

Finite Difference Time Domain (FDTD) methods. Both methods provide efficient 

and accurate results for calculating physical properties of metallic nanostructures, in-

cluding the optical cross section spectra, the local electromagnetic fields and induced 

charge densities around the surface of the nanostructures. 

The PH method is applied to a nanoshell with an offset core (nanoegg). The results 

show that the reduction in symmetry relaxes the selection rules in the hybridization 

of primitive plasmon modes, allowing for an admixture of dipolar components in 

higher multipolar plasmon modes of the particle. The hybridization therefore makes 

higher multipolar nanoshell plasmon modes dipole active, resulting in a core offset-

dependent shift for the plasmon energies and a multipeaked feature in the optical 



spectrum. The polarization dependence of the optical absorption spectra is found 

to be relatively weak. The calculations also show significantly larger local-field en-

hancements on nanoegg's external surface than the equivalent concentric spherical 

nanostructure. The results agree very well with results from FDTD simulations and 

experiments, suggesting applications of nanoeggs as substrates for surface enhanced 

Raman spectroscopy (SERS). 

Another comprehensive investigation of the plasmonic interactions of individual 

metallic nanoshells with dielectric substrates is performed using the FDTD method. 

The results show that the adjacent dielectric breaks the spherical symmetry of in-

dividual nanoshell and lifts the degeneracy of the dipole and quadrupole plasmon 

modes, introducing significant polarization dependent redshifts and hybridization of 

the nanoparticle plasmon resonances. The results also show that, for small nanoparticle-

substrate separations and substrates with large dielectric permittivities, the hybridized 

quadrupolar nanoparticle plasmon resonances also appear in the scattering spectrum. 

We discuss different numerical approaches in FDTD simulations for calculating the 

scattering spectrum in typical dark-field scattering geometries. We also discuss issues 

of numerical convergence and show that the scattering spectra can be calculated using 

finite substrate slab models. The results agree very well with experiments, showing 

that dielectric substrates matter in optical measurements of plasmonic nanoparticles. 

FDTD method is also applied to a bowtie-shaped nanostructure (nanobowtie). 



The calculations show significantly large SERS enhancements across a broad band-

width of exciting wavelengths because of the complicated mode structure possible in 

the interelectrode gap. Nanometer-scale asperities in the gap area break the inter-

electrode symmetry of the structure, resulting in optical excitations of many inter-

electrode modes besides the simple dipolar plasmon mode commonly considered. The 

broken symmetry also leads to much less dependence of the calculated enhancement 

on polarization direction, as seen experimentally. The calculations confirm that the 

electromagnetic enhancement is confined in the normal direction to the film thickness 

and to a region comparable to the radius of curvature of the asperity. The calculated 

electromagnetic enhancements can exceed 1011, approaching that sufficient for single-

molecule sinsitivity. We also compare the calculated extinction spectra for various 

values of interelectrode conductance connecting the source and drain. The results 

show that negligible charge transfer occurs between the two electrodes until junction 

conductance approaches the conductance quantum, Go = 2e2/h. 
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Chapter 1 
Introduction 

Plasmons, the collective oscillations of the free electron gas density[l] are treated 

as quasi-particles originated from the quantization of plasma oscillations in metals. 

Using the Drude model[2], metals are modeled as free electron gas sitting on top of a 

uniform, positive charge background. The bulk plasmon energy is usually considered 

as a constant that only depends on the free electron density n0 and takes the form 

ujq — ^Ann^e2/me , where me is the electron mass. 

With this model, people can easily understand why most metals and semicon-

ductors possess shiny colors. It is because their bulk plasmon levels are usually at 

ultraviolet, so the electric field of incident visible light is screened by the free electrons 

in the metal and the incident light is simply reflected without any absorption. 

Recently, the plasmonic properties of metallic nanostructures are of consider-

able scientific and technological importance. The plasmonic properties of a metallic 

nanoparticle are determined by its plasmon resonances, which are strongly dependent 

on particle geometry (size and shape), environment and the way they are excited, etc. 

There has been a great desire to acquire multifunctional sensors with single-

molecule sensitivity for a variety of sensing applications, from biochemical analysis to 

explosives detection. The geometrical sensitivity of plasmon resonances of metallic 
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nanoparticles and the ability to tune the plasmon resonances in these particles to 

wavelengths of interest for chemical and biological sensing have been one of the rea-

sons for the growing interest in a rapidly expanding array of nanoparticle geometries, 

such as nanorods,[3, 4] nanorings,[5] nanocubes,[6, 7] triangular nanoprisms,[8, 9, 10] 

nanoshells,[ll, 12] nanorice,[13] and branched nanocrystals.[14, 15] The resonant ex-

citation of plasmons can lead to large electromagnetic field enhancements on the 

nanoparticle surfaces and in a nanoscale region outside of the nanoparticles, known 

as " hot spots", which greatly exceed the strength of the incident field and can result in 

enormous enhancements of the cross section for nonlinear optical spectroscopies such 

as Surface-Enhanced Raman Scattering (SERS). [16, 17, 18, 19, 20, 21, 22] This is 

because the Raman scattering rate is proportional to |i?(u;)|2|.E(u/)|2 at the location 

of the objects detected (e.g. molecules), where \E(u>)\ is the electric field compo-

nent at the frequency of the incident radiation, and \E(ui')\ is the component at the 

scattered frequency. The structural dependence of both the local-field and far-field 

optical properties of nanoparticles across the visible and near-infrared (NIR) spectral 

regions has enabled their use in a wide range of biomedical applications, an area of 

increasing importance and societal impact. [23, 24, 25, 26, 27] 

Metallic nanoshells, spherical nanoparticles composed of a spherical dielectric core 

and a concentric metallic shell, are nanoparticles whose plasmon resonant energies are 

very sensitive to inner core and outer shell dimensions. [28, 29, 30, 31, 32, 33, 34] This 
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plasmonic tunability of nanoshells across the visible and infrared spectral regions has 

enabled a wide range of biomedical applications ranging from photothermal cancer 

therapy, [23, 35] as contrast agents in medical imaging, [24] drug delivery, [26] whole 

blood immunoassay, [27] and chemical sensors. [36] The plasmonic tunability of metal-

lic nanoshells arises from the interaction of surface plasmons localized on the inner 

surface of the shell (cavity plasmons) and plasmons associated with the outer surface 

(sphere plasmons). [2, 37] In the limit of small particles (diameter much smaller than 

the wavelength of the incident light), only the dipolar plasmons can be excited.[38] 

Reduced-symmetry nanoparticles such as nanoshells with defects are of consid-

erable interest in SERS applications. The controlled texturing of their surfaces can 

lead to increased surface area and also increased electromagnetic field enhancements 

on their surfaces. [39, 40, 41, 42, 43] Such surface modification results in electric 

field enhancements occurring on open surface areas which may be advantageous com-

pared to the field enhancements occurring in less accessible spots like nanoparticle 

junctions[44, 19, 45]. 

Plasmonic nanoparticles also exhibit a remarkable sensitivity to their environ-

ment, where interactions with adjacent structures and materials typically influence 

their plasmon properties in dramatic and easily observable ways. The influence of a 

directly adjacent[7] or an isotropically surrounding dielectric medium [46] also alters 

the plasmonic properties of a nanoparticle. [47, 48] This effect has been of tremen-
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dous interest in the development of ultrasensitive localized surface plasmon resonant 

(LSPR) nanosensors capable of ultimately detecting individual molecular binding 

events. [49, 50] 

The study of plasmonic nanoparticles at the individual nanostructure level has 

become a major experimental focus and has enabled numerous significant advances 

in our understanding of plasmons in nanoscale systems. [51] For example, in dark-

field microspectroscopy, individual nanoparticles are dispersed onto a dielectric sub-

strate, where UV-visible spectroscopy is subsequently performed on a nanostructure. 

Combining these local optical measurements with precise, nanoscale imaging of the 

individual nanostructure (e.g., scanning electron microscopy) allows us to relate the 

plasmonic properties of specific individual nanoparticles and their complexes to their 

specific nanoscale geometry. This enables quantitative comparison between the ex-

perimental spectra and theoretical calculations of their electromagnetic modes. 

Given the success of this experimental approach, it is very important to examine 

the effect of the dielectric substrate on the plasmonic properties of the nanoparticle 

on its surface. Theoretically, the dielectric substrate breaks the symmetry of nanopar-

ticles, lifting mode degeneracies and modifying the coupling of the plasmon modes to 

the far field. For metallic substrates, it has been well established that the interaction 

between the LSPR and the substrate plasmons can result in strongly redshifted hy-

bridized plasmons containing admixtures of both the localized plasmon modes of the 
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nanoparticle and the propagating plasmon modes of the substrate. [52, 53, 54, 55, 56] 

These hybridized plasmon modes thus have mixed localized and propagating charac-

ter and are fundamentally different from the original localized nanoparticle plasmon 

modes. For a nanoparticle near a dielectric surface, there are no substrate plasmons 

modes and the interaction results in a hybridization of the individual nanoparticle 

plasmon modes. This interaction can be simply understood using an image model, 

where the electromagnetic fields induced by a particular multipolar nanoparticle plas-

mon mode are screened by the substrate and acquire different multipolar components 

in the coordinate system centered on the nanoparticle. This screening, by the factor 

(e — l) / (e + 1) where e is the permittivity of the substrate, thus mediates an interac-

tion between multipolar plasmons of different order resulting in localized hybridized 

nanoparticle plasmons. For a nanoparticle embedded in a uniform dielectric, there 

is no such hybridization but only a redshift due to the dielectric screening. It is 

worth noting that the energy splitting caused by the presence of dielectric substrates 

can easily be misinterpreted as an anomalously broadened plasmon line shape for 

excitation of an individual nanoparticle with unpolarized light. 

To design and fabricate a substrate for systematic SERS at the single-molecule 

level is even more challenging. Single-molecule SERS sensitivity was first clearly 

demonstrated using random aggregates of colloidal nanoparticles. [17, 16, 18, 57] 

Numerous other metal substrate configurations have been used for SERS, including 
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chemically engineered nanoparticles, [36, 58, 59] nanostructures defined by bottom-

up patterning, [60, 61] and those made by traditional lithographic approaches. [62] In 

the most sensitive substrate geometries, incident light excites adjacent subwavelength 

nanoparticles or nanostructures, resulting in large field enhancements within the in-

terparticle gap. [63, 64] Fractal aggregates of nanoparticles [65] can further increase 

field enhancements by focusing plasmon energy from larger length scales down to 

particular nanometer-scale hotspots. [45] However, precise and reproducible forma-

tion of such assemblies in predetermined locations has been extremely challenging. 

An alternative approach is tip-enhanced Raman spectroscopy (TERS), in which the 

incident light excites an interelectrode plasmon resonance localized between a sharp, 

metal scanned probe tip and an underlying metal substrate. Recent progress has been 

made in single-molecule TERS detection. [66, 67, 68] A similar approach was recently 

attempted using a mechanical break junction. [69] While useful for surface imaging, 

TERS requires feedback to control the tip-surface gap and is not scalable or readily 

integrated with other sensing modalities. 

A scaleable and highly reliable method was recently demonstrated for producing 

planar extended electrodes with nanoscale spacings that exhibit very large SERS sig-

nals, with each electrode pair having one well-defined hot spot. [70] This nanoscale 

gap structures were also used to perform simultaneous measurements of electronic 

transport and SERS. [71] Conductance in nanoscale gap structures is dominated by 
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roughly a molecular volume. The conductance as a function of time is observed to 

correlate strongly with the SERS signal in the junctions measured. Conductance 

changes correlate with sudden changes in the intensity of sets of Raman modes and 

with spectral diffusion of mode positions. Experimental data suggest that both SERS 

and conductance changes are most likely due to changes in conformation and binding 

of an individual molecule. The combined data provide a great deal of information 

about the effect of molecular orientation and environment on both conduction and 

SERS. The most likely explanation for these results is that single-molecule multimodal 

sensing is possible. This combined measurement technique also opens the possibil-

ity of direct assessment of vibrational pumping and local heating in single-molecule 

electronic transport. 

This thesis is focusing on the studies of plasmonic properties of metallic nanos-

tructures with reduced symmetry and is comprised of the materials from the following 

publications: 

• "Finite-Difference Time-Domain Modeling of the Optical Properties of Nanopar-

ticles near Dielectric Substrates", Yanpeng Wu and Peter Nordlander; Journal 

of Physical Chemistry C (Accepted, 2009) 

• "Substrates Matter: Influence of an Adjacent Dielectric on an Individual Plas-

monic Nanoparticle", Mark W. Knight, Yanpeng Wu, J. Britt Lassiter, Peter 

Nordlander, Naomi J. Halas; Nano Letters, textbf9(5), 2188-2192 (2009) 
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• "Simultaneous Measurements of Electronic Conduction and Raman Response in 

Molecular Junctions", Daniel R. Ward, Naomi J. Halas, Jacob W. Ciszek, James 

M. Tour, Yanpeng Wu, Peter Nordlander, Douglas Natelson; Nano Letters, 8(3), 

919-924 (2008) 

• "Electromigrated Nanoscale Gaps for Surface-Enhanced Raman Spectroscopy", 

Daniel R. Ward, Nathaniel K. Grady, Carly S. Levin, Naomi J. Halas, Yanpeng 

Wu, Peter Nordlander, Douglas Natelson; Nano Letters, 7(5), 1396-1400 (2007) 

• "Plasmon Hybridization in Nanoshells with a Nonconcentric Core", Yanpeng 

Wu and Peter Nordlander; Journal of Chemical Physics, 125, 124708 (2006) 

• "Plasmons in Nanostructures with Reduced Symmetry", Daniel Brandl, Yan-

peng Wu and Peter Nordlander; Proceedings of SPIE, 6323, 632311 (2006) 

• "Symmetry Breaking in Individual Plasmonic Nanoparticles", Hui Wang, Yan-

peng Wu, Britt Lassiter, Colleen L. Nehl, Jason H. Hafner, Peter Nordlander, 

Naomi J. Halas; Proceedings of the National Academy of Sciences of U.S.A., 

103(29), 10856-10860 (2006) 

• "Plasmon Hybridization in Complex Metallic Nanostructures", Peter Nordlan-

der, Fei Le and Yanpeng Wu; Proceedings of SPIE, 5927 (2005) 

This thesis is organized as follows. In Chapter 2 we briefly introduce two the-
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oretical methods that we use for the study in this thesis: Plasmon Hybridization 

(PH) method and Finite Different Time Domain (FDTD) method. In Chapter 3 we 

study the core-offset dependent plasmonic properties of nonconcentric nanoshells (na-

noeggs). In Chapter 4 we study the plasmonic properties of nanoshells near dielectric 

substrates. In Chapter 5 we apply FDTD in simulating planar extended electrodes 

with electromigrated nanoscale gaps (modeled as nanobowties). In Chapter 6 we 

present the main conclusions of this thesis. 



Chapter 2 
Theoretical Methods 

In this thesis, we use two theoretical methods - Plasmon Hybridization (PH) and 

Finite-Difference Time-Domain (FDTD) to study both far-field (e.g., extinction, scat-

tering and absorption spectra) and near-field (e.g., local electric field enhancements 

and surface charge densities) properties. 

2.1 Plasmon hybridization method 

The PH method is a quasi-static analytical approximation of the Maxwell's Equa-

tions, [2, 37]. In the PH method, the conduction electrons/plasmons of the nanostruc-

ture are considered to be a charged, incompressible and irrotational liquid situated on 

top of a rigid, uniformly charged positive background representing the ion cores. The 

ion cores are treated within the jellium approximation, so the positive background 

charge is assumed to be uniformly distributed within the particle's boundaries. Plas-

mon modes are self-sustained deformations of the electron liquid. Since the con-

duction electron liquid is incompressible, the only effect of such deformations is the 

appearance of surface charges. The electrostatic potential of these surface charges 

provides the restoring force driving the plasmon oscillations. The plasmons of the 

interacting system are therefore expressed in terms of the primitive plasmons of the 

elementary surface modes. Since the PH method does not include phase retardation 
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effect, our research with the PH method mainly focuses on quasi-static limit where 

the size of the particle is no larger than a quarter of the incident wavelength. The 

plasmonic interaction in the system is therefore modeled with instantaneous Coulomb 

potential. 

The plasmon deformation field can be expressed as a gradient of a scalar poten-

tial rj which satisfies Laplace equation in the nanostructure. [37] The potential r) is 

expanded in a complete set of primitive plasmon modes appropriate for the geometry 

of the nanostructure, 

V(r,t) = Y,Mt)Xi(?). (2-1) 
i 

The quantity Ai(t) refers to the time-dependent amplitude of a primitive plasmon 

mode with an associated deformation field A f ( f ) = Vxi(^) of the electron distribu-

tion. When background dielectrics such as dielectric embedding media or the back-

ground polarizability of the metals are present, the surface charges will be screened 

which reduce the interaction between the primitive plasmons. 

Using the expression Eq. (2.1), the kinetic and potential energy of the primitive 

plasmons can be directly expressed in terms of the amplitudes of the primitive plasmon 

modes. [37] The resulting Lagrangian has the form 

L = ATA - A*vA, (2.2) 

where a vector notation A has been adopted for the amplitudes Ai(t) and a superscript 

t indicates the transpose of a vector or matrix. The matrices T and V are the kinetic 



and potential energy of the primitive plasmons. The application of the Euler-Lagrange 

equations gives, 

The plasmon modes of the system are obtained as the eigenmodes of the corresponding 

secular determinant, 

Although the above procedure would work for an arbitrary complete set of prim-

itive plasmon modes, the advantage of the plasmon hybridization method becomes 

apparent when the primitive plasmons are chosen to correspond to realistic excita-

tions. For a composite nanostructure, the primitive plasmon modes can be chosen as 

the plasmon modes associated with the individual particles or surfaces. The kinetic 

energy then becomes diagonal and the potential energy will have a diagonal part Vq 

representing the potential energy of the primitive plasmons and a nondiagonal part 

V describing the Coulomb interaction between the different primitive plasmons. For 

example, for metallic nanoshells (Figure 2.1), the hybridizations are between surface 

plasmons localized on the inner surface of the shell (cavity plasmons) and plasmons 

associated with the outer surface (sphere plasmons). [2, 37] In the shell geometry, 

these primitive plasmons interact and form bonding and antibonding composite plas-

mons. The interaction between cavity and sphere plasmons is diagonal in multipolar 

indices. The bonding and antibonding plasmons of the nanoshell can therefore be 

[Tt + f}^rA= -[V' + V]!. (2.3) 

detlV1 + V}-Lo2{Tt + T] =0. (2.4) 
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labeled by the same multipolar index as the plasmons in a solid sphere and a spheri-

cal cavity The structure of the eigenvalue problem is then equivalent to the secular 

equation describing how electronic levels interact (hybridize) and shift in the presence 

of interactions. 

S f o 

o-
O -

Figure 2.1 Schematic picture showing the hybridizations between surface plasmons 
localized on the inner surface of the shell (cavity plasmons) and plasmons associated with 
the outer surface (sphere plasmons). These primitive plasmons interact only between same 
multipolar indices I and form bonding and antibonding nanoshell plasmons. 

The plasmon hybridization method provides a very simple and intuitive approach 

for understanding the nature of the plasmon resonances in composite nanostructures. 

In quasi-static limit, when compared to the result from ab initio methods such as 

the Time Dependent Local Density Approximation (TDLDA) or the FDTD method, 

it has been shown to provide quantitative agreements. [34, 72, 64, 52, 73, 53, 74], 

Mostly we focus on far-field optical properties of nanostructures such as the ener-
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gies of the plasmons and the corresponding optical absorption spectra. The method 

can also be used to calculate near-field properties such as local electromagnetic field 

enhancements. 

2.2 FDTD method 

The FDTD method is an explicit time marching algorithm used to solve the partial 

differantial Maxwell's equations on discretized Cartesian grids 

5 i S = 

= ( 2 ' 5 ) 

Electric fields and magnetic fields could be updated one after another numerically 

by central difference formulations, so the electromagnetic dynamics is simulated in 

a leapfrog manner. This "boot-strapping" algorithm was first proposed by Yee[75] 

that fields can be updated on an offset cell, Yee cell (Figure 2.2). [76, 77] However, 

people did not show much interest in this innovative idea because the computation 

domain is bounded and it was difficult in modeling an infinite space. In 1981, Mur 

successfully solved this problem by introducing absorbing boundary conditions, [78] 

which essentially makes the absorbing layer impedance matched to the dielectric 

permittivity of the medium in the computation space. Since then FDTD has been 

widely applied in engineering fields such as antenna array design,[79, 80] wireless 

communication,[81] biomedical research,[82] photonic crystal studies,[83, 84, 85]etc. 
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Ez 

Ex 

Ez 1 

( i j , k ) Ex 

Figure 2.2 Schematic illustration of the standard Yee cell used for FDTD. The vector 
components of the electric field and magnetic field are represented by blue and red arrows, 
respectively. Yee's algorithm is strictly applied in Cartesian coordinates. 



16 

FDTD algorithm possesses a great deal of advantages: 

1. The method is conceptually simple. It is robust and well-understood. 

2. It is working in the time domain versus the frequency domain so it provides an 

intuitive physical picture in real time. It allows wide frequency calculations in 

a single simulation. (See Appendix Figure A.l) 

3. Depending on the specific application, FDTD usually inplements faster than 

the alternatives. 

4. It allows modeling arbitrary geometry and dispersive materials. 

5. It is handy to predict near- and far-field optical properties of structures. 

6. It is a fully retarded method so results are physical and in real situations. 

7. Rapid improvements in computer technology has eliminated many of FDTD's 

inherent drawbacks, like a big appetite for memory. The natural parallelizability 

allows FDTD being implemented on distributed meory super computers (See 

Appendix Figure A.2, A.3, A.4). 

The above advantages make FDTD a perfect simulation tool of investigating the 

plasmonic phenomena of nanoscale metallic structures. RiceFDTD is our homemade 

parallel computing software package (current version 3.0, developed by Yanpeng Wu 

in Nordlander's group at Rice University) developed for our basic plasmonic physics 



research purposes, such as spectral analysis and electric field enhancement simula-

tions of metallic nanostructures [86, 87, 74, 88, 89]. RiceFDTD provides efficient 

and accurate predictions with full retardation or damping effects in systems. It is 

parallelized using MPI-2 protocol and works on Beowulf clusters with hundreds of 

processors. 

The bundle of PH and FDTD methods have provided us the enability and flexibil-

ity in studies of plasmonic properties of nanostructures. PH thoery and calculations 

can usually well interpret the plasmonic phenomena with an intuitive physical picture 

which FDTD sometimes might not be able to provide. PH method can be limited 

to applications for nanostructures with specific geometry, while FDTD can easily be 

applied on complex nanostructures. 



Chapter 3 
Nonconcentric Nanoshells (Nanoeggs) 

3.1 Introduction 

A new type of reduced-symmetry nanoparticle, the nanoshells with an offset core 

(nanoeggs), was developed and characterized using single particle optical spectroscopy.[90] 

Nanoeggs can be experimentally fabricated by using an anisotropic electroless plating 

technique (Figure 3.1A). All of the nanoeggs fabricated in this manner have the same 

orientation on the glass slides, with the point of contact with the glass substrate cor-

responding to the minimum in shell thickness for each nanoparticle. Increasing the 

time duration of the plating process results in an increase in the effective core off-

set of each nanoegg particle. Figure 3.IB and C shows typical transmission electron 

microcopy (TEM) images of a concentric nanoshell with homogenous shell thickness 

of 9 nm and a nanoegg with a core offset of 10 nm, respectively. In Figure 3.ID, 

the evolution of the extinction spectra of the oriented nanoegg films as a function of 

electroless plating time is plotted. These measurements were performed on nanoegg 

films by using normal incidence, unpolarized light. The spectral envelope of the plas-

monic features shifts to shorter wavelengths as the electroless plating time increases. 

This trend is in good agreement with FDTD calculations (Figure 3.IE), which also 

show a spectral peak blueshift with increasing core offset, for the same orientation of 

core offset with respect to incident light. In these ensemble measurements, the plas-
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mon peaks are significantly and asymmetrically broadened in comparison with the 

calculated spectra, because of the distribution in sizes and offsets in the fabricated 

nanostructures. 

To theoretical study the plasmonic properties of nanoeggs, we model the nanoegg 

as a nanoshell with a nonconcentric core. In this reduced symmetry, the interactions 

between the primitive cavity and sphere plasmons are no longer diagonal in multipolar 

indices. Cavity and sphere plasmons of all multipolar indices interact (hybridize) and 

form bonding and antibonding nanoegg plasmons. The additional interaction results 

in stronger hybridization and large plasmon energy shifts and most importantly, in 

an admixture of optically active dipolar sphere plasmons into all nanoegg plasmons. 

Consequently several of the nanoegg plasmons can be excited by light also in the dipole 

limit. The nanoegg particle exhibits very large electromagnetic field enhancements 

on its thin shell side. This fact combined with the intrinsic tunability of a core-

shell particle suggest that the nanoegg could be an attractive substrate for surface 

enhanced spectroscopies. 

In this chapter, we show how the plasmon hybridization method, [2, 37] can be 

used to calculate the plasmonic properties of nanoshells with an offset core. We 

present an extensive investigation of the optical properties of nanoeggs as a function 

of offset parameter. We show that the plasmonic response of the nanoegg exhibits 

several distinct and tunable plasmon resonances. As the offset parameter increases, 
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Figure 3.1 Synthesis of nanoshells with a nonconcentric core. (A) Schematic of na-
noegg fabrication. Monolayers of silicaCAu coreCshell nanoparticles were first immobilized 
on PVP-functionalized glass slides. The nanoshells used in this set of experiments are 94 ± 9 
nm in core radius and 9 ± 1 nm in shell thickness. By controlling the reaction time, the 
offset extent can be controlled. Longer reaction time results in the formation of nanoeggs 
with larger offset cores. (B and C)TEM images of a nanoshell (B) and nanoegg (C). (D) 
Experimentally measured evolution of extinction spectra of oriented monolayer nanoegg 
film during metallization with unpolarized optical excitation at normal incidence. (E) Cal-
culated normal incidence extinction spectra (FDTD) of reduced symmetry nanoparticles as 
a function of increasing offset. In this set of calculations, the nanoeggs have a silica core of 
94 nm in radius. The thinnest part of the shell is 9 nm, and the thickest part of the shell 
is 9 nm for concentric nanoshell and varied to be 15, 21, 27, and 33 nm for nanoeggs. 



the optical spectrum broadens and a multiple peak structure develops around the 

original dipolar plasmon resonance. For large offsets, the lowest energy plasmon 

resonances are strongly red-shifted compared to the concentric particle. We compare 

the results from plasmon hybridization with Finite-Difference Time-Domain (FDTD) 

simulations and find excellent agreement. We investigate the electromagnetic field 

enhancements for the nanoegg and show that they are much larger than for concentric 

nanoshells. 

The organization of the chapter is as follows. In section II, we discuss how the plas-

mon hybridization method can be extended to treat a nanoshell with a nonconcentric 

core. In section III, we present the formalism and the results for optical absorption 

spectra. In section IV, we present FDTD simulations of the electromagnetic field 

enhancements. In section V, we show that in experiments, single-particle dark-field 

scattering spetra of a nanoegg clearly confirm our theoretical predictions. 

3.2 Plasmon energies 

As introduced in Chapter 2, for concentric nanoshells, the primitive modes are 

chosen as the plasmon modes associated with an individual solid sphere and a spher-

ical cavity in a uniform bulk metal. For a nanoshell with an offset core, r) can be 

written as: 

v(rs, ns; rc, fie) = £ \4Wdirn{t)rcl-lYlm{^c) 
l,rn 
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+ yf^Slm(t)rl
sYlm(ns)} (3.1) 

where a and b are the inner and outer radius of the metallic shell, respectively. The 

variables Cim and S'im represent the time dependent amplitudes of the electron liquid 

deformations associated with the primitive cavity and solid sphere modes, respec-

tively. The quantities I and m are the multipolar indices of the charge deformation. 

In the discussions below, we assume that the polar axis is oriented along the direc-

tion of the offset. Thus m = 0 refers to plasmons polarized along the polar axis and 

m = ±1 refer to plasmons polarized perpendicular to the polar axis. The coordi-

nates (rc, Oc) and (rs, are spherical coordinates referring to coordinate systems 

centered on the cavity and the sphere, respectively, as illustrated in Figure 3.2. The 

relation between the coordinates on the different coordinate systems can be expressed 

using simple geometric relations. 

The reason why we apply a two-center spherical coordinate system instead of 

a single spherical coordinate system is because it leads to a simplification in the 

calculation of the surface charges associated with the primitive nanoshell plasmons. 

The surface charge densities a can be obtained directly from rj, [37] 

where the quantity no is the electron density of the conduction electrons and e is the 

electron charge. The vector n denotes the normal vector on the geometric boundaries 

(3.2) 
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Figure 3.2 Schematic picture illustrating the geometry and plasmon hybridization in 
a nanoshell with an offset core. The center of the cavity (radius a) is offset a distance D 
from the center of the sphere (radius b). The right portion illustrates how the primitive 
sphere plasmons, us,i, and the primitive cavity plasmons, u>c,l, interact and form bonding 
(lo-) and antibonding (w+) hybridized plasmon modes. The green dashed lines illustrate 
the hybridization of sphere and cavity plasmons in a concentric nanoshell. For a nanoegg, a 
finite interaction (red dashed lines) exists between primitive plasmon modes of all multipolar 
order. This results in an extra redshift (red arrow) of the bonding I = 1 nanoegg plasmon 
and a blueshift (blue arrow) of the antibonding I = 1 nanoegg plasmon. 
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of the nanoegg, i.e., the inner and outer surfaces. Therefore, in Eq. (3.2) the dot 

product inside the parentheses includes two terms, one on the inner surface and the 

other on the outer surface. If a single spherical coordinates is used and the origin lo-

cated at the center of the cavity for instance, the first term is straightforward because 

it can be addressed directly. However, the other term becomes more complicated and 

needs to be separated into radial and tangential components, since the normal vector 

on the outer surface is not in the radial direction from the origin. In a two-center 

coordinate system we can avoid this complication using the invariance, 

n 5 • Vsr) = n c • Vc??, (3.3) 

where the subscripts S and C refer to the coordinate system in which the same vector 

n and gradient operator V is expressed. Using this invariance, the dot products 

on the inner and outer surfaces can be calculated very simply in their respective 

coordinate systems. The surface charges a can be written symmetrically in C/m and 

Sim terms, with one set of coefficients being the normal surface charges associated 

with the primitive plasmons in that particular coordinate system and and the other 

set formulated as derivatives of functions expressed in the same coordinate system. 

Eqs. (3.1), (3.2) and (3.3) lead to the following expression for the surface charge 

on the inner surface: 

drj 
ac(t,flc) = -n-oe drc rc=a 



lm 

d 

o ClmYi m 
lh2l+l Sim, * 

dr c 
rl

s(rc,ec)Ylrn(Qs(rc,ec)) 
rc=a 

and on the outer surface: 
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(3-4) 

as(t,Qs) = "oe 
dr] 
dr-. rs~b 

lm 

Ore rcl-\rs,8s)Ylm(nc(rs,es)) 

C/m x 

rs=6-l 
(3.5) 

The kinetic energy of this system can be calculated using the expression: 

T = ^n0me J rfVrj • dS 

me 

2e 

+ J b2rj*&s 

2 * • 
7] a c 

rc=a 
dVLc 

dttc 
rs=b 

(3.6) 

where m,e is the electron mass and the superscript * denotes the complex conjugate. 

The interaction is diagonal in azimuthal index, m, so in the following we will 

simply use m as a parameter. Introducing a vector notation for the primitive plasmon 
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amplitudes, 
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Sir, 

(3.7) 

/ 
where lm a x denotes the highest order of multipolar primitive plasmons included, and 

the matrix notations introduced in the Appendix B, the kinetic energy for a specific 

m can be expressed as 

1 
Tm = ^nome(X^fmXTO), (3.8) 

where the kinetic energy matrix Tm is defined in the Appendix B. The superscript T 

denotes the transpose of a vector or matrix. 

The potential energy of the system can be calculated from, 

V 

+ 

i / « 

I 
b2a*s<& 

re—a 

d n s 

dQc 

(3.9) 

where the integration is over both the inner and outer surfaces and $ is the electro-

static potential from the primitive plasmons. Following the notations defined in the 

Appendix B, like for the kinetic energy, the potential energy can be expressed as a 
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quadratic form for a specific m: 

Vm = -n0me{X^VmXm) 
1 

(3.10) 

where the potential energy matrix Vm is defined in the Appendix B. For D = 0, 

both Tm and Vm are block diagonal matrices where the interaction only exist between 

primitive plasmons of the same multipolar I. For finite D, off-diagonal components 

appear representing the hybridization of primitive plasmons of different multipolar 

orders. 

The application of the Euler-Lagrange equations to the nanoegg Lagrangian gives, 

where the solutions for u are the energies for plasmon modes of azimuthal symmetry 

m of the system. 

For small nanoparticles, an incident light wave represents a dipole-excitation and 

couples most strongly to the dipolar plasmons, 1 = 1. For this reason, we will focus 

our investigation on the parallel polarization m = 0 and perpendicular polarization 

m = ±1. The nanoshells we study are gold, with the inner radius 8 nm and outer 

radius 10 nm. The experimentally synthesized nanoeggs consist of a thin layer of 

gold grown around a core consisting of silica. The inclusion of dielectric backgrounds 

in the plasmon hybridization method is straightforward[73] but would lead to a less 

transparent mathematical formalism. For this reason, we will model the nanoeggs 

^ [iz + fm]v=[vz + vm]v (3.11) 



with a vacuum core surrounded by a metal with a renormalized electron density no 

electron density corresponds to the experimentally observed value of 2.6 eV for the 

dipolar solid gold sphere plasmon resonance and effectively reproduce the tunability 

of the plasmon resonances of a real nanoshell over a wide range of aspect ratios. 

To evaluate the plasmon energies, in principle all multipolar orders of the primitive 

plasmons should be included. In practice, we truncate this infinite summation at I max, 

which depends on the size of the offset distance. In the calculations presented below 

we use an lmax = 50 which has been verified to be sufficient for convergence. 

In Figure 3.3, we show the energies of the hybridized plasmon modes for a non-

concentric nanoshell as a function of offset parameter, D. The figure only shows the 

plasmon resonances originating from the I = 1 — 30 primitive plasmons. The lower 

branch of curves in each panel represents the bonding nanoshell plasmons and the 

upper branch represents the antibonding modes. For zero offset D = 0, the plasmons 

can be classified by their multipolar index I. As the offset increases, primitive plas-

mons of different I mix resulting in nanoegg plasmons containing primitive plasmons 

of all multipolar orders. We will refer to the nanoegg plasmons using the multipolar 

index I to which they correspond in the limit of D = 0. 

The figure shows a significant redshift of the low-energy bonding modes and a 

weaker but appreciable blue shift of the high-energy antibonding modes with increas-

corresponding to a bulk plasmon frequency 
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Figure 3.3 Calculated plasmon energies of a nanoegg as a function of the offset D. 
The inner radius of the shell is 8 nm and the outer radius is 10 nm. The electron density 
of the shell corresponds to gold with a bulk plasmon energy of u>b = 4.60 eV. The core 
is assumed to be vacuum. Panel (a) shows parallel polarization (m = 0), and panel (b) 
shows perpendicular polarization (m = 1). The curves include the bonding (lower branch) 
and antibonding nanoshell plasmons (upper branch) only for I = 1 — 30, resulting in the 
thin white horizontal strip around the surface plasmon energy (u>sp = 2 ~ 3.25 eV). 
The lowest and highest lines correspond to the bonding and antibonding I = 1 plasmons, 
respectively. 



ing offset distance. For small D, the energies of the hybridized plasmons vary only 

weakly with D. When the offset becomes larger, the energies depend very strongly 

on D. The effect is stronger for the low I plasmons because the interaction between 

primitive sphere and cavity plasmons decreases strongly with multipolar index I. For 

m — 0 when D = 1.9 nm, the redshift of the bonding I = 1 nanoshell plasmon is quite 

large, A E ~ 0.60 eV. However, the largest redshift of plasmons occurs for the I = 5 

mode (AE ~ 0.89 eV). It can be understood by noting that energies of higher I modes 

are spaced closer together, leading to a stronger hybridization. This effect competes 

with the fact that the interaction decreases rapidly with increasing I, resulting in 

maximum shifts for intermediate I. The reason why the antibonding plasmons are 

less sensitive to the offset D is that they are primarily composed of primitive cavity 

plasmons and thus possess a smaller multipolar moment than the primitive sphere 

plasmons. The blue shift of the antibonding I = 1, m = 0 mode for D — 1.9 nm is 

only A E ~ 0.21 eV. 

The figure also shows that the orientation dependence of the plasmons is remark-

ably small. This is very different from the orientation dependence of nanoparticle 

dimer plasmons.[64, 86, 73] For nanoeggs, the plasmons polarized parallel to the 

polar axis are only slightly more shifted than the plasmons with perpendicular po-

larization. The orientation dependence of the hybridized plasmons is caused by the 

anisotropics of the multipolar interactions between the primitive plasmons. 



31 

0.0 0.5 1.0 1.5 

D [ n m ] 
1 2 3 4 5 6 

Ccxl [10~1sm2] 

Figure 3.4 Comparison of plasmon energies obtained from the FDTD extinction spectra 
and plasmon hybridization for different offset parameters D for the same nanoegg as in 
Figure 3.3. The upper panels refer to m — 0 and the lower panels are for m = 1. The right 
panels show the FDTD extinction cross section calculated using a Drude dielectric function 
with a damping of 5 = 0.2 eV. The solid lines in the left panels are the I = 1—4 bonding 
and I — 1—3 antibonding nanoegg plasmons from Figure 3.3. The orange stars are the 
plasmon resonances obtained from the FDTD extinction cross section. Panels (b) and (d) 
show the extinction spectra for D — 0 nm (black), D = 1.0 nm (blue), D = 1.5 nm (green), 
and D — 1.8 nm (red), as indicated by arrows of the same colors in panels (a) and (c). 



Figure 3.4 shows a comparison of the plasmon energies obtained from plasmon 

hybridization method shown in Figure 3.3, with those obtained from the FDTD sim-

ulations. The plasmon energies correspond to distinct resonant peaks in the FDTD 

extinction spectra. The plasmon energies are obtained by fitting the extinction peaks 

with Lorentzians. The energies agree very well for all offsets considered. The retarda-

tion effects are negligible for the present small system, and the slight discrepancy is 

caused by numerical errors in the FDTD simulations [64, 76] and errors in the curve 

fitting. Panel (b) shows the calculated extinction cross section for m = 0 at the four 

offsets indicated by arrows of the same colors in panel (a). For offset D = 0 nm, two 

peaks are visible in the extinction spectrum. They are the bonding (at ~ 1.57 eV) 

and antibonding (at ~ 4.31 eV) dipolar nanoshell plasmons. The reason why the 

intensity of the antibonding peak is much smaller than the bonding resonance, is that 

the antibonding plasmon mode possesses a smaller dipole moment. For D — 1.0 nm, 

the extinction spectrum shows two features in the lower energy part: a pronounced 

I = 1 peak at around 1.49 eV and a weaker peak from the I = 2 plasmon at around 

1.91 eV. There is a very slight blue shift of the antibonding I = 1 peak at ~ 4.33 eV. 

The I — 2 nanoegg plasmon mode is excited because of an admixture of the dipole-

active primitive I ~ 1 plasmons. The hybridization for this offset is still weak. For 

D = 1.5 nm, where the hybridization between plasmon modes becomes stronger, the 

spectrum shows two distinct peaks at 1.33 eV (I = 1) and at 1.68 eV (I = 2) and two 
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weak shoulders at 1.97 eV (I = 3) and at 2.20 eV (I = 4). The high energy antibonding 

"hump" becomes broader and essentially splits into two peaks at 4.43 eV (I = 1) and 

at around 4.29 eV (1 — 2). For the largest offset in FDTD simulations, D — 1.8 nm, 

the spectrum exhibits several distinct peaks: at 1.14 eV (I — 1), at 1.42 eV (/ = 2), 

at 1.68 eV (I = 3), and at 1.88 eV (I = 4). The antibonding I = 1 - 3 modes lie 

very close in energy and form a featured structure around 4.3 eV. For this offset, the 

hybridization is very strong, and higher I modes contain a sizable admixture of the 

dipole-active primitive I = 1 modes. The results for m — 1 are very similar to the 

results for m = 0 polarization. 

3.3 Optical absorption 

In the quasistatic limit, the nanoegg will couple to an external electromagnetic 

field through 

where we assume a pure multipole field, $ext = E0(t)rLYLM(Q), and E0(t) = E0elbJt. 

We use upper cases L and M to distinguish the multipolar and azimuthal indices of 

external field from the ones of the charge density a, respectively. 

The optical absorption spectrum f ( u ) is obtained from the optical polarizability 

(3.12) 



a(u>) using 

f(u) = ^Im[a(u + i^)], (3.13) 

where 5 is the damping and corresponds to the FWHM of the peaks. The expression 

for the optical polarizability a(u>) is derived in the Appendix B. For a realistic descrip-

tion of the optical absorption, <5 should be determined from the frequency dependent 

imaginary part of the dielectric function. 

In Figure 3.5, we compare the optical absorption spectra calculated using the 

plasmon hybridization method with the absorption spectra obtained using the FDTD 

method for different offsets and polarizations. The absorption spectra are very similar 

to the extinction spectra shown in the right panels of Figure 3.3 for the present small 

nanoparticle. The agreement between the two calculations is excellent for all four 

offsets and both polarizations. As discussed before, as the offset D increases, the 

higher order (I > 2) nanoegg plasmon resonances become visible and redshift. For 

the largest offset D, so many of the bonding nanoegg plasmon modes are dipole 

active that the optical absorption spectrum appears strongly broadened. For parallel 

polarization of the incident light (m = 0), the dipolar plasmon resonance shifts from 

~ 770 nm for D = 0 nm to ~ 1060 nm for D = 1.8 nm. The structure around 288 nm 

represents excitation of antibonding Z = 1 — 3 nanoegg plasmon modes and would be 

strongly broadened if interband effects were included in 5. 
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Figure 3.5 Calculated optical absorption cross sections in arbitrary units for a nanoshell 
with an offset core for different offsets and polarizations. The optical absorption is calculated 
using a damping 6 = 0.2 eV. The nanoshell is the same as used in Figure 3.3. Panels (a) 
and (c) are for m = 0 and panels (b) and (d) are for m = 1 polarization, respectively. The 
upper panels are obtained using plasmon hybridization method, and the lower panels show 
results from FDTD simulations. The offsets are D — 0 nm (black), D = 1.0 nm (blue), 
D — 1.5 nm (green), and D — 1.8 nm (red). The spectra have been offset vertically for 
clarity. 
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3.4 Electromagnetic field enhancements 

In this section, we will investigate the electromagnetic field enhancements around 

nanoeggs for different wavelengths. The enhancement is defined as the ratio of the 

total electric field and the incident field at a particular spatial point. The enhance-

ments are calculated using FDTD and a Drude dielectric function with the same 

damping 6 = 0.2 eV as used elsewhere in this paper. This damping is about three 

times larger than the experimentally observed broadening (6 = 0.069 eV) resulting in 

underestimates of the actual field enhancements. [87] 

In Figure 3.6, we show two-dimensional contour plots of electric field enhancements 

in a plane through the center of the nanoparticle for different wavelengths. The upper 

left panel shows the enhancements for excitation of the dipolar plasmon of a concentric 

nanoshell. The maximum enhancement in this case is 12.1. The three remaining 

panels show the enhancements for resonant excitation of the bonding 1 = 1 — 3 

plasmons for a nanoegg with D = 1.5 nm. It can be seen that the nanoegg provides 

larger enhancements than the concentric nanoshell for all plasmon modes studied. 

The maximum enhancement 61 occurs for excitation of the I = 2 plasmon. The 

enhancement for the I = 1 mode is 26 and for the I = 3 it is 20. The plasmon modes 

are strongly hybridized and none of the enhancement plots exhibits any particular 

multipolar symmetry. An analysis of the multipolar content of the nanoegg plasmons 

can be done straightforwardly using the plasmon hybridization method. The lowest 
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F i g u r e 3.6 Two-dimensional contour plots of the local electric field enhancements for 
the concentric nanoshell (upper left panel) and a nanoegg with D = 1.5 nm (the other three 
panels), excited with the parallel polarization at wavelengths corresponding to resonant 
excitation of the I = 1 — 3 modes. A = 791.3 nm is the dipolar resonance wavelength of the 
concentric nanoshell and the maximum enhancement is 12.1. For the nonconcentric one, 
the wavelengths are 934.1 nm (Z = 1), 739.5 nm (I = 2) and 630.7 nm (I = 3), and the 
maximum enhancements are 26, 61 and 20, respectively. 



multipolar primitive plasmon content of the I = 1 nanoegg plasmon is (57% (I = 1), 

28% (I = 2), 10% (/ = 3), 3% (I = 4), 1% (I = 5), ...). For the I = 2 nanoegg plasmon 

the lowest multipolar content is (26%, 7%, 24%, 21%, 12%, ...) and for the I = 3 

nanoegg plasmon (9%, 25%, 5%, 4%, 14%, ...). The field enhancements increase with 

increasing offset D. For D = 1.8 nm, the enhancements for the I = 1 — 3 modes 

are 23, 99, and 37, respectively. The unique characteristics of nanoeggs providing 

large electromagnetic field enhancements on open surface areas over a broad range of 

wavelengths make these substrate particularly promising for SERS applications. 

3.5 Single-particle dark-field scattering 

To experimentally confirm our theoretical predictions and to further investigate 

the evolution of the plasmon energies of these reduced symmetry nanostructures, 

dark-field spectroscopic measurements were performed on isolated, individual, ran-

domly oriented nanoeggs in reflection mode. [90] A sequence of single particle spectra 

is shown in Figure 3.7. The lowest spectrum is that of a single nanoshell, accompanied 

by representative spectra of reduced symmetry nanoparticles, each displaced verti-

cally for clarity. The sequence of spectra shown with increasing vertical displacement 

corresponds to that of increasing offset D. The nanoshell bonding plasmon is seen at 

730 nm and is accompanied by a much smaller broad peak at nominally 450 nm cor-

responding to the antibonding plasmon. For reduced symmetry nanoparticles, we see 

the onset and development of multipeaked spectra of increasing complexity, accom-
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panied by an overall redshift of the spectral envelope. Additionally, the antibonding 

plasmon peak becomes broader and eventually quite large, of similar magnitude as 

the accompanying lower energy modes in the nanoparticle spectrum. The peak posi-

tions and lineshapes vary significantly as the core offset changes. These single-particle 

spectra bear a striking qualitative resemblance to the theoretically calculated spectra 

shown in Figure 3.4 and 3.5. The presence of a dielectric substrate, the dark-field op-

tical excitation and collection geometry, and phase-retardation effects[91] may affect 

the spectral widths observed for the experimentally fabricated nanoparticles relative 

to the theoretical spectra. Within experimental error, the fabricated nanoparticles 

have effective core offsets around D = 3.3 nm and therefore correspond exactly to the 

regime where additional hybridized peaks should appear in the theoretical spectra. A 

direct analysis of the experimental spectra is needed and requires detailed modeling 

of the effect of the substrate, the effect of nanoparticle orientation, and the particular 

scattering geometry of the microscope. 

3.6 Conclusion 

We have shown that symmetry breaking can strongly modify the selection rules for 

the interaction of plasmon modes on an individual nanoparticle. For nanoshells with 

an offset core (nanoeggs), we have shown that the plasmon hybridization method pro-

vides a simple and intuitive understanding of their plasmonic structure. We show that 

the plasmons in the nanoegg are formed by hybridization of cavity and sphere plas-
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Figure 3.7 Normalized single-particle dark-field scattering spectra of a nanoshell (black 
curve; [rl,r2] = [94,103] nm) and four different reduced-symmetry nanoparticles (colored 
spectra). Nanoeggs were fabricated by electroless plating of Au onto the exposed surfaces of 
deposited nanoshells, to a maximum Au thickness of 25 nm. Selected unpolarized spectra 
of individual nanoparticles show that the fabrication process produces structures with a 
distribution of core offsets. 



mons of all multipolar orders. For increasing offset between the core and the shell, the 

hybridization increases and leads to a strong redshift of the bonding plasmons. The 

hybridization also leads to an admixture of the primitive dipolar plasmons rendering 

many of the nanoegg plasmons dipole active. The results show a very small orienta-

tion dependence of the nanoegg plasmons. The plasmon energies and optical spectra 

obtained from the plasmon hybridization method are found to be in excellent agree-

ment with the numerical FDTD results. Reduction in symmetry also is accompanied 

by an increased electromagnetic field enhancement on its external surface, located at 

the narrowest region of shell thickness. In contrast to many other geometries, here 

the region of maximum field enhancement is located on the open, exterior surface of 

an individual nanostructure and not within a narrow confined gap or junction. This 

approach may be useful in analyzing and understanding the near- and far-field optical 

response of other reduced-symmetry nanostructures of even greater complexity and, 

ultimately, in the design of various nanoparticle geometries with specific near-field 

optical properties. 



Chapter 4 
Nanoparticles near Dielectric Substrates 

4.1 Introduction 

The optical properties of metallic nanoparticles and their interactions with metal-

lic [92, 93, 53, 94, 95, 96, 97, 98, 99] and dielectric substrates [100, 7, 101] are of 

considerable experimental and theoretical interests. The collective oscillations of the 

conduction electrons of a nanoparticle can result in characteristic Localized Surface 

Plasmon Resonances (LSPR) which dominate the optical spectra of metallic nanopar-

ticles. These LSPR resonances are of utmost importance in many applications such 

as Surface Enhanced Raman Scattering (SERS).[102, 103, 104, 105, 106, 107, 108, 

109, 110, 111, 112, 113] 

The energies of LSPR can depend sensitively on the size and shape of the nanoparticle[114, 

115, 116, 117, 118] and the dielectric properties of the surrounding media.[119] The 

latter property is the basis for LSPR sensing in which the presence of specific molecules 

on the surfaces of the nanoparticle can be detected from their screening-induced spec-

tral shift of the LSPR. [120, 121, 122] 

Significant shift of the LSPR can also result when nanoparticles are deposited 

on substrates. For metallic substrates, the interaction between the LSPR and the 

substrate plasmons can result in strongly redshifted hybridized plasmons containing 

admixtures of both the localized plasmon modes of the nanoparticle and the propa-
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gating plasmon modes of the substrate. [52, 53, 54, 55, 56] These hybridized plasmon 

modes thus have mixed localized and propagating character and are fundamentally 

different from the original localized nanoparticle plasmon modes. For a nanoparticle 

near a dielectric surface, there are no substrate plasmons modes and the interaction 

results in a hybridization of the individual nanoparticle plasmon modes. This inter-

action can be simply understood using an image model, where the electromagnetic 

fields induced by a particular multipolar nanoparticle plasmon mode are screened by 

the substrate and acquire different multipolar components in the coordinate system 

centered on the nanoparticle. This screening thus mediates an interaction between 

multipolar plasmons of different order resulting in localized hybridized nanoparticle 

plasmons. For a nanoparticle embedded in a uniform dielectric, there is no such 

hybridization but only a redshift due to the dielectric screening. 

In a recent study, a comprehensive investigation of the interaction of individual 

metallic nanoshells with dielectric substrates of different permittivities was performed. [101] 

The experiment revealed that the presence of the substrate lifts the degeneracy of the 

dipolar nanoshell modes. The dipolar mode oriented towards the surface was found 

to exhibit a significant redshift which increases with the permittivity of the substrate 

while the dipolar modes oriented parallel to the surface only showed negligible shifts. 

For substrate with a large dielectric permittivity such as ZnSe, the experiment also 

clearly showed the appearance of hybridized quadrupolar nanoshell modes in the sin-
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gle particle scattering spectrum. 

In this chapter, we present an extensive theoretical investigation of the interaction 

of metallic nanoparticles with dielectric surfaces. We show how the Finite-Difference 

Time-Domain (FDTD) method can be applied to describe this interaction and the 

resulting angular scattering cross section using finite slab models of the substrate. We 

investigate the shift of the LSPR resonances with nanoparticle-substrate separation 

and their dependence on the dielectric permittivity of the substrate. We also show 

that the degeneracy of the hybridized quadrupolar nanoparticle resonances are lifted 

and that for small nanoparticle-substrate separations, their spectral weight can be 

strongly enhanced due to the substrate induced intraparticle plasmon hybridization. 

The organization of the chapter is as follows. In section II, we investigate the 

interaction of a metallic nanoparticle with a finite dielectric substrate and how the 

plasmon energies depend on the dimensions of the finite slab used to model the sub-

strate. In section III, we discuss how an extended substrate can be described using a 

finite slab model embedded in an absorbing medium and how the differential scatter-

ing spectra appropriate for typical dark-field microscopy geometries can be calculated 

using the near-to-far field transformation. In section IV, we show a comparison with 

experiments and theoretical results using another numerical method - Finite Element 

Method (FEM). 
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4.2 Optical properties of a nanoshell near a dielectric slab 

In this section we investigate the plasmonic interactions of a nanoshell with a 

finite dielectric slab. In the first subsection, we show how the symmetry breaking 

introduced by a substrate results in a lifting of the degeneracy of the dipolar and 

quadrupolar nanoparticle resonances and can result in intra nanoparticle hybridiza-

tion of the plasmon resonances. In the second subsection we investigate how the 

energy of the hybridized plasmon resonances depend on the dimensions of the finite 

dielectric slab used to model the substrate. 

The FDTD method provides efficient and accurate results for the numerical calcu-

lation of the optical properties of metallic nanostructures. The geometry in our study 

is illustrated in Figure 4.1. All the nanoshells modeled in this paper have Ri = 74 nm 

and i?2 = 80 nm.[123] The core of nanoshells is assumed to be silica with a permit-

tivity €core = 2.04. For the metallic shell, a Drude dielectric function was used with 

parameters fitted to the experimental data for gold,[124] which has been shown to 

provide an accurate description of optical properties of gold for wavelengths larger 

than 500 nm.[87] The dielectric substrate was modeled as a finite block-shaped slab 

with lateral lengths L in the x and y directions and thickness T in the 5 direction. 

In most applications below, the permittivity of the substrate will be assumed to be 

€s = 6.5 corresponding to ZnSe. The separation between the nanoshell and substrate 

is denoted d. The results for the finite slab model will also be compared to the results 



46 

for an infinite surface obtained using an approach described in section III. 

Figure 4.1 Geometry and parameters of the nanoshell/finite slab model. The core of 
the gold nanoshell is silica Ccore — 2.04. The finite slab of dielectric permittivity es has 
equal lateral lengths L in the x and y directions, and thickness T in the z direction. The 
separation between the bottom of the nanoshell and the upper surface of the slab is d. 

4.2.1 Substrate induced symmetry breaking and hybridization 

The effect of a dielectric surface on the plasmon resonances of a nearby nanopar-

ticle can be understood using a simple image model. The plasmon induced charge 

density of the nanoparticle is screened by induced surface charges on the substrate. 

The magnitude of the substrate image charges depend on the permittivity of the sub-

strate es, as (es — 1 )/(es + 1)- This factor increases monotonously with es to 1 when 

es —> oo representing a perfect image. 

The plasmon modes of a spherical nanoparticle can be labeled by their multipolar 
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order (/, m) where m refers to the azimuthal orientation of the plasmon mode. For 

a plasmon mode of multipolar order Z, the degeneracy is 21 + 1. The presence of 

the dielectric substrate breaks the spherical symmetry of the nanoshell and lifts the 

degeneracies of their plasmon modes. Plasmon modes with charge densities close 

to the surface will couple stronger to the substrate than plasmon modes with charge 

densities located further from the substrate. This is illustrated for the bonding dipolar 

I = 1 nanoshell modes in Figure 4.2a. With a dielectric substrate, the three-fold 

degenerate dipolar (Z = 1, M = 0, ±1) bonding nanoshell plasmon mode D0 splits 

into a nondegenerate D\ mode with a dipole moment perpendicular to the surface 

and a doubly degenerate mode with dipole moments parallel to the substrate. The 

nanoparticle-substrate interaction for the D\ mode is much stronger than for the very 

weakly interacting D2 mode leading to a significant redshift for the Di mode. [101] 

For the present relatively large nanoshell, the incident light has a sufficient quadrupo-

lar component that nanoshell quadrupolar modes can be excited. With a dielectric 

surface, the spherical symmetry of nanoshell is reduced to a rotational symmetry 

about the sphere center axis which is normal to the surface. The azimuthal index m 

is determined by the different polarizations of incident field with respect to the axis of 

symmetry. Thus, as illustrated in Figure 4.2b, the five-fold degenerate quadrupolar 

(Z = 2, m — 0, ±1, ±2) bonding nanoshell mode Qq splits into three distinct modes: a 

nondegenerate Qi mode for p-polarized excitation, a doubly degenerate Q2 mode for 
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45-degree polarization, and a doubly degenerate Qz mode for s-polarized excitation. 

According to the charge density distribution of the quadrupolar mode (Q0) for an 

individual nanoshell, one would expect the Qi mode to exhibit the strongest interac-

tion with the substrate due to larger local charge density near the surface. The Q i 

mode exhibits an intermediate interaction strength and the Qz mode interacts only 

very weakly. 

(a) D0 

E t 
o . 

E t 
D1 D2 

E 

LZ+ 
/ = 1; m = 0, ± 1 m - 0 m = ± 1 

(b) Qr Qt Qa 

E t E t 
" ' ( S t 

+ + 

1 = 2; m = (), ± 1, ±2 m = 0 m=± 1 m = ±2 

+ Q, 

l + + + + + + 
Di 

Figure 4.2 Schematic illustrating the dipolar (a) and quadrupolar (b) plasmon bonding 
modes of a metallic nanoshell on a dielectric substrate, and the intra-nanoparticle plasmon 
hybridization (c) near a dielectric surface. The three-fold degenerate dipolar bonding mode 
Do splits into a D\ and two £>2 modes. The five-fold degenerate quadrupolar bonding mode 
QO splits into a Q\ mode, two Q2 modes and two QZ modes. The black +/— signs represent 
the free surface charges on the nanoshell, and the red +/— signs represent the induced 
substrate charges. 
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The symmetry breaking introduced by the substrate also results in a hybridization 

of the nanoparticle plasmon resonances. Mathematically this can be understood from 

the fact that the substrate-induced fields across the nanoshell will contain multipolar 

components of all orders. The substrate-induced fields thus introduce an interaction 

between nanoparticle plasmons of different multipolar orders and lead to hybridization 

of the nanoparticle plasmon resonances. Such a hybridization would not be present 

for the individual nanoparticle in an isotropic medium. A simple physical model for 

this hybridization is illustrated in Figure 4.2c for the Di and Qi modes. Both these 

plasmon modes induce similar substrate surface charge on the substrate side of the 

junction. Thus the substrate mediate an interaction resulting in a bonding mode of D\ 

character and an antibonding mode of Q2 character. Since the antibonding mode also 

will contain a dipolar component, the spectral intensity of this mode will be enhanced 

compared to an individual nanoshell. This hybridization is similar to the plasmon 

hybridization in metallic nanoparticle dimers, which is sensitive to polarizations of 

incident light, particle-particle separation and surrounding medium. [125] 

In Figure 4.3, extinction cross section spectra of the nanoshell-substrate system 

are shown for different polarizations. The extinction for a nanoshell in vacuum (black) 

shows the D0 and QO resonances at 891.8 nm and 711.9 nm, respectively. With a di-

electric substrate, the Di mode shifts to 1014.0 nm and the D2 mode to 938.0 nm. 

As discussed above, the Di exhibit larger redshift since this mode interacts stronger 



50 

900 1000 
Wavelength (nm) 

1200 1300 

Figure 4.3 Upper panel: extinction cross section spectra of the gold nanoshell/dielectric 
slab structure for different polarizations of the incident field: p-polarized (red), 45 degree-
polarized (green), and s-polarized (blue). The individual nanoshell spectrum (black) is 
shown for comparison. The slab parameters are L=320 nm, T=80 nm, d=2 nm, and 
£5=6.5. The contour plots show the charge distributions for the different modes apparent 
in the spectra. For £?3(1), the contour plane is the top view of xy plane at 15 nni from the 
slab surface. For Qz(2), the contour plane is the upper surface of the slab. For the other 
panels, the contour plane is the xz plane through the center of the nanoshell. 



with the substrate. The spectra show that the intensity of the Dx resonance is larger 

than for the D2 mode. The spectral intensity of a mode is proportional to the square 

of its dynamical dipole moment. For the Di mode, the screening from the substrate 

provides a dipole oriented in the same direction as the nanoparticle dipole and thus 

increase the effective dipole moment of the mode. For the D2 mode, the substrate 

screening is equivalent to a dipole oriented in the opposite direction and thus results 

in a lower effective dipole moment and excitation probability. For 45-degree polar-

ization, both the Di and D2 modes appear in the spectrum. For the quadrupolar 

modes, three resonances show up at 737.2 nm (<5i), 752.0 nm (Q2), and 716.3 nm 

(Qs) for the respective polarizations. The Q2 mode has the lowest resonance fre-

quency confirming that this mode exhibits the largest interaction with the substrate. 

The relative intensities of the quadrupolar modes compared to the dipolar modes 

are enhanced on the substrate because of the substrate-induced hybridization of the 

nanoparticle quadrupolar and dipolar modes as illustrated in Figure 4.2c. The in-

tensity enhancement of the Q2 mode is somewhat obscured by by the simultaneous 

excitation of also the Q\ and Qz modes for 45-degree polarization. We will show in 

Section III that dark-field scattering calculation can effectively improve the resolu-

tion of spectra. Detailed discussion about the relative height of quadrupoles will be 

conducted as well. In the lower part of Figure 4.3, the surface charge distributions 

for the dipolar and quadrupolar modes are plotted and clearly confirm the symmetry 



classification discussed in Figure 4.2a-b. 

In addition to the hybridized nanoshell resonances, the spectra in Figure 4.3 show 

a significant broad spectral feature for short wavelengths, particularly for s-polarized 

excitation. This is caused by Fabry-Perot (FP) resonances in a finite dielectric slab. 

When the width or thickness of the slab is equal to an integer number of half wave-

lengths of the incident light in the substrate medium, such FP resonances can signif-

icantly influence the extinction. The energy of these FP resonances depend strongly 

on the polarization of the incident light and the dimensions of the slab but are always 

sufficiently broad that the much narrower quadrupolar resonances can be identified 

unambiguously. 

4.2.2 Finite slab effects 

When modeling the nanoparticle substrate interaction using finite slabs, it is im-

portant to use a sufficiently large slab that the substrate induced screening is properly 

accounted for. In addition, for a finite slab, edge effects can influence the the amount 

and spatial distribution of the induced charges on substrate surfaces, and result in 

artificial shifts and hybridization of the plasmon modes. In this subsection we study 

how the dimensions of the slab affect the nanoparticle plasmon resonances. 

In Figure 4.4, we plot the energies of the dipolar and quadrupolar nanoshell plas-

mon resonances for different slab dimensions L and T. We also include exact results 

(red lines) for a nanoshell near an infinite substrate obtained using the method de-



scribed in section III. For a fixed slab thickness T when the lateral width of the slab 

L is smaller than the diameter of the nanoshell, the image charges are "squeezed" in 

the x and y directions, resulting in a weaker nanoparticle substrate interaction. As 

L increases, all the plasmon modes exhibit redshifts. When L is larger than 320 nm, 

twice as large as the diameter of the nanoshell, all the modes have converged to the 

exact solutions. We note that the quadrupolar modes converge faster than the dipo-

lar modes, which can be understood qualitatively because the quadrupole-quadrupole 

interaction decays faster as 1/r5 instead of 1/r 3 for the dipole-dipole interaction. For 

a slab of fixed lateral width L but varying thickness T, the situation is similar. As the 

thickness T is increased, the energies of the plasmon modes redshift monotonously 

and converge at a thickness approximately equal to the diameter of the nanoparticle. 

The reason why convergence is reached faster in T is that the electromagnetic field 

across the nanoshell originating from the surface charges on the opposite side of the 

slab are screened and play a less important role for the plasmon energies. 

These convergence studies are not restricted only to nanoshell particles interacting 

with dielectric slabs but apply for any plasmonic nanoparticle of an overall diameter 

D. The minimum dimensions of the slab required for converged plasmon energies are 

T > D and L > 2D. This finding agrees with previous DDA studies using finite slab 

models of different shapes. [100] 

The results presented in this subsection shows that finite slab models can be 
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Figure 4.4 Effect of substrate size on the energy of the gold nanoshell plasmon res-
onances. Dependence on L for T=160 nm (panel (a) and (b)) and dependence on T for 
L=320 nm (panel (c) and (d)). Red lines are the exact solutions. The slab parameters are 
€5=6.5 and d=2 nm. 



used to calculate the shifts of nanoparticle plasmon energies caused by substrate 

interactions due to the localized nature of the induced surface charges. However, the 

extinction spectra obtained from finite slab models can be strongly distorted by FP 

resonances which would not be present for an infinite substrate. Below in section III, 

we will show how the FP resonances can be eliminated by embedding the finite slab 

in an absorbing medium. 

4.2.3 Effect of nanoparticle-substrate separation 

As for metallic nanoparticle dimers, the influence of a dielectric surface is expected 

to decrease with increased nanoshell-substrate gap distance d. In Figure 4.5, we show 

the d dependence of the energies of the dipolar and quadrupolar nanoshell plasmon 

modes outside a dielectric substrate. For decreasing separation d, the plasmon modes 

exhibit monotonous redshift. The redshifts of the dipolar Di and quadrupolar Qx 

and Qi modes are much larger than the shifts of the D2 and Q3 and are consistent 

with the spatial distributions of the plasmon induced surface charges in Figure 4.2a-b. 

For separations d larger than the diameter of the nanoshell 2i?2=T60 nm the plasmon 

modes converge towards the degenerate plasmon modes of a nanoshell in vacuum. 

This result is consistent with the previous observations of the distance dependent 

nanosphere/nanoshell dimers plasmon resonances[125] and the separation dependent 

plasmon resonances of nanoparticle clusters influenced by a metallic substrate, [55] 

showing that the interaction with a substrate is negligible when d is larger than the 
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Figure 4.5 Effect of nanoparticle-substrate separation d on the energy of the dipolar 
(a) and quadrupolar (b) nanoshell plasmon resonances. The red lines are the degenerate 
dipolar and quadrupolar modes of a nanoshell in vacuum. The dielectric permittivity of the 
substrate is 65=6.5. 

4.2.4 Effect of substrate permittivity 

In Figure 4.6 we show how the energies of the nanoshell plasmon modes dependent 

on the dielectric permittivity of the substrate - The plasmon energies redshift 

monotonously with increasing es- The reason for this is that the magnitude of the 

image charges, (es — l) / (es + 1), increases with increasing es- and converges to 1 for 

large es- For small es, the redshifts and energy splitting of the dipolar modes (Di 

and D2) are approximately linear in 65. [101] For €5 larger than 7, the redshift of the 

modes begins to saturate and the energy splitting becomes constant. 
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Figure 4.6 Energies of the dipolar (a) and quadrupolar (b) nanoshell plasmon modes as 
a function of dielectric permittivity of the substrate es• The nanoshell-substrate separation 
is d = 2 nm. 

4.3 Dark-field Scattering 

The dark-field microspectroscopy is widely employed in experiments to measure 

the scattering spectrum of individual nanoparticles. [90, 125, 101] In typical instru-

ments, light is incident on an individual nanoparticle and the light scattered by the 

nanoparticle is collected within a cone of opening angle 60bj defined by the Numerical 

Aperture (NA), NA = sin0obj of the microscope objective. 

In Figure 4.7 we show examples of how the extinction and differential scattering 

cross sections appropriate for dark-field spectroscopy can be calculated using the 

FDTD algorithm. A modulated Gaussian pulse (black arrows) is inserted into the 

computational domain using the Total-Field/Scattered-Field (TFSF) technique. [126] 

A virtual rectangular surface (red box) referred to as a Discrete Fourier Transfer 

(DFT) monitor is defined for the collection of the near-zone scattered fields. These 
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Figure 4.7 Schematic illustrations of extinction calculations (a) and three different 
approaches (Methods I-III) for calculating the dark-field scattering spectrum using FDTD. 
The black arrows represent the pulse insertion. The red boxes represent Discrete Fourier 
Transform (DFT) monitors enclosing both the nanoshell and substrate (b), or the nanoshell 
only in (c) and (d). In (b) and (c), the simulation domain is enclosed by a uniform UPML 
(gray) which is impedance matched to the background medium (vacuum). In (d) the UPML 
splits into two parts with the upper part matching vacuum and the lower part matching 
the dielectric. The dark-field spectrum is calculated by integrating the differential far-field 
scattering spectrum withing the opening angle Q0bj of the objective. 



near-fields are then transformed to angle dependent far-fields using the near-to-far-

field transformation based on the Surface Equivalence Theorem. [126] The dark-field 

scattering spectrum is then calculated by integrating the far-field scattering into the 

collection cone of the objective (green box). To prevent artificial reflections when 

the pulse and scattered fields reach the simulation boundaries, the entire simulation 

domain is enclosed by an efficient absorbing layer, Uniaxial Perfectly Matched Layer 

(UPML).[126] 

While the extinction spectrum can be calculated simply as the sum of absorption 

and total scattering cross sections, several choices for DFT monitoring and pulse 

insertions are possible for the dark-field spectrum. Method I (Figure 4.7b) employs the 

same DFT monitors and pulse insertion as for the extinction spectrum (Figure 4.7a). 

The scattering spectrum will thus be the true scattering spectrum from a nanoparticle 

near a finite dielectric slab and thus directly influenced by the FP resonances in 

the slab. Method II (Figure 4.7c) uses a smaller DFT monitor only enclosing the 

nanoparticle and a local pulse insertion around the nanoparticle. In this approach, 

the FP resonances induced in the slab will not contribute directly to the scattering 

spectrum since the slab is outside the the DFT monitor and the slab is not directly 

excited by incident light. However, FP resonances will still be induced in the slab due 

to the near-field coupling between the nanoparticle and the slab. These FP resonances 

will modulate and enhance the surface charges on the slab and thus indirectly influence 
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the coupling between the nanoparticle and the surface. In Figure 4.7d, we present an 

approach (Method III) that effectively eliminates the FP resonances in the slab and 

provides the differential scattering spectrum for a nanoparticle interacting with an 

infinite dielectric substrate. The DFT monitor and pulse insertion are the same as 

for Method II and local to the nanoparticle. A modified UPML is attached directly 

to the side and bottom surfaces of the slab. This UPML is impedance matched to the 

dielectric permittivity of the slab so that no internal reflections occur at the relevant 

surfaces. [126] Therefore, if the dimensions of the slab is sufficiently large that the 

induced charges at the edges are small, the slab effectively becomes equivalent to an 

infinite surface. 

In Figure 4.8 we compare the extinction spectrum with the dark-field scattering 

spectrum calculated using methods I-III for different polarizations. The scattering 

spectrum calculated using Method I displays the same FP resonances as the extinc-

tion spectra. Since the same TFSF and DFT boundaries were employed in both 

extinction and dark-field scattering calculations, the FP resonances originating from 

the finite substrate modulates the scattering from the finite slab and obscures the 

plasmon resonances of the nanoparticle. The scattering spectrum calculated using 

Method II displays no FP resonances and the dipolar and quadrupolar nanoparticle 

plasmon resonances appears as distinct peaks. The scattering spectrum calculated 

using Method III is qualitatively similar to that obtained from Method II but with 
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Wavelength (nm) 
Figure 4.8 Comparison of the extinction (black) spectra and dark-field scattering spec-
tra calculated using Methods I (green), II (blue), and III (red) for a gold nanoshell near 
a dielectric surface for different polarizations. The parameters of the dielectric slab are 
es=6.5, 7=160 nm, L=320 nm and d=2 nm. 



slightly blueshifted peaks. This discrepancy is caused by the indirect excitation of 

the slab FP resonances through the near-field coupling between the nanoparticle and 

the slab. The surface charges associated with these FP resonances exaggerates the 

coupling between the nanoparticle and the surface. Calculations using method III 

for larger and slightly smaller slabs yield results that are'identical to the present 

results (the convergence tests are shown in Appendix C) and we conclude that the 

results obtained using method III are the exact results for the scattering spectrum of 

a nanoparticle on an infinite substrate. 

We note that the intensity of the quadrupolar modes is larger for the nanoparti-

cle/substrate system than for the nanoparticle in vacuum (Figure 4.3) because of the 

substrate-induced hybridization of the nanoparticle quadrupolar and dipolar modes 

(Figure 4.2c). However, since the effective dipole moment of DX for 45-degree po-

larization is approximately equal to the perpendicular component, i.e., 1/V2, of the 

dipole moment of Di for the p-polarization, the absolute intensity of the Q2 mode is 

not as strong as that of the Qi mode, though the intensity ratio of the dipole and 

quadrupole is roughly the same. To understand why the intensity of the Ql mode 

is strong, one can imagine that, as shown in Figure 4.9a, due to retardation effects, 

the incident fields first approach the front side of the nanoshell exciting a local dipole 

011 the front part and consequentially excite another dipole with a phase-lag when 

the incident fields propagate to the back side of the nanoshell. The Qi mode can 
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therefore hybridize with the Dx mode through the screening charges induced on the 

substrate by these two dipoles, and result in a larger admixture of the dipole moment. 

The Q2 mode hybridizes with the Di as well (Figure 4.9b) but possesses a smaller 

dipole moment. For small nanoparticles when retardation effects are negligible, the 

enhancement of the Q2 mode is expected larger than of the Q\ mode. 
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Figure 4.9 Schematic picture illustrating how quadrupolar mode Q i (a) and Q2 (b) 
hybridize with the dipolar bonding mode D\. Due to the retardation effects, Q\ possesses 
a larger dipole moment, while Q2 possesses a smaller one. 

4.4 Experiments and FEM results 

Spectra of individual nanoshells on glass, sapphire, and ZnSe substrates were 

obtained for both s-polarized and p-polarized incident light excitation and compared 

with both FEM and FDTD calculations of each system (Figure 4.10). On a glass sub-
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strate, a relatively small difference is observed in peak energies between s-polarized 

and p-polarized light. However, the line width of the p-polarized spectrum is in-

creased dramatically relative to the s-polarized spectrum. We also show that the 

s-polarized spectrum on glass gives a spectrum nearly identical to the result obtained 

from Mie theory for the same nanoparticle in vacuum. This suggests that one can 

experimentally approximate the vacuum behavior of a nanoparticle by supporting the 

particle on a low-index substrate and using only s-polarized light excitation. 

Increasing the substrate permittivity increases the mode splitting observed in 

the s- and p- polarized spectra (Figure 4.10). The broader peaks observed for p-

polarized incident light are due to the simultaneous excitation of modes associated 

with polarizations parallel and perpendicular to the substrate. For the objective used, 

the polarized light was incident on the sample at an angle of 79 ± 2°. For s-polarized 

light, this allows an almost pure polarization parallel to the substrate surface; for 

p-polarized light, this includes components polarized both perpendicular and parallel 

to the substrate. Despite the large perpendicularly polarized component of the p-

polarized incident light, the associated nanoparticle spectra all have a significant 

parallel (s-like) component, since the radiation pattern associated with the parallel 

mode preferentially scatters into the objective. 

For p-polarization to the ZnSe substrate, the interaction with the ZnSe surface is 

sufficiently strong that the quadrupolar nanoshell mode around 2.1 eV also shows up 
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Figure 4.10 Comparison of experimental (left column) and theoretical calculations 
(FEM: middle column; FDTD: right column) for nanoshells on glass (n = 1.52), sapphire 
(n = 1.77), and ZnSe (n = 2.67). Incident light was p-polarized (blue) or s-polarized (black) 
and incident at 79 ± 2°. Theoretical spectra correspond to an [rl,r2] = [67.0,79.5] nm 
nanoshell calculated 1 nm above the substrate using polarized light incident at 79° with 
NA= 0.9. The red curve is Mie theory for the same nanoshell in an isotropic medium (air). 
Scale bars are 100 nm. 



in the scattering spectrum. As mentioned above, this is caused by the inhomogenous 

electromagnetic field induced by the substrate. The electromagnetic field induced by 

the image of a real dipolar nanoparticle plasmon will have a quadrupolar component 

across the nanoparticle. Similarly, the field from the image of a real quadrupolar 

nanoparticle plasmon will have a dipolar component across the nanoparticle. The 

substrate-induced electromagnetic field thus couples the nanoparticle dipolar and 

quadrupolar plasmons and results in hybridized nanoparticle plasmons of finite dipole 

moments. The calculated FEM and FDTD spectra agree very well with the experi-

mentally measured spectra for both s- ancl p-polarizations and for the three different 

substrates. The slight discrepancies between theory and experiment are most likely 

due to slight structural deviations from a perfectly spherical nanoshell and perfectly 

smooth planar substrates in the experimental sample. We also notice that FDTD re-

sults show much stronger quadrupole peak compared to FEM results, which is closer 

to the experimental measurements. 

4.5 Conclusion 

In this chapter, we have performed an extensive FDTD study of the plasmonic 

interactions between a metallic nanoshell and an adjacent dielectric surface. We show 

that an extended substrate can be modeled using a finite slab model of sufficient size 

and how the differential scattering cross section appropriate for typical dark-field sin-

gle particle spectroscopy can be calculated efficiently. The results of this investigation 
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show that the symmetry breaking introduced by the substrate can have a profound 

effect on the plasmon modes of a spherical nanoparticle. In the presence of a di-

electric substrate, the degeneracy of the nanoshell dipolar and quadrupolar plasmon 

resonances is lifted. The three-fold degenerate dipolar mode splits into a redshifted 

mode oriented perpendicularly to the substrate and two degenerate dipolar modes 

oriented parallel to the substrate surface. The five-fold degenerate quadrupole modes 

split into three redshifted modes that can be excited for different polarizations of 

the incident light. For small nanoparticle-substrate separations, the surface mediates 

an effective interaction between the different multipolar plasmon resonances of the 

nanoparticle resulting in intra-nanoparticle hybridization of the plasmon resonances. 

This hybridization enhances the cross section for the quadrupolar and higher multi-

polar modes. The redshift and splitting of the modes were found to depend strongly 

on dimensions of dielectric slabs, nanoparticle-surface separation and the dielectric 

permittivity of the substrate. 



Chapter 5 
Nanobowtie structures 

5.1 Introduction 

Single-molecule detection with chemical specificity is a powerful and much de-

sired tool for biology, chemistry, physics, and sensing technologies. Surface-enhanced 

spectroscopies enable single-molecule studies, however, it has been an ongoing chal-

lenge to design and fabricate a substrate for systematic SERS at the single-molecule 

level. Single-molecule SERS sensitivity was first clearly demonstrated using ran-

dom aggregates of colloidal nanoparticles. [17, 16, 18, 57] Numerous other metal 

substrate configurations have been used for SERS, including chemically engineered 

nanoparticles, [36, 58, 59] nanostructures defined by bottom-up patterning, [60, 61] and 

those made by traditional lithographic approaches. [62] In the most sensitive substrate 

geometries, incident light excites adjacent subwavelength nanoparticles or nanostruc-

tures, resulting in large field enhancements within the interparticle gap. [63, 64] Fractal 

aggregates of nanoparticles[65] can further increase field enhancements by focusing 

plasmon energy from larger length scales down to particular nanometer-scale hotspots. 

[45] However, precise and reproducible formation of such assemblies in predetermined 

locations has been extremely challenging. An alternative approach is tip-enhanced 

Raman spectroscopy (TERS), in which the incident light excites an interelectrode 

plasmon resonance localized between a sharp, metal scanned probe tip and an un-



derlying metal substrate. Recent progress has been made in single-molecule TERS 

detection. [66, 67, 68] A similar approach was recently attempted using a mechanical 

break junction. [69] While useful for surface imaging, TERS requires feedback to con-

trol the tip-surface gap and is not scalable or readily integrated with other sensing 

modalities. 

A scaleable and highly reliable method was recently demonstrated for producing 

planar extended electrodes with nanoscale spacings that exhibit very large SERS sig-

nals, with each electrode pair having one well-defined hot spot. [70] The structures 

were fabricated on a Si wafer topped by 200 nm of thermal oxide. Electron beam 

lithography is used to pattern "multibowtie" structures as shown in Figure 5.1A. As 

shown, the multibowties consist of two larger pads connected by multiple constric-

tions. Electromigration was used to to form nanometer-scale gaps in the constrictions 

in parallel, as shown in Figure 5.IB. Figure 5.1C is the close-up of the indicated red 

square in Figure 5.IB. Postmigration high-resolution scanning electron microscopy 

(SEM) shows interelectrode gaps ranging from 5 nm to 8 nm. 

Confocal scanning Raman microscopy demonstrates the localization of the en-

hanced Raman emission. The SERS response is consistent with a very small number 

of molecules in the hotspot, showing blinking and spectral diffusion of Raman lines. 

Sensitivity is sufficiently high that SERS from physisorbed atmospheric contaminants 

may be detected after minutes of exposure to ambient conditions. The Raman en-
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A 
SO pm 

B 

Figure 5.1 (A) Full multibowtie structure, with seven nanoconstrictions. (B) Close-up 
of an individual constriction after electromigration. Note that the resulting nanoscale gap is 
toward the right edge of the indicated red square. (C) Close-up of the indicated red square. 
The closest separation is around 5 nm. 

hancement for para-mercaptoaniline (pMA) is estimated from experimental data to 

exceed 108. 

FDTD modeling of realistic structures reveals a rich collection of inter electrode 

plasmon modes that can readily lead to SERS enhancements as large as 5 x 1010 

over a broad range of illumination wavelengths. These structures hold the promise of 

integration of single-molecule SERS with electronic transport measurements, as well 

as other near-field optical devices. 

Nanoscale gap structures were also used to perform simultaneous measurements 

of electronic transport and SERS. [71] Conductance in nanoscale gap structures is 

dominated by roughly a molecular volume. The conductance as a function of time 



is observed to correlate strongly with the SERS signal in the junctions measured. 

Conductance changes correlate with sudden changes in the intensity of sets of Raman 

modes and with spectral diffusion of mode positions. Experimental data suggest that 

both SERS and conductance changes are most likely due to changes in conformation 

and binding of an individual molecule. The combined data provide a great deal of 

information about the effect of molecular orientation and environment on both con-

duction and SERS, although a detailed understanding of this correlated information 

is indeed a very significant theoretical challenge. The most likely explanation for 

these results is that single-molecule multimodal sensing is possible. This combined 

measurement technique also opens the possibility of direct assessment of vibrational 

pumping and local heating in single-molecule electronic transport. 

5.2 FDTD calculations and discussions 

The optical properties of the bowtie structure were calculated using the Finite-

Difference Time-Domain method (FDTD). A Drude dielectric function was employed 

with parameters fitted to the experimental data for gold. This fit, provides an accurate 

description of the optical properties of gold for wavelengths larger than 500 nm.[87] 

These calculations do not account for reduced carrier mean free path due to surface 

scattering in the metal film, nor do they include interelectrode tunneling. However, 

such effects are unlikely to change the results significantly. 
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5.2.1 Perfectly symmetric bowties 

As illustrated in Figure 5.2. the bowtie is modeled as a two finite triangular 

structures truncated in the middle by a gap of air. Our computational method requires 

the nanostructures to be modeled to be of finite extent. The plasmon modes of 

a finite system are standing modes with frequencies determined by the size of the 

sample and the number of nodes of the surface charge distribution associated with 

the plasmon. For an extended system such as the bowties manufactured in this 

study, the plasmon resonances can be characterized as traveling surface waves with a 

continuous distribution of wavevectors. 

(a) (b) (c) 

Au Au 
SiO, 

15 nm 

50 nm 

Au 
SiO, 

,15 nm 

50 nm 

E E 

size 
Figure 5.2 Geometry and parameters of the perfectly symmetric nanobowtie structure. 
The bowtie is modeled as a two finite gold triangular structures truncated in the middle 
by a gap of air. (a) Top view. The shorter parallel side of the trapezoid is 100 nm and 
the base angle is 45°. The size, or the height of the trapezoid is varied. The gap distance 
is 8 nm. The k vector of the excitation is along the parallel sides of trapezoids and E is 
perpendicular to the parallel sides of trapezoids, (b) Side view. A 15 nm Au is deposited 
on top of a 50 nm SiC>2 layer, (c) Cross section view. 

A series of calculations of bowties with increasing length reveals that the optical 

spectrum is characterized by increasingly densely spaced plasmon resonances in the 
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wavelength regime 500-1000 nm and a low energy finite-size induced split-off state 

involving plasmons localized on the outer surfaces of the bowtie, as shown in Fig-

ure 5.3. For a large bowtie, we expect the plasmon resonances in the 500-1000 nm 

wavelength interval to form a continuous band. [127] 

3 
CO 

o <D 

<n <n o 

c o 

X 
LU 

Size = 50nm 

Wavelength (nm) 
Figure 5.3 Calculated extinction cross section spetra for bowties with different length, 
i.e., the height of the trapezoid. 

The electric field enhancements across the bowtie junction for the plasmon modes 
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within this band are relatively similar with large and uniform enhancements in the 

range of 50-150. The magnitudes of the field enhancements were found to increase 

with increasing size of the bowtie structure. For instance, the maximum field en-

hancement factor was found to be 115 for a 200 nm bowtie (Each half of the bowtie 

is modeled as a truncated triangle 200 nm long.) and 175 for a 400 nm bowtie. Our 

use of a finite gridsize also underestimates the electric field enhancements. [86] Thus 

our calculated electric field enhancements are likely to significantly underestimate the 

actual electric field enhancements in the experimentally manufactured bowties. 

5.2.2 Bowties with nanoscale asperities 

For a perfectly symmetric bowtie, significant field enhancements are only induced 

for incident light polarized across the junction. If the mirror symmetry is broken, for 

instance by making one of the structures thicker or triangular, large field enhance-

ments are induced for all polarizations of incident light. To investigate the effects 

of nanoasperities, FDTD calculations were performed for a bowtie with two semi-

spherical Au protrusions in the junction as shown in Figure 5.4. As expected, in 

Figure 5.5, we find the presence of these protrusions does not influence the optical 

spectrum. However, the local field enhancements around the protrusions become very 

large, typically three or four times higher than for the corresponding structure with-

out the defect. The physical mechanism for this increase is an antenna effect caused 

by the coupling of plasmons localized on the protrusion with the extended plasmons 
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on the remaining bowtie structure. [128] 

15 nm 

50 nm 

1 100 nm 1 E 

Figure 5.4 Geometry and parameters of the nanobowtie structure with two protrusions. 
Same bowtie is modeled as in Figure 5.2 and the length is fixed at 100 nm. (a)-(c) are the 
same view as explained in Figure 5.2. Two semi-spherical Au protrusions are added in gap 
region, attaching the cross section of each Au pad, respectively. Protrusion on left (right) 
electrode has radius of 6 nm (4 nm). The centers of protrusions are both at half of the total 
thickness of the Au film. The separation of the two protrusions is 50 nm. 

5.2.3 Hot spots 

Furthermore, we use FDTD calculations to understand the strong SERS response 

in the bowtie structure and roughly estimate enhancement factors. Figure 5.6 shows a 

calculated extinction spectrum and map of |.E|4 in the vicinity of the junction. These 

calculations predict that there should be large SERS enhancements across a broad 

bandwidth of exciting wavelengths because of the complicated mode structure pos-

sible in the interelectrode gap. As mentioned prevously, nanometer-scale asperities 

from the electromigration process break the interelectrode symmetry of the struc-

ture. The result is that optical excitations at a variety of polarizations can excite 

many interelectrode modes besides the simple dipolar plasmon commonly consid-

(a) (b) 

Au P 

SiOo 

E 

Au 

(c) 

Aul Q 

SiO, 

E 
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1500 

Wavelength (nm) 

Figure 5.5 Comparison of calculated extinction cross section spetra for 100 nm bowties 
(size = 100 nm) with (red) and without (black) protrusions. Panel (a)-(c) are the plots of 
local electric field enhancments around the gap region for peak a-c marked in the spetrum, 
respectively. 
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ered. For extended electrodes, a continuous band of plasmon resonances coupling to 

wavelengths from 500 to 1000 nm is expected. [127] This broken symmetry also leads 

to much less dependence of the calculated enhancement on polarization direction, 

as seen experimentally. The calculations confirm that the electromagnetic enhance-

ment is confined in the normal direction to the film thickness. Laterally, the field 

enhancement is confined to a region comparable to the radius of curvature of the 

asperity, as shown in Figure 5.7-5.9. For gaps and asperities in the range of 2 nm, 

purely electromagnetic enhancements can exceed 10 u , approaching that sufficient for 

single-molecule sensitivity. 

500 1000 1500 
Wavelength [nm) 

Figure 5.6 (A) FDTD-calculated extinction spectrum from the model electrode con-
figuration shown in (B). (B) Mock-up electrode tips capped with nanoscale hemispherical 
asperities, with plotted for the 937 nm resonance of (A). Constriction transverse width 
at narrowest point is 100 nm. Gap size without asperities is 8 nm. Asperity on left (right) 
electrode has radius of 6 nm (4 nm). Au film thickness is 15 nm, SiC>2 underlayer thickness 
is 50 nm. Radiation is normally incident, with polarization oriented horizontally. Grid 
size for FDTD calculation is 2 nm. (C) Close-up of central region of (B), showing ex-
tremely localized enhancement at asperities. (D) Cross section indicated in (C), showing 
that enhancement in this configuration does not penetrate significantly into the substrate. 
Predicted maximum electromagnetic Raman enhancement in this mode exceeds 108. 
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Figure 5.7 Maps of FDTD-calculated for the 1535 nm mode indicated in Figure 
5.6. Color scale is logarithmic in \E\/\Einc\. Illumination direction is normal incidence, with 
electric field polarization oriented horizontally in (A)-(C). Maximum field enhancements are 
shown. (A) Overall view. (B) Close-up of interelectrode gap showing asperities. (C) Side-
view of section indicated in (B) in red. (D) Side view of section indicated in (B) in blue. 



79 

Figure 5.8 Maps of FDTD-calculated for the 937 nm mode indicated in Figure 5.6. 
Color scale is logarithmic in \E\/\Einc\. Illumination direction is normal incidence, with 
electric field polarization oriented horizontally in (A)-(C). Maximum field enhancements 
are shown. (A) Overall view. (B) Close-up of interelectrode gap showing asperities. (C) 
Side-view of section indicated in (B) in red. (D) Side view of section indicated in (B) in 
blue. 
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Figure 5.9 Maps of FDTD-calculated \E\ for the 746 nm mode indicated in Figure 5.6. 
Color scale is logarithmic in \E\/\Einc\. Illumination direction is normal incidence, with 
electric field polarization oriented horizontally in (A)-(C). Maximum field enhancements 
are shown. (A) Overall view. (B) Close-up of interelectrode gap showing asperities. (C) 
Side-view of section indicated in (B) in red. (D) Side view of section indicated in (B) in 
blue. 



5.2.4 Interelectrode conductance 

Experimentally, [71] it was found that when the conductance of the junction drops 

below the condunctance quantum, Go = 2e 2 /h , a tunneling gap is formed, and si-

multaneous conductance and Raman measurements are performed. It was also found 

that there are strong correlations in time between conduction and Raman emission. 

There was a serious concern that changes in tunneling conduction in one part of the 

junction may alter the plasmon mode structure and affect Raman emission from else-

where in the junction. Such a scenario could lead to the aforesaid correlations even 

if conduction and Raman emission are not from the same molecule. 

To investigate the effects of a conductance shunting the nanoscale gap, we perform 

FDTD calculations of the optical properties of such junctions to assess this issue, and 

the results effectively rule out this concern. The nano-scale gap structures are again 

modeled as a bowtie with two semi-spherical protrusions in the junction as shown 

in the closeup in the inset of Figure 5.10a. The electrodes are modeled as regular 

trapezoids of a height of 50 nm, and a 1 nm grid size was used. The conductance 

was modeled as a cubical volume 2 nm on a side located between the 6 nm radius 

asperity and the facing electrode, where the local field enhancement is maximized for 

modes relevant to the wavelengths used in the experiment. The conductivity of the 

material was set to be frequency independent over the wavelength range of interest (as 

expected for tunneling), and chosen such that the conductance of that interelectrode 
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link was the desired value. The frequency dependent dielectric permittivity of the 

material is therefore 

e{u) = €«,) + — (5.1) 
live 0 

where 

a = G x (5.2) 
A 

Figure 5.10a shows a comparison of calculated extinction spectra that character-

ize the plasmonic mode structure of the gap structure shown, for various values of 

interelectrode conductance connecting the source and drain at the indicated point. 

The three most prominent features in the calculated extinction spectrum are labeled. 

Peak "a" corresponds to the mode shown in the inset, believed to be most relevant 

for the experiments at hand. An analysis of the instantaneous charge distribution 

associated with the plasmon resonances in Figure 5.10a shows that negligible charge 

transfer occurs between the two electrodes for conductances smaller than G0. Figure 

5.10b shows the evolution of the electric field enhancement factor (calculated for the 

mid-point of the conducting volume standing in for the molecule) as a function of 

interelectrode conductance. The field enhancement and mode shapes due to local 

features in the junction are essentially unaffected by the interelectrode conductance 

until that conductance exceeds the order of G0 = 2e2/h — 7.74 x 105£\ For con-

ductances significantly larger than G0, charges can flow between the two electrodes 

and a new low energy plasmon resonance appears at wavelengths that depend on 
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(a) 

Wavelength |nm] 

Figure 5.10 (a)Extinction spectrum calculated using a 1 nm grid size for the structure 
partially shown in the right inset. The electrodes are modeled as Au, 15 nm thick, sitting 
on 50 nm thick Si02 dielectric, with an overall interelectrode gap of 8 nm. The upper and 
lower protrusions into that gap shown are modeled as hemispheres of radii 4 and 6 nm, re-
spectively. The red square indicates the location of the modeled interelectrode conductance 
(a volume 2 nm on a side, meant to represent a molecule at the interelectrode gap). The 
right inset shows a map of |E|4, where E is the local electric field normalized by the magni-
tude of the incident field (roughly the Raman enhancement factor), for the mode near 825 
nm. White corresponds to an enhancement of 109. This field map is essentially unchanged 
until the junction conductance approachs 10~4S ~ Go- (b) Field enhancement (relative to 
incident field) calculated at the midpoint of the interelectrode conductance region for the 
three modes labeled in the upper graph, as a function of interelectrode conductance. Very 
little change in field enhancement or distribution is seen until interelectrode conductance 
exceeds Go-
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the conductance of the shunt. These calculations are completely consistent with the 

observations in experiments: The plasmonic mode structure responsible for enhanced 

local fields in the nanogap is established once the interelectrode conductance falls 

well below Go- Given these FDTD results, the only plausible explanation for the 

aforesaid strong correlations in time between conduction and Raman emission is that 

both processes involve the same molecule or molecules. 

5.3 Conclusion 

In this chapter, a SERS substrate capable of extremely high sensitivity for trace 

chemical detection was introduced. Unlike previous substrates, these nanojunctions 

may be mass fabricated in controlled positions with high yield using a combination of 

standard lithography and electromigration. FDTD simulations have been performed 

showing large SERS/local electric field enhancements over a broad band of illuminat-

ing wavelengths. FDTD simulations also show that the presence of asperities breaks 

the mirror symmetry of the bowtie structure, which was used to model electrodes, does 

not influence the optical spectrum. However, the local field enhancements around the 

protrusions become very large so the hot spots are well-defined. This was understood 

as an antenna effect caused by the coupling of plasmons localized on the protrusion 

with the extended plasmons on the remaining bowtie structure. 

The extended electrode geometry and underlying gate electrode are ideal for in-

tegration with other sensing modalities such as electronic transport. The plasmonic 
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mode structure responsible for enhanced local fields in the nanogap is established once 

the interelectrode conductance falls well below G0. The strong correlations in time 

between conduction and Raman emission is that both processes involve the same 

molecule or molecules. FDTD calculations are consistent with the observations in 

experiments. 



Chapter 6 
Conclusions 

In this thesis, we apply both Plasmon Hybridization method and Finite-Difference 

Time-Domain method in analyzing and simulating various metallic nanostructures, 

such as nanoshells, nanoeggs, nanoshell near dielectric surfaces and nanobowties. We 

focus on the optical spectrum and both the near-field and far-field of these systems. 

We also compare our results with experimental measurements and the results from 

other analytical and numerical algorithms such as Mie Theory as well as the Finite 

Element method. 

For nonconcentric nanoshells, we have shown that symmetry breaking can strongly 

modify the selection rules for the interaction of plasmon modes on an individual 

nanoparticle. This finding has profound consequences for the optical spectrum of the 

particle, allowing all plasmon modes to possess some dipolar character and contribute 

to additional features in the optical spectrum as symmetry is reduced. For concentric 

nanoshells, reduction in symmetry also is accompanied by an increased electromag-

netic field enhancement on its external surface, located at the narrowest region of 

shell thickness. This approach may be useful in analyzing and understanding the lo-

cal and far-field optical responses of other reduced-symmetry nanostructures of even 

greater complexity and, ultimately, in the design of various nanoparticle geometries 
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with specific near-field optical properties. 

For nanoshells near a dielectric surface, we have shown that the presence of a 

dielectric substrate beneath an individual plasmonic nanoparticle can strongly influ-

ence its plasmon modes, causing the degenerate dipolar peak to split into two distinct 

modes corresponding to the dipoles oscillating parallel or perpendicular to the sur-

face. These modes can be probed separately using s- or p-polarized incident light. For 

unpolarized incident light, both modes will be excited, resulting in an anomalously 

broad plasmon line width due to the mode splitting, rather than the intrinsic lifetime 

of the modes. The splitting between the perpendicular and parallel mode is found 

to increase linearly with increasing substrate permittivity, and is strongest for solid 

Au nanospheres. The finding of a strong substrateinduced anisotropy of the plasmon 

resonances of nanoshells deposited on a dielectric surface is expected to apply quite 

generally to other geometries and types of metallic nanoparticles. This effect needs 

to be considered when using spectra from individual nanoparticles on substrates to 

deduce plasmon energies and linewidths of individual nanoparticle plasmon modes. 

For the nanobowties, we have demonstrated a SERS substrate capable of ex-

tremely high sensitivity for trace chemical detection. Unlike previous substrates, 

these nanojunctions may be mass fabricated in controlled positions with high yield 

using a combination of standard lithography and electromigration. The resulting 

hotspot geometry is predicted to allow large SERS enhancements over a broad band 
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of illuminating wavelengths. Other nonlinear optical effects should be observable 

in these structures as well. The extended electrode geometry and underlying gate 

electrode are ideal for integration with other sensing modalities such as electronic 

transport. Tuning molecule/electrode charge transfer via the gate electrode may also 

enable the direct examination of the fundamental nature of chemical enhancement in 

SERS. 

We have shown that symmetry breaking can strongly modify the selection rules 

for the interaction of plasmon modes on an individual nanoparticle. This finding has 

profound consequences for the optical spectrum of the particle, allowing all plasmon 

modes to possess some dipolar character and contribute to additional features in the 

optical spectrum as symmetry is reduced. 



Appendix A 
Facts of RiceFDTD3.0 

A . l Real-time information 

RiceFDTD (current version 3.0) is our homemade parallel computing software 

package developed by Yanpeng Wu in Nordlander's group at Rice University. This 

package is used for our basic plasmonic physics research purposes, such as spectral 

analysis and electric field enhancement simulations of metallic nanostructures. 

A big advantage of FDTD is that it provides real time information and allows 

wide frequency calculations in a single simulation. As shown in Figure A.l, a gold 

nanoshell (Figure A. la) with a silica core was simulated. A modulated Gaussian 

pulse is inserted into the computational domain using the Total-Field/Scattered-Field 

(TFSF) technique. [126] Snapshots (Figure A.lc-f) of a plane bisecting the nanoshell 

(Figure A.lb) shows us how the nanoshell surface plasmons are excited. Attention 

should be paid that after when the pulse was about leaving the computational domain 

(Figure A.le), surface plasmon resonances are still observed and then slowly decayed 

(Figure A.If). 

A. 2 Parallelism 

Another advantage of FDTD is its natural parallelizability which allows FDTD 

being implemented on distributed meory super computers. In Figure A.2, we show 
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Figure A . l Real-time information of a metallic nanoshell surface plasmon resonances, 
(a) A gold nanoshell with a silica core. The inner and outer radii are 15 nm and 20 nm, 
respectively, (b) Polarization of the excitation and the plotted cross section: perpendicular 
to E cutting through the center of nanoshell. Snapshots are shown at different time step: 
(c) the pulse is inserted; (d) nanoshell surface plasmons are excited; (e) the pulse is leaving 
the computational domain; (f) after the pulse is gone. 



how it works on RiceFDTD. The FDTD volume is usually divided into N subdo-

mains and each one is handled by one processor (Figure A.2a). Typically sum of the 

interfacing areas between all neighbors is required to be smallest to minimize the com-

munication workload when the system is parallelized. Figure A.2b-e show a complete 

cycle in FDTD simulations. It is important that we are only required to exchange 

the electric and magnetic field data at the subdomain boundaries. This makes our 

parallel computation very simple and efficient. [129] As mentioned previously, the 

electromagnetic dynamics is simulated this way in a leapfrog manner. 

Figure A.3 shows a RiceFDTD simulation running across four different CPUs. 

The object is a gold cylinder and the pulse is inserted at 45° from the upper left 

corner of subdomain #1 . The snapshot (Figure A.3b) shows a smooth and accurate 

updating process in a parallel FDTD simulation, acting like on a single CPU. 

In Figure A.4, we will find the efficiency and scalability of RiceFDTD. The bench-

marked super computer is the Shared Tightly Integrated Cluster (STIC), a Rice 

University's Intel Nahalem computing cluster. It consists of 90 Appro Greenblade 

E5530 compute nodes. Each node has two quad core 2.4 GHz Intel Xeon (Nahalem) 

CPUs with 8 MB cache. This gives the system a total of 720 compute cores. STIC is 

running Red Hat Enterprise Linux 5 and the 2.6.18 kernel. Compilers openmpi/1.3.3-

gcc and openmpi/1.3.3-intel are both used for comparison. Same job is tested on 1, 

2, 4, 8, 16, 32, 64, 128 and 256 CPUs. Figure A.4 shows the exact execution time 



92 
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( b ) Update H-fields 
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( c ) MPI_SendRecv H 
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Figure A.2 Global parallel algorithm in RiceFDTD (one cycle), (a) An entire FDTD 
volume is divided into 8 subdomains; each one is handled by one processor. All the pro-
cessors execute the same program, (b) At time step T = nAt, each processor updates 
H-fields in the subdomain and stores the boundary data to pre-assigned buffer layers, (c) 
Neighboring processors exchange boundary data of H-field at the buffer layers by calling 
MPI-SendRecv function, (d) At time step T = (n + l/2)Ai, each processor updates E-
fields in the subdomain and stores the boundary data to pre-assigned buffer layers, (e) 
Neighboring processors exchange boundary data of E-field at the buffer layers by calling 
MPI-SendRecv function. 
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(a) 

Figure A.3 A RiceFDTD simulation running across four different CPUs, (a) Schematic 
picture showing a gold cylinder is bombarded by a pulse inserted from the upper left corner 
of subdomain # 1. (b) A snapshot of the plane cutting perpendicularly through the center 
of cylinder (shown in a). 

(top), the speedup (middle) and the efficiency (bottom) for different tests, where the 

speedup is defined as 

Speedup 
T, 
'•N 

(A.l) 

and the efficiency is defined as 

Efficiency = 
Speedup 

N ' 

(A.2) 

For this simulation, when 256 CPUs are used, the speedup factor approches 100, 

so RiceFDTD is very scalable and efficient. When less than 64 CPUs are used, the 

efficiency is larger than 50%. 
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Figure A.4 Scalability of RiceFDTD on STIC. Exact execution time (top), the speedup 
(middle) and the efficiency (bottom) for different tests - use different number of CPUs on 
the same simulation. 



Appendix B 
Derivation of the Lagrangian 

B. l Matrix notation 

In this appendix we describe the matrix notation introduced in in the main text. 

The vector X m is the primitive plasmon amplitude vector defined in Eq. (3.7). For 

convenience, we introduce the two following notations: 

Vr 

I \ 

llC,lm 

VS,lm 

VC, L 

^ VSJmaxm y 

5 

( \ 

Imaxm 

y ^S, Imaxm j 

(B.l) 

where r]c,im and r)s,im
 a r e the multipolar components in Eq. (3.1) associated with 

the cavity and sphere plasmon resonances, respectively. ac,im and (Js,im are the 

multipolar components in Eq. (3.4) and Eq. (3.5), respectively. In the same basis we 

also introduce a block diagonal matrix R defined as: 

/ - \ 
R, ab 0 

V R ab 

, where Rab = 

/ \ a 0 

0 b 
(B.2) 

It follows that R]M = AM X m and crm = (n0e)Bm X m , where Am and BM are block 
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diagonal matrices: 

Am — 

'lm 

V 

with the general term 

A, I max TCI 

5 Bm 

B 1 m 

B, Imax TCI 

A, lm 

1 
(l + l)a Yimittc) xlJ-Mlm(ttc) 

X l+l 

lb 

' ( T n ^ ^ i n , ) ^YUOs) 

and 

Bim — a0 

\ 
-x 1+2. 11 + 1 

Qlmi^s) 

b3 

ryjm(fis) 

where a; = a/6 is the aspect ratio and we define 

Mim(QC) 

Nim^s) 

Plm{&c) 

Qlmi^s) 

B . l . l Kinetic energy 

rs{a,0c) 
a 

b 
rC(b,8s) 

Ylm(Qs(a,Qc)) 

i+i 
Ylm(Qc(b,Qs)) 

d 
drc 
_d_ 

dr$ 

rl
s(rc,0c) 

Yim(^s(rc,Oc)) la1'1 

bl+2Ylm(Qc(rs,es)) 
(J + l J r ^ r s . f c ) J 

rc=a 

rs=b 

(B-3) 

(B-4) 

(B.5) 

(B-6) 

(B.7) 

(B-8) 

(B.9) 

In our matrix notation, the kinetic energy Eq. (3.6) becomes 

T„ 
me 

2e £ 
li^lj I a2r}lmac,i jm da 

T C ~ a c 
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+ J b2vtm&s,i]m\rs=bdQs 

me 

2e 
1 

Rr}*m)T{R&m)dn 

= ^nQme l(RA*mXm)T(RBmXm)dn, (B.10) 

where Q denotes the appropriate solid angle in the coordinate system. Here and in the 

following, a superscript T indicates the transpose of a vector or matrix. We therefore 

express Tm as a matrix: 

Tm = InQme(XlfmXm) &Tm = J A*jRTRBmdQ. (B.l l ) 

Here Tm is a 2lmax x 2lmax matrix. All odd rows and columns represent C terms and 

the even ones represent S terms. To refer to the matrix elements, we use a notation 

4™',.,.. For example, represents the element located at the (21 i — l)th row 

and the (2/j)th column. In this notation, we can express the elements of Tm as: 

(B.12) i(m) T' 

T< (m) 
SSJilj = Stij. - xl 

k+lj+l h + 1 tS,Q,N 
Ij + 1 

jC,P,M 
I h,lj,m 

p ( m ) 
* CSMh 

-,(m) 

lj + 1 
h 

xlj + lf2jC,Y,M _ xU+\/2jS,Q,Y 

k 
lj + 1 

Y 

where we define: 

jr,r,A 
l-i 57Ti J r* im(Qr)Ai j tm(nr)dttr. 

(B.13) 

(B.14) 

(B.15) 

(B.16) 
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In this definition, the superscript r indicates the coordinate system, i.e. C, the 

coordinate system centered on the cavity or S, the coordinate system centered on 

the sphere. T represents Pim(Qc), or Qim(0.s)-, or the spherical harmonics Yim(Qc) or 

Yimi^s), depending on what the superscript r is. Similarly, A represents Mim(Qc)-, or 

Nim(tts), or Ylm(Q,c) or Yim((ls)- The subscripts of / [ . ' ( k , m ) and (lj,m) are the 

multipolar order of V and A respectively. The quantity is Dirac's delta function. 

For a concentric nanoshell D = 0, Iiui j im •, a n d Tm reduces to a block 

diagonal matrix. As the offset D increases, the off-diagonal (U ^ lj) terms become 

finite. 

B.1.2 Potential energy 

To calculate the electrostatic potential, we start from the multipole expansion: 

[ : i ^ , y ; r j < r , a i v ' y / i , b ' , K f . (B.I?) 
j r> 

Since only the spill out charges will contribute to the electrostatic potential, we 

use <f>(m) and to represent electrostatic potential on the inner and outer surfaces, 

respectively. 

On the inner surface, where r c = a, 

can be separated into two parts: 

( f i c ) = + , (B. 18) 
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where the subscript C means the contribution comes from the inner surface charges 

and S means from the outer surface charges. These two components are: 

• C,lm 

E 

4tt l + l 
21 + 1 V a Ylm(Qc) Cl m ~ 

47r 
2V + 1 

S, lm (B.19) 

^SL(fic) = • '-XlMim{Qc) 
2l + l\b Sim 

Clm j S,Y,Q 
m 

where the function I is defined in Eq. (B.16). 

In the same way, on the outer surface, 

(B.20) 

(B.21) 

and 

4tt l + l 
21 + 1 V a 

-x l+1Nlm(ns) c. lm 

47r I rC,Y,P 
',m nm (B.22) 

^sTrlm = 

v 4? r 

V 2 I ' + 1 

4tt I 
21 + 1 V b Ylm(ns) s, lm 

4tr ll + l , + 1 }TS,Y,Q 
Clm • (B.23) 
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Again, with the notations introduced above, the electrostatic potential of azimuthal 

symmetry m can be written: 

^m — ^ra-^m 5 (B.24) 

where $ m is a block diagonal matrix: 

( 

= 

lm 

Imax Tfl 

(B.25) 

with: 

®lm = 

(in) (in) 
CC,lm SC,lm 

(f.(out) . ( o u t ) Vnn i™ ~r 

(in) (in) 
CS,lm "T SS,lm 

(out) (out) 

(B.26) 

y CC,lm ^ SC,lm ^CS,lm ^ *SS,lm / 

Here for example the notation represents the coefficient of C/m term in 

(Eq. (B.20)) and it is similar for the others. In this way, we collect the coefficients of 

Cim terms in the left column and the coefficients of Sim terms in the right column of 

matrix The elements in top and bottom rows are functions of the coordinates 

ilc and Qs, respectively. 

The potential energy is obtained from Eq. (3.9) and can be written in a matrix 

form: 

^i.i. L J 

+ J tfv^mzftpmdns 
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- J (Ra'JT(R*m)dSl 

In0me J(RB*mXm)T(MmXm)dn. (B.27) 

As for the kinetic energy Eq. (B.ll) , we can express the potential energy as a quadratic 

form: 

Vm = ~n0me{XlVmXm) & Vm = j B*jRTmmdtt. (B.28) 

Using the same index notation as for Tm, we express the matrix elements of Vm as: 

V, M 

V< 

+ 1
 xh+li+l jS,Q,N 

21 j + 1 I %) / j i TTt 

x"3+1 X 
+ V 21'+ 1 X' 
TS,Y,Q ( U rS,Q,Y _ v rC,Y,M\ 
V,lj,m Vx 1li,l',m x 1li,l',m ) 

(m) + 1
 xh+li+ljC,P,M 

21 j + 1 

2V + 1 
TC,Y,P ( U rC,P,Y _ v TS,Y,N\ 

1 l ' , l j , m \ x li,l',m x 1li,l',m) 

+ E 
V 

x"3+1 X 

(B.29) 

(B.30) 

y-M 
CS,hlj \ 

2lj + 1 
21 j + 1 

Th + l/2rS,Q,Yx _ j 21 j + 1li+l/2rC,Y,P 
x 1li,lj,m) Y 2li + 1 U,lj,m 

+ E 
+ 1 

"\J (2k + 1)(2 lj + 1) 
21' + 1 

xli+lj+l'+3/2 x 

rS.Q.JV j-C.V.P 
li,l',m l',lj,m (B.31) 



102 

y(m) SC.l-il 4 
2li + 1 /-Jj + 1/2 TS,Y,N _ 
21 + 1 ^ ^ m 

L+l/2 rC^Y, _ + 1 L + l/2 rS,Y,Q x li,lj,mJ V 21 + 1 h,lj,m 

^(2l i + l)(2l j + l2xh+h+l,+3/2 x 

+ £ 
i' 21' + 1 

n 
C,P,M rS,Y,Q 
,l',m l',lj,m (B.32) 

where we introduce the plasmon frequency for a cavity, 

and for a solid sphere, 

us,i — 

I l + l 
21 + 1 

I I 
21 + 1 

(B.33) 

(B.34) 

When D equals zero, Vm reduces to a block diagonal matrix. For finite D, the off 

diagonal (k ^ lj) terms in Vm become finite. 

B.1.3 Optical absorption 

Using our matrix notation, the coupling between the incident light field Eq. (3.12) 

can be expressed as, 

V^t = E0(t)(n0e)XlB*jRL+2YM, (B.35) 

where Ym is a block diagonal matrix: 

/ . 

YM = 

\ 
Y m 

y 0 Yimaa.M j 

(B.36) 
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with 
/ 

Y l m — 

YLm^C) 0 

0 YLM(QS) 

The Lagrangian of the system becomes: 
V 

Lm — 

nQme X ' t T ic — v t T / v m-Lm-r*-m -^rn m m 

- E0(t)(n0e)XlB*jRL+2YM 

(B.37) 

(B.38) 

and leads to the following equations of motion: 

n0me U) (fTO + f l ) - {Vm + \>J) Xim — 

Eo{t)(noe)B*^ Rl+2Y> M (B.39) 

Due to the orthogonality of the spherical harmonics, the term on the right hand side 

of the above equation is nontrivial only when M = m. The frequency dependent 

polarizability is equal to the multipole moment of the system when the amplitude of 

E0(t) is set to one, 

(u)m = J rLa*m(r)YLM(V)dS = (.B*jRL+2Ym)T x 

2 ( f m + - (Vn + Fj)]"1 (B*jRL+2Ym) . (B.40) 



Appendix C 
Convergence Test for modeling an extended 

dielectric surface 

In this appendix we present how the Method III (see in Chapter 4) has been tested 

showing that, for larger and slightly smaller slabs, the calculated results are identical. 

Figure C.la shows the geometry of the FDTD simulation domain. The thickness of 

UPML is fixed at 15 grid lengths. The distance from edge of the nanoparticle to 

the inner boundary of UPML, I, is varied. In Figure C.lb, we show the calculated 

polarization dependent dark-field scattering spectra for different I. Red curves are 

the same results as we have shown in Figure 4.8 of Chapter 4, where I = 3 grid 

lengths. The cyan and brown curves are for I = 3 + R = 43 and 1 = 3 + 2R = 83 

grid lengths, repectively, where R is the outer radius of the nanoshell. For Method 

III, these three curves are identical except a little difference (AA < 5 nm) for the 

p-polarization (top). Results for a finite slab using Method II is also included for 

comparison. Therefore, we conclude that, using Method III, the effect of induced 

charges at the edges of our finite slab is negligible and the results obtained are the 

exact solutions for the scattering spectrum of a nanoparticle on an infinite substrate. 
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Figure C . l Convergence tests for modeling an extended dielectric surface in the FDTD 
dark-field scattering calculations, (a) Schematic picture depicting the geometry in the 
FDTD simulations. I is varied in both X and Y directions. TXJPML is fixed at 15 grid 
lengths, (b) Calculated dark-field scattering spectra for the three polarizations as shown in 
insets. Results for different I using Method III are plotted for a convergence test. Result 
for a finite slab using Method II is included for comparison. 
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