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ABSTRACT 

Exploiting Address Space Contiguity to Accelerate TLB Miss Handling 

by 

Thomas W. Barr 

The traditional CPU-bound applications of the past have been replaced by multiple 

concurrent data-driven applications that use lots of memory. These applications, including 

databases and virealization, put high stress on the virtual memory system which can have 

up to a 50% performance overhead for some applications. Virtualization compounds this 

problem, where the overhead can be upwards of 90%. While much research has been done 

on reducing the number of TLB misses, they can not be eliminated entirely. This thesis 

examines three techniques for reducing the cost of TLB miss handling. We test each against 

real-world workloads and find that the techniques that exploit course-grained locality in 

virtual address use and contiguity found in page tables show the best performance. 

The first technique reduces the overhead of multi-level page tables, such as those used 

in x86-64, with a dedicated MMU cache. We show that the most effective MMU caches 

are translation caches, which store partial translations and allow the page walk hardware to 

skip one or more levels of the page table. In recent years, both AMD and Intel processors 

have implemented MMU caches. However, their implementations are quite different and 

represent distinct points in the design space. This thesis introduces three new MMU cache 

structures that round out the design space and directly compares the effectiveness of all five 

organizations. This comparison shows that two of the newly introduced structures, both of 

which are translation cache variants, are better than existing structures in many situations. 



Secondly, this thesis examines the relative effectiveness of different page table organi

zations. Generally speaking, earlier studies concluded that organizations based on hashing, 

such as the inverted page table, outperformed organizations based upon radix trees for sup

porting large virtual address spaces. However, these studies did not take into account the 

possibility of caching page table entries from the higher levels of the radix tree. This work 

shows that any of the five MMU cache structures will reduce radix tree page table DRAM 

accesses far below an inverted page table. 

Finally, we present a novel device, the SpecTLB, that is able to exploit alignment in the 

mapping from virtual address to physical address to interpolate translations without any 

memory accesses at all. Operating system support for automatic page size selection leaves 

many small pages aligned within large page "reservations". While large pages improve 

TLB coverage, they limit the control the operating system has over memory allocation 

and protection. Our device allows the latency penalty of small pages to be avoided while 

maintaining fine-grained allocation and protection. 
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CHAPTER 1 

Introduction 

1.1 Introduction 

Virtual memory is not a solved problem. While it is conceptually simple, mapping multiple 

large virtual address spaces to a single physical address space is a massive organizational 

challenge. There can be millions of pages resident in memory at any given time. Addition

ally, virtual address spaces are large and sparsely used. Even though a particular process 

may only use a few gigabytes of memory, this data may be spread over a many terabyte 

region of the virtual address space. To support this, page tables on x86-64 use a multi-level 

radix tree. This format saves space, but requires multiple accesses to the page table to 

translate a single address. 

On modern systems, this address translation becomes the dominant performance over

head of virtual memory. The limited size of translation lookaside buffers (TLBs) means that 

misses are inevitable and the page table must be consulted to translate addresses. Recent 

work has shown that the impact of address translation on overall system performance ranges 

from 5-14% even for nominally sized applications in a non-virtualized environment [1]. 

As the application's memory footprint increases, it has a significantly larger impact on 

virtual memory performance, approaching 50% in some cases [2]. In this thesis, we show 

that databases can be particularly taxing on address translation hardware. A common oper-
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ation in databases is the join, which can use hash tables of many gigabytes for in-memory 

databases. Such joins are common, and the performance of large joins is representative of 

overall database performance [3]. Modern scientific supercomputing workloads are work

ing with fewer dense matrices and more with sparse and graph structures [4]. These work

loads are have less spatial locality in their access pattern and therefore will see a far higher 

TLB miss rate than traditional scientific applications. In the future, all of these applications 

are likely to use more memory as available physical memory increases. 

Compounding address translation overhead is virtualization. Nested paging, the current 

technique for hardware supported memory virtualization, increases virtual memory over

head geometrically. Each address in a guest virtual address space must first be translated 

into a guest physical address. That guest physical address must then be translated into a 

host physical address. Since guest page tables on x86-64 store pointers in guest physical 

address form, a so-called nested translation can take as much as twenty-four memory ac

cesses. Under nested paging, the overhead of virtual memory increases to up to 89% for 

real world workloads [1]. 

The primary focus of recent research to reduce this overhead has been to directly reduce 

the number of TLB misses by increasing the coverage of the TLB. Since TLBs are on the 

critical path of a memory access, their size is technology limited. Therefore, an increase 

in TLB coverage must come from an increase in the coverage of each particular entry, in 

other words, an increase in page size. Large pages have been shown to improve system 

performance for some workloads up to 30% as compared to using only small pages [5]. 

However, using large pages limits the ability of the operating system to control the alloca

tion and protection of data. This can lead to wasted physical memory and I/O overheads. 

Additionally, fine-grained protection is required to emulate I/O devices in virtualization. 

While this work has been successful at reducing the number of TLB misses, they can 
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never eliminate the problem entirely for two reasons. First, many environments like virtu-

alization require fine grained allocation and protection, precluding the use of large pages. 

Additionally, while large pages increase TLB coverage, they only delay the problem. As 

physical memory sizes increase, the fraction of memory that can be covered by the TLB 

continues to shrink. 

Comparatively less attention has been paid to reducing the cost of TLB misses once 

they happen. On x86-64, the high overhead of virtual memory is often traced to the large 

number of memory accesses required for a radix tree page table. In the common case, to 

translate a small page, it requires four accesses to the memory hierarchy per translation. 

However, since there is locality in virtual address use on a granularity larger than a page, 

there is reuse of these higher level page table entries. To exploit this, Intel and AMD have 

both introduced MMU caches, dedicated caches to serve upper levels of the page table. 

These devices can reduce the number of memory hierarchy accesses required to translate 

an address from four to nearly one. 

AMD's MMU cache, the page walk cache, is essentially a very small LI cache for 

page table entries. It holds 24 entries, uses an LRU replacement scheme and each entry is 

tagged by the page table entry's address in physical memory space. Intel's paging structure 

caches are a set of three caches, each responsible for caching a particular level of the table. 

This cache is tagged using portions of the virtual address translated by the page table entry. 

This allows the page walk hardware to "skip" cached levels of the tree. The differences in 

behavior between these very different designs has not been previously investigated. 

Alternatively, other work has proposed replacing the radix table entirely. Some proces

sors utilize a page table based on hashing, a decision supported by a significant body of 

research [6, 7]. In the ideal case, a hash table can reduce the number of required mem

ory accesses to one. However, a hash table comes with significant overhead in terms of 
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tagging which can reduce the efficiency of page table entry caching. Literature comparing 

these designs is relatively old and has not investigated the impact of MMU caching on this 

tradeoff. 

These systems all try to reduce the number of memory hierarchy accesses required per 

translation to one. However, this final memory access is the one most likely to miss in 

the data cache, so it can be extremely expensive. Nonetheless, no work has been done on 

reducing the impact of this final access. There is significant opportunity for performance 

increase if a system can be developed that predicts translations without any memory ac

cesses at all. The use of a reservation based physical memory allocator can make such 

predictions possible. Such a system leaves significant alignment and contiguity in the map

ping between virtual pages and physical pages. There is currently no system which exploits 

the predictability inherent in these underfilled reservations. 

1.2 Contributions 

This thesis begins by examining two current approaches to accelerating address translation: 

caching and alternative page table formats. We show that exploiting inter-page spatial 

locality is critical to performance. We performed the first comprehensive design space 

exploration and developed the first descriptive nomenclature of MMU caches. We divide 

five different designs into a two dimensional space. We show that caches tagged by virtual 

address parts (dubbed translation caches) outperform caches tagged by page table entry 

(PTE) physical address {page table caches). While their coverage is similar, translation 

caches are able to skip levels of the page table, reducing the number of memory hierarchy 

accesses required per walk. 

We also analyze the tradeoffs between split and unified caches. This choice is a trade

off between isolating data of differing importance and adaptability to differing workloads. 
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Split caches preserve upper level entries at the expense of flexibility and die area. This ham

pers performance on large-memory applications. We present a novel replacement policy, 

Variable-Insertion Point LRU, that dynamically partitions the cache for a given workload. 

This replacement policy adapts to preserve entries that have high reuse. It allows a unified 

MMU cache of n + 1 entries to perform as well as a split cache holding a total of 3 x n 

entries, even under pathological workloads. 

Secondly, we compare the current x86-64 radix tree page table with competing formats. 

We examine an inverted page table, a clustered page table and a translation storage buffer. 

Our work is the first to compare a radix tree page table with a dedicated MMU cache 

against these alternate formats. We find that the overhead of tagging dramatically reduces 

the cachability of page table entries. Additionally, in a radix table, translations for pages 

adjacent in the virtual address space are adjacent in the page table. In a hash-based page 

table, however, adjacent translations are from random virtual addresses. This decreases the 

spatial access locality to the page table. The alternate page table formats require up to 4x as 

many DRAM accesses than the standard radix table. We conclude that the most important 

factors in page table design are the number of adjacent translations that can fit in a cache 

line and the total number of translations that can fit in the processor cache. 

Finally, we present a novel device that exploits alignment and contiguity in the physical 

address space created by reservation based memory allocators. Our device can predict 

the physical address of a request that causes a TLB miss by using interpolation. This 

predicted address can be used for speculative execution while the page walk occurs in 

parallel, eliminating the latency of the TLB miss for these cases. In our simulations, it is 

able to remove a per-benchmark average of 56% of MMU-related DRAM accesses from 

the critical path of execution. 
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1.3 Organization 

This thesis is organized as follows. Chapter 2 introduces the x86-64 page table. It discusses 

the evolution of the table and its support for multiple page sizes. Chapter 3 discusses related 

work. Chapter 4 discusses and evaluates the different MMU cache designs. Each cache 

design is compared using a variety of different workloads. Chapter 5 evaluates competing 

page table formats using traces developed in Chapter 4. Chapter 6 introduces our novel 

speculative TLB design. Finally, we Conclude in chapter 7. 
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CHAPTER 2 

x86 Address Translation 

Much of the overhead of the x86 address translation system is due to its multilevel nature. 

The 48-bit virtual address space supported on current x86-64 processors is far too large 

to be supported by a simple flat page table. Therefore, it uses a four-level radix tree to 

efficiently store a sparsely utilized large address space. While this design is space efficient, 

it requires four sequential accesses to the page table per translation, causing a large latency 

penalty. This chapter examines the history and use of this page table design in detail while 

Chapter 4 examines hardware techniques to accelerate it. 

2.1 Page Walk Details 

All x86 processors since the Intel 80386 have used a radix tree to record the mapping from 

virtual to physical addresses. Although the depth of this tree has increased, to accommodate 

larger physical and virtual address spaces, the procedure for translating virtual addresses to 

physical addresses using this tree is essentially unchanged. A virtual address is split into a 

page number and a page offset. The page number is further split into a sequence of indices. 

The first index is used to select an entry from the root of the tree, which may contain a 

pointer to a node at the next lower level of the tree. If the entry does contain a pointer, the 

next index is used to select an entry from this node, which may again contain a pointer to a 

node at the next lower level of the tree. These steps repeat until the selected entry is either 
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Figure 2.1 : Decomposition of the x86-64 virtual address. 

invalid (in essence, a NULL pointer indicating there is no valid translation for that portion 

of the address space) or the entry instead points to a data page using its physical address. 

In the latter case, the page offset from the virtual address is added to the physical address 

of this data page to obtain the full physical address. In a simple memory management unit 

(MMU) design, this procedure requires one memory access per level in the tree. 

Figure 2.1 shows the precise decomposition of a virtual address by x86-64 proces

sors [8]. Standard x86-64 pages are 4KB, so there is a single 12-bit page offset. The 

remainder of the 48-bit virtual address is divided into four 9-bit indices, which are used to 

select entries from the four levels of the page table. The four levels of the x86-64 page table 

are named PML4 (Page Map Level 4), PDP (Page Directory Pointer), PD (Page Directory) 

and PT (Page Table). In this thesis, however, for clarity, we will refer to these levels as 

L4 (PML4), L3 (PDP), L2 (PD) and LI (PT). Finally, the 48-bit virtual address is sign 

extended to 64 bits. As the virtual address space grows, additional index fields (e.g., L5) 

may be added, reducing the size of the se field. 

An entry in the page table is 8 bytes in size regardless of its level within the tree. 

Since a 9-bit index is used to select an entry at every level of the tree, the overall size of a 

node is always 4KB, the same as the page size. Hence, nodes are commonly called page 

table pages. The tree can be sparsely populated with nodes—if at any level, there are no 

valid virtual addresses with a particular 9-bit index, the sub-tree beneath that index is not 

instantiated. For example, if there are no valid virtual addresses with L4 index 0x0 3a, that 

entry in the top level of the page table will indicate so, and the 262,657 page table pages 
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Figure 2.2 : An example page walk for virtual address (0b9, 0 0 c , Oae, 0 c 2 , 016). 
Each page table entry stores the physical page number for either the next lower level page 
table page (for L4, L3, and L2) or the data page (for LI). Only 12 bits of the 40-bit physical 
page number are shown in these figures for simplicity. 

(1 L3 page, 512 L2 pages, and 262,144 LI pages) beneath that entry in the radix tree page 

table will not exist. This yields significant memory savings, as large portions of the 256 TB 

virtual address space are never allocated for typical applications. 

Figure 2.2 illustrates the radix tree page table walk for the virtual address 0x0000 

5c8 3 15cc 2 016. For the remainder of the thesis, such 64-bit virtual addresses will be 

denoted as (L4 index, L3 index, L2 index, LI index, page offset) for clarity. In this case, the 

virtual address being translated is (0b9, 0 0 c , Oae, 0 c 2 , 016). Furthermore, for 

simplicity of the examples, only 3 hexadecimal digits (12 bits) will be used to indicate the 

physical page number, which is actually 40 bits in x86-64 processors. 

As shown in the figure, the translation process for this address proceeds as follows. 
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First, the page walk hardware must locate the top-level page table page, which stores L4 

entries. The physical address of this page is stored in the processor's CR3 register. In order 

to translate the address, the L4 index field (9 bits) is extracted from the virtual address and 

appended to the physical page number (40 bits) from the CR3 register. This yields a 49-bit 

physical address that is used to address the appropriate 8-byte L4 entry (offset 0b9 in the 

L4 page table page in the figure). The L4 entry may contain the physical page number of an 

L3 page table page (in this case 042). The process is repeated by extracting the L3 index 

field from the virtual address and appending it to this physical page number to address the 

appropriate L3 entry. This process repeats until the selected entry is invalid or specifies the 

physical page number of the actual data in memory, as shown in the figure. Each page table 

entry along this path is highlighted in grey in the figure. The page offset from the virtual 

address is then appended to this physical page number to yield the data's physical address. 

Note that since page table pages are always aligned on page boundaries, the low order bits 

of the physical address of the page table pages are not stored in the entries of the page table. 

Given this structure, the current 48-bit x86-64 virtual address space requires four mem

ory references to "walk" the page table from top to bottom to translate a virtual address (one 

for each level of the radix tree page table). As the address space continues to grow, more 

levels will be added to the page table, further increasing the cost of address translation. A 

full 64-bit virtual address space will require six levels, leading to six memory accesses per 

translation. 

Alternatively, an L2 entry can directly point to a contiguous and aligned 2MB data 

page instead of pointing to an LI page table page. In Figure 2.2, virtual address ( 0b9 , 

OOd, Obd, 123f5d7) is within a large page. This large-page support greatly increases 

maximum TLB coverage. In addition, it lowers the number of memory accesses to locate 

one of these pages from four to three. Finally, it greatly reduces the number of total page 
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table entries required since each entry maps a much larger region of memory. 
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CHAPTER 3 

Related Work 

Work on reducing the performance penalty of virtual memory can be divided into tech

niques that reduce the impact of TLB misses and those that reduce their frequency. Pre

vious work on reducing the impact of TLB misses have primarily investigated alternative 

page table formats and caching, as examined in this thesis. Systems that reduce TLB miss 

frequency have been primarily related to large page use and TLB prefetching. Our work is 

generally complementary to these techniques. 

3.1 Caching 

Some early work on caching page table entries was done before the introduction of AMD 

and Intel's MMU caches. This work was targeted at accelerating software TLB miss han

dling. Bala et al. introduced a software cache for page table entries [9]. This cache is 

read by the software page fault handler and manages entries in physical memory to avoid 

cascading TLB misses that come from reading page table entries in virtual memory space. 

Wu and Zwanepoel expanded this to a hardware/software design [10]. They propose a 

dedicated cache to handle L2 page table entries. If a translation hits in their structure, the 

MMU loads the LI entry directly, as in the caches presented in this thesis. If the translation 

misses, a software fault is triggered. We extend this proposal into a device that caches all 

upper levels in Chapter 4. 
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McCurdy et al. investigated the TLB performance of a wide variety of high-

performance computing applications over different page sizes [2]. They show that this class 

of application can have significant overhead from memory management. Changing page 

sizes can change application performance by up to 50% in many cases. They also show 

that the HPCC and SPEC benchmarks do not necessarily represent these applications, and 

are poor analogues for choosing page sizes with. 

The authors point out the importance of the L2 data cache in storing page table entries. 

Applications were profiled with performance counters on actual hardware. This reveals 

that applications that use large pages can show improved performance even in the face of 

decreased TLB hit rates. This is due to the shallower, and therefore smaller, page table 

when using large pages. 

Bhargava et al. first described the AMD page walk cache and their extensions to it to 

support virtualization. This cache is described in detail in Chapter 4. 

3.2 Alternate page table formats 

Jacob and Mudge [11] compare five production and proposed systems with different mem

ory management systems. They conclude that the x86-32 MMU has the highest perfor

mance because it works entirely in hardware, without any software handling. The precise 

interrupts required by software MMUs, such as those on MIPS, present an overhead that is 

not hidden by caching. We examine these interrupts in the context of SPARC'S Translation 

Storage Buffer in Chapter 5. They also show that MMU related memory accesses can cause 

higher than expected cost due to user program and data being evicted by page table entries. 

This effect further emphasizes the importance of efficient storage of page table entries. 

In terms of space, a radix tree-based page table can be an inefficient representation for a 

large, sparsely-populated virtual address space. Liedtke introduced Guarded Page Tables to 
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address this problem [12]. In particular, Guarded Page Tables allow for path compression. 

If there is only one valid path through multiple levels of the tree, then the entry prior to this 

path can be configured such that the page walk will skip these levels. 

Talluri and Hill presented alternate forms of inverted page tables called clustered and 

subblocked page tables [6,7]. These designs associate a power of two number of adjacent 

translations with a single virtual tag. The high bits of a virtual address are compared against 

the tag while the low bits select a particular subblock. We simulate a similar system in 

Section 5.1 and compare it to both traditional inverted page tables and cached radix tree 

tables. They also present support for a subblock TLB which uses the same tag stored in 

the page table. Each entry in their TLB stores multiple translations with a common virtual 

tag. This provides some of the benefits of large pages without requiring operating system 

modifications beyond support for the new page table format. 

This technique reduces the space overhead of the page table by reducing the number of 

tags that are required per translation. However, it also increases the number of translations 

in the page table that can fit in a processor data cache (or a single line of the cache), which 

we show in Chapter 5. We conclude that such a system is not as efficient as the radix tree 

page table. 

3.3 Reducing TLB miss frequency 

Talluri and Hill ([6]) first proposed a reservation based system for using clustered page 

tables. Navarro et al. ([5]) extended this idea into a practical memory allocator for su-

perpages and implemented it under FreeBSD. Most critically, this extension developed the 

reclamation of underfilled superpage reservations. While these works are trying to create 

full reservations, as a by-product, they also create contiguity in the page table that is ex

ploited in this thesis. Additionally, their work extended the system to support multiple page 
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sizes. 

Early work on implementing superpage support in general-purpose operating systems 

used a static page size determination. IRIX ([13]), Solaris ([14]) and HP-UX ([15]) allocate 

superpages at page fault time. An process tells the operating system that a region of its 

address space should be allocated using large pages. These operating systems then allocate 

and map the entire page at once, unlike the reservation and promotion process used by 

FreeBSD. Since these systems do not place small pages in a reservation, they will not 

benefit from the techniques described in this work. 

Romer et al., ([16]) propose the creation of superpages by moving existing pages, pre

viously scattered throughout physical memory, into contiguous blocks. While this process 

may be prohibitively expensive for very large superpages, it may have more success with 

the architecture described here that does not require a full reservation. 

Saulsbury et. al. propose a prefetching scheme for TLBs that preload pages based re

cently accessed pages [17]. Unlike the techniques presented in this thesis, their techniques 

require page table modification. More recent work [18, 19] has proposed architecturally 

independent prefectching techniques based on access patterns and inter-core cooperation. 

These techniques all focus on reducing the frequency of TLB misses while our work 

focuses on reducing the cost of servicing a TLB miss. Both types of techniques are com

plementary and could easily be combined. 
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CHAPTER 4 

MMU Caching 

4.1 Introduction 

This chapter explores the design space of memory-management unit (MMU) caches for 

accelerating virtual-to-physical address translation in processor architectures, like x86-64, 

that implement paged virtual memory using a radix tree for their page table. In particu

lar, these caches accelerate the page table walk that occurs after a miss in the Translation 

Lookaside Buffer (TLB). In fact, a hit in some of these caches enables the processor to skip 

over one or more levels of the tree and, in the best case, access only the tree's lowest level. 

For several generations of x86 processors, from the Intel 80386 to the Pentium, the 

page table had at most two levels. Consequently, whenever a TLB miss occurred, at most 

two memory accesses were needed to complete the translation. However, as the physical 

and virtual address spaces supported by x86 processors have grown in size, the maximum 

depth of the tree has increased, first to three levels in the Pentium Pro to accommodate a 

36-bit physical address within a page table entry, and more recently to four levels in the 

AMD Opteron to support a 48-bit virtual address space. In fact, with each passing decade 

since the introduction of the 80386, the depth of the tree has grown by one level. 

Recent work has shown the impact of TLB misses on overall system performance 

ranges from 5-14% for nominally sized applications, even in a non-virtualized environ-
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merit [1]. As the application's memory footprint increases, TLB misses have a significantly 

larger impact on performance, approaching 50% in some cases [2]. Although the use of 

large pages can lessen this impact, with further increases in the memory footprint their 

effectiveness declines. Therefore, both AMD and Intel have implemented MMU caches 

for page table entries from the higher levels of the tree [20, 1]. However, their caches 

have quite different structure. AMD's Page Walk Cache stores page table entries from any 

level of the tree, whereas Intel implements distinct caches for each level of the tree. Also, 

AMD's Page Walk Cache is indexed by the physical address of the cached page table en

try, whereas Intel's Paging-Structure Caches are indexed by portions of the virtual address 

being translated. Thus, in this respect, the Page Walk Cache resembles the processor's data 

cache, whereas the Paging-Structure Caches resemble its TLB. 

This chapter's primary contribution is that it provides the first comprehensive explo

ration of the design space occupied by these caches. In total, it discusses five distinct points 

in this space, including three new designs. Specifically, it presents the first head-to-head 

comparison of the effectiveness of these designs. In general, the results of this comparison 

show that the translation caches, which store partial translations and allow the page walk 

hardware to skip one or more levels of the page table, are the best. In addition, the new 

translation caches that are introduced by this chapter are better than the existing caches in 

many situations and workloads. 

This chapter is organized as follows. Section 4.2 describes the design space, identi

fying the essential differences between AMD's Page Walk Cache, Intel's Paging-Structure 

caches, and the new structures developed in this chapter. Section 4.3 qualitatively compares 

these structures, and Section 4.5 describes this chapter's methodology for quantitatively 

comparing them. Section 4.6 presents quantitative simulation results of their effectiveness 

as compared to one another. Finally, Section 4.8 summarizes this chapter's conclusions. 
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4.2 Caching page walks 

While radix-tree page tables require many accesses to translate a single address, the ac

cesses to the upper level page table entries have significant temporal locality. Walks for 

two consecutive pages in the virtual address space will usually use the same three upper 

level entries, since the indices selecting these entries come from high-order bits of the vir

tual address, which change less frequently. 

While the MMU does access the page table through the memory hierarchy, it only has 

access to the L2 data cache in at least one major commercial x86 design [1]. Since the 

L2 data cache is relatively slow on modern CPUs, accessing three upper-level page table 

entries on every page walk will incur a penalty of several tens of cycles per TLB miss, even 

if all entries are present in the L2 data cache. 

Therefore, the x86 processor vendors have developed private, low-latency caches for 

the MMU that store upper level page table entries [1, 20]. In this section, we describe the 

design space and provide a nomenclature for the different tagging and partitioning schemes 

used by these MMU caches. 

MMU caches may store elements from the page table tagged by their physical address 

in memory, as a conventional data cache might. We call such MMU caches page table 

caches. Examples include AMD's Page Walk Cache and the L2 data cache, although it is 

not private to the MMU. Alternatively, MMU caches can be indexed by parts of the virtual 

address, like a TLB. We call such MMU caches translation caches. Intel's Paging-Structure 

Caches are translation caches. 

For either of these tagging schemes, elements from different levels of the page table can 

be mixed in a single cache (a unified cache), or placed into separate caches (a split cache). 

Finally, each cache entry can store an entry from one level along the page walk, or it can 



store an entire path (apath cache). 
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4.2.1 Page table caches 

The simplest example of a page table cache is the processor's L2 data cache. The page 

walker generates a physical address based upon the page table page to be accessed and an 

index from the virtual address. This physical address is then fetched from the processor's 

memory hierarchy starting with the L2 data cache. 

Page table caches use this same indexing scheme. Elements are tagged with their phys

ical address in the page table. These tags are the size of the physical page number plus the 

size of one page table index. LI entries are not cached in any of the designs presented here 

(since the TLB itself caches those entries). 

Base Location 

125 

042 

613 

Index 

Oae 

00c 

0b9 

Next Page 

508 

125 

042 

Figure 4.1 : An example of the contents of a UPTC. Each entry is tagged with the address 
of a page table entry, consisting of the 40-bit physical page number of the page table page 
and a 9-bit index into it. The entry then provides a 40-bit physical page number for the 
next lower level page table page. (Only 12 bits of the physical page numbers are shown, 
for simplicity.) 

Unified Page Table Cache (UPTC) 

The simplest design for a dedicated page table cache is a single, high-speed, read-only 

cache for page table entries, tagged by their physical address in memory. Entries from 

different levels of the page table are mixed in the same cache, all indexed by their physical 

address. Such a cache is analogous to a private, read-only LI data cache for page table 
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L2 entries 

L3 entries 

L4 entries 

Base Location 

125 

042 

613 

Index 

Oae 

00c 

0b9 

Next Page 

508 

125 

042 

Figure 4.2 : An example of the contents of a SPTC. Each entry holds the same tag and data 
asintheUPTC. 

entries. However, like a TLB, coherence between this cache and the page table can be 

maintained by software with little overhead. AMD's Page Walk Cache has this design [1]. 

Figure 4.1 shows an example of the Unified Page Table Cache (UPTC) after the MMU 

walks the page table to translate the virtual address (0b9, 0 0 c , Oae, 0 c 2 , 016). If 

the MMU subsequently tries to translate the virtual address (0b9 , 0 0 c , Oae, 0 c 3 , 

103), the page walk will begin by looking for the page table entry 0b9 in the L4 page table 

page (located at 613 and referenced by the CR3 register). Since this page table entry is 

present in the UPTC, it does not need to be loaded from the memory hierarchy. 

This entry indicates that the L3 page table page has physical page number 042. The 

same process is then repeated to locate the L2 and LI page table pages. Once the address of 

the LI page table page is found, the appropriate entry is loaded from memory to determine 

the physical page address of the desired data. 

Without a page table cache, all four of these accesses to page table entries would have 

required a memory access, each of which may or may not hit in the L2 data cache. In 

contrast, with the page table cache, the three top entries hit in the private page table cache, 

and only one entry (the LI entry) requires a memory access, which may or may not hit in 



the L2 data cache. 
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Split Page Table Cache (SPTC) 

An alternate design for the page table cache separates the page table entries from different 

levels into separate caches. Figure 4.2 illustrates a Split Page Table Cache (SPTC). In this 

design, each individual entry contains the same tag and data as it would in the unified page 

table cache. The primary difference is that each page table level gets a private cache, and 

entries from different levels do not compete for common slots. 

4.2.2 Translation caches 

As an alternative to tagging cache entries by their physical address, they can be tagged by 

their indices in the virtual address. An L4 entry will be tagged by the 9 bit L4 index, an 

L3 entry with the L4 and L3 indices, and an L2 entry with the L4, L3, and L2 indices. We 

call this device a translation cache, because it is storing a partial translation of a virtual 

address. 

With this tagging scheme, data from one entry is not needed to lookup the entry at the 

next lower level of the page table. All of the lookups can be performed independently of 

each other. In the end, the MMU will select the entry that matches the longest prefix of the 

virtual address because it allows the page walk to skip the most levels. 

Split Translation Cache (STC) 

Like an SPTC, the Split Translation Cache (STC) stores entries from different levels of the 

page table in separate caches. However, as shown in Figure 4.3, the STC uses a different 

way of tagging the entries. The Intel Paging-Structure Caches [20] exemplify the STC 

organization. 
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L2 entries 

L4 index 

0b9 

L3 index 

00c 

L2 index 

Oae 

Next Page 

508 

L3 entries 
0b9 00c 125 

L4 entries 
0b9 042 

Figure 4.3 : An example of the contents of a STC. Each index is 9-bits, and the data holds 
a 40-bit physical page number of the next page table level. An entry in the L2 cache must 
match on all three indices, an entry in the L3 must match on two and the L4 on one. 

L4 index 

0b9 

0b9 

0b9 

L3 index 

00c 

00c 

XX 

L2 index 

Oae 

XX 

XX 

Next Page 

508 

125 

042 

Figure 4.4 : An example of the contents of a UTC. An "xx" means "don't care". 
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The example in Figure 4.3 shows the split translation cache after the MMU walks the 

page table to translate the virtual address (0b9, 0 0 c , Oae, 0 c 2 , 016). If the MMU 

subsequently starts to translate the virtual address (0b9, 0 0 c , Odd, 0 c 3 , 929), it 

will attempt to locate the LI, L2 and L3 page table pages in their corresponding caches 

using portions of the virtual address. The location of the L3 page table page would be 

stored in the L4 entry cache and tagged by the L4 index, (0b9). Similarly, the location of 

the L2 page table page would be stored in the L3 entry cache and tagged by the L4 and L3 

indices, (0b9, 00c). Finally, the location of the LI page table page would be stored in 

the L2 entry cache and tagged by the L4,L3 and L2 indices, (0b9, 0 0 c , Odd). 

These searches can be performed in any order, and even in parallel. In the above exam

ple, the cache can provide the location of the appropriate L3 and L2 page table pages, but 

not the LI page table page, as (0b9, 0 0 c , Odd) is not present in the L2 entry cache. 

Ultimately, the MMU would use the (0b9, 00c) entry from the L3 entry cache because 

it allows the page walk to begin further down the tree, at the L2 page table page. 

Unified Translation Cache (UTC) 

Just as the page table caches can be built with either a split or a unified organization, a 

Unified Translation Cache (UTC) can also be built. Moreover, just like the UPTC, the 

UTC mixes elements from all levels of the page table in the same cache. 

Figure 4.4 shows the UTC after the MMU walks the page table to translate the virtual 

address (0b9, 0 0 c , Oae, 0c2 , 016). If the MMU subsequently starts to translate 

the virtual address (0b9, 00c , Odd, 0 c 3 , 92 9), it will first look in the UTC for 

the physical page numbers of the LI, L2 and L3 page table pages. As with the previous 

example that used the STC, the MMU finds two matching entries in the UTC. Ultimately, 

the MMU decides to use the UTC's second entry, which is an L3 entry that has the L4 and 
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L3 indices (0b9 , 00c) as its tag, because this tag matches the longest prefix of the virtual 

address. Thus, the MMU can skip the L4 and L3 page table pages and start walking from 

the L2 page table page. 

4.2.3 Translation-Path Cache (TPC) 

Note that in the UTC example in Figure 4.4, the tags for the three entries representing a 

single path down the page table all have the same content. The L4 and L3 entries use less of 

the virtual address than the L2 entry does, but the fragments that they do use are the same. 

Consequently, it is possible to store all three physical page numbers from this example in 

a single entry. In such a Translation-Path Cache (TPC), a single entry represents an entire 

path, including all of the intermediate entries, for a given walk instead of a single entry 

along that walk. 

L4 index 

0b9 

L3 index 

00c 

L2 index 

Oae 

L3 

042 

L2 

125 

LI 

508 

Figure 4.5 : An example of the contents of the TPC after the virtual address ( 0b9 , 00c , 
Oae, 0 c 2 , 016) is walked. The TPC holds three 9 bit indices, as the translation caches 
do, but all three 40-bit physical page numbers are stored for all three page table levels. 

The example in Figure 4.5 shows the TPC after the MMU walks the page table to 

translate the virtual address (0b9, 0 0 c , Oae, 0c2 , 016). All data from that walk 

is stored in one entry. If the MMU subsequently starts to translate the virtual address (0b9, 

0 0 c , Oae, 0 c 3 , 92 9), the entry referencing the LI page table page is discovered just 

as it would have been in the unified translation cache. Specifically, the MMU finds the 

entry in the cache with the tag (0b9, 0 0 c , Oae) and reads the physical page number 

508 of the LI page table page from this entry. 
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If the MMU later starts to translate the virtual address (0b9 , 0 0 c , Ode, Ofe, 

829), this address shares a partial path (0b9, 00c) with the previously inserted entry. 

Therefore, the translation-path cache will provide the physical address of the appropriate 

L2 page table page. 

4.2.4 Design space summary 

In summary, the caches described in this section fit into the following two-dimensional 

design space (annotated with the section number in which each design is described): 

Unified Split Path 

Page Table Cache 

Translation Cache 

4.2.1 4.2.1 

4.2.2 4.2.2 

The unified page table cache (UPTC) is the design that appears in modern AMD x86-

64 processors. The split translation cache (STC) is the design that appears in modern Intel 

x86-64 processors. The remaining three designs have been introduced in this chapter. 

Note that there is no useful page table counterpart to the translation-path cache. This 

is a direct result of the indexing scheme. While a "path" of physical addresses could be 

stored as an MMU cache index, it would have to be searched sequentially because the 

MMU cannot create a path of physical page numbers directly from the virtual address. It 

must look up each physical page in turn. Therefore, storing complete paths would yield no 

benefit over the other page table cache designs. 

4.3 Design comparison 

All of the designs presented in the previous section are able to accelerate page walks by 

caching information from the upper levels of the page table. However, these designs have 
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differences in their indexing, partitioning, coverage, and complexity. This section discusses 

the effects of these differences. 

4.3.1 Indexing 

The indexing scheme determines how the cache is searched. Cache indices can be derived 

from the physical addresses of components of the page table or they can be derived from 

the virtual address and correspond to the levels of the page table. 

Page table caches use the physical addresses of the page table entries as indices. In fact, 

they operate identically to any physically indexed cache—a UPTC is essentially another 

data cache in the memory hierarchy dedicated to the page table. The MMU will generate 

a physical address for the page table entry at each stage of the page walk, and that address 

will be used as an index into the appropriate page table cache. While this leads to a simple 

design, it requires the cache lookups to occur in a top-down order. The result of the L4 

entry search is required before the L3 entry search can begin, because the L4 entry gives the 

physical page number of the L3 page table page, which is needed to generate the physical 

address of the L3 page table entry. Similarly, the L2 search is dependent on the result of the 

L3 search. In the case where the cache holds all three entries (L4, L3, and L2), the cache 

must be accessed three times to generate the physical address of the LI page table entry. 

In contrast, translation caches use components of the virtual address as indices. For 

example, the TLB is an LI translation cache that uses the virtual page number as its index. 

In general, for translation caches, the MMU uses a prefix of the virtual page number as the 

index. This allows the translation caches to be searched in any order (L4 first, L2 first, or 

in parallel). Thus, on a TLB miss, the L2 translation cache can immediately be searched. 

Upon a hit which yields the L2 translation, the address of the LI page table entry can be 

computed immediately. If no L2 translation is available, the L3, then L4, translation caches 
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can be searched. Upon a hit, the page walk would begin at that point in the tree. 

4.3.2 Partitioning 

MMU caches can either be unified or partitioned, or they can store complete path informa

tion. The partitioning of the cache determines how the entries of the cache are allocated 

to different levels of the page table. This effectively determines how well the entries from 

different levels are isolated from each other. 

The impact of the partitioning scheme largely depends on whether the application 

densely or sparsely utilizes its virtual address space. For applications that densely use 

their virtual memory, a few L4 and L3 entries are heavily utilized and there is significant 

reuse of the L2 entries. In contrast, for applications that sparsely use their virtual memory, 

there will be little reuse for L2 entries, but a larger number of L4 and L3 entries will exhibit 

reuse. The partitioning strategy and replacement policy determine how these entries will 

compete for slots, which can have a significant impact on the effectiveness of the MMU 

cache. 

For applications that densely use their virtual memory, there will be many more L2 

entries than upper level entries in use. However, for a page table cache design, these up

per level entries are critical for translation performance. If a random replacement scheme 

is used in conjunction with a unified cache, these important entries can be frequently re

placed, resulting in memory accesses to entries at or near the top of the table. However, 

if entries from different levels are kept in separate caches, a random replacement policy is 

less detrimental. 

For applications that sparsely use many gigabytes of virtual memory, L2 entries will 

have very little reuse, and effective caching of L3 entries is critical. In a split entry cache, 

a static allocation of entries to each level must be made. If this allocation is optimized for 
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small applications, it will have many more L2 entries than L3 entries, harming performance 

in this situation. Moreover, if an application makes heavy use of large pages and limited use 

of small pages, the dedicated L2 entries will be of little or no use. In contrast, in a unified 

cache, the allocation happens dynamically, but recently accessed L2 entries that will not be 

reused might evict L3 entries that might otherwise be reused. A level-aware replacement 

policy can help to avoid this. 

The Greedy Dual algorithm is a popular content-aware replacement scheme [21]. This 

algorithm will replace recently used entries early if they are easier to reload into the cache. 

This scheme can be adapted for MMU caches by preferentially replacing lower-level en

tries with upper-level entries, thus reducing conflict between entries of high and low reuse. 

While Greedy Dual is not an algorithm that can easily be implemented in hardware, it is 

possible to implement a similar algorithm with minimal modification to an LRU cache. 

In our modified LRU algorithm, entries from lower levels of the page table are inserted 

into the LRU queue at a recency position behind the most-recently-used position. If these 

lower level entries are reused, they are promoted to the most recently used position. How

ever, if they are not reused, the portion of the cache in which lower level entries compete 

with upper level entries is small. These positions can be fixed, for simplicity, or they can 

change to adapt to different workloads. We propose a variable insertion-point LRU re

placement policy whereby entries from lower levels of the cache are inserted into a recency 

position below the most recently used position that is proportional to the current number 

of upper level entries stored. For example, if there are two L4 entries and six L3 entries 

currently in the cache, a new L2 entry is inserted in the ninth most recently used position 

in the cache. 

The path translation cache avoids these partitioning problems, as each slot holds an 

entry from all levels. This prevents the competition for slots while not requiring a static 
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allocation of slots to levels. However, since this cache may hold many paths with the same 

upper level entries, its effective capacity for holding upper level entries is less than three 

equally sized split entry caches. 

4.3.3 Coverage 

Characterizing the coverage of an MMU cache is not straightforward. In particular, the 

exact meaning of coverage for an MMU cache must first be considered. For example, 

suppose an address translation hits on an L3 entry in a page table or translation cache but 

does not hit on an L2 entry. In this case, the translation was accelerated by the MMU 

cache, but nonetheless required a memory access to fetch the page table's L2 entry. Thus, 

it is arguable whether or not the MMU cache provided coverage. We take the strict position 

that coverage means that no memory accesses were required to fetch L4, L3, or L2 page 

table entries. 

In general, with the same number of entries, translation caches are able to cover a larger 

portion of the address space than page table caches. The reason is that a translation cache 

can make more efficient use of its entries than a page table cache. For a page table cache to 

provide coverage it must simultaneously hold an L4, L3, and L2 entry, whereas a translation 

cache can provide coverage with only an L2 entry. In other words, the translation cache 

may be able store additional L2 entries in place of the L4 and L3 entries that are required 

to provide coverage in the page table cache. 

It can be shown that regardless of access pattern, a TPC storing n paths can provide 

any entry stored in a n entry unified cache. Additionally, a split page table cache of 3 x n 

entries can provide any entry stored in an n path TPC. These proofs are given in Appendix 

A. 

When the application is simply too large for the MMU cache to provide full coverage, 
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Unified Split Path 

c 
T 

D 
C 

T 

D 

1 l - l 

p-3 {p-3,...,p-3} 

p-12 {p-12,...,p-12} 

1 l - l 

( Z - l ) - n {n,...,{l-l)-n} 

p-12 {p-12,...,p-12} 

N/A 

1 

( Z - l ) - r a 

3 (p -12 ) 

Table 4.1 : The number of caches (C), the number of tag bits per entry (T), and the number 
of data bits per entry (D) for each design. 

the unified caches with our proposed VI-LRU replacement policies, the split caches, and the 

TPC are able to accelerate translations for more of the address space than the unified caches 

with conventional replacement policies. This is due to the fact that upper level entries are 

maintained longer in these caches. Since these effects are highly dependent on workload, 

the relative hit rates of the cache designs are studied experimentally in Section 4.6. 

4.4 Implementation 

In this section, we examine the relative costs of implementing the caches discussed in 

Section 4.2. While the design of caches in general is a well-studied field, each design has 

differing requirements. We begin by comparing these requirements on a high level, then 

we conclude by examining some specific circuit details unique to MMU caches. 

All of the organizations examined are effectively fully associative caches, which can be 

implemented by a CAM array to match the tags and a RAM array to store the data entries. 

However, the different cache organizations have different tag and data widths, and will 

potentially require differing numbers of entries to achieve similar hit rates. These factors 

will lead to different implementation complexities for the different organizations. 

Table 4.1 shows the number of caches, tag bits per entry, and data bits per entry that 
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Page Table 

Translation 

C 

T 

D 

C 

T 

D 

Unified 
1 

49 

40 

1 

27 

40 

Split 
3 

{49,49,49} 

{40,40,40} 

3 

{9,18,27} 

{40,40,40} 

Path 

N/A 

1 

27 

120 

Table 4.2 : MMU cache parameters for x86-64 processors. We have used the architectural 
definition of physical address width, 52 bits [8]. Actual implementations may use fewer 
bits. 

are needed for each organization. These characteristics are parameterized by the number of 

levels of address translation, I, the number of bits in a physical address, p, and the number 

of offset bits in a page table index for a particular level, n. In x86-64 processors, I = 4, 

p = 52, and n = 9, which leads to the values shown in Table 4.2. 

It should be noted that for current architectural parameters, translation caches require 

significantly smaller tags. This will make a translation cache smaller and more power 

efficient than an equivalent page table cache, as the CAM array is likely to dominate the 

power and area required by the structure. 

4.4.1 CAM Bypass 

Fully-associative caches are not a new invention. However, the TPC and UTC add some 

additional complexity to the design because portions of the virtual address must be selec

tively ignored during a search. In this section we present some conjectural modifications to 

a standard fully-associative cache to support this constraint. We use the cache model from 

the CACTI tool from HP Labs [22] as our baseline in Figure 4.6. 

This design uses dynamic logic to compare the input address with each line in parallel. 

A closeup of the individual bit-comparison logic is shown in Figure 4.7. The match line 
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Figure 4.6 : An example fully associative cache design from [22]. 
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Figure 4.7 : A closeup of the dynamic bit match logic. 

is initially precharged high. If the tag bit is a one, the right side pull-down network is 

activated by the upper NMOS transistor. If the tag bit is a zero, the left side pull-down 

network is activated. 

If the address bit (the bit being searched for) is a one, the bottom left NMOS transistor 

is activated, allowing the match line to drain if the tag bit is a zero. Similarly, if the address 

bit is a zero, the bottom right NMOS transistor is activated, allowing the match line to 

drain if the tag bit is a one. Otherwise, the address bit matches the tag bit and the match 

line remains high. 

This comparison can be easily bypassed with the introduction of a third transistor to 

the network shown in Figure 4.8. A bypass line masks a bit off from being included in the 

search and thus ensures that bit will always match. When bypass is high, the new NMOS 

transistor prevents the pull-down network from draining the match line. Therefore, it will 

remain charged high. This modification will increase area somewhat and will increase 

delay because the resistance of the pull down network is increased. 

The TPC can use this facility to mask off lower level indices when searching for upper 

level page tables. Initially, all bypass lines are low. If that search fails, the TPC uses the 

L4 and L3 index to search for an L3 entry. Here, all the bits corresponding to the L2 index 
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Figure 4.8 : The dynamic bit match logic with bypass line. 

are bypassed. Similarly, L2 and L3 indices are masked off when searching for L4 entries. 

The UTC can use these bits, in conjunction with additional tag bits, to always bypass lower 

order bits for lines containing upper level entries. This allows the UTC to act somewhat 

like a TCAM, in that certain bits are ignored during a search. Unlike a TCAM, however, 

the ignored bits can not be arbitrarily specificied, they must correspond to either masking 

off the L2 offset or the L2 and L3 offsets. This constraint reduces the number of additional 

tag bits that would be required for a full TCAM. 

4.4.2 VI-LRU shift register implementation 

AMD has described their page walk cache as having a "least recently used replacement 

policy" [1]. While their exact implementation is not described in their paper, one possible 

implementation of an LRU cache is to use a shift register. All the tag bits in the cache 

structure (see Figure 4.6) are connected such that one loads into the next, as shown in 

Figure 4.9. Addresses are inserted into one end of the chain and old addresses propagate 

down. This requires each cache entry of n bits to be connected to the next entry with n 

wires. 

Our VI-LRU replacement scheme requires data to be inserted at arbitrary points inside 
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data in • »• 

Figure 4.9 : An example implementation of an LRU replacement scheme. 

data in-

Figure 4.10 : An example implementation of the VI-LRU replacement scheme. 

the chain. One possible implementation of this is shown in Figure 4.10. In this design, the 

new value is routed not only to the first entry, but to every entry in the cache. This doubles 

the number of wires required for the chain, one for the old value and one for the new one. 

At the input to each register, a multiplexer selects which cache entry the new value is to be 

inserted into. This multiplexer must be activated by global replacement logic. 

For an n entry, m bit cache, this modification adds m(n — 1) multiplexers, m(n — 1) 

wires to route new data throughout the cache and m(n — 1) wires to select the multiplexors. 

This increases the area of the cache and the delay required to update an entry, but it does 

not add any circuitry to the match logic. 
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4.5 Methodology 

The MMU cache architectures presented in Section 4.2 were evaluated by running appli

cation memory traces through a memory system simulator. The trace-based approach is 

warranted here for two reasons. First and foremost, the number of memory references re

quired for a page walk is effectively independent of all architectural parameters except for 

the MMU and the L2 cache organization. A cycle-accurate simulation would have pre

sented a more limited view of the differences for a single point in the processor design 

space. Second, from a practical standpoint, it would have been nearly impossible to run the 

types of large memory footprint applications that benefit most from these structures on a 

slow cycle-accurate simulator. 

4.5.1 Application Memory Traces 

The AMD SimNow [23] platform simulator was used to run various benchmarks under 

FreeBSD 8.0-Release for x86-64. A custom analyzer plugin to SimNow records each vir

tual memory access made by the simulated system. This trace includes all memory loads 

and stores made by the tested operating system and processes, but it does not include in

struction or page table loads. TLB and MMU invalidations are included in the trace by 

monitoring the value of the CR3 register, which must change on a context switch. Finally, 

the plugin counts the total number of instructions executed during the trace. 

Virtual memory access traces were captured from various applications, including the 

SPEC CPU2006 floating-point suite [24], SPECjbb2005 [25], ASCI Sweep3d [26] and 

HPCC RandomAccess [27]. However, not all of the benchmarks in the SPEC CFP2006 

suite could be compiled with the standard tool chain in FreeBSD 8.0, so soplex, calculix 

and wrf are not included in this study. SPECjbb2005 was run on one warehouse, and 
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Sweep3d was run on a 150x150x150 grid. 

4.5.2 Memory System Simulation 

A custom memory system simulator was built to simulate the various MMU cache designs. 

The simulator includes an MMU that closely resembles the LI and L2 TLBs in the AMD 

Opteron [1]. It consists of a 64-entry, fully-associative LI TLB with random replacement, 

and a 512-entry, 4-way set associative L2 TLB with LRU replacement. Furthermore, the 

simulator is able to model all five cache designs described in Section 4.2. The simulator 

stores tags (virtual addresses), but not data (physical addresses), to eliminate any operating 

system dependent behavior from the simulation. This simplifies the design of the simulator 

and generalizes the results. Unless otherwise specified, the simulator divides all memory 

into 4KB pages. 

A 1MB L2 cache was included in the model, simulated using the Dinero IV cache 

simulator [28]. Both application data accesses and MMU page table accesses are simulated 

using a shared L2 cache model. In general, instruction loads are not included in this study. 

The cache parameters were based on the same AMD Opteron processor that was the basis 

for the TLB parameters. The LI cache was not simulated, since the page walk hardware 

does not use it on the Opteron. 

While our simulation environment did not permit us to directly measure power and 

system performance, the reduction in memory accesses we directly measure here should 

translate directly into reduced interconnect power consumption and latency. Recall that 

previous work has shown the uncached system performance impact of unvirtualized TLB 

misses to be up to 14% for nominally sized applications [1] and up to 50% for large appli

cations [2]. 
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4.5.3 Synthetic Application Memory Traces 

To study the behavior of an application that uses more virtual memory than we can prac

tically trace on our real machines, a trace synthesizer was developed that simulates the 

memory access pattern of an in-memory database, performing a hash join. Such joins are 

common, and the performance of large joins is representative of overall database perfor

mance [3]. 

The simulated join is an inner join on two equally sized tables, A and B.The hash join 

process starts by creating a hash table containing the entries of B, using an open addressing 

collision resolution scheme. The database then iterates through A, checking to see if each 

entry is present in the hash table. The result is then placed in an output table [29]. 

Since the simulation is designed to scale to arbitrary sizes, the simulation works proba

bilistically rather than operating on a real data set. First, an element is read from the region 

of memory holding table A. Then, a random element is read from the region of memory 

storing the hash table, since the hash function will uniformly distribute accesses throughout 

the table. After the first element is read, a second element is sometimes also read, based on 

the probability of a hash collision. The collision probability was derived from the expected 

collision chain length [30]. Finally, an element is written to the result table, and the process 

repeats itself with the next consecutive element of table A. 

4.6 Cache design simulations 

This section evaluates the five different MMU cache organizations using a wide variety 

of applications. The TLB miss penalty, structure sizing, and replacement policies are ex

plored. The results show that the unified translation cache with a modified LRU replace

ment scheme is the best design for the entire range of applications. For the small bench-
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marks, this cache design is able to reduce the number of memory accesses required per 

TLB miss from 4 without a dedicated cache to 1.13. It also adapts dynamically to large 

applications, avoiding the conflicts present in traditional unified caches without the static 

partitioning required in split caches. 

4.6.1 TLB miss penalty 

The purpose of any MMU cache is to lessen the penalty of a TLB miss and the cost of 

walking the page table. This penalty can be broken down into the number of accesses to 

the private MMU cache and the number of memory hierarchy accesses required per TLB 

miss. Without a private cache, there will be four memory hierarchy accesses per walk, one 

per level. These memory accesses can be further broken down into L2 data cache hits and 

DRAM accesses, which are far more costly. 

Small Memory Applications 

Even applications that use a modest amount of memory can have frequent TLB misses. Ta

ble 4.3 shows the frequency of TLB misses for each of the SPEC CFP2006 benchmarks, the 

SPEC JBB2005 Java server benchmark and the ASCI Sweep3d benchmark. Specifically, 

the table shows the average number of instructions, program memory accesses and program 

DRAM accesses (L2 data cache misses) that occur between TLB misses. The number of in

structions issued between TLB misses varies from tens of thousands for compute-intensive 

workloads to hundreds, for data-intensive workloads. For SPECjbb2005, less than five 

DRAM accesses are made between TLB misses. For data-intensive workloads that may be 

memory bottlenecked, the DRAM accesses related to page walks are significant. 

Table 4.4 compares the behavior of the different MMU caches. For each kind of MMU 

cache the table shows how many times the MMU cache, the L2 data cache and DRAM 
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Workload 

bwaves 

gamess 

mile 

zeusmp 

gromacs 

cactus 

leslie3d 
namd 

deal 

povray 

Gems 

tonto 

lbm 

sphinx3 

(avg) 

specjbb 

Sweep3d 

Ins/Walk 

3637.7 

37927.8 

202.3 
3105.2 

25399.1 

3916.9 

4185.2 

49024.9 

29235.3 

38328.8 

50817.5 

30414.8 

1844.5 

1858.2 

19992.7 

351.0 

6098.6 

Mem/Walk 

2183.8 

16905.0 

83.1 
562.0 

12025.0 

2919.4 

1679.8 
18498.7 

10046.7 

19498.9 

19447.8 

13711.6 

908.1 

574.4 

8503.2 

162.0 

3161.3 

DRAM accesses/Walk 

2MB 

102.6 

1.1 

3.9 

77.0 

42.2 

28.7 

67.5 

9.0 

12.3 

1.9 

1.4 

4.5 

97.5 

26.3 

34.0 

2.4 

81.9 

1MB 

104.4 

1.1 

3.9 

77.8 

55.4 

30.2 

70.5 
12.3 

14.5 

1.9 

1.4 

7.2 

101.7 

28.6 

36.5 

3.4 

83.9 

512KB 

106.2 

1.1 

4.0 

79.0 

69.5 
31.9 

72.0 
16.2 

16.9 

1.9 

1.4 

28.8 
106.7 

30.2 

40.4 

4.8 

85.4 

Table 4.3 : The frequency of TLB misses for each workload, shown as the number of 
instructions, memory accesses and DRAM accesses between TLB misses. These results 
are shown for three different L2 data cache sizes and the TLB configuration described in 
Section 4.5. 
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are accessed per TLB miss under each of the benchmarks. All caches are using a least-

recently-used replacement policy. In these simulations, the unified and path caches have 24 

entries and the split caches have 3 x 24 entries. While there are some outliers, most of the 

applications exhibit similar behavior. 

As a baseline, Table 4.4 also presents results with no MMU cache. As expected, with no 

cache there are four memory accesses per walk. Interestingly, there are only 0.15 DRAM 

accesses per walk for SPEC CFP2006, meaning that there is a 96% hit rate for page table 

entries in the L2 data cache. This number varies from application to application, but it 

never drops below 90%. This demonstrates that page table access for these applications 

has very high reuse. 

Adding any MMU cache drops the average number of memory hierarchy accesses per 

walk from 4.00 to no more than 1.13 (0.99+0.14) for SPEC CFP2006. Note that DRAM 

accesses only decrease approximately 7%, from 0.15 to 0.14. This means that most of the 

avoided memory accesses come out of L2 hits, not DRAM accesses. The decrease in TLB 

miss latency from a MMU cache with these applications comes from the decreased access 

latency of an MMU cache as compared to the L2 data cache, not an improved hit rate. For 

Sweep3d, there is so much locality in virtual address use that memory accesses per TLB 

miss is further reduced to 1.07. 

Since these caches do not store LI page table entries, this result is very close to the 

minimum number of memory accesses per TLB miss of 1.00. On these applications, all the 

caches have similar hit rates. In nearly all TLB misses, all the MMU caches can provide 

the physical page number of the LI page table page without having to do any memory 

accesses. From here, the L2 cache still provides most of the LI page table entries at a hit 

rate of 88% (only 0.14 of the 1.13 memory accesses are DRAM accesses). These hits come 

from the fact that the L2 cache is much larger than the MMU caches and can store eight 



42 

page table entries in a single cache line. 

One benchmark, t o n t o , has more DRAM accesses when an MMU cache is used. 

However, the rounding in Table 4.4 exaggerates this effect. The actual increase in DRAM 

accesses is only 0.001 per TLB miss. The MMU cache changes the access pattern to the 

L2 data cache, so page table entries may be replaced sooner than they would be without an 

MMU cache, slightly increasing DRAM accesses. 

SPECjbb has low address locality at a page and cache line granularity compared to 

other small memory applications leading to high TLB and cache miss rates. However, 

there is still enough locality in upper level bits of the address to allow reasonably high 

MMU cache hit rates. On this workload, 2.87 of the three upper level page table entries are 

still served by the MMU cache, leaving 0.99 and 0.14 accesses for the L2 data cache and 

DRAM respectively. These 0.14 DRAM accesses per TLB miss are significant compared 

to the 3.4 DRAM accesses between TLB misses that come from program execution itself. 

Since these caches all provide high hit rates, their primary difference is in the number 

of accesses to the cache required per walk. Since the translation and path cache search for 

L2 entries first, they are typically only accessed one time per TLB miss. This reduces both 

latency and power consumption. The page table caches are accessed an average of three 

times per walk, since they must walk down the page table. If the size of the virtual address 

space is expanded by adding an additional level, this penalty will increase. 

Large Memory Applications 

In contrast to the results for small memory applications, the different MMU caches have 

substantially different hit rates for applications with random access patterns over gigabytes 

of virtual memory, such as an in-memory database hash join or HPCC RandomAccess. 

For these applications, the reuse of lower level page table entries is low, and there are many 
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upper level page table entries in use. Consequently, caching as many L3 entries as possible, 

each of which covers a 1GB region of virtual memory, is critical, but caching L2 entries is 

of little or no benefit. For a unified cache, a TLB miss that hits on an L3 entry but not an 

L2 entry will load a new L2 entry into the cache. With LRU replacement, the cache will 

have about the same number of L2 and L3 entries. The TPC also keeps track of an L2 entry 

for each L3 entry stored, but it does so in the same associative entry. Therefore, for such 

applications, a TPC of n paths is roughly equivalent to a UPTC of 2 • n entries. When the 

TPC becomes large, there is the possibility that different stored paths will contain the same 

L3 entry, reducing hit rate. The split caches do not exhibit this effect, so once the cache is 

large enough to hold all L3 entries in use, there is a 100% L3 hit rate. 

A database hash join running over a 16GB region (Figure 4.11) demonstrates this scal

ing. Here, to have a 50% hit rate on the L3 page table, a 22 entry unified cache is required, 

while only an 11 path TPC, or a 3 x 11 entry STC is required. 

An application using many terabytes of virtual memory would only have high reuse on 

L4 page table entries, causing 2/3 of unified cache entries to be wasted, instead of just 1/2 

for the 16GB application. This is because for every L4 entry stored, an L3 and an L2 entry 

are also stored, which are effectively wasted. This causes the TPC to be equivalent to a 

unified cache of three times the size for such workloads. 

4.6.2 Sizing considerations 

Appropriate sizing of caches is critical for hit rate in many applications. The ability to 

not store levels that are skipped when a translation cache is used allows such caches to be 

smaller for a given hit rate. Additionally, the fixed allocation of entries for each level in the 

split cache designs demands that all levels be large to properly adapt to differing workloads. 

The TPC and unified caches dynamically allocate entries and adapt well. 
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Figure 4.11 : Hit rate compared for the caches with the database join simulation using a 
16GB hash table. The different split and unified designs have equivalent coverages. 

ASCI Sweep3d operates on a set of different memory regions. When the first is pro

cessed, it moves to the next, and so on. After processing the last region, the program wraps 

around to the first, and the cycle repeats. If the cache is not large enough to hold all the 

regions, entries corresponding to earlier regions are pushed out before they are used again, 

and hit rate is very poor (Figure 4.12). Since upper levels of the page table are skipped in 

the translation cache, the UTC can be slightly smaller than the UPTC. 

For the small memory applications, there are relatively few upper level page table en

tries that are in use. As a result, the hit rate of the unified caches holding n entries only 

slightly trails that of the split caches, which hold a total of 3 x n entries. In this example 

(Figure 4.13), a unified page table cache holding 23 entries is equivalent to a split cache 

holding 3 x 19 = 57 entries. Only four entries from the unified cache are stored in upper 

— Split (3 x n entries) 
Split (n entries) 

• - - Unified (n entries) 
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Figure 4.12 : Hit rate for the L2 table for ASCI Sweep3D. This application is very sensitive 
to sizing. Note that size represents per-level size (all three levels hold n entries) for the split 
cache included in Figures 4.12-4.14. 

levels of the split caches. These entries are combined with lower level entries in the TPC, 

allowing a 19 path TPC to be equivalent to the 23 entry unified cache. 

While these applications use more lower level entries than upper level entries, having 

small upper-level caches in a split cache dramatically reduces hit rate for large applications. 

If the split cache is reduced in size to 3 x8 entries to match the total size of the unified cache, 

the L3 table hit rate in the database benchmark is reduced from 99% to 44%. Skewing 

the distribution of entries from higher levels to lower levels will further impact hit rate. 

Therefore, it is imperative that all levels of a split cache be large, resulting in considerable 

area overhead. 
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Figure 4.13 : Hit rate for the L2 table alone for the CactusADM component of SPEC 
CPU2006. 

4.6 J Replacement policy 

In the unified caches, entries of high reuse (upper level entries) are mixed with entries of 

lower reuse (lower level entries). This causes the cache to be relatively sensitive to the LRU 

replacement policy which ensures that frequently accessed components (L4 and L3 entries) 

are not evicted. In the path and translation caches, these upper level entries are skipped, so 

they do not need to be protected. 

Table 4.6.3 shows the impact of using a random replacement scheme on the number 

of MMU cache misses (measured by the number of required memory accesses to locate 

upper level page table entries). While all structures have a lower hit rate using a random 

replacement scheme, the unified designs are much more reliant on an LRU replacement 

scheme. 
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The primary problem with the unified cache designs for the large applications is that 

entries with high reuse are evicted to make room for entries of low reuse. For example, in 

the database join the LRU unified caches hold a relatively useless L2 entry for every useful 

L3 entry in the cache. If a content-aware replacement scheme is used, this problem can 

be significantly reduced. If the Greedy Dual algorithm is implemented in the UTC instead 

of using LRU, the size required for a 90% L3 entry hit rate in the 16GB database join is 

reduced from 52 to 30 entries. 

Using our modified LRU replacement scheme (described in Section 4.3.2) with fixed 

insertion points, this algorithm actually has a higher hit rate than Greedy Dual for the 

database benchmark. Only 23 entries are required for 90% hit rate. However, the fixed 

insertion point for L2 entries reduces hit rate significantly for some other applications, such 

as Sweep3d. The L2 entries used by Sweep3d, if they are inserted near the least recently 

used position, are replaced before they are reused resulting in a near zero hit rate. 

Using the variable insertion-point LRU scheme solves this. For SPEC CFP2006, SPEC 

JBB2005 and Sweep3d, VI-LRU has a hit rate that is equal to or slightly greater than 

standard LRU. For the database join, where there are many L2 entries to cache, VI-LRU 

adapts far better than other replacement schemes. Only 16 entries are required for 90% hit 

rate in the join benchmark, as opposed to 52 for standard LRU (Figure 4.14). The VI-LRU 

cache nearly eliminates the conflict between levels seen in the unified cache, and an n entry 

VI-LRU UTC has nearly the same hit rate as a 3 x n entry split translation cache. 

4.7 Virtualization 

While this chapter focuses on the behavior of MMU caches with native execution, they are 

important to virtualization and nested paging as well. The increased overhead of virtual 

memory under virtualization compounds the performance impact of an MMU cache. In 
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Figure 4.14 : An n entry unified translation-cache with VI-LRU has nearly the same hit 
rate as a 3 x n split cache. 

this section, we discuss previous support for virtualization and some possible future work. 

In a virtualized system using nested paging, both the guest virtual machine and the 

underlying virtual machine monitor have their own page table. In effect, the virtual machine 

monitor's page table is used to create a private guest physical address space for the virtual 

machine. Thus, the guest's page table is used to translate from virtual addresses to guest 

physical addresses, and the virtual machine monitor's page table is used to translate from 

guest physical addresses to host physical addresses. Nested paging with radix tree-based 

page tables leads to a two-dimensional page table walk because every access to the guest's 

page table during a page walk may result in a page walk on the virtual machine monitor's 

page table. 

Bhargava et al. showed that an extended version of AMD's Page Walk Cache could 

— Split 
- - Unified (LRU) 

Unified (VI-LRU) 

• 
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effectively cache most of the upper level page table entries in both the guest's page table and 

the virtual machine monitor's page table [1]. In addition, they proposed the introduction of 

a Nested TLB (NTLB) that caches guest physical to host physical translations. In effect, a 

hit in the NTLB allows the two-dimensional page walk to skip the page walk on the virtual 

machine monitor's page table. Thus, if every access to the guest's page table hits in the 

NTLB, then the number of accesses to the Page Walk Cache and the memory hierarchy is 

the same as it would be for native execution. 

The translation and path caches presented in this thesis could also be extended to sup

port nested paging. Moreover, the NTLB is not inextricably tied to the Page Walk Cache 

or page table caches in general. A NTLB could be beneficially combined with translation 

and path caches. A NTLB hit allows the two-dimensional page walk to skip the entire page 

walk on the virtual machine monitor's page table for a single guest page table access, but 

not the accesses to the upper levels of the guest's page table. This requires a translation 

or path cache. Moreover, a translation or path cache could accelerate page walks on the 

virtual machine monitor's page table when a NTLB miss occurs. 

4.8 Conclusions 

Since the x86 architecture began using a radix tree page table for address translation in the 

80386, the depth of the page table has increased by one level with each passing decade. 

Unfortunately, without an MMU cache, the page table walk for address translation requires 

a memory reference for each level of the radix tree. Therefore, MMU caches have become 

critical components of current and future x86 processors. This chapter has presented a 

quantitative and qualitative comparison of the design space of such MMU caches, including 

three new designs. While this thesis focuses on x86 processors, the results should apply 

generally to any architecture that uses a radix tree page table. 
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While AMD and Intel have both developed MMU caches for their microprocessors, 

this chapter has introduced a unified translation cache with a modified LRU replacement 

scheme that is superior to both existing devices. It adapts well to varying workloads, unlike 

a split translation cache, as implemented in Intel's Paging Structure Cache. It also prevents 

conflict between entries of low and high reuse, unlike the LRU unified page table cache, as 

implemented in AMD's Page Walk Cache. 
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Cache 

UPTC 

UTC 

TPC 

SPTC 

STC 

LRU 

0.61 

0.53 

0.51 

0.51 

0.51 

Random 

1.00 

0.79 

0.65 

0.64 

0.63 

Increase 

63% 

49% 

28% 

25% 

23% 

Table 4.5 : The average number of misses per walk for random and LRU replacement, 
normalized to Random UPTC (lower is better), and the relative increase in misses using 
random replacement over LRU replacement. 
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CHAPTER 5 

Alternate page table formats 

The MMU cache is designed to reduce the overhead from having to access the upper levels 

of the page table. Ideally, this would allow a single access to the page table per TLB miss. 

However, these accesses are a result of the specific page table format used, and replacing 

the page table itself could potentially reduce the number of accesses per walk required to a 

similar number. 

We compared the memory access behavior of the cached radix tree page table with 

its biggest rivals, hash-table based Inverted Page Tables and direct-mapped Translation 

Storage Buffers. These structures are attractive since they contain only one level, and are 

therefore insensitive to address space size. However, the unavoidable presence of hash and 

structural collisions, low access locality and their inability to handle multiple page sizes 

efficiently cause them to require far more memory accesses than a cached radix table. 

5.1 Hashed page tables 

We have shown that MMU caches can significantly reduce the overhead of using a radix 

tree page table, however the possibility remains that the radix tree page table itself should be 

replaced. The traditional competitor to the radix tree page table is the inverted page table, 

which uses a hash table to store a large and sparsely used address space efficiently [11]. 

These designs are usually seen as superior to a multi-level table, because they only need 
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to be referenced once, whereas the radix table requires one access per level. However, 

hash collisions are unavoidable, so many accesses may require more than one reference to 

follow a collision chain. 

Additionally, we have shown in this thesis that MMU caches can reduce the number of 

memory accesses per walk to nearly one as well. To compare the cached radix table against 

an inverted page table, a simulator was constructed that maintains and references a hash 

table storing all the memory locations used during a process' lifetime. The hash table used 

models that used by the Intel Itanium [31], though our implementation differs. The Itanium 

handles translations in hardware only if the desired translation is at the front of the collision 

chain. Otherwise, an interrupt occurs and the collision chain walk is done in software. Our 

simulation performs the entire process in hardware, and is therefore an optimistic design. 

The number of accesses to this table were counted, as well as the number of such accesses 

that hit in the L2 data cache. 

When the hash table contains twice as many buckets as there are pages to store, the hash 

table walker references approximately 1.2 locations per TLB miss, regardless of benchmark 

or access pattern. This number comes from the average length of a collision chain, which 

is a function only of the fullness of the hash table if a sufficiently uniform hash function 

is used [30]. This number compares poorly to the average number of L2 and memory 

accesses required per walk of the SPEC CFP2006 applications using page table caching of 

1.13. While the hashed page table is insensitive to address space size, it is unable to take 

advantage of the great locality seen in virtual address space usage like MMU caches can. 

Compounding this issue is the fact that references into the hash table show no spatial 

locality. Whereas consecutive pages in virtual memory are usually mapped by consecutive 

entries in the radix table, they are not usually mapped by consecutive entries in a hash 

table. Since there is usually locality in the access pattern of LI page table entries in a radix 
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Page Size 
L2 Hits 
DRAM 

Uncached 

4KB 
2.90 
1.10 

2MB 
2.92 
0.06 

TPC 

4KB 
1.11 
1.09 

2MB 
1.15 
0.06 

Page Size 
L2 Hits 
DRAM 

IPT (1) 
4KB 

0.01 
1.29 

2MB 

0.00 
1.29 

IPT (2) 
4KB 

1.16 
1.14 

2MB 

1.16 
1.14 

IPT (16) 
4KB 

0.55 
1.48 

2MB 

0.54 
1.49 

Table 5.1 : L2 hits and DRAM accesses to the page table per walk for a radix tree page 
table for the 16GB database join benchmark. Results are shown for an uncached radix tree, 
a cached radix tree, and a half-full inverted page table with various numbers of clustered 
translations per tag. 

table, these entries are much more effectively cached by the L2 data cache than the entries 

of the hashed table are. For the SPEC CFP2006 applications examined earlier, only 44% 

of the 1.2 accesses/walk are served by the L2 data cache. Overall, the inverted page table 

increases the number of DRAM accesses per walk by over 400%. 

Spatial locality can be increased by storing multiple adjacent translations with a single 

tag, as used in clustered page tables [7]. This technique also reduces the overhead (virtual 

address tag and chain pointer) for the hash table. However, for this technique to be effective 

each virtual tag must be associated with many translations. This means that some transla

tions will need to load multiple cache lines. Additionally, the frequency of hash collisions 

is not reduced over a standard inverted page table. 

Even if the virtual address space is used without locality, as in the database join, the 

radix tree page table still requires fewer DRAM accesses than a hashed page table. Ta

ble 5.1 shows the memory use per TLB miss for a join using a 16GB hash table. With 4KB 

pages, the radix tree page table requires fewer DRAM accesses/walk than the inverted page 

table until a 48GB inverted page table is used. 
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For this application, clustering does improve L2 cache hit rate since the page table is 

smaller. However, the tag and data often lie in different cache lines, which requires an 

increase in the total overall memory references required to perform a translation. Matching 

the total cluster size to the size of a cache line improves this. However since cache line 

size may change from implementation to implementation, the appropriate cluster size may 

change as well. 

For larger applications such as this, large page support becomes important. When it 

comes to supporting the simultaneous use of multiple page sizes, radix trees have an ad

vantage over inverted page tables. With the radix tree, if 2MB pages are used for mapping 

most of the virtual address space, the entire page table can be cached in the L2 data cache, 

because the 2MB page mapping takes the place of an L2 entry in the page table and elimi

nates the need for an entire LI page table page (see Figure 2.2). This reduces the number of 

DRAM accesses per walk dramatically for the radix table designs and also the number of 

overall memory hierarchy accesses to below that seen in the inverted page table, as shown 

in Table 5.1. 

In contrast, the simultaneous use of large and small pages does not reduce the size of 

an inverted page table, and so its memory accesses do not change. In essence, the hash 

function must take into account the size of the virtual page, but it cannot know the page's 

size a priori if multiple page sizes are in use. Consequently, for a large page, the inverted 

page table must still have a page table entry corresponding to each of the small pages 

that make up the large page. Each of these page table entries will, however, designate 

the mapping as part of a large page, and the TLB will be loaded with a single large page 

mapping. 
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5.2 Translation Storage Buffers 

The SPARC architecture has traditionally handled TLB misses in software. To accelerate 

TLB misses, the processor supports a software-managed, direct-mapped cache of transla

tions called the Translation Storage Buffer [32]. On a TLB miss, the CPU derives an index 

from the lower order bits in the virtual address and checks to see if a corresponding entry 

is present in the TSB. Although earlier processors performed this TSB lookup in software, 

some current processors implement it in hardware. Like the inverted page table, a TSB en

try stores a tag (a virtual page number) and a translation (a physical page number). Unlike 

the inverted-page table, there is no chaining. If a translation is not present in the TSB, a 

software fault occurs. 

To compare this design to the radix-tree design, a TSB simulator was also developed. 

Like the inverted page table simulator, the TSB simulator counts L2 and DRAM accesses 

per TLB miss. In addition, the TSB simulator also counts software faults that occur when a 

translation is not present in the cache. Traces are simulated in a two-pass manner. The first 

pass populates the cache with the translations present in the trace. The second pass actually 

simulates accesses to the cache, counting hits and misses. This ensures that only conflict 

misses are counted, providing a lower-bound for cache misses. 

Our results show that the TSB uses the L2 data cache poorly as compared to the radix-

tree. For example, the zeusmp component of the SPEC CFP benchmark generates 0.058 

DRAM accesses per TLB miss using the radix-tree with an MMU cache whereas the TSB 

required 0.078 DRAM accesses per TLB miss. This increase is due solely to the larger size 

of a TSB entry as compared to a radix tree page table entry. The TSB entry contains a tag 

and data, whereas the radix-tree only needs to hold data. This increased size reduces the 

number of entries that will fit in a single L2 cache line from eight to four. 



58 

In addition, the TSB also generates 0.024 software faults per TLB miss using the current 

architectural maximum size of 1 megabyte. These are likely to be extremely expensive, 

generating not only data cache misses, but also instruction cache misses. While increasing 

the size of the L2 data cache would reduce the number of L2 cache misses, it would not 

reduce the number of software faults. 

The PowerPC architecture uses a page table that is somewhat of a cross between the 

Itanium style hashed page table and SPARC'S TSB [33]. PowerPC hashes virtual addresses 

like Itanium does. However, instead of using a collision chain, it maintains a fixed size 

array for collision resolution. Software must handle the translation if none of the entries in 

the array match the virtual address, much like the TSB. The overall space overhead of such 

a system is likely to be even higher than other hashed page table formats since the size of 

this array is fixed even if not all entries are filled. However, accesses to the collision chain 

are more likely to be cached since they are close together in memory and may reside in the 

same cache line. 

5.3 Conclusion 

MMU caches dramatically change the trade-offs in page table design for large address 

spaces. Radix tree page tables make more effective use of the processor's L2 cache than 

either inverted page tables or translation storage buffers. Radix tree page tables have a 

smaller page table entry size, because both inverted page tables and translation storage 

buffers must include a tag in the page table entry. Thus, the L2 cache is able to hold more 

page table entries from the radix tree, increasing its coverage and reducing DRAM ac

cesses. So, while these alternate structures are superior to the radix tree page table on its 

own for large address spaces, a well designed MMU cache renders the radix tree organiza

tion far superior. 
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CHAPTER 6 

SpecTLB: Parallelizing TLB Miss Handling 

The use of large pages reduces the performance overhead of virtual memory by increasing 

TLB coverage. Each entry in the TLB covers a larger region of virtual memory, so the 

entire TLB is able to translate a larger region of the address space without walking the page 

table. However, this increased coverage does not come for free. 

The page size is the minimum unit of a program's address space that the operating 

system is able to allocate and protect. The operating system must allocate an entire page 

of physical memory, regardless of how much of that space will be used by the application. 

This can lead to excessive physical memory use if a program fragments its virtual memory 

use. Additionally, application permissions (read/write/execute) must be consistent across 

an entire page. Finally, the operating system can only tell if memory has been changed or 

accessed on a page granularity. This means that if large files are used for memory-mapped 

files, the operating system must write an entire large page worth of data to disk, regardless 

of how much of the original memory was modified. 

On x86-64, page sizes are only available in three sizes: 4KB, 2MB and 1GB. These 

sizes correspond to the size of virtual address space represented by an L4, L3 and L2 

page table entry, respectively. The large gap between these sizes makes page size selection 

critical. Using a 2MB page increases LI TLB coverage by a factor of 512 compared to 

using small pages, but it can also increase physical memory requirements for a sparsely 
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utilized address space by the same factor. The proper page size for a region of memory 

may change from application to application or even from execution to execution. Therefore, 

some modern operating systems take an automatic approach to selecting page size. 

FreeBSD's reservation based memory allocator uses small pages for all memory by 

default [5]. After a program uses every small page within an entire 2MB region of virtual 

memory, that region is promoted to a large page. To prepare for this, the operating system 

places small pages it thinks are likely to be promoted into large page reservations. In a 

reservation, 4KB pages are aligned within a 2MB region of physical memory corresponding 

to their alignment within their 2MB region of virtual memory. This means that within a 

reservation, consecutive virtual pages will also be consecutive physical pages. 

This contiguity and alignment can be exploited by the MMU to predict the physical 

address of pages that miss in the TLB by interpolating from nearby pages. In this chapter, 

we present the SpecTLB, a novel TLB-like structure that provides speculative translation 

for small pages that are part of a large page reservation. While the underlying page table 

still must be walked to verify the speculative translation, this TLB walk is done concur

rently with the speculative memory access and execution. This new capability allows the 

operating system to maintain fine-grained protection and allocation over memory while 

eliminating the latency of the resulting TLB misses. 

We show that the SpecTLB is able to eliminate the latency penalty from a majority of 

TLB misses with an unmodified version of FreeBSD. However, one of the key contributions 

of the SpecTLB is its ability to achieve large-page like performance when large pages 

are impractical to use, such as in virtualization. Traditional hypervisors implement I/O 

by marking pages of the guest physical address space that contain memory mapped I/O 

as unavailable. When the guest system accesses them, the hypervisor is invoked which 

emulates the I/O device. Ideally, the physical memory space of a virtualized guest would 
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be stored as a small number of 1GB pages. However, the hypervisor cannot control which 

guest physical pages the guest operating system will use for I/O. Therefore, the hypervisor 

must have fine-grained protection control. With a speculative TLB, this space can be stored 

in a 1GB reservation with both data and I/O pages mixed together. All accesses are made 

speculatively, as if they were to a data page. Therefore, all guest physical memory accesses 

can proceed without blocking for a TLB miss. If the address turns out to be part of a data 

region, the speculative work is committed. However, if an address is part of an I/O region, 

the speculative execution will not be committed, and the hypervisor will be invoked as 

before. 

This chapter is organized as follows. Section 6.1 discusses the operation of the 

reservation-based memory manager. Section 6.2 discusses the design of the SpecTLB. 

Section 6.3 and 6.4 discuss our simulator and simulation results. Section 6.5 discusses pro

posed software extensions to support the SpecTLB. Finally, we conclude in section 6.6. 

6.1 Background 

The ability to predict the physical address of operations that miss in the TLB is dependent 

on a reservation based memory allocator, first suggested by Talluri and Hill [6]. Navarro 

et al. ([5]) extended this idea to a practical memory allocation system and implemented 

it under FreeBSD. This extended design reclaims underfilled reservations, allowing the 

empty pages to be used by other processes. 

6.1.1 FreeBSD Reservation System 

When a process allocates virtual memory, through mmap ( ) or indirectly through 

m a l l o c ( ), the operating system maintains metadata about what operation allocated that 

space. At this point, however, physical memory is not typically allocated, nor the page table 
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updated until the process tries to access a location within that virtual allocation. Then, the 

memory management unit invokes the fault handler, which locates the metadata associated 

with the faulting virtual address. 

The fault handler uses that information to predict if the virtual memory space used is 

likely to be contiguous and larger than a superpage. For example, a memory mapped 5KB 

file will not use an entire superpage, so it will not be placed in a reservation. If the handler 

decides that a superpage is appropriate, it will reserve an entire 2MB physical page, and 

assign the 4KB page within it that is virtually and physically aligned to the faulting virtual 

address. When the program faults again on the next accessed page, the fault handler will 

recognize that the address is part of a reservation, and it will again return the virtually 

and physically aligned page within that reservation. When all blocks in the reservation 

are filled, the page is promoted to a superpage. However, under memory pressure, this 

reservation may be broken down if it is never filled. The virtual memory system can then 

return the unused pages back to the free pool of small pages. 

6.2 Page table speculation 

The SpecTLB is a translation-lookaside buffer that tracks underfilled large-page reserva

tions instead of large pages themselves. On a TLB miss, the SpecTLB is consulted to see 

if the faulting virtual page may be part of a large page reservation. If so, the physical 

page number of the faulting page can be interpolated from the physical page number of the 

reservation and the small page's position within the large reservation. 

The primary difference between the SpecTLB and a traditional TLB is that mappings 

generated by the SpecTLB are predictions; they are not guaranteed to be correct. An entry 

in the SpecTLB indicates that the operating system has placed small pages within a par

ticular physical reservation in the past, but it does not guarantee that any particular virtual 
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page was placed in the reservation or even that the page is valid. This distinction means 

that a TLB miss that does hit in the SpecTLB must still be validated against the underly

ing page table. However, the interpolated translation can be used for speculative execution 

while the page walk itself continues in parallel. If the interpolated translation matches the 

result from the page walk, the speculative work can be committed and execution continues. 

If the results differ, the speculative work is cancelled and execution restarts from the first 

incorrect prediction. While the SpecTLB does not reduce the overall memory bandwidth 

required by the MMU, it does reduce the latency penalty from TLB misses by removing 

the page walk from the critical path of execution. 

This relaxed requirement of correctness allows two different variants of the SpecTLB 

to be built: one that requires software support and one that does not. Both are presented in 

detail here with the software-independent variant simulated in later sections. 

6.2.1 Explicit page table marking 

The SpecTLB maintains a set of large page reservations it believes the operating system 

is assigning to the current process. This set is maintained by monitoring which small 

page page table entries are marked by the operating system as being part of a large page 

reservation. These marks are implemented using one of the currently unused bits in bottom 

level (LI) page table entries in x64-64. They do not effect how these entries are translated; 

they are still standard small pages and they are only used to maintain the contents of the 

SpecTLB. 

For purposes of describing the operation of the SpecTLB, we will use a similar simpli

fied address representation as described in Section 2.1. Virtual addresses are split up into 

four indices and an offset: e.g. (0b9, 0 0 c , Oae, 0 c 2 , a2e). Physical addresses 

are similarly divided into nine-bit parts of a physical page number and a page offset: e.g. 
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CR3 ^ L4 
Register 
(ppn:613) 0 b 8 p p n ; {Q0,136"}~ 

0b9 ppn: {00,042} 

Oba ppn: NUL 

Figure 6.1 : An example of a page table containing a marked reservation. 

{Oac, 0c2 , a2e} . For simplicity, only eighteen bits (two parts) of the 40-bit physical 

page number are shown in diagrams. 

Figure 6.1 shows the page table walk for the translation from (0b9, 00c , Oae, 

0 c 2 , a 2 e ) t o { 0 a c , 0 c 2 , a2e} . This entry is marked by the operating system as 

being part of a reservation, so it is added to the SpecTLB (Figure 6.2): 

Virtual Page Number 

(0b9, 0 0 c , Oae) 

Physical Page Number 

{Oac} 

Figure 6.2 : An example of the contents of a the SpecTLB. 

Note that only the upper bits of the translation, those that select a particular large phys

ical or virtual page are stored. A SpecTLB entry for a particular address is effectively 

whatever the standard TLB entry would be if that address were part of a large page. 

On a subsequent TLB miss, the SpecTLB is searched like a normal TLB. If a a subse

quent TLB miss is for virtual address (0b9, 0 0 c , Oae, 0 c 3 , 001),the newly added 

SpecTLB entry will match. This means that the new virtual address is part of that same vir

tual large page and that the operating system likely placed the corresponding physical page 

within the physical reservation. The speculative translation concatenates the stored phys-

00b 

00c 

OOd 

ppn: NUL 

ppn: {00,125} 

ppn: {00,3af} 

L2 

ppn: {00,378} 

ppn: {00,508} 

ppn: NUL 0c1 
0c2 

0c3 

L1 

ppn: NUL 

ppn: {ac,0c2} 
res=yes 

Data 
Page 

ppn: {ac,0c3} 
res=yes 
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ical page number of the matching reservation with the large page offset from the virtual 

address, yielding {Oac, 0 c 3 , 001}. 

Of course, this translation may not be valid. The underlying reservation may have 

been broken down by the operating system or the virtual address may not even be valid. 

Therefore, while the processor can use this translation, it must do so speculatively. While 

program execution continues, the standard x86 page walk happens concurrently. If the 

predicted physical address matches the actual address, the speculative work may be com

mitted. Otherwise, execution must roll back to the point of the misprediction. 

Since SpecTLB translations are always confirmed against the underlying architectural 

page table, consistency is not as important to them as it is to MMU caches and TLBs. 

Therefore, implementations can be more lazy about SpecTLB invalidation than they can be 

with MMU caches. Stale entries do not lead to incorrect operation, as they do in an MMU 

cache or TLB. Invalid translations generated by stale entries will be corrected automati

cally. Our implementation only invalidates the SpecTLB on a context switch, though even 

this is not strictly necessary. 

6.2.2 Heuristic reservation detection 

The above description of the SpecTLB requires explicit marking of the page table. This 

requires both a modification of the x86 page table architecture and the operating system 

itself. However, it is possible to build a variant of the SpecTLB that detects reservations 

and requires no modification to system software. 

To allow a region of memory to be promoted to a large page, small pages must be 

aligned within their large page reservation. In the example above, virtual address (0b9, 

0 0 c , Oae, 0 c 2 , a2e) is mapped to physical address {Oac, 0 c 2 , a2e} . The 

virtual page's offset within a 2MB virtual page is 0c2, equal to the physical page's off-
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set within a 2MB physical page. Specifically, vaddr f 2 9 : 20] == p a d d r [ 2 9 : 2 0 ] . 

This equality can be used as a heuristic to signal that the operating system has placed this 

page within a reservation. While it has a false positive rate of 1:512 (assuming 4K pages 

that are not part of a reservation are placed randomly), it has a zero false negative rate. 

The heuristic based SpecTLB uses this detection scheme to maintain its contents. 

Translations are inserted when v a d d r [ 2 9 : 2 0 ] == p a d d r [ 2 9 : 2 0 ] and entries are 

removed when they lead to false predictions. 

6.2.3 Memory side-effects 

When a reservation is broken down, the pages that are reclaimed can be reused for any 

purpose, including for I/O. However, this opens up the possibility that a speculative access 

will be made to one of these reclaimed pages. On such an access, the processor must 

guarantee that any operation performed speculatively can be cancelled. For typical reads 

to cached memory, this is trivial. Operations are simply cancelled and not written back 

from the reorder buffer. However, if the speculated address is part of an uncachable region 

of memory or memory-mapped I/O, special care must be taken. Unfortunately, it is not 

possible to determine if a region of memory is part of a special region a priori, since that 

information is stored in the page table. Typical speculative execution systems avoid this 

problem because an access is never made to memory without having first been translated 

through the TLB. This ensures allows the processor to know which memory addresses 

cause side effects. 

Tagging requests throughout the memory system as being speculative should be suffi

cient to ensure safety. While the exact architectural implementation is beyond the scope 

of this chapter, this tag could be used to prevent speculative accesses from reaching an I/O 

controller or writing to memory. Additionally, this will allow new speculative execution 
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from other systems such as the prefetcher or branch predictor to make similar memory 

accesses without going through the TLB. 

Finally, the explicit marking SpecTLB can avoid these problems entirely by ensuring 

that uncachable and I/O memory is never mapped into 2MB pages of memory that also 

contain data pages with the reservation bit set. 

63 Methodology 

SpecTLB performance was analyzed using a custom functional simulator executing mem

ory traces generated by a platform simulator. Unlike the analysis of MMU caches per

formed in Chapter 4, the behavior of the operating system is important to the SpecTLB. In 

the MMU cache simulations, only virtual addresses affect behavior. However, the mapping 

of virtual to physical address is critical to simulating the SpecTLB. Therefore, these mem

ory traces need to include both virtual and physical addresses. This precludes the use of 

the synthetic memory traces used earlier. 

6.3.1 Platform simulator 

The AMD SimNow [23] platform simulator was used to run various benchmarks under 

FreeBSD 8.0-Release for x86-64. A custom analyzer plugin to SimNow records each 

virtual memory access made by the simulated system along with the associated physical 

address and page size. This trace includes all memory loads and stores made by the guest 

operating system and processes, but it does not include instruction or page table loads. In

struction loads are not modelled by SimNow, so they are not included in this study. Page 

table loads are simulated by the SpecTLB simulator. TLB invalidations are included in the 

trace by monitoring the value of the CR3 register, changes on every context switch. Finally, 

this plugin counts the total number of instructions executed during the trace. 
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6.3.2 Benchmarks 

Traces were collected for several popular benchmarks, including the SPEC CPU2006 

suite [24], SPECjbb2005 [25], the NASA Advanced Computing Parallel Benchmarks 

(NAS) suite [34], benchw [35] and an ad-hoc Python microbenchmark. However, not all of 

the benchmarks in the SPEC CFP2006 suite could be compiled with the standard tool chain 

in FreeBSD 8.0, so soplex, calculix and wrf are not included in this study. SPECjbb2005 

was run on one warehouse, and Sweep3d was run on a 150x150x150 grid. The NAS bench

marks are configured to use a class-C problem size, whenever possible. The benchw bench

marks function similarly to TPC-H. Specifically, this benchmark executes a JOIN between 

two tables of approximately one gigabyte in size under PostgreSQL 8.4 using default tun

ings. This benchmark was profiled both in a fresh boot configuration and on a second run, 

where the data tables are cached. The Python benchmark is a custom microbenchmark that 

initializes a large array of long integers. 

6.3.3 SpecTLB Simulation 

The SpecTLB simulation uses a modified version of the TLB/cache model from Chapter 4. 

The TLB is modified to include a 128 entry L2 TLB for large pages, as described in [1], 

The 64-entry, fully-associative LI TLB, the 512-entry, 4-way set associative L2 TLB for 

small pages and the 1MB L2 data cache are unmodified. Again, the processor's LI data 

cache is not accessible to the MMU, so it is not simulated. 

The simulator reads the memory trace, running each virtual address through the TLB 

and data cache model. On a TLB miss, the SpecTLB is searched to see if a possible 

matching reservation can be found. If so, a speculative physical page number is generated. 

If this page number matches the actual page number stored in the trace, the speculation is 
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correct. For simplicity, only the bottom level of the page table is simulated, and a dedicated 

MMU cache is not included in this model. The page table entry is loaded from cache, and 

PTE cache hit rates are maintained separately for speculated and unspeculated page table 

accesses. 

Since explicit reservation marking is not yet included in any operating system, the 

heuristic based SpecTLB is implemented. As a baseline, the number of reservations tracked 

by the SpecTLB is set at 24, the number of entries in the MMU caches explored earlier. 

This size is varied from one to fourty-eight. 

6.4 Simulation results 

Simulation results show that the SpecTLB can often accurately interpolate the physical 

address of memory operations that cause TLB misses. This results in the ability to remove 

a majority of the high-latency DRAM accesses related to memory management from the 

critical path of execution. 

Even with a heuristic-based approach to detecting reservations, mispredictions are rare. 

Therefore, the power overhead to such speculation is minimal. A SpecTLB only needs to 

be of moderate size, approaching maximum hit-rate with tens of entries. Finally, unlike 

MMU caches, hit rate is relatively unaffected by choice of replacement policy. 

6.4.1 TLB miss parallelization 

When a translation is able to be accurately predicted, all memory and MMU cache accesses 

required to serve the TLB miss are removed from the critical path of execution. Tables 6.1 

and 6.2 show simulation results from testing the SpecTLB design against various bench

marks. 

A speculative translation is only attempted when a matching reservation is found. This 
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occurs at a per-benchmark average rate of 56%, though it varies greatly by specific work

load. As shown in tables Tables 6.1 and 6.2, some benchmarks, such as mcf find a reserva

tion and attempt a speculative translation over 99% of the time. Others, such as e p . C do 

so less than 1% of the time. The ability to speculatively translate addresses depends on the 

locality in which a program uses its address space and if it is used in a fragmented manner, 

leading to underfilled reservations. 

Even using heuristic-based reservation detection, prediction accuracy has a per-

benchmark average above 99%. While some benchmarks have particularly low prediction 

accuracies (less than 40% in the case of dc.B), speculation happens comparatively rarely 

in these workloads. Even with the high miss rate, only 5% of TLB misses generate a mis

prediction in dc.B. The low rate of speculation here is likely due to its small working set, 

which would lead to comparatively few reservations being made. An explicit reservation 

marking based SpecTLB would eliminate these mispredictions. 

When addresses are accurately predicted, the page table walk can be overlapped with 

speculative execution using the predicted address. A high prediction rate combined with 

high accuracy allows useful work to be performed in parallel with much of the overhead of 

virtual memory. This is quantified by counting the number of total L2 data cache misses 

made by the MMU as well as the fraction that are overlapped through successful prediction. 

Since DRAM accesses are so slow, this fraction should translate into a proportional speedup 

of overall TLB miss handling. Tested benchmarks have an average of 53% of their MMU-

related DRAM accesses overlapped with speculative execution by successful prediction. 

The benchmark which sees the largest number of TLB misses per instruction, mcf, has 

98% of its DRAM accesses overlapped. 
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6.4.2 Overlap opportunity 

Superscalar microprocessors can speculatively execute only a limited number of instruc

tions as constrained by the size of their reorder buffer. If the instructions after a TLB 

miss complete quickly, the reorder buffer may fill before the parallelized page walk com

pletes. The processor then has to stall until the page walk is complete, as it did before the 

SpecTLB. Fortunately, the load or store which triggered the TLB miss is by definition to 

an address not recently accessed, or else it would have hit in the TLB. Therefore, it is less 

likely to be cached and may be a long-latency operation itself. The high-latency TLB miss 

can be overlapped with the high-latency load or store before the reorder buffer starts to fill. 

To examine this, our simulator was instrumented to determine the L2 cache hit rate for 

those memory operations that cause TLB misses. The per-benchmark average hit rate for 

these operations is only 47% and is as low as 6% for some workloads (like l e s l i e 3 d ) . 

These results are presented for all workloads in Tables 6.1 and 6.2. If these operations 

are reads, this presents significant latency in a single instruction that can be worked on 

while the parallelized page walk completes. On the other hand, write operations cannot be 

committed, so they must wait for the speculative page walk to complete. 

6.4.3 Power overhead 

Speculative architectures often increase power by performing needless work. Since the 

SpecTLB does not provide a speculative translation when a request is not part of a tracked 

reservation, misprediction rates are extremely low (Tables 6.1 and 6.2) and little needless 

work is done. Therefore, when the SpecTLB is unable to provide predicted translations, 

the power penalty from its use should be low. 

The mispredictions that are present are either for pages that are not present, that were 
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0.0, 

SPECfp (MCF) 
Python 
Java (JBB) 

10 20 30 
SpecTLB Size 

40 50 

Figure 6.3 : Speculation success rates for different benchmarks for different sizes of 
SpecTLB. These results are for a random replacement policy. 

allocated after a reservation was broken down or were made using a false SpecTLB entry. 

Incorrect SpecTLB entries are generated in the when a page is aligned by chance, not 

because it was part of a reservation. Using explicit marking avoids these false entries. 

6.4.4 Sizing considerations 

Like the MMU cache, even a relatively small SpecTLB is effective. Each entry covers 

512 small pages, or 2MB of virtual address space, so a small device leads to reasonably 

high coverage. Figure 6.3 shows that maximal performance is attained by 24 entries. For 

SPECjbb2005, the benchmark that requires the most entries, reducing device size from 

24 to 12 entries only reduces successful speculation rate by 3%. Other benchmarks are 

impacted even less. 
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Random Replacement 
LRU 

'"0 10 20 30 40 50 
SpecTLB Size 

Figure 6.4 : The LRU and random replacement policy are compared for the Python bench
mark. 

6.4.5 Replacement policy 

Unlike MMU caches, only a single entry is accessed in the SpecTLB per translation. This 

precludes the level conflict seen earlier. Therefore, the SpecTLB is comparatively unaf

fected by replacement policy. Figure 6.4 shows the successful speculation rate for the 

Python benchmark for different sized devices. At 24 entries, the LRU cache outperforms 

the random replacement cache by less than a half a percent, which is unlikely to outweigh 

its implementation cost. At all sizes, the performance difference is never greater than 2.5% 

for this benchmark. 
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6.5 Discussion 

Operating systems that use reservation based memory allocation are currently designed to 

use reservations in the hope that those reservations will fill and memory will be promoted 

to a large page. FreeBSD is tuned to reserve memory only when there is a possiblity that 

it will be able to promote a region to a large page. The results of the previous sections 

show that even with these tunings, there exist enough underfilled reservations that an ac

curate prediction can be made in 53% of the workloads tested in Section 6.4. However, if 

system software is modified to create reservations even when they cannot be promoted, the 

SpecTLB can allow large-page like performance without promotion. While this thesis is 

primarily architectural, we discuss several conjectural software modifications here as future 

work. 

The most promising use for any address translation system is in virtualization. Recent 

work has shown that nested paging, direct hardware support for virtualized memory, comes 

with great performance penalty. While the use of very large pages (1GB on x86-64) would 

greatly reduce the frequency of TLB misses, they cannot typically be used because the 

hypervisor needs to maintain fine-grained control over guest physical address space per

missions. Speculative address translation can allow the performance of large pages while 

maintaining fine-grained control. 

Finally, we discuss future work related to maintaining the explicit reservation marks 

within the page table. 

6.5.1 More aggressive reservation creation 

Currently, FreeBSD only creates reservations for address space allocations that are ex

pected to be of size greater than 2MB. If, for example, a process mmap()s a 1MB file, the 
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underlying memory is not be placed into a reservation. The operating system assumes that 

a file will not grow, once it is mapped into memory, so it could never fill a reservation 

and be promoted. Therefore, small pages are allocated to prevent memory fragmentation. 

However, with address speculation, reservations have performance benefits even when they 

are not promoted. A more aggressive reservation system could be developed to increase the 

fraction of small-page TLB misses that are able to be predicted. This would also require 

tweaks to mmap() to spread small files out in the virtual address space to ensure that each 

can receive its own reservation. 

6.5.2 Very large page support for virtual machines 

To support hardware memory virealization, x86-64 has introduced nested paging. Nested 

paging uses two sets of page tables, one maintained by the guest operating system and one 

maintained by the hypervisor. The guest page table translates guest virtual addresses into 

guest physical addresses. The hypervisor page table translates guest physical addresses into 

host physical addresses, as if the guest physical address space were yet another process on 

the host with its own virtual address space. This prevents the hypervisor from having to 

trap guest accesses to page tables. However, the cost of a TLB miss is greatly magnified 

because all guest physical memory accesses, both to data and the page table itself, must be 

translated through the hypervisor page table. This increases the number of total page table 

accesses required to translate an address from four to twenty-four [1]. This increase makes 

MMU caching vital. Bhargava et. al. [1] presented the AMD page walk cache (a unified 

page table cache) in the context of nested paging. They show that for the benchmarks 

investigated, the page walk cache is able to serve many of these requests. The scattering of 

pages within the guest physical address space means that the remaining memory accesses 

are to the hypervisor's page table. 
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Guest physical address space is generally allocated at VM start time, and is rarely 

swapped out. This would seem to make the hypervisor page table (translating guest physi

cal to host physical addresses) an ideal candidate for the use of the very large page (1GB) 

support in x86-64. However, the hypervisor traps guest accesses to special regions of mem

ory for I/O, including fixed location addresses within the "ISA hole". This is done by 

marking regions of the hypervisor table as not present, causing a page fault when they are 

accessed. 

While this precludes the use of a single very large page, this space can be stored in 

a 1GB reservation with both data and I/O pages mixed together. The SpecTLB can then 

provide speculative translations for access while the underlying address is validated in par

allel. In the common case, the access will be to a data page and the speculative work can be 

committed from the reorder buffer. If the access turns out to have been to an I/O region, the 

speculative work is cancelled, and execution restarts. If very large page reservations were 

to be used, all of guest physical memory could be translated within a very small SpecTLB, 

eliminating the increased latency of nested paging. 

Of course, large reservations lead to memory fragmentation. If a region of memory 

was reserved for a particular virtual machine, it could not be used by another. This would 

require guest physical memory to be static and an integral number of reservations in size. 

The impact of this tradeoff is left as future work. 

6.5.3 Explicit marking 

Explicit marking of pages that are part of a reservation can eliminate mispredictions that 

come from the inaccuracy of heuristically detecting reservations. With proper care built 

into the operating system, it can also ensure that no speculative accesses are made to I/O 

pages. When a page is inserted into the page table, if it is part of a large-page reservation, 
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the reservation bit is set. All speculative accesses made using that page are safe while the 

reservation exists. This has the drawback of being incompatible with the scheme set forth 

for virealization above. 

Eventually, if a reservation is not filled, it may be torn down. If the reservation hint 

bits remain set, the SpecTLB will predict the addresses for those pages that were added 

earlier. However, if any of the freed physical pages from the reservation are reused as I/O 

pages, the possibility exists that these pages may have speculative accesses made to them. 

Several possible solutions exist to this problem. Clearing all reservation bits related to a 

particular reservation when that reservation is torn down will prevent misspeculation, but 

it reduces the overall number of (possibly accurate) speculations that will be made. Addi

tionally, reservation bits could be cleared when an I/O page is allocated. However, since a 

particular physical page can be mapped by multiple virtual pages (perhaps in different ad

dress spaces), a more complex map must be maintained to allow this to happen efficiently. 

Finally, even with explicit marking, the speculative request tagging discussed in Section 

6.2.3 is still applicable. This would allow explicit marking and virtualization support to co

exist since the architecture would guarantee that speculative memory requests do not cause 

side-effects. 

6.6 Conclusions 

Large page support can dramatically reduce the performance overhead of virtual memory. 

For many applications, modern reservation based memory allocators do a good job of con

verting contiguously used regions of virtual address space into a manageable number of 

large pages. The TLB miss rates shown in this chapter are far lower than those for the 

small page simulations in chapter 4. However, what TLB misses remain are primarily from 

underfilled large page reservations. We have presented a device, the SpecTLB, that can 
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eliminate the latency from these misses and therefore eliminate the majority of the remain

ing performance penalty from a wide variety of applications running under FreeBSD. 

The SpecTLB also enables a more radical implementation of reservation based mem

ory allocation, one that reserves memory even when no promotion is possible. The most 

important application for this is virtualization, which can have particularly high overhead 

from virtual memory. Traditional hypervisors cannot readily use very large pages (1GB) 

to map guest physical memory due to fine-grained protection requirements. However, the 

SpecTLB can deliver the performance benefit of large pages while maintaining the protec

tion granularity given by small pages. 



a; 

o 
H 
r 
CO 

ST 
^. 
o" 
3 
P - | 

n> 
c 

0 0 

m 
n 
n 

63 
3 

n 
*0 
to o o 
ON 

N 
ft 
c St ii£ 

3 ft ' 
X 3 
U> (JQ 

"8 
< 
s 

o 
3 
3 

•3 
T3 

f 
§. 3 

O. 3 

3" 
to 3 00 

o o 
2 ao 

00 O 
PL 

D. a 
85 

o 
o 
3 ^ 

cr 
N 

a* 

J^ — w to <° 

| 5 i § g g 
© 4^ w - J f^ 

*» O 

to vo 
OS t o 

vo 
4^ U> W W 
-a oo 4^. a \ u< 
"— - J U) L/l ~ 

- • - ^ • -O VO N> o O 

o p p o o 
io tf̂  bo I*) U> 
Ul M W 00 s i 
K» M U N) U i 

o o o 
Ui 00 VO 
— to vo 
00 00 tO 

o o o o o o 
© vo b vo '-J 00 
O u> p— O 00 Lh 
O N U i W Ul 

o o 
00 in 

o 
© - - - . 
tO Ui VO 

-j \o w to o 

o 

to 

6 
o 

o 
to 

4^ 

o w 

3 S 

o o 
bo to 

£ 

- J — 
VO t o 
p— oo 
0 0 ~ J 

o o 
vo bs 
OS t o 
U> (J) 

o o o o o o o o o o o o o o o o o o o 
l o t b o w U s l i y i O O V o b v O b O O ^ i j O N O a v f l 
1 / O N v l - J Ul H t o vO © U> P— v o O O v y > - J O - f ^ v o 
t O W \ 0 - J U i O t O - ~ J t O O t O < - ' ) v 0 4 ^ 0 ~ - J O ' — O 

o o o o o o o o o 
o b o o o o o o o 
© to © p— o o > — o o 
o t o u i L r t o a s ' — i— o 

o o o o o o o o o o 
o b o o t o o b o o o o o o o o o o o o o 
O v O J ^ O s O v y i O s > — O O 

o o o o o o > — o o o 
'a a o o a> o 'o a> o oi o S o o o o o — o>— 
O O - t ^ p — 00 ON © t o © C\ 

O O O O O 
o as 
- J 

o o o o o — 
o o o — 
p— v o 

o o o o o o o o o 
^ o ^ ^ - b ' p - - b b p ^ -
W O ^ J P — p— O v y i s ) 4 ^ 
P - O O ^ U i r J S J p - O i W 

o 
b 
o 
o 

o 
'to 

U) 

o 
b 
o 
o 

o 
b 
Lfl 

o 
b 
o 4^ 

o 
P^-

o\ 00 

o 
b 
o 

o 
b 
00 
Ov 

o 
b 
o - j 

o 
1^-1 

4^ 
u> 

O 
© 
^5 to 

O 
b 
8 

o 
b 
to 
u> 

1 

o 
b 
I—»» 

o 

o 
to 
00 
VO 

o 
b 
o 
o 

o 
b 
U> 

o 
b 
o 
~-a 

o 
b 
H - » 

- J 

O 
b 
i — 

Ov 

O 
b 
4^ 
- J 

O 
b 
o 
o 

o 
to 
- 0 
vo 

O 
b 
o 
o 

o 
b 
LPJ 

vo 

O 
b 
o 

o 
^ 4* 
w 

o 
b 
i—» 

to 

o 
b 
VO 
U) 

o o o o o o o o o 
00 to ^ in tf> CTv 
i— VO LA P— © 00 
p— 4i. - J p— - J 00 

© o o o © o o © 
bo b bo bs bs 4̂  i o\ to o •— oo w 
00 s j 00 O O O 

0 0 © © 0 0 © 0 © © 0 © 0 0 © © 0 0 0 
© v o b ^ v o u i ' - o p ^ - t o b b ^ b v ^ u i ^ v o p ^ - v o 
p— t O O J O p — i— 4 > ~ J P — O O f t s l i O O l O O i O J i U i l v ) 
U p . O W V O L A O V O O S ^ t O O O p — U l t O ^ J p — t O t O O S 

© 860
 

© 739
 

© 305
 

O 293
 

© 910
 

© 918 

CD 

d. 

E 

03 

s-

£ 00 
« "2 

! a 
^ 3 

3 
EL 

re 

o 
3 

•a D 

I 
o < 

| | 

a 

6L 



Benchmark ins/walk 

Speculations 

total attempts attempts/walk successful/walk 

Mispredictions 

per speculation per walk 

DRAM Accesses Overlapped 

per walk fraction of total TLB miss L2 hit rate 

bt.C 

cg.C 

dc.B 

ep.C 

is.C 

lu.C 

sp.C 

ua.C 

109448 

33512 

43508 

23927 

140525 

103736 

18346 

117350 

814 

152 

167 

78 

860 

795 

5663 

471 

0.814 

0.019 

0.081 

0.014 

0.721 

0.742 

0.964 

0.416 

0.811 

0.018 

0.028 

0.013 

0.718 

0.740 

0.964 

0.413 

0.004 

0.072 

0.659 

0.038 

0.005 

0.003 

0.001 

0.006 

0.003 

0.001 

0.054 

0.001 

0.003 

0.002 

0.001 

0.003 

0.108 

0.012 

0.007 

0.003 

0.102 

0.103 

0.101 

0.066 

0.618 

0.025 

0.070 

0.022 

0.603 

0.556 

0.865 

0.331 

0.113 

0.106 

0.674 

0.210 

0.917 

0.438 

0.499 

0.763 

PostgreSQL (Fresh) 

PostgreSQL (Cached) 

2450 

12806 

29982 

4215 

0.762 

0.567 

0.754 

0.561 

0.011 

0.010 

0.008 

0.006 

0.057 

0.129 

0.545 

0.543 

0.614 

0.360 

Python 2.6 

SPECjbb2005 

29200 

5432 

3326 

8853 

0.760 

0.418 

0.759 

0.406 

0.002 

0.029 

0.002 

0.012 

0.118 

0.135 

0.588 

0.354 

0.455 

0.401 

Table 6.2 : SpecTLB simulation results for other benchmarks. 
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CHAPTER 7 

Conclusions 

Popular opinion maintains that since virtual memory is such an old problem that it is 

a solved problem. While much progress has been made on various techniques such as 

caching and large pages, the footprint and access pattern of popular workloads is making 

address translation more and more difficult. Large pages can cover a larger quantity of 

memory, but as available physical memory continues to increase, fractional TLB coverage 

shrinks. Page table structures based on hashing reduce the number of accesses required to 

the memory hierarchy, but show poor access locality. Therefore, they were useful when 

DRAM was not much slower than cache but are a poor choice for modern systems where 

caching performance is critical. 

For applications with random access patterns, TLB hit rates are near zero for any page 

size. Traditionally, database hash joins have been an example of an application with a 

highly random access pattern, but other applications are starting to show similar behav

ior. Scientific computing is increasingly working with sparse and irregular data structures 

which have significant randomness in their access pattern [4]. TLB misses are, and will 

continue to be, a major source of performance overhead for important applications. 

This thesis has examined three different techniques to reduce the cost of TLB misses 

with real-life workloads. These workloads exhibit significant locality in their virtual ad

dress use which maps to significantly more locality in physical address space usage than is 



82 

generally expected. This has great impact on which techniques are and are not effective at 

improving address translation performance. 

Applications that cause a TLB miss on a particular virtual page will often cause a TLB 

miss on a nearby virtual page in the near future. Therefore, there is much reuse in the 

upper levels of the radix-tree page table. We examined many designs of MMU cache that 

store the upper levels of the page table. Such caches have been produced by the AMD 

and Intel in their processors, however their designs have not been previously compared 

in the literature. This has left significant optimization opportunity on the table. Unlike a 

processor data cache, an MMU cache has a very specific application, the caching of page 

table entries. This allows an MMU cache to be optimized for its exact task. 

While AMD's page walk cache (a unified page table cache) is conceptually simple, we 

showed that an different tag can be used to create a translation cache. This tag is both 

smaller and faster, since it requires fewer bits and allows page table levels to be skipped. 

The comparison of unified and split caches revealed the previously unpublished problem 

of page table level conflict. Intel's split cache design avoids this problem at the expense 

of area. We have proposed a novel replacement policy, VI-LRU, that solves it by adapting 

to workload automatically. This replacement policy allows a unified MMU cache of n + 1 

entries to perform as well as a split cache holding a total of 3 x n entries, even under 

pathological workloads. 

We showed that changes to the hardware have invalidated widely held beliefs about 

what is and is not a good page table format. Twenty years ago, memory hierarchies were 

flatter and the best metric of VM overhead was memory accesses. Since then, DRAM has 

become comparatively slower and caching of table entries has become more important. 

We show that the scattering of pages and tagging overhead in hashed page tables results in 

poor cache hit rates. While these formats require fewer memory hierarchy accesses overall, 



83 

the radix-tree allows more consecutive translations to fit into a single cache line. This 

greatly reduces the number of slow DRAM accesses required to translate virtual addresses 

as compared to an inverted page table. As hardware continues to evolve, these tradeoffs 

will continue to change. 

With the availability of superpage support on x86, there has been a flurry of research 

on automatic support for page size selection. FreeBSD provides this with the reservation 

based memory allocator. We show that this software provides a unique opportunity to de

velop new hardware to predict address translations. Our device, the SpecTLB, interpolates 

a physical location for many TLB misses without any memory accesses. This allows specu

lative execution while a page walk occurs in the background to verify the predicted address. 

In our simulations, it is able to remove a per-benchmark average of 56% of MMU-related 

DRAM accesses from the critical path of execution. 

The most obvious challenge for virtual memory is translating a virtual address into a 

physical address. The dependence on this translation is what causes the latency overhead 

of a TLB miss. However, it is the permissions and allocation that provides the biggest 

challenge to large page usage. An operating system cannot use a large page for a single 

region of virtual memory if parts of it are unallocated or need to have different permis

sions. Our device effectively decouples the address translation from the allocation and 

permission setting of large pages. The physical address can be interpolated immediately, 

allowing immediate execution, while allocation and permissions are verified in the back

ground. The SpecTLB allows the fine-grained control of small pages while avoiding their 

latency penalty. 
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7.1 Future work 

Nested paging presents a new set of challenges for MMU cache design. The AMD page 

walk cache utilizes a Nested TLB, however it may be possible to combine this device with 

a translation cache, or the primary TLB itself. Like moving from a split to a unified cache, 

this would increase flexibility to differing workloads. However, it may also admit an even 

more extreme version of level conflict since entries from entirely different page tables are 

being cached together. More work should be done to examine the behavior of different 

MMU cache designs under nested paging and to develop a proper replacement policy. 

The new hardware proposed in this thesis similarly provides opportunity for more soft

ware research. Virtualization is a prime candidate for the very large page support now 

available in x86 microprocessors. While protection concerns previously made these im

practical, the SpecTLB enables their use. Actually allocating and managing such pages is 

a research topic of its own. While there are likely thousands of 2MB pages available to a 

system, there are only a few 1GB pages in even the largest of machines. Allocating such 

a large slice of memory will require techniques to clean up address space fragmentation, 

such as those proposed by Romer et al., ([16]). 

Even in unvirtualized environments, the current behavior of the FreeBSD memory allo

cator does not exhaust the capability of the SpecTLB. The majority of TLB misses seen in 

our traces comes from small page misses, not large page misses. Of those, many physical 

addresses cannot be predicted, even with a very large SpecTLB. This means that reser

vations are not being created as often as they could be. Further research is necessary to 

determine if creating reservations more eagerly leads to more address prediction. 

As address spaces continue to grow into the distant future, none of these techniques 

may be enough. While memory capacity is likely to continue to grow rapidly, I/O speed and 
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TLB size scale far slower. Selecting larger and larger page sizes will be impractical if these 

pages ever need to be read from or written to disk. This will require more radical solutions 

if future designers want to avoid the overhead of translating an address for nearly every 

memory access. Paged environments may not be practical at all, and architecture may have 

to return to using physical addressing. This would eliminate translation overhead entirely 

by simply removing translation. While impractical in current computing environments, 

a physical address space may be usable when all code runs under a trusted middleware 

environment, like Java. 

The success of techniques developed here are due to their inspiration by actual soft

ware behavior. The traditional architectural design model of hardware dictating system 

support is flawed. Without examining the behavior of modern memory allocators, one 

would rightfully assume that there is no contiguity or alignment in physical address space 

usage. However, when a system is designed holistically, more complex behavior that can 

be exploited for performance becomes apparent. 
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APPENDIX A 

MMU Coverage Proofs 

The coverage provided by some of the MMU cache designs can be compared without 

making any assumptions about the access pattern. This section will show that the entries 

stored in the TPC with LRU replacement are always a superset of the entries stored in an 

equally sized unified cache (UPTC or UTC) with LRU replacement. This section will also 

show that the entries stored in a SPTC are always a superset of the entries stored in a TPC 

when all of the caches are equally sized and use LRU replacement. 

Note, however, that coverage is not necessarily directly related to performance. Any en

try that matches in a translation cache can be used immediately to begin the page walk from 

that point, skipping the previous steps of the page walk. In a page table cache, the traversal 

must occur in order, so the presence of a lower level entry in the cache does not allow the 

previous steps in the page walk to be skipped. So, a translation cache can outperform a 

page table cache, even in cases where the page table cache has larger coverage. 

All of the MMU caches contain physical page numbers of page table pages that could 

be accessed during a page walk. The page walk is the traversal of a radix tree with the 

physical page number of the root stored in the CR3 register, as shown in Figure 2.2. CR3 

points to an L4 page table page containing L4 entries. Each L4 entry, in turn, is either valid 

and points to an L3 page table page or is invalid (i.e., NULL) and indicates that there are 

no valid virtual addresses with that index. Similarly, each valid L3 entry points to an L2 
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page table page. Then, each valid L2 entry points to an LI page table page. Finally, each 

valid LI entry contains the physical page number of the data page. The offset of the virtual 

address is appended to this physical page number to create the address of the data itself. As 

shown in Figure 2.2, LI entries are not cached by the MMU caches, as they are cached by 

the TLB. Therefore, LI entries will be ignored for the remainder of this section. 

The following definitions are used by the subsequent proofs: 

Definitions: An internal entry is an L4 or L3 entry which can be cached in any of 

the MMU caches. A leaf entry is an L2 entry which is the lowest level of the tree that is 

cached by any MMU cache. An entry is any internal entry or leaf entry. Finally, a path is a 

sequence of L4, L3, and L2 entries that are a part of a single page walk. 

A.l Comparison of TPC and Unified Coverage 

On a TLB miss, the MMU must walk the page table tree from the root all the way down to 

the LI entries. Each slot in the TPC stores the entire path of such a walk, whereas each slot 

in a unifed cache (either a UPTC or UTC) stores a single entry in such a walk. While these 

strategies are quite different, this section will prove that given a TPC and unified cache of 

equal size that both use a least-recently used (LRU) replacement policy, the entries stored 

in the TPC are always a superset of the entries stored in the unified cache. The following 

lemmas will be used in support of this proof: 

Lemma A.l.l For any sequence of page walks, any leaf entry cached by any n-entry cache 

using LRU replacement would also be cached by an n-path TPC using LRU replacement. 

Proof The TPC caches entire paths using an LRU replacement policy, so it will always 

contain the n most recently walked unique paths. As each path includes a leaf entry, the 

TPC will therefore always contain the n most recently accessed unique leaf entries. By 
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definition, any n-entry cache using an LRU replacement policy cannot cache any entry that 

was accessed less recently than the n most recently accessed leaf entries. Therfore, no 

n-entry LRU cache can ever cache a leaf entry that would not also be cached by an n-path 

TPC | 

Lemma A.1.2 In a unified cache using LRU replacement, no internal entry can be present 

in the cache without at least one of its child leaf entries also being present in the cache. 

Proof Entries are only accessed as a part of a complete page walk. Therefore, leaf entries 

of a path will always be accessed after internal entries in that path. Therefore, the leaf entry 

of any path is always more recently accessed than the internal entries of that path. So, due 

to the LRU replacement policy, when entries are replaced in any LRU unified cache, the 

leaf entry of a path will always be replaced after its parent internal entries. Therefore, at 

any time, no internal entry can be in an LRU unified cache without at least one of its child 

leaf entries also being in the LRU unified cache. | 

Theorem A.1.3 For any sequence of page walks, any entry cached by an n-entry unified 

cache (UPTC or UTC) using LRU replacement would also be cached by an n-path TPC 

using LRU replacement. 

Proof By Lemma A.l .1, an n-path LRU TPC always caches a superset of the leaf entries 

cached by an n-entry LRU unified cache. Furthermore, because the TPC caches com

plete paths, it always caches every parent internal entry of each leaf entry in the TPC. By 

Lemma A.l .2, a unified cache can never cache an internal entry that is not the parent of a 

leaf entry within the UPTC. Since those leaf entries are a subset of the leaf entries in the 

TPC, the internal entries in the unified cache must also be a subset of the internal entries in 

the TPC. Therefore, the entries cached within an n-entry LRU unified cache are always a 

subset of the entries cached within an n-path LRU TPC. | . 
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A.2 Comparison of TPC and SPTC Coverage 

While each slot of the TPC caches the entire path of each page walk, the SPTC caches the 

entries of each level of the walk in a separate cache. If each of the SPTC caches have the 

same number of slots as the TPC and all of the caches use an LRU replacement policy, 

this section will prove that the entries stored in an SPTC with n entries for each level will 

always be a superset of the entries stored in an n-path TPC. The following lemmas will be 

used in support of this proof: 

Lemma A.2.1 For any sequence of page walks, the leaf entries cached in an n-path LRU 

TPC are always identical to the leaf entries cached in an LRU SPTC with n entries in its 

L2 entry cache. 

Proof As stated in Lemma A.l .1, an n-path LRU TPC always contains the n most recently 

accessed unique leaf entries. Similarly, the SPTC caches leaf entries in its L2 entry cache 

using an LRU replacement policy. Since every page walk using an SPTC must access a 

leaf entry, the L2 entry cache of the SPTC will always contain the n most recently accessed 

unique leaf entries. Therefore, the leaf entries cached by each structure will always be 

identical. | 

Lemma A.2.2 For any sequence of page walks, any internal entry cached by an n-path 

LRU TPC would also be cached by an LRU SPTC with n entries for each level. 

Proof When using an SPTC, every page walk will access all the entries in the path. As 

the SPTC has n entries for each level and uses an LRU replacement policy, this means that 

the SPTC will always contain the n most recently accessed unique internal entries at each 

level. As the TPC stores n unique paths, at most n unique internal entries can be cached at 

each level. The LRU replacement policy of the TPC guarantees that none of these internal 
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entries can ever be less recently accessed than the n most recently accessed internal entries 

at that level. Therefore, the TPC can never cache an internal entry that would not also be 

cached by the SPTC. | 

Theorem A.2.3 For any sequence of page walks, any entry cached by an n-path LRU TPC 

would also be cached by an LRU SPTC with n entries for each level. 

Proof By Lemma A.2.1, the leaf entries cached by each structure will always be the same. 

By Lemma A.2.2, the TPC can never cache an internal entry that would not also be cached 

by the SPTC. Therefore, an n-path LRU TPC can never cache any entry that would not also 

be cached by an LRU SPTC with n entries for each level. | 

Note that if the L4 and/or L3 entry caches of the SPTC are smaller than the L2 entry 

cache, then this theorem does not hold because Lemma A.2.2 requires all of the SPTC's 

caches to be the same size. When they are not, the SPTC may hold a superset, subset, or 

the same set of internal entries that the TPC holds, depending on the access pattern. 
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