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ABSTRACT 

Knowledge-Based Prediction of Chemical Shift 
and Recognition of Protein Native Structure 

by 

Zhao Ge 

We designed and implemented a suite of program which is able to 

accurately and automatically predict chemical shift of protein C-alpha nuclei on 

the simple basis of protein sequence and low-resolution C-alpha trace 

conformation. We applied this knowledge-based prediction approach on a group 

of C-alpha structures generated by computational modeling methods, and 

successfully identify the native structure by comparing the predicted and 

unassigned observed NMR data. 

We begin the automatic prediction with construction of a knowledge-

based protein structural profile library, which aims at capturing the most 

significant structural features affecting chemical shifts, even from a highly coarse

grained C-alpha model. The library is populated by more than 5000 non

homologous proteins, with publicly accessible structures from Protein Data Bank 

and more than 1.5 million pre-calculated chemical shifts by a widely used NMR 

predictive program SHIFTX. Fed with the minimum sequential and structural 

information, the program is able predict highly consistent chemical shifts 

comparing with experimental observed data from an NMR spectroscopy database 

BioMagResBank(BMRB). Overall, the proposed program achieves a correlation 

c 



coefficient of 0.937 and RMSD of 1.702 ppm towards observed chemical shifts. 

These results are slightly lower than those from achieved by the benchmark 

program SHIFTX, which utilizes semi-empirical hypersurfaces and semi-classical 

equations. On the same test sets, SHIFTX achieved a correlation coefficient of 

0.945 and RMSD of 1.599 against experimental observations. In compensation, 

like most other predictive methods, SHIFTX requires high-resolution protein 

structures with three-dimensional all-atom coordinates, its accuracy of prediction 

will be highly compromised unless fed with all-atom high-resolution structure, 

which is normally exceedingly difficult to obtain. Combined with an optimization 

matching system using Monte Carlo method, we compared the predicted C-alpha 

chemical shifts with unassigned NMR data from BMRB, and successfully identify 

the native fold topology by the resemblance between two sets of chemical shifts. 

In summary, the proposed program is one of the only methods which are 

capable to predict accurate chemical shifts, even on low-resolution C-alpha 

protein structures, which are far more accessible and readily obtained by currently 

available protein modeling methods. Based on the understanding that the similar 

pattern of chemical shifts reflects resemblance of two structures, we approved that 

prediction-recognition approach not only fundamentally improve the way of the 

NMR-assisted computational protein modeling, but is effective in accelerating the 

traditional protein structure determination and validation by NMR. 
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CHAPTER 1 

Introduction and Background 

1.1 Introduction 

Proteins are important biological molecules that present and play essential 

roles in every biological process in all known biological organisms. For example, 

many proteins participate as enzymes that catalyze different biochemical reactions 

in cell. Immunoglobulin and antibodies are vitally involved in immune response 

of organism towards infections. Many other proteins are responsible to cell signal 

detection, processing and cell cycle. Still, there are many other so-called structural 

or mechanical proteins, which are capable of maintaining structure and 

• 1 ^ 

mechanical functions of biological components " . 

The complex biological functionalities of protein result from their 

capability to fold into complicated conformations uniquely determined by their 

primary sequence1. The folding of specific structure of one protein is also driven 

by various non-covalent interactions such as di-sulfur bonding, hydrogen 

bonding, hydrophobic packing, and Van der Waal's forces. In turn, the 3-D 

conformations of proteins are critical to their particular functionality within living 

organism. For instance, receptor proteins in cell signaling system must recognize 

particular target molecules. The study of proteins is aiming at the understanding 

of the fundamental interdependency among the sequence, the structure and the 

function 4'10. 
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There are four hierarchical levels of protein structure. (1) The primary 

structure. All proteins are represented of unique sequences of combination of 

twenty common amino acids. The peptide chain is held together by covalent or 

peptide bonds, which are made during the process of protein biosynthesis or 

translation. (2) The secondary structures are highly regular sub-structures, alpha 

helix, beta strand and sheet or irregular loop, which are defined by their patterns 

of hydrogen bonds between the main-chain peptide groups. (3) Tertiary structures 

of proteins are collective spatial arrangement of the secondary structures and (4) 

quaternary structure is the complex of several protein molecules or polypeptide 

chains, which usually called as protein subunits in this context and function as 

part of the larger assembly or protein complex. 

In silico Protein Structure Prediction 

Due to the crucial relationship between structure and functionality, it is 

often essential to determine the three dimensional structure of proteins in order to 

understand their functions in a sense of molecular interactions. In silico protein 

structure prediction is to computationally determine the three-dimensional 

topology of proteins from primary sequence. The accurate modeling of protein 

structure, especially for those that are difficult to be accessed experimentally, will 

contribute to reveal their functional identity in important processes. On the other 

hand, computational studies often significantly improve the common 

experimental methods of structure determination, including NMR spectroscopy, 

X-ray crystallography, fiber diffraction, etc, which can produce information at 



3 

atomic resolution. Furthermore, the reverse problem of protein structure 

prediction is the sequence and structure designing of novel proteins, which is the 

ultimate challenge faced by therapeutic research and drug discovery. The major 

experimental and computational approaches for protein structure determination 

are introduced in the following paragraph. 
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1.2 Backgrounds 

NMR in biological macro molecule structure determination 

Nuclear Magnetic resonance is a phenomenon that magnetic nuclei, such 

as isotopic 1H, 13C, 15N and 3IP, under an applied magnetic field, absorbing and 

radiating energy at a certain resonance frequency. The frequency depends on the 

strength of external magnetic field and a number of physical and chemical factors. 

The observation from NMR spectroscopy allows insight study on the quantum 

mechanical properties of atomic nucleus, in solution or in solid state. 

Furthermore, NMR is widely applied in medical imaging techniques, such as 

magnetic resonance imaging (MRI). 

Nuclear magnetic resonance spectroscopy is unique technique among the 

others available for three-dimensional structure determination of biological macro 

molecules, such as proteins and nucleic acid at atomic resolution, since NMR data 

can be observed in solution. Most proteins maintain their structure and perform 

mechanical functions in organism fluids such as blood, and saliva. The solution 

condition such as temperature, pH and salt concentration of these physiological 

fluids can be accurately replicated in NMR experiments. In specific, NMR also 

excels X-ray crystallography in that it bypasses the routine of molecule 

crystallization. 

Chemical shifts 
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The chemical shift is a numerical description of an atomic nucleus 

dependency of magnetic energy level on external magnetic field and electronic 

environments in molecules. The four most important and frequently studied 

nuclei are from hydrongen-1 (1H), carbon-13 (13C), nitrogen-15 (15N), and 

phosphorus-31 (3 IP). The chemical shift is also expressed as the variations of 

nuclear magnetic resonance frequencies of the same kind of nucleus, due to 

variations in the electron distribution. 

Mathematically, chemical shift is usually defined as the rate between the 

difference in procession frequency between two nuclei and the operating 

frequency of the magnet, and expressed by frequency in parts per million (ppm). 

The frequency is proportion to the strength of externally applied field, while ratio 

(chemical shift) is independent to it. With the increases of the applied field, the 

deviation of chemical shift changes significantly, which improves the resolution 

of NMR. Chemical Shifts are both important spectral indicators, and dependent 

upon complex electronic and geometric factors, therefore it potential provides rich 

resources of structural information. On the other hand, these sensitive 

dependencies make the interpretation and accurate prediction of chemical shifts 

extremely difficult. Great efforts have been extensively exerted during the past 

half century, to computationally predict of chemical shift based on resources, such 

as primary sequence, three-dimensional structure, all-atom coordinates, and 

through various algorithms, such as artificial neural networks, empirical potential 

functions or hyper-surfaces, classical calculations, statistical principle component 

analysis " . These works will be covered in Chapter 2. 
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Other experimental tools 

In comparison to NMR, X-ray crystallography is a suite of advance 

experimental tool to investigate the arrangement of atoms within a crystal base on 

the fundament understanding that X-rays can be deflected by the crystal in certain 

manner. X-ray crystallography begins with growing a pure crystal of the material 

whose structure is to be determined. A beam of x-rays is then passed through the 

crystal. The regular and repeating arrangement of atoms in the crystal gives rise to 

a complex pattern of spots, which originally were recorded on receptor. The 

information about the positions of the atoms in the crystal is recorded originally in 

frequency domain. After a considerable amount of mathematical procedure, 

majorly the Fourier transformation, experiment output will be transform into 

space domain, and a map of electron densities can be calculated and displayed as 

contour maps resembling topographic maps in geography. The peaks in the 

electron density map correspond to the atomic positions in the molecule. From 

that map, a 3-D model of the molecule can be constructed. Biological X-ray 

crystallography is, to date, the most prolific discipline within the area of structural 

biology; out of the ~42000 protein structures solved, X-ray crystallography is 

responsible for -36000, according to the Protein Data Bank (PDB). 

Beside the NMR and X-ray, which potentially provide access to high and 

intermediate resolution three-dimensional structures of biological macro-

molecules. Other experimental methods, Cryo-electron microscopy (EM) and 
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small angle scattering (SAXS) are used to produce lower-resolution structural 

information in certain situations n"14. 

Computational approaches 

Structural bioinformatics uses computational techniques and 

Q 1 ft 

bioinformatics tools to model or mimic the 3D structures of bio-molecules ' . In 

current stage of structural biology, the mission of tackling increasingly 

complicated cellular systems has led to a reality that structures of many bio-

molecules, at least at early stages, can be obtained only at low to intermediate 

resolutions, therefore only incomplete structural information of these molecules 

can be obtained by experimental tools. Typical examples are seen in the 

measurements of cryo-electron microscopy (cryo-EM) and low resolution protein 

crystallography. One goal of the advanced structural bioinformatics methods is 

therefore to aid in interpretation of structural information at intermediate or higher 

resolutions. Moreover, it is a big challenge in structural biology that the 

conventional methods of building atomic model are not applicable to the 

intermediate resolution data. Therefore novel structural informatics tools are in 

high demand to bridge the missing link between the intermediate resolution 

structures and the conventional structural studies, which require at least atomic or 

C-alpha atom models. 

Monte Carlo method is a widely used class of computational algorithms 

for simulating the behavior of various physical and biological systems. A Monte 

Carlo simulation attempts to overcome local energy barriers and find global low-
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energy conformations 6. Before the simulation begins, a set of conformational 

moves is selected. Beginning with the initial conformation, each subsequent 

conformation is mutated by a random move. If the change in energy AE is 

negative (i.e., the new conformation has a lower energy), the move is 

automatically accepted. If AE > 0, the move will be accepted according to the 

Metropolis criterion. The simulation terminates when the ratio of accepted to 

attempted mutations (the acceptance ratio) falls below some threshold. The 

potential acceptance of higher energy conformations allows Monte Carlo 

simulations to overcome energy barriers and find globally low-energy 

conformations. Monte Carlo simulations are widely applied in modern 

computational biology in conformational sampling of bio-molecules, protein 

structure prediction and drug discovery. 

We show in this thesis how these state-of-the-art computational methods 

can improve the study of protein structures in assistant of raw NMR data. The 

practical role of computational biophysics is now more important than ever. 

Because the output of community-wide efforts in structural genomics, typically 

by time-consuming and relatively expensive X-ray crystallography or traditional 

NMR spectroscopy, is lagging far behind the output of large-scale DNA 

sequencing efforts such as the Human Genome Project, computational modeling 

and prediction of protein structures can offer an efficient and fast alternative 

which will be very valuable to tasks as rational drug design. Furthermore, current 

structural biology methods, such as X-ray crystallography and Cryo-EM have a 

big limitation that they can only provide static structures of bio-molecules in 
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crystal state, while most biological events are dynamic processes in solution ' , 

On the contrary, NMR is capable of observing protein structures and dynamics in 

solution, the vivid example of S AR-by-NMR in pharmaceutical researches. That 

is why computational biophysics is so significant in extending the structural 

information to fully understand the functional mechanism of biological targets. It 

can not only capture the dynamic features, but sometimes also reveal the physics 

and chemistry underneath. Moreover, it opens the door of biology for the well-

developed theoretical and computational methods in chemistry, physics, 

mathematics and computer science, which greatly broadens the approaches to 

understand the fast developing biological field. 
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1.3 Organization of Content 

The content of this thesis is organized as follows. In Chapter 2, we 

describe a computational procedure for predicting chemical shift based on C-

alpha trace conformation, generated by low or mediate resolution experimental 

methods or any computational protein folding approaches. As stated in the 

introduction, NMR served as one of the major experimental approaches in 

structure determination for biological macromolecules, suffers from the 

exceedingly difficult chemical shift interpretation. Therefore, how to derive the 

connectivity among numerical signals to structural signatures of nuclei becomes 

the final missing link. Based on a knowledge-based structural profile library and 

automated prediction protocol, we could rapidly and accurately calculated 

chemical shift from C-alpha conformation with a high consistency compared at 

observed data from experiment. More importantly, it was revealed that, despite 

the highly-coarse grained C-alpha conformation and lack of all-atom coordinates, 

which are usually necessary for calculation, our knowledge-based approach is 

able to capture most essential principle factors in the molecule that affecting 

chemical shift values. The result is verified by the high correlation coefficient and 

low root mean square deviations (RMSD) between theoretically calculation and 

experimental observation. 

In Chapter 3, the result from chapter 2 is applied in recognition of protein 

native structure from a number of generated models, by incorporating raw data 

observed directly from conventional NMR experiment. Furthermore, a new 

Monte Carlo protocol is presented, to bypass the labor-intensive procedure of 
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manual assignment between signal and nuclei. This implementation 

fundamentally boosts this solution-phase method of NMR to play more and more 

promising role in nowadays structure biology. Meanwhile, this work takes great 

advantage of different scaled models generated by computational protein structure 

modeling approaches. The minimum requirement on model resolution basically 

avoids the inevitable fallacy and difficulty in modeling small atoms and long side 

chain from those approaches. In other word, our method combines both raw 

experimental data and inexpensive computational model, in successfully 

identifying correct protein structures. 

Finally, in Chapter 4, the entire thesis work is summarized and some 

important issues for future investigation are discussed. 
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CHAPTER 2. 

Accurate Prediction of Chemical Shift Based on Protein C-alpha 

Conformation 

2.1 Introduction 

In the past half century, Nuclear Magnetic Resonance has been recognized 

as one of the most important techniques, in biological macro-molecule structure 

determination for its advantage in lower sample requirement then X-ray 

Crystallography and its ability to mimic the solution condition in which most 

proteins performs particular physiological functions. Chemical shift, is the most 

important observable markers from NMR spectroscopy, which is critical for the 

fact that it potentially provides essential three-dimensional structural information 

about proteins, such as inter-atom distances, side-chain orientations, secondary 

structure, and di-sulfur bonding. However, these multiple dependencies upon 

geometric and electronic factors make both the interpretation and prediction 

exceedingly difficult. 

Despite the fast development of instrumentation and software updates for 

NMR data processing in the past decade, the signal sequential assignment and 

structural calculation based on distance constraints are time-consuming, human 

effort intensive, and hence still severe prevention to high-throughput and accurate 

structure determination. Meanwhile, lots of efforts have been devoted in the 

prediction of chemical shift based on empirical data of known protein sequence 



and structure " . Accurate chemical shift prediction will not only dramatically 

accelerate the signal assignment procedure, but also benefit the verification of the 

proposed structures. SHIFTX, SHIFTY, PROSHIFT and CheShift are four 

current major prediction methods, though designed to use various approaches and 

different input data. SHIFTY predicts protein *H, 13C, and 15N chemical shifts on 

the basis of sequence homology, and requires solely the amino acid sequence for 

query protein. The algorithm utilized dynamic programming to detect sequence 

homologies between query sequence and hundreds of previously assigned 

proteins in the BioMagResBank1. For given amino acid and atom type, the 

SHIFTY calculated the averaged chemical shift value over the similar sequence in 

the existing library. The accuracy of SHIFTY is fundamentally restricted by its 

over-simplified resource and the lack of three-dimensional conformational 

knowledge. PROSHIFT by Jen Meiler trained an artificial neural network 

(ANN) to predict the !H, 13C, and 15N using all-atom three-dimensional protein 

structure as well as the experimental conditions, totally 350 input units are fed 

into this three-layer fuzzy logic network, including the parameters describing the 

atom in focus as well as its spatial and covalent neighbors. PROSHIFT achieves 

the root mean square deviations of 0.3 ppm, 1.3 ppm, and 2.6 ppm for hydrogen, 

carbon, nitrogen chemical shifts respectively on test set. CTzeShift30'31 has been 

developed to predict Ca chemical shifts of protein structures. It is based on the 

generation of 696,916 conformations as a function of the q>, vj/, co, xl and %2 

torsional angles for all 20 naturally occurring amino acids. Their 13C-alpha 

chemical shifts were computed at the DFT level of theory with a small basis set 
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and extrapolated, with an empirically-determined linear regression formula, to 

reproduce the values obtained with a larger basis set. Last, SHIFTX20 is a hybrid 

predictive approach that employs empirically derived chemical shift hyper 

surfaces in combination with classical equations (for ring current, electric field, 

hydrogen bond and solvent effects) to calculate H, C, and N chemical shifts 

from the coordinates for both backbone and side chain atoms. The chemical shift 

hyper surfaces contain dihedral angle, side chain orientation, secondary structure, 

and nearest neighbor effects that cannot be explicitly translated to analytical 

formulae. SHIFTX is acknowledged as one of the most accurate approaches in 

existence. 

In contrast to all existing methods, our proposed approach reported in this 

chapter uses protein amino acid sequence and the coordinates for C-alpha atoms 

as only input, and predicts C-alpha chemical shift. We begin the prediction with 

the construction of C-alpha based structural profile library. The library consists of 

structural information of 5014 non-homologous proteins combined with pre-

calculated chemical shifts from SHIFTX. By searching against this knowledge-

based library, this program is able to simulate the C-alpha chemical shift from a 

low-resolution C-alpha trace. The result is nearly equally accurate as those 

calculated by SHIFTX, with much higher requirement of all-atom coordinates of 

the protein. In consideration of the importance of protein global structural 

properties over atomic-level details in many biological issues, and a general 

difficulties in obtaining the fine high-resolution structures, our interest is more 
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focused on the predictive ability of low-resolution models or C-alpha 

conformations rather than high-resolution, all-atomic structure. 
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Method 

SHIFTY 

PROSHIFT 

CheShift 

SHIFTX 

Structural Profile 

Library 

Prediction 

Requirements 

Sequence 

All-atom 3D 

coordinates 

All-atom 3D 

coordinates 

All-atom 3D 

coordinates 

Sequence 

and 

C-alpha trace 

Algorithm 

Sequence homology 

Artificial neural 

network 

Quantum Mechanics 

Calculation 

Semi-empirical 

semi-classical 

calculation 

Knowledge-based 

Results 

Fairly 

Moderate 

Accurate 

Accurate 

Accurate 

Accurate 

Table 2.1 Comparison of chemical shift prediction methods 



26 

2.2 Materials and Methods 

Construction of Structural Profile Library 

To construct the knowledge-based structural profile library, we select 

5,014 non-homologous protein entries from Protein Data Bank 

(http://www.rcsb.org) using PISCES program, in purpose to reduce sequence 

redundancy and maintain maximum structural diversity. The full atomic 

coordinate files (.pdb) are downloaded from PDB server and screened through the 

culling procedures, with criteria: 

a) Sequence percentage identity < = 25 %; 

b) Structure resolution < 3.0 A; 

c) R-factor<0.3; 

d) Individual chain length > 20; 

e) Non X-ray crystallography entries excluded; 

f) Entries with C-alpha only structures excluded. 

In order to benchmark the prediction, 804 entries are randomly chosen into 

a "testing pool", the rest of entries are separated in the "training pool". Therefore, 

the prediction of any proteins in "testing pool" is generated with the knowledge 

solely from "training pool". The excluded entries will reenter the training pool for 

general prediction purpose. 

Profile Reader 

http://www.rcsb.org
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A profile reader program written in PERL will scan the input pdb file for each 

protein, and generated the C-alpha level structural profile library in the next three 

steps. 

Step 1: Only C-alpha coordinates are identified and recorded in a new "C-

alpha trace" file, all other information about backbone Nitrogen, Oxygen, 

Hydrogen and atoms and all side chain particles such as C-beta, C-gamma and so 

on are ignored. Certain computational protein folding programs can generate only 

C-alpha trace coordinates or backbone model, with low confidence in side chain 

orientations. Except for the lack of side chain and main chain details, these "C-

alpha trace" files follow PDB file format (ATOM Coordinate Section) strictly. 

Each record starts with "ATOM", followed by its coordinates and sequential 

information, a sample record is expressed as 

ATOM 10 CA ARG A 2 63.313 35.100 82.885 

1.00 51.84 A 
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Name 

Record Name 

Serial ID 

Atom Name 

Residue Name 

Chain ID 

Sequential 

Number 

X 

Y 

Z 

Occupancy 

Temperature 

Factor 

Record ID 

Descprtion 

Record header indicating the content 

Atom serial number. 

Atom role name, such as "CA", "CB", 

"CGI", "N", "NHl'V'O", "OD1"... 

Residue name in 3-letter Amino acid 

abbreviation, such as "ALA", "MET" 

Usually starting from "A", "B" for multiple 

chain proteins, may be empty for single chain 

entries. 

Residue sequential number, 

Atom X coordinate 

Atom Y coordinate 

Atom Z coordinate 

Atom occupancy 

Temperature factor or B value, Considering 

the atom position within a protein, and the 

interactions and forces it experiences, this 

factor describes the relative degree of 

freedom of one atom movement. 

Record identification field 

Example 

ATOM 

10 

CA 

ARG 

A 

2 

63.313 

35.100 

82.885 

1.00 

51.84 

A 

Table 2.2 PDB file format 
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Step 2: Totally 1,475,237 residues are scanned and stored in library. The 

three-dimensional C-alpha trace by each protein is reconstructed by the profile 

reader, in order to calculate the geometric distances of covalent bond for each C-

alpha atom and in-space interactions. The sequential order, amino acid types, and 

major properties for each C-alpha residue are summarized into a 30-dimensional 

vector, as described in table 3. 

We use three adjacent amino acid residues, or tri-peptide, as basic storage 

unit. The amino acid types and secondary structure types for the tri-peptide are the 

most principle components in the 30 dimensional profiles. They are used 

primarily in identifying structural unit with similar electronic, magnetic and 

geometric properties, while they often share close chemical shift. The next 23 

components in the profile numerically describe the constitution of neighborhood 

with the center C-alpha atom, and possible in space-interactions and forces it may 

experience. The last component is the angle among by the three residue C-alpha 

atoms, which is essential in determining the secondary structure identity. The last 

24 components contribute to the sensitive deviation in chemical shift for tripetides 

within identical secondary structure environment. 
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Index 

1-3 

4-6 

7-26 

27-29 

30 

Description 

The amino acids type of 

and center residue (i th) 

and its adjacent residues 

(/'-1th and i+l th) 

Secondary structure of 

center residue (i th) and its 

adjacent residues 

The numbers of the twenty 

different amino acids 

located within the sphere 

with a radius of 15 A 

The numbers of the 

neighbors within the sphere 

having their secondary 

structures as a-helix, P-

strand, or turn 

backbone angle among 

three adjacent C-alpha 

atoms 

Elements in 

profile 

AAt, AAt_x, 

SSj+l 

neiborj,j = \...2i 

neibor _ss _A, 

neibor _ss _B, 

neibor _ss _T 

Ca^x Cat CaM 

Explanation 

Derived from given 

sequence, one-letter 20 

common amino acid type 

Calculated and defined 

from given C-alpha 

coordinates. (A = helix, 

B = strand, T = turn) 

l=Ala ,2 = Cys,... 19 = 

Trp, 20 = Tyr 

First number stands for 

number in helix, second 

number for strand, and 

third number for turn 

0-360 (degree) 

Format 

3 alphabets 

(A-Y) 

3 alphabets 

(A,B,T) 

20 integers 

3 integers 

1 real 

number 

Table 2.3 Elements of 30-dimensional structural profile 
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Step 3: Parallel to the profile reading, the original PDB file with all-atom 

coordinates for each protein is fed to SHIFTX server, by which a theoretical C-

alpha chemical shift values is calculated. The library is then accomplished with 

the one and half million records with unique structural profiles and a registered 

chemical shifts correspondingly Grouped by the index 1-3 in alphabet order, the 

library is designed for fast search and compare during the prediction. 

Chemical shift prediction based on C-alpha trace conformation 

The prediction of chemical shift for any given C-alpha model is performed 

"weighted profile matching" system. The target C-alpha trace file, (generated by 

any protein structure modeling program, or simplified from all-atom coordinate 

pdb file), is first scanned by profile reader similar to the procedure used in 

preparing the structural profile library. Each target C-alpha atom is registered with 

a specific 30-dimensional profile, called target profile. 

The types of three amino acid residues and their secondary structure 

environment (first six components) of target profile are used as keywords in 

searching against entire library. Any profile with identical keywords is marked as 

"matched files", and their pre-calculated chemical shifts will contribute the 

prediction in certain degree according to the structural resemblance between the 

matched profile and the target profile. This contribution system is expressed 

explicitly as 
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^ CSt x weight} 

/ i r matched 
prediction ^weight; 

matched 

The predicted value of target C-alpha CSpredictim is defined as a weighted 

average of all the CSt. CSt is the pre-calculated chemical shift registered to the 

/ th matched profile located in the library. The weight for specific profile is 

determined by its resemblance to the target profile and is defined as 

weighs = 

r v1 

cons\ x(ratio* v, • vmget)~
l + cons^ x ^JDiff _neibor_k+const^ xDiff_CaCoCa 

k=A,B,T 

V 
target where ratio = ^ , or ratio = , , and ratio < 1.0 

v. \vi\ 'target 

The weighted average scheme is embedded in the fact that the resemble structure 

profiles reflects a similar environment which in turn yield close chemical shifts. 

The higher the resemblance of the 30 components between two profiles, the larger 

is the weight to reflect the major contribution from a closer chemical shift value. 

Specifically in the equation, the first element describes the deviation of 

neighborhood constitutions between matched profile and target, both the 

crowdness of the neighborhood and identities of neighbor residues are taken into 

consider by the dot product of two vectors. For example, residue A and B share 
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same number of neighbor residues, but one is constituted of most highly 

hydrophobic, the other is of most hydrophilic. The neighborhood information 

reflects the reverse property of A and B, which may produce significant 

difference in prediction chemical shift. In another case, residue C and D may have 

similar properties and share the neighbors of similar amino acid types. However, 

C is buried inside a protein, while D is exposed on the surface and may have 

much fewer neighbors around, which may as well results in serious change of 

chemical shift. The second and third components in the equation are designed to 

reflect the similarity secondary structure environments and topological 

configuration. The constant parameter for each component in the equation is 

individually optimized by experience and testing. 

const x = 50 

constj =0.1 

const3 = 1.0 
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2.3 Results 

Table 3 shows the comparison between the predictions of the C-alpha 

library method and all-atom SHIFTX on the test set of 806 protein chains. Totally 

87,025 C-alpha chemical shifts are predicted, among which 218 "outliners" were 

found. The outliners have out-ranged experimental data from BMRB server. For 

example, C-alpha chemical shift was smaller than 10 ppm, which is far from the 

average and obviously experimental a typo from the BMRB database. We also 

recalculate the correlation coefficient for the clean set of 86,807 residues by 

excluding the outliners. 

Data set 

Test set 

with 87,025 

residues 

Clean set 

with 86,807 

residues 

Correlation 

Coefficient 

RMSD (A) 

Correlation 

Coefficient 

RMSD (A) 

Table 2.4 Co 

Between BMRB 

and SHIFTX 

0.9306 

1.8047 

0.9450 

1.5985 

mparison of predictior 

Between BMRB 

and C-alpha based 

prediction 

0.9231 

1.8897 

0.9369 

1.7018 

i from SHIFTX, C-alp] 

Between SHIFTX 

and C-alpha based 

prediction 

0.9604 

1.3148 

0.9604 

1.3141 

la-based 

prediction and observed chemical shifts 
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In order to closely investigate the performance of c-alpha based prediction, 

we choose the same testing set as those used in verification of SHIFTX. Among 

38 proteins structure mentioned in SHIFTX works, only 17 have both atomic 

resolution structure and experiment observed chemical shift publicly accessible 

from PDB and BMRB. It was claimed by SHIFTX authors that they achieved a 

correlation coefficient of 0.98 and RMSD of 0.98 ppm of C-alpha chemical shift 

against experimental data. We will show in Table 5 the comparison of correlation 

coefficient and RMSD from SHIFTX and proposed approach for 17 individual 

proteins, ranging from 49 to 340 amino acid residues in size. 

Specifically, for two sets of data with same number (ri) of elements, 

X = (Xl,X2,...Xn) and -* ~ (jKi? J ^ ' • • • ̂ « / 

the correlation coefficient is calculated as 

/ X,XA E(XY)-E(X)E(Y) 
corr { X,Y) = . ' 

ylE(X2)-E2(X)ylE(Y2)-E2(Y) 

r = 
"X^-E^X^ 

"I*,MX*,)>Etf-(5>,y 

And root mean square deviation is calculated as 

RMSD( X,Y) = -yJEdX-Y)2) = -J^i=l ' 
V n 
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PDB ID/BMRB 

Accession 

1A6K/4061 

1BKF/4077 

1CEX/4101 

1CLL/547 

1DMB/7354 

1HCB/4022 

1 HFC/4064 

1HKA/4299 

10NC/4371 

1RGE/4259 

1ROP/4072 

1RUV/4031 

1 TOP/4401 

3LZT/4562 

4FGF/4091 

4I1B/1061 

5PTI/46 

Number of 

Residues 

139 

100 

188 

137 

340 

241 

146 

119 

89 

90 

49 

109 

88 

114 

112 

144 

49 

Resolution 

(A) 

1.10 

1.60 

1.00 

1.70 

1.80 

1.60 

1.56 

1.50 

1.70 

1.15 

1.70 

1.30 

1.78 

0.92 

1.60 

2.00 

1.00 

BMRB vs. SHIFTX 

Correlation Coefficient 

/ RMSD(ppm) 

0.97036/1.09797 

0.97722/1.08713 

0.97922/1.07413 

0.96511/1.26681 

0.97837/1.01397 

0.97285/1.03273 

0.96442/1.23993 

0.97373/1.08903 

0.96579/1.0995 

0.97656/1.14588 

0.96673/0.81666 

0.95218/1.07515 

0.96515/1.23703 

0.96857/1.17786 

0.97453/1.01452 

0.95309/1.21731 

0.97698/1.09177 

BMRB vs. C-alpha 

based Prediction 

Correlation Coefficient 

/ RMSD(ppm) 

0.95616/1.28586 

0.94755/1.56961 

0.95159/1.61877 

0.96198/1.27295 

0.94483/1.56025 

0.93638/1.52448 

0.93878/1.61688 

0.94649/1.52207 

0.91952/1.59997 

0.95165/1.51193 

0.94378/1.05236 

0.89290/1.59904 

0.95253/1.40106 

0.92067/1.76936 

0.94361/1.47203 

0.92589/1.46858 

0.95329/1.51675 

Table 2.5 Correlation coefficient and RMSD among observed data, SHIFTX prediction 

and C-alpha-based prediction for 17 testing proteins 
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— i 1 1 1 1 1 1 r 

• SHiFTX prediction 
• C-alpha-based prediction 

Linear fit of SHIFTX prediction 
Linear fit of C-alpha-based prediction 

t l 

* . 

• • • 
0.97036 

0.95616 

1.09797 

1.28566 
139 

139 

40 45 50 55 60 65 

Observed C-alpha chemical shifts 

70 

Figure 2.1 Comparison of observed and predicted C-alpha chemical shifts of 

1AK6 
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• SHIFTX prediction 
• C-alpha-based prediction 

Linear fit of SHIFTX prediction 
Linear fit of C-alpha-based prediction 

• • 
_• 

• ' I 

r«« 

0.97722 
0.94755 

1.08713 
1.56916 

100 
100 

40 45 50 55 60 65 

Observed C-alpha chemical shifts 

70 

Figure 2.2 Comparison of observed and predicted C-alpha chemical shifts of 

1BFK 
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T ' 1 • 1 ' 1 ' 1 ' 1 ' 1 

40 45 50 55 60 65 70 

Observed C-alpha chemical shifts 

Figure 2.3 Comparison of observed and predicted C-alpha chemical shifts of 

1CEX 
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1 1 1 1 1 1 1 -

• SHIFTX prediction 
• C-alpha-based prediction 

Linear fit of SHIFTX prediction 
Linear fit of C-alpha-based predictioni 

V 

fs 
0.96511 

0.96198 

1.26682 

1.27295 

137 

137 

45 50 55 60 65 

Observed C-alpha chemical shifts 

70 

Figure 2.4 Comparison of observed and predicted C-alpha chemical shifts of 

1CLL 
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40 45 50 55 60 65 70 

Observed C-alpha chemical shifts 

Figure 2.5 Comparison of observed and predicted C-alpha chemical shifts of 

1DMB 
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Observed C-alpha chemical shifts 

Figure 2.6 Comparison of observed and predicted C-alpha chemical shifts of 

1HCB 
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1 1 1 1 1 1 1 1 

• SHIFTX prediction 
• C-alpha-based prediction 

Linear fit of SHIFTX prediction 
Linear fit of C-alpha-based prediction I 

6CH 

• • 

• * . 0.96442 
0.93878 

1.23993 
1.61688 

45 50 

146 
146 

40 55 60 65 

Observed C-alpha chemical shifts 

70 

Figure 2.7 Comparison of observed and predicted C-alpha chemical shifts of 

1HFC 
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SHIFTX prediction 
C-alpha-based prediction 
Linear fit of SHIFTX prediction 
Linear fit of C-alpha-based prediction 

r * 

0.97373 
0.94649 

1.08903 
1.52207 

55 

119 
119 

- I 
70 45 50 60 65 

Observed C-alpha chemical shifts 

Figure 2.8 Comparison of observed and predicted C-alpha chemical shifts of 

1HKA 
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• SHIFTX prediction 
• C-alpha-based prediction 

Linear fit of SHIFTX prediction 
Linear fit of C-alpha-based prediction 

I 

* • 

0.96579 
0.91952 

1.0995 
1.59997 

89 
89" 

45 50 55 60 65 

Observed C-alpha chemical shifts 

70 

Figure 2.9 Comparison of observed and predicted C-alpha chemical shifts of 

10NC 
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1 1 1 1 1 1 1 1 1-

• SHIFTX prediction 
• C-alpha-based prediction 

Linear fit of SHIFTX prediction 
Linear fit of C-alpha-based prediction • • 

55 J 

• »•*!—• 

0.97656 
0.95165 

1.14588 
1.51193 

55 65 

90 
90 

40 45 50 55 60 

Observed C-alpha chemical shifts 

70 

Figure 2.10 Comparison of observed and predicted C-alpha chemical shifts of 

1RGE 
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68 

66-1 

64 

62-

60-

• 'SHIFT'x prediction ' ' ' ' ' r 

• C-alpha-based prediction 
Linear fit of SHIFTX prediction 
Linear fit of C-alpha-based prediction 

-i | i | r-

l^i 

0.96673 
0.94378 

0.81666 
1.05236 

49 
49-

48 50 52 54 56 58 60 62 64 

Observed C-alpha chemical shifts 

66 68 

Figure 2.11 Comparison of observed and predicted C-alpha chemical shifts of 

1ROP 
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• SHIFTX prediction 
• C-alpha-based prediction 

Linear fit of SHIFTX prediction 
Linear fit of C-alpha-based prediction 

6CH 

45 H 
0.95218 

0.8929 
1.07515 
1.59904 

109 
109" 

40 45 50 55 60 65 

Observed C-alpha chemical shifts 

70 

Figure 2.12 Comparison of observed and predicted C-alpha chemical shifts of 

1RUV 
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• SHIFTX prediction 
• C-alpha-based prediction 

Linear fit of SHIFTX prediction 
Linear fit of C-alpha-based prediction 

%>. 

* . 

• f X 

0.96515 
0.95253 

1.23703 
1.40106 

45 

88 
88" 

50 55 60 65 

Observed C-alpha chemical shifts 

70 

Figure 2.13 Comparison of observed and predicted C-alpha chemical shifts of 

1TOP 
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• ' Sh/lFTXprediction' ' ' ' 
• C-alpha-based prediction 

Linear fit of SHIFTX prediction a 

Linear fit of C-alpha-based prediction 

0.96857 
0.92067 

1.17786 
1.76936 

114 
114 

40 45 50 55 60 65 

Observed C-alpha chemical shifts 

70 

Figure 2.14 Comparison of observed and predicted C-alpha chemical shifts of 

3LZT 
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SHIFYx prediction 
C-alpha-based prediction 
Linear fit of SHIFTX prediction 
Linear fit of C-alpha-based prediction # « # 

/ • • " 

.• • 

»•• 

0.97453 
0.94361 

1.01452 
1.47203 

112 
112 

40 45 50 55 60 

Observed C-alpha chemical shifts 

65 

Figure 2.15 Comparison of observed and predicted C-alpha chemical shifts of 

4FGF 
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SHI FYx prediction ' ' ' r 

C-alpha-based prediction 
Linear fit of SHIFTX prediction 
Linear fit of C-alpha-based prediction 

Xs. 

0.95309 
0.92589 

1.21731 
1.46858 

144 
144 

40 45 50 55 60 

Observed C-alpha chemical shifts 

65 

Figure 2.16 Comparison of observed and predicted C-alpha chemical shifts of 

411B 
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• SHIFTX prediction 
• C-alpha-based prediction 

Linear fit of SHIFTX prediction 
Linear fit of C-alpha-based prediction 

I 

0.97698 
0.95329 

1.09177 
1.51675 

~ ~ i • 1 • 1 • 1 

45 50 55 60 

Observed C-alpha chemical shifts 

49 
49 

40 65 

Figure 2.17 Comparison of observed and predicted C-alpha chemical shifts of 

5PTI 
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2.4 Conclusion and Discussion 

We reported a suite of program that successfully predicts accurate C-alpha 

chemical shift from a knowledge-based structural profile library. The program is 

fed with low-resolution models with C-alpha atoms only, which are readily 

constructed by any computational modeling approaches. This study reveals the 

fact that current computation method can capture the essence of NMR parameters 

from even such a coarse-grained level of protein structure. Specifically, the 

overall quality (measured by correlation coefficient and RMSD) of this C-alpha 

based prediction is in the same level as high-resolution all-atom structure required 

predictive program SHIFTX. 

To further improve the quality of the prediction, several approaches are 

taken into consideration. Firstly, without raising the difficulty in modeling the 

structure, we can still take more comprehensive geometric information from the 

C-alpha traces, such as the penta-peptide sequence and structure, C(i-2)C(i-

l)C(i)C(i+l)C(i+2), the secondary structure from this broader structural unit, 

SS(i-)SS(i-l)SS(i)SS(i+l)SS(i+2). This five-element unit may contains much 

more structural signatures than the current tripeptide in that the secondary 

structure of the unit is more definitive and can be sophisticated categorized. Two 

more Ca bond angles can be obtained C(i-2)C(i-l)C(i), C(i-l)C(i)C(i+l), 

C(i)C(i+l)C(i+2) in closely describing the topology of the structural unit. Two 

dihedral angles C(i-2)C(i-l)C(i)C(i+l), C(i-l)C(i)C(i+l)C(i+2) are added to the 

structural library as well. These dihedral angles has been approved by previous 

work to reflects protein secondary structure and even tertiary topological 
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signature, in turn will adjust to the chemical shift prediction from the effect of 

long-distant forces and global shape of protein. The structural library is more 

focused on the short-range interactions and lack of such long-distance 

contributions. Secondly, the library describes the inter-residue network by simply 

the counting of neighbor residues and the distribution of their types. However, the 

relative distance and position are highly correlated the effect on chemical shifts 

from those neighbors. In an effort to include every possible effect on the chemical 

shift prediction, we plan to construct an even comprehensive structural profile, 

with all geometric properties of penta-peptide, and a fully description of the three-

dimensional sphere of target C-alpha neighborhood, which depict the number, 

type, distance and orientation about each neighbor residue. 
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CHAPTER 3. 

Determination of Protein Native Structure Assisted by 

Unassigned NMR Data 

3.1 Introduction 

Proteins play essential roles in organisms and participate in almost all 

processes in the cells. Their versatile functionalities are greatly owing to the 

ability to fold into specific three-dimensional shapes determined uniquely by the 

amino acid sequences. The major goals of current protein folding study are to 

determine the three-dimensional tertiary structure from one-dimensional primary 

sequences. From decades of extensive study, substantial progress has been made 

in terms of understanding of folding mechanisms and of actual prediction of 

19 91 

three-dimensional structures " . Currently, it is still a critical challenge faced by 

structural biologists in the exploration of life, to understand how to reliably 

determine overall topology for most proteins how proteins adopt the stable 

structures to allow specific functions. 

With the dramatic advancement in biological experimental techniques and 

facilitation in the past few decades, structural biology benefits a boost of 

experimental data. Meanwhile, there is an unprecedented demand of 

computational simulations of biological systems to incorporate the explosion of 

real world data for two reasons. First, computational modeling of proteins allow 

fast and efficient alternative methods to explain the experimental results, that will 



61 

ultimately contribute to reveal the insight into the most difficult tasks in molecular 

structural biology, such as structural-based drug design. Second to assisting the 

experimental data interpretation, in silico modeling approaches are capable of 

revealing the dynamic processes that cannot be directly detected by common 

experimental techniques in structural biology. In summary, computational 

simulations serves as irreplaceable tools in linking the classical theories from 

mathematics, physics, and chemistry with developing studies in structural 

biology. 

Protein structure determination from NMR data 

Traditional approaches provide us valuable insight on the utility of NMR 

data in protein structure determination " , meanwhile, several projects are 

launched to determine protein native structures from unassigned or sparse NMR 

data96"114. With the efforts exerted in automatic signal assignment of NOESY and 

other spectroscopy ' ' ' ' , some group tried to derive geometric distance 

information between atoms from unassigned NOESY experiments (CLOUDS 45" 

47). Others incorporate de novo fold prediction algorithms to generate candidate 

structures. Sparse and unassigned NMR data37"76, often including residual dipolar 

couplings (RDCs), NOE and backbone chemical shifts, are served as restrictions 

in filtering incorrect conformations1"36, such as TOUCHSTONEX4 and 

RosettaNMR5'6 

Recently, our group developed a de novo protein C-alpha-based structure 

prediction approach115"117. Based on sequence information alone this novel 
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protocol can rapidly generate a group of possible structures with only C-alpha 

atoms (C-alpha traces). The lack of other backbone atoms and entire side chain 

potentially enables this approach to handle large proteins (> 200 amino acids). In 

order to select correct conformations or single out native structures candidate 

models generated, other physical potential functions and experimental data are 

necessary. When NMR experimental chemical shift and its assignment are 

available, the calculated chemical shifts for candidate models are compared with 

actual experimental data. An agreement score is calculated as sum of the 

deviations between corresponding chemical shifts in two sets, and represents the 

resemblance of between predicted and observed values. The candidate models are 

ranked according to their consistency with the NMR data. 

When the assignment of experimental chemical shift is unavailable or 

incomplete, for each candidate model, an optimal assignment is identified by 

Monte Carlo/ Simulated annealing search in need of the comparison. The 

combined approaches were tested on a 76 residue protein Ubiquitin (PDB: 1G6J), 

among 84 generated candidates with RMSD from 4~15 angstroms. After the 

assignment optimization, the native structure is recognized without any 

assignment information. 

In this chapter, we report the result from the recent study in recognizing 

native structure of proteins or domains under constraints from NMR data. Since 

we used C-alpha-based model, we are focusing on distinguishing the overall 

correct topology, instead of delivering atomic resolution structure. This success 

attempt could help to increase the effective resolution of NMR method since a 
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reasonably correct three-dimensional topology conveys more structural 

information than, for example, a 10 A density map by other technique such as 

cryogenic electron microscopy (cryo-EM), from which no detailed structural 

model could be derived. For small non-crystallizable proteins, therefore, our 

method serves as a bridge connecting cryo-EM, which works better with very 

large systems, and x-ray crystallography, which must have quality crystals. 



3.2 Methods 

As described in Chapter II, for given C-alpha traces of target protein, we 

are able to predict accurate chemical shifts of all residues from the target model, 

except the first and last residues, based on the knowledge-based structural profile 

library. Parallel with the prediction, the target protein is gone through the 

conventional NMR experiments. Needless of further signal assignment, A set of 

C-alpha chemical shift can be derived conveniently from the NMR spectra 

HN(CO)CA and HNCA. Both spectra can be performed within hours and in an 

automatic format. In our research, we download the C-alpha chemical shifts of 

testing proteins from BMRB database \ The native structure recognition with the 

help from experimental data is discussed in the following two cases respectively. 

When the assignment is available 

With a strong assumption that complete assignment is available between 

specific experimental chemical shift signals for each C-alpha atom in a protein, 

an agreement score is designed to describe the resemblance of two sets of 

chemical shifts, both in the same order as the sequence, one set is directly 

observed from experiment and the other is predicted by the knowledge-based 

structural profile library. It is calculated by comparing the experimental chemical 

shift with predicted ones registered to the same atoms. The score is obtained by 

^residue 

score = yy\Si 
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1 If \CSexp-CSpredicted \< l0W 

I C S —CV I 

0 if I C 5exp "CSpredicted l> high 

high and /ow are determined upon further analysis of predicted chemical 

shift, specifically in this study, high = 3.0 ppm, low = 1.0ppm. 

Considering the ideal situation that every single pair of assigned predicted 

and observed chemical shifts are close enough that their difference falls into the 

range of 0 to low, then the agreement score is 1 for each pair. Therefore, the 

highest possible sum of agreement score could be (Nresidue - 2), as the first and 

last residues chemical shift prediction are ignored due to missing prediction 

values. This highest agreement score reflect a complete match between two sets 

of chemical shift and in turn indicating that the model resemblance the native 

structure to certain extent. On the contrary, the sum of agreement score could be 0 

in the worst case, in which the deviation of either pair is smaller than value high. 
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Fredictied CS 
i aat CS_pre 

2 Q 53 .4742 ~ 
3 I 56.3627 ~ 
4 F 56.2557 ~ 
5 V 60.9527 "~ 
6 K 55 .1466 "~ 

Exp. CS assigned 
i am CS_exp 

• 2 Q 55 .0 
• 3 I 59 .6 
• 4 F 5 5 . 2 
• 5 V 60 .8 
P 6 K 54 .5 

Figure 3.1 Calculation of agreement score with complete assignment of 

experimental NMR data 

When the assignment is not available or incomplete 

In a realistic case, and for the purpose to use unassigned NMR data, we 

assume the sequential assignment information is incomplete or not available at all, 

where signals from HN(CO)CA, and HNCA spectra have no correlation with 

sequential order. Initially, we linked the individual chemical shift from the two 

lists randomly; a pseudo score can be calculated based on the random pairs. We 

then performed a Monte Carlo and simulated annealing procedure to maximize 

the score. At each step, two pairs are randomly picked, their partners exchanged, 

and new links are accepted if the total agreement score increases after the 

exchange, otherwise, the pairs remain untouched. Typically for structure with 

100 residues, 15000 MC steps are performed until an optimal assignment is found 

and the agreement scores converge to a static value. 

In order to minimize the biases from MC/SA process, totally 20 

trajectories are performed in parallel and independently for each candidate model. 



The agreement scores are taken at multiple steps during MC iterations; an average 

over these twenty trajectories is recorded as an overall native quality for the 

model. The native structure is to be recognized by its overall high agreement 

scores and fast convergence. 

Predicted CS 
i aai CS_pre 

2 Q 53 .4742 *" 
3 I 56.3627 -

4 F 56.2557 *» 
5 V 60.9527 -
6 K 55 .1466 ' 

Exp. 
i 

*? 
k ? 
k ? 
k ? 

CS nnassigned 
asb CS_exp 
? 54 .5 
? 55 .0 
? 55 .2 
? 59 .6 
? 60 .8 

Figure 3.2 Alignment and calculation of the agreement score with 

unassigned experimental NMR data 

Recognition of native structure of Ubiquitin 

We test the approaches against a real a real protein Ubiquitin (PDB ID 

1G6J, BMRB entry 5387). Ubiquitin is small mediator proteins in a number 

biological process, which was firstly discovered in eukaryotic organism and was 

intensively studied for its function of tagging other proteins for ATP dependent 

degradation. Ubiquitin consists of 76 amino acids residues, which are grouped 

into one anti-parallel beta-strand sheet, with four strands, and two alpha-helixes. 

Meanwhile 84 simulated C-alpha structures are generated by a de novo 

modeling approaches by Wu and Ma based on sequence only. Each model is 

aligned in three-dimensional space with the known native structure, a C-alpha 
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root mean square difference between simulated and native C-alpha traces are 

calculated, the RMSDs are ranged from 4.5 to 14.5 Angstrom. 

Figure 3.3 Structure of Ubiquitin (PDB ID 1G6J, BMRB entry 5387) 

In both cases, with complete known assignment or without any assignment 

information, the native structure is identified from 84 candidate models. The 

correct structure has highest agreement scores among all the models, calculated 

by the deviation between the predicted and observed chemical shifts. In the latter 

case, ten thousand steps of Monte Carlo assignment optimization are performed to 

achieve an optimal assignment matching. 
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Figure 3.4 Agreement between predicted and observed chemical shifts with 

complete assignment 
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Agreement score convergence in optimization 

We also studied the performance of agreement score during the 

optimization procedure. To simulate the actual condition for incomplete 

experimental data, we set five initial conditions, with 100% (full assignment), 

80%, 50%, 20%, and 0% (complete random) assignment respectively. For native 

structure, the agreement scores in all five levels converged to the same and almost 

the highest value of 74 (Figure 3.6). However, even after quite long Monte Carlo 

optimization steps (20000), the chemical shifts predicted from denatured 

conformations cannot converge with such a high score, due to their inconsistent 

pattern from observed data (Figure 3.7). 

We discovered that the final scores after optimization are even higher then 

the scores calculated from known assignment, meanwhile, the optimal assignment 

found by MC procedure is often different from actual assignment. We argue that 

the consistence between predicted and experimental data from native structure 

guarantees that it could obtain a higher agreement score comparing with those 

from simulated models. In other words, even after extensive long optimization, 

the inappropriate agreement from denatured structures prevents them from 

achieving good match in any circumstances. 
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Agreement convergence of native structure with optimization 
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Figure 3.6 Convergence of agreement score during alignment optimization with 

different initial assignment condition 
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3.4 Concluding Discussion 

In this chapter, we reported results of a computational study for 

recognition tertiary topology of proteins, or protein domains in the assistant from 

conveniently accessible NMR data. A knowledge-based structural profile and pre-

calculated chemical shift library and coarse-grained protein models (C-alpha-

traces) were used in the structure determination. One important feature in this 

study was that a novel protocol of Monte Carlo simulation was employed to 

overcome the time-consuming and often man power intensive signal nuclei 

assignment in regular NMR experiment procedure. The algorithm made 

significant contribution to native structure determination in that it potentially 

provides a link from low-resolution models (C-alpha traces) with raw NMR data. 

Together with the recent development of other computational methods ' 

46 that simulated the overall shape of large molecular complexes with promising 

success 47'48, we believe that these methods will eventually enable NMR to be a 

main stream experimental technique in the field of structural biology. 
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CHAPTER 4. 

Summary and Future Goals 

This thesis describes computational methods for predicting chemical shifts 

based on minimal protein structural information. Automated prediction program 

and comprehensive library are developed and integrated in the fields of structural 

bioinformatics, knowledge-based potential, and Monte-Carlo simulation in order 

to complement, improve or guide the experimental results in NMR. The main 

contributions of this thesis are as follows: (a) Structural profile library has been 

designed to capture significant protein geometrical and energetic properties from 

atom coordinates, (b) A new computational protocol combined with the profile 

library has been developed to accurately predict protein C-alpha chemical shifts 

based on coarse-grained protein three-dimensional structures from any 

experimental databanks or computational simulations methods, (c) Incorporated 

with experimentally observed NMR data and partial signal-nuclei assignment, an 

approach was implemented to recognize native models among group of simulated 

structures, (d) A novel Monte-Carlo sampling technique has been developed and 

applied when the assignment is incomplete or not available. 

Further research to follow up the results of this thesis could take a number 

of different directions. In the study of structural profile library, in order to predict 

chemical shift more accurately, additional comprehensive geometric feathers may 

be taken into consider, such as dihedral bond, hydrogen bond, and topology of 

surrounding Carbon nuclei. These properties can still be readily obtained from 
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low-resolution models, without adding difficulties to experiments and 

computational cost to modeling approaches. In the study of native protein 

structure recognition, other information from biological experiments may be 

incorporated as supplement to chemical shifts to improve the determination. 

In summary, the fundamental goals of research are aimed at the 

understanding the macro bio-molecule structures. The computational methods 

developed in this thesis enable such studies and are useful to take advantage of 

experimental data and to aid computational structure prediction that are beyond 

conventional means. 


