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Abstract 

Compact Support Wavelet Representations for Solution of Quantum and 

Electromagnetic Equations: Eigenvalues and Dynamics 

by 

Ramiro Acevedo Jr. 

Wavelet-based algorithms are developed for solution of quantum and electromag-

netic differential equations. Wavelets offer orthonormal localized bases with built-in 

multiscale properties for the representation of functions, differential operators, and 

multiplicative operators. The work described here is part of a series of tools for 

use in the ultimate goal of general, efficient, accurate and automated wavelet-based 

algorithms for solution of differential equations. 

The most recent work, and the focus here, is the elimination of operator matrices in 

wavelet bases. For molecular quantum eigenvalue and dynamics calculations in mul-

tiple dimensions, it is the coupled potential energy matrices that generally dominate 

storage requirements. A Coefficient Product Approximation (CPA) for the potential 

operator and wave function wavelet expansions dispenses with the matrix, reducing 

storage and coding complexity. New developments are required, however. It is de-

termined that the CPA is most accurate for specific choices of wavelet families, and 

these are given here. They have relatively low approximation order (number of van-

ishing wavelet function moments), which would ordinarily be thought to compromise 

both wavelet reconstruction and differentiation accuracy. Higher-order convolutional 

coefficient filters are determined that overcome both apparent problems. The result 



is a practical wavelet method where the effect of applying the Hamiltonian matrix to 

a coefficient vector can be calculated accurately without constructing the matrix. 

The long-familiar Lanczos propagation algorithm, wherein one constructs and di-

agonalizes a symmetric tridiagonal matrix, uses both eigenvalues and eigenvectors. 

We show here that time-reversal-invariance for Hermitian Hamiltonians allows a new 

algorithm that avoids the usual need to keep a number Lanczos vectors around. The 

resulting Conjugate Symmetric Lanczos (CSL) method, which will apply for wavelets 

or other choices of basis or grid discretization, is simultaneously low-operation-count 

and low-storage. A modified CSL algorithm is used for solution of Maxwell's time-

domain equations in Hamiltonian form for non-lossy media. The matrix-free algo-

rithm is expected to complement previous work and to decrease both storage and 

computational overhead. It is expected that near-field electromagnetic solutions 

around nanoparticles will benefit from these wavelet-based tools. Such systems are 

of importance in plasmon-enhanced spectroscopies. 
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Chapter 1 

Introduction 

In molecular physics, exact quantum calculation of nuclear motion is still a pursuit 

of specialists. Much more research effort has been devoted to the field of electronic 

structure, for which a variety of computer programs have been developed for produc-

tive use even by interested non-specialists. This is far less true for calculations of 

nuclear motion, whether for very anharmonic bound state vibrations, chemical reac-

tions, isomerizations, photodissociation or other processes. While the basic molecular 

Hamiltonian for electrons and nuclei is a sum of two-body terms, the use of the Born-

Oppenheimer separation results in an effective potential for the nuclear-motion prob-

lem, in which many nuclear degrees of freedom are coupled. Cutting-edge calculations 

must make choices of coordinates, discretizations, and computational algorithms that 

are far from being standardized. It is in this context that efforts are being made to 

develop general solvers such as those using the finite element method (FEM) that 

can be applied no matter what specific coordinates are chosen. Another approach is 

offered by compact-support wavelet bases such as those derived by Daubechies [1, 2], 

which simultaneously allow orthogonal bases and multiscale representations. Wavelet 

methods are still relatively young and technical barriers are still being addressed, but 

the prospects are good for long-range development of adaptive wavelet methods that 

1 
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can enable construction of versatile computer programs accessible to an enlarged base 

of researchers. 

There are any number of other fields (fluid mechanics, acoustics, radiative trans-

port, etc.) apart from quantum mechanics that can also benefit from development 

of efficient wavelet technology. Of specific interest to us is in nanophotonics, the 

interaction with and manipulation of light by subwavelength particles, and its use in 

modern molecular spectroscopies. The intense local electromagnetic (EM) fields near 

noble metal nanoparticles are principal factors in surface-enhanced Raman scatter-

ing (SERS) and emerging variations such as surface-enhanced Raman optical activity 

(SEROA). Near-field calculations can be accomplished for spherical particles using 

Mie theory and vector spherical harmonics, but more general geometries require use of 

finite-difference time-domain (FDTD), FEM, the boundary element method, or other 

numerical methods. Wavelet bases can also be used for time-domain or frequency-

domain near-field EM solvers, and the built-in customizable resolution appears es-

pecially promising in this regard. A variety of exploratory wavelet calculations have 

been performed already, including in our own work. SERS and SEROA applications 

in our group have so far used spherical metal nanoshell substrates for which Mie the-

ory has been adequate, but it is of direct interest to determine if wavelet methods can 

be at least as computationally efficient as FDTD, FEM, and other EM methods for 

different geometries, different surface roughnesses, and for adjoined nanoparticles. 

Wavelet bases sparked a revolution in signal and image processing during the 

eighties and nineties. In this context wavelets are used to represent 2D functions 

(images) with an accuracy governed by what the human eye can discern, e.g., 1 part in 
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103 or 104. More general functions (such as solutions of multidimensional differential 

equations) are also expandable in wavelet bases, but some wavelet tools from the signal 

processing community are not accurate enough for use in the differential equation 

context. Solution of differential equations generally demands far greater accuracy. 

This is the reason wavelets are not routinely used for solution of differential equations. 

It is hoped that tools introduced by our lab will change this. 

Basis functions or expansion functions are familiar to scientists. Commonly, 

thoughts of orthogonal polynomials or Fourier functions come to mind. These are 

easily written down in a closed analytic form. Orthonormal compact-support wavelets 

do not have closed analytic forms and are not solutions to differential equations. In-

stead they satisfy scaling relations called two-scale equations (this is where built-in 

scaling properties of wavelet bases arise). The lack of a closed form is not a problem 

as wavelet function values are found through iterative use of the two-scale equations. 

The resulting recursive algorithm begins with exact evaluation of wavelet function 

values at the integers then subsequently at the half-integers, then at the quarter-

integers, and so on. For many purposes the numerically exact evaluation at these 

dyadic rationals is sufficient, but interpolation can be used if more general positions 

are required. Methods are available for the calculation wavelet basis function values. 

The next challenge was in the determination of wavelet expansion coefficients. 

Many researchers approximated expansion coefficients of a function by simple sam-

ples of that function. For use in representing solutions of differential equations more 

accuracy is generally demanded. This was partially addressed by the introduction of 

coiflets (discussed in depth below), special wavelet families for which the expansion 
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coefficients were much closer to the function samples. More general wavelet quadra-

ture methods were subsequently developed for accurate, systematically improvable 

calculation of expansion coefficients without requiring use of excessively fine-scaled 

wavelets or large numbers of function samples. Methods are thus also available for 

the calculation of wavelet basis expansion coefficients of a function. 

The next hurdle for wavelet-based implementations involved the representation 

of operators, such as differential operators from EM equations or multiplicative (po-

tential) operators from quantum equations. Casting the Schrodinger equation into 

a finite localized basis form is generally accomplished by evaluating the matrix el-

ements of the Hamiltonian operator between the included basis functions (bilinear 

integrals). If only a single scale wavelet basis is used, the Hamiltonian matrix takes a 

particularly simple banded form due to the exact localization of the basis. If multiple 

scales are used, the overlap matrix is still diagonal, but the Hamiltonian matrix now 

becomes more complicated and less sparse, leading to the need for special methods 

to maintain efficiency. The kinetic energy operator matrix elements in Daubechies-

like bases are straightforward to evaluate and only a modest number of integrals, 

calculated as the solutions to linear algebraic equations, are unique. The potential 

matrix is more difficult for general potential energy surfaces (PESs) but this problem 

was addressed in the late 1990s by adapting the wavelet quadrature to integrals that 

were bilinear in basis functions. For a PES with an analytic form, it was also shown 

possible to use the wavelet two scale relations (for both bra and ket basis functions 

this time) to evaluate the target matrix elements to any desired accuracy. With a 

wavelet matrix representation of the Hamiltonian in hand eigenvalues and eigenfunc-
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tions are extracted through standard methods. These methods apply equally well to 

frequency-domain EM equations that are arranged as an eigenvalue equation. 

Just as important as eigenpair solutions of the time-independent Schrodinger equa-

tion (TISE) is solution of the time-dependent Schrodinger equation (TDSE). A new 

method for solution of the latter was developed in 2007. The Conjugate Symmetric 

Lanczos (CSL) method for time-independent Hermitian Hamiltonians derives from 

time-reversal symmetry and can be viewed as a Lanczos-based propagation algorithm 

simplified to eliminate storage of most Lanczos vectors. While the wavelet technology 

discussed above can be used for the spatial (vibrational) coordinates (degrees of free-

dom), this CSL propagation method is independent of the spatial representation and 

can be used with other spatial representations. These quantum evolution algorithms 

are based on the matrix-exponential solution involving the Hamiltonian matrix and 

the resulting tools can also be used in time-domain solution of Maxwell's EM equa-

tions. This is accomplished by first organizing the EM equations into a Hamiltonian 

form that resembles the TDSE, but with a "Hamiltonian" involving derivatives and 

dielectric functions. The CSL method applies immediately to this case, and prelim-

inary research has been carried out into a CSL-type method for absorbing (complex 

dielectric) media for which the Hamiltonian-like operator is not Hermitian. 

What has not been fully addressed yet is how to combine all of the wavelet charac-

teristics - orthogonality, multiresolution description, systematic accuracy, compress-

ibility and dynamical adaptivity - into competitively efficient algorithms. There are 

already algorithms in use in molecular physics such as the Discrete Variable Repre-

sentation (DVR) for specific problems such as determination of anharmonic coupled 
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vibrational energy levels for molecules with a few atoms, and it is desirable that 

wavelet methods be capable of at least comparable efficiency. Yet, in trying to take 

matrix-based wavelet eigenvalue calculations to multiple degrees of freedom in either 

direct-product or contracted-direct-product bases, the limiting factor quickly becomes 

storage of the Hamiltonian matrix. Even using sparse-matrix representations, it is 

rather easy to exceed the limits of fast memory. 

This is the barrier of most importance at the current moment. It is addressed 

here by developing a matrix-free approach to applying the Hamiltonian to a vector 

of wavelet expansion coefficients. This is in principle straightforward for a standard 

Cartesian kinetic energy operator. For the potential, we take the expansion coeffi-

cients for the potential times the wave function as proportional to the product of 

their individual expansion coefficients. The errors in this approximation are carefully 

studied and are found to be minimized by certain choices of generalized coiflets that 

are worked out here. The function approximation capabilities of these bases are mea-

sured by their approximation order, which is not as high as for Daubechies wavelets, 

and will therefore have worse errors in representation of functions. This apparent 

problem is resolved by the use of other convolution filters that "beat the approxima-

tion order." Related decreases in accuracy upon applying the kinetic energy operator 

in the generalized coifiet bases are overcome by more accurate differential filters that 

turn out to be familiar. In the end, coifiet wavelet representations give single-scale 

bases that are very efficient at calculating the effect of the Hamiltonian operators on 

a coefficient vector without the need for matrices. Our matrix-free algorithm gives 

both storage and computational savings. There are even fewer computational steps 
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used than, e.g., in the sine DVR method commonly utilized for solutions of general 

problems. This efficient alternative to the direct matrix-vector multiplication allows 

determination of select eigenvalues through use of the standard Lanczos algorithm, 

though in practice strong potential anharmonicities make it preferable to use a more 

recent robust version that avoids stagnation and/or the storage of too many Lanczos 

vectors. 

We judge these latter results as the most important for our future progress in 

multidimensional multiscale wavelet calculations, and so they are placed front and 

center in the layout in Part I of this thesis. As a consequence, some of the subsequent 

results are not in chronological order. It is hoped that this does not cause confusion. 

Moreover, though wavelet use in EM calculations is of strong interest going for-

ward, preliminary theoretical calculations of SEROA are described that are based 

entirely on Mie theory. This is because experimental SEROA measurements are be-

ginning to appear. However, this is insufficient theoretical assurance that the circular 

intensity differences are selective for chiral molecules just as they are in ordinary 

ROA. An electric-dipole Mie theory model of SERS is extended to higher molecu-

lar multipoles and combined with the ROA formalism in order to study the special 

case of molecules near silver and gold metal nanoshells with dielectric cores. This is 

the subject of Part II of this thesis. It is found that, even without adsorption, the 

strong local EM fields generally interfere with this chiral selectivity. Different circular 

polarization strategies are examined, and it is found that the so-called dual circular 

polarization method for backscatter detection from a spherical plasmonic substrate 

is predicted to restore the selectivity. Excitation curves of SEROA enhancement are 
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analyzed for both metals, and particular suggestions are made for choice of excitation 

region. This represents the first calculation of any type of SEROA where the sur-

face plasmon local fields were fully included and where chiral selectivity was indeed 

predicted. Addition of surface roughness may be investigated at a future date using 

other numerical methods, perhaps one of these an efficient wavelet-based EM solver. 
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Wavelet Representat ions in 
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Chapter 2 

Compact Support Wavelets 

2.1 Scaling and Wavelet Representation 

A wavelet transform is a basis representation using members of a fixed shape that 

are copied, scaled, and translated across the real line to give a scale and location 

representation in terms of special functions that look like little waves. The wavelet 

ipjk expansion [3] of function / has the form 

over all integers j and k. The basis functions ip]k are orthonormal, oscillatory, 

strictly localized functions created as scaled and translated copies of a single mother 

wavelet ip, 

A typical example of ip is shown in red in Fig. 2.1. The idea of shifting, or translation, 

is shown with the black thin-lined wavelets. The colored wavelets depict the scaling 

idea, the finer-scale (higher j) functions are squeezed versions of the j = 0 function 

(2 .1) 
j k 

x - k) . (2.2) 

10 
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Figure 2.1: Examples of scaled wavelets at j = 0, 1, 2 and 3, all with location k = 0. 
These are the functions i[) = ip00, 1P20, and tf)3Q, respectively. Translated versions 
of the red j = 0 wavelet are shown with thin black lines, they are ipok with k = 1,2, 
3 and 4. 

ip. These two ideas are important because a wavelet representation is an alternative 

description of / using scaled wavelets that are translated across a domain as written 

in Eq. (2.1). 

The wavelet transform is formed by the expansion coefficients or projection coeffi-

cients f j k that are linear projection integrals labeled by scale index j and translation 

index k 

//* = fel/> = J ' >(•'•)/(•'•)'/.r. (2.3) 

The terms expansion coefficients and projection integrals are used interchangeably 

throughout since the ipjk form an orthonormal basis. Each wavelet expansion coef-

ficient f t , is a finite integral since the basis members t(jjk have compact support, or 
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strict localization, i.e., they are nonzero on a finite interval (see Fig. 2.1). Wavelets 

provide a representation labeled with two indices, the translation index providing 

the location of the basis function on the real line, and the scale index providing the 

information about resolution in a manner loosely analogous to use of frequency. The 

wavelet shape being fixed, the slowly-varying aspects of a function are analyzed with 

wider wavelets and the detailed transient aspects are analyzed with thinner wavelets. 

This is shown later in Fig. 2.3. 

Actual implementations of a wavelet transform are unable to keep or calculate an 

infinite number of location-indexed coefficients for every scale j, f j k . For sufficiently 

smooth functions / we can dispense with the finer scale wavelets ipjk, with larger 

j, by truncating the j sum in Eq. (2.1) at some upper scale cutoff. Any errors in 

the wavelet basis expansion resulting from the truncation can be reduced through 

inclusion of even finer scale wavelets. 

A similar problem persists at the opposite end. One really does not want to 

continue j to — oo, i.e., infinitely coarse mother wavelets. For typical wavelet repre-

sentations, one chooses a coarsest scale and uses there a basis created by translates 

of a father wavelet or scaling function cf) [1, 4, 2], These, like ip, have scaled (index j) 

and translated (index k) copies, 

cj)jk(x) = cj>(2ix-k) . (2.4) 

The functions cj) a n d ip have complementary characteristics that will be discussed 

below. 
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This scaling and shifting description also applies to the wavelet functions from 

Eq. (2.2). The wavelets are also unit square-normalized over all scales, (ijjjk\4'jk) = 1. 

A typical example of <fi is shown in red in Fig. 2.2. 

Figure 2.2: Examples of scaled scaling functions at j = 0, 1, 2 and 3, all with location 
k — 0. These are the functions 0 = 0oo, 4>io, 4>2o, and (f)30, respectively. Translated 
versions of the red j = 0 scaling function are shown with thin black lines, they are 
4>ok with k = 1, 2, 3 and 4. 

Instead of the expansion as presented in Eq. (2.1), the multiscale wavelet repre-

sentation of / is now described in linear combinations of scaled and translated scaling 

and wavelet functions over a limited scale range 

3-1 
/(*) = E /ofc *<*(*) + E E & w*) + • (2-5) 

k j'=0 k 

The first sum over integer k involves single-scale linear projection integrals over scaling 
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functions, 

fjk = (tjkl f ) = j M*) f ^ dx ' (2'6) 

and basis function values (f)jk(x), while the second integer sums are scale-truncated 

versions of Eq. (2.1). The error of this expansion is governed by a positive integer M, 

the approximation order of the basis. This multiscale decomposition gives coarse-scale 

information in the j = 0 scaling function plus different levels of detail using different 

scale wavelets over a range of j ' values. An important notion is the alternative, but 

equivalent, single-scale representation at level j , 

/ (* ) = (2-7) 
k 

which offers a localized orthonormal basis expansion. 

A final generalization, which is useful in applications and also in theoretical error 

analysis, allows the scale on level j = 0, reflected in the spacing between basis mem-

bers k and k + 1, to differ from unity. This is accomplished by the introduction of 

the real-valued spacing parameter A, resulting in A-spaced basis function as discussed 

below. 

Certain notational conventions are used throughout. The presence of a single 

integer subscript indicates translation, for example, 4>k(x) = 4>(x — k), with the obvious 

special case k = 0 giving 4>0(x) = 4>{x). The presence of two integer subscripts, j and 

k, indicates change of scale by and translation by k units on that scale, Eq. (2.4), 
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with the special case j = 0 giving (j)ok(x) = <j>k{x). Finally, if the j = 0 basis has 

spacing A that is not necessarily unity, this is indicated by a superscript, 

with the special case A = 1 giving <j>}jk(x) = Scales for higher j are now written 

A j = X/2j . (2.9) 

Similar conventions are used for ip(x). 

The reference functions 4>(x) and ip(x) are both square-normalized to unity and 

are orthogonal to each other, as well as each other's translates. Considering more 

general scales, the full set of orthogonality relations are enumerated as 

J <%k(x) <f>x
jW{x) dx = 8kk, (2 .10) 

J ip}k(x) ipf,k,{x) dx = 5jf 5W (2 .11) 

J$k(x)^,k,(x)dx = 0 ? > j . (2.12) 

The Kronecker delta Skk' is one when the two indices are equal and zero otherwise. 

The first line states translation orthonormality between same-scale scaling functions. 

The second line states translation orthonormality between same-scale wavelets as well 

as orthogonality between different-scale wavelets. The last line states orthogonality 

between scaling and wavelet functions on possibly different, scales as long as the scaling 
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functions are members of the coarsest scale. Other important reference function 

conditions translate to the A-scaled members as 

Prom these equations important properties of the fundamental functions are apparent. 

The father wavelet (f> has unit area while the mother wavelet yj has vanishing area. 

Wavelet representation projection integrals of a particular test function are shown 

in Fig. 2.3. The colored dots depict different resolutions of scaling function expansions 

of the form in Eq. (2.7). Within this single-scale point of view more function details 

are recovered as the level j is increased. In the alternative multiscale form of Eq. (2.5) 

a single level of coarse-scale scaling functions capture the main, slowly-varying infor-

mation (red dots) while finer-scale wavelets (colored pluses) capture details such as 

points and edges. The colored pluses are essentially zero everywhere except sharp 

transitions. 

It is sometimes simplest to use a scaling function representation at a fixed scale. 

This scale can be chosen sufficiently fine so as to encompass the important dynamic 

variations of the function analyzed. This can be wasteful, however. Employing the 

multiscale representation opens the door to other possibilities such as compression 

(i.e., selective deletion of wavelet functions whose expansion coefficients are negligible) 

or noise reduction. 

With A-scaled members, the single-scale and multi-scale decompositions of a func-

(2.13) 

(2.14) 
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kXj 

Figure 2.3: Scaling and wavelet decomposition of an example function / (top black 
trace). The colored dots are scaling function projection integrals and colored pluses 
are wavelet projection integrals. All colored traces have a uniform vertical offset for 
clarity. The discrete coefficients are depicted at real space locations k\j, the left-
hand edge of each basis function, for km{njj < k < A:max j . The coefficients at the 
coarsest representation, j = 0, are spaced by A = 1 while the ones at the finest 
resolution, j = 3, are spaced by 1/23 = 1/8. The colored bars on the left depict the 
extent/support of a scale-j basis function (compare to Figs. 2.1 and 2.2). 

tion / are given in final form, 

k 

m = £ fo\ 4>0k(x) + EE fpk tiki*) + 0{\¥) . (2.16) 
k j'=0 k 

These equations are more general versions of Eqs. (2.7) and (2.5). The expansion 
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coefficients 

/A = (#*!/> = / $k(x)f(x) dx (2.17) 

(2 .18) 

are given as integrals over compact support functions <f>jk(x) and tpjk(x) that are both 

nonzero on the support 

The L — 1 term on the right hand side covers the extent of the last compact support 

function. This is discussed further in Section 2.3. 

Later, in Section 2.2, efficient methods are discussed that enable the multiscale 

wavelet projection coefficients from Eq. (2.16) to be found through single-scale scaling 

function projection coefficients. 

2.2 Multiresolution Analysis and the Two-Scale Equations 

Here we discuss the underlying concept of a multiresolution analysis (MRA) [4], 

Orthonormal wavelet bases, and their multi-scaling properties, provide concrete re-

alizations of an MRA. That is, the 0jk and xj)jk members form a basis for an MRA 

of general functions [3]. The orthogonal wavelets considered here allow an MRA 

corresponding to function subspaces at different resolutions that do not overlap. 

For a particular resolution level j, the set of for all integer k forms an or-

thonormal basis for the subspace denoted by Vj. This subspace represents all linear 

[kX/2j,(k + L-l)X/2j] . (2.19) 
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combinations of the 4>jk. The corresponding ipjk members are an orthonormal basis 

for the subspace denoted by Wj. This subspace represents all linear combinations of 

the The single-scale scaling function expansions of Eq. (2.15) are orthogonal pro-

jections of / onto the Vj subspace. Similarly, the multi-scale expansion in Eq. (2.16) 

give orthogonal projections of / onto the disjoint subspaces Vo, Wo, W\,..., Wj-

Since there is always more information about / at higher resolution, a coarser 

subspace is contained in a finer one, that is, the Vj form a nested sequence of vector 

subspaces 

• • • C Vj-1 C Vj C Vj+1 C Vj+2 C • • • . (2.20) 

Therefore, all information from coarser-scale Vj> subspaces is contained in Vj for 

j' < j• This is reflected in the amplitude of the expansion coefficients shown in 

Fig. 2.3. For each scale index j , the dots represent the projections on Vj. Due to the 

subspace nesting, the information about level-j coefficients is then also contained in 

VJ+I , Vj+2, e t c . 

Finer subspaces Vj (higher j ) give zoomed representations, offering more infor-

mation when compared to coarser-scale representations (lower j). Wavelet functions, 

spanning the Wj subspace, arise naturally in a MRA decomposition. The former 

contain the differences between Vj and VJ+i. The MRA analysis shows that wavelet 

functions arise from orthogonal differences between neighboring-scale scaling function 

representations. It will be shown that this implies that the whole wavelet system is 

formed from a single function, <f>, the father function. 

The nesting of Vj in Vj+\ is realized in the construction by Daubechies, who 
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stipulated that each scaling function 0 -fc is a real linear combination of only those 

4>j+i,k entirely contained in the former's support of [0, L — 1], for even L. For example, 

the father function, being an element of Vo, is contained in V\ and can be written as 

a linear combination of <f>lk functions, 

L-1 L—l L-1 

<i>{x) = E hk = E hk - k ) = J2ck ^ - k) • (2-21) 
k=0 fc=0 k=0 

This is the dilation equation or two-scale equation of the scaling functions and it 

states that coarser-scale scaling functions are linear combinations of shifted, finer-

scale scaling functions. The last equality shows two common alternate coefficient 

conventions, related by ck = \[2 hk- The first choice, hk, is more appropriate to 

expressing <f>(x) as a linear combination of the <j>lk(x) functions as they are defined 

in Eq. (2.4), while the second choice, Ck, is more appropriate to expressing (j)(x) 

as a linear combination of the same function with scaled and shifted arguments. 

The basis members c ^ retain their normalization no matter the choice of coefficient 

normalization. 

Since, as discussed above, Wo = Vi © Vo and Wo is orthogonal to Vo (Wo -L Vo), 

all members of Wo can also be written in terms of the members of Vi. For the mother 

function, then, 

L—l L—l L-l 

ip(x) = ^9k hk(x) = E gk V2 0(2x - k ) = ^ d k <j>{ 2x - k) . (2.22) 
fc=0 fc=0 k=0 

Again, the last equality gives an example of an alternate coefficient normalization 
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that absorbs the y/2 factor as dk = \/2gk. The first equality makes it clear that ip(x) 

is a linear combination of the same finer-scale (fiik(x) functions used for <p(x). This is 

the wavelet two-scale equation, and it states that coarser scale wavelet functions are 

linear combinations of shifted, finer-scale scaling functions. The ck and dk choices of 

normalization are usually chosen below. 

Eqs. (2.21) and (2.22) state that father and mother functions are linear combina-

tions of the L half-width scaling functions that are entirely contained in the interval 

[0, L — 1], Continuing the subspace containment arguments of the last two paragraphs 

leads to general level-j two-scale equations 

L-1 

<ftk(x) = 2"1 '2 £ Cfc, (2-23) 
k'—Q 
L-l 

tP}k(x) = 2"1/2 £ dk, . (2.24) 
k'~ 0 

They are general-scale versions of Eqs. (2.21) and (2.22). These equations can be 

derived through substitution of 2Jx — k —» x in Eqs. (2.21) and (2.22) and using 

Eqs. (2.4) and (2.2). 

The two-scale equations provide a fast method to transform from a single scale 

representation to a multiscale representation. This is accomplished through use of 

the low pass (detail-suppressing) operation 

L-l 
fjic ~ 2 ck> fj+i^k+k' (2.25) 

fc'= o 
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and the high pass (detail-extracting) operation 

L-l 
j+l,2k+k' • (2.26) 

k'=0 

These equations are derived through multiplication of Eqs. (2.23) and (2.24) by the 

function f(x) followed by integration over x. The low-pass and high-pass filters also 

offer fast transformations for projection coefficients between different scale represen-

tations. The level j — 1 coefficients are easily calculated from level j coefficients, a 

direct consequence of the nested subspace structure of a MRA [Eq. (2.20)] and the 

two-scale equations [Eqs. (2.21) and (2.22)]. 

The transformation of the fj-k to the multiscale representation fgk and f^k
x (over a 

finite range of j) proceeds through use of the coefficients ck and dk alone. In fact, the 

actual basis members are not needed in the calculation of the wavelet transform, just 

the coefficients ck and dk. The calculation of these coefficients for different wavelet 

families is discussed in Section 2.3 and 2.5. 

In applications, the representation index takes the values kmjnj < k < kmaxj, 

different for each level j , to cover a total spatial range of 

The spatial range is then tuned with /crninj and femaxj values that are truncated for 

the physical region of interest. Along with the j truncation already discussed, this 

^-truncation reduces that basis to finite rank and allows the use of square-integrable 

[̂ miru ^max] — [^mmJ-^/2"', {kmax<j -f- L l)A/2^] . max. (2.27) 
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basis techniques. Independent ^-truncations on different scale levels j of an MRA 

allow the calculations to be more efficient. 

2.2.1 Wavelet Transform and Pyramid Algorithm 

The low-pass and high-pass filters in Eqs. (2.25) and (2.26) are iteratively applied 

to transform the single-scale representation to the multiscale representation. This is 

shown in Fig. 2.4. Once a scaling function representation /A. is found this pyramid 

Figure 2.4: Pyramid algorithm: repeated application of low and high pass filters, 
depicted by c and d, respectively. The single-scale representation is shown in red (as 
are the other sets of coefficients in the top row) and the multiscale representation is 
shown in blue. 

algorithm allows fast transformation to the multiscale representation. The low pass 

and high pass filterings are implemented through Eqs. (2.25) and (2.26) directly. In 

practice, basis functions are chosen to cover a finite range, to give a finite number of 

expansion coefficients. This was discussed in Section 2.1. The transformation from 

fjk ff-i,k r e s u l t s i n a representation with half the density of basis functions. 

The cascaded application of the low pass filter also has application in projection 

coefficient refinement discussed next. 
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2.2.2 Scaling Function Expansion Coefficient Refinement 

Single scale expansion coefficients calculated by wavelet quadrature in Eq. (2.47) 

have 0(A,r+1/2) errors for integer r > 0. Quadrature refinement can be used to accel-

erate/improve the error order (control the absolute accuracy) of wavelet quadrature 

through use of the low pass operation of Eq. (2.25). Refinement proceeds by multi-

point (r-point) quadrature at a fine scale j = J > 0 to calculate f j k with errors 

of 0( (A/2 J ) r + 1 / 2 ) (which can be made as small as desired), followed by iterative re-

cursion to coarser levels j < J. The latter operation is depicted in the top row 

of Fig. 2.4, where fine scale projection integrals are transformed, through discrete 

convolution with the ck coefficients, to coarser scale projection integrals. 

The refinement procedure uses the low pass operation to transform from the ac-

curate f j k to fj_itk without loss of accuracy, followed by the transformation of 

to fj_2 k, etc. This can be continued to any target level, say j = 0. (In an MRA, one 

can also use the high-pass operation along the way to calculate enhanced-accuracy 

wavelet function projections.) The convergence of the f*k (gotten from some f j k 

with J > j) calculated by this refinement procedure can be monitored by changing 

the finest level J. Thus it is possible to obtain any of the projection integrals for a 

function / as accurately as needed. 

For sufficiently fine single-scale calculations refinement is not necessary as the 

spacing A j gives acceptable quadrature error orders. In this case, the multi-point or 

single-point quadrature of Section 2.6 are all that is necessary. 
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2.3 Daubechies Scaling Function Coefficients 

Wavelet bases have been introduced as orthonormal localized expansion functions. 

The multiscale properties were then introduced in Section 2.2, along with efficient 

algorithms to calculate multiscale representations as well as refinement techniques for 

expansion coefficients. The properties and construction of the Daubechies wavelet 

family is discussed in this section. 

Daubechies constructed the first family of orthogonal compact support wavelets 

in the eighties [1, 2]. These wavelets form families indexed by their length L (positive 

even number) or by their approximation order M = L/2. The support of these 

functions is on the interval [0, L — 1] (cf. Eq. (2.19)) and the scaling functions are 

designed to expand M monomials xp exactly for p = 0 , 1 , . . . , M — 1. Representative 

examples of the Daubechies family are shown in Fig. 2.5. Pointwise, these functions 

have only a limited number of continuous derivatives. As the support length grows, 

so also does the local smoothness of the father function 0 and the mother function 

-0. More globally, ijj also tends to become more oscillatory with L. The scaling 

functions are also asymmetric, with most of the scaling function amplitude or energy 

(in signal-processing language) biased towards the left side of the interval. Daubechies 

also constructed compact support families with more symmetric scaling functions, 

which are called least asymmetric wavelets or symmlets. Complete symmetry of an 

orthogonal compact support wavelet family was proven impossible except for the 

discontinuous Haar basis with L = 2. Symmlets are closely related, but have scaling 

functions with maximum amplitude closer to the center of the their support. 
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Figure 2.5: Scaling functions <p(x) and corresponding wavelet functions ip(x) for 
Daubechies compact support family of different lengths L and approximation orders 
M = L/2. Most plots are presented on a reduced x-range for clarity, the functions 
being graphically negligible well before x = L — 1. 

Daubechies constructed the father function to have unit area f 4>(x) dx = 1 and 

to be orthogonal to integer-translated copies of itself f <p(x) 4>{x — k) dx — S0lt. These 

are the fundamental restrictions underlying the scaled-basis relations of Eqs. (2.13) 

and (2.10). The mother function, on the other hand, is required to have vanishing 

area f ip(x) dx = 0 while also being orthogonal to integer translated copies of itself 

J ip(x) ip{x — k) dx = S0f; and to all integer translates of scaling functions f 4>{x — 

k) ip(x — k') dx = 0. Daubechies added further constraints that ip have a maximal 

number, M = L/2, of vanishing wavelet moments 

= ° (2,8) 

for a given L. The p — 0 condition is already expressed with the vanishing area 
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requirement. As mentioned above, the number of vanishing wavelet moments is the 

approximation order of the basis, a measure that is also related to the number of 

monomials representable by scaling functions. 

Daubechies' wavelet families were constructed to satisfy the two-scale equations 

from Section 2.2. In that section the fundamental coefficients, and dk, were intro-

duced. The importance of these scaling and wavelet coefficients cannot be overstated. 

The Ck in particular are tabulated for all the familiar wavelet families, and the differ-

ences between families are directly reflected in the differences between the coefficients. 

It is useful to understand properties of the resulting cf> and ip through analysis of the 

constraints placed on construction of the Ck and dk. Requirements on the father and 

mother functions are translated to conditions/constraints of the discrete coefficients. 

These lead to a system of linear and quadratic equations for these coefficients which 

can be solved numerically. 

The orthogonality conditions, f ip(x)ip(x — k) dx = <50k and f 4>(x — k)ip(x — 

k') dx = 0 (considering the k = 0 case is sufficient) imply that 

L-1 
^ c k d 2 k , + k = 0 A;' = 0 , . . . , L/2 — 1 (2.29) 
k=0 
L-1 

Ed*fiW = 2<W k' = 0,..., L/2 — 1 . (2.30) 
k=0 

With the choice 

dk = ( - 1 )fccL_!_fc , (2.31) 

usually made, Eqs. (2.29) and (2.30) are automatically satisfied with no further con-
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siderations. The fundamental wavelet coefficients are reversed with alternating 

minus signs. This is exactly how the mother function is created in terms of the father 

function. Thus, the compact-support wavelet family is built entirely from the father 

function's fundamental coefficients Cfc, cf. Eq. (2.24). 

By use of the two-scale relations and judicious changes of integration variable, the 

conditions above become expressed in terms of equations that the ck must satisfy 

L—L 

(t) J > = 2 (2-32) 
fc=0 

L—l 
(«) X > c 2 n + f c = 2(5no n = 0 , . . . , L/2 — 1 (2.33) 

k=0 
L—L 

(Hi) = 0 p = 0,..., M — 1 . (2.34) 
k=0 

To find the coefficients we assume all ck = 0 for k < 0 and k > L and solve conditions 

(i)-(iii) for real ck simultaneously. 

As discussed in the Introduction, scaling functions and wavelet functions do not 

have closed analytic forms. This is not a problem as basis function values are found 

through iterative use of the two-scale equations. Scaling function values can be ex-

actly evaluated at integers, half-integers, quarter-integers, etc. This recursive solution 

strategy begins with the calculation of integer values 0(1), 0(2) , . . . ,4>(L — 2) (the 

endpoints at x = 0 and x = L — 1 are identically zero). These integer values are 

found as eigenvectors of an eigenvalue problem created from the two-scale equations 

[Eq. (2.21)]. The correct normalization of the integer values are then established 

through use of the rule Yhk'&kiz) = 1> discussed below. Half-integers are found next 
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from the solved integer values, quarter-integers are found in terms of the half-integer 

values, etc. This method is used for the for the generation of scaling and wavelet 

function plots from Fig. (2.5) and any basis function plots that follow. As the basis 

function values are gotten only in terms of the ck, this is an important example that 

demonstrates why focus is placed squarely on the fundamental coefficients - a wavelet 

basis is defined completely in terms of the ck coefficients. Wavelet function values are 

calculated in the same recursive manner but using the dk from Eq. (2.31) for one step 

of the process. 

The compact support of these fundamental functions is directly related to the finite 

number of ck and dk coefficients. The resulting support [cf. Eq. (2.19)] is dictated 

by the indexing convention of the fundamental coefficients. The choice adopted here, 

k = 0,1,..., L — 1, gives fundamental functions of nonzero support interval [0, L— 1]. 

Daubechies family characteristics are listed in Table 2.1 to accompany the plots of 

representative examples shown in Fig. 2.5. The Holder exponent a also shown in the 

Table 2.1: Approximation orders, first moments [of Eq. (2.35)], and Holder ex-
ponents for Daubechies scaling functions approximation order M and length L = 2 M . 

Daubechies scaling functions 
L M m1 a 
4 2 0.633 974 596 215 561 4 0.5500 
6 3 0.817 401 167 810 880 2 1.0878 
8 4 1.005 393 213 443 250 9 1.6179 
10 5 1.193 908 018 023 822 9 1.9690 
12 6 1.382 160 319 031 218 6 2.1891 
14 7 1.569 983 929 935 793 6 2.4604 
16 8 1.757 369 493 552 121 2 2.7608 
18 9 1.944 350 187 485 118 5 3.0736 
20 10 2.130 968 265 544 625 1 3.3640 



30 

table is an index of worst-case local smoothness for the scaling functions. Higher L 

yields higher a and better worst-case smoothness/differentiability [2]. The Holder 

exponents have been calculated with a variation of the methods of Rioul [5]. 

2.4 Scaling Function Moments 

Fundamentally important quantities in practical calculations are moments, which 

can also be determined directly from the coefficients (covered in the preceding sec-

tion). The wavelet families discussed in this thesis have vanishing wavelet moments. 

The corresponding continuous scaling function moments 

are important quantities in wavelet-based calculations. Substitution of Eq. (2.21) into 

the scaling function moment definition from Eq. (2.35) gives a continuous moment 

relation 

It has been established from the unit-area requirement and Eq. (2.32) that mo = 

fiQ = 1. The remaining moments are easily calculated recursively through Eq. (2.36), 

(2.35) 

(2.36) 

involving discrete scaling function moments \iv = | X ît=o ck 
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using Ho and m0 starting values, as 

p-1 / \ 

mp = (2p - mo)"1 E (gJ^-9 • (2-37) 

This expression is found by isolating mp after separating the q — p term from the 

sum in Eq. (2.36). This is an exact method of calculation for continuous scaling 

function moments without direct evaluation of integrals. All that is needed are the 

ck coefficients. 

Another property, related to approximation order, concerns the expansion of 

monomials exactly, for p = 0 , 1 , . . . , M — 1, as 

xp = 22xkp<t>k(x) • (2-38) 
k 

Compact support wavelet families are said to exactly interpolate monomials up to 

order M — 1. The scaling functions, then, form an exact expansion basis for poly-

nomials up to order M — 1. The expansion coefficients xkp = J <pk(x) xp dx can be 

exactly calculated in terms of the moments mp by change of integration variable and 

use of the binomial expansion. 

2.5 Generalized Coiflet Scaling Function Coefficients 

Daubechies also constructed wavelet families named after R. Coifman. We discuss 

a generalized version of them that will be important later. These generalized "coiflets" 

satisfy the same conditions of the Daubechies families discussed in Section 2.3 but 
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are distinguished by vanishing shifted moments of the father function 

J 4>(x) (x — m1)p dx = (5po 0<p<N -1 . (2.39) 

These requirements translate to N conditions on the canonical scaling function mo-

ments from Eq. (2.35) 

The previous two equations state power-law moment conditions. These extra shifted 

scaling function moment conditions result in relaxed number of vanishing wavelet 

moments, Eq. (2.28), when compared to Daubechies wavelet families of the same 

L. Coiflets have had the importance that approximation of expansion coefficients is 

simplified, as will be discussed in the next section. 

Coifiet fundamental coefficients are also found through solution of equations in-

volving the Cfc. Along with conditions (i)-(iii) from Eqs. (2.32)-(2.34), the shifted 

scaling function moments translate to further conditions 

on the Cfc coefficients. These conditions are derived from Eq. (2.40) through use 

of Eq. (2.21). In the coifiet case, the orthogonality conditions (ii) are contained 

in conditions (Hi) and (iv) and do not need to be included in the governing set of 

equations for the ck. 

0 < p < N - 1 . (2.40) 

(iv) s£jckkv = 2m\ p = 0,...,N-l. (2.41) 
k-0 
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The design goal in the construction of the original coiflets [6] was to make N 

and M equal. The equations determining the are again a mixture of linear and 

quadratic equations (with a certain amount of redundancy), so that an extra scaling 

function moment obeying Eq. (2.40) was found [7] "for free." Here and below, to be 

definite, N and M are always meant to indicate the full number of actual moment 

conditions satisfied. From Table 2.2 it is seen that the usual coiflet families are all 

characterized by N = M + 1. Plots of representative examples from Table 2.2 are 

shown in Fig. 2.6. In comparing this data to Table 2.1, it is seen that the penalty 

X X 

Figure 2.6: Scaling functions cj)(x) and corresponding wavelet functions ip(x) for 
Daubechies compact support coiflet families of different lengths L listed in Table 2.2. 
Some plots are presented on a reduced .r-range for clarity, the full nonzero support of 
each function is [0, L — l]. 

for higher N is longer function length for comparable approximation orders M. The 

Holder exponent a introduced as an index of worst-case local smoothness for the 
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scaling functions is also seen here to grown systematically with L, but not as quickly 

Table 2.2: Moment orders, first moments, and Holder exponents for coifiet scaling 
functions [6] shifted to start at x = 0. These integer-shifted coiflets have even order 
M, length L = 3M, and N = M + 1 = L/3 + 1 [7]. 

Daubechies coifiet scaling functions 
L M N m1 a 
6 2 3 2 0.5424 
12 4 5 4 1.3891 
18 6 7 6 2.2083 
24 8 9 8 2.8713 

as for Daubechies wavelets (see Table 2.1). Prom the other point of view, for a given 

L, M = L/3 is smaller for coifiet systems in order to accommodate the increased N. 

Gopinath and Burrus [8] show that the Daubechies wavelet families of Section 2.3 

automatically satisfy m2 = mf and always have N — 3. By comparison, coifiet 

families with the same L allow M to shrink in order to increase N (as shown later in 

Table 3.1). Their approximation orders are no longer fixed with respect to length as 

in the Daubechies case. 

Daubechies' original construction of coiflets [2, 6] were designed with vanishing 

wavelet moments and vanishing scaling function moments, J <f>(x) xp dx = Spo for 

0 < p < N — 1. These vanishing moments require integer shifting of the coifiet scaling 

function by an amount —ms, resulting in a function with support [—ms, L — 1 — ms]. 

An alternative, but equivalent, point of view used in this work constructs coifiet 

scaling functions with vanishing shifted scaling function moments [see Eq. (2.39)]. 

This leads to coiflets with support [0, L — 1] and first moment rrtl — ms. This means 

that in the special case where m1 is an integer, one may shift the support by —m1 to 
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obtain TV — 1 vanishing moments. Daubechies original coiflets can also be regarded 

as integer-shifted generalized coiflets. They are special cases of generalized coiflets, 

the latter identified by real-valued m v 

2.6 Evaluation of Scaling Function Expansion Coefficients 

To fully reconstruct / , expansion coefficients ff k and basis function values (f>jk(x) 

are required. While not known as an analytic function, the 4>jk(x) values can be cal-

culated as accurately as needed as discussed in Section 2.3. With nothing more than 

changes of integration variable and use of binomial expansions, the exact projection 

integrals for polynomial functions can now be evaluated. What remains, then, is the 

calculation of the expansion coefficients of general functions f(x). 

The pyramid algorithm was introduced in Section 2.2.1 as an efficient method for 

calculation of multiscale wavelet projection integrals of Eq. (2.16) from single-scale 

scaling function projection integrals of Eq. (2.15). Therefore attention focuses on the 

calculation of scaling function projections on single scales, for which a simple method 

is discussed next. 

2.6.1 Single-Point Projection Integral Evaluation 

Due to its compact support and unit area for any of the above families, the scaling 

function <p{x) bears some resemblance to a Dirac delta function. On finer scales A the 

area is modified, but the principle is still the same. In applying his multiresolution 

wavelet algorithm directly to signal data, Stephane Mallat [4] implicitly used the 
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interpretation that scaling function projections are approximately proportional to 

function samples, which can be expressed as 

/ * oc f(k\/2>) . (2.42) 

This simple prescription is the basis for much of the wavelet-based signal and image 

processing literature of the last couple decades. Strang and Nguyen, however, refer 

to this approximation as a "wavelet crime" since projections are integrals and not 

simple point samples. 

Gopinath and Burrus [8] improved upon this approximation for Daubechies scaling 

functions using the fact that m2 = m\. This a relation between scaling function 

moments from Eq. (2.35). If a sample point at the mean position of the scaling 

function is used, then 

This compares favorably to the previous sampling, for which the error exponent would 

be 1 + 1/2. The level j does not need to be increased nearly as much to achieve the 

same absolute accuracy. For coiflet families, introduced in the last section, one can 

obtain even higher-order accuracy, 

f}k = X)'2 fiik + m ^ + O i X ^ 2 ) . (2.43) 

f}k = x f f ( { k + m1}Xj)+0(X^2) (2.44) 

with the short-hand from Eq. (2.9), A j = Xj2K This expression is derived by a change 
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of variable and substitution of the Taylor expansion of f(x) about the point A j i m ^ k ) . 

The calculation of scaling function moments was covered in Section 2.4. This is an 

important reason why researchers [9, 10, 11, 12] have used coiflets (or biorthogo-

nal bases) in applications, for they posses higher N values compared to Daubechies 

wavelet families. Coiflets, then, allow simple, efficient, and accurate evaluation of 

projection coefficients. 

This section is closed with a discussion of a method for the calculation of expansion 

coefficients that is independent of both the value of N and of the specific function 

samples used. 

2.6.2 Multi-Point Projection Integral Evaluation 

The path taken in the development of wavelet quadrature [13] considers simplifi-

cation of projection integrals through a local polynomial representation of / 

r—1 

f ( x ) * ^ f ( x q ) L r q ( x ) . (2.45) 
9=0 

The Xq £ir6 quadrature nodes and the Lrq(x) are Largrange polynomials 

Lrg(x) = J ] ^ ^ (2-46) 

of maximum order r — 1. The Lagrange interpolating form gives exact values of / at 

the quadrature nodes and has low-order polynomial behavior in between. Substitution 

of this interpolating form of / in the projection integral definition gives an r-point 
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quadrature formula in terms of quadrature weights u>q and function samples, 

The quadrature nodes xq are relative sample positions such as = 0,1, 2 , . . . , r — 1 

and the quadrature weights are those originally calculated in the case A = 1 and 

These scale-independent weights are simple expressions in terms of scaling function 

moments and derivatives of Lagrange polynomials (the Taylor expansion is exact in 

this case). The only A j dependence comes in the normalizing prefactor and in the 

positions of the samples of / . 

The uiq can be re-used (for every k) even if there is non-uniform spacing in the xq. 

It is only in the situation when the xq are changed from one value of k to the next 

that new uq need to be calculated. The moments mp pose no difficulties as they only 

need to be calculated once and for all, see Section 2.4. 

Multi-point wavelet quadrature is still applicable in situations such as discrete 

data sets if it is inconvenient to shift alignment by m1. In this (or any) case, the 

wavelet quadrature developed in our lab can match or beat the 0(Af+1/2) error of 

the single point sample method, irrespective of the basis value of N (or L) or of the 

specific function sample locations. With the multi-point wavelet quadrature, one can 

(2.47) 
q=0 

3=0, 

(2.48) 
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also show that, for example, taking xq = q + m1 in Eq. (2.47) produces only a single 

nonzero u>q and its value is unity, thus making the connection between single-point 

and wavelet quadrature. However, in the wavelet quadrature method one can take 

more than N quadrature points, chosen as is convenient, and obtain greater accuracy 

than can be obtained by using a single point. In practice, this extra accuracy is 

especially valuable for bases with low N. 

2.7 Scaling Function Matrix Elements 

The idea behind wavelet quadrature carries over to general function matrix el-

ements fik = {4>ji\f\(j>jk), integrals important in quantum mechanical applications. 

Solution of the vibrational Schrodinger equation requires calculation of potential ma-

trix elements. These potential matrix elements are bilinear integrals of the form 

fik = <$il/Wk> = / /(*) dx (2.49) 

and are evaluated by numerical quadrature of the form 

i—I 
fik = A1/2 £ nqkf(A [I + xq}) + 0(Xr+l/2) . (2.50) 

<7=0 

The idea is to again approximate / with its Lagrange interpolating polynomial 

form and integrate the resulting polynomials over the scaling function basis members, 
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with this approach the matrix quadrature weights are found as 

(2.51) 

The Lagrange interpolating polynomials Lrq(x) were defined in Eq. (2.46) and the 

matrix moments are the bilinear form of scaling function moments, 

Eq. (2.50) should be compared to Eq. (2.47). 

2.8 Difficulties with the Matrix Representation 

The ID scaling function matrix elements ffc = (tfrjilfl&jk) the last section, as 

written, present no difficulties. Multiplicative operators in quantum mechanical prob-

lems, in particular, present a significant storage problem in higher dimensions. In the 

vibrational quantum problems discussed below, matrix elements of multidimensional 

potential (multiplicative) operators of d degrees of freedom, V = V(xi, x2,... ,xa), 

must be calculated. These are multidimensional integrals involving direct-product 

wavelet bases. With separable (sum and/or product separable) multidimensional 

PESs the problem is simplified to a series of ID matrix elements. Unfortunately, real 

(2.52) 

(2.53) 
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molecular potentials are often highly coupled functions of nuclear coordinates. This 

presents difficulties for application of the matrix element quadrature from the last 

section because the multidimensional matrix must be stored, requiring (with Nb basis 

functions in each ID coordinate) memory locations. In 3D, for example, full 

matrix storage is In this case the row and column indices, I and k, respectively, 

are each composite indices of the all the ID matrix indices, an example of the latter 

being shown in Eq. (2.49). Even with sparse storage (only nonzero matrix elements) 

the memory footprint of the multidimensional matrix quickly exceeds fast storage 

of typical computers as shown in the 3D example of Fig. 2.7. Storage of the full 

Nb = 2 0 5 0 100 5 0 0 

Figure 2.7: Representative potential storage requirements for different 3D direct prod-
uct bases each of length L = 12. Shown on a log-log plot are the full 3D vector of size 

(bottom trace) and the full 3D matrix of size iVf (top trace). The sparse storage 
falls in between (middle trace). 

3D direct-product matrix is indeed seen to be out of reach for most single-processor 

computers. The sparse storage afforded by wavelet bases allows more functions to be 
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used but also succumbs to the same fate due to a large prefactor. The 3D vector, on 

the other hand, is representable still, even for exceedingly large Nb. 

Beyond single-scale storage issues, there are other difficulties found in multiscale 

wavelet representations of operators. Matrices in these multiscale bases are obtained 

in the standard representation by using two-scale relations iteratively for both bra and 

ket basis functions. The resulting matrices are less sparse and become significantly 

more full as the number of included scales increases. As an alternative to keep the 

matrix-vector multiplications closer to scaling linearly with basis size, Beylkin, et al., 

introduced the non-standard representation where where one retains some redundant 

submatrices involving intermediate scaling functions. However, neither standard nor 

non-standard representations appear to be discussed in depth anywhere in conjunc-

tion with compression. The coding for application of multidimensional multiscale 

matrices with dynamic (not known a priori) deletion of basis elements would indeed 

be formidable. 

As mentioned, uncoupled (or separable) potential operators present no difficulties 

because a series of ID matrix elements are stored, suppressing the exponential growth 

in storage associated with the coupled multidimensional case of realistic molecular po-

tentials. In the next chapter, coupled multidimensional matrix elements are reduced 

to a to single multidimensional vector to simplify these difficult cases. 



Chapter 3 

Matrix-Free Application of Hamiltonian Operators 

in Wavelet Bases 

Our interests in wavelet-based differential equation solvers are rooted in vibra-

tional spectroscopy and nanophotonics. The simulation of small-molecule spectra 

requires calculation of matrix elements of fully-coupled multidimensional molecular 

potential .energy functions. In contrast, plasmon enhanced fields of metal nanostruc-

tures are found through applications of differential operators. In either case, the 

solution, whether if it is a vibrational eigenfunction or an electromagnetic (EM) field, 

is represented as already explained in Section 2.1. 

For the approach taken here, wavelet-based solutions of quantum and EM equa-

tions require function and operator representations. Both differential (kinetic) and 

multiplicative (potential) operators are necessary for the quantum case, while the dif-

ferential representation is all that is necessary in the EM case for sourceless isotropic 

media. 

The most recent work, and the focus here, is the elimination of operator matri-

ces in wavelet bases. For molecular quantum eigenvalue and dynamics calculations 

in multiple dimensions, it is the coupled potential energy matrices that generally 

43 
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dominate storage requirements. A Coefficient Product Approximation (CPA) for the 

potential operator and wave function expansions in a scaling function basis dispenses 

with the matrix, reducing storage and coding complexity. New developments are re-

quired, however. It is determined that the CPA is most accurate for specific choices 

of wavelet families and these are given here. They have relatively low approxima-

tion order (number of vanishing wavelet function moments), which would ordinarily 

be thought to compromise both wavelet reconstruction and differentiation accuracy. 

Higher-order convolutional coefficient filters are determined that overcome both ap-

parent problems. Each of these require a number of multiplication steps per expansion 

coefficient that can be tuned for accuracy. The result is a practical wavelet method 

where the effect of applying the Hamiltonian matrix to a coefficient vector can be 

calculated accurately without constructing the matrix. 

The development of this matrix-free approach has been driven by the need for 

efficiency in the quantum case with general potentials. The focus here is on eigenvalue 

equations, but out of this work there are advantages that can be directly exploited 

in the area of quantum dynamics, for example, in future work on the Conjugate 

Symmetric Lanczos propagation method introduced in Section 5.2. It is also expected 

that the tuneable-accuracy filter developments can be of advantage for EM problems 

in either frequency- or time-domains, even though the CPA is not needed for source-

less problems. From recent more general EM applications by Pan [9, 10, 11, 12], 

however, we expect that the bases constructed here for use of the CPA will also have 

advantages there. 
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The vibrational time independent Schrodinger equation (TISE) 

Hy = Ey = (T + V)y (3.1) 

is a linear, second-order differential equation in the variables x = (rr1 ; . . . , The 

vibrational Hamiltonian is H(x), the nuclear wave function is ?/(x), and E is the 

energy. The explicit dependence on x in H and y is suppressed for simplicity. The 

Hamiltonian is composed of the kinetic energy T and the potential energy V. 

In a Cartesian coordinate system the Hamiltonian is written 

d . 2 

* = r + V = + V ( x ) . (3.2) 
j = l J J 

The defining characteristics of particular systems lies in the details of the potential 

energy and in the masses in the kinetic energy term. In ID, the potential depends 

on a single variable x and the kinetic energy has a single term, H = — + V(x)-

The allowed vibrational energy levels can be calculated in a scaling function basis by 

forming the Hamiltonian matrix H, with matrix elements 

Hlk = = j 4>x
3l{x) H(x) $k(x) dx . (3.3) 

This requires the calculation of both kinetic and potential matrices 

Tlk = = J ^i(x)T(x)^k(x) dx (3.4) 
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Vlk = = j ^(x)V(x)^k(x) dx . (3.5) 

The kinetic energy matrix elements are exactly calculable through solution of a small 

system of algebraic equations and the potential matrix elements can be determined 

accurately with the wavelet matrix quadrature of Section 2.7. In the multidimensional 

case the calculation of the potential energy contributions generally dominate the 

computational burden of constructing the Hamiltonian matrix. This is especially 

true when the potential is nonseparable since the potential matrix elements given in 

Eq. (2.53) then do not factor and one is forced to perform multiple integrals. 

Stationary vibrational eigenfunctions are computed through use of an eigensolver. 

This diagonalization, in a direct form, requires the explicit storage and manipulation 

of all the Hik elements (or all nonzero elements for sparse direct methods). Another 

class of eigensolvers, better suited to large sparse structured matrices, only requires 

the result of a matrix vector product 

In conventional wavelet calculations, one constructs the Hamiltonian matrix in sparse 

form and then multiplies it into the vector of coefficients. The same procedure is 

used in the general Wavelet-Galerkin method [14, 15] applied in fluid mechanics and 

other areas. However, as discussed in the previous chapter and especially for multi-

dimensional problems, it would be preferable if one could calculate the result of the 

matrix-vector product without actually constructing the Hamiltonian matrix. For the 

Zjl ~ Vjk • (3.6) 
k 
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kinetic energy operator, this can be accomplished as a convolution operation using 

small-length filters. For the potential energy operator, there is still needed a means 

of avoiding the construction of the corresponding matrix. We have developed a new 

method to circumvent the use of potential matrices altogether. 

3.1 Coefficient Product Approximation for Potential 

Operators 

The problem until now has been failure to exploit a simple fact, namely that 

for sufficiently fine scales the expansion coefficients for a range of k tend to follow 

the shape of the function itself. If one expands V(x) like in Eq. (2.15) but with 

coefficients , the sequence of products V k̂ y^k should similarly follow the shape 

of the product function V(x)y(x). The expansion coefficients of the latter are to 

a certain approximation simply proportional to This represents a potential 

storage advantage, especially in multidimensional problems. 

Instead of the matrix-vector product the CPA calculates the action of the potential 

as a pairwise product of expansion coefficients 

4 = A71/2 v3
x
k y*k + C(Af + 1 / 2 ) . (3.7) 

Matrix elements are not needed, only a vector of projection integrals, Vp,. 

To justify the CPA first consider the scaling function representations of the func-
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tions V and y 

(3-8) 
k 

' (3-9) 
k 

as previously considered for a different function / in Eq. (2.15) and examine the 

expansion coefficients Vfk = {<jy^k\V) and yfk = ((f>jk\y). Through use of Eq. (2.8) 

and substitution of V(x) by its Taylor expansion about the point k\j, the expansion 

coefficients can be written 

oo 

p=0 
= E iv(p)(k*i) / x;1/2Hf- - k ) ( x - k\y dx (3.10) 

p=0 J 
oo „ 

= E ?viP)(kXj) A f / d x (3-11) 
p=Q J 
oo 

= (3-12) 
p=0 

The same process on y(x) gives 

^ = (3.13) 
p=o 
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A similar analysis with z(x) — V(x) y(x) gives 

z j k = J $k{x)V{x)y(x) dx 
OO 00 p 

= E E viq)(kx>) / A71/2<t>(f- -k)(x- dx 
p=0 q=0 

OO OO 

p=0 g=0 

All of the orthogonal compact support wavelets have scaling moments obeying m2 = 

m\, and generalized coiflets expand this pattern so that rnp = mp
x for larger values of 

p = 0 , 1 , . . . , AT — 1. Through these orders, mp+q = mpmq, and the coefficients of the 

product function approximately factorize, 

4 * ( F ^ T W F C A ^ A J M , ) . (3.15) 
^ p=0 ' \ 9=0 ' 

Prom Eqs. (3.12), (3.13) and (3.14) we obtain the CPA result with appropriate error 

term given in Eq. (3.7). 

The quality of the CPA is actually rather low-grade for the original Daubechies 

wavelets [2] (with N = 3), requiring unreasonably small values of A and/or large 

values of j . Investigation shows that the CPA is improved for coiflets derived by 

Daubechies [2, 6], and the subsequently-developed generalized coiflets [7, 16, 17, 18]. 

This simple product approximation for the coefficients represents a significant 

reduction in storage, computational, and coding requirements compared to use of the 

earlier methods. One needs only the two coefficient vectors of V and y. These single 

multidimensional vectors afford orders of magnitude less storage, see the 3D case in 
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Fig. 2.7. It is especially to be observed that the error in the CPA is governed by the 

order to which moments of the scaling functions obey a simple power-law behavior. 

We are thus led in the next section to pursue maximization of N (for a given length 

L) as the means to optimize the CPA. 

A special case occurs if V and y are low-order polynomials since the error terms 

then disappear exactly (cf., Eq. (1.3) of Monzon, et al. [18]). More generally, it is 

nontrivial that one can systematically multiply projection coefficients in this man-

ner since the basis functions have finite width. In essence, one mimics the ability of 

grid discretization or DVR methods to perform function multiplication in a point-

wise fashion. It should also be mentioned that similar properties will be shared by 

biorthogonal cardinal interpolating wavelet bases such as interpolets [19] and recent 

variants [20], as well as biorthogonal coiflet bases [21, 22], but the present work fo-

cuses on orthogonal bases and thereby avoids the need to solve generalized eigenvalue 

problems. 

3.2 Optimized Max-iV Generalized Coiflets 

In order to minimize CPA error we pursue wavelet bases with a maximum number 

of vanishing shifted scaling function moments (equivalently, a maximum number of 

moments satisfying a power-law condition) at the expense of less vanishing wavelet 

moments M (approximation order). These new generalized coiflets are thus charac-

terized by M < N. 

A single-scale expansion of y(x) at scale A j is generally approximate, reflecting (i) 



51 

that the coefficients yjk may be inaccurate and/or (ii) that y(x) may have variations 

that cannot be completely captured at the resolution A j. If the expansion coeffi-

cients are numerically exact, the expansion (reconstruction) has at best 0(Xj1) error. 

CPA coefficients, as discussed above, have 0(X^) error provided that the individual 

coefficients are at least as accurate. Generalized coiflets are ordinarily chosen with 

N m M, for which the sources of error in Eq. (3.9) are balanced. For the same M, 

however, this leads to larger L, or less tight localization, compared to Daubechies 

wavelet families (see Table 3.1). If we want to increase N considerably above M, we 

need to calculate new members of the generalized coiflet families. 

Table 3.1: Numbers of moment conditions satisfied by different compact-support 
orthogonal wavelet families. 

M N 
Daubechies / Symmlet L/2 3 
Coiflet L/3 L/3 + 1 
MGC [(L + 2)/4}=[(N H - l ) / 2 ] L/2 
OMGC [(L + 4)/4] (L + 2)/2 

It may be objected that allowing lower M makes higher-order accuracy of the 

coefficients worthless. The reconstruction accuracy is then 0(Xjd), which can be-

come unacceptably low. This perception has been changed recently by Neelov and 

Goedecker [23], who show for Daubechies wavelets that a particular finite convolution 

of the coefficients Vj,k+i produces reconstruction of y(x) at particular sample 

points k'Xj with a much smaller error that is O(Xf). The collection of constants 

uji serves as a convolution filter that is able to "beat the approximation order" in 

reconstruction. These filter reconstruction developments are discussed later in Sec-
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tion 3.4. This insight has led us to generalize the reconstruction filters to arbitrary 

lengths/orders and to continuous interpolation with respect to reconstruction points. 

These filters apply equally well to all Daubechies-like families, including the case of 

the maximum-N generalized coiflets (MGCs). Since the latter are unbalanced with 

respect to M and N, they are less familiar and are therefore described below along 

with an extension called optimized maximum-TV generalized coiflets (OMGCs). 

Turning to the MGCs for general non-integral choices of m1 allowing solutions 

with real coefficients, we find that the maximum value of N is L/2, as shown in 

Table 3.1. The minimum value of M is not constant, but also varies with L. Monzon, 

et al. [18], explicitly prove that residual dependencies between the <fi and ip equations 

for ck will always guarantee that there are at least M = [^p] vanishing wavelet 

moments. Thus it is possible to favor TV, but not exclusively. 

As in the work by Monzon, et al. [18], targeting N and M more nearly equal, one 

can home in continuously on specific values of mx that produce one extra vanishing 

shifted scaling function moment, increasing Af by 1. In these cases we find M is 

either unchanged or increases by 1, depending on the value of L. We call these cases 

optimized MGCs (or OMGCs) to indicate that N has been maximized as completely 

as possible for a given L. OMGCs are characterized by N = and M = 

Focus is placed on OMGCs in the work below since these families give the highest 

accuracy for both the CPA and single-point quadrature. 

Table 3.2 provides the values of m l and a for all of the OMGCs we were able 

to determine between L = 6 and L = 20. The Holder exponents (the measure of 

local smoothness) are smaller than those for the Daubechies wavelets of the same 
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Table 3.2: Moment orders, first moments, and Holder exponents for OMGC scaling 
functions shifted to start at x = 0. Number of moment conditions obeyed by and first 
moments of OMGCs. Other OMGCs, not shown, correspond to reflection around 
the midpoints. 

OMGC scaling functions 
L Label M N m1 a 
6 2 4 2.105 967 800 055 620 6 0.5514 
8 a 3 5 2.239 549 738 364 677 7 1.0257 

b 3 5 2.977 273 091 796 802 3 1.1004 
10 3 6 3.755 017 927 314 149 9 1.0516 
12 a 4 7 3.867 449 072 798 277 5 1.4399 

b 4 7 5.284 552 550 893 758 5 1.6286 
14 a 4 8 5.428 073 816 691 219 6 1.5196 

b 4 8 6.101 403 965 841 333 7 1.4659 
16 a 5 9 5.513 471 648 490 571 8 1.8200 

b 5 9 6.204 901 221 550 508 3 1.8538 
c 5 9 6.965 727 285 834 369 0 1.9526 
d 5 9 7.426 339 183 865 327 4 2.1311 

18 a 5 10 7.117 162 501 237 350 2 1.9674 
b 5 10 8.418 764 663 532 745 4 1.8579 

20 a 6 11 7.174 163 648 854 884 6 2.1799 
b 6 11 8.513 700 459 888 850 3 2.2514 
c 6 11 8.658 260 217 193 909 6 2.2696 
d 6 11 9.149 297 747 742 840 8 2.4085 

length L, though this will not be an issue for our calculations. These scaling and 

wavelet functions are given in Figs. 3.1, 3.2, and 3.3. It is seen that the OMGCs are 

all relatively smooth, which is definitely not the case for MGCs at all values of m1. 

The examples for L — 8 coincide with the optimized results found by Monzon, 

et al. [18] for nearly balanced M and N, while our results for higher L are presumed 

new. All OMGC ck coefficients are tabulated in Appendix A. Their first moments m-t 

were already presented in Table 3.2. 
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Figure 3.1: Scaling functions (f)(x) and corresponding wavelet functions ip(x) for 
OMGCs of different lengths L = 6-12 listed in Table 3.2. 

3.2.1 Coefficient Product Approximation Test 

As a first test of the CPA we examine the action of a Morse potential V(x) on a 

Gaussian function y(x) 

V(x) = 100 (1 - exp[- |(a; - 3)])s 

y{x) = exp[—10(x - 3)2]. 

(3.16) 

(3.17) 

The steeply-rising wall of the Morse potential for smaller x dominates the product 

Vy, as shown in Fig. 3.4. Scaling function representations (f>jk(x) are assumed. These 

functions are spaced by A j. We take A = 1/4 and consider different j = 0,1,2,..., 

corresponding to the different-resolution nested subspaces Vj. Each subspace is trun-

cated to a range kminj < k < /cmaxj chosen so as to cover the range where the product 
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Figure 3.2: Scaling functions <p{x) and corresponding wavelet functions ip(x) for 
OMGCs of different lengths L = 14-16 listed in Table 3.2. 

function is significant. 

Scaling function expansions are constructed of V and y in Eqs. (3.8) and (3.9). The 

projection integrals and y^k can be accurately evaluated by the wavelet quadra-

ture [13] methods of Eq. (2.47). The single-point method of Eq. (2.44) is also available. 

The only ingredient needed for the single-point quadrature formula is the accurate 

value of m1 (included in Tables 2.1, 2.2 and 3.2). Both this formula and the accuracy 

order of the CPA derive from the same power-law behavior of the moments, but in 

practice the CPA does not require the value of m1 for its implementation. That is, 

these is no issue about special alignment of the basis required in order to use the 

CPA. 

One can control the absolute accuracy of the expansion coefficients by using re-

finement as in Section 2.2.2. We have refined projection coefficients for V(x), y(x) 

and V(x) y(x) in order to numerically verify the error behavior of the basic CPA itself. 
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x * x 

Figure 3.3: Scaling functions (f)(x) and corresponding wavelet functions ip(x) for 
OMGCs of different lengths L = 18-20 listed in Table 3.2. 

The maximum absolute errors in CPA projection coefficients on scales A j, with 

A = 1/4, for j = 0 — 8 are shown in Fig. 3.5 for Daubechies, coiflet, and OMGC 

scaling function bases with the same L. It is clear that the CPA approximation is not 

very accurate for the Daubechies families, but is significantly better for coiflets and 

is definitely best for the OMGCs. The effects of finite precision using C + + code in 

x 

Figure 3.4: Morse potential applied to Gaussian function. 
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Figure 3.5: Maximum absolute errors in V{x)y(x) [Eqs. (3.16) and (3.17)] CPA 
projection coefficients calculated at different scales A j with A = 1/4 using Daubechies, 
Daubechies integer-shift coiflet, and OMGC scaling functions of lengths a) L = 6, b) 
12, and c) 18. Basis functions covering the relevant range of x were used for each L 
and Xj value. The C?(A •L//2 behavior shown fully realizes the achievable order of 
error for the CPA for the OMGC family. 

double precision (~16 decimal places) are shown in the plateau regions of the last two 

panels. The dashed lines represent calculations in Mathematica with higher precision. 

Similar calculations have been performed using converged matrix elements of V 

in the matrix-vector method of multiplying functions. It is found for the OMGCs 

that essentially the same scaling behavior for the error is obtained using the CPA 

and matrix-vector methods, except that the latter is slightly better for every other 

value of L (8, 12, 16, . . . ) . This is not enough of an improvement to justify the extra 

effort of constructing and using the potential matrix. 

3.3 Finite-Difference Derivatives for Kinetic Operators 

With the potential treatment simplified, it remains to examine the application 

of differential operators. The standard procedure Beylkin [24] uses for Daubechies 

scaling functions can be used for generalized coiflet bases as well to evaluate matrix 
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elements of the derivative operator. These act on function projections and produce 

projections of function derivatives. For example, on a unit scale, the first derivative 

matrix acts according to 

Xv ^kk' Xk',p = Pxk,p-1 (3.18) 
k> 

where the 4>k projections of xp. The matrix is banded with 2L — 3 bands, each 

element in a band being the same (D^, depends only on k' — k). Explicit matrix 

construction and storage is therefore not necessary since one can simply save the 

2L — 3 nonzero numbers in a row as a differential filter to be applied starting at 

different places along the sequence of coefficients. This saves only storage and not 

computational work, but there are further considerations. 

While it might be thought that Eq. (3.18) holds only to p < M for which xp is 

entirely in the scaling function subspace Vo, it actually holds up to p = L = 2M 

for Daubechies wavelets, i.e., one has "superconvergence," [25, 26] even though the 

higher-power monomials are not entirely contained in Vo- The maximum order 2M for 

which Daubechies-basis superconvergence holds is actually not very high considering 

the length 2L — 3 of the matrix-based filter. For the OMGCs, the maximum order is 

also found to be 2 M , but this is now much less than L. Optimizing N has reduced 

the maximum order of the matrix-based derivative filter for Eq. (3.18) even further. 

A search was therefore undertaken for filters that satisfy Eq. (3.18) and its multiple-

derivative analogs to higher p than the standard matrix-based filters. Despite initial 

expectations, the solutions turn out to be independent of the specific basis and to be 
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familiar finite difference (FD) formulae. The final result for a length-n ith-derivative 

filter can be expressed as 

(3.19) 
£ = f c 

in terms of derivatives of the Lagrange polynomials. For simplicity, n is taken as odd 

and the k' range is centered on k, yielding ^-independent symmetric or antisymmetric 

filters depending on the number of derivatives i. For n = 3 and i = 2, for example, 

this choice produces the well-known three-point FD stencil (1, —2,1). The fact that 

classical FD filters arise as the solution to the search should not be thought obvi-

ous since they are usually used for differencing on a real-space grid rather than for 

application to square-integrable basis functions. 

We can analyze the order of error by returning to a A-scaled basis. Using Taylor 

expansion within projection integrals, one can show that 

£ & = xi J ^ r + 0(An+1/2) • (3-2°) 
Dividing through by X\ we see that the derivative projections at different k are ob-

tained to formal order 0{ \ n ~ i + 1 / 2 ) . In the case of the second derivative, for example, 

the standard filter has error 0(A2M~3/2), as opposed to the FD error 0(A"~3/2), which 

can be tuned to control the accuracy order. 

We will compare the matrix-based and FD differentiation filters numerically, fo-

cussing on the second derivative since this is important for the standard ID quan-

tum Hamiltonian. In a A^-scaled scaling function basis, the matrix elements 7]fc = 

D0) _ JL 
dx'1 Lnk'(x) 
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{4>ji\T\(f)jk) can be expressed by a change of integration variables as 

These depend only on k — l, and can be calculated through solution of a linear system 

of equations [27], as discussed before. 

The behaviors of the standard and finite-difference filters are studied in Fig. 3.6 

as functions of the scale A j using A = 1/4 and j = 0 — 5. The OMGC chosen is 

Figure 3.6: Errors in scaling function projections of second derivative of Gaussian 
calculated for OMGC 12a using a) standard matrix-element filter of length 21 and b) 
finite-difference filter of length 11. The scales used are A j using A = 1/4 and j = 0 — 5 
in descending order of absolute errors (decadic scale). The dots represent the mean 
positions of each included scaling function on each scale. 

12a, for which M — 4 and N = 7. Error is measured relative to fully-converged 

projections of the second derivative of the Gaussian. It is seen that the absolute error 

converges much more quickly for the finite-difference filter of length 11 even though 

it is approximately half the length (2L — 3 = 21) of the matrix-based filter for the 

second derivative operator. 

It is well-known in the area of grid-based electronic structure [28, 29] that ordinary 
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FD operators underestimate kinetic energy contributions. There it is found that they 

may still yield lower absolute error, even though the eigenvalue convergence is from 

below (non-variational). The bottom line for the current work is that a series of 

differentiation filters are available for use with the OMGC scaling functions that can 

be tuned for either higher accuracy or shorter filter length. These have applications 

in both the quantum and EM cases. 

3.4 Regular and Higher-Order Filter Reconstruction 

With accurate methods available to calculate projection integrals of a function 

f(x), the original real space values of the function may also be required. This recon-

struction of the original function from projection coefficients and basis function values 

was written in Eq. (2.15). It is a transformation to approximate sampled values of 

the original function at particular sample positions Xi 

fad = Y , + • (3-22) 
k 

The regular reconstruction procedure evaluates this sum directly. It is assumed that 

the expansions coefficients are known exactly or at least to higher-order error, which 

may be guaranteed in general by Eq. (2.44) or Eq. (2.47) and by use of refinement if 

necessary. The 4>x
k(xi) can be evaluated accurately using the two-scale relation if the 

Xi are chosen as A times dyadic rationals. 

In Section 2.4 it was shown that functions f(x) = xp with 0 < p < M are exactly 

expanded in scaling functions only. For xp with p > M or for more general functions, 
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however, there are nonzero projections in wavelet subspaces Wj which are missed 

using only an expansion in Vo- Conventional wisdom then informs us that such an 

expansion limits the smallness of reconstruction error to 0(XM). If that were true, 

there would be little sense in using the OMGCs since M is minimized. 

As mentioned, Neelov and Goedeker [23] demonstrate in the Daubechies case 

(M = Lj2) that one can convolve the scaling function projection coefficients for 

/ to find samples f(kX) with error 0(XL) of twice the usual exponent. The filter 

coefficients turn out to be the same as the quadrature weights in Eq. (2.48) for 

Xq = 0,1,..., L — 1. Thus, the same filter is able to estimate projection integrals from 

function samples and vice versa. This ability to beat the approximation order of the 

basis is important for bases with a relatively low approximation order (such as the 

OMGCs discussed in Section 3.2) or when faster convergence is sought. 

We have investigated the matter more deeply elsewhere and have determined that, 

for a general function / , 

n-1 

f(rX) = A"1/2 £ Aq-T + 0(Xn) . (3.23) 
g=0 

The quantity k is the k-index of the first of the n projections. The quantity rX, 

with r not necessarily integral, is the position of the reconstructed sample. This is 

the filter reconstruction of / from projection coefficients and length-n reconstruction 
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filters. The filter coefficients have the form 

n-1 

p = o 

(3.24) 

where the ap are calculated recursively from 

p 

£ (-!)p' ap' mp-p' = 5Po (3.25) 
p>= o 

one value of p at a time. For all wavelet families with the usual convention m0 = 1 (not 

just coiflets), it is found that Ctp ~~ Wlp for p < L as a result of known relations [13, 23] 

between the moments defined in Eq. (2.35). In fact, we have determined that one 

may continue the recursion to p = L and beyond, though the ap are then no longer 

equal to the mp. 

The same filters Aq
,T can be used starting at different k since they depend on r 

and k only through the combination v = r — k. For Daubechies wavelets with n = L 

in Eq. (3.24), for example, it is found that u = L — 2 o r L — 1 are generally best. The 

latter filter is the specific example utilized by Neelov and Goedeker [23]. 

The three OMGC scaling functions used in Fig. 3.5 are again used in Fig. 3.7 to 

examine convergence of reconstruction with j . All projections used are converged. It 

is seen immediately that conventional reconstruction converges rather slowly with j . 

This is as expected for low-M families. Use of the A*'T filters with n = M actually 

gives parallel but worse errors. However, one may systematically increase n to increase 

convergence rates, completely overcoming the low-M disadvantage. 
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Figure 3.7: Comparison of maximum absolute errors between traditional reconstruc-
tion and filter reconstructions at different scales A j with A = 1/4 for the three OMGC 
scaling functions L — 6, 12a and 18a shown in Figs. 3.1 and 3.3. Black lines corre-
spond to traditional reconstruction with 0(Xjd) errors. Colored lines correspond to 
use of filters with n = M, M + 1, M + 2 , . . . , M + 4. 

Floating-point error plateaus occur for the highest n and L using ordinary double 

precision, though it is possible that these could be further lowered by careful analysis 

of the numerical C + + code. They are absent in the higher precision Mathematica 

calculations indicated by dashed lines in Fig. 3.7. 

The main thrust of the current work is to perform operator calculations entirely 

within the wavelet representation. Ideally, return to real space, i.e., reconstruction, 

is only required in post-processing steps. Nevertheless, the above results guarantee 

that we are not limited to the approximation order of the OMGCs in subsequently 

extracting the spatial information. 

It should also be mentioned that Neelov and Goedeker [23] strongly advocated 

the use of filtering operations to reduce the computational effort associated with 

multi-index operators, a point of view wholly adopted in the present work. 



3.5 Summary 

Use of the product approximation for scaling function coefficients in orthogonal 

compact-support wavelet families has been introduced and studied. It has been shown 

that the CPA is especially accurate for unbalanced generalized coiflets which satisfy 

more scaling function than wavelet function moment conditions. The optimized ver-

sions of these functions, the OMGCs, have been determined up to L = 20 and it 

has been shown that their use makes it entirely viable to apply potential energy op-

erators without construction of the corresponding matrix. Ordinary reconstruction 

using these basis functions suffers from low approximation orders, but simple coef-

ficient convolution filters are given which are able to implement the reconstruction 

process at much higher-order accuracy. Similarly, the superconvergence of derivative 

matrix filters is reduced with the approximation order, but FD filters are shown to 

overcome these limitations though eigenvalue convergence from below is to be antic-

ipated from other work (and will indeed be found in applications). 

Thus, quantum eigenvalue problems can be implemented in flexible orthogonal 

wavelet bases without the construction of the Hamiltonian matrix, a promising de-

velopment for extension to multidimensional problems. Since the CPA and derivative 

filters allow one to nevertheless evaluate the effect of applying the Hamiltonian oper-

ator, Lanczos-type methods can then be exploited to calculate a number of extremal 

eigenvalues. 

The matrix-free approach is used next in several quantum eigenvalue applications. 



Chapter 4 

Time-Independent Schrodinger Equation: 

Eigenvalues of a Matrix-Free Hamiltonian 

The Lanczos algorithm [30, 31] is a standard method for computing eigenvalues 

and eigenvectors within a basis that can be implemented using only matrix-vector 

multiplications combined with orthogonalization. It is especially applicable here, 

with the effects of the matrix-vector product evaluated through the use of efficient 

filter operations and the CPA. One transforms to a basis with a symmetric tridiagonal 

matrix that in favorable cases is of much smaller size but still gives a few eigenvalues 

accurately. 

The CPA and FD differentiation filters are first used in applying the Lanczos 

algorithm to harmonic and fully-anharmonic vibrational mode eigenvalues, then to a 

coupled anharmonic 2D model for proton transfer between two heavy atoms [32]. In 

both anharmonic problems the Implicitly Restarted Lanczos Method [33] (IRLM) is 

employed to avoid slow convergence. This is shown to be necessary because of the 

Lanczos algorithm itself, independent of basis choice. A brief example is also presented 

in the proton transfer problem to demonstrate that one can easily eliminate selected 

product basis functions from the 2D direct product basis. The analog in grid-based 

66 
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calculations would be to use a non-rectangular grid. 

4.1 Eigenvalues with the Lanczos Algorithm 

The Lanczos algorithm [31] is a method for the computation of several eigenpairs 

(eigenvalues and eigenvectors) of Hermitian or real symmetric matrices. Consider a 

real symmetric vibrational Hamiltonian matrix Hlk, given as H in matrix notation. 

The basic Lanczos algorithm gives eigenpair approximations for H from diagonaliza-

tion of an nL x nL tridiagonal Lanczos matrix T for some small value of nL, whereas H 

is m x m with nL <C m. At the heart of this algorithm is the Lanczos recursion [34] 

whereby an orthonormal set of length-m Lanczos vectors are found through an 

iterative reduction of the original m x m matrix to a small nL x nL tridiagonal form 

T = Q r H Q = 

/ 
a i Pi 

Pi 

\ 

\ PnT— 1 anT 

(4.1) 

The m x nL matrix Q is orthogonal (QTQ = I) as its columns contain the Lanczos 

vectors Q = [q1; q 2 , . . . , q n J , resulting in explicit matrix elements o,i — qf Hq^ and 

Pi = q ^ i H q j = q f H q i + 1 . The Lanczos and original Hamiltonian matrices are 

related by an orthogonal similarity transform. 

The Lanczos recursion begins with an arbitrary starting vector b with the conven-

tion that P0 = 0 and q0 = 0. The first Lanczos vector is calculated as qx = b/||b||, 
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the last quantity denoting the 2-norm length of a vector. Subsequent Lanczos vectors 

are calculated through recursive use of the famous "three-term" relation 

(4.2) 

where Pi = ||f;||. The length-m column vector is orthogonal to all previous Lanczos 

vectors but may not be normalized to unity. In matrix form this recursion can be 

written 

using matrix-matrix products involving H, the matrix (containing the first i Lanc-

zos vectors in its columns), the Lanczos matrix T j (an i x i Lanczos matrix), and 

the row vector ef (created from the length-i standard basis vector with 1 in the last 

element). 

The importance of the Lanczos algorithm on large-scale eigenvalue problems stems 

mainly from the fact that the large matrix H only appears, see Eq. (4.2), in a matrix 

vector product. Algorithms relying on a matrix vector product are a perfect setting 

for use of the efficient, low-storage FD/CPA alternative to the matrix vector product. 

The essence of the Lanczos algorithm is to form approximate eigenvalues by di-

agonalization of small T j matrices. In favorable cases, the eigenvalue approximations 

will converge to the actual eigenvalues of the original matrix H as i increases using a 

maximum number nL that is much smaller than m. 

( \ 
(4.3) 
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4.2 Displaced Harmonic Oscillator 

Among other things, calculated eigenvalues will have some dependence on the 

lengths of the FD filters. In order to examine this we first consider a simple harmonic 

oscillator with h = m = 1 and V(x) = 200(x — 3)2, for which the lowest eigenvalue 

is 10. The CPA application of a quadratic potential to a Gaussian is accurate, so that 

the error in numerical calculations arises from the application of the kinetic energy 

operator. The actual analytic Lanczos vectors in this symmetric case are none other 

than even Hermite polynomials times the starting Gaussian (not an eigenfunction). 

A limited number of Lanczos steps using the L = 10 OMGC scaling function basis 

on scales 1/4 and 1/8 were taken to generate a 5 x 5 tridiagonal matrix. The lowest 

eigenvalue was calculated using a number of the FD filters as well as the standard 

filter in the rows of the kinetic energy matrix. The results are shown in Table 4.1, 

where it is seen that all of the finite difference cases lead to eigenvalues below 10, but 

Table 4.1: Lowest eigenvalue for harmonic oscillator calculated using the Lanczos 
algorithm carried to 5 Lanczos vectors. The L = 10 OMGC basis is used and 
the CPA is used for application of the potential. Finite difference and standard 
matrix-based differentiation filters are used for application of the potential on two 
different scales 1/4 ( j = 0) and 1/8 ( j = 1). 

3 = 0 3 = 1 
n = 3 9.13148 9.80063 
n = 5 9.73578 9.98128 
n = 7 9.87951 9.99709 
n = 9 9.93150 9.99938 
n = 11 9.95531 9.99984 
n = 13 9.96800 9.99995 
standard 10.92035 10.14379 

converge from below as n increases. In contrast, the standard filter appearing in the 
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kinetic energy matrix yields energy above 10 in agreement with the Ritz variational 

principle. In this case, it is of length 17, which is longer than any of the FD filters. 

In both cases, convergence with respect to increasing j is indicated. 

Once again the considerations of the projection integrals mirror the situation en-

countered in real space, where imbedding of FD operators in matrix formulations 

is known to yield lower bounds to kinetic energy contributions in electronic struc-

ture. Maragakis, et al. [28], derived modifications to make these contributions upper 

bounds, but Skylaris, et al. [29], concluded that this leads to greater absolute errors 

and that the ordinary FD operators could still be used in practical calculations be-

cause of their favorable convergence properties with finer grids. This is borne out 

in our calculations in wavelet space as well, though other circumstances may benefit 

from having an underlying variational principle. If that becomes an issue, there is 

always the option of using the standard filter. 

4.3 Anharmonic Morse Potential 

With the ability to control the accuracy and efficiency of applying both kinetic and 

harmonic potential energy operators, we now consider the Lanczos algorithm for the 

Morse potential in Eq. (3.16) using a starting vector corresponding to the Gaussian 

in Eq. (3.17). 

Away from the potential minimum, the Morse potential is extremely asymmetric 

(see Fig. 3.4). A straightforward implementation of the Lanczos algorithm is found 

to perform poorly in this case. While it is known to be slow to converge in various 
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problems, the algorithm's difficulties are usually not discussed in sufficient detail. 

For this reason, we have examined the analytical functions generated by the Lanczos 

recursion starting from the Gaussian function centered at x = 3. These results are 

free of any basis-set considerations. 

As shown in Fig. 4.1, successive Lanczos functions move leftward from the initial 

1 2 3 4 x 

Figure 4.1: Lanczos functions/vectors calculated analytically for Morse potential. 
The application of the Hamiltonian asymmetrically emphasizes the left side, moving 
each new function further left. The thick black line represents the exact target Morse 
eigenfunction. 

Gaussian function while the exact Morse eigenfunction, the end goal, shown with a 

thick black line is shifted rightward. It is the steep repulsive wall on the left that is 

responsible for both shifts. That the eigenfunction shifts away from the repulsion is 

perfectly expected. That the Lanczos vectors instead shift toward it is due to the 

fact that the high-energy regions of the potential function accentuate the left-hand 

direction every time the Hamiltonian is applied. This is combined with orthogonaliza-

tion steps against previous vectors so that each new vector maintains some amplitude 

in the initial region, but the latter contributions are largely similar/redundant and 

become unable to significantly improve the linear combinations of functions approxi-
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mating the true eigenfunetion in its region. Thus the Lanczos process stagnates even 

in the exact ("infinite-precision") version. 

4.3.1 Implicit Restarting with the Lanczos Algorithm 

In numerical implementations, it is not uncommon for the Lanczos algorithm to 

require nearly as many Lanczos vectors as the original basis size. One of the important 

methods developed to accelerate the calculation of selective sets of eigenvalues is the 

IRLM [33], which is a symmetric-matrix case of the more general implicitly restarted 

Arnoldi methods developed by Sorensen and co-workers [35, 36, 37]. 

The IRLM uses only a small number of Lanczos vectors at a time, but iteratively 

modifies the starting vector to bring it closer to a linear combination of the true 

eigenvectors of interest. The idea is to continually compress the requested information 

for k eigenpairs into the first k columns of a length nL = k + p Lanczos factorization 

through p steps of an implicitly shifted QR algorithm. Both k and p are typically 

modest numbers. The eigenvalues of interest are revealed in the spectrum of the 

order-n^ tridiagonal matrix as the IRLM iterations proceed. 

The temporary storage of several vectors is frequently an acceptable cost in order 

to take into account the contributions from large bases. The IRLM has emerged as a 

robust means of accelerating the convergence of the Lanczos algorithm, as well as of 

avoiding such issues as spurious eigenvalues [31]. It is natural to employ the IRLM 

in our matrix-free methods in order to counteract stagnation from the presence of 

strong anharmonicities. 
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4.3.2 Implicit Restarting Comparisons 

The implicitly restarted Arnoldi method was used in the EM context by Hosseini 

et al. [38] to calculate propagation constants of dominant optical modes in plasmonic 

waveguides. Here the symmetric-matrix variant, IRLM, is used in the quantum eigen-

value context with our matrix-free method. 

We consider the lowest eigenvalues of the Morse potential system. Calculations 

are carried out using two different types of bases, the OMGC 12a scaling function 

representation with derivative filters and the CPA, and a sine DVR representation. 

The sine DVR of Colbert and Miller [39] is a general grid discretization that treats 

all locations within the grid democratically and with the same resolution. It may 

be considered as sampling of a non-compact-support sine (Shannon) wavelet basis, 

and has provided a standard against which, for example, sophisticated distributed-

approximating-functional generalizations [40, 41] have been compared. While the 

sinc-basis kinetic energy matrix in ID is full, this is not a serious disadvantage even 

for multi-mode problems since kinetic operators usually involve at most one- or two-

mode operators at a time [39]. 

We calculate the lowest eigenvalues of the Morse potential via the IRLM in OMGC 

and sine DVR bases. These are chosen to have the same spacing (A = 1/32) and 

number of elements (214) for comparison. For the OMGC basis with converged 

projections of the initial Gaussian and potential functions the n = 9 FD filter and 

the CPA were used. For the sine DVR basis, the full kinetic energy matrix was used. 

The first three eigenvalues, k — 3, are shown in Table 4.2 using p = 7 extra Lanczos 
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vectors in each cycle for a small total of nL = 10 vectors. 

Table 4.2: Morse potential eigenvalue calculations with the IRLM using OMGC 
12a and sine DVR bases. The spacing in both cases is A = 1/32 and discrete 
indices of both bases cover relevant ranges of interest. The k = 3 lowest eigenvalues 
were sought and p = 7 extra Lanczos vectors were included for implicit restarting 
purposes, giving nL = 10 total Lanczos vectors calculated in each IRLM iteration. 
For the OMGC basis, the n = 9 FD filter is used for the kinetic energy and the CPA 
for the potential energy. Eigenvalue results are displayed for different IRLM iteration 
numbers and pure Lanczos nL = 50 and 100 results are shown in the middle rows. 
The full Hamiltonian matrix direct diagonalization results and the known exact 
eigenvalues are given in the bottom two rows for comparison. 

OMGC 12a sine DVR 
IRLM itr. eig 1 eig 2 eig 3 eig 1 eig 2 eig 3 

1 10.39444 38.58087 119.39378 10.39519 38.67638 119.72486 
10 10.32616 29.70839 73.44379 10.32782 30.11745 80.75734 
20 10.32537 29.33723 56.62719 10.32549 29.44911 64.98175 
30 10.32535 29.29408 49.52179 10.32536 29.32584 55.47335 
40 10.32535 29.28912 47.13679 10.32535 29.29683 50.41618 
50 10.32535 29.28861 46.37238 10.32535 29.29029 48.02262 
60 10.32535 29.28856 46.12418 10.32535 29.28891 46.93057 

nL = 50 10.32536 29.31178 50.84128 10.32540 29.35499 55.09444 
nL = 100 10.32535 29.28856 46.00176 10.32535 29.28856 46.00182 

MB 10.32535 29.28856 46.00176 10.32535 29.28856 46.00176 
exact 10.32535 29.28856 46.00176 10.32535 29.28856 46.00176 

It is seen that a single Lanczos iteration is quite inaccurate for the second and 

third eigenvalues in both bases. This is due to the deficiencies discussed above of the 

basic Lanczos method for this problem. As the IRLM iterations proceed, however, 

convergence is obtained in each case. Ordinary Lanczos calculations with nL = 50 and 

nL = 100 are also carried out to verify that (in this method) significant numbers of 

vectors are needed to approach convergence even for the third eigenvalue. Full matrix 

(non-Lanczos) diagonalizations in each basis are included to further verify that the 

original bases chosen are adequate to obtain each of the targeted eigenvalues. 
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For select groups of eigenvalues, therefore, one can use the IRLM to deal effectively 

with the strongly repulsive potential wall that cause problems for the regular Lanczos 

algorithm. That is, even in strongly anharmonic potentials, the CPA can be used to 

avoid the constuction-and-diagonalization of large matrices. Furthermore, the single-

scale OMGC basis in this problem has been demonstrated to have an effectiveness 

comparable to that of the more familiar sine DVR. There are remaining advantages 

of the wavelet approach, e.g., the multiple scale representations, that need to be 

developed in the CPA/filter context in future work. That is, it may be possible to 

improve the wavelet calculations so that they are more than just comparable, but 

a significant step has been taken here that is expected to strongly facilitate such 

improvements (in reducing both coding and computational complexities). The next 

item of business, however, is to demonstrate a multidimensional generalization of the 

CPA/FD filter method. 

4.4 2D Proton Transfer Model Potential 

Sato and Iwata [32] constructed an anharmonic 2D model for 

hydrogen atom of mass m between two heavier atoms each of mass 

be the M — M separation and x to be the displacement of the H 

midpoint, 

ft - l m + M 92 LA? LA A 

2 mM dx2 MdR2 MdxdR 

+ \K{R - Re)2 + D [l — + D[ 1 - . ( 4 . 4 ) 

the motion of a 

M. Taking R to 

atom from their 
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The heavy atoms interact harmonically, while the H atom motion is governed by 

two oppositely-facing Morse potentials. For a particular set of parameters, Sato and 

Iwata solved the eigenproblem using the Finite Element Method (FEM) with square 

grids up to 557 on a side to calculate the first 17 eigenvalues. In developing a general 

FEM approach for anharmonic and coupled bound vibrations, Xu, et al. [42], have 

repeated this calculation, needing only 100 x 100 square grids to obtain the converged 

results shown in the second column of Table 4.3. 

Table 4.3: Eigenvalues of the H-atom transfer model of Sato and Iwata[32], The 
cubic Hermite FEM calculations by Xu, et al. [42], were converged with a 100x100 
grid in R and x. The wavelet calculations were performed using products of OMGC 
12b scaling functions in R and x with Xr = 1/64, Â  = 1/16, 169 < kn < 195, 
and —19 < kx < 9, i.e. 27 x 29 2D basis functions. Single-point sampling and 
the CPA were used for application of the potential energy. The kinetic energy 
operator was applied using both n = 15 FD filters and the standard matrix-based 
(MB) differentiation filters. Use of the latter gives unconverged upper bounds to the 
eigenvalues while use of the former gives convergence but from below. 

Eigenvalue Xu, et al. OMGC/FD O M G C / ^ 1 " 
1 740.11 740.11 740.13 
2 743.39 743.39 743.41 
3 751.96 751.96 751.99 
4 755.89 755.89 755.93 
5 763.91 763.91 763.99 
6 768.40 768.40 768.49 
7 774.59 774.59 774.64 
8 775.99 775.99 776.19 
9 780.91 780.91 781.15 
10 787.76 787.76 787.99 
11 788.62 788.62 788.90 
12 793.43 793.43 793.93 
13 797.06 797.06 797.23 
14 800.05 800.05 800.70 
15 802.11 802.11 802.43 
16 805.95 805.95 806.87 
17 810.33 810.33 810.53 
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A wavelet calculation was performed in a direct product basis of scaling functions 

in R and x, each with its own scale factor. Projections of the potential and the initial 

wave function (a sum of Gaussians in the two potential wells) were obtained using 

the single-point mean-position sample method without refinement for simplicity, and 

application of the double-well potential at each Lanczos step was performed using the 

CPA. 

Application of the kinetic energy was barely more difficult than in the ID case. The 

cross-terms require sequential application of first derivative filters that are obtained 

from Eq. (3.19) with i — 1. Again, n is taken to be odd, the centered filter in this 

case being antisymmetric. The IRLM was used with k = 17 and p = 34. This large 

a value of p results in rapid convergence, avoiding stagnation and requiring less than 

10 iterations for a basis size of 783 scaling function products. Lower values of p can 

be used by taking more IRLM iterations. 

The lengths of the FD derivative filters were increased until the calculations were 

insensitive to further change, n = 15. As expected, this convergence with respect to 

n is from below. These results, given in the third column of Table 4.3, are identical 

to the number of digits shown. The matrix-based first and second derivative filters 

of lengths 2L — 3 were also used for the same basis and provide eigenvalues in the 

last column of the table that are converging from above as they should, but which 

are distinctly less converged. 

In the variables x and R, coupling appears only as cross-terms in the kinetic energy. 

Our calculational method could be used for other coordinates as well, in which case the 

potential energy would be coupled. We have also performed similar hydrogen-bonding 
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vibrational calculations for the ground state of a model of water dimer constructed by 

Chmura, et al. [43], for use in investigation of quantum photodynamics. The detailed 

2D potential function in this model, fit to ab initio data, is fully coupled in any set 

of coordinates. 

Since the basis functions are localized and orthogonal, it is easy to eliminate those 

that contribute little. (Contractions are of course also possible for DVR bases such 

as the DVR-Distributed Gaussian Basis [44] or the sine DVR [45].) We consider 

a simple example criterion of eliminating 2D basis functions where the projection 

coefficients of V are above a particular energy threshold. In Fig. 4.2 is illustrated 

such a contraction that still leaves all eigenvalues unchanged. The dots represent the 

x(A) 

Figure 4.2: Sato and Iwata proton transfer potential function with contours at 720, 
740, 760, 780, 800, 900, 1000, 1100, 1200 and 1300 vibrational units (equal to 33.715 
cm^1). The dots represent mean positions of product OMGC 12b scaling functions 
in R and x retained in the basis after imposing the energy criterion described in the 
text. All 17 eigenvalues remain accurate using this basis with the CPA/FD/IRLM 
methods. 

mean positions of the retained scaling function products, now 651 in number instead 
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of 783 in the direct product basis. Other selection criteria can be explored in the 

future, but this calculation demonstrates that one can simply prune the localized 

orthogonal basis functions with little effort. 

As this thesis is being prepared, CPA/FD/IRLM calculations have been con-

structed for the large-amplitude vibrational eigenvalues of nitrosyl chloride, sev-

eral of the observed transitions first seen in Dissociative Resonance Raman Spec-

troscopy [46, 47] experiments within the Kinsey laboratory at Rice University [48]. 

These calculations are on the ground state PES supplied to us by Yamashita and 

Kato [49], whose vibrational eigenvalues are available for comparison. Preliminary 

results are encouraging, so that we expect to soon have the first triatomic results from 

a wavelet-based calculation. 



Chapter 5 

Time-Dependent Schrodinger Equation: 

Evolution Equations 

The TDSE is a very general foundation of quantum mechanics. In fact, it in-

cludes stationary-state solutions and the corresponding TISE as a special case. More 

generally, use of wavelet bases for time-propagation is a long-term goal and we have 

already made some contributions in this area. Chronologically, the material in this 

chapter predates the development of the matrix-free technology for application of the 

Hamiltonian operator. Nevertheless, the latter can be directly applied for polyno-

mial propagator approaches to solving the TDSE such as the Chebyshev and Short-

Iterative-Lanczos (SIL) methods, replacing the explicit matrix-vector multiplications. 

During this earlier work, it was discovered that improvements could be made to 

the SIL propagation method for Hamiltonians that are Hermitian and time-reversal-

invariant. This is a large class of applications, so it came as something of a surprise 

that an available simplification had not been noticed earlier. For that reason these 

results are set down in this chapter, using but not restricted to wavelet bases. 

80 
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5.1 Formal Solution for Time-Independent Hamiltonian 

The TDSE in the non-relativistic regime has the form 

(5.1) 

where H(x) is a linear time-independent Hermitian operator in x = . . . , xd), for 

d spatial degrees of freedom. We suppress the explicit dependence on x for notational 

simplicity. The formal solution of the TDSE is 

Our recently developed [50] propagation algorithm is discussed first in the next sec-

tion. 

5.2 Quantum Propagation: Evolution by CSL 

It is a continuing goal to achieve high-accuracy time-domain propagation of the 

TDSE with low computational effort [51, 52, 53, 54], Polynomial propagation methods 

are a popular choice for large-scale calculations because they rely heavily on matrix-

vector products which can be custom implemented in serial or parallel computing 

environments [51, 55, 52, 56, 57, 58]. Polynomial expansions involving orthogonal 

functions found by the Lanczos algorithm [34] add further advantages in that one can 

get accurate results with few matrix-vector products [51, 55, 56, 57]. 

To this end a low-order Lanczos-based polynomial propagation method for the so-

y(t) = U(t)y(0) = exp(—itH/h) y(0) (5.2) 
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lution of the TDSE is introduced, the Conjugate Symmetric Lanczos (CSL) method. 

The CSL algorithm, discussed in the next subsection, arises from consideration of 

time-reversal symmetry of the TDSE for Hamiltonians not explicitly dependent on 

time within Krylov subspace approximations (discussed below) to the quantum prop-

agator. One finds immediately that the Krylov basis expansion coefficients for for-

ward propagation are simply complex conjugates of those for backward propagation. 

Deeper investigation reveals that this statement is also true if one transforms to an or-

thogonal Lanczos basis, thereby allowing efficient expansion coefficient determination 

by simple orthogonal projections. Remarkably, it is also found that the expansion co-

efficients are time-invariant, that is, they are the same for all time steps in a uniform 

time-stepping procedure; in practice, there are small differences due to either spatial 

representation or finite precision errors. The CSL method avoids the need for direct 

diagonalization and/or spectral estimation of the Hamiltonian, and requires nothing 

more than matrix-vector multiplications and inner products. The action of the matrix 

exponential representation of the operator is systematically approximated using only 

small numbers of Hamiltonian/wave-function products, and may be implemented so 

that only a few vectors are needed simultaneously. 

Finding solutions of the TDSE usually involves two general steps: spatial dis-

cretization, which allows finite rank evaluation of the action of the Hamiltonian op-

erator H on the wave function, and time discretization, which utilizes finite rank 

approximations to the action of the exponential propagator ex.p(—iAtH/h) on the 

discretized wave function to obtain the wave function at subsequent times. The 

Chebyshev propagation method [58], based on a Chebyshev polynomial expansion 



of the propagator, is well known for its global convergence properties, but many 

matrix-vector products are typically required to achieve an accuracy at or near ma-

chine precision. The SIL method [55] gives a low-order polynomial approximation, 

utilizing a Lanczos basis subspace where the exponential propagator is represented 

by a reduced dimensional matrix (cf., the discussion of the Lanczos method in the 

last chapter for the TISE). For large-scale problems one would like to minimize both 

the number of matrix-vector multiplications and the number of simultaneous vectors 

required. The Chebyshev method has the advantage of only requiring two previous 

vectors to generate a third, while SIL at a particular order nL of Lanczos recursion 

requires all nL vectors to be available in either fast memory or storage. The CSL 

method capitalizes on the reduced dimensionality of the Lanczos basis while avoiding 

the simultaneous need for all of the Lanczos vectors. 

There are different types of spatial discretization that can be chosen. Uniform 

grid-based approaches allow the efficiency of the Fast Fourier Transform to be ex-

ploited [54], Various basis function choices can be used, e.g., analytical bases associ-

ated with the use of the DVR [59, 60, 61, 62], finite elements [63, 42], etc. Orthogonal 

compact support wavelets are used in the present investigation which was, in fact, mo-

tivated by recent wavelet TDSE propagations using the Chebyshev method [64, 65]. 

The rigorous localization of the basis functions leads to sparse matrix representa-

tions of the Hamiltonian and propagator, allowing efficient customized programming 

of the matrix-vector multiplication steps. Within the long-range goal of developing 

adaptive TDSE methods, we have also investigated wavelet discretization of the time 

variable as well [64]. This aspect is not explored here, though the CSL method can 
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be employed there as well. 

It is well-known in computational electromagnetics that the classical Maxwell 

equations in the time-domain can be expressed as a Hamiltonian system with associ-

ated exponential propagator [66]. Recent work has highlighted use of the uncondition-

ally stable Chebyshev method for pulse propagation in non-absorbing media [67, 68], 

and Lanczos [69] and Faber propagation [70] methods for attenuating media. In 

the latter case, the field "Hamiltonian" is intrinsically non-Hermitian, a situation 

entirely analogous to propagations for decaying resonance states in quantum dynam-

ics. The CSL method depends on time-reversal symmetry and the Hermiticity of the 

Hamiltonian, and is shown to apply immediately in a simple ID EM non-absorbing 

case. However, there is a great deal of interest in calculating the electromagnet-

ics of metal nanoparticles for, e.g., their use in surface-enhanced spectroscopies and 

plasmonic nanoscopic wave guides [71, 72], Use of noble metals like silver and gold 

necessarily entails strong attenuation and the use of complex dielectric functions [73]. 

Accordingly, a method for systematic calculation of corrections to the CSL method 

for non-Hermitian effects is developed that involves a moderate increase in vector 

storage requirements, and is applied to a ID pulse propagating across a vacuum-gold 

interface using a Drude model for the Au dielectric function [73]. 

5.2.1 CSL from the Lanczos Basis 

Different polynomial propagation methods frequently require different numbers of 

matrix-vector multiplications. In part this is due to adoption of different strategic 

goals, for example, one-step versus multi-step propagations, adaptive versus non-
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adaptive calculation, control of error build-up, etc. For moderate time steps, we are 

interested in determining the minimum number of matrix-vector multiplications re-

quired to achieve a particular accuracy goal. This may be examined for any choice of 

polynomial propagator expansion, such as the Chebyshev, SIL, and Residuum meth-

ods [56] within a Krylov basis decomposition of the exact wave function since all 

polynomial expansions are spanned by this basis. An nL order Krylov subspace is the 

space spanned by nL vectors {y, H y , . . . ,H n ^ _ 1 y} created completely in terms of a 

matrix-vector products of H and a vector y. In the Krylov basis it is easy to ascer-

tain the consequences of time-reversal symmetry for evolution with time independent 

Hamiltonians. 

For short time increments At, the forward propagated solution is 

v 
y{t + At) = U(At) y(t) = e x p H A t H / h ) y(t) « ^ an En~x y(t) , (5.3) 

71=1 

where the last form uses a p-term approximation to the evolution operator in a Krylov 

basis {Hn y{t)} with coefficients an to be determined according to the underlying 

propagation method. Similarly, the backward propagated solution is 

p 
y(t - At) = tf(At) y(t) = exp(+iAtH/h) y(t) Hn~l y(t) . (5.4) 

n = l 

Due to the Hermiticity of H, reversal of the sign of At corresponds to taking the 

Hermitian conjugate of the evolution operator. From the linear independence of the 
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Krylov basis functions, this is satisfied by requiring 

an = b*n . (5.5) 

The wave function y(t) is generally complex, but only the coefficients of the Krylov 

basis are complex conjugated under time reversal. 

At a given time t, the basis may be orthogonalized by the standard Lanczos 

recursion, as discussed in Section 4.1. Assuming y(t) is unit normalized, we form the 

continuous Lanczos basis members {qn} by 

Qi = y(t) (5.6) 

where a , = (qJ\H\qi) and (3, = (qJ+l\H\qi) = (qf\H\q i + 1) with (50 = 0 and q0 = 0. For 

Hermitian H, the al and 3l are real and form the symmetric tridiagonal matrix T 

of the Hamiltonian in the orthogonal Lanczos basis. The Lanczos vectors are linear 

combinations of the complex Krylov vectors with real coefficients. Therefore, one has 

forward and backward expansions, 

n l 

y(t + At) = ^a^qn(t) , (5.8) 
n= 1 

n l 

y(t-At) = ^bL
nqn(t) , (5.9) 

n=l 

where the and b% are linear combinations with real coefficients of the corresponding 
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complex Krylov quantities, an and bn, respectively. Thus, the Lanczos coefficients are 

also related by complex conjugation 

(bL
ny • (5.10) 

Let us assume that the wave function has been calculated up to time t in steps of 

At. Then the orthogonality of the Lanczos basis allows the to be determined by 

simple projection 

Once qn(t) and are calculated, the quantity (b%)* qn(t) may be immediately added 

to the prediction for y(t + At). One only needs vectors qn_i(t) and qn(t) to proceed 

to step n + 1. This simple low-order low-storage algorithm is called the Conjugate 

Symmetric Lanczos method for time-independent Hamiltonians. 

Of further interest is the fact that the expansion coefficients are time-invariant. 

To see this, consider application of the propagator U(t) to Eqs. (5.6) and (5.7) at time 

zero. Using the facts that U and H commute and that the an and Bn are independent 

of time, it is easy to verify that 

U(t)qi(0) = U(t)y(0) = y(t) = qi(t) 

U(t) q2(0) = [H U(t) 9L(0) - U(t) qMVPi = <?I W - qM/Pi = 9A W 

bL
n = {qn{t)\y{t - At)) . n (5.11) 

U(t)qnL(0) = qnL(t) . (5.12) 
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This means that 

a^(t,At) = (qn(t)\y(t + At)) 

= {qnmu\t)u(t + At)\y(o)) 

= (qn(0)\y(At)) , (5.13) 

which is independent of t. Thus, the wave function and Lanczos basis functions change 

with absolute time, but their coefficients of projection, and in neighboring-time 

wave functions rigorously depend only on At. 

This is strictly true only for the exact Lanczos basis functions. When approx-

imated in a finite basis using finite precision, there will generally be errors in the 

numerically determined Lanczos vectors and CSL coefficients. The Lanczos vector 

expansion in Eqs. (5.8) and (5.9) have the same formal appearance as in the SIL 

method, and the coefficients are expected to coincide for infinite precision and reso-

lution. However, there will in practice be differences since the SIL method imposes 

the stronger requirement of strict unitarity of the transformation at any level of ap-

proximation (see below). We will examine the dependence of the errors on resolution 

using wavelets at different scales. 
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5.3 Quantum Propagation: Evolution by CSL, Chebyshev, 

and SIL Methods 

After a brief outline of the Chebyshev and SIL propagation methods the CSL 

algorithm is investigated with prototypical quantum systems. The Chebyshev and 

SIL methods are also employed for comparative purposes. The first prototypical 

systems is a displaced harmonic oscillator problem serving as a model for an electronic 

transition. The known analytical oscillator solution not only allows examination of 

CSL and SIL errors, but Chebyshev errors as well. In an anharmonic example, we 

study a Morse oscillator system where, in lieu of an analytical solution, CSL and SIL 

errors are measured with respect to Chebyshev method errors. The latter may be 

driven down to the intrinsic errors for the fixed spatial resolution at the expense of 

an increased number of matrix-vector products. 

The SIL method is a low order Krylov-based propagation scheme for use with 

small time steps. The corresponding action of the propagator on the initial wave 

function is given by 

y(f + At) = exp(-iUAt/h) y ( t ) « p Q exp(-«TAt//i) e : , (5.14) 

where p = ||y(t)|| is the 2-norm of the initial vector, Q is the matrix of Lanczos 

column vectors, and ei is an n^-element unit column vector with one in the first row. 

Formally, one must still compute a matrix exponential although the dimensionality of 

the matrix has been reduced to that of a smaller nL x nL tridiagonal matrix T. This 
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matrix can be orthogonally transformed to a diagonal matrix D = V T T V where the 

columns of V contain the eigenvectors of T. In this representation, the exponential 

propagator is simply a diagonal matrix with each element being an exponential of a 

scalar. Reversing the orthogonal transformation, one obtains 

y(t + At) « p Q V e x p ( - i D A t / h ) V T e 1 . (5.15) 

The use of low-order Lanczos vectors minimizes the edge effects that scaling func-

tion and wavelet bases experience (the truncation is localized to the edge regions), 

and this can be controlled by taking the range xm\n and xmax to be strongly outside 

the range where the wave function has any significant amplitude. Application of H to 

y (t) many times, e.g. for higher-order Lanczos or Chebyshev methods, will ultimately 

cause errors in the higher-order Lanczos vectors relative to the exact vectors. Ideally, 

we avoid this occurrence by keeping the order at ten or less. This can be controlled 

by the time-step since shorter time-steps decrease the coefficient sizes especially for 

higher order. A variable time-step has been employed in the earlier Residuum [74] 

method and can generally be employed in the SIL method [55, 75]. 

For a finite matrix H the Chebyshev method first requires use of a scaled and 

shifted matrix H ' = ( H — Eav)/Ehw, modifying the spectral range to ~ [—1,+1] . 

The average and half-width energy, defined by 2i?av = J5max + Em\n and 2Ehw — 

Emax — Emin, can be calculated or estimated by different means. The action of the 



91 

propagator in the Chebyshev method is computed as 

y(* + A*)=U(At )y (* ) 
ftrnax 

« exp(-iEavAt/h) - Sn0)(ih)~n Jn(E^At/h) Xn (5.16) 
n=0 

where Jn are Bessel functions of the first kind and the vectors X n are generated by a 

series of matrix-vector multiplications in a three term recursion X n > 1 = 2H' — 

Xn_2 with Xo = y(£) and Xx = H' Xo- The Bessel function expansion coefficients 

decay exponentially as the index n exceeds the argument. The Chebyshev method 

is of course not limited to small time steps, but longer time durations require higher 

nmax to achieve convergence. 

5.3.1 Displaced Harmonic Oscillator 

A simple vibrational model is first examined, a ID displaced harmonic oscilla-

tor [64] with Hamiltonian given by 

+ ( 5 - 1 7 ) 

The ground state wave function of the harmonic oscillator, 

y{x,0) = {ot/n)l'Ae-Qx2'2 , (5.18) 



is used as the initial state in the propagation where a = mu/h — y/km/K. The 

solution to the TDSE involving H has a known form 

y(x, t) = (a/7r)1/4 exp [ - f (x - xclf 

+ iaxo sin(a;i)(x — £ci) — ^o c o s s i n ( u t f ) — i y ] , (5.19) 

where xc\ = x0 — x0cos(u>t). This solution reduces to y(x, 0) at t = 0, see Fig. 4 of 

Wang et al. [64] The exact Lanczos vectors for the displaced oscillator turn out to be 

qn(x,t) = ( - 1 ) " (2"n!)_1//2 Hn{a1^(x - xcX)) e~inuty(x,t) , (5.20) 

that is, (—1)" times the wave packets evolving from excited states n at t = 0. Here the 

Hermite polynomial Hn is centered on the classical position xc\. The exact expansion 

coefficients are then obtained from a standard integral, 

aL
n{At) = {qn(t)\y(t + At)) = (qn(0)\y(At)) 

= (2nn\)~1/2 [ - i s i n ( ^ ) ] n exp [ - (1 - e~iujAt) - i^toAt] . (5.21) 

We consider the displaced oscillator with h = m = u> = 1 and Xq = 1/2. For a 

single-scale expansion in scaling functions <pjk. single time step errors are examined in 

Fig. 5.1 for different L, discretization steps A, and time step At. These errors are de-

fined as the maximum absolute error across all scaling function expansion coefficients. 

For the two values of time step used, the errors are similar and therefore dominated by 
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Figure 5.1: Plots of maximum scaling function coefficient errors in |y(At)| versus nL 

(CSL and SIL) or nm a x (Chebyshev) of the displaced harmonic oscillator propagated 
after one time step, At = 2n/26 along the top row and At = 27r/27 along the bottom 
row, when compared to the scaling function representation of the exact result. Symm-
let bases of different orders L are shown with A0, Ai, and A2 equal to 1/4, 1/8, and 
1/16 column-wise, respectively. All scaling functions fully contained in the interval 
—9 < x < 10 are used. 

spatial resolution limitations. It is seen that decreasing spacing (increasing j ) leads 

systematically to exponentially decreasing errors, though progressively higher orders 

are needed at the same time in either Lanczos or Chebyshev methods to achieve these 

decreased errors. With a larger time step the Chebyshev method requires a larger 

number of matrix-vector products compared to the slight increase in required matrix-

vector products for CSL and SIL. CSL and SIL errors roughly track each other. These 

results are expected to be improved through use of FD in place of the standard kinetic 

energy filters used here. 

There is generally an error level below which additional numerical Lanczos vectors 
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in the wavelet basis drastically slow down in error reduction. For any of the poly-

nomial methods, it is seen that saturation levels exist and are proportional to 

where L/2 is the approximation order or, equivalently, one more than the polynomial 

order for which the scaling functions provide an exact expansion basis. Thus, higher 

L provides deeper convergence with somewhat increased computational cost for either 

Lanczos or Chebyshev methods. We can systematically choose the level of precision 

and use this to guide the choice of L and A j. 

Multiple time step errors in dynamic scaling function coefficients are shown in 

Fig. 5.2 over twenty oscillator periods. For all three methods, the error shows a sharp 

CO t 

Figure 5.2: Plots of maximum scaling function coefficient errors in \y(t)\ of the dis-
placed harmonic oscillator versus time (At = 27r/26) when compared to the scaling 
function representation of the exact result. For every time step, the number of Lanc-
zos vectors for both CSL and SIL is nL — 21 and the Chebyshev order is nmax = 56. 
An L = 16 symmlet basis is used with 138 functions, = —72, kmax = 65, and 
A = 1/8. SIL and Chebyshev error curves track each other strongly. 

increase at earlier times but levels out on the semilog plot over longer times. There 

are small periodic oscillations in this accumulated error, similar to those observed in a 
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related earlier investigation [64]. In this case, it is found that the SIL and Chebyshev 

cumulative errors track each other strongly and CSL errors are about an order of 

magnitude worse. In further examinations, the magnitudes of CSL and SIL errors are 

found to vary with respect to each other from case to case, so no clear-cut superiority 

has become established. To maintain CSL and SIL accuracy in the face of accumulated 

error, it was found necessary to use a higher order nL = 21 for the calculations in 

Fig. 5.2. The use of higher nL values is not desirable from our point of view. There 

are other parameters that may be adjusted for maintaining higher accuracy in any 

of these methods, namely use of (1) wavelets with higher approximation order, (2) 

increased spatial resolution, and (3) decreased time step (the latter giving somewhat 

more improvement than for a single step). Figure 5.2 is just a representative example. 

5.3.2 Morse Oscillator 

We next examine the performance of the CSL algorithm for an anharmonic Hamil-

tonian. We use the HF molecule example used by Gray and Manolopoulos [76] in their 

symplectic integrator [57] propagation of the TDSE for an initial Gaussian function 

evolving under the influence of a Morse potential. There is no analytical solution for 

comparison unlike the previous case. Instead, CSL and SIL errors are referenced to 

converged Chebyshev results. The Hamiltonian and initial wave function are 

(5.22) 

t/(x,0) = ( 2 r / 7 r ) 1 / 4 e - r ^ 2 (5.23) 
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where \i = 1744.95008 a.u., De = 0.225084521 a.u., a = 1.1741 a.u., T = ^De/ia2/2, 

and de = —0.3 a.u. Multiple time step errors for the Morse oscillator are shown in 

Fig. 5.3. As in the harmonic case, there is a large jump in error during the initial 

0 50 100 150 200 250 
time (a.u.) 

Figure 5.3: Plots of maximum Morse scaling function coefficient errors in \y(t)\ versus 
time (At = 1/8) compared to Chebyshev propagation. For both CSL and SIL, n^ = 7, 
and the Chebyshev order is nm a x = 15. An L = 12 symmlet basis is used with 198 
functions, A;m;n = —32, kmax = 165, and A = 1/16. 

steps. In this particular case, however, the CSL and SIL error levels are found to 

be essentially identical. The number of matrix-vector products (nL = 7) needed for 

convergence is less than half of that required for the Chebyshev method (nmax = 15). 

5.4 Electrodynamics 

Recent work has been dedicated to using Chebyshev [68], Lanczos [69, 77], and 

Faber [70] propagation methods to solve problems of electrodynamics in different 

types of media. These tools familiar in quantum dynamics are enabled by virtue of 

the fact that Maxwell's equations may be put in the form of a TDSE. 
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Our choice of a wavelet spatial representation was guided by current-day nanopho-

tonic applications where strong local EM fields can arise from surface plasmon reso-

nances. In such cases, wavelet bases are natural for describing strong local phenom-

ena by virtue of their inherent multiresolution capabilities. Only single scale wavelet 

bases are necessary for the initial ID examples presented in the following sections; 

however, the real interest is in investigating 2D and 3D systems with surface plasmon 

resonances using multiresolution representations. 

5.4.1 Vacuum Propagation 

The simplest case is propagation in vacuum, for which Maxwell's curl equations 

are 

In the case of propagation along z with initial nonzero components Ex(z, 0) and 

H (z, 0), one only needs to solve the coupled equations 

(5.24) 

dt 
(5.25) 

(5.26) 

(5.27) 
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These can be put in Hermitian Hamiltonian form using scaled field components and 

the relation y/eQfi0 = 1/c (SI units), 

( \ 
F1 

\ F y 

/ 

'dt 

\ 
0 cp 

\cPz 0 j 

( 
eo Ex(z,t) 

\ 
0 (5.28) 

with pz = —id/dz. 

We consider the example of pulse propagation for an initially complex Gaussian 

pulse discussed by Borisov [69], modified to propagate from large positive z to lower 2, 

F^z, 0) = -F2(z, 0) = exp(~z 2 /D 2 -ik0z) (5.29) 

F ^ t ) = -F2(z,t) = exp [ - (z + ct)2/D2 - ik0(z + ct)] , (5.30) 

with parameters D = 1.75 ^m, A = 2 /im, and k0 = 2ir/\. This pulse translates 

unchanged through a given z region in about 25 fs. We again have an analytic 

solution that allows direct assessment of the propagation error. The scaling functions 

are chosen to have a spacing A = Dj 10, the same as the grid spacing used in Borisov 

et al. [69], and a time step At = 1/10 fs. 

The two initial components F^z, 0), i = 1 and 2, are expanded in an L — 10 

symmlet basis with A;min = —54 and A:max = 50. Setting j = 0 and ignoring this 

subscript, 

F&, 0)= jr . (5.31) 

The vector of coefficients, F f(t) = [F*k (t),..., ^fcmax(^)]T> may be calculated using 
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wavelet quadrature on a finer scale followed by two-scale recursion back to the target 

scale. This converges exponentially with the number of refinement scales, with four 

levels providing convergence to better than 10~16 for the current problem. The only 

error is therefore due to the use of a finite resolution basis for the expansion, and 

this can be systematically decreased by choice of A. Merging the vector F :(0) with 

its negative F2(0) = —F1(0), the total vector F has 2N coefficients. The fI operator 

matrix is then 2N x 2N but sparse in the scaling function representation. Otherwise, 

the CSL algorithm is formally the same as before. In the calculations, decomposition 

into the separate blocks has a computational advantage due to the form of Q in 

Eq. (5.28). 

We consider the converged projections for the three vectors F(0), F(A t ) , and 

F(2At). The expansion coefficients, and of F(2At) and F(0), respectively, in 

the Lanczos basis created from F(A t ) , are complex conjugates to within the precision 

used. This differs from the oscillator case, and is presumed to be due to specifics of 

the matrix Q. The logarithmic magnitudes of the an coefficients are shown in Fig. 5.4 

for different values of L, decreasing linearly at first and then leveling off significantly. 

From the displaced oscillator example, the latter fact is recognized as due to scaling 

function approximation-order limitations in representing the exact Lanczos vectors. 

This is evident from the increased linear region and increasingly deeper leveling region 

as L increases. 

The key question is the accumulation of error as multiple time steps are taken. 

This is shown in Fig. 5.5, where maximum absolute errors in the projection coefficients 

of the symmlet bases are shown for 40 time steps with At = 1/10 fs. A number of 
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Figure 5.4: The logarithm of coefficient magnitudes, log10 |an |, for a single time step 
(At = 1/10 fs) in the free propagation of an EM pulse using symmlet bases with 
A = D/10 and different L: 10, 12, 14 and 16. 

different values of L are used, and the top group corresponds to A = -D/10, the spacing 

used by Borisov and Shabanov [69]. The bottom group corresponds to A = D/20. 

One can see that the accumulated error decreases with both L and scale, at least for 

this length of propagation. 

5.4.2 Propagation in Drude Materials 

Non-Hermitian Hamiltonians commonly arise in molecular physics. They gener-

ally lead to complex eigenvalues and breakdown in conservation of the norm. The 

unconditionally stable Chebyshev expansion method has been modified by Huang, et 

al., [78] to handle the time propagator, exp(—iAtH/h), for non-Hermitian H by gener-

alizing to Faber polynomial expansions and complex spectral domains. In the Hamil-

tonian formulation of electrodynamic problems, intrinsically non-Hermitian Hamilto-

nians also occur, e.g., when the dielectric function is complex as it is for absorbing 
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time (fs) 

Figure 5.5: Coefficient errors for free propagation of an EM pulse for different values 
of L with nL = 8. The upper four curves are for A = Dj 10, the bottom four for 
A = D/20. 

materials. Borisov and Shabanov have very recently applied the Faber method to 

such cases [70]. Lanczos methods with suitable generalizations may also be applied 

to non-Hermitian EM Hamiltonians [77, 69]. The direct extension of the SIL method 

then only requires diagonalization of a smaller non-Hermitian tridiagonal [77] or Hes-

senberg [69] T matrix, although stability must be examined. On the other hand, the 

CSL method relies on time-reversal symmetry, i.e., equating the Hermitian conjugate 

of the propagator with the propagator for reversed time. This no longer holds for 

Hamiltonian problems with attenuation. It is therefore of interest to examine more 

closely the breakdown of the CSL method in this situation. 

As an example, we consider the problem of a metal with the dielectric function 

modeled as a Drude oscillator, 



102 

Here e^ is the dielectric contribution due to core electrons, top the bulk plasma fre-

quency, u the excitation frequency, and 7 the attenuation width. The current cal-

culations are carried out with e^ = 9.4, cup = 2.16 x 1015 Hz, and 7 = 1.75 x 1013 

Hz, found by a non-linear fit of experimental data [73] for gold. This is relevant to 

low-frequency excitation of metal particles and current research in nanophotonics. 

Following the time-domain development by Borisov [69], one has a basis consisting of 

suitably scaled E and H fields and vector Q corresponding to the time derivative of 

the polarization divided by uup. Once again considering propagation along the z axis, 

the Hamiltonian and corresponding field components take the forms 

/ 

Q 

0 ( c / ^ Z ) p z 

{c/^/e^)Pz 0 

0 

\ 
-zup/y/e oo 

0 

—27 

(5.33) 

/ \ 
F, 

\ F V 

( \ y/eoeoo Ex(z,t) 

VfoH y ( z , t ) • (5-34) 

It is important to note that even after scaling, this matrix is not Hermitian due to 

the diagonal block containing — ry. 

As a substitute for the Lanczos algorithm of Section 4.1, we use the biorthogonal 
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Lanczos [79, 77] algorithm to handle the non-Hermiticity of the matrix O, 

v i = w i = F(£)/||F(£)|| (5.35) 

V i+1 = (O • v{ - V,.! - Vj o r j / f t (5.36) 

w i + 1 = (Ot . w . _ _ w . a * ) / ( 3 * (5.37) 

where the a i = wj • H • v̂  and [3i = y jwj + 1 • v i + 1 are complex and the tridiagonal 

matrix T is complex symmetric. Even though there is an additional matrix-vector 

product per iteration, we choose this over the Arnoldi algorithm [69] which requires 

storage of all vectors. In addition to the arrays for past and future wave functions, 

the CSL algorithm minimally requires storage for two (four) additional vectors in the 

orthogonal (biorthogonal) case. 

Since the CSL condition, a„(At) = b^(At)*, does not hold in this case, it is 

instructive to investigate the difference of the CSL coefficients in terms of F ( t ) prop-

agated one time step in the forward and backward directions and the biorthogonal 

Lanczos basis, 

aL
n(At) - bL

n{Aty = wt (t) • e~iAtCl • F ( t ) - [w£( f ) • • F(*)]* (5.38) 

p=0 * 

using the Taylor series representation of the exponential operators. The Krylov vec-

tors generated by f2 acting on F ( t ) are simply linear combinations of the vm Lanczos 
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vectors, 

n p - F ( t ) = | | F ( * ) | | £ ^ ) v m ( t ) (5.40) 
m=0 

(v) 

where Sm are functions of the an and (3n Lanczos coefficients and can be recursively 

calculated via the expression 
min(m+l,p—1) 

= £ S ^ T r + w l (5.41) 
r=max(m—1,0) 

for p > 2 and 0 < m < p with = 1, S^ = au = and TiS as the (i,j) 

element of T. 

After inserting Eq. (5.40) into (5.39) and using the biorthogonality relationship, 

wjj(t) • vm(t) = 5mn, the final expression for the needed correction takes the form 

aL
n{At)-bL

n{Aty = | | F ( t ) | | ( 2 t ) f ; t = ^ I m [ ^ ) ] • (5-42) 
jji p—n 

Note that in the simple case of Hermitian ft, an and (3n are real, I m ^ ^ ] = 0, and 

the correction terms vanish in agreement with earlier results. Also, we see that the 

correction terms have leading behavior (At)p; thus, it is important to choose smaller 

time steps in order to reduce the number of correction terms needed to achieve a 

target accuracy level. The first two dominating terms at p = n and n + 1 have simple 

expressions, i.e., s£n) = a n d = ( U]=i Pj) ( £ £ = } <**) • The forms of 

higher p are more complicated and are best evaluated using the recursion relation 
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in Eq. (5.41). 

To recap, the CSL algorithm is adjusted for the non-Hermitian case by using the 

biorthogonal Lanczos algorithm and adding correction terms to b^(At)* in order to 

calculate the proper a^(At) coefficients of the vectors vn(t) in the composition of the 

future vector F ( t + At). Depending on the number of correction terms used, there 

is a need to calculate a , and /? , where n > n. In other words, when calculating 

a^(At), one needs to go a few recursion steps ahead in the biorthogonal Lanczos 

algorithm in order to obtain the full set of a , and , coefficients needed to calculate 

S® for p > n. In order to handle this requirement, one could either budget the 

time of computations by storing the higher order Lanczos vectors v , calculated in 

conjunction with the an> and (3n> factors for later use in the algorithm, or one could 

save memory at the expense of time by simply recalculating vn vectors as needed. 

We specifically examine the case where one starts with a Gaussian pulse for the 

F1 and F2 fields (F3 = 0) as in Eq. (5.29) centered in a vacuum half-space (z > 0) at 

z = 3D and impinging on a gold metal half-space (z < 0) with the aforementioned 

Drude dielectric function (see Fig. 5.6). The quantities e^, u>p, and 7 are independent 

of 2 in the gold half-space, but change discontinuously to, respectively, 1, 0, and 0 in 

vacuum. Due to this, one needs to be careful of the operational ordering of elements 

in Eq. (5.33), e.g., the (1,2) element of Q is ce^/2(z)pz and the (2,1) element is 

cpz £oo^2(z). In the finite scaling function representation, these functions are repre-

sented as symmetric matrices with elements requiring twelve levels of refinement for 

a 10~u convergence. The matrix elements are trivial if either the bra or ket basis 

function does not include the gold-vacuum interface in its support. It is only the 
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Figure 5.6: Gold-vacuum interface plot of R e ( E x ( z , t ) ) calculated by a Faber polyno-
mial expansion. Two time snapshots are shown, the initial field curve at t = 0 fs is 
offset for clarity. An L = 10 symmlet basis is used with 552 functions, = —160, 
kmax = 391, and A = D/40, and At = 1/20 fs. 

(L — 2) x (L — 2) block where both supports include the interface that requires such 

extensive refinement if quadrature techniques are used. In the multiscale representa-

tion, whose use is postponed for future work, this means that only a small number of 

wavelets at each finer scale will be needed in order to much more efficiently represent 

effects of the discontinuity. In this initial investigation we are primarily interested in 

establishing whether or not errors can be systematically controlled in the presence of 

both attenuation and dielectric discontinuities. 

Figure 5.6 shows the pulse initially in vacuum and later as it impinges on the gold 

half-space. Figure 5.7 tracks the maximum absolute error in a 35 fs time period of 

the CSL algorithm with a varying number of correction terms compared to a Faber 

polynomial expansion run (nmax = 15) converged to the precision limit of 10~16. 

As pointed out by Huang et al. [78], the Faber method reduces to the Chebyshev 
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Figure 5.7: Maximum errors in vacuum-gold pulse propagation over time using the 
adjusted CSL algorithm. Each plot is labeled on the right with a value corresponding 
to the number of correction terms defined in Eq. (5.42). The inset shows the attenua-
tion measured by the decrease in norm of F(£) over the same time period. An L = 10 
symmlet basis is used with 272 functions, A;min = —80, kmax = 191, A = D/20, and 
At = 1/20 fs. 

method of Eq. (5.16) with the difference that Eav and Ehw are calculated such that the 

spectrum of the scaled and shifted matrix H' falls within a unit circle on the complex 

plane. It is seen that the non-Hermiticity corrections provide a systematic means to 

decrease error over the course of many time steps. However, for a fixed number of 

correction terms, there is ultimately a sharp transition to higher disagreement, and 

the time for this transition is longer for a higher number of corrections terms. By way 

of contrast, propagation strictly within gold metal produces differences that follow 

the same patterns at longer times (the maximum absolute error is always found on 

the gold side in the interface problem), but that do not exhibit the sharp transitions 

for any correction order. It therefore appears that the cumulative error at long times 

is dominated by the non-Hermitian nature of the operator, while the clear transitions 
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are attributable to the presence of the interface before the cumulative differences 

due to non-Hermiticity are reached. It is interesting that the even correction orders 

appear to contribute little, though the reasons for this are as yet unclear. 

Sharp interfaces provide problems in all EM computational methods. In the 

Finite-difference Time-domain method, subgridding techniques are used to provide 

greater accuracy at the expense of increased computational effort [71]. In the alter-

native Pseudospectral Time-domain method [71], implemented using either Fourier 

or Chebyshev basis functions, one is handicapped by Gibbs phenomena. Borisov 

and Shabanov obtain greater accuracy using nonlinear coordinate transformation to 

increase the sampling density near the interface [80]. Min, et al., approach this 

problem using Gegenbauer reconstruction [81] to eliminate the Gibbs oscillations. 

Wavelet bases are also not exempt from Gibbs oscillations, but allow for facile multi-

scale extension of the basis tailored specifically to the immediate neighborhood of the 

interface. This useful aspect of wavelets underlies the development of the Multireso-

lution Time-domain method in electromagnetics [82], complementary to the spectral 

methods pursued here (see also, e.g., Fujii and Hoefer [83]). 

5.5 Summary 

This chapter has introduced a simple low-order polynomial propagation method 

for the solution y (t) of the TDSE with a time-independent Hamiltonian. It has been 

determined analytically and numerically that the projection coefficients of y (t± At) 

on the Lanczos basis formed from y(t) are (1) simple complex conjugates of each 
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other and (2) independent of t. This has allowed use of the CSL propagation method, 

which proceeds through matrix-vector and vector inner products. One avoids direct 

calculation of the matrix exponential propagation operator and requires low storage 

in the basic form of the method. A wavelet primitive basis has been used, but the 

CSL method does not depend on this. Careful examination of the errors were made 

and it was detailed precisely how these depend on the approximation order of the 

wavelet families used. 

Simple EM applications were also considered by virtue of the ability to put 

Maxwell's Equations in Hamiltonian form. In view of the importance of absorbing 

materials, complex dielectric functions and propagators involving non-Hermitian ma-

trices were then considered. A first scheme for CSL corrections due to non-Hermiticity 

was developed and applied in the case of a pulse encountering a gold-vacuum pla-

nar interface. This leads to increases in either computation or storage requirements. 

While these are modest, it is desirable to minimize these increases, and this will be 

the subject of future investigations. 
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I l l 

There is great interest today in nanophotonics, i.e., manipulation of light by parti-

cles and structures of sub-wavelength dimensions. One of the important applications 

is the enhancement of Raman scattering by molecules on or near noble metal nanopar-

ticles. The strong local EM fields near silver and gold nano-spheres, shells, rods, and 

other particles are in large part the reason for the strong increases in signal, giving 

rise to SERS and less-developed variants such as SEROA. SEROA measurements 

have been made and published, but there is much uncertainty about how to interpret 

the results and whether or not it can even in principle be implemented as a spec-

troscopy selective for chiral molecules as is true for ROA. This chapter is concerned 

with theoretical confirmation of a first scenario where chiral selectivity of SEROA is 

indeed expected. 

In the long run, we expect wavelets to be useful for calculation of near fields for 

nanoparticles supporting surface plasmons and needing different levels of resolution. 

For the time being, the questions about SEROA practicality are of their own interest 

and we consider the use of highly symmetric spherical metal nanoshells. These have 

been the focus of much work from the groups of Naomi Halas, Peter Nordlander, 

and others at Rice University, and they have the merit that the EM fields and light-

scattering properties can be calculated using Mie theory. Wavelet approaches are 

therefore not needed here, and the wavelet (Part I) and surface-enhancement (Part 

II) calculations of this thesis are completely distinct for now. Chronologically, the 

contents of this chapter run in parallel with the work described in Chapters 2-5. 

This work is joint with Richard Lombardini, published in papers by Acevedo, et 

al. [84] and Lombardini, et al. [85]. 



Chapter 6 

SEROA 

6.1 Introduction 

Metal nanoparticles supporting surface plasmon modes of the conduction electrons 

are capable of strongly modifying the spectroscopy of attached or nearby molecules. 

A leading example is surface-enhanced Raman scattering (SERS) [86, 87, 88, 89], for 

which the Raman cross-section is typically several orders of magnitude higher than 

in the absence of the plasmonic particle. This enhances the usefulness of Raman 

scattering as a vibrational spectroscopy, e.g., for chemical and biomolecule analysis 

and sensing [90, 91]. Raman optical activity (ROA) [92, 93], which is exhibited in 

differences between right- and left-circularly-polarized Raman-scattering intensities, 

provides a spectroscopy that is sensitive to chirality in molecules and that would 

similarly benefit from development of a surface-enhanced Raman optical activity 

(SEROA) [94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107], However, 

ROA depends on subtle interplay between the electric dipole (£1) moment of the 

molecule and its magnetic dipole (Ml) and electric quadrupole (E2) moments, and 

much work will be needed to understand precisely how this interplay is affected by 

the strong local EM fields near nanoparticles of silver, gold, and other metals. 

112 
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Here this question is examined in detail for the particular situation of chiral 

molecules moving near spherical metal nanoshells with dielectric cores [108]. For 

such a scenario, it is possible to extend and merge the classical-fields model of SERS 

by Kerker, Wang and Chew (KWC) [109] and the off-resonant formalism for ROA 

by Barron and Buckingham [92], The resulting formalism, developed here, allows 

prediction of SEROA circular intensity differences (CIDs) and their enhancements as 

functions of excitation frequency in terms of the dynamic ROA response tensors. In 

conjunction with a recent chiroptical orbital model [110], it is also shown to allow an 

investigation of particular circumstances where SEROA retains the selectivity of ROA 

to molecules with chiral symmetry. A schematic of a typical dual circular polarization 

SEROA experiment is shown in Fig. 6.1. 

Figure 6.1: Schematic of SEROA experiments considered here. Chiral molecules in 
the electromagnetic enhancement range of a metal nanoshell with a dielectric core are 
probed, modulating between circular polarization senses for incident and/or scattered 
light in backscattering. Red = right-handed and Blue = left-handed. 

Different SEROA variations are possible depending on the polarizations of inci-

dent and analyzed scattered light. The possibilities are termed incident circular po-



114 

larization (ICP), scattered circular polarization (SCP), and two forms of dual circular 

polarization (DCP), in analogy to ROA terminology. These polarization schemes are 

discussed below and it is found that chiral selectivity is predicted for SCP (or ICP) 

only if one averages over molecular rotations and over an ensemble of molecules sur-

rounding the particle. Rotational averaging alone appears sufficient in DCP SEROA 

for our simple scenario of a spherical substrate and far-from-resonance excitation, a 

finding potentially important for carrying SEROA to lower analyte concentrations. 

Even though the laser frequency is assumed to be far-from-resonance with molec-

ular transitions, it can in general be very close to resonance with surface plasmon 

modes. Ag and Au nanoshell excitation profiles are investigated throughout the vis-

ible spectrum for two different forms of DCP polarization experiments. Excitation 

of both dipole and quadrupole plasmon modes are investigated, and it is delineated 

how total and differential scattering depend in those cases on the polar angle of the 

molecule relative to the incident beam direction. We end with concrete suggestions 

for excitation strategies appropriate to this type of SEROA experiment. 

6.2 Ordinary and Surface-Enhanced Raman Optical Activity 

6.2.1 Ordinary ROA 

Assuming a monochromatic EM field of frequency u>o in spectral regions where the 

molecule is transparent, the description of ordinary non-resonant ROA uses the com-

plex induced El, Ml, E2 multipole moments (electric dipole d, magnetic dipole m, 
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electric quadrupole ©) of the molecule [92, 111] 

dj = ajk Ek + G •jk ^k (6.1) 

mj = G*kj Ek + --- (6.2) 

®jk - Ajfc (6.3) 

(See Eqs. (2.6.34) of Barron [111], where tildes are used to distinguish these generally 

complex quantities.) A repeated index summation convention is used in Eqs. (6.1)-

(6.3), and MKS units are employed throughout. The aj7c are elements of the electric 

dipole-electric dipole polarizability tensor a , the Gjk are those of the electric dipole-

magnetic dipole optical activity tensor G, and the A-kl are those of the electric dipole-

electric quadrupole optical activity tensor A. If the wave functions may be taken 

as real, then a. and A are real and G = — iG' is imaginary [112]. The incident 

electric field E and magnetic field B both depend on frequency u>0 and position r, 

this dependence being simplest in the case of a plane wave. It is assumed that these 

fields correspond to e t i m e behavior. 

In a classical field picture, the molecule supports radiating El, Ml, E2 multipole 

fields [113] that, for Raman scattering, oscillate at a frequency u shifted from u>0 

by a vibrational quantum. Thus, for example, there is an EM field with vectors 

lu, r), r) generated from d, as well as corresponding fields generated by 

m and the electric quadrupole tensor. These are detailed by Jackson [113], who uses a 

quadrupole tensor Q that is twice the tensor 0 used by Barron and Buckingham [92]. 

In the electric dipole approximation, only d is considered and only the a • E con-
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tribution to it in Eq. (6.1) is included. For ROA, however, it is necessary to include 

the other contributions to d shown in Eq. (6.1) and to include the other radiating 

multipole fields, with induced moments calculated at least through the leading electric 

field contributions. If the oscillating moments are regarded quantum mechanically, 

time-dependent perturbation-theory yields sum-over-intermediate-states forms for all 

of the response tensors [92]. These involve products of absorption and emission transi-

tion matrix elements (in off-resonant virtual-state terminology), and those where both 

matrix elements are of the electric dipole operator (a) dominate the total intensities. 

The different polarization schemes introduced earlier are depicted in Fig. 6.2. Each 

ICP SCP DCPi DCPn 

-tb Hb Hb 
Hh Hh Hh 

Hb Hb Hb }— 1 0 
Figure 6.2: Polarization of incident and scattered light in Fig. 6.1 for different circular 
polarization ROA/SEROA experiments. Linearly- or un-polarized light is measured 
in scattering for ICP and is used in incidence for SCP experiments. Intensity sums and 
differences in each case are formed between the top and bottom scattering processes 
shown. 

9 

these schemes are applicable in both ROA and SEROA cases. The intensities can be 
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calculated from components of the (cycle-averaged) Poynting vector, 

S = R e (E r a d x B ; ^ ) (6.4) 

where 

(6.5) 

and similarly for Brad. Here is the free-space magnetic permeability. Barron 

and Buckingham derived explicit expressions for intensity differences with plane-wave 

excitation using the asymptotic forms for the fields [92]. For example, with an initial 

CW field of amplitude E0 propagating along 2 and having either right or left circular 

polarization vectors ( x ^ i y)/ \ /2, the ICP difference in ^-polarized Rayleigh intensities 

detected at distance r along y is calculated to leading orders as 

where c is the speed of light. The angular brackets indicate orientational averaging, 

appropriate for randomly oriented molecules in gas or solution phase. The averaging 

is accomplished by standard integration of products of direction cosine matrix ele-

ments, and leads to vanishing of any "act" contributions (i.e., averages over products 

of a tensor elements) to intensity differences. However, nonzero aG and aA contribu-

tions are still obtained for molecules that have chiral symmetry. These are typically 

10~3-10 -5 times the total (non-differential) intensity [100], requiring long ROA data 
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acquisition times. 

Luber, et al. [114], have recently reviewed earlier investigations of the relative 

sizes of the aG and aA cross terms in unenhanced ROA and performed a density 

functional theory analysis across a series of organic compounds including alkanes, 

alkenes, amino acids and larger peptides. With exceptions of certain C-H stretching 

modes, the calculated ROA spectra were little-changed when the aA terms were 

neglected. These are the most difficult terms to calculate, so neglecting them would 

simplify ab initio spectral simulations of ordinary ROA. 

6.2.2 Surface-Enhanced ROA 

In the presence of a metal nanoparticle supporting surface plasmons, the situa-

tion changes considerably. Even if the molecule is not in direct contact, local field 

enhancements strongly modify the Raman scattering and must be included in the 

scattering formalism. For the simplest case of spherical metal particles in the electric 

dipole approximation, this has been accomplished in the Mie theory investigation by 

KWC [109]. First, the induced dipole is calculated as d = a • (E + Es) = a • Et where 

E s is the wave produced when the plane wave E scatters from the nanoparticle. The 

resulting dipole d then emits an electric field E ^ that can be associated with a 

classical electric dipole oscillating at the Raman-shifted frequency u>. This field also 

scatters from the nanoparticle and produces the field E^1-1. The total Raman-shifted 

field intensity observed at position r is then proportional to l E ^ e o + E ^ e o i 2 . 

The overall picture with higher molecular multipoles in the presence of the plas-

monic nanoparticle is the following. An incident plane wave field E of frequency 
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u 0 scatters from the nanoparticle, producing another field Es. The nearby molecule 

is thus exposed to a total local field Et = E + Es which induces oscillation of the 

molecular multipoles at the Raman-shifted frequency ui. The resulting El, Ml, and 

E2 fields E( m 1 \ and E ^ ) , respectively, each also scatter off the nanoparticle. 

Thus, the total radiative field reaching the detector is Erad,t = E ^ + EjM1') + E ^ ^ , 

where, e.g., = E^ 1 ) + E ^ ^ . Each of the electric fields naturally has an accom-

panying magnetic field. An example, where a molecule lies on the y axis outside a 

spherical metal particle, is shown schematically in Fig. 6.3. 

Figure 6.3: A molecule at position r' outside a metal nanoparticle centered at the 
origin is exposed to a) an external plane-wave field and b) its wave scattered from 
the particle, both at frequency uQ. Molecular multipole moments are then induced 
corresponding to c) a composite field radiating from the molecule and d) a secondary 
field scattered from the particle, both at Raman-shifted frequency u>. Both c) and 
d) can be broken into El, Ml, and E2 parts as Erad = E ^ + E + E (£2) and 
Erad,s = + EiM1) + E ^ ^ with Erad,t = Eraa + EradjS. 

Explicitly, the KWC generalization is (the symbol : is used for double tensor 
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contraction) 

d = a • (E + E s) + G • (B + B s) + | A : V(E + Es) + • • • (6.7) 

m = (E + E s) • G* + • • • (6.8) 

Q = 2(E + E s) • A* (6-9) 

Eradit = E<M> + + E(M1) + E<M1> + E ^ ) + E ^ + ••• (6.10) 

Brad,i = B ^ + B ^ + B(M1) + + B ^ ) + B ^ ) + • • • (6.11) 

Similarly to Eq. (6.4), the Poynting vector is then calculated as S = Re(Eradt x 

B*ad t) /2fi0. Out of this expression, there will be leading terms that can again be 

identified as aa, aG and a A. Their coefficients will be different than for ROA, 

however. 

In terms of the electromagnetic picture, there are two related types of enhancement 

mechanisms. First, the induced multipole moments are increased due to the addition 

of strong scattered local fields and gradients. The radiating fields are increased by this 

effect and further increased by their own scattering from the nanoparticle. Within 

the electric dipole approximation for SERS, it turns out that the enhancement is 

roughly a product of factors that are g2(u>0) g2(uj) evaluated at the laser and Raman-

shifted frequencies [109]. When more molecular multipoles are included, the extra 

intensity terms containing them may each exhibit their own enhancement curves, 

and it becomes necessary to develop further extensions of the KWC vector spherical 

harmonic field calculations. 
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6.3 Mie Theory for EM Scattering Problems: 

Plane Wave Scattering 

The three-component functions used for solution of the vector Helmholtz equation 

with spherical symmetry are denoted L*lm, Mz
alm, and The L*lm are not 

required for a solenoidal (divergenceless) electromagnetic field [115, 116, 117]. In 

spherical coordinates r, 9, </>, the other functions are 

/1 \ n n x-P/m(cos6)) f-smm(p\ 2 dPr1 (cos 9) fcos m<f\ 
M. t (kr) = 9mzl(kr) 1 ) M / )-(^zl(kr) l \ - . ^ almy ' smO V cosm4> J dO \smmcj)J 

(6 .12) 

AT7 , A J / , ^ / c o s m<j)\ - ... . dPJ71 (cos 9) f cos m(/)\ 
N J , J t r ) = r 1(1 + 1) -iL-tprioo.«) ( s i n m J + e r g ( t r J - S ^ - i J 

+ (6.13) 
1 sm9 \cosm0 J 

The index a = e or o, according to whether, respectively, the upper or lower function 

of cf) is used. The associated Legendre polynomials P{n(cos 9) are chosen with the 

Condon-Shortley phase choice. The superscript z — j if zt(kr) = jx(kr) and z = h 

if zt(kr) = h^\kr), corresponding to spherical Bessel functions regular at the origin 

and to outgoing spherical Hankel functions, respectively. The remaining radial func-

tions are r)f(x) = [x zl(x)]'/x, where the prime indicates differentiation with respect 

to x. 

Let us assume that a CW laser field E with frequency uj0, wavenumber k0 and 

wavelength AQ is incident on a nanosphere centered on the origin. If the surrounding 
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medium has refractive index n, then lu0 = k0c/n = 2ftc/(n\Q). Specifying that E cor-

responds to time-dependence, propagation is along the 2-axis and polarization 

is along the a;-axis, then [115] 

0 0 9/ + 1 
E(r) = Eoxe"*' = E0 g i ^ j j ^ y r) - i N ^ f o r)] . (6.14) 

Similar expansions hold for internal nanoparticle fields and scattered external fields, 

all of which must be matched at the particle surface. For the scattered field, this 

leads to 

0 0 2/ + 1 
E,(r) = E o ^ ^ j ^ - ^ M M ^ i k o v ) - i ^ N ^ r ) ] , (6.15) 

where az(cj0) and bt(u>0) are well-known Mie coefficients involving the permittivities 

of the nanosphere and the medium [118, 116, 117]. The expansions for other ini-

tial polarizations (e.g., along the y-axis) will also involve the other vector functions 

M*zi(fc0r) and N ^ r ) . 

If the nanoparticle is instead a metal nanoshell with a dielectric material core, 

the complete solution requires coefficient matching at both inner and outer surfaces 

using different expansions in each region. However, the expansion basis in the ex-

ternal region is the same as for a nanosphere, and only the explicit forms for the 

Mie coefficients al and bt differ [119]. For scattering with molecules external to the 

nanoparticle, it is only this external field that is needed. In everything that follows 

we use the more versatile nanoshell geometry with its tunable surface plasmons for 
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purposes of generality, and solid nanospheres are regarded as the special case where 

the dielectric core vanishes. 

In the Mie theory literature, the nanoparticle field contributions for I = 1, 2 ,3 , . . . 

are called dipole, quadrupole, octupole, . . . modes, respectively. These are not to be 

confused with the molecular multipole moments of the same names that are the focus 

here. Nevertheless, all nanoparticle-multipole terms, as well as all orders of retarda-

tion (i.e., effects due to the finite speed of light), are included in the calculations. 

The other expansions required in Eq. (6.7) are the magnetic field B and the outer 

product V E (a two-dimensional tensor). The B expansion is easily obtained by using 

i u 0 B = V x E and the curl equations [116], 

V x Mllm = k0 V x N*Jm = k0 Mllm . (6.16) 

For fields evaluated at the Raman frequency these same relations hold but with u> 

and k instead of ujq and k0. The V E expansion has also been implemented in spher-

ical coordinates, though these terms need to be grouped carefully so that apparent 

singularities at 6 = 0 or n cancel properly, and is converted to Cartesian coordinates 

as needed. 

The incident plane wave field E and the scattered field E s both co-exist outside 

the particle, as do their magnetic field and gradient field counterparts (not indicated). 

Focusing on the induced electric dipole of Eq. (6.7) in the electric dipole approxima-

tion, the magnitude of d is determined by E + E s at the position r' of the molecule. 

As a general measure of the transition intensity, independent of the specific choice of 
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polarizability tensor, the quantity |E + ES |2 / |E|2 is shown as a function of wavelength 

for a 40/50 nm (inner/outer radius) silver nanoshell in Fig. 6.4 for two different ini-

tial polarizations and for the molecule outside the outer shell surface. Also shown 

(nm) A.0 (nm) 

Figure 6.4: Enhancement factors for incident fields involved in absorption by a 40/50 
nm silver nanoshell. Here |E + ES |2/ |E|2 , |B + BS |2 / |B|2 , and |VE + VE S | 2 / |VE| 2 

are shown to each have their own enhancement curves as functions of wavelength and 
of initial polarization. The incident electric field E is along the x axis in a) and along 
the y axis in b). Fields are evaluated at the molecular position r' 1 nm outside the 
nanoshell along the y axis. 

are corresponding factors for magnetic dipole and electric quadrupole transitions, 

|B + BS | 2 / |B | 2 and |VE + VE S | 2 / |VE| 2 , where the latter square norm is a sum-

mation over the absolute-squares of the components of the gradient tensor. These 

represent generalized enhancement plots for the different pure-multipole absorption 

transitions. 

The broader long-wavelength resonance features in Fig. 6.4 correspond to I = 

1 (nanoparticle-dipole) contributions in Eqs. (6.14) and (6.15), while the narrower 

short-wavelength features correspond to I = 2 (nanoparticle-quadrupole). It is seen 

that these enhancements are generally greater for polarization in the direction of 
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the molecule (y polarization here), and that the molecular E2 enhancements are the 

strongest. The Ml enhancements are the smallest, though they can be comparable 

to the El enhancements in some cases. These conclusions continue to hold upon 

examining other geometries and polarizations. The dynamic variation of the local 

fields is sufficiently strong that the electric field gradient, and hence the E2 response 

tensor A, becomes a more significant contributor to scattering than in the absence of 

the nanoparticle [cf., Eq. (6.7)]. 

For the aG and aA terms, this examination is only half the story. There are 

similar cross-terms whether it is the absorption step or the emission step that is El, 

and we have so far only discussed the case corresponding to L I emission. Equa-

tions (6.8) and (6.9) are pertinent to establishing Ml and E2 radiating fields due 

to El absorption. Will the resulting cross-terms have similar enhancement curves 

in these separate cases? The direct way to answer this requires evaluation of these 

higher multipole fields, the task to which we turn next. 

6.4 Multipole Field Scattering 

6.4.1 Field Expansions from the Dyadic Green Tensor 

The classical EM fields observed at r due to molecular multipole moments at r' 

may be derived by using the dyadic electromagnetic Green tensor [109, 120, 121]. 

Solutions of the full scattering problem were detailed in Acevedo, et al. [84], The 

final forms are given here. 

Each of the primary molecular multipole fields produces a field scattered from 



the nanoparticle, so that the total fields at the Raman-shifted frequency are each a 

sum of primary and scattered contributions. To determine the scattered fields, one 

may match tangential electric and magnetic field components at the shell boundaries 

in Mie-type calculations. For determination of the radiation in the far zone, we are 

interested in the region r > r'. The total El electric field is 

same Mie coefficients as in Eq. (6.15) but evaluated at the Raman-shifted frequency uj. 

Of special note is the fact that they are not dependent on m. The free-space electric 

permittivity s 0 and magnetic permeability jli0 satisfy 1/c = The correspond-

ing quantities in a general material are taken to be ££0 and /x /J0, where the relative 

permittivity e and permeability /J satisfy ^/sjl = k C/uj = n, with k the wavenumber 

and n the index of refraction at the Raman-shifted frequency ui = kc/n = 2nc/(nX). 

The index of refraction is generally complex for absorbing materials. Only non-

magnetic materials (/n = 1) are considered below. 

= Miim(k r') • d + al(u) Mh
alm(k r') • d 

9ifm
t] = NJ

a lm(k r') • d + 6,(0,) Hh
aln(k r') • d (6.19) 

(6.18) 

where Dlm = ( 2 - S m 0 ) 21+1 (l-m)\ 
4/(/+l) (l+m)\ and the a^u) and coefficients are precisely the 



127 

Similarly, the total M l electric field is 

E. -
k3 cjj, O OO I 

7m E E E Dim r) flZ't] + Mh
alm(k r) g ^ (6.20) (Ml,t)' 

a=e 1=1 m=0 

f l 2 ' t ] = M i i J k r') • m + 6, (w) M^Jfc r') • m 

= KiJkr>) • m + at(u) Nh
alm(kv') • m 

(6 .21) 

(6 .22) 

and the total E2 electric field is 

E ^ V ) 
. , 3 o oo I 

^ - E E E A™ [MjIra(fc r) Z ™ + N* m(* r) ^ 0 cr=e ;=1 m=0 

fihn^ = V • Q • r') + a t(u)' ) V ' • Q • M^m(/cr') 

= V • Q • r') + 6 , V ' Q N* m(fc r') 

(6.23) 

(6.24) 

(6.25) 

The molecular multipole moments with r' as the origin are (p is the charge density) 

d = J sp(s)ds m = l j s x J ( s ) ^ s Qap = J ( 3 s a s p ~ s2Sap)p(s)ds (6.26) 

where the quadrupole tensor here is traceless and symmetric. 

The E2 contribution is the most difficult and depends on the parametrization 

chosen for the electric quadrupole tensor. We choose the five independent quantities 

defining this traceless tensor as Q± = (Qxx ± Qyy)/2, Qxy, Qxz, and Qyz. Then the 

operator V'-Q in the previous two equations is a row vector V'-Q = x [(Q++Q-)-£j + 

Qxy -£? + Qxz -§p\ + y [Qxy + ( Q + ~ Q - ) + Qyz g p ] +Z [Qxz faJ + Qyz §7] • 

The fields in Eqs. (6.17), (6.20) and (6.23) include radiating molecular multipole 
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fields plus scattered versions of these fields, depicted respectively, as c) and d) in 

Fig. 6.3. The pure radiating multipole fields E ^ r ) , E^M1\r), and E ^ ( r ) are 

special cases of these equations obtained by setting the Mie coefficients a^co) and 

bt(u) to zero. All corresponding magnetic fields can be obtained using the relations 

in Eq. (6.16). 

The first electric field is precisely as obtained by KWC [109] and includes contribu-

tions from general m, unlike the plane wave expansion. The significance of the above 

results is that the scattered version of each multipole field can be evaluated in terms 

of known vector functions (or operations thereon) and Mie-type coefficients a^u) and 

bt(u) that are precisely the same as those arising in the plane wave expansion except 

evaluated at a different frequency. There are no other unknowns. This result in the 

El case was discussed for spheres by KWC, but is seen to be more general. 

The full solution including the higher multipoles in the scattering is put in the 

form here, 

E ^ E r + s r + E ^ 

= T ( m ) • d + T ( M 1 ) • m + T M : Q , (6.27) 

involving the induced molecular moments d, m, and Q and tensors and 

T ^ ) whose explicit forms can be extracted directly from Eqs. (6.17)-(6.25). 

The induced molecular moments depend on the molecular hyperpolarizability ten-

sors (vide infra) and the incident-plus-scattered field quantities E4, B t and V E t (a 

2D tensor formed from outer products of ID vectors) at the position of the molecule 
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in the near zone. The three T tensors are of size 3x3, 3x3, and 3x3x3, respectively. 

Their elements contain the information on the solution of the scattering problems, in-

cluding complicated sums of products of vector spherical harmonics in the molecular 

position r' and the direction of observation r. They also depend on Mie scattering co-

efficients at the Raman-scattered frequency u (as would be calculated if the incident 

plane wave were at that frequency). This was detailed in Section 6.3. 

6.4.2 Sum Reduction by Analytic Evaluation of a and m Sums 

For some scattering geometries, e.g., input field propagation along the z-axis, 

polarization vector and molecule along the y-axis, and observation along the a:-axis, 

KWC point out that the El results of Eqs. (6.17)-(6.19) reduce to simple expressions. 

For more general geometries, especially for increasing kr or kr', convergence can be 

excruciatingly slow. 

Here a strong simplification in each of the T tensors is made. The nested summa-

tions involved can become computationally expensive for high accuracy, as remarked 

even in the SERS case by Kerker, et al. [109] There are three indices, I, m and a. The 

nanoparticle multipole index I (1 for dipole, 2 for quadrupole, etc.) relates to spherical 

Bessel functions jt{kr), outgoing Hankel functions /ij^(fcr), and their derivatives (k is 

the wavevector in the external medium). Both I and the azimuthal index m are used 

for the associated Legendre polynomials Pl
m(cos 9) and their derivatives, while a (val-

ues e or o) are related to the even and odd azimuthal trigonometric functions cos (m<j)) 

and sin(m<p). We have been able to perform all sums over m and a analytically. If 7 

is the angle between r and r', cos 7 = f • f' — cos# cosO' + sin# sin0' cos(<p — <fi'), we 
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can use the spherical harmonic addition theorem in the form [113], 

P,( cos 7) = - U ' T l p r ( c osd) Pr(cos9') cos[m(0 - <j>')] (6.28) 
u T rn J. 

m—0 v ' 

to express all the m and a summations in the T tensors in terms of low-order deriva-

tives of P^cos-f). 

For the El case, one ultimately ends up with a single I-sum of the form 

E ! H ) M = £ P,(coS7)] • d , (6.29) 

/pi) 
where R^ is a 3 x 3 tensor operator acting on P t(cos7). In spherical coordinates, 

A (El) 

the rows of R^ are labelled by r, 6, (f> and the columns by r', 6>', <//. The tensor is 

defined component-by-component in Table 6.1 utilizing the following definitions: 

Uta(kr') = ji(kr') + a,(w) h^\kr') ulb(kr') = j^kr') + b^u) h™(kr>) (6.30) 

^ia(kr') = vj(kr') + at(u) wlb(kr') = rf^kr') + bt(u) tf{kr') (6.31) 

= — x j t x ) rft{x) = ~ x h £ \ x ) • (6'32) 

Equation 6.29 thus provides an explicit form for T^ 1 ) 

T ( E 1 ) = ^ _ ^ 2 i + 2 t f t r P ( ( c o s 7 ) ] ( 6 3 3 ) 

that is efficient for general geometries with r > r'. 
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Table 6.1: Components of the R^f1^ tensor operator in spherical coordinates for r > r'. 

1(1 1 1) ^ ^ Ulb(kr') 
kr kr' 

hf\kr) 8 
kr W^kr)d9' 

h^(kr)wlb(kr') 8 
kr sin 9' d<t>' 

h,, x u.Jkr') 8 I 99 

h?\kr)ula(kr>) 8 8 
1(1 + I)s in0sin0 ' 8$ 8(f)' 

vHkr) wib(kr>) 9 9 

1(1 + 1) dd 89' 

h^(kr)ula(kr') 8 8 
1(1 + 1) sin0 d9'd(f> 

r)i(kr)wlb(kr') d d 
' 1(1 + 1) sin 9' 69 dcj)' 

hn \ uib(kr') 1 9 

Vl{ } kr' sin 9 d<f> 

hf\kr)ula(kr') 8 8 
1(1 + l )s in0 ' 89 8<p' 

vHkr) wib(kr') 9 9 

h\1}(kr) ula(kr') 8 8 
1(1 + 1) 89 89' 

vHkr) wib(kr') 9 9 

hn \ uib(kr') 1 9 

Vl{ } kr' sin 9 d<f> 

1(1 + 1) sin# dd'dcf) 1(1 + 1) sin 0 sin 8$8<f)' 

For the M l case, the reduced expression for the electric field is 

E « „ 1 ) ( r ) _ £ 2l + l ^ m p i i c o s l ) ] . m . (6.34) 

The tensor operator components for r > r' are listed in Table 6.2. Equation (6.34) 

provides a compact formula for the tensor analogously to the El case shown 

in Eq. (6.33). 

Table 6.2: Components of the R-jf^ tensor operator in spherical coordinates for 
r > r'. 

0 
h\1}(kr)ulb(kr') 8 

kr sin 9' 8(f)' 
h\1}(kr) n A 8 

kr U»{kr)89' 

hW(hr)
Ula(W) 1 9 

1 { } kr' sin 9 84> 

h^{kr)wla{kr') 8 8 h\^(kr) wla(kr') 8 8 
hW(hr)

Ula(W) 1 9 

1 { } kr' sin 9 84> 
1(1 + 1) sin 9 89'8(f) 

.W{kr)ulb(kr') 8 8 
1(1 + 1) sin 9' 89 8(f)' 

1(1 + 1) sin 9 sin 9' d^dfi 
Viikr)uib(kr>) 9 9 

1(1 + 1) 89 89' 

hW(kr)Ula{kr>) 9 
hl {kT) kr' 89 

rili (kr) ulb(kr') 9 9 

1(1 + 1) sin 9 sin 9' d<j>d4f 
hf\kr)wla(kr') 8 8 

h^(kr)wla(kr') 8 8 
l(l + l)sin9' 89 84)' 

Vi{kr)ulb(kr') 8 8 
hW(kr)Ula{kr>) 9 
hl {kT) kr' 89 

1(1 + 1) 89 89' 1(1 + 1) sine 89' 8(f) 
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For the E2 case, there are more components and more complexity. Nevertheless, 

from Eqs. (6.17)-(6.25), the total E2 field can be expressed as 

E r ' ( r ) = f 2 ± r • Q • («-35) 

(6.36) 

where the multiple transposes on the first line serve only to correctly contract V ' • Q 

with the indices of the primed variables. In the equivalent last line, the gradient with 

the left arrow acts to the left to avoid use of transposes. (Symmetry of the Q matrix 

is also used here.) This provides a compact form for the T ^ tensor using the El 

tensor and the gradient operator that we use in calculations. 

All field calculations here use these reduced-dimension expansions, which simplify 

computation sufficiently that coding can be executed in Mathematica. The magnetic 

field components may be obtained directly from the electric field components using 

Maxwell's curl equations. 

6.5 Polarizations in SEROA 

6.5.1 Polarization-Specific Intensity Formulas 

Intensity at the detector is evaluated using cycle-averaged components of the 

Poynting vector in the far zone [92], The influence of the near-zone scattering then 

remains in the Mie coefficients multiplying radial scattering functions in kr'. The 

transformation to the far zone is achieved by using the asymptotic forms of the radial 
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functions in kr [109]. For large observation distance r, we have that E r a d t, B r a d t, 

and the propagation vector (parallel to f ) are all at right angles and the intensity 

can be expressed in terms of E r a d i alone. E r a d t and B r a d t are both proportional to 

e l f c r/r, the Poynting vector is radial and |S| = |Eratj it|2n/2^0c, where n = 1.33 is the 

refractive index of water. Using the expressions for the induced molecular multipoles 

in terms of the total initial fields, the radiated intensity along direction A (to the first 

i 12 

couple orders in the multipole expansion) is proportional to |£ ,rad,t,A| > indexed by A 

assuming a value of x, y, or z. 

Substituting for the induced dipole moments in Eq. (6.27) by use of Eqs. (6.7)-

(6.9), we get the components of the total radiative field 

Emi,t,\ ~ E T S ] Et>" ~ i + 

H,v p w 

+ E (I ̂  Et,u) + E EJ) (6.37) 

in terms of the response tensors and the local fields oscillating at the initial frequency 

U)0. AS the molecule rotates, so do the response tensors. Averaging the square of 

Eq. (6.37) over orientations, dropping very small terms involving only products of 



134 

higher-multipole G or A tensor elements, 

£rad , t ,A E K r T i T T i f EU» K r <V> + 2 ^ £*r t> 
<r,r,fi,v 

i(El)* 
\,a 

x E {a" + 2 S Kr Kr 
+ 2 Im G^) - TIM;] ETTV (affiT G Q . (6.38) 

The far-from-resonance molecular response tensors a , G' and A are of types 

El/El, El/Ml, and E1/E2, respectively, as described in the book by Barron [111] 

and discussed earlier. We see that the intensity terms here, as for ROA, group into 

AA, AG, and olA terms, depending on the particular products of response tensor 

components. The angular brackets indicate averaging over rotational variables of the 

molecule, which proceeds in the same way for both ROA and the present version of 

The averages may be evaluated, as usual, by expressing response tensors in terms 

of the molecule-fixed frame quantities and direction cosine matrix elements, followed 

by integration over the Euler angles [111]. This expresses intensities in terms of the 

same ROA invariants appearing in regular ROA [111]. The rotational averages in 

SEROA. 
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Eq. (6.38) are all expressible in terms of the frame-invariant quantities [122] 

In the latter we employ the double contraction of the tensor A with the Levi-Civita 

antisymmetric tensor elements are +1 for indices in cyclic order, -1 for anticyclic 

order, 0 otherwise) [92], = T h e s e ROA invariants [123, 124, 

122, 124] in Eq. (6.41) are an extension of the far-from-resonance Placzek invariants 

used in ordinary Raman scattering [125]. All of the molecule-specific information is 

contained in these scalar quantities, which may be calculated in the molecular frame if 

electronic structure programs are used. The quantities that these rotational averages 

multiply in Eq. (6.38) are considerably different than in ROA, but it is still possible 

to express all the intensities for each polarization scheme in terms of these reduced 

constants. 

There are two principal differences between Eq. (6.38) and its ROA limit (no 

nanoparticle). The first is the use of the total local fields and gradients, Et, Bt, and 

V'E t , that depend on the incident frequency uQ and are evaluated at the molecular 

position r'. These have contributions from the scattering of the plane wave by the 

nanoparticle that do not all point in the same directions as their plane wave com-

ponents. The second is the make-up of the T tensors, which depend both on the 

= t E ' P2(G') = I E E - | E E Gvr (6-40) 
a a r o r 

a r 
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plasmonic nanoparticle and on details of the molecular scattering via multipole fields 

at frequency u. There are other slight differences since, even far-from-resonance, there 

are two distinct types of aG terms and two distinct types of a A terms in Eq. (6.38), 

corresponding to whether the the upward or downward transition is £1. These terms 

combine more gracefully in the far-from-resonance ROA formalism [92]. This limit 

can be verified by eliminating the nanoparticle, i.e., making all Mie scattering co-

efficients zero, but we have so far not obtained a simplification of the aG and aA 

cross-terms in Eq. (6.38) when the nanoparticle is present. 

Equation (6.38) can be modified for each of the different polarization schemes. 

Let us take right/left circular polarization vectors as (x =F iy)/y/2 for propagation 

along the positive 2 axis as usual. For ICP, Eq. (6.38) applies straightforwardly by 

using E = E0 (x + iy)/^/2 on incidence, calculating the scattering wave from the 

nanoparticle, then constructing the total local fields and gradients at the molecule 

position r'. For SCP SEROA, one uses linear incident polarization for these fields in 

Equation (6.38), but combines the A = x and y cases with complex coefficients. (For 

light propagating in the backscatter geometry, the R and L polarizations as measured 

by a common observer will switch from their definitions in the incident beam.) For 

DCP SEROA, these considerations must be combined. 

6.5.2 Selectivity in ICP and SCP 

Differential intensities will be dominated by aa contributions unless they are 

exactly zero. In ROA this is guaranteed by averaging over molecular rotations. In 

SEROA this must be carefully examined. If aa differences fail to vanish, they may 
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arise from either chiral or achiral molecules and SEROA measurements are not strictly 

int erpret able in terms of chirality in the molecular analyte. 

Insight can be gained by focusing on a single nanoparticle plasmon multipole and 

on just the aa intensity contributions important to total Raman scattering. Let us 

consider the frequency range for which the I — 1 (dipole plasmon) mode is the chief 

contributor to T^ 1 ) in Eq. (6.33). The radiative fields may be calculated according 

to Table 6.1 in terms of the molecular position r', 9', <fi' for backscatter observation 

along v —> oo, 9 = it, and 0 = 0. The molecular position also enters the aa intensity 

terms on the right-hand side of Eq. (6.38) through the total local field. If the incident 

plane wave is taken to propagate along positive 2 and to have its polarization vector 

in the x — y plane with values E0x and E0y, the I = 1 local field at the molecular 

position can be worked out to be (in spherical components) 

E, -1 2 
3 u T 

lb0- sin 9'E'0x, (i ula0 + wlb0 cos 9')E'0x, (wlb0 + i ula0 cos 9')E'0l k0r' 
(6.42) 

The u and w functions of r' are as defined in Eqs. (6.30) and (6.31), except that 

the subscript zero implies k —» kQ and aj ui0. The field quantities with primes 

are rotated versions of the incident field vectors E'0x = E0x cosft + iE0y simp' and 

E0y = ~E0x s i n + 1 E0y C O S <f>'• 

If we take 9' = 7r/2, for example, with E0x and E0y both real, it is found that the 



138 

rotationally-averaged aa contributions to the differential intensity are 

Vr - h)aa = - ED s i n ^ - cos 20'] (6.43) 

x <| - 2 p 2 ( a ) kJ/krlm(u*lbowlboulbw*lb) + lm(u*la0wlb0ulaw*lb) 

4 r 
+ ^ [ 9 a 2 - (32{a)] fc

 I m ( u * b o w i b o u i b w i b ) + Muia0<60MiXb) 

This has factored into r' and cf>' parts. Previously, we have investigated the cases 

E0x = 0 and E0y = 0, for which Eq. (6.43) has an overall factor of sin 2(f)'. These 

results also hold for other values of I and of 6'. This simple angular dependence is 

therefore the behavior in qY noted empirically before [84]. The new consideration is 

that cross-terms proportional to cos 2<p' will occur if both E0x ^ 0 and E0y ^ 0. Then 

these aa differential contributions will not vanish at (f)' = 7t/2, though they will still 

vanish on averaging over (j)'. 

6.5.3 Selectivity in D C P 

DCP is one situation in which both E0x ^ 0 and E0y / 0, but it is a special case 

since the amplitudes are of the same magnitude and precisely 90° out of phase. The 

analytical behavior of the aa terms was therefore examined again in this case. For 

I = 1 and 9' — 7r/2 once more, using R incident polarization, it was found that the 

leading intensity terms for R (upper sign) and L (lower sign) scattered polarizations 
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are 

+ (32(a) ( 32 

+ 4u 

kr' kQr' 
(6.44) 

ulb 2 1̂60 
kr' V 

ÎfeO , U1 b 
LA 7„ „ / + LAO fc0r' kr' 

+ 2 K a u i a o | + 2 | u » 1 6 M ) 1 6 0 

v0"' 160 
"160 -p + "la^lfcO =F MioO l̂fc 

This is completely independent of (j)'. Furthermore, when L incident light is used, one 

finds the same results, i.e., 

) aa {jL ) aa ' W) aa ( (6.45) 

This is important information. The DCPi in-phase difference then reduces to 

aA (6.46) 

while the DCPn strategy out-of-phase differences reduces to 

!r ~ {II IR)aG + (JL Ih) aA ' (6.47) 

both of which are free of any contamination from aa terms. 

This leads directly to the question of other values of 8'. It is straightforward to 

continue the analytical analysis using symbolic algebra, though the increased number 

of terms for general 6' is much too large to present here. The result is that the 
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quantities ( Ip ) a a , { I^aa i (4 ) aa i a n d (Ij^aa r e m a i n independent of azimuth, and 

Eqs. (6.45) are verified to hold for all polar and azimuthal molecular directions. They 

were furthermore verified analytically for I = 2, the quadrupole plasmon mode. Thus, 

any aa contributions to differential intensities, which can be due to either chiral or 

achiral molecules, appear to be completely avoided in backscatter DCP SEROA. 

One can similarly calculate aG and aA contributions through symbolic algebra, 

though the intermediate calculations are also too lengthy to include. In the final 

analysis, we find that backscatter DCP gives the specific results 

aA aA ' 

W?) aG aG ' 

M L , = -(iS), ' aA 

(6.48) 

(6.49) 

so that normalized CIDs for DCPi and DCPn simplify to 

^ _ Ir II _ {Ir)ocG + (^)QA _ (it)aG + (^t)aA Ĝ ^ 
Ir + ^L ( ^ ) o a (^L)qq 

A _ IL ~ I'it _ (^L)QG + ( ^ ) A I _ (Ir)oiG + (Ik)aA RI \ 
~ JR + JL- (JR) ~ ( TL\ 1L ' JR K^Llaa K1RJaa 

These relations hold for both ROA and our SEROA model. 

While DCP scattering has some advantages in ordinary ROA [126, 127, 128], 

they appear to be considerably more dramatic here. In particular, it is not neces-

sary to invoke additional ensemble averaging to eliminate possible interference from 

achiral molecules. One can consider the DCP investigation of small analyte concen-

trations without concern that scattering intensity differences are contaminated by 
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achiral molecules for some directions around the spherical nanoparticle. 

In an indirectly-related vein, the experiments by Kneipp, et al., [98] already used 

a backscatter DCPi SEROA arrangement for adenine adsorbed on isolated silver col-

loidal particles. While adenine is not chiral by itself, the authors suggest that the 

differential scattering observed arises from formation of a chiral complex with the 

surface. The significance of the circular intensity differences has been the subject of 

some debate [101, 93] that will probably take some time to resolve. Certainly the 

current results do not apply directly to the experiment by Kneipp, et al., since ad-

sorption is not considered here. They do, however, argue that it would be interesting 

to have more experimental investigations of DCP SEROA. 

6.6 Application to a Chiral Molecule Model 

We wish to obtain SEROA enhancement profiles throughout the visible/NIR spec-

trum incorporating both absorption and emission enhancements, similar to the SERS 

enhancement profiles calculated by KWC (their Fig. 2). Besides including higher 

multipoles, however, we also want to include wavelength dependence of the molecular 

response tensors and we want the latter to be the "derived" response tensors appropri-

ate for Raman transitions. For example, according to Placzek theory [92, 125, 129], 

the correct polarizability tensor to use for vibrational scattering between initial vl 

and final v* vibrational levels is (v^\ct\vl), where at may be Taylor-expanded about 
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the equilibrium molecular geometry to give 

(vf\akl\v*) = {akl)e + J2(daJdQ3)e {vf\QM) + ••• (6.52) 
j 

The first term corresponds to Rayleigh scattering while the next terms correspond in 

the harmonic approximation to the various Raman fundamental modes. Similarly the 

G' and A tensors can be Taylor-expanded [92] and their first derivatives calculated 

with respect to the normal coordinate Qj of interest. For a fundamental transition 

in mode j in the harmonic approximation, the quantum sum-over-states formulae for 

the derived response tensors are [111] 

Within the Born-Oppenheimer separation, both energies and transition matrix ele-

ments depend on the normal coordinates. 

Figure 6.5: Enantiomers of H2S2 



143 

While there is progress being made in the ab initio calculation of such quanti-

ties [114, 130, 131, 132], it is more useful for our current purposes to adopt the qual-

itative twisted-arc model, which has been applied by Trost and Hornberger [110] to 

hydrogen persulfide, H2S2 (Fig. 6.5) a small molecule forming enantiomeric pairs. The 

simple ID twisted-arc model considers a delocalized electron to move within a "box" 

formed from two planar arcs joined at the center of H2S2 and twisted with respect to 

each other by the dihedral angle x- Trost and Hornberger derive quantum mechanical 

wave functions and matrix elements exhibiting simple x dependences, allowing sum-

over-states evaluation of ROA tensors that can easily be differentiated with respect 

to x- Thus we can obtain derived ROA tensors depending both on the excitation fre-

quency (dynamical tensors) and on the particular vibrational coordinate that controls 

the chirality of the molecule. Ignoring coupling to other coordinates, x is approxi-

mately the torsional normal coordinate Q4 of H2S2, which has wavenumber [133] 

1/4 ~ 420 cm - 1 and a diagonal harmonic force constant [134] /44 ~ 0.092 aJ/rad2 . 

One can readily differentiate the parametric x dependence of the tensors from 

the twisted-arc model to obtain dotjdx, dG'/dx, and dA/dx appropriate to Raman 

excitation. This is done in the calculations, though we continue to use the ex., G', 

and A notation for simplicity in the text. Issues of reactivity are ignored as this is a 

spectroscopic model that will be augmented only by plasmonic enhancement effects. 

The first excited electronic state is in the UV region of the spectrum, so the Raman 

scattering we calculate is effectively far-from-resonance. 

As before, we consider 40/50 Ag and Au nanoshells with silica cores (40 nm 

inner radius, 50 nm outer radius). The dielectric functions for Ag and Au, widely 
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used in SERS, are obtained by frequency-interpolating the tabulation of Johnson and 

Christy [135], The dielectric constant for the silica core is taken as 2.04 and that for 

an aqueous surrounding medium as n2, where the index of refraction n = 1.33. 

The signal intensity obtained at the remote detector location (r,0,0), kr 1, is 

I 12 proportional to F(0, 0)| [109], where 

F(0, 0) = [r e~ikr Erad>t(r, 9, 0)] ̂  . (6.56) 

The latter is a superposition of contributions from the different multipole fields and 

is evaluated using known asymptotic forms for the spherical Bessel functions. One 

may calculate enhancements of radiated intensity in specific directions as done by 

KWC for E\-on\y emission, calculating F(0, 0) in both the presence and absence of 

the nanoparticle. This ratio can of course be singular in directions for which the 

unenhanced F(0, 0) vanishes, so we seek non-singular characteristic measures of the 

enhancements each type of radiation field can produce. 

We can label F in each polarization channel by the same subscripts and super-

scripts used above, e.g., F^. From Eqs. (6.50) and (6.51), one can express the CIDs 

directly in terms of these quantities. For the Ag nanoshell, 600 nm excitation, and 

the particular molecular position r' — 51 nm, 6' = <p' — 7r/2, each of the different 

I 12 

cases of F| is decomposed into aa, aG and aA contributions in Table 6.3. Each 

component is calculated to convergence using /max = 12 for calculation of incident 

wave scattering and lmax = 20 for calculation of molecular multipole field scattering. 

The result is independent of the choice of 0'. Equations (6.45), (6.48) and (6.49) are 
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Table 6.3: Intensity factors for 600 nm DCP backscattering with model H2S2 1 nm 
outside 40/50 Ag nanoshell with 9' = = 7T/2. Results are independent of <f>'. Each 
column sum is overall positive, though individual components need not be. Units 
are V2. 

to
 

|F£ 2 i m 2 |F£|2 

aa 4.72261994e-30 8.12869194e-30 8.12869194e-30 4.72261994e-30 
aG -3.44471119e-36 -2.24170169e-36 2.24170169e-36 3.44471119e-36 
aA -8.15333967e-36 2.37864046e-35 -2.37864046e-35 8.15333967e-36 

fully verified here, as can be seen from identical aa values (so differences vanish) and 

identical-but-opposite aG and aA values across the columns. 

If one replaces the Mie coefficients in Table 6.3 with zero, the ordinary ROA 

results will follow this same pattern except that the out-of-phase intensity factors 

IF?12 = |Fp|2 = |F? | 2 , = |Fd |2 „ = 0. In this limit, the far-from-resonance I L\aG I K\ aG I L\ a A I a A ' 

backscatter DCPn arrangement ROA signal vanishes, and ICP/SCP/DCPi ROA gain 

equivalence [136, 137]. The DCPn intensities actually only vanish exactly in this limit 

for Rayleigh scattering, though they are small for Raman scattering to the extent that 

( l o — uJq)/u) is small. With inclusion of the plasmonic effects of the nanoshell, DCPn 

becomes somewhat stronger and so we include comparison of both forms of DCP here. 

Figure 6.6 shows components and |Ff | 2
a for the Ag nanoshell as computed 

with the molecule positioned at three polar angles 9' = 0, TT/2, and 7r. The total DCPi 

and DCPn scattering intensities are proportional to these two factors, respectively, 

as can be seen from Eqs. (6.45), (6.48), and (6.49). One can observe the nanoshell 

dipole mode at longer wavelengths and the quadrupole and octupole modes at shorter 

wavelengths. It is immediately clear that the dipole surface plasmon mode dominates 

for the molecule near the equator, while quadrupole modes dominate for molecules 
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9=0 I aa 

I DCP, 

ft DCP„ 

JK V 

400 500 600 700 800 
X (nm) 

Figure 6.6: Calculation of the 40/50 Ag nanoshell DCP aa total scattering intensity 
factors and |F f | 2

Q as functions of excitation wavelength at three different 
polar angles of the molecule and 1 nm outside the shell radius. The nanoshell-dipole 
features are most pronounced for equatorial molecules, while nanoshell-quadrupole 
features are most pronounced in the polar regions. Units are V2. 

near the poles. The modes are well-separated energetically, and therefore the relative 

importance of different polar angles can change markedly with excitation energy. It is 

further observed that the DCPi Raman scattering is generally larger than the DCPn 

Raman scattering. This is consistent with the b vibrational symmetry of the torsional 

mode of H2S2 in C2 geometry and the depolarized character of Raman measurements 

for DCPi in backscatter geometries. 

Figure 6.7 shows the corresponding aG and aA contributions. Each of the frames 

has the same ranges to simplify comparisons. While not fully shown, the quadrupole 

contributions are once again strongly enhanced near the north and south poles. In 

contrast, the contributions in the nanoshell-dipole region are of similar magnitudes 



147 

400 500 600 700 800 400 500 600 700 800 400 500 600 700 800 
X (nm) X (nm) X (nm) 

Figure 6.7: DCP aG components and |Ff |2
G (column 1), aA components 

l^^laA a n d |Ff \2aA (column 2) and their sums (column 3) corresponding to the Ag 
nanoshell data of Fig. 6.6 at three different polar angles of the H2S2 molecule. The 
magnitudes in the dipole plasmon spectral regions are relatively insensitive to polar 
angle, as opposed to Fig. 6.6. Units are V2. 

for the different values of 9'. Similar to the situation shown for SCP before, each of 

the aa, aG, and aA terms have their own excitation/enhancement curves. This is 

certainly true for the rapid variations seen in the I = 2 and higher spectral regions to 

the short wavelength side, but is also evident in the I = 1 nanoshell dipole region. In 

fact, it is even clear that, while DCPi still exhibits stronger intensities as a general 

rule, the shapes of the DCPi and DCPn excitation curves show significant differences. 

In particular, DCPi shows a strong tendency to change sign. That is, a particular 

vibrational feature in off-resonant SEROA may apparently exhibit an abrupt sign 

change as a function of excitation, unlike the situation for ordinary off-resonant ROA. 

A further conclusion that mirrors the findings from the SCP investigation is that the 
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aA terms strongly dominate the aG terms. This is in opposition to ordinary ROA, 

where the latter tend to dominate [114] and is a reflection (in part) of the strong 

variations in local fields near the plasmonic nanoparticle. Here we are able to make 

this point quantitatively. 

0.001 

o 

-o.ooi 

o.ooi 
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-0.001 

o.ooi 
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-o.ooi 
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Figure 6.8: DCP CIDs Ai and A n of Eqs. (6.50) and (6.51) corresponding to the 
Ag nanoshell intensity components in Figures 6.6 and 6.7. The CIDs for ordinary 
DCPi and DCPn ROA are shown for comparison in each frame, though they are 
independent of 6'. 

Figure 6.8 shows the normalized CIDs corresponding to Eqs. (6.50) and (6.51). 

Larger CIDs are preferable experimentally. It is seen for 9' = 7t/2 that the CIDs are 

strongly suppressed in the nanoshell dipole portion of the excitation profile. Based 

on scaling laws, Janesko and Scuseria [100] give an extended discussion of the fact 

that SEROA with a dipolar substrate can decrease the normalized CIDs relative to 

ROA and that quadrupolar substates may very well be preferable. The spherical 
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substrates used here have both types of modes, which may be selected by excitation 

frequency. The dipole plasmon spectral region does indeed give a small CID for 

equatorial molecules, as seen in the middle frame of Figure 6.8. The reason is that the 

aG + aA numerators shown in the last column of Figure 6.7 are of similar magnitudes 

for different 9', while the aa denominator terms displayed in Figure 6.6 are strongly 

peaked equatorially. The other observation is that the DCPi CIDs for molecules at 

the north and south poles grow in magnitude significantly as we leave this region and 

head to longer wavelengths where the dipole enhancement tails off. The combined 

conclusion is that the dipole plasmon peak resonance is definitely not the preferred 

excitation energy to use. 

8e-30 
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Figure 6.9: Calculation of the 40/50 Au nanoshell DCP aa total scattering intensity 
factors \Fx\2

act and |Ff analogous to the Ag nanoshell calculations of Fig. 6.6. 

The aa contributions for the Au nanoshell are shown in Figure 6.9. The nanoshell 
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quadrupole contributions are smaller and closer to the nanoshell dipole region, as can 

be seen (with effort) for 9' = 0. Those for 9' = ix are not visible, whereas they 

were merely smaller for Ag in Figure 6.6. Once again the dipole contributions are 

significantly larger equatorially and DCPi signals are generally more intense than 

DCPn signals. 

Figure 6.10: DCP aG, a A, and aG + aA components for the Au nanoshell, analogous 
to the Ag nanoshell calculations of Fig. 6.7. 

Figure 6.10 shows that the aG terms are once again significantly smaller than 

aA terms. The latter are of similar magnitude for most values of 9', except for the 

larger DCPi response in the quadrupole plasmon region A < 600 nm for 9' ~ 0. 

Comparing Figs. 6.7 and 6.10, a common pattern emerges. Near the peak of the 

nanoshell-dipole scattering curve, the aG + aA cross-terms for DCPn are relatively 

small but roughly follow the shape of the aa curve (to within a sign). The DCPi 

cross-terms are generally much larger but go through a zero-crossing near the peak 
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of the aa dipole plasmon excitation curve. 
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Figure 6.11: DCP CIDs Ai and An for the Au nanoshell intensity components in 
Figs. 6.9 and 6.10, analogous to the Ag nanoshell calculations of Fig. 6.8. 

The normalized CIDs in the nanoshell-dipole region of Figure 6.11 also follow the 

same pattern as for Ag in Figure 6.8. They are noticeably suppressed for equatorial 

molecules where the aa peak is strong. For molecules at either the north or south 

pole, the DCPn CID is relatively flat for the dipole plasmon region, while the DCPi 

CID crosses through zero and continues to rise in magnitude for an extended region 

to longer wavelengths. 

The experimental importance of the normalized CIDs is that they largely remove 

effects due to, for example, variations in detector efficiency and laser intensity. Fur-

thermore, signal-to-noise ratios achieved in SEROA differential scattering will play a 

part in determining the smallest magnitudes of CIDs worth pursuing. Nevertheless, 
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surface plasmon enhancement has been shown here to complicate the interpretation 

of the CIDs compared to the benign situation for ROA. Each of the aa, aG, and 

aA contributions to the Raman scattering exhibit their own enhancement curves. 

The CIDs therefore depend on the details of the enhancement curves in both the nu-

merator and the denominator, and optimal dipole-peak enhancement in fact leads to 

sub-optimal CIDs. This is not the issue in the quadrupole plasmon excitation region, 

but there large swings of different terms and the resultant CIDs are exhibited. The 

undesirable consequence is that small changes in excitation frequency can easily lead 

to sign reversals for some vibrational features in SEROA (a problem also found for 

different binding geometries with adsorption by Janesko and Scuseria [138]). 

On balance, the most promising recommendation for experimental investigations 

appears to be use of the DCPi configuration somewhat to the longer-wavelength side 

of the nanoshell-dipole peak. There is presumably a balance to be achieved between 

decreasing overall signals and increasing CIDs in these regions. While there are no 

ROA or SEROA instruments reported capable of tuneable excitation, it is possible 

to instead prepare a series of nanoshells with systematically-shifted surface plasmon 

resonance peaks [139]. 

6.7 Summary 

A SEROA formalism for calculation of ROA enhancement in the case of (off-

resonant) chiral molecules moving near spherical metal nanoshells has been con-

structed and investigated in detail. In these circumstances only electromagnetic 
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enhancement (enhanced plasmonic density of states) needs to be considered. Mie 

theory and EM Green Tensor techniques have been extended to include molecular 

magnetic dipole and electric quadrupole fields, marrying the SERS scattering model 

of Kerker, et al. [109], with the ROA treatment by Barron and Buckingham [92], 

The molecule is assumed to be far from resonance with both the incident light and 

the surface plasmon absorption profile. Vector spherical harmonic expansions of inci-

dent and molecular multipole fields, as well as their enhancing counterparts scattered 

from the plasmonic nanoparticle, have been simplified by dimensional reduction of 

the summations involved. 

Our SEROA formalism was applied to a simple chiral-molecule model (of H2S2) 

providing "derived" molecular response tensors including excitation wavelength de-

pendence. This was used as a tool to investigate whether SEROA CID measurements 

in even a special case could be interpreted strictly in terms of El/Ml and E1/E2 

cross-terms in the Raman scattering intensities as is the case for ROA. 

A first backscatter SCP SEROA analysis with isolated silica-core Ag and Au 

nanoshells exhibited El/El (aa) contributions to the differential intensities that de-

pended on azimuthal position of the molecule around the nanoparticle. This was ver-

ified through analytical methods. It was determined for backscatter configurations 

that a combination of averaging over molecular rotations and molecular positions 

around the nanoshells ensures that aa contributions to SEROA vanish. Remaining 

nonzero contributions are strictly aG and aA, but even they vanish if the molecule 

is achiral (from rotational averaging alone). That is, a specific SEROA scenario 

has been theoretically confirmed to retain the chiral selectivity exhibited by normal 



154 

ROA. Corresponding SEROA excitation profiles were calculated and analyzed, show-

ing quantifiably greater prominence of aA contributions than in ROA. 

Other experimental polarization SEROA schemes were investigated within our 

formalism. Symbolic algebra was used to determine that DCP versions of far-from-

resonance backscatter SEROA are guaranteed to have vanishing aa differences re-

gardless of molecular position, thus eliminating the need to ensemble-average po-

sitions around the nanoparticle in order to achieve the chiral selectivity present in 

ordinary ROA. 

DCPi and DCPn backscatter SEROA intensities were then investigated numeri-

cally within the chiroptical model for H2S2 near Ag and Au nanoshells. Excitation 

profiles throughout the nanoshell dipole and quadrupole plasmon regions were calcu-

lated for the separate components, i.e., aa for total scattering, aG and aA for dif-

ferential scattering. The enhancement curves depend on polar angle of the molecule 

around the nanoshell, though not on azimuthal angle. The nanoparticle dipole plas-

mon aa peaks were shown to be dominated by molecules near the equator, though 

the aG and aG curves were not, resulting in CID ratios becoming strongly reduced 

for equatorial molecules and resonant dipole plasmon excitation. Of the two DCP 

spectroscopies, DCPi is generally the more intense except for zero-crossings near the 

dipole resonance. The initial suggestions we derive for chirally-selective CID mea-

surements are to use DCPn with excitation to the red side of the dipole resonance if 

tuneable excitation is possible, or to use metal nanoshells with the dipole resonance 

tuned to the blue side of the laser if not. 

It is encouraging to find theoretical evidence that there are SEROA configura-



tions for which chiral selectivity can be guaranteed, especially without invoking the 

positional averaging arising in the earlier SCP analysis. Rotational averaging alone 

appears sufficient in DCP SEROA for our simple scenario of a spherical substrate 

and far-from-resonance excitation. This is a far cry from trying to explain all possi-

ble SEROA experiments. For example, non-spherical particles will require numerical 

(e.g., FDTD, FEM, wavelet-based, etc.) methods to evaluate the local fields. For 

another example, the different possible chemical effect influences in cases of adsorp-

tion [106, 138] represent a particularly challenging direction of theoretical research. 

Nevertheless, there are already facets in non-adsorbed SEROA, where the enhance-

ment is safely regarded as dominantly electromagnetic in origin, that should be of 

broader interest. For instance, different excitation curves for different molecular mul-

tipole contributions will be presumably the rule under any circumstances. There are 

many questions going forward and a clear need for experiment and theory to work 

synergistically if SEROA is to become fully realized. 
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OMGC Scaling Wavelet Coefficients 

OMGC scaling function coefficients are presented in the following five tables. Each 

example includes a label, length L, approximation order M (or number of vanishing 

wavelet moments (ip\xp) = 0 for 0 < p < M), N the number of power-law moment 

conditions satisfied (m = m\ for 0 < p < N), and the ck (for 0 < k < L, sum-

normalized as ck = 2)-

Table A.l: OMGC scaling function coefficients for omgc6, omgc8a, omgc8b and 
omgclO. 

omgc6 -0.1267071922513235 omgc8b -0.0179972747154978 
L = 6 0.4250386358717650 L = 8 -0.0410910493243252 
M = 2 1.2004304844748366 M = 3 0.4404198422926519 
N = 4 0.5969388282286596 N = 5 1.1403828931699334 

-0.0737232922235132 0.6845155936627885 
-0.0219774641004247 -0.1461291842652923 

-0.1069381612399426 
omgc8a -0.0790557024471886 0.0468373404196841 
L = 8 0.2542062563350704 
M = 3 1.0646778132118806 omgclO 0.0314485265162963 
N = 5 0.8800045022739341 L = 10 -0.1060796177056843 

-0.0119633882645343 M = 3 -0.0325587040649865 
-0.1424026427354184 N = 6 0.8211683456199017 

0.0263412774998423 1.1002235346037514 
0.0081918841264139 0.3004567690524328 

-0.1060740267348034 
-0.0176090677989084 

0.0069606696797422 
0.0020635708322582 
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Table A.2: OMGC scaling function coefficients for omgcl2a, omgcl2b, omgcl4a and 
omgcl4b. 

omgcl2a 0.0180436433850061 omgcl4a -0.0090209975165807 
L = 12 -0.0613875795683868 L = 14 0.0349943676381062 
M = 4 -0.0505205917410534 M = 4 0.0007325013914531 
N = 7 0.6241186611593869 N = 8 -0.1892413775872553 

1.1475919052584931 0.2263966531021818 
0.5065051290105076 1.0585433907998221 

-0.1522037216393126 0.8774463152138786 
-0.0743289489636378 0.0979430516749883 

0.0397713411431901 -0.1069337413903037 
0.0058812277010004 -0.0038145186654976 

-0.0026825764063233 0.0123684945268530 
-0.0007884893388704 0.0018300928687717 

-0.0009892253274822 
omgcl2b 0.0016661083363313 -0.0002550067289354 
L = 12 0.0048271276547957 
M = 4 -0.0194971439489805 omgcl4b -0.0024596092289627 
N = 7 -0.0706084267301574 L = 14 0.0008340675388356 

0.2521812935470935 M = 4 0.0368625417704713 
0.9930851251098970 N = 8 -0.0600073818630544 
0.9443466180730492 -0.1387991605226137 
0.0505544891636166 0.4965973366325058 

-0.2178553581199926 1.1453587414933879 
0.0356574395428477 0.6377013958344731 
0.0391584821124991 -0.0604821523803781 

-0.0135157547409996 -0.0809460049764011 
0.0198276859717999 
0.0067289970809512 

-0.0003080471037046 
-0.0009084102473102 
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Table A.3: OMGC scaling function coefficients for omgcl6a, omgcl6b, omgcl6c and 
omgcl6d. 

omgcl6a -0.0049093731556696 omgcl6c -0.0006048508291197 
L = 16 0.0194494205362229 L = 16 -0.0002273688778362 
M = 5 0.0059856841705450 M = 5 0.0059901297104815 
N = 9 -0.1350982663245348 N = 9 0.0106515756805908 

0.1350207894001678 -0.0601688956253016 
0.9380425968517052 -0.0466027892168970 
1.0061838254719051 0.5215728854975018 
0.1934462308416475 1.1173293123411470 

-0.1775185758000848 0.6553275625555504 
-0.0150663907062538 -0.1336640919277970 

0.0395697990223420 -0.1443252240288719 
-0.0002225852191671 0.0681694822880671 
-0.0047074367117578 0.0226502311513585 
-0.0006457351196574 -0.0168315069287218 

0.0003752876025523 -0.0004418384315989 
0.0000947291400376 0.0011753866414472 

omgcl6b -0.0013870786672766 omgcl6d 0.0041203398947327 
L = 16 0.0004980198348624 L = 16 -0.0145011578842371 
M = 5 0.0227207905150119 M = 5 -0.0082407012577329 
N = 9 -0.0349408265924134 N = 9 0.0866403779890248 

-0.1140018378378629 -0.0449647972134521 
0.3554231401608733 -0.2502810698605614 
1.0791696994328714 0.3198195966829908 
0.8154972507041668 1.0775553285354580 

-0.0109161539669051 0.8030321487579269 
-0.1645804550635392 0.1101349149717154 

0.0327363640804665 -0.0830708114962218 
0.0306260624340690 -0.0113803060906263 

-0.0084596779967788 0.0100230124045640 
-0.0029072533633644 0.0020361477499290 

0.0001378944404735 -0.0007187877728078 
0.0003840618853456 -0.0002042354107023 
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Table A.4: OMGC scaling function coefficients for omgcl8a and omgcl8b. 
omgcl8a 0.0027617480482175 
L = 18 -0.0123388815593429 
M = 5 0.0030939750689916 
N = 10 0.0672866292339156 

-0.0917776397413749 
-0.1644205086528380 

0.5384046523784675 
1.1275055849772890 
0.6242289607917478 

-0.0283914494671951 
-0.0889311295522289 

0.0108090217966271 
0.0141261534305589 

-0.0002568651396724 
-0.0020652453028664 
-0.0002290129925151 

0.0001585248784869 
0.0000354818037315 

omgcl8b 0.0002504347240344 
L = 18 0.0003670032152987 
M = 5 -0.0044109962751403 
N = 10 -0.0027001112813621 

0.0383115887101317 
-0.0171555204082014 
-0.1680950778701714 

0.2308708082830127 
1.0266328245371521 
0.9109391173316176 
0.1054563146289063 

-0.1452803949135425 
0.0048121256907447 
0.0246486042865274 

-0.0024274719594167 
-0.0020509906439804 
-0.0005297421862410 

0.0003614841306300 
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Table A.5: OMGC scaling function coefficients for omgc20a, omgc20b, omgc20c and 
omgc20d. 

omgc20a 0.0014509175634548 omgc20c 0.0002203359787782 
L = 20 -0.0066557137626640 L = 20 -0.0003013812961665 
M = = 6 0.0005178406154773 M = = 6 -0.0017248655335432 
N = 11 0.0443946481798473 N = 11 -0.0005268426443553 

-0.0566577998996883 0.0169829483402868 
-0.1410395183746280 0.0014010656052483 

0.4244450815186285 -0.1083250392487882 
1.1015778746824811 0.0672786864482410 
0.7474513786419231 0.7899171827820997 

-0.0169206780169819 1.0829206344022115 
-0.1437364728884338 0.3621038527800952 

0.0245043526118266 -0.2122339071586538 
0.0309397254025597 -0.0648802512813744 

-0.0061664408531104 0.0776427996868298 
-0.0051266197644233 0.0045214481377770 

0.0002388868302134 -0.0182198826528193 
0.0007743644289805 0.0013519215107991 
0.0000793230617718 0.0021613091659094 

-0.0000584156184784 -0.0001675334661302 
-0.0000127343587559 -0.0001224815564450 

omgc20b 0.0001414660467921 omgc20d -0.0012952610283717 
L = 20 0.0002002186593607 L = 20 0.0053631665006403 
M = = 6 -0.0026643148427842 M = = 6 0.0013643232351729 
N = 11 -0.0016837877644878 N = 11 -0.0348463058856080 

0.0248656135909571 0.0290908797278427 
-0.0079073946587106 0.0998454593589672 
-0.1294073460375258 -0.1546637717806863 

0.1491855261981898 -0.1803360050348811 
0.9113980461340532 0.5896193143087433 
1.0166786841695044 1.1006048356472609 
0.2198425808768479 0.6048034550111961 

-0.2081355374723435 0.0081541298070290 
-0.0210553988024767 -0.0805129006892617 

0.0615900739471895 0.0006773581471509 
-0.0042694215666178 0.0131920094747653 
-0.0107983875846772 0.0007690847663866 

0.0009203608281837 -0.0017153463784864 
0.0010319920287042 -0.0002600520344494 
0.0002284137725706 0.0001172981190857 

-0.0001613875227294 0.0000283287275036 
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