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Abstract 

Bayesian Semiparametric and Flexible Models for 
Analyzing Biomedical Data 

by 

Luis G. Leon Novelo 

In this thesis I develop novel Bayesian inference approaches for some typical data 

analysis problems as they arise with biomedical data. The common theme is the use of 

flexible and semi-parametric Bayesian models and computation intensive simulation-

based implementations. In chapter 2, I propose a new approach for inference with 

multivariate ordinal data. The application concerns the assessment of toxicities in 

a phase III clinical trial. The method generalizes the ordinal probit model. It is 

based on flexible mixture models. In chapter 3, I develop a semi-parametric Bayesian 

approach for bio-panning phage display experiments. The nature of the model is a 

mixed effects model for repeated count measurements of peptides. I develop a non-

parametric Bayesian random effects distribution and show how it can be used for the 

desired inference about organ-specific binding. In chapter 4, I introduce a variation 

of the product partition model with a non-exchangeable prior structure. The model 

is applied to estimate the success rates in a phase II clinical of patients with sarcoma. 

Each patient presents one subtype of the disease and subtypes are grouped by good, 

intermediate and poor prognosis. The prior model respects the varying prognosis 

across disease subtypes. Two subtypes with equal prognoses are more likely a priori 

to have similar success rates than two subtypes with different prognoses. 
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Introduction 
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1.1 Bayesian Inference 

Throughout this thesis I use the Bayesian paradigm for statistical inference. Bayesian 

inference is characterized by a joint probability model on all unknown quantities, 

including observable data y and parameters 9. Classical inference in contrast uses 

only probability models for y indexed by 9. Under the Bayesian paradigm, all relevant 

information after seeing the data is contained in the posterior distribution p(9 | y). 

The main challenges are the construction of appropriate prior probability models p(9), 

and the often computationally intensive assessment of relevant summaries of the high 

dimensional posterior distribution p(9 | y). 

Over the last two decades a barrage of new methods commonly known as Markov 

Chain Monte Carlo (MCMC) have been proposed to deal with the latter problem. 

Most Bayesian inference can be represented as posterior expectation of appropriate 

functions of the parameters. The main idea of MCMC is to approximate posterior 

expectations by ergodic averages over Markov chain simulations that are set up to 

have p(9 | y) as asymptotic distribution. These developments are well summarized in, 

among many other references, Cappe and Robert (2002) and Lopes and Gamerman 

(2006) . 

1.2 Non-parametric Bayesian Inference 

The second big challenge concerns the choice of the prior probability model. Con-

ventional parametric priors are families of prior probability models p(9 | r/) indexed 

by a finite dimensional parameter r). Typical examples of these types of priors are 

normal models, Beta distributions, etc. In many applications this assumption of finite 

dimensions turns out to be too restrictive. A typical situation is the specification of 

random effects distributions. Assuming a parametric random effects model implies a 

very homogeneous population of experimental units (patients, peptides, etc). It does 

not properly reflect the population heterogeneity that is typical for many biomedical 
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problems. Patients come with a wide variety of treatment histories, different geno-

types, family histories, etc. Peptides are related to different biologic functions, have 

different interactions, etc. One approach to address this problem is the use of more 

flexible prior probability models. In particular, non-parametric Bayesian models have 

been used to generalize parametric models. A technical definition of a non-parametric 

Bayesian model p(rj) is a probability model that allows 77 to be infinite dimensional, 

like a random probability measure. Let N(x-, m, s) denote a normal kernel with mo-

ments (m,s). For example, 

is a mixture of normals indexed by the mixing measure G (and a scale s). Here G 

is a random probability measure. The model is completed with a hyperprior p(G) 

on G. Since the probability measure G is infinite dimensional, this is formally a 

non-parametric Bayesian model. Often also the resulting model for 6 is referred to 

as "non-parametric". Perhaps the most popular non-parametric Bayesian models are 

based on the Dirichlet process (DP) prior p(G) — DP(a,Go). The DP is defined in 

Ferguson (1973) and Antoniak (1974). Good recent reviews of such models appear in 

Quintana and Miiller (2004), and Walker, Damien, Laud and Smith (1999, JRSSB). 

The term non-parametric Bayesian inference could be considered a misnomer, since 

the defining property is the exact opposite, an infinite dimensional parameter space. 

But the terminology is traditional, and simply motivated by the fact that inference 

closely resembles traditional classical non-parametric inference, such as kernel density 

estimation. From a data analysis perspective, the infinite dimensional nature of the 

parameter space is not critical, and I refer to any similarly flexible probability model 

as non-parametric. In particular, inference based on mixture model generalization of 

underlying parametric models are usually considered "non-parametric" inference. 
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1.3 Overview 

In chapter 2, I consider modeling and inference for ordinal outcomes nested within 

categorical responses. I propose a mixture of normal distributions for latent vari-

ables associated with the ordinal data. This mixture model allows us to fix without 

loss of generality the cutpoint parameters that link the latent variable with the ob-

served ordinal outcome. Moreover, the mixture model is shown to be more flexible 

in estimating cell probabilities when compared to the traditional Bayesian ordinal 

probit regression model with random cutpoint parameters. I extend the model to 

account for possible dependence among the outcomes in different categories. I apply 

the model to a randomized phase III study to compare treatments on the basis of 

toxicities recorded by type of toxicity and grade within type. The data include the 

different (categorical) toxicity types exhibited in each patient. Each type of toxicity 

has an (ordinal) grade associated to it. The dependence among the different types 

of toxicity exhibited by the same patient is modeled by introducing patient-specific 

random effects. 

In chapter 3, I discuss inference for a human phage display experiment with three 

stages. The data are tripeptide counts by tissue and stage. The primary aim of the 

experiment is to identify ligands that bind with high affinity to a given tissue. I for-

malize the research question as inference about the monotonicity of mean counts over 

stages. The inference goal is then to identify a list of peptide-tissue pairs with signif-

icant increase over stages. I develop a semi-parametric model as a mixture of Poisson 

distributions with a Dirichlet process prior on the mixing measure. The posterior 

distribution under this model allows the desired inference about the monotonicity of 

mean counts. However, the desired inference summary as a list peptide-tissue pairs 

with significant increase involves a massive multiplicity problem. I consider two al-

ternative approaches to address this multiplicity issue. First I propose an approach 

based on the control of the posterior expected false discovery rate. I notice that the 

implied solution ignores the relative size of the increase. This motivates a second 
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approach based on a utility function that includes explicit weights for the size of the 

increase. 

In chapter 4, I introduce a non-parametric Bayesian model for phase II clinical 

trial with patients presenting different subtypes of the disease under study. The 

subtypes are not a priori exchangeable. The lack of a priori exchangeability hinders 

the straightforward use of traditional hierarchical models to implement borrowing of 

strength across disease subtypes. We introduce instead a random partition model for 

the set of disease subtypes. All subtypes within the same cluster share a common 

success probability. The random partition model is a variation of the product partition 

model that allows us to model a non-exchangeable prior structure. This model is the 

categorical covariate version of the more general non exchangeable product partition 

model proposed in Mller et al. (2009). In particular the data arises from a phase 

II clinical trial of patients with sarcoma, a rare type of cancer affecting connective 

or supportive tissues and soft tissue (e.g., cartilage and fat). Each patient presents 

one subtype of the disease and subtypes are grouped by good, intermediate and 

poor prognosis. The prior model should respect the varying prognosis across disease 

subtypes. Two subtypes with equal prognosis should be more likely a priori to co-

cluster than any two subtypes with different prognosis. The practical motivation for 

the proposed approach is that the number of accrued patients within each disease 

subtype is too small to asses the success rates with the desired precision if we were 

to analyze the data for each subtype separately. It would be practically impossible 

to carry out a clinical study of possible new therapies. Like a hierarchical model, the 

proposed clustering approach considers all observations, across all disease subtypes, 

to estimate individual success rates. But in contrast with the standard hierarchical 

models, the model considers disease subtypes a priori non-exchangeable. This implies 

that when assessing the success rate for a particular type our model borrows more 

information from the outcome of the patients sharing same prognosis than from the 

others. 
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1.4 Contributions of this Thesis 

The main contributions in this thesis to existing methods are the following. The 

ordinal data model greatly generalizes conventional ordinal probit models. It builds 

on earlier work by Zhou (2005), who used a construction with nested categorical and 

ordinal models. The new approach proposed in this thesis is more parsimonious. For 

the specific application the critical advantage is the use of patients as experimental 

units (rather than adverse events). This enables us to correctly model dependence 

across adverse events relate to the same patient. 

The semi-parametric model for the biopanning phage data is the first non-parametric 

approach for such data in the literature. Besides the actual model, another specific 

methodological innovations is the use of decision theoretic rules to identify organ 

specific peptide binding. 

The non-exchangeable probability partition model for the phase II clinical trial is 

the first application of the categorical covariate version of these models in these kind 

of studies in the literature. I explore the characteristics of this model and compare 

it, via simulation, with models that would be naturally used to model this data. 



Chapter 2 

Assessing Toxicities in a Clinical 

Trial: Bayesian Inference for 

Multivariate Ordinal Data 

2.1 Overview 

We address modeling and inference for data that include ordinal outcomes nested 

within categories. The data format can alternatively be seen as multivariate ordinal 

data with each dimension of the multivariate outcome corresponding to one level of a 

categorical variable. The motivating application is to model adverse event (toxicity) 

data in clinical trials. Toxicity type and severity are usually recorded as categorical 

and ordinal outcome, respectively. In a randomized phase III study, in addition to the 

efficacy of the study agent, investigators and regulators are also interested in learning 

about the toxicity profile of the study agent. Traditionally, simple descriptive statis-

tics such as cross-tabulations have been provided. However, this purely descriptive 

approach fails to offer an in-depth understanding of how the treatment affects both 

the toxicity type and the severity associated with a specific type of toxicity. 

The multinomial probit (MNP) model (Aitchison and Bennett, 1970) and the 

7 
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multinomial logit model are popular model choices for implementing regression for 

categorical outcomes. However, the computational burden associated with imple-

menting full posterior inference hinders the routine application of these models in 

applied work. In recent years, there have been some advances using classical and 

Bayesian approaches. In particular, the method of simulated moments by McFad-

den (1989), and Gibbs sampling with data augmentation as discussed in Albert and 

Chib (1993) and McCulloch and Rossi (1994), have made the required computations 

in the multinomial probit model more practical. 

For inference with ordinal data, many authors have proposed methods in a clas-

sical (McCullagh, 1980) and Bayesian (Albert and Chib, 1993; Doss, 1994; Cowles, 

1996) framework. A natural way to model ordinal data is to introduce an underlying 

continuous latent variable. The ordinal outcome is linked with the latent variable 

through a set of cutpoints. The probability of an ordinal outcome is represented by 

the probability that this latent continuous variable falls within a given interval de-

fined by the cutpoints. The ordinal probit model is characterized by the assumption 

that this latent variable follows a normal distribution. 

Albert and Chib (1993) proposed Bayesian inference for the ordinal probit re-

gression parameters. The model includes a diffuse prior on the cutpoint parameters. 

Cowles (1996) proposed improved posterior simulation with a hybrid Gibbs/Metropolis-

Hastings sampling scheme which updates the cutpoint parameters jointly with the 

other parameters. This approach reduces the high auto-correlation and achieves prac-

tical convergence within a reasonable number of iterations of the MCMC simulation. 

We propose a mixture model which can model ordinal data without the need to 

estimate cutpoint parameters. We show that in the proposed mixture model, the 

cutpoints can be fixed without loss of generality. While standard ordinal models 

assume that the regression lines which characterize the ordinal outcomes are parallel 

(thus leading to the proportional odds assumption when using a logistic link), our 

model is flexible in the sense that it is able to fit data when this parallel regressions 
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assumption is violated. This is especially attractive when modeling multiple ordinal 

variables. We avoid the need to check that each variable meets the parallel regressions 

assumption. A similar model with a mixture of normals distribution for the latent 

probit score is introduced in Kottas et al. (2005). They use a non parametric mixture. 

Our model differs by using a finite mixture, introducing a regression on covariates and 

using patient-specific random effects. Besides these innovations, the most important 

contribution of this work is the application to inference for adverse event rates. 

This chapter builds on earlier work by Zhou (2005), who used a construction with 

nested categorical and ordinal models. The rest of the chapter is organized as follows. 

In Section 2.2 we briefly describe the clinical trials that a drug has to pass successfully 

in order to reach the market. In this section we also present the model by Albert 

and Chib (1993) for the Bayesian analysis of binary data and its extension to ordinal 

data. In Section 2.3, we introduce a phase III clinical trial. In Section 2.4, we present 

a joint multinomial and ordinal probit model to estimate the cell probabilities of 

multiple categorical outcomes with different ordinal levels nested in each categorical 

outcome. The prior specifications and posterior inference are discussed in Section 2.5. 

We illustrate properties of the model by applying the model to a simulated dataset 

and data from a phase III clinical trial. The results are presented in Section 2.6. A 

summary and discussion of possible extensions are presented in Section 2.7. 

2.2 Background 

In this section, we present the bio-medical and statistical background of the work 

presented in this chapter. First, we explain what a clinical trials is. Later, we briefly 

introduce the models proposed by Albert and Chib (1993) for the Bayesian analysis 

of binary and ordinal data. Both models exploit the idea of data augmentation by 

introducing a latent variable. The same idea is used in the statistical model we 

propose in this chapter. 
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2.2.1 Clinical Trials 

Clinical trials are medical studies statistically designed to assess the safety and efficacy 

of a new treatment -drug, device, psychological therapy, etc- for and with humans. 

From now on, we will focus on clinical trials testing new drugs and use the word 

drug and treatment interchangeably. Clinical trials are also performed in order to 

"extend the label" of an already marketed drug, that is, to prove more benefits to 

its consumers or to expand the range of diseases for which the drug has a positive 

effect. A clinical trial is the last step of a long chain in the development of a new 

treatment; potential drugs have to be discovered, purified, characterized, and tested 

in labs before proceeding with a clinical trial. 

Clinical trials involve human beings as experimental units and, thereby, a number 

of ethical considerations must be taken into account. Among other controls, at each 

participating institution an Institutional Review Board must approve and supervise 

these studies. In order to include a patient in the study, the researcher must get 

informed consent from the patient, that is, the participants must be aware of the 

risks involved in the trial. Besides, the participant has the right to withdraw from 

the trial at any moment. The eligibility of patients must be restricted. For example, 

pregnant women or patients with better medical options than the tested treatment 

are usually not allowed to enroll. 

Clinical trials for drugs are classified according to their specific objective in four 

different kinds: phases I, II, III and IV. A new drug must successfully pass the first 

three phase trials before reaching the market. Phase IV trials are post-marketing 

studies. Next we briefly describe the different types of clinical trials. 

Phase I trials have the objective of finding the acceptable or safe dosage of the new 

drug. A small number of, generally healthy, patients (20 to 50) are enrolled and 

followed very closed. The participants do not expect any health benefit. The 

study involves escalation of the doses before an intolerable level of toxicity is 

identified. 
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Phase II trials have the purpose of showing the efficacy of the new drug. The benefits 

of the drug are compared against a control - either patients under placebo or 

under best standard of care. The study may include patients treated at control. 

But many phase II trials include no such control group, and the comparison is 

only implicit by setting the standards for the judgment. These studies recruit 

between 20 and 300 patients who, in contrast with phase I clinical trials, can 

expect health benefits. A statistical compaxison between the group of patients 

receiving the new drug and the control is performed. Often the development of 

a new drug fails for lack of evidence of beneficial effects in phase II. If the drug 

is still promising, its safety and efficacy are tested again in a trial involving a 

large number of patients in a subsequent phase III study. 

Phase III trials study definitively asses the safety and efficacy of the drug. They in-

volve a large number of participants (between 300 and 3,000 or more depending 

on the disease). As phase II clinical trials, they involve a comparison between a 

group under the new drug and a control group. Phase III trials usually involve 

randomization to treatment versus control. 

Phase IV trials are also known as "post marketing surveillance trials". Their ob-

jective is to expand the label of the drug. That is, to prove additional benefits 

to its consumers or to expand the range of diseases for which the drug has a 

positive effect. Moreover, phase IV trials give information about long term side 

effects not detected, due to its duration, in the phase III clinical trial. They 

also may be useful to analyze possible interactions with other drugs. 

Phase II and III clinical trials compare the results between the treatment and 

control groups. In order to establish causal conclusions between the new drug and 

the results observed in the patients a random assignment of each patient to either a 

treatment or a control group is important. This randomization has ethical implica-

tions related to the decision of stopping a trial. To stop a trial a balance between 
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individual and collective interests (Pocock, 1992; Palmer and Rosenberger, 1999) is 

necessary. The individual interest suggests to put the patient on what the physician 

considers the "best treatment" available. If we only followed this goal, then many 

trials would not proceed. The collective interest requires to treat some individuals 

not under this "best treatment." This is done in order to gather data to prove that 

there is a superior treatment. The disagreement among physicians about the "best 

treatment" makes randomization ethical (Freedman, 1987). The objective of clinical 

trials is to create consensus about the best treatment among physicians. Finally, it 

is worth to mention that adaptive random allocation designs for phase II and III 

clinical trials are being considered. The idea of these designs is that the probability 

of assigning a patient to a group changes each time the information is updated and 

increases the probability of a new patient entering the study to be assigned to what 

at that point of the study is thought to be the "best treatment". 

2.2.2 Binary Data Model 

Suppose that we have a vector of binary outcomes z = (z\,..., zn) with Zi 6 {0,1}. 

Assume that each observation is associated with a vector of measurements (covariates) 

Xi of dimension p. We are interested in estimating the probability of observing the 

response k for a future observation with covariate vector X f , k = 0 or 1. 

A common approach to this problem is the use of generalized linear models. In 

particular, the probit and the logit models. They assume that Zi \ ir* are independent 

and Bernoulli^,) distributed. The value of 7T; is related to the covariate xt by means 

of a known link function ip~l mapping the interval (0,1) into the real line. The 

variable x^ is linearly related with ip~1(that is i/j~:(7ri) = xJ/3 where 0 is a p-

dimensional unknown parameter vector. Commonly ip is chosen to be a cdf. When 

tp is the normal cdf we have a probit model and when it is a logistic cdf we are 

working with a logistic model. An important property of the probit model is that 

we can choose prior distributions for (3 that makes posterior inference tractable. See 
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discussion below. The logistic model allows a nice interpretation of the parameters. 

Posterior simulation in the described model is rather complicated. To facilitate 

posterior simulation, Albert and Chib (1993) propose an equivalent augmented model. 

They introduce a vector of continuous latent random variables v = (vi,..., vn), define 

the binary response as Zi = 1 (i>i > 0) and assume a linear relationship between and 

the vector x^ that is: 

Zi = x\(3 + Si for i = 1 , . . . , n. 

The distribution of the random errors el plays an important role in their model. In 

particular when the errors are standard normal (logistic) distributed we are working 

with a probit (logistic) model. The variance is set to 1 for identifiability reasons. In 

the augmented probit model, the joint pdf of the data and the parameters is given 

by: 

n 

p(P, v,z) oc p(J3) x n ^ t e > 0)1 te = 1) + l t e < 0)1 (zi = 0)} x N(Vi \ x\P, 1), 
i=l 

where N(y \ m, s) denotes the normal cdf with mean m and variance s. This implies 

the complete conditional posterior distribution 

n 

p(P | v,z) a p(p) x J ] N(Vi | xlp, 1). (2.1) 
i=1 

And p(vi | z, P) is a truncated (at zero) normal distribution. It is truncated from the 

right when Zi — 0 and truncated from the left when Zi = 1. The expression (2.1) is 

the posterior distribution of P when considering the Bayesian linear regression model 

Zi = x\P + €i with €i ~ A^(0,1). Denote by Np(m,'E) the p-dimensional normal 

distribution with mean vector m and covariance matrix Considering a prior for 

P, p(P) — Np(m/3, E^), yields the posterior distribution p(P \ z) = Np(mi, Si) where 

Si = (E^1 + XtX)~1 and m\ — E ^ E ^ m / j + XlZ), where X is the design matrix 

with i—th row equal to x.t. A Gibbs sampler defined by iterative draws from the two 

conditional posterior distributions above is used to generate a Monte Carlo posterior 
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sample of /?: 01,... ,(3M. These values lead to Monte Carlo estimation of it for a 

future observation: 
M 

Pr[zf = l | x / , z ] « 
m=l 

where $ denotes the standard normal cdf. 

2.2.3 Multiresponse Categorical Data Model 

Albert and Chib (1993) generalized the model given above to consider ordinal re-

sponses Zi € {0 , . . . , K — 1} with K > 2. The response Zi is equal to k if the latent 

variable Zi falls in the random interval [6 k, &k+l), where 0 = ..., Ok-i) is an im-

puted latent random vector of cutpoints, Oq — —oo and Ok — oo. For identifiability 

reasons, 0\ is fixed to 0. See Figure 2.1 for a graphical representation in an example. 

The joint distribution of the parameters and the data is: 

n 

p(P, V,Z,0) OC p(M) X I[W« ~Vi< x N(Vi I 1)1 

1=1 

The complete conditional posterior distribution for /3 is exactly the same as in the 

binary data model given above; p(vi | z, fi) is a truncated normal distribution taking 

values in the interval [QZi,QZi+i)- Assume a noninformative prior for Ok, p(0k) oc 1. 

The complete conditional distribution of Ok is uniform in the interval [maxj{vj : Zi — 

k}, min,{wj : zt = k + 1}). 

Straightforward implementation of the Gibbs sampling scheme using these com-

plete conditional distributions yields a poorly mixing Markov chain. The cutpoints 

and the latent variables move too slowly. Cowles (1996) algorithm accelerates con-

vergence by replacing alternate sampling from p(6 \ z,v,/3) and p(v | z, /3 ,6), by 

instead sampling from the joint distribution of the latent variables and the cutpoints 

conditional in the data and the rest of the parameters, 

p(v, 6M M oc p(v I z,/?, 0) x p(0 I z,/3). 
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Figure 2.1: Distribution of the latent random variable Vi ~ N{x\(3,1) according to Albert 

and Chib's model considering four categories, K = 3. The cutpoints 62 and 6*3 are random. 

The observed value Zi is indicator of the interval where v% falls. 
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In other words , the modification of the algorithm consists on sampling from p(9 | z, (3) 

instead of from p(9 | z,v,/3). A Metropolis-Hasting algorithm (see, Cowles, 1996; 

Johnson and Albert 1999, p. 135) is used to simulate from the former distribution. 

Once a posterior sample ( ,S1 ,^1) , . . . , (/3M ,0M) from p(/3,0 | z) is obtained the 

Monte Carlo estimate of cell probability irk = Pr[zf = k} for a future observation 

with covariate Xf is 

1 M 

^ ~ M = E { ^ ( ^ P ™ - - ®-\xT
sr - 9%)} for k = 0 , . . . , K - 1. 

TO= 1 

Finally, we note that Albert and Chib's model for more than two categories re-

quires the "parallel regression assumption," the probit version of the proportional 

odds assumption of the logistic model. That is, 

Pr[z <k\x] =Pr[xt(3 + e < 9k+1} 

=Pr[e < 9k+1 - x'P] = $(0fc+1 - x'fl) 

and, therefore, 

fk(x) := $-\Pr[z <k\x}) = 9k+l - xlp. 

In other words, the assumption is that the functions fk for k — 0 , . . . , K — 1 are 

parallel lines. 

2.3 A Phase III Clinical Trial 

Studies have suggested that retinoid chemoprevention may help control second pri-

mary tumors, disease recurrence, and mortality for stage I non-small-cell lung cancer 

(NSCLC) patients. A National Cancer Institute (NCI) intergroup phase III trial of 

1166 patients with pathologic stage I NSCLC was conducted to validate the efficacy 

of isotretinoin, a retinoid hypothesized to have chemopreventive properties. Patients 

were randomly assigned to receive either placebo or isotretinoin (30 mg/day) for 3 

years in a double-blinded study. Patients were stratified at randomization by tumor 
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stage, histology, and smoking status. A total of 589 patients received isotretinoin 

while the remaining patients received placebo. 

One of the objectives of the phase III study is to assess the treatment effect 

on different types of toxicity and the grade associated with each of them. In this 

chapter we focus on inference related to this objective only. The treatment-related 

toxicities include: cheilitis, conjunctivitis, arthralgia, hypertriglyceridemia, headache, 

and abnormal vision. Cheilitis is dryness, usually associated with an uncomfortable 

sensation of the lips with scaling and cracking and accompanied by a characteristic 

burning sensation. Conjunctivitis is one of the most common nontraumatic eye com-

plaints, involving the inflammation of conjunctiva. Arthralgia is pain in the joints. 

Hypertriglyceridemia is an excess of triglycerides in the blood. With the exception of 

hypertriglyceridemia, toxicity was graded by use of the Common Toxicity Criteria, a 

toxicity scale used by the NCI for Adverse Events. Triglyceride toxicity was graded 

as follows: grade 1 toxicity was defined as more than 2.5 times but less than or equal 

to five times the normal level; grade 2 toxicity was defined as more than five times but 

less than or equal to 10 times the normal level; and grade 3 toxicity was defined as 

more than 10 times the normal triglyceride level or if a patient experienced complica-

tions (e.g., pancreatitis) at any grade of triglyceride toxicity. If patients experienced 

multiple incidents of the same toxicity, only one incident at the highest grade was 

counted. When multiple different toxicities are reported for the same patient, the 

corresponding observed toxicity levels are expected to correlate. We will introduce 

the desired correlation with patient-specific random effects in the model. Reported 

toxicity rates are per patient, i.e., toxicity rates are probabilities that a patient re-

ports a certain type of toxicity and grade. A summary of the data is shown in Table 

2.1. 
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2.4 A Hierarchical Model for Ordinal Data Nested 

within Categories 

For each recorded adverse event, the data report one variable. This variable is an 

ordinal outcome, Zij, which reports the grade at which the jth categorical outcome was 

observed on the ith individual, % £ {1 , . . . , n} and j € {1 , . . . , J}, where, respectively, 

n and J denote the total number of patients and the total number of different toxicity 

types recorded in the study. The variable ztj takes values k = 0,1 ,...,Kj. The 

observation z^ — k indicates that the ith patient exhibited the toxicity of type j 

at grade k. The additional grade k = 0 is used to indicate that toxicity j was not 

recorded for patient i. 

Let X be a (n x H) matrix of possible regressors, with the ith row, x{, recording 

H covariates for the ith patient, i = 1 , . . . , n. For inference on a dose effect one could 

use xn — 0 when the drug is not present, x a = 1 for the lowest dose of the drug, 

xn = 2 for the second lowest dose and so on. In our specific example, we have a 

dichotomous covariate. We use Xn — 1 when patient i is treated with isotretinoin, 

and Xn — — 1 for placebo. Considering just the treatment effect we have H = 1 and 

the ith row of the covariate matrix, X, is just In general, the covariates could be 

occasion-specific and indexed by patient i and toxicity j. We only use patient-specific 

covariates in the application and proceed therefore for simplicity with patient-specific 

covariates only. 

We set up an ordinal probit regression for on covariates x t. The cell probability 

Pr(zi j = k) is represented as the probability that a continuous latent variable v^ falls 

into the interval (8kj, 9k+i,j)- A patient specific random effect r-i induces correlation 

across all toxicity observations for the same patient. Multiple cutpoints are required 

for the K j ordinal outcomes: 

z^ — k if 9kj < Vij < 9k+i,j for k = 0 , 1 , . . . , Ky 

Vij = Xj Pj + Vi + 

(2.2) 

(2.3) 
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where, 
G 

n ~ N(0, a2
r), & ~ £ p j 9 J V ( / % , (2.4) 

3=1 
and 

{Pji,Pj2, • • •,PjG) ~ Dirichlet(ajUOLj2, •.. , a j G ) , j = 1 , . . . , J. (2.5) 

Here, (5j parameterize the ordinal probit model for . Notice that /3j does not 

include an intercept parameter. An intercept is already implicitly included in fijg. 

Consider the implied model for each Vij after marginalizing with respect to r,> The 

marginal distribution for each Vij, j — 1 , . . . , J , is a mixture of normal distributions 

sharing the scale parameter (.^/of 4- cr|), with distinct location parameters (xJPj + 

fijg), fixed number of components (G) and weights (pjg). It can be shown that without 

loss of generality we can fix the cutpoints 03k when working with the mixture of normal 

model in (2.4) instead of a single normal. See also the discussion below. While we 

assume that G is fixed, for j = 1 , . . . , J , in (2.4), using different Gj for each toxicity 

is possible without additional complications. 

The mixture model can alternatively be written as a hierarchical model by intro-

ducing a latent indicator variable Wij. Specifically, conditional on Wij = g. 03 and 

rj, the latent variable ify follows a normal distribution: v.l3 | w^ = g, 0j, /iJ9 ~ 

N(xJPj + Ti + fijg, cr|). The prior probability for wi3 = g is Pr(wij = g) = Pjg. Let 

<£(•) denote the standard normal cdf. Marginalizing with respect to both r\ and the 

latent variable we have: 

6k j - x f P j - n j g \ 

y f ^ A J 
(2.6) 

Pr{wij = g) = pjg. (2.7) 

For each category j the probability of a response at level k is 
G 

7Tjk EE Pr(Zij = k) = Pr(zij = k I wij = d)Pjg (2-8) 
9=1 

Pr(zij = k I Wij = g,Pj,/u,jg) = $ h+l ,j — x f P j — (J-jg 
2 4- er2 r ' 
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For reasons of identifiability we fix the variance of the normal kernels in (2.4). We 

recommend CT| = 1 and of = 4. See the argument below. 

For later reference we state the joint probability model. Let z = (zi:) : i = 

1 , . . . , n, j — 1,... ,J) denote the data. Let denote the prior distribution for ftr 

Assume that /jLjg for j = 1,... ,J and g = 1 , . . . , G are a priori independent, that for 

each j , given the imputed hyperparameter <f>j, / i , i , . . . , f i jc is a random sample from 

fti{-\4>j) a n d that </>i,..., <pj ~ ft/,. Let (3= (Pi,... ,Pj) denote all probit regression 

coefficients, and similarly for fx, r, v, w and <fi. Let N(x\m, s) indicate a normal pdf 

with mean m and variance s evaluated at x. The joint distribution of z and all the 

model parameters is 

p(z,v,r, /3,/x,w,<£) = 

n i u n U < % < nr=i n i l \ x j p 3 + r i + H w i j , a \ ) 

x n ; = 1 {n%pTWl3=9}nU^r1} n u [ m a u U i m * i 

(2.9) 

To show that the cutpoints 9jk in (2.2) can be fixed, consider the following 

simplified version of the right side in (2.4). Let v ~ X ^ L i P g N ( n g , o 2 ) and define 

7rfc = Pr(z = k) = Pr(0k < v < 9k+i), k = 0 , 1 , . . . , k. We show by a constructive 

argument that an appropriate choice of (G, p9,ng,g — 1 , . . . ,G) can approximate an 

arbitrary set of desired cell probabilities (7TQ , 7r*,..., n*K). In particular, the parallel 

regression assumptions of the probit model is not required. A similar argument was 

used in Kottas et al. (2005) for infinite Dirichlet process mixtures of normal distribu-

tions. Consider a mixture of normal distributions with G > K components. Place one 

component of the mixture into each interval [9k, 9k+i) by choosing fj,k = r2(0k + 9k+1), 

and set pk = 7r£. Specify a such that 1 — e of the probabilities of each kernel is be-

tween the adjacent cutpoints. This trivially achieves — 7r£| < e for k = 0 , 1 , . . . , K. 

Therefore, the cutpoints 9jk in (2.2) can be fixed without loss of generality. 

We recommend as a default choice of cutpoint parameters 9k: 90 — —oo, 9k+I = 
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oo, . . . , 9^} — {0, ±4, ±8 , . . . } . For reasons of identifiability, we suggest fixing 

£7 = 1. This choice implicitly restricts cell probabilities 7T2,..., ttk-i to be at most 

0.95. The first and last cell probabilities, 7Ti and ttk, are unrestricted. This is impor-

tant in the context of the later application to adverse event rates, when the first level 

of the ordinal outcome corresponds to no toxicity, which is often greater than 0.95. If 

larger cell probabilities are desired for intermediate outcomes, the widths between 9k 

and 9k+i can be increased or decreased accordingly. Figure 2.2 illustrates the model 

for one toxicity with three possible outcomes, i.e., Zij £ {0,1,2} and K3 = 2. The 

figure shows how the proposed model with G = 2 fits the cell probabilities The 

figure shows the mixture of normal distribution of the latent random variable, vn, 

under two values of the covariate x^ = —1,1. In both mixtures, the darkly shaded, 

lightly shaded and white areas correspond to the probability of the ordinal outcome 

taking the values 0, 1 and 2, respectively. Notice that this particular set of cell 

probabilities does not satisfy the parallel regression assumption. Therefore, these 

probabilities cannot be represented by a model with a unimodal distributed latent 

random variable and random cutpoints. Finally, we fix of at of = 4, implying non-

negligible prior probability for random effects r t to be in a range that covers several 

cutpoints 9k-

2.5 Priors, Posterior and Simulation Scheme 

We use conjugate priors for the probit regression parameters, centering the prior to 

represent the prior judgment about the marginal prevalence of the outcomes and the 

effects of the covariates. We use 

fpj (Pj) = > ap) • (2-10) 

As default choice for G, the size of the mixture model in (2.4), we suggest G = K — l. 

Our recommendation is based on empirical evidence. On one hand, small values 

of G create faster mixing Markov chains, but may not be sufficient to fit the data. 



22 

Figure 2.2: Illustration of the distribution of the latent variable Vn in the model 

described in (2.2)-(2.4) when the covariate takes values —1 and 1. Here we consider: 

J = 1 type of toxicity, no patient-specific random effect r\, 0 = 2 components in the 

mixture of normals and three, K = 2, possible ordinal outcomes. In both mixtures, 

the darkly shaded, lightly shaded and white areas correspond to the probabilities 7Tik 

of the ordinal outcome taking the values 0, 1 and 2, respectively. 

On the other, large values of G may overparameterize the model leading to poorly 

mixing Markov chains. Alternatively, using reversible jump MCMC (Green, 1995), 

G could be included in the parameter vector and estimated as part of the inference. 

But since the parameters of interest are the cell probabilities 7r^, and inference on 

mixture-specific parameters is not of interest we prefer the approach with fixed large 

values of G. Formally implied inference on the parameters of the mixture model, 

including fijg and pjg, should not be interpreted. Problems related to label switching 

(arbitrary permutation of the terms in the mixture) and node duplication (replicating 
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essentially identical terms) make the posterior distribution on /ujg and pjg meaningless 

to interpret. 

We assume that toy takes on discrete values 1,2, ...,G with prior probability 

P j i , . . . ,PjG, respectively. For the location parameter (p jg) in the components of 

the mixture of normal model (2.4), we use independent normal priors = 

N{<f>j, erf,) with a conjugate hyperprior /0j(<j>) = iV(0,o-£). 

Keeping in mind the default suggestion for the cutpoints 9k we recommend apL ~ 

1 / J Y L j K j , i.e., half the span from the first to last cutpoint, averaging across all 

toxicities. 

An investigator might be interested in assessing how different dose levels affect 

toxicity grade. Our model may be used in this context. For a cytotoxic agent, it 

is usually assumed that a higher dose incurs worse toxicity. The parameter j3j, the 

dose effect on the toxicity grade, may be restricted to be positive when there are only 

two dose levels and the lower dose group is the reference group. When there are M 

dose groups, (3j becomes an (M-l)-dimensional vector. In this case one could enforce 

monotonicity of toxicity with increasing dose by introducing an order constraint on (3j 

as follows: assuming that the lowest dose is the reference group and the highest dose 

group is group M, monotonicity can be represented as (3(m-i)j > P(M-2)j > ... > P\r 

This assumption guarantees a priori that a higher dose incurs worse toxicity. 

All full conditional posterior distributions are derived from the joint probability 

model (2.9). Since we adopt conjugate priors for all parameters, all full conditional 

posterior distributions have tractable closed forms, allowing straightforward imple-

mentation of Markov Chain Monte Carlo (MCMC) posterior simulation using a Gibbs 

sampler. We start with initial values for the latent variables v and w. The values for 

v need to comply with (2.2). One iteration of the Gibbs sampler is described by the 

following transition probabilities: 

(a) For each j — 1 , . . . ,J, we first marginalize with respect to 4>j (recall that <j>j is 

the prior mean for fijg). Then, sample ((3j, f i j i , . . . , fj,jg) from the joint complete 
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conditional posterior distribution. That is, from the posterior distribution for 

the linear regression: 

G 
Vij -Ti = xfPj + ^T 1 (Wij = g)njg + eh for i = 1 , . . . , n, 

3=1 

with response y* = — ri. The residuals are . . . cn ^ ./V(0, and the prior 

is the multivariate normal distribution resulting from the product of (2.10) 

and the prior distribution of (pj\,..., /j.jg) when marginalizing with respect to 

<t). The latter is a multivariate normal distribution of dimension G with mean 

zero and covariance matrix CT̂ /G + IGIG0^) where Ig is the identity matrix of 

dimension G and IG is the column vector of length G with all entries equal to 

1. 

(b) For each i — 1 , . . . , n, we sample rt from the complete conditional posterior dis-

tribution, or, equivalently, from the posterior distribution for a linear regression 

with response y** = % - (xfPj + tM,Wij), 

y**=ri + ej, for j = 1 , . . . , J, 

with e x , . . . ej ~ yV(0, cr|) and prior r; ~ N(0, cr2). 

(c) We update p j with a random walk Metropolis-Hasting transition probability. We 

generate P ~ N(Pj,c2) where c > 0 and compute the posterior distribution of 

Pj (marginalizing with respect to w): 

p(pj i r, p> z) « f0j {p^ nr=i (^y+1-J ~ri~ Es=i PjgVjg) 

~ (dtiiJ - U - Ep=i PjgVjg) 

where (x) represents the normal cdf with mean /i and variance <r2 evaluated 

at x. Let A = p(P | / i , r , p , z ) / p ( P j | p ,z) . With probability min{l,^4} we 

replace Pj by $. 
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(d) The latent indicator variables Wij in equation (2.7) are sampled from the complete 

conditional posterior distribution (marginalized with respect to Zij): 

Pr(wij = g | Pi,ruiijg,pja) o c - ~ n) 

-^^(Oz^j-xJPj-n)]. 

(e) For each j , we update (p j i , . . . ,Pjc) from 

f(pj i,.. .,pjtG \wij,..., wnj) = Dirichlet(a'jl,..., a'jG), 

with a'jg = (Xjg + #{ i : = 5}. 

(f) The latent variables tfy are updated by draws from the truncated normal distri-

bution 

/(% I Pj,ri,Wij = g, fijg, z^ = k) oc N(vi:j \ xjPj+n+^g, crf)/(0fej < ztj < 6k+ij)-

Finally, for each toxicity type and grade, we evaluate the posterior probability of 

toxicity for a future patient. For each type of toxicity, using the equations (2.6) and 

(2.8), the posterior probability 7ijk = Pr(zfj — k|z), / = n + 1, that a future patient 

with covariate vector x/ exhibits the toxicity j at level k is estimated from the Gibbs 

sampler outputs. Let rjm denote the imputed value of the generic parameter rj after 

m iterations of the Gibbs sampler. We report 

f j f c = £f=i Pr(zSi = k I w f j = 5. z ) P r ( w f j =9 I z) 
M G f / ek+1,3-xJ0T-^\ (gkj-xr0T^T\\ 

J ^ JjPjg, 

where M is the total number of MCMC iterations retained after an initial burn-in. 

2.6 Applications 

2.6.1 A Simulated Dataset 

We use a simulated dataset to validate the model. A total of n = 1000 subjects were 

assigned into two groups, A and B, of equal size. For each subject i, there were four 
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(J = 4) ordinal outcomes labeled Zj = (zn,..., zi4) with four (K = 3) possible values, 

i.e., Zij 6 {0,1,2,3}. The observations Zi were generated according to the model 

defined by (2.2)-(2.4) but with Ti generated from a mixture of normal distributions, 

n ~ 0.75 N(0,1) + 0.25 iV (4,1). In (2.2) we fixed the values of the cutpoints, 9jk, 

as (9ok, • • • > 4̂fc) — (—oo, —3,1,2, oo) for all j. We deliberately chose cutpoints 

different from the default cutpoints that are used in the analysis model. In (2.3) we 

set Xi — — 1 for group A and = 1 for group B. The slope parameters in the probit 

regression were set to (Pi,..., Pi) — (0,0.5,1,1.5) r . In (2.4) we set the variance 

ir| = 1, the number of components in the normal mixture G = 3, the normal means 

(jUji,/Uj2, A^) = (—5,0,3) and the mixture weights ( P j i , P j 2 , P j 3 ) = (0.9,0.05,0.05) for 

all j . The true cell probabilities are reported in Table 2.2. 

We fit model (2.2)-(2.5) with priors for the parameters as described in Section 4. 

More specifically, we assume that the probit parameters in (2.3), Pj, follow the normal 

distribution specified in (2.10) with rripj = 0 and ap = 1. In (2.4) we assume G = 2, 

and weights distributed according to (2.5) with <%ji = a j 2 = 1 for all j . The normal 

means are assigned conjugate priors, ~ N((f),a2 = 16) and 4> ~ N(0,a^ = 104). 

We use the default choices cr| = 1, of = 4 and CT2 = 16. The values of the cutpoints 

in (2.2), 9jk, were set to (9 j 0 , . . . , 9j±) = (—oo, —4,0,4, oo) for all j . 

We simulated a total of 110,000 iterations of the posterior MCMC scheme. Af-

ter an initial burn-in of 10,000 iteration, the imputed parameters were saved after 

each 10th iteration, yielding to a posterior Monte Carlo sample size of 10,000. The 

marginal posterior probabilities for each combination of toxicity type and grade were 

estimated and compared with the true cell probabilities in Table 2.2. The model 

reports reasonable estimates of the cell probabilities; in 26 out of 32 cells the true cell 

probability is within the reported 95% central credible interval. 

For comparison we also implemented an ordinal probit regression with random 

cutpoints, but a (single) normal distribution for the latent probit scores (Albert and 

Chib, 1993). For a fair comparison we included patient-specific random effects as 
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in the proposed model. Thus the alternative model is (2.2)-(2.5) with G = 1 and 

random cutpoints 62 through dKj (61 = 0 is fixed). We used the posterior MCMC 

implementation of Cowles (1996). We summarized the marginal posterior distribu-

tions for the cell probabilities as in Table 2.2 (not shown). We find that for only 10 

out of the 32 cell probabilities the central 95% posterior credible intervals contain the 

simulation truth. To assess the efficiency of the posterior MCMC for the proposed 

model versus the ordinal probit regression we recorded serial autocorrelations of the 

Markov chain simulations. We find comparable values (not shown). In summary, 

we conclude that the proposed model and the conventional ordinal probit regression 

lead to comparable results with slightly more flexibility of the proposed model. We 

caution against over-interpreting the comparison. The simulated data set is relatively 

large with n = 1000, and the reported comparison is based on only one simulated 

data set. 

Finally we investigated robustness of posterior inference with respect to choices 

of the prior hyperparameters. To explore prior sensitivity we considered several al-

ternative choices. Shifting the values of all a ] g to either 1/3 or 3 did not change 

inference appreciably. Similarly, using a non informative prior, p(/3) oc 1, for the re-

gression parameter did not substantially affect the inference. Overall, we found that 

the posterior estimates are quite robust with respect to prior specification. 

2.6.2 A Phase III Clinical Trial of Retinoid Isotretinoin 

We applied the proposed model for inference in the phase III clinical trial introduced 

in Section 2. As in the simulation study, we chose N(0,1) priors for the ordinal probit 

parameters. The size of the mixture was fixed at G = 2 with equal a priori weights 

by setting Ojg = 1. A vague hyperprior centered at 0 with the variance of a^ = 104 

was imposed on <j>. The cutpoints were chosen following the default choices. The 

variances were set to the default choices cr| = 1, of = 4 and CT2 = 16. 

Saving every 10th iteration after a 10,000 iteration burn-in, a Monte Carlo poste-
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rior sample of size 10,000 was saved to estimate cell probabilities. Table 2.3 displays 

the estimated cell probabilities together with central 95% credible intervals. Note the 

near zero probabilities for some of the higher toxicity grades. The proposed model 

is appropriate to handle sparse tables. The estimates formally confirm and quantify 

what is expected from inspection of the data. There were more incidences of cheilitis 

and conjunctivitis observed in the isotretinoin group than in the placebo group. Ele-

vated triglyceride levels were found more frequently in the isotretinoin group than in 

the placebo group. In contrast, more patients experienced headache in the placebo 

group. Posterior inference confirms that adverse event rates under treatment and 

placebo differ significantly. Figure 2.3 summarizes posterior inference for the probit 

regression parameters. It is 99% certain that the treatment (isotretinoin) had an 

undesired (i.e., Pj > 0) effect on cheilitis, conjunctivitis and hyper-triglyceride. 

The posterior distribution allows us to report coherent probabilities for any event 

of interest. In particular, we can report inference on joint and conditional probabilities 

of adverse events across different toxicities. For example, Table 4 reports conditional 

probabilities for each adverse event (at any grade) given an adverse event in another 

toxicity for the same patient. For comparison the table also reports the marginal 

probabilities (in the diagonal). The considerable variation of probabilities in each 

row confirms that the toxicities exhibited by the same patient are not independent. 

The inclusion of subject specific random effects r* was critical in fitting this data. For 

example, the first row reports that the probability that a patient exhibits abnormal 

vision is low marginally, but considerably increased when the patient has experienced 

fatigue or headache. 

Figure 2.4 shows the estimated distribution for the underlying latent variable, 

Vij, in equation (2.3) conditioned on r t = 0. Let Pj = E(Pj | z), pjg = E(pjg | z) 

and jljg = E(/j,jg | z). The figure shows xJPj + ^2gPjgN(p , jg , 1), for x = —1,1 and 

j = 1... ,1. 
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Abnormal 
vision 

Arthralgia 

Cheilitis 

Conjunc-
tivitis 

Fatigue 

Headache 

Hyper-
triglyceride 

Figure 2.3: Boxplots of the simulated posterior samples of the ordinal probit model 

parameters (/Vs)- Boxes corresponding to samples of (3/s with 0.01-quantile greater 

that zero are shaded. 
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Abnormal vision Arthralgia 

Cheilitis Conjunctivitis 

Fatigue Headache 

Hyper-triglyceride 

Figure 2.4: Estimated mixture of normal distribution of the latent variable % con-

ditioned on Ti — 0 for j = 1 , . . . , 7. Shaded curve corresponds to placebo (x = — 1) 

and dashed to isotretinoin (x = 1). Darkly and lightly shaded areas represent, re-

spectively, the probability of no toxicity (7^0) and toxicity at grade 1 (7^) under 

placebo. 

2.7 Discussion 

We have proposed a Bayesian hierarchical model to analyze ordinal data nested within 

categories. Our model characterizes the ordinal/categorical data structure by a varia-

tion of the ordinal probit model. We provide posterior summaries to assess treatment 

effects. In the phase III clinical trial example, traditional analysis might simply group 

the toxicities levels into two: no toxicity (0) and some toxicity (1+2+3+4), and then, 

apply a Chi-squared test or Fisher's exact test to compare the two treatment groups 
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for a particular toxicity type instead. The proposed approach provides alternative 

model-based posterior inference. In accordance with the natural structure of the 

data, our model treats toxicity grade as an ordinal data. The proposed model ac-

counts for the (high) dependence across different toxicities within the same patient. 

The proposed model allows for extensions to more complicated designs by appropri-

ate changes in the linear model (2.3). For example, one could accommodate repeated 

observations of adverse events by replacing the latent variable v^ in (2.3) by i;,;^ for 

the hth repeated observation of type of toxicity j for patient i, and defining a new set 

of random effects Rij. 

This model also has interesting applications in other areas such as health out-

comes research and clinical trial design. For example, some studies have shown that 

even when treatments are known to be effective, many patients who could benefit 

from them are not getting these treatments. Beta blocker medication, given after 

heart attacks, can reduce mortality; blood-thinning medication can prevent stroke; 

and thrombolytic therapy given immediately after a heart attack can reduce the dam-

age from the attack. The outcome instrument has focused on assessing the overall 

level of functioning after receiving the treatment conditional on patients' prognostic 

characteristics. The overall level of functioning is a quantified variable on an ordinal 

scale. Therefore, by assessing the ordinal outcomes within each category, health out-

come researchers will be able to identify and address the barriers to better care and, 

eventually, translate these findings into practical strategies to improve care. 

One critical issue is the choice of the size of the mixture in modeling ordinal 

outcomes. We suggested as a rule of thumb to set the size of mixture, G, equal to 

the number ordinal levels minus two (K — 1). Alternatively, one could treat G as an 

unknown parameter and use reversible jump MCMC. 

In summary, we have introduced an approach for flexible, model-based inference 

for the adverse events reported in a Phase III clinical trial. The model includes 

dependence across adverse events for the same patient. The computational effort of 



implementation is comparable to a traditional ordinal probit regression. 
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Table 2.1: Toxicity frequency for randomized eligible patients by study arms. In the 

placebo (Isotretinoin) group, 171 (427) out of 577 (589) patients exhibited some type 

of toxicity. In bold the proportion of patients in the study arm belonging to the cell. 

Placebo 

Toxic effect No Tox G1 G2 G3 G4 

Abnormal vision 565(0.979) 9(0.016) 0(0) 2(0.003) 1(0.002) 

Arthralgia 548(0.95) 19(0.033) 10(0.017) 0(0) -

Cheilitis 493(0.854) 76(0.132) 8(0.014) 0(0) -

Conjunctivitis 530(0.919) 43(0.075) 3(0.005) 1(0.002) -

Fatigue 558(0.967) 12(0.021) 5(0.009) 2(0.003) -

Headache 554(0.96) 16(0.028) 3(0.005) 4(0.007) -

Hyper-triglyceride 551(0.955) 22(0.038) 4(0.007) 0(0) -

Isotretinoin 

Abnormal vision 579(0.983) 8(0.014) 1(0.002) 1(0.002) 0(0) 

Arthralgia 544(0.924) 30(0.051) 10(0.017) 5(0.008) -

Cheilitis 212(0.36) 245(0.416) 122(0.207) 10(0.017) -

Conjunctivitis 449(0.762) 98(0.166) 31(0.053) 11(0.019) -

Fatigue 572(0.971) 14(0.024) 3(0.005) 0(0) -

Headache 580(0.985) 9(0.015) 0(0) 0(0) -

Hyper-triglyceride 514(0.873) 64(0.109) 10(0.017) 1(0.002) -
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Table 2.2: Simulated data set, marginal posterior cell probabilities with central 95% 

credible intervals. In bold are the true cell probabilities. 

Group A 

Ordinal 

level 0 1 2 3 

T1 0.619(0.64) 0.299(0.274) 0.023(0.027) 0.059(0.059) 

(0.576, 0.658) (0.264, 0.337) (0.017, 0.031) (0.045, 0.074) 

T2 0.65(0.683) 0.272(0.246) 0.028(0.021) 0.05(0.05) 

(0.609, 0.689) (0.237, 0.309) (0.02, 0.036) (0.037, 0.064) 

T3 0.662(0.72) 0.253(0.22) 0.029(0.017) 0.056(0.042) 

(0.62, 0.703) (0.216, 0.29) (0.019, 0.041) (0.042, 0.072) 

T4 0.736(0.757) 0.183(0.193) 0.036(0.016) 0.045(0.034) 

(0.697, 0.774) (0.15, 0.218) (0.024, 0.049) (0.032, 0.061) 

Group B 

T1 0.646(0.64) 0.274(0.274) 0.022(0.027) 0.057(0.059) 

(0.604, 0.685) (0.239, 0.311) (0.016, 0.03) (0.044, 0.073) 

T2 0.581(0.586) 0.335(0.306) 0.03(0.036) 0.054(0.071) 

(0.538, 0.623) (0.297, 0.372) (0.023, 0.038) (0.041, 0.069) 

T3 0.52(0.517) 0.379(0.348) 0.036(0.049) 0.065(0.086) 

(0.475, 0.564) (0.341, 0.417) (0.027, 0.045) (0.05, 0.082) 

T4 0.405(0.432) 0.469(0.4) 0.056(0.061) 0.069(0.107) 

(0.361, 0.45) (0.434, 0.502) (0.045, 0.069) (0.055, 0.086) 
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Table 2.3: Marginal posterior cell probabilities (central 95% credible intervals) of 

toxicity. The table only reports grades up to k — 3. The marginal probabilities for 

grade G4 abnormal vision are 0 (with 95% C.I. (0,0.002)) under placebo, and 0.001 

(with 95% C.I., (0,0.002)) under isotretinoin. 

Toxic effect No Tox G1 G2 G3 

Placebo 

Abn. vision 0.974 (0.962, 0.985) 0.02 (0.011, 0.033) 0.002 (0.001, 0.005) 0.003 (0.001, 0.006) 

Arthralgia 0.937 (0.918, 0.954) 0.042 (0.029, 0.057) 0.019 (0.013, 0.026) 0.002 (0.001, 0.005) 

Cheilitis 0.808 (0.774, 0.84) 0.172 (0.145, 0.201) 0.02 (0.012, 0.03) 0 (0, 0) 

Conjunctivitis 0.896 (0.872, 0.918) 0.077 (0.063, 0.093) 0.025 (0.015, 0.036) 0.001 (0, 0.002) 

Fatigue 0.967 (0.952, 0.978) 0.024 (0.015, 0.035) 0.009 (0.005, 0.015) 0.001 (0, 0.001) 

Headache 0.962 (0.945, 0.976) 0.029 (0.017, 0.044) 0.008 (0.004, 0.013) 0.001 (0, 0.003) 

H.-triglyceride 0.971 (0.955, 0.983) 0.028 (0.017, 0.042) 0.001 (0, 0.003) 0 (0, 0) 

Isotretinoin 

Abn. vision 0.972 (0.958, 0.983) 0.023 (0.013, 0.035) 0.002 (0, 0.004) 0.003 (0.001, 0.006) 

Arthralgia 0.922 (0.9, 0.941) 0.054 (0.039, 0.073) 0.021 (0.014, 0.028) 0.003 (0.002, 0.006) 

Cheilitis 0.398 (0.355,0.443) 0.403 (0.365,0.439) 0.177 (0.153,0.203) 0.022 (0.015,0.031) 

Conjunctivitis 0.777 (0.739, 0.814) 0.163 (0.133, 0.196) 0.052 (0.04, 0.066) 0.007 (0.004, 0.011) 

Fatigue 0.959 (0.943, 0.973) 0.029 (0.019, 0.042 ) 0.011 (0.006, 0.017) 0.001 (0, 0.002) 

Headache 0.968 (0.953, 0.98) 0.024 (0.015, 0.036) 0.007 (0.004, 0.012) 0.001 (0, 0.002) 

H.-triglyceride 0.851 (0.82, 0.879) 0.086 (0.064, 0.11) 0.056 (0.038, 0.075) 0.007 (0.002, 0.013) 
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Table 2.4: Probability of different toxicities (at any grade; rows) conditional on the 

same patient having experienced other toxicities (at any grade; columns). The two 

numbers x/y in each cell report probabilities under placebo/isotretinoin. For com-

parison the diagonal reports in bold the marginal probabilities of exhibiting each type 

of toxicity. 

Abnormal Arthralgia Cheilitis Conjunctivitis Fatigue Headache Hyper-

vision (AV) (AR) (CH) (CO) (FA) (HE) triglyceride 

(HT) 

AV 0 .026/0.028 0.175/0.186 0.071/0.043 0.108/0.099 0.171/0.209 0.249/0.266 0.078/0.11 

AR 0.428/0.518 0.063/0.078 0.12/0.107 0.162/0.199 0.227/0.316 0.326/0.391 0.134/0.201 

CH 0.533/0.923 0.366/0.821 0 .192/0.602 0.302/0.824 0.348/0.774 0.442/0.823 0.334/0.729 

CO 0.438/0.78 0.267/0.566 0.163/0.305 0 .104/0.223 0.256/0.511 0.344/0.603 0.176/0.411 

FA 0.223/0.306 0.121/0.166 0.061/0.053 0.082/0.095 0 .033/0.041 0.168/0.238 0.061/0.105 

HE 0.366/0.304 0.195/0.161 0.087/0.044 0.125/0.087 0.189/0.186 0 .038/0.032 0.095/0.098 

HT 0.089/0.581 0.062/0.382 0.051/0.181 0.049/0.275 0.053/0.381 0.074/0.456 0.029/0.149 



Chapter 3 

Dirichlet Process Mixture Models 

for Discrete Human Data in Phage 

Display Model 

37 



38 

3.1 Overview 

We develop semi-parametric Bayesian inference for data obtained from a human phage 

display experiment. The experiment is carried out to learn about preferential binding 

of proteins in certain organs. The long-term goal is to exploit such knowledge to 

develop targeted therapies that could deliver a drug to specific tissues and limit side 

effects such as toxicity (Kolonin et al., 2006; Arap et al., 2006). A phage library 

is a collection of millions of phages, each displaying different peptide sequences. In 

a bio-panning experiment the phage display library is exposed to a target. Phages 

with proteins that do not bind to the target are washed away, leaving only those 

with proteins that are binding specifically to the target. A critical limitation of the 

described experiment is the lack of any amplification. Suppose that the peptide A 

binds to the tissue T with high affinity. In addition, suppose that we are using a 

library that contains a small amount of peptide A among a large number of different 

peptides. We may observe only a small count of the peptide A in the tissue T 

and therefore, we may not detect this binding behavior. To mitigate this limitation 

Kolonin et al. (2006) proposed to perform multistage phage display experiment, that 

is, to perform successive stages of panning (usually three or four) to enrich peptides 

that bind to the targets. This procedure allows for the counts of peptides like A 

referred above to increase in every stage and, therefore, it increases the chance of 

detecting their binding behavior. 

Kolonin et al. (2006) use a Bayesian beta-binomial model to make a list of the 

peptides with relatively large increases from the first to the third stages. The outcome 

of this first step is a list of peptide/tissue pairs with the highest posterior probability of 

increasing frequencies over the three stages. In a next step, for each peptide A tissue 

T in this list, they compare the count of peptide A in tissue T in the last (third) 

stage, versus the count of peptide A in the unselected library (a representative draw 

from the peptide library injected into the first stage of the phage display experiment). 

They consider a two-by-two table with counts in tissue T in the first row and counts 
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in the unselected library in the second row. The two columns are A versus not A. 

They carry out a test of independence in these two-by-two contingency tables, using 

Fisher's exact test. Finally, in a third step they consider a similar two-by-two table, 

but now with the second row reporting counts for all tissues (after stage 3). Again, a 

test for independence is carried out to test for preferential binding of A to tissue T. 

A peptide A passing all three filters is reported as binding with high affinity to tissue 

T. 

Ji et al. (2007) proposed a Bayesian hierarchical model as a way of accounting 

for correlation between measurements and reducing the number of parameters. They 

used a False Discovery Rate (FDR) criterion (see, Newton, 2004) to report high-

binding peptides for a 3-stage phage display experiment with mouse data. Later, 

in Section 3, we argue that this parametric hierarchical model is inappropriate for 

the human data described below. Taking advantage of the large sample size of our 

data set, we propose instead a semiparametric Bayesian model that avoids some of 

the limitations of the fully parametric model described by Ji et al. Also, we propose 

an alternative criterion to select high-binding peptides based on a decision theoretic 

framework. 

The main contributions of this paper is the use of a non-parametric prior to 

avoid the limitations of specific parametric assumptions, and the use of a decision 

theoretic framework to address the multiplicity issues arising in the selection of a list 

of tripeptides-tissue pairs that are reported for significant affinity. 

The remainder of this chapter is organized as follows. The proposed model is a 

Dirichlet Process Mixture (DPM) model, Section 3.2 reviews the basic properties of 

the Dirichlet Process and DPM models, describes the standard MCMC algorithm to 

simulate posterior samples from this latter model and gives an example of an applica-

tion of DPM model in density estimation. Section 3.3 presents a detailed description 

of the multistage human data. In section 3.4 We propose a Bayesian semi-parametric 

mixture Poisson model and describe the Markov Chain Monte Carlo(MCMC) Simula-
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tion scheme for obtaining random samples of the posterior distribution of the imputed 

parameters of the model. In Section 3.5, we discuss the criterion to select the peptides 

that bind with high affinity to certain tissues. We perform a simulation study to asses 

further the properties of our model and our peptide selecting criterion in Section 3.6. 

In Section 3.7, we show the results of applying our model to the human three-stage 

phage display experiment. Finally, we provide some concluding remarks in Section 

3.8. 
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3.2 Background 

The probabilistic model in Section 3.4 is a Dirichlet Process Mixture (DPM) model. 

The objectives of this section is, first, to review the DPM and, second, to show poste-

rior simulation and posterior predictive simulation for a future observation. With the 

first objective in mind, we review the Dirichlet distribution, the Dirichlet Process and 

its basic properties. To explain the main ideas of posterior and posterior predictive 

simulation we review the Gibbs sampling scheme proposed by MacEachern (1994). 

Finally, we give an example of an application in density estimation of the DPM. 

3.2.1 Dirichlet Distribution 

The Dirichlet distribution is the multivariate extension of the beta distribution and 

is the conjugate prior model for the parameters of a multinomial model. 

Let Ga(a,P) denote the gamma distribution with shape parameter a > 0 and 

scale P > 0. Define Ga(a = 0,P) as a point mass at zero. For a > 0 the gamma pdf 

is 

Ga(z | a,p) = f2^-eM-z/P)za-1l{0,oo)(z), (3.1) 

where ls(z) denotes the indicator function of the set S. 

The Dirichlet distribution is defined with all its parameters positive (see Wilks, 

1962). Ferguson (1973) extends it to allow some, but not all, parameters to be equal 

to zero. Let Zx,..., Zk be independent random Ga(aj, 1) variables respectively, with 

> 0 for every j and aj > 0 for some j, j = 1 , . . . , k. The Dirichlet distribution 

with parameters a \ , . . . , a k , here denoted by Dirichlet(«i, . . . , a k ) , is defined as the 

distribution of the vector (Yi,..., Yk), where 

k 

Y j = Z j j Z i f o r j = l , . . . , k . (3 .2) 
i=1 

When using the notation Dirichlet(ai, . . . , ak) it is assumed that a3 > 0 for all j, and 

Cij > 0 for some j . 
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When ctj = 0, the corresponding Y, is a point mass at 0, i.e. Yj = 0 almost surely. 

When otj > 0 for all j, the pdf in ft*-1 of {Yu ..., Yk-i) is 

(\ «fc-i 

1 - E t i w j i s i v i , . . . , v k - i ) , 
(3.3) 

where S is the set, 

fc-i 5 = { ( y i , . . . e H*"1 | V j > 0, Y^Vj < !}• 
3 = 1 

When k = 2, (3.3) reduces to the Beta distribution, denoted by Beta(ai, a^)-

3.2.2 Dirichlet Process and Dirichlet Process Mixture Model 

Consider the complete separable metric space (Ferguson, 1974), X with its Borel 

(7-algebra A. Let 

T = {F : F is a probability measure on X}. 

Let A denote some suitable cr-algebra of subsets of for example the Borel sets 

generated by the topology of weak convergence. We say that V is a random probability 

measure (RPM) if V is a probability measure in (J7, A). If F denotes a random 

probability chosen according to V, then F(B) for B measurable set in X is a random 

variable. Let xi,... ,xn be a random sample from F. Consider a Bayesian model, 

with a prior distribution on F ~ V. Inference about F is based on the posterior 

distribution F \x\,... ,xn, using the information available in the sample. 

With this framework in mind Ferguson (1973) stated two "desirable" characteristic 

that the RPM, V, the prior for F, should satisfy: (i) Its support should be large and 

(ii) the posterior distribution should be mathematically convenient. In the same 

paper, he introduces and proves the existence of the Dirichlet Process (DP) RPM. A 

measure F is generated by a DP if for any partition of the sample space, {Bi,..., Bk}, 
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the vector of random probabilities (F(Bi),..., F(Bk)) follows a Dirichlet distribution 

as defined in the previous subsection: 

( F ( S 1 ) , . . . , F{Bk)) ~ Dir ichlet(aF0(B1) , . . . , aF0(Bk)). 

We denote this by F ~ DP(a, F0). The DP prior is indexed with two parameters: 

the precision parameter a and the base measure F0. The base measure F0 defines 

the expectation E(F(B)) — F0(B), and a is the precision parameter that defines the 

variance. For details of the role of these parameters see Walker et al. (1999). 

We say that the collection of random elements X\,..., Xn is a random sample of 

size n of the Dirichlet Process DP if given, F ~ DP, Xx,..., Xn \ F is a random 

sample from F. One of the main characteristics of the DP is that it is conjugate, 

implying a simple posterior updating rule. Let Sx denote a point mass at x. If 

X u . . . , X n ^ d - F and F ~ D P ( a , F 0 ) , 

then the posterior distribution of F is, again, a DP given by 

F | X i , . . . , X „ ~ D P ( a + 7i,Fi), (3.4) 

with Fi := E(F | Xi,... ,Xn) oc F0 + Sxt a compromise between the empirical 

distribution and the base measure F0 (See Figure 3.1). 

Sethuraman (1994) shows that any F ~ DP(a, F0) can be represented as 

oo 

F(-) = J 2 w » 6 ^ V h ^ - F o (3.5) 
h= 1 

where 

Wh = Uh J|(l - Uj) with Uh ^ i d-Beta(l, a). 
j<h 

That is, a realization of a DP is a discrete random measure with countable support. 

Its support is a sequence of values independently sampled from Fo with respective 

jump sizes generated by a "stick breaking" procedure. In particular F is a discrete 

measure, that is, the DP generates, almost surely, discrete random measures. Figure 
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Figure 3.1: Base measure Fo=Ga(9,2), posterior base measure F\ := E(F \ xn), empirical 

cdf and set of simulated measures sampled from the posterior distribution of the DP (a = 

5, Fo) when a sample xn: 1,2,2,3,3 and 3 of this DP was observed. 

3.1 shows the base measure Fo=Ga(9,2), the posterior base measure Fi, the empirical 

cdf and a set of simulated measures sampled from the posterior distribution of the 

DP (a = 5, F0) via (3.5) when the sample of size n = 6 of this DP: 1,2,2,3,3 and 3 

was observed. 

The DP allows analytic evaluation of the marginal distribution p(Xi,...,Xn), 

integrating with respect to F ~ DP(a, F0). The marginal distribution is also known 

as the Polya urn (Blackwell and MacQueen, 1973). We will exploit the Polya urn later 

in this section to simulate from a DP. This representation, in particular, implies that 

if X\,... ,Xn is a random sample of this sample: .... X*K are a random sample 

from Fo. This implies that 

P r iX , G •] = Fo(-). (3.6) 
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The predictive distribution (3.4) can be shown to be 

for i — 2 , . . . , n. (3.7) 

Multiplying p(Xi) and p(Xi | Xi,..., X^i), i — 2 , . . . , n, defines the joint marginal 

distribution p(X\,... ,Xn). When F0 has finite support and a = 1, the two expres-

sions above imply that sampling . . . , X n ) can be interpreted as drawing from an 

urn whose initial proportion of balls of color x is F0({:r}). We draw the i-th ball from 

the urn, its color Xi is registered, the ball is put back into the urn and a new ball of 

the same color as the one just extracted is added to the urn. 

Mostly due to its computational advantages and the easy interpretation of the 

parameters, the DP is the most popular nonparametric Bayesian prior. Nevertheless, 

an almost surely discrete prior is not desirable in many applications. A simple solution 

is to consider a convolution of G ~ DP with a continuous kernel. Such a (hierarchical) 

model is known as Dirichlet process mixtures (DPM) (MacEachern, 1994, Escobar 

and West, 1995): 

The model above is easily extended to consider non identically distributed samples 

such as the regression model: | ~ N(zj0t) a) where zz is a vector of covariates of 

the same dimension as 6i and a the common precision. In general, suppose that the 

distributions of each xt are (possibly different) known distributions Fu indexed with 

6i, and possibly additional parameters u that are common across all i, i.e., 

Moreover, we can include a hyperprior distribution for the parameter a and, besides, 

consider that the base measure Go depends on parameters 7 with prior distribution 

Xi | Oi ~ F(xi | 6i) and independent for i = 1 , . . . , n 

A I GW*G (3.8) 

G ~ D P ( a , G 0 ) , 

i.e. Xi ~ / F(xi | 0) dG(9) and G ~ DP (a, G0). 

^ | Oi,a~Fi(Xi | 9ua). 
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p(7). The general DPM becomes 

I. Xi | 9i, a ~ Fi(xi | 9i, a) and are independent, for i = 1 , . . . , n, 

II. A | G^dG and a ~ p(a), g 

III. G | a , 7 ~ DP(a, Go(-, | 7)) 

IV. a ~ p(a) and 7 ~ p(7). 

The levels I-III (with a and 7 fixed) correspond to the model in Lo(1984), while levels 

II-IV correspond, essentially, to the Antoniak (1974) model. Escobar and West (1995) 

join both models including all the levels (I-IV). Fj determines if the distribution of xL 

is continuous or discrete. In the following subsection we describe the Gibbs sampling 

scheme for posterior simulation of 9 \ , . . . , 8n. 

3.2.3 Gibbs Sampling Scheme for D P M 

This subsection summarizes posterior MCMC simulation in DP mixture models as 

described in West et al. (1994). We describe posterior MCMC in the mixture model 

defined in (3.9). 

Complete conditional posterior distribution of We use transition probabili-

ties defined by sampling from its complete conditional posterior given the currently 

imputed values of the other dj's, all other parameters and the observed data. For the 

moment, we assume that the parameters a and a are fixed and suppress them in the 

notation. We will include them later. 

Assume ^ ~ G and G ~ DP(a, G0). Let 6H = (0U . . . , g._u Q.+u ..., gn). The 

updating rule (3.4) of the DP implies, G | 0_< ~ DP(a + n - 1 ,aG0 + J^jjn <%)• We 

can marginalize G, using the Polya urn, and find 

P r [ 0 . e . I 0-i] =
 a Go(-) + - j - — (3.10) 

a + n- 1 a + n — 1 ^ 3 

That is, we can directly simulate from 0i | 9~\ without any need to generate the 

RPM G. 
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Expression (3.10) tells us that the probability that differs from 9j, for j ^ i, is 

a/{a + n — 1). Moreover, denoting with g0 the pdf corresponding to Go, 

*«• I = + £ { » . «•>• <s-») 

The previous equation, conditional independence of xi,... ,xn given 0\,...,6n and 

Bayes theorem imply 

p(9i | Q - \ x x n ) <xp(x1,x2,...,xn | 9i,9~i)p(9i \ 9~l) 

oc ap{xi I 9i)g0(9i) + ^2jjHp(xi | 9j)5ej(9i). 

Let p(xi) = Jp(xi | 9)go{9) d9 denote the marginal of x, under go- Then 

P(xi | 0i)so(0i) = ^ ' ( d i ) p ( x i ) = p{0i | x M x i ) , 
P\Xi) 

we get, 

P& I <r* ,xi,x2, • • •, xn) oc qiogio(9i) 

where q = otp{Xi) is the product of a and the marginal distribution p{xi) of x,; 

qij = p(xi | 9j)\ and gio(9i) oc p(xi \ 6i]ga{9-i)) the posterior distribution of 9t given xz 

under a Bayes model with prior 9i ~ Go and sampling model p(xi \ 9i). 

We observe that a random sample of size n: 9\, 92, • •., 9n of a DP can be equiva-

lently represented by the triplet (K,9*,<p) where K is the number of distinct values 

among the 9i, 9* = {91,92,..., 9*K} are these distinct values, and <p are indicators 

<p = i, <f2, • • •, <fn), w ^ h — k if 9i — 9*k. We refer to ( K , 9*, ip) as a "configura-

tion." 

A configuration (West, 1990, MacEachern, 1994) classifies the data xn :— { x i , . . . , xn} 

into K different clusters with nk — | ipi — k} observations that share the com-

mon parameter 9*k. We use Sk to denote the fc-th cluster of observation indices, 

Sk — {i | ipi — k}. In other words, a configuration is simply a partition of {1 , . . . , n} 
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into clusters defined by the unique values 9*, together with a list of these unique val-

ues. In the Gibbs sampling scheme we will update, in the first step, the configuration 

given the previous one, and, in the second step, 9\, 9%, • • •, 9*K given <p and K. 

Moreover, since the 9k's are a random sample from the base measure Go, The 

unique values 9*ks are conditionally independent given ip, with posterior densities: 

p(9*k | x", <p, K) a p{xn | 91, v, K)p{9l \<p,K) 
r i (3-1 4) 

« {UieSkfi^i\^)}9o(9*k). 

Denoting by K~\ nk
l and Sk

i for k = 1,..., K~* and 9*~l := ( 0 p \ . . . , 9*'^) the 

configuration corresponding to the random sample 9~'\ the conditional prior (3.10) is 

equivalent to 

e • I M = ^ t t W ) + ^ E - i V H - P- 1 5 ' 
fc=1 

In words, 9i is different from the other parameters and drawn from Go with probability 

proportional to a, and otherwise equal to the A;-th already observed value, 9*k~l, with 

probability proportional to the number of times this value has been observed in the 

sample 9~z, i.e., oc nj~\ 

The extension of the expression (3.15) from n to n + 1 yields to the predictive 

distribution of a new value 9i with i — n + 1. This distribution is identical to the 

expected value of G given 9*,tp, K. This is easily seen by 

p(9n+1 | 9*, K,ip) = Jp(9n+i | G) dp(G | 9*, K,<p) = j G(9n+1) dp(G | B\ K, <p) = G. 

Thus, once we have it, the posterior sample of the parameters can be used to estimate 

G. The predictive distribution (on the random effects) is 

1 K 

Pr[9n+1 G • | 9*,<p,K] = E{G \ 9*,<p,K) = - ^ - G 0 ( - ) + — — (3.16) 
a + n a + n ' k 

k=l 
Therefore, the posterior distribution of a future observation xn+\ given a configuration 

is 

1 K 

Pr[xn+1 G • | d*,<p,K] = —^—Fn+i(- | 9n+1) + —— VnfeFn+1(- | 9*k), (3.17) 
a + n a + n k=1 
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where 9n+i is a new sample from Go and Fn+\ is the cdf of x n + 1 . The Gibbs sampling 

scheme to simulate parameters from the posterior distribution is based on the above 

discussion and described next. 

Gibbs Sampling Scheme: MacEachern (1994) introduced the following Gibbs sam-

pling scheme to simulate random samples 9\,..., 9n from the posterior under model 

(3.9). The posterior is easiest described in terms of the configuration parameters 9*, 

K and ip. We are still assuming that cr, 7 and a are known, the simulation of these 

parameters can be added, as we will see later, straightforward to the Gibbs sampling 

scheme, so that, we keep these variables out of the notation. Call (3.13), 

K'i 

p(9i | xn, 9~\ </T\ K~l) = ®o0io(0i) + (3"18) 

k= 1 

Under model (3.9) the weights qik are given by, 

{•cahAxi), k = 0, 

(3.19) cn?Mxi | 91), 1 < k < K'\ 

Here fi is the pdf corresponding to Fi, g.to is the posterior pdf of 9,t) obtained by 

updating g0 with the likelihood fi(xi | 9t), that is, 

« Mxi I 0i)9o(9i), (3.20) 

whose normalization constant, hi(xi), is the marginal density of xt, 

hi(xi) = J fi(xi | 9i)g0{9i) dOt, 

and c is a normalization constant (across k = 0 , . . . , K"1). 

Equation (3.18) implies the posterior distribution for the indicator variables in 

the configuration, 

Prfa = k\ xn, 9~\ yT \ K-1) = qik. (3.21) 

We can simulate samples of 9*, K and <p by iterating over the following transition 

probabilities: 
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(a) Given the previous values for 9*, K and ip, we generate a new configuration by 

sampling new values for the indicator variables using (3.21), replacing Q\, 6%, 

When sampling <pi = 0 we associate the observation i, xt, with a new draw from 

gi0 given in (3.20) and update the configuration accordingly. 

Note that using a base measure Go conjugate to f i is mathematically convenient. 

It makes sampling from gi0 and computation of ht easier. For computational reasons 

conjugate families should be considered when appropriate. In the model introduced 

in Section 3.4 this is the case. 

Repeated use of step (a) defines a Markov chain with limiting distribution equal 

to the posterior distribution p(0*,K,<p | xn). But, this Markov chain mixes poorly. 

Since it shifts one value of 9t at a time, rarely does a value of 9k in a clusters change. 

This change needs the chain to pass trough a middle state of low probability in which 

all indices in the cluster Sk are moved to other clusters. Convergence is accelerated 

by avoiding this phenomenon. Once the values of 9*, K and ip have been obtained in 

step (a), the vector 9* is resampled conditional on the values of K and tp. That is, a 

second step is added to the Gibbs sampling scheme (after each step (a)), 

(b) Given K and <p, we draw a new set of parameters 8* by sampling new values 

from the posterior distribution (3.14) . 

Sequential iterations over (a) and (b) defines a Markov chain that converges to 

the posterior distribution p(9*,K,<p \ xn). For details about this convergence see 

MacEachern and Muller (1998) . The posterior distribution of any function of the 

parameters can be estimated based on the posterior sample. For example the aver-

age of (3.17), with respect to the simulated values of 9\,..., 9*K, and 9n+1 estimates 

the predictive distribution p(xn+1 | xn) = G. This average is used for the density 

estimation. See the example given in the next subsection. 

Now we extend the Gibbs sampling scheme to include the common parameter 

a. Let p(a) denote the prior for a. We draw this parameter from the appropriate 
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posterior conditional distribution, 

p{a | x", 9*, <p, K) cx p(xn | 0*,<p, K, a)p(a | 9*, K) 

« P ^ Y T ^ f i M e u a ) (3.22) 

Therefore, the Gibbs sampling scheme given by (a) and (b) is extended, when neces-

sary, by adding step (c): 

(c) Generate a conditional on the imputed values of the parameters 9*, ip and K 

using the expression (3.22). 

The distributions given in (3.14) and (3.21) used in steps (a) and (b) are condi-

tional on {a, 7}. The Gibbs sampling scheme can be extended to include {a, 7} by 

adding an extra step: sampling from the appropriate posterior distribution, p(a, 7 | 

xn,9,cr) = p(a, 7 | xn,9*,<p, K,cr). This can be done (West, 1992 and Escobar and 

West, 1995 ) in the following way: 

Suppose that a and 7 are a priori independent with densities 

p(a,j) = p(a)p(y). 

Model (3.9) implies that a and 7 given the parameters 9*,K,(p, and a, remain 

independent. Therefore, a and 7 can be considered separately. Due to the nature of 

the DP (see Antoniak, 1974), only the value of K matters in the posterior distribution 

of a , i.e., 

p(a | xn,9*,<p,K,a) =p(a \ K). 

West (1992) proposed a model augmentation with a latent Beta random variable 

for the parameter a. If the prior distribution p(a) is Ga(a,b), then the posterior 

distribution p(a | K) is a mixture of gamma distributions. This allows easy simulation 

from p(a | K). A new step is added to the Gibbs sampling scheme, 

(d) Update the total mass parameter a: 
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1. Draw a latent variable rj ~Beta(a + l ,n) . 

2. Sample a from the mixtures of gammas: 

7rvGa{a | a + K, b - log r?) + (1 - n^Ga^a | a + K - 1,6 - log 77), (3.23) 

where, 

a/C — 1 
1 - ttv n(b - log rj) 

Finally, we define a transition probability to update 7. Recall that 7 is introduced 

into the model through G'0. We get, from (3.14), 

K 

p(K I e\ <P, K, a) = p(7 I r , K) oc p(7) J ] I 7)- (3.24) 
fc=1 

For computational reasons, in applications it is convenient to assume a prior distribu-

tion p(j) that is conjugate to go- We need to add a new step to our Gibbs sampling 

scheme: 

(e) Conditional on K and (p we update 7 using (3.24). 

As technical note, in their examples Escobar and West (1995) noticed that the MCMC 

scheme stated above can get "trapped" in local modes of the posterior distribution. 

To "free" it, instead of running a much longer chain, they suggest to reinitialize every 

certain number of Gibbs sampling iterations, for example, 10,000 by the configuration 

with K — n and new values for resampled from gi0 in (3.20) without 

changing the current values of the remaining parameters. 

3.2.4 Example of Application of DPM in Density Estimation 

In this section we present an application of a Dirichlet Process Mixture (DPM) model 

to non-parametric density estimation. 

We use the Boston housing-price data from Harrison and Rubinfeld (1978). This 

data appears online as Boston data in the statlib index. The file contains measure-

ments of 13 characteristics of houses in Boston and their price (named MEDV in 
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the file). We apply the DPM model to estimate the distribution of the house prices 

(disregarding the rest of the information in the file). 

A particular case of model (3.9) is given in Escobar and West (1995), and imple-

mented in the R-package "DPpackage" (Alejandro Jara, 2007): 

I. yi | nu Ai ~ N(fj,i, Ai) for i = 1 , . . . , n, 

II. (ni,Xi), . . . , ( / in ,A„) | G ~ G 

I I I . G | a,k0,ni,ipi ~ D P ( a , G 0 ( - | k0, Hi,ipi)), , 0 o c . 
(o.zoj 

GoifJ-i, Aj | k0, = N(fii | mi,k0Xi) Ga(A | 771, Vi) 

IV. a ~ Ga(aa,ba),mi ~ N(m2,S2), 

ipi ~ Ga(r]2,ip2) and k0 ~ Ga(akj2,bkj2), 

where N(m,r) denotes the normal distribution with mean m and precision r , and 

Ga(a,P) the gamma distribution with mean a / f j ; rji, aa, ba, s2, r]2,1P2, &k, bk > 0 and 

m2 G 5R. 

Notice that the variables yi,{ni,\i) and (mi,k0,ipi) of the model in (3.25) play 

the role of the variables Xi, 6t and 7, respectively, in the general DPM (3.9). Let 

yn = {yii • • • > Vn} represent the prices of n = 506 houses. Besides, we denote with 

H* = (MI, • • •, Vk) and A* = ..., A -̂) the vectors of size K containing the unique 

values of the Hi and the \ respectively. We use the notation of the previous section 

for the variables related with the configurations. When stating a complete conditional 

posterior distribution in this section, we make explicit only the relevant quantities 

(for example, since the complete conditional posterior distribution of k0 depends only 

on mi, fi* and A*, we just write k0 | mi, /j,*, A*). 

We now describe steps (a)-(e) of the MCMC sampling scheme given in the previous 

section for this specific example. There is no common parameter a so that step (c) 

is not necessary. Let t(y | m, s, v) denote a student t distribution with location m, 

scale s and degrees of freedom v. 

(a) Given the currently imputed values of (jj,*, A*), K and ip, generate a new config-

uration by simulating tpi,...,tpn from the complete conditional posterior distri-
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bution, 

P(<Pi = k\yh K-*) = qik, for k = 0 , . . . , K~* 

where, 

qi0 = ca Student (y* | mi, ~ k° , 2r)i] , 
V Vi k0 + 1 / 

qik = cn?N(yi \ n*k, X*k) for A; = 1 , . . . , K~\ 

and c is a normalization constant such that qo + • • • + q^-i — 1. Whenever we 

sample tpi = 0, we generate a new observation ( / / , A*) from 

x Ga(A* h i + nfc^.Vi + l ^ i t e - m i ) 2 ) 

and update, accordingly, the new configuration by K = K + 1 and ^ = if + 1. 

(b) Given K and </?, generate a new set of parameters (//£, \*k) for k — 1 , . . . , K from 

the distribution 

P i v h K I yn,<-P,K,k0,ipi) = 

x Ga (Aj; | Tj\ + nk/2,^ + ± [£<6Sfc(& ~ Vk? + i ~ . 

where yfc is the mean of the observations in Sk, that is yk = *)2ieSk yi/nk. 

(d) Updating the total mass parameter a: 

1. Let a denote the currently imputed parameter value. Generate a latent 

random variable r] ~Beta(a + 1, n). 

2. Sample the new value of a from 

p(a | K, i f ) =7xvGa(a \ aa + K,ba- log rj) 

+(1 - 7rv)Ga(a | aa + K - l,ba - log rj), 

where, 
7r„ aa + K — 1 

I-ttv n(ba - log rj)' 
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e Hyperparameters of G0, 7 : simulate from the complete conditional posterior 

distributions 

p{mi | ji*. V , r) = N (m1 | + s2 + k ^ Afc |̂ , 
V + k0 £ f c = 1 A fc fc=1 y 

I A-, A*) = Ga U i I % + K m , ^ + £ AM , 
\ fc=1 / 

and, 

Kfc, I r - , m „ r ) - G a L I ft.+ ~ " • ) ' 

Finally, we estimate the density of the house prices at a point y j based on the (ap-

proximated) sample of size M from the joint posterior distribution of the parameters: 

{H*m, A*m, <pm, Km, am, kg1, m™, r/m), for m = 1,..., M, via (3.17) by, 

1 M ( m 1 K m 

1 fB) = M E 1 ^ A ; T l ) + E < N ( y f I *r> A D ' 

m= 1 I. fc=l J 

where ( A C ^ A * ^ ) is a new sample from gto given in (3.2.4) whose parameters are 

specified by the corresponding parameters of the m — th simulated observation: h.m rntn „m K0 >rnl >V • 

We use the same values for the hyperparameters given in the set of hyperparame-

ters "prior4" in the example in the help of the function "DPdensity" in the R package 

"DPpackage". In the R example, the density of the velocities, relative to our own 

galaxy, of 82 galaxies from six well-separated conic sections of the space is estimated. 

The values are aa = 2, ba = l,m2 = 0,s2 = 10~5,ak0 — 1 ,Pk0 = 100, rji = r\2 — 3, 

and ip2 = 0.5. After a 1000 iteration burn-in period we generated M = 10,000 ob-

servations from the posterior distribution of the parameters by taking an observation 

every ten Gibbs iterations. All this using the R function "DPdensity". The estimated 

density is shown in Figure 3.2. 
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House Price 

Figure 3.2: Histogram of the house prices in Boston. The continuous line is the nonpara-

metric estimation of the corresponding density function using the MDP model in (3.25) 
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3.3 Data 

We now return to the biopanning experiment described in Section 3.1. The data 

are from a biopanning experiment carried out at M. D. Anderson Cancer Center. 

The data come from three consecutive human subjects who met the formal criteria 

for brain-based determination of death (Wijdicks, 2001). See Arap et al. (2002) for 

details on patient selection and clinical procedure following clinical ethics criteria.. 

The purpose of the experiment is to identify peptides with increasing counts over 

the consecutive stages. At each stage we record counts for peptide/tissue pairs. 

Peptides are denoted as CX-jC (here C=cysteine, X = any amino acid, represented 

by a letter). Tissues are Bone-Marrow, Fat, Muscle, Prostate and Skin. 

At each stage a phage display peptide library was injected into a new patient, and 

15 minutes later biopsies were collected from each of the target tissues and the peptide 

counts were recorded. For the second and third stage the injected phage display 

peptide library was the already enriched phage display library from the previous 

stage. 

The original data are counts for all unique 7-mers X-j. However, we summarize the 

data using all implied 3-mers. For example, the 7-mer AGAGADR corresponds to the 

four unique tripeptides AGA,GAG,DAG and ADR. Note that we do not distinguish 

between a tripeptide and its mirror (e.g., DAG and GAD are counted as the same) 

and each tripeptide contained in a 7-mer is counted only once (e.g., the count on AGA 

is incremented only once, although it is contained twice in the 7-mer). So, an observed 

7-mer AGAGADR contributes a count for the four tripeptides AGA,GAG,DAG and 

ADR. The main reason for recording 3-mers are problems related to sparse counts 

that would result from recording the 207 possible 7-mers. In contrast there are only 

4200 (203, minus duplicate mirrors) tripeptides. It is believed that the 4200 distinct 

3-mers are still a sufficiently rich class to differentiate between binding sites. See, for 

example, Arap et al. (2002), Ji et al. (2006) and Kolonin et al. (2006) who also use 

tripeptides. Finally, the data corresponding to the third stage contains two seven-
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peptides, 'XRGFRAA' in muscle and 'KTXXARX' in skin where one or more amino-

acids, denoted by an 'X', are not identified. We consider the four tripeptides identified 

in the fist one and discard counts for the second seven-peptide. 

The data reports counts for 4200 tripeptides and 5 tissues over 3 consecutive 

stages. For the analysis, we excluded tripeptide-tissue pairs for which the sum of 

their counts over the three stages was below 5, leaving n = 2763 distinct pairs. Figure 

3.3 shows the parallel coordinates plot of raw data for these tripeptides-tissue pairs. 

The desired inference is to identify tripeptide-tissue pairs with an increasing pattern 

across the three stages, i.e., to mark lines in the figure that show a clear increasing 

trend from first to third stage. Some lines can be clearly classified as increasing, 

without reference to any probability model. But for many lines the classification is 

not obvious. The purpose of the proposed model-based approach is to define where 

to draw the line to define a significant increase. 
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Figure 3.3: Observed sequence of tripeptide-tissue pair counts across the three stages. 

Each line represents the three observed counts of a pair. The three panels depicts the pairs 

with: (a) non decreasing, (b) oscillating and (c) non increasing counts. 
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3.4 Model 

3.4.1 A Semi-parametric Mixture of Poisson Model 

Our approach is model-based, we will use N = (Nn, Ni2, Ni3) to denote the observed 

counts for tripeptide-tissue pair i across the three stages, for pairs i = 1 , . . . ,n. We 

cast the desired selection of tissue-specific tripeptides as inference about the increas-

ing trend of mean counts in a probability model for the observed data iV*. Ji et 

al. (2007) have proposed a model-based approach based on a mixture of normal dis-

tributions in the parameters of the assumed Poisson distribution of the observations. 

The strength and attraction of their model is its parsimonious nature. For the rela-

tively small mouse data set, this characteristic is important. Nevertheless, this model 

has a limitation. The human data analyzed here is ten-fold larger. This allows us to 

consider a more elaborate model. The model in Ji et al. assumes a linear relation on 

the log-Poisson scale. For example, consider the pairs that are reported as oscillating 

in Figure 3.3 (b). Although the data shows a marked difference in slopes from stages 

1 to 2 versus from stages 2 to 3, the model assumes one common slope. This is a 

concern when the imputed overall slope is positive, e.g., the pair marked by A in the 

Figure 3.3 (b). Outliers like pair A in Figure 3.3 (b) can inappropriately drive the in-

ference. Taking advantage of the larger sample size, the semiparametric nature of the 

model we propose can mitigate this problem. Finally, in Ji et al. binding tripeptides 

are reported in terms of statistical significance, formalized as the posterior probability 

of the overall slope being greater than zero. We will propose an approach that also 

takes into account the size of the overall slope and is more suitable to incorporate 

biological significance. 

In summary, the choice of an appropriate probability model is driven by the follow-

ing considerations. First, we wish to limit the impact of specific parametric modeling 

choices on the inference about monotonicity of the mean counts. The large number of 

recorded pairs allows us to use a semi-parametric approach that reduces dependence 
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on a specific parametric model. Second, we will later build on the probability model 

to define a formal decision problem for the selection of a final list of tripeptide-tissue 

pairs. For this, and for a simulation study to validate the model, we have to rely on 

efficient and fast computations. 

These two competing desiderata lead us to consider a semi-parametric mixture 

model. We will use a mixture of parametric models, with a nonparametric prior 

on the mixing measure. Under the Bayesian paradigm, nonparametric priors refer 

to probability models on probability distributions. The non-parametric prior on the 

mixing measure greatly generalizes the underlying parametric model, in much the 

same way as a mixture of independent normal kernels can approximate arbitrary 

multivariate distributions in kernel density estimates. Similar semi-parametric mix-

ture models have successfully been applied for Bayesian inference in a variety of other 

applications, including, for example, Miiller and Rosner (1997), Mukhopadhyay and 

Gelfand (1997), and Kleinman and Ibrahim (1998). The special case of binary out-

comes has been discussed, among many others, by Basu and Mukhopadhyay (2000). 

We start with a sampling model for Ni conditional on assumed mean counts 

across stages for the peptide-tissue combination i. Conditional on the mean counts 

we assume independent Poisson sampling. In anticipation of the final inference goal 

we parameterize the mean counts as (Hi, HiPi, Hi$i)> allowing us to describe increasing 

mean counts by the simple event 1 < pi < Si. We write Poi(x | m) to indicate a 

Poisson distributed random variable x with mean m. 

p(Nii, Ni2, Ni3 | m, ph Si) = Poi(iVii | Hi) P o i ( N a \ HiPi) Poi(^ i 3 | M ) (3.26) 

for i = 1, . . . n. The sampling model includes different poison-slopes for each stage, 

in contrast to the model proposed by Ji et al. (2007). The parameter Hi c a n t>e 

thought as the expected count mean of the pair i across the three stages if we were 

not enriching the tripeptide library at every stage. We extend (3.26) to the desired 

semi-parametric mixture model by assuming a non-parametric prior for a random 

effects distribution for 0i = (Pi, Si). Let G(b, d) denote a bivariate random probability 
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measure. We discuss the probability model for G below. A parametric random effects 

distribution for fii keeps computation simple. 

(Pi, Si | G) ~ G, i.i.d. , and /ij ~ Ga(sM, • t^) (3.27) 

The parametrization of the Gamma distribution is chosen such that E(X) = a/b for 

X ~ Ga(a,b). Choosing a prior for the random probability measure G requires a 

nonparametric prior. The most commonly used model is the Dirichlet process (DP) 

prior (Ferguson, 1973; Antoniak, 1974). We write G ~ DP(a,Go) for a DP prior on 

the random probability measure G. The DP prior is indexed with two parameters, 

a total mass parameter a and a base measure Go- The total mass parameter is a 

precision parameter, and the base measure defines the prior expectation, E(G) — Go-

See, for example MacEachern and Miiller (1998), Walk et al. (1999), and Miiller et 

al. (2004) for recent reviews of the DP prior, including posterior inference for DP 

mixtures similar to the model used here. We assume 

G ~ DP(a, G0) with G0{b, d) = Ga{b \ s0, spt0) • Ga{d \ s5, ssts). (3.28) 

The base measure in the DP prior are independent gamma distributions. The model 

is completed with a prior on the hyperparameters 

a ~ Ga(aa, ba), tp ~ Ga(t0\at0,bt0), (3.29) 

ts ~ Ga(ts\ats,bts), and, ^ ~ G a ( ^ | a v btlJ, (3.30) 
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3.4.2 Posterior Simulation 

The model defined in (3.26)-(3.30) is a DPM. It includes a conjugate Poisson sample 

model and gamma baseline distribution of the DP, and conditionally conjugate prior 

specifications for other parameters. This greatly facilitates posterior simulation by 

MCMC simulation. 

The implementation of posterior MCMC follows the standard posterior simulation 

method for DPM models given in, for example, Neal (2000) and MacEachern and 

Miiller (1998). This method was described in the Section 3.2. In particular, we use 

the model augmentation with a latent Beta random variable proposed by West (1992) 

(step (d) of the Section 3.2), to implement inference for the total mass parameter a . 

The remaining parameters and t$ have closed form conditional posterior 

distributions conditional on currently imputed values for all other parameters and 

latent variables. Let N denote the data. When stating a complete conditional pos-

terior distribution on this section, we make explicit only the relevant quantities (for 

example, since i ^ N , / ^ , . . . ,Hn,tf3,ts does not depend on N, tp or we just write 

t^fli,... ,Hn)-

We apply the Gibbs sampling scheme consisting of steps (a)-(e) in Section 3.2 to 

simulate from the posterior distribution of the model proposed model. We notice that 

the parameters Xi, \ 0i), and 7 of the general DPM model (3.9) are equivalent to 

Ni, (3.26), (tp,tg) in our specific proposed model. There is no common parameter ,a, 

for all Ni's and, then, step (c) is not necessary. The rest of the parameters in (3.9) and 

its correspondents in our specific application have the same names; an extra step (f) 

is included in the Gibbs sampling scheme to account for the parameters and, the 

following configuration - a set of variables ( K , (/?*, 5*), ip) equivalent to (Pi, Si),..., 

(Pn,8n), see Section 3.2- is required: 

• ()3*,S*) = (PI, 61),..., (P*K,S*K) represents the K unique values of (Pi, 81), • • •, 

(Pn,6n). 
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• ip = <yipl)..., tpn) is the vector of indicator variables indexing the value of 

(01, S*),..., (0*k,5*k) related with (Pi, Si) for i = 1 ,...,n. That is, <pi = k, 

if (0 i,6 i) = (0*k,6l). 

This configuration determines the following set of variables: 

• Sk := {i : ifi — k} is the set of sample indices of (Pi, Si) related to (Pk,Sl) for 

k = l,...,K. 

• nk := #Sk. 

We will denote as K~\ n? and S? for k = 1 , . . . , K~\ (P* ,S*)~l = (/?*, S*)~\ . . . , 

the configuration corresponding to (P,S)~Z :— (0 i ,S i ) , . . . , (Pi_i,S i+i), 

(Pi+i,Si+i),... ,(Pn, Sn). We now describe the corresponding steps (a)-(e) of Section 

3.2 and extra step (f) for the proposed model. 

(a) Given the current imputed values (K, (0*,5*),<p), generate a new configuration 

by simulating <fli,... ,<pn from the complete conditional posterior distribution, 

P(<Pi = k\Nh (P, S)-\ <p-\ K-') = qik, for k = 0 , . . . , 

where, 

Qio — ca 
(s0t0)sv T(sp + Na) 

[(fa + s 0 t 0 y ^ r (s0) 
(ssts)86 r (s5 + Ni3) 

_(lM + sstp)'0+N*> T(ss) 

qik = cn-k^l m3exp{-fa(0*k + S*k)}, for j = 1,..., K~\ 

and c is a normalization constant such that <&<) + ••• + %/<-< = 1. Whenever we 

sample <fi = 0, we generate a new observation (Pi, Si) from 

Ga(Pi\s0 + Na,s0t0 + fa) x G a ^ l s * + Ni2, ssts + fa), 

and update, accordingly, the new configuration by K — K + 1 and ip.L = n + 1. 
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(b) Given K and <p, generate a new set of parameters (/3*,5*) from the distributions 

p((3*k | N, ^ K) = Ga h*k s0 + J2 Ni2, s0t0 + ] [ > ) , for fc = 1, . . . , AT, 
\ iesk iesk ) 

and 

p(S*k | N , <p, K) = Ga ( 51 s5 + N*> ssU + J2 ^ ) 
\ iesk iesk J 

for k = 1,..., K. 

(d) Update the total mass parameter a: 

(1) let a denote the currently imputed parameter value. Generate rj ~ Beta(a+ 

1 , n) and, 

(2) sample the new value of a from 

p(a | K, rj) =7xvGa(a \aa + K,ba- log rj) 

+(1 - nri)Ga(a \ aa + K - l,ba - log77), 

where, 
7 T „ aa + K - 1 

1 - irn n(ba - log 77) 

(e) Update hyperparameters of Go- Simulate from the complete conditional posterior 

distributions, 

P(t0\K,f3*1,...,(i*K) = Ga{t0 

K 

at0 + Ks0, bt0 + s/j /3JE J . 
k= 1 ) 
K \ 

ats +Kss,bts . 
fc=i 

p(ts\K,5l,...,6*K) = Ga ^ 

(f) Finally, update fa and the hyperparameter 

p{Hi | N , t„,(3i, Si) = Ga{ni | Na + Ni2 + Ni3 + Sfl, 1 + A + Si + s ^ ) . 

P{tfi I Mi,...,Mn) = Ga % +nsfl,btll+sfJ.Y(J-i 
i= 1 

In order to avoid the chain to get "trapped" we reinitialize the configuration every 

10,000 Gibbs sampling iterations with K — n getting new values for (f3\, ..., (/?*, 5*) 

by resampling from (3.4.2) without changing the values of the remaining parameters. 
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3.5 Selecting Significant Tripeptide-Tissue Pairs 

Posterior MCMC allows us to carry out essentially all posterior inference of interest. 

In particular, let N denote the observed data and pi = Pr(8i > /3,; > 1 j N) denote 

the posterior probability for increasing mean counts for peptide-tissue pair i. The 

posterior Monte Carlo sample allows easy evaluation of pi as empirical average of 

I(8i > (3i > 1) over all imputed values (Sz, Pi) in the Monte Carlo posterior sample. 

Let dj 6 {0,1} denote an indicator for reporting significant affinity for the peptide-

tissue pair i, i.e., increasing mean counts. A reasonable decision rule is to report all 

pairs with marginal posterior probability beyond a threshold: 

di* = I(Pi > t). (3.31) 

The rule d* can be justified in terms of the False Discovery Rate (FDR) concept 

(Newton, 2004) or, alternatively, as an optimal Bayes rule. To define an optimal rule 

we need to augment the probability model to a decision problem by introducing a 

utility function. Let 6 and y generically denote all unknown parameters and all ob-

servable data. A utility function ii(d, 6, y) formalizes relative preferences for decision 

d under hypothetical outcomes y and under an assumed truth 9. For example, a 

utility function could be 

u(d, e,y) = J2 di/(5i > Pi > 1) + k - d,)(l - I(6i > ^ > 1)), (3.32) 

i i 

i.e., a linear combination of the number of true positive selections dj and true nega-

tives. For a given probability model, data and utility function, the optimal Bayes rule 

is defined as the rule that maximizes u in expectation over all not observed variable, 

and conditional on all observed variables. In our case, 

d B = argmax£( ;u(d, 6, y) \ y). 
6 

It can be shown that d* arises as Bayes rule under several utility functions that trade 

off false positive and false negative counts. 
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A shortcoming of the rule d* is that it implicitly weights all true positives and true 

negatives equally (and then t = 1/2). But not all true positives are equally desirable 

to the investigators in a phage display experiment. 

Besides, the FDR criterion is a Bayes rule of the form of (3.31) when considering a 

particular utility function of the form (3.32). Under this criterion, the selected pairs 

conform the largest list such that the expected FDR (proportion of false positives in 

this list) is bounded by a quantity 0 < a < 1. The same list is obtained when choosing 

k in (3.32) such that the set of p^s greater than t :— k/(k + 1) and Ik :— {i : Pi > t}, 

satisfies: 

S : = J ] a - (1 - Pi) > 0 and S + a - (1 - Pj) < 0, for any j (£ Ik. (3.33) 
ieh 

Ji et al. (2007) selected the pairs with increasing means across the three stages 

according to the FDR-based criterion (3.31) where pi is the probability of (common) 

positive slope (across the stages 1 and 2 and 2 and 3) according to their model. It 

can be seen from the form of (3.32) that this criterion does not take into account the 

size of the increase. 

In contrast, we will use a utility function that gives weights to the pairs propor-

tional to the relative increment from the first to the third stages (i.e. 5i) if the means 

of the three phases increase, i.e., if Si > Pi > 1. 

We choose the utility function of Miiller et al. (2006) given by 
n n 

U(d, w) = ^2 diWi ~ k ~ di^Wi ~ cD> (3-34) 
i=l i=1 

where w = (wi, • • • , wn) is a vector of weights, in our application we consider 

Wi = SiI{Si > Pi> 1}; 

D is the number of pairs that we declare that have increasing means across the three 

stages of the experiment, i.e., D = d,; c > 0 represents the cost of declaring that 

a pair has increasing means; and k > 0 is such that kvjl is the cost of not declaring 

that the pair i has increasing means when indeed it really does. 
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Let rrii = E(wr | N), when maximizing the utility function, straightforward alge-

bra shows that the optimal rule is 

diB = I(fhi > c/(k+ 1)). (3.35) 

Once we have a simulated sample (/?/, 5}) , . . . , (/3™, 5 f ) of (/%, 5i) given the data. 

We can estimate rfii with 

M 

k= 1 
and then make the decision d{B. 
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3.6 A Simulation Study 

We carried out a simulation study to validate the proposed approach. We generated 

n = 2000 observations of the model described in (3.26) through (3.30), except that 

the random probability measure G is replaced by a Gamma distribution with fixed 

parameters 

Hk ~ Gaels', i.Ld. and Sk) ~ Ga(0 | sf
p, sf

0tf
0) Ga(S | s{, s{t{) (3.37) 

We set the hyper-parameters such that the expected value of fa and its variance are 

small and, besides, fa and 5Z have both mean 8 and variances 30 and 120 respectively. 

The idea behind is that fa is interpreted as the mean of the counts through the 

three stages of the pair i if there were no enrichment. Since, initially, the library 

contains a small amount of the particular tripeptide related with the pair i among 

the large number of different tripeptides, we expect fa to be small. The parameters 

Pi and Si represent the folds of the expected count values from the first stage to 

the second and third stages respectively due to the library enrichment. We allow 

these last parameters to have large variances. The Gamma parameters were set to 

s / = 3 .6 ,^ = 5/6, s j = 13/6, i j - 1/8, sf
s = 0.53 and t{ = 0.125. 

The hyper-parameters of the model described in (3.26) through (3.30) were chosen 

taking into account the same considerations and set to s^ — 1, atjl — 3, bt)1 = 2, 

S0 = Ss = 1, at0 = atg = 2.5, btg = bts = 9, aa = ba = 1. 

Saving every 10th iteration after a 10,000 iteration burn-in, a Monte Carlo posterior 

sample of size M — 5,000 was saved. We performed convergence assessment for the 

proposed parameter values to ensure that the MCMC algorithm converges well. On 

the basis of the convergence criteria in Cowless and Taylor (1996), we found that 

the Markov chains mixed very well and converged rapidly. In 723 out of the 2,000 

simulated cases it turned out that Si > Pi > 1. 

Using the FDR criterion described by equations (3.31) and (3.33), we selected the 

pairs such that, under the assumptions of our model, the expected false discovery 
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rate was 0.2. This implies that the expected False Negative Rate (FNR, proportion 

of false negatives, relative to the total number of unselected pairs) was 0.117. We 

declared that 715 pairs had increasing means across the three stages. Of them 578 

really did. The observed FDR and FNR were 0.192 and 0.113 respectively. 

Selecting the pairs according to the utility function (3.34), with c / (k + 1) = 8, we 

declared that 722 pairs had increasing means. Of them, 575 actually exhibited this 

pattern. The expected values of the FDR and FNR were 0.206 and 0.117 respectively. 

The observed values of these quantities were 0.204 and 0.116 respectively. The number 

of pairs chosen by both methods was 688. 

Our model is a particular case of a Dirichlet Process Mixture model. MacEach-

ern and Miiller (1998) mention that if the data follows a distribution according to a 

Dirichlet Process Mixture model, the predictive final distribution of a future obser-

vation matches with the posterior expected value of the density that generated the 

data. Thus, the true distribution of the data can be estimated from a (simulated) 

sample of future observations. This is, averages over the values of the expression 

(3.17) evaluated at the values of the posterior simulated configurations ((/?*, <5*, </?, k). 

We employed this method to simulate a sample of a future observations of /3 and 

5. In Figure 3.4, we compare the histograms of this simulated sample with the true 

distribution. 
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p future 

o I 1 1 | 
0 5 1 0 1 5 

5 future 

Figure 3.4: Histograms of a simulated sample of future observations of (3 and 5. They 

estimate the true probability density function (continuous line) of the distribution that 

generated the data 
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3.7 Results 

In this section we present analysis and results by applying the proposed method to 

the phage display data described in section 3.3. 

The parameter values in our proposed priors are elicited by consulting with the 

investigators. The values of the hyper-parameters are the same as the ones used in 

the simulation study. The parameter in is interpreted as the expected counts if there 

were no enrichment of the library of tripeptides at every stage and this is the case 

for the first stage. We assume that most of the phage counts are small in the initial 

state. Therefore, we set the expected value for the first stage counts fXi to 0.1 and its 

variance to 0.03. We do not assume any knowledge of the means increment between 

the first and the second stage (in terms of and between the first and the third 

stage (in terms of Si). We center these values around 6 allowing for a large variance 

equal to 180. 

We obtained a Monte Carlo posterior sample of size M = 5,000 storing the values 

of the imputed parameters every ten iterations after a burn-in of 10,000 iterations. 

Analogous to the simulation study, we performed convergence assessment for the 

proposed parameter values to ensure that the MCMC algorithm converged well. We 

found that the Markov chains mixed very well and converges rapidly. 

Table 3.1 shows the 30 pairs with highest values of m*, i.e the pairs chosen accord-

ing to the optimal rule (3.35) with a threshold value of seven. Figure 3.5 depicts these 

pairs. We notice that there are some pairs, such as, the tripeptide ARF in the tissue 

fat, that present a small posterior probability of increasing means, p,, that would not 

be selected according to the decision rule (3.31) but that are selected when using the 

decision rule (3.35). 

Using the optimal rule (3.35), with a threshold value of one, 219 tripeptide-tissue 

pairs are selected. Figure 3.6 highlights these pairs. This criterion selects the pairs 

clearly having high increasing counts across the three stages. Over some pairs with 

nondecreasing counts, in agreement with its related utility function (3.34), the cri-
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terion chooses pairs with an oscillating count pattern but with a substantially large 

increment from the first to the second stages or from the second to the third stages. 

Besides, it picks pairs that have small counts over the three stages but with a large 

increment in the second or/and third stage count in comparison to the previous count. 

On the contrary, there are some other pairs that despite having relatively large and 

nondecreasing counts over the three stages are not selected; the selecting method is 

detecting that this event happens because the corresponding tripeptide has a large 

base-line count to start with and not necessarily a strongly binding behavior to the 

respective tissue. The expected values of the FDR and FNR are 0.534 and 0.089 

respectively. Due to space limitation these pairs are not listed in this manuscript. 

In Figure 3.7, we plotted the histograms of the simulated samples of the posterior 

distributions of fa and Si for three specific pairs. We notice that the bimodal behavior 

of the first two pairs considered in this plot cannot be detected by the parametric 

version of our model. The third pair is an example in which there is no statistical 

evidence of an increasing pattern (since fa < 1). Nevertheless, the decision rule (3.35) 

tends to pick this pair due to its large count observed at the third stage. 
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Stages 

Figure 3.6: Respectively, (a) and (b) nondecreasing and oscillating observed tripeptide-

tissue pair counts across the three stages. In red the 219 selected pairs using the optimal 

rule (3.35) with a threshold value of 1. 
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Tripeptide AGR in bone marrow. 

-1 1 
0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Tripeptide DGL in fat. 

—I 1 
0.5 1.0 1.5 2.0 2.5 

Tripeptide FGR in muscle. 

Observed counts: 7 ,11 and 14. 

J 
-1 r-

Observed counts: 5, 2 and 2. 

~T 1 1 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Observed counts: 5, 3 and 168. 

Figure 3.7: Histograms of simulated samples of the final distribution of the parameters fa 

and 6i for three specific pairs. 
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Table 3.1: Considered tripeptide-tissue pairs by using the rule (3.35) with a threshold 

value of 7. The expected values of FDR and FNR are 0.337 and 0.113 respectively. 

Pairs considered: 30. 
Tissue Tripeptide Stage 1 Stage 2 Stage 3 rhi Pi 
BM AAR 2 6 96 12.19 0.56 

BM FGI 0 2 12 7.90 0.63 

BM FGR 3 11 101 18.17 0.96 

BM GFR 5 8 110 15.51 0.76 

BM GGH 3 4 70 10.97 0.53 

BM GGM 5 13 72 15.32 0.98 

BM GWG 4 6 72 15.69 0.82 

BM GWS 1 3 21 11.59 0.76 

BM QGS 0 3 15 10.15 0.77 

BM QGW 0 2 13 9.10 0.66 

BM RPR 0 1 13 9.14 0.54 

BM RTS 2 5 25 9.14 0.79 

F ARF 5 4 101 7.41 0.33 

F FGR 8 4 102 8.39 0.41 

F GFR 6 15 107 17.36 0.99 

F GGM 5 4 64 12.70 0.66 

F GHG 0 4 60 11.13 0.51 

F GRM 4 5 103 9.18 0.42 

F GWG 2 6 62 16.66 0.87 

F HGW 2 4 61 12.31 0.60 

MU GFR 7 12 171 15.97 0.78 

MU GGM 4 7 104 14.02 0.68 

MU SRT 0 3 13 7.46 0.70 

PR ARF 0 1 21 8.50 0.42 

PR ARR 4 3 44 11.92 0.66 

PR GHG 0 1 16 9.20 0.49 

PR HGW 0 1 16 9.38 0.50 

SK DVR 2 2 20 8.10 0.60 

SK GFR 9 30 183 17.34 1.00 

SK RLR 2 1 20 8.24 0.50 
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3.8 Discussion 

We have proposed semi-parametric model-based statistical inference for high dimen-

sion count data arising from phage experiments with parallel biopanning. The prob-

ability model is extended to a decision problem by adding a utility function for the 

choice of reported peptide/tissue pairs. 

Previously, Ji et al. (2007) introduced a model for the analysis of phage experiment 

data based on mouse data. Analogous to their model, ours takes into account the 

correlation that exists between the different stages and detects the tripeptides that 

tend to bind with a specific tissue. Since there is just one observation across the three 

stages for every tripeptide-tissue pair, we need to impose a hierarchical structure that 

allows us to borrow information of all the pairs in order to make statistical inferences 

of the behavior of one in particular. A visual inspection of the human data, such 

as the one presented on Figure 3.3, shows the existence of pairs with oscillating 

counts and the presence of outliers. This indicates that the log-linearity of the means 

assumption on the model proposed by Ji et al. may not be appropriate in this case. 

In order to avoid an inference than can be misled by outliers, we require a more robust 

model against them. These two phenomena are taken into account by our model, the 

first by the specific structure of it and, the second, taking advantage of our larger 

data set, by its nonparametric nature. In addition, the model we proposed has an 

easy interpretation of the parameters at the upper level of the hierarchical model: 

Hi is the mean counts of the tripeptide-tissue pair i if there were no enrichment of 

the tripeptide library at every stage, while fa and 5i are the folds of these counts 

at the second and third stages respectively due to this enrichment. Moreover, this 

parametrization allows an easy description of the phenomenon we are interested in-

the increasing mean counts through the three stages- in terms of the parameters. If 

the biologists are interested in studying other phenomena involving the means, once 

we have simulated the posterior sample of our parameters, it is easy to compute the 

posterior probability of the events equivalent to these phenomena. 
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The proposed model includes random baseline means Hi to allow for variation of 

the amount of tripeptides in the original phage display peptide library. It is important 

to include such random effects. Large counts at the third stage can be explained by 

either preferential binding of a certain tripeptide, or simply random high initial count 

in the original library. The inclusion of the random baseline means allows us to 

differentiate these two cases. 

In selecting the tripeptide-tissue pairs with increasing means across the three 

stages, we face a massive multiplicity problem. Ji et al. approach this problem 

through the application of a simple Bayesian FDR, providing the investigator with an 

estimate of the error rate in the selection procedure. Their approach can be embedded 

in a decision theoretic framework where the utility function takes into consideration 

statistical significance, that is, the proportion of false positives and false negatives; 

but it does not take into account the biological significance such as the size of the 

mean increase through the three stages. Our decision theoretic approach specifically 

targets this issue through the definition of its corresponding utility function, and the 

estimation of the error rate in the selection procedure, such as the FDR and false 

negative rate, can also be computed using this methodology. Other utility functions 

can be considered. 

The nonparametric nature of our model is an improvement in sophistication over 

its parametric version. Nevertheless, the MCMC simulation scheme of the posterior 

sample is straightforward. The posterior distribution of any parameter given the rest 

can be derived directly and has an analytical expression due to the use of conjugate 

families. The computing time necessary to generate the MCMC sample is relatively 

short. 

The simulation study we performed was satisfactory. If the data is generated 

according to the parametric version of our model, our nonparametric model is able to 

detect the event of interest with high accuracy; the observed FDR and false negatives 

rate are close to their respective expected values. 
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When selecting 219 pairs, our model and selecting criterion were able to choose 

the pairs with high increasing counts as well as the ones with oscillating and/or small 

counts over the three stages but exhibiting large counts on the second and/or the 

third stages in relation to the previous stage count. These pairs are candidates for a 

deeper study of their binding behavior. 

In consulting with the biology investigators, they would expect a small count if 

there were no tripeptide enrichment of the library from the previous stage. In agree-

ment with its interpretation given above, we initially assume that the parameter fa is 

small by choosing a prior distribution with small mean and variance. It is necessary 

to assume a prior small variance since we have just one three-count observation for 

every tripeptide-tissue pair. The other two parameters fa and 8i can be assumed to 

have diffuse priors. 

Our model is not considering that different tissues can have different binding be-

haviors. For example, there may be a tissue that absorbs more tripeptides, or present 

different count variances. Although this problem is ameliorated considering the base-

line mean count parameter fa, the model could be improved by priori incorporating 

a correlation structure of the pairs sharing the same tissue. 



Chapter 4 

Borrowing Strength with 

Hierarchical Models over 

Non-Exchangeable Subpopulations 

4.1 Outline 

We address statistical inference in a phase II trial of sarcoma. Sarcoma is a rare can-

cer affecting connective and soft tissues (e.g., cartilage and fat). Sarcoma is a very 

heterogeneous disease with many different subtypes with widely different prognosis. 

In the proposed design we pay particular attention to the heterogeneous nature of the 

disease and the fact that different disease subtypes are related but can not be con-

sidered a priori exchangeable. We classify different subtypes by the overall prognosis 

as poor, intermediate or good. The objective of the study is to assess the efficacy 

of a new drug in patients with different subtypes of sarcoma. Let pit i = 1 ,...,n, 

denote the probability of response (defined below) for a patient with disease subtype 

i. One possible approach is to analyze the different subtypes as separate studies. 

But due to the rare nature of some of the subtypes the enrollment in n — 12 sepa-

rate studies would be way too slow. This leads us to consider borrowing of strength 

81 
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across related subtypes. This could be done with a hierarchical model consisting of 

a submodel for each disease, plus a prior distribution for pi that assumes that all Pi 

arise from some underlying common distribution p(pi | rf). The pl are interpreted as 

subtype-specific effects, and 77 could characterize an overall success probability. For 

example, one could assume logit pi ~ N(fi, r ) and complete the model with a prior 

p(fi, T). A major limitation of this approach is that it assumes that disease subtypes 

are a priori exchangeable. Formally the prior model logit pi ~ N((jl,t) is invariant 

with respect to arbitrary permutations of the indices i = 1 , . . . ,n. This is not ap-

propriate since different subtypes are not exchangeable. Disease subtypes with poor 

prognosis are known to be different from those with good prognosis. For data analysis 

conditional on a large enough data set this might be no problem, as the likelihood 

would asymptotically dominate the prior. But for design, when inference is initially 

based on very small sample sizes, such details of the prior model can matter. An easy 

fix is to replace the exchangeable model with a partially exchangeable model using 

a regression. Let x% £ (—1,0,1} denote an indicator for the subtype prognosis. We 

could assume logit Pi ~ N (fa, r ) with fa = Po+Pix^. The problem with this approach 

is that disease subtypes are grouped by overall prognosis and this grouping is frozen. 

However, while overall prognosis for a subtype is important, it is not obvious that it 

determines the most appropriate grouping. One of the eligibility criteria of the study 

is failure of prior therapy, i.e., in a sense all patients enter the study with a poor 

prognosis. 

We propose a novel approach that can be characterized as intermediate between an 

exchangeable hierarchical model and a regression. We treat the appropriate grouping 

as a random quantity, p, and define a probability model for this random partition p. 

The model is indexed with the covariates x{. Thus the model includes a priori a pref-

erence for grouping by Xi, but allows for alternative grouping as the data dictates. In 

other words, we propose a semi-parametric model that respects the non-exchangeable 

nature present in the data. 
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The rest of this chapter is organized as follows. Section 4.2 describes the mo-

tivating phase II sarcoma dataset. The non-exchangeable model is formalized and 

discussed in detail in Section 4.3. Section 4.4 reports a comparison of the proposed 

model versus several alternatives. In Section 4.5 the model is applied to the sarcoma 

data. Section 4.6 concludes with a discussion. 

4.2 Data 

A single arm Phase II clinical trial for sarcoma is carried out at M.D. Anderson Cancer 

Center. The objective of the study is to asses the efficacy of Irinotecan on patients 

with different sarcoma subtypes. Irinotecan is a water soluble and commercially 

available chemical agent that is thought to reduce the sarcoma cancerigenic tumors. 

Its Dose-Limiting Toxicity (DLT) has been measured through a Phase I clinical trial 

(Masuda et al, 2000). The DLT is defined as diarrhea and bone marrow suppression. 

The patients in this trial received the drug in cycles of 21 days, where the drug was 

administered during the first two weeks and nothing during the third one. A week 

with drug treatment consisted of 16 mg/m2 of daily injections of Irinotecan for five 

consecutive days and two days of resting. 

Treatment efficacy is measured as tumor shrinkage. More specifically, tumor sizes 

at the end of the second cycle and, if necessary, at the end of the fourth cycle were 

compared with the size at the beginning of the study. If complete (total disappearance 

of tumor) or partial responses (at least 30% shrinkage) is observed at the end of the 

second cycle, the treatment is considered a success for this patient. In contrast, when 

reporting progressive disease (20% or more increase), the trial is declared a failure. 

If none of the above criteria is met, the disease is considered stabilized. In this case, 

the tumor is measured again after the fourth cycle, and the treatment is declared a 

failure only when progressive disease is reported. 

This study is still ongoing. So far, a total of 179 patients have met the eligibility 



84 

criteria and have been recruited in the protocol. Of them, 164 participants exhibited 

one out of eight sarcoma subtypes related with an intermediate prognosis and only 15 

exhibited one out of two subtypes of the disease related to good prognosis. No patient 

with a sarcoma subtype related to poor prognosis has been reported yet. Table 4.1 

shows the available data. 

Table 4.1: Reported number of successes/trials for each one of the sarcoma subtypes. 

Intermediate Prognosis 

subtype successes/trials 

Leiomyosarcoma 6/28 

Liposarcoma 7/29 

MFH 3/29 

Osteosarcoma 5/26 

Synovial 3/20 

Angiosarcoma 2/15 

MPNST 1/5 

Fibrosarcoma 1/12 

Good Prognosis 

E wing's 0/13 

Rhabdo 0/2 

4.3 Non-Exchangeable Product Partition Model 

4.3.1 Model Definition 

Let yi and Nt respectively denote the number of successes (i.e., patients with positive 

outcome) and the total number of patients presenting with sarcoma subtype i, i = 
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1 , . . . ,n, n = 12. Denote also by p = (pi,... ,pnY the vector of success rates. Let 

p = (Si,..., Sk) denote a partition of {1 , . . . , n} into K clusters Sk, k = 1 , . . . ,K, 

i.e., { 1 , . . . , « } = Sk and Sk H Sk> = 0 for k ^ k'. Let xn = {xlt... ,xn} the set 

of values of the ordinal covariates. We assume that all disease subtypes in the same 

cluster have similar success rates. More specifically, the logits of the success rate with 

indices in the cluster k are drawn from the same normal distribution with mean Q*k. 

The partition p is equivalently characterized by cluster membership indicators <pi, for 

i = 1 , . . . , n with tpi = k if i £ Sk. We use p or (tp, K) interchangeably. 

We assume the following model (NEPPM): 

Ui | Pi ~ Bin(ph Ni) 

logit(pi) = ei ^N(ei,Tv), for i £ Sk 

N(0,re), for k = l,...,K and p~p(p\xn), (4.1) 

The definition of p(p \ xn) will be discussed below. Here, N(m, s) denotes the normal 

distribution with mean m and precision s. We fix rp = 18 such that the ratio of 9n 

and 0i2 for any two i\, in the same cluster is between 1/2.5 and 2.5 with probability 

0.95. We fix Tg = 1/4. This value allows for sufficiently spread out values of 0*k) 

and thus PiS. The model defines a compromise between an exchangeable hierarchical 

model, separate models and a partially exchangeable hierarchical regression model. 

To define the model p(p) we resort to the product partition models (PPMs) (Harti-

gan, 1990; Barry and Hartigan, 1993) ) The idea is to construct a probability distribu-

tion p(p-n) on the space of partitions of {1 , . . . , n}, by introducing a cohesion function 

c(A) > 0 for every A C {1 , . . . , n}, measuring how tightly grouped the elements in A 

are thought to be. A product partition model is defined as 
1 K K 

p(pn = (Si,...,Sk)) = -Hc(Sk), p(yn I Pn) = nP(Vi •• i e Sk), (4.2) 
fc=i fc=I 

Model (4.2) is easily seen to be conjugate. A remarkable connection between PPMs 

and the Dirichlet process (DP) (Ferguson, 1973) is pointed out, for example, in Quin-

tana and Iglesias (2003) and Dahl (2003)). The DP is discrete with probability 1 and 
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the distribution on partitions induced by ties corresponds to a PPM with cohesions 

c(Sk) = cn x — 1)!. Here denotes the cardinality of a set A and a is the total 

mass parameter of the DP prior. 

A feature of the PPM induced by the DP is that it is a priori exchangeable with 

respect to the experimental units, which makes it inadequate for our application. 

We now define a non-exchangeable PPM (NEPPM). In particular, applied to the 

clustering of disease sub-types {1, . . . ,n} we define a model that increases the prior 

probability of any two subtypes i and i! with equal prognoses x% = xy to cluster 

together. 

In general, we define a probability model for random partitions of experimental 

units {1 , . . . , n} with categorical covariates x.t € { 1 , . . . , Q} such that clusters with 

homogeneous covariates are encouraged a priori. 

We define 
K 

Pr(pn = (Su .. , ,S K ) ) <x[]c(5 f c) , where c(Sk) = cD(Sk)d(Sk), (4.3) 
k= 1 

Co(Sk) = a (#Sk — 1)! is the cohesion induced by the DP and 

Here Q is the number of different categories, rrikq the number of experimental units of 

category q in the cluster Sk and 7 is a nonnegative constant, common to all cohesions, 

that gives strength to the cohesion of homogeneous clusters. We refer to d(Sk) as a 

"similarity function." It serves the purpose of increasing the probability of forming 

clusters with more homogeneous covariate values Xi, i £ S\- The higher the value 

of 7, the stronger the prior emphasis on homogeneous clusters. More homogeneous 

clusters Sk have larger d(Sk). In our specific application, we have Q = 3 prognoses, 

and rrikq for q = —1,0,1, are, respectively, the numbers of sarcoma subtypes with 

poor, intermediate and good prognosis in the cluster Sk. As desired, the resulting 

prior probability model is non-exchangeable. 
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Let fk(pn) denote the predictive probability (PP) function , i.e., the conditional 

probability of a hypothetical new (n + 1)—st unit being allocated to cluster k, condi-

tional on pn, Let K(n) denote the number of clusters in pn. We find 

^ . ^ m J ^ W for 1 < k < K(n), (45) 
C^Sk> \a/Qi for k = K(n) + 1. 

where xn+\ = I is the category of the new experimental unit and c(0) := 1. In the 

context of our application is the prognosis for subtype i. Posterior simulation 

follows a simple modification of standard Gibbs-sampling schemes for DP or PPM 

models, as described in, e.g., MacEachern and Miiller (1998) or Quintana (2006). See 

further details in the Appendix. 

4.3.2 Some Properties of the N E P P M 

The proposed model reduces to the DP Polya urn when all Xi are equal, i.e., Q = 1. 

As a consequence the NEPPM reduces to a DPM. That is, if Q = 1, then, mki = #Sfc 

and d(Sk) reduces to 
A( Q \ ~ + 
d ( S k ) a m s k + p ) = L ( 4 6 ) 

Similarly, when 7 = 0 the similarity function drops out of the model and the NEPPM 

reduces to the DPM. On the other hand, the model can easily be extended for more 

complicated covariates Xi. For multiple categorical covariates one could introduce 

several similarity functions and use the product to modify the cohesion functions in 

(4.4). 

For 7 = 1 the model reduces to a special case of the model introduced in Miiller et 

al. (2009), using the default similarity function for categorical covariates. In general, 

they suggest to use a similarity function defined with an auxiliary probability model 

as d(Sk) = g(x*k) = 

9{xl) = / E[ q(Xi I &)?(&)<*&> 
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where x*k is the set of the values of the covariate in the cluster k, is a latent variable, 

and q(• | £k) and q(-) are auxiliary probability models. For categorical covariates x.L E 

{ 1 , . . . , Q } they introduce a vector ffc = (£ k l , . . . ,£kQ) and use q(xi = q \ £kq) = £kq 

and q(£) as a Dirichlet distribution with parameters P\,... ,PQ. We get, 

HZql3q)nqm + rnkq) 
9 [ k ) u q m ) m s k + E q p q y [ ' 

Assuming that the parameters of this Dirichlet distribution are all equal to, say, (3, 

the expression above reduces to: 

, „ nQ(3)UqnP + rnkq) 9[Xk) - mQ r(#sk + QP) 

ngr(mfc9 + l)_ Wqmkq\ 

and, when P = 1, 

<?(4) oc m S k + Q ) - ( # 5 f c + Q _ i ) ! 

This is exactly the coefficient d(Sk) in (4.4) of the definition of our NEPPM with 

7 = 1. 

The proposed model p(pn \ xn) defines a sequence of probability models across 

sample sizes n. The question arises whether the model is coherent across n. Ideally 

the model for n should arise from marginalization of the model under n + 1. Below 

we show that , in general, this is not true. Let pn = (Si,..., Sk) denote a partition 

of the set { 1 , . . . , n}. Recall the model, using the notation in (4.8) 

1 K 

p(pn = (SU...,SK) I = ^ y I | c D ( S k ) 9 ( x * k ) , (4.9) 

The normalizing constant, gn(xn), is equal to Y[k=i co(Sk)g(x*k). 

Let (pn,tpn+1 = £) denote the partition of {1 , . . . , n + 1} after adding the index 

n + 1 to the I-th cluster of pn, for I = 1 , . . . , K + 1. Then, 

Pr(pn,(pn+1 = I | xn,xn+i = q) 
P(<Pn+1 =(• | Pn,Xn,Xn+1) = - Pr(pn | xn) 

gn(xn) c(Si+) I S+&Q' 
-gn+1(x^) c(Sl) | a / Q , 

1 <1<K 

l = K + 1. 



89 

Notice that in general, 

K(n)+1 
Pr{pn\xn)+ Y , Pr(pn,<pn+1=l\xn,xn+1=q)fk(pn) 

k=l 

where fk was defined in (4.5). That is, Pr(pn | xn) is not obtained when marginalizing 

Pr(pn,<pn+1 | xn,xn+1 = q) with respect to </>„+1. 

4.4 Comparison and Operating Characteristics 

In this section we compare via simulation the performance of the proposed model vs. 

different alternative models. The comparison is in terms of bias, mean square error 

and coverage probability (CP). Later, in Subsection 4.4.2 we continue the comparison 

for the best two models by focusing on performance summaries that are relevant for 

the clinical trial design. Specifically, we will consider the probability (under repeat 

experimentation) of correctly identifying disease subtypes for which the treatment 

is not effective. Early identification of such disease subtypes is important to avoid 

exposure of patients to unnecessary risks. In the implementation of the proposed 

NEPPM model we assume that the parameter a in the definition of Co in (4.5) is 

Ga(5,0.5) distributed. Here Ga(a,b) denotes the gamma distribution with mean a/b. 

4.4.1 Competing Models 

We compare the proposed NEPPM (4.1) with the following alternative models. The 

first model entirely abandons borrowing strength across subtypes. The second model 

borrows strength, but assumes a priori exchangeable subtypes. The third model 

respects the lack of exchangeability across sub-types, but goes to the extreme of 

grouping the subtypes by the covariate, in our case prognosis, and fixing this grouping 

for the rest of the analysis. 
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Separate Models: Assume a separate model for each disease subtype. There is 

no borrowing of strength or pooling of information across subtypes. That is, for 

i = l,...,n, 

Vi\Vi~ Bin(pi, Ni) 

logit(pi) ~ N{/M,Ti) 

Hi ~ N(0,1/4) and r< ~ Ga{ 1.25,5). 

The hyperprior means match the parameters in the NEPPM model (4.1). 

Parametric Hierarchical Model: The model borrows strength across subtypes, 

but treats a priori all subtypes symmetrically. No prognosis information is considered. 

yt | p ~ Bin(pi, Nt) 

logit(pi) ~ N(H, T) 

H ~ N(0,1/4) and r ~ Ga(1.25, 5). 

The use of hierarchical models with a priori exchangeable subpopulations is a 

standard approach for many biomedical inference problems that require borrowing of 

strength across subpopulations. 

Hierarchical with Logistic Regression Model (HLRM): The HLRM as-

sumes partial exchangeability by fixing the success rates as a logistic regression on Xi, 

the overall prognosis of disease subtype i. In other words, p is fixed as the grouping 

determined by the prognosis covariate. There is no learning about the partition. 

yi | p ~ Bin(pi, N ) 

logit(pi) ~ N(P0 + Pixu t ) 

(A,, A)4 ~MVN(0, / 2 /4) , (4.10) 

where the precision r is fixed to r = 18 like in (4.1). 
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Table 4.2: Simulation truth pi under five alternative scenarios 

scenario good intermediate poor 

Ni 

SO 

6, 6, 8 40, 40, 30, 20, 20,10 7, 7, 6 

.59,.55,.47 .45,.4,.36,.34,.3,.26 .23,.19,.17 

.28,.26,.24 .18,.16,.15,.17,.2,.19 .12,.13,.10 

.28,.26,.18 .24,.16,.15,.17,.10,.19 .12,.20,.10 

.40,.45,.35 .15,.10,.15,.12,.10,.10 .45,.35,.40 

.30,.40,.15 .20,.10,.30,.20,.15,.12 .15,.40,.30 

SI 

S2 

S3 

S4 

The covariate x̂  is equal to —1,0 or 1 when i indexes a sarcoma subtype with 

poor, intermediate or good prognosis, respectively; MVN(/z, A) is the multivariate 

normal distribution with mean /j, and precision matrix A; and 12 denotes the 2 x 2 

identity matrix. The precision matrix for the vector of regression parameters is chosen 

to match the hyperparameter means in (4.1). 

In the comparison, we consider n = 12 different experimental units (sarcoma 

subtypes) with a categorical covariable xt with values -1 (poor), 0 (intermediate) and 

1 (good). Each simulated trial realization consists of n independent observations 

yi ~ Bin(pi,Ni) with success rates fixed at an assumed simulation truth, and fixed 

sample size N{. We use N{ = 6,6,8,40,40,30,20,20,10,7,7 and 6, respectively. The 

first three subtypes have poor overall prognosis, x, = — l , i = l , . . . , 3 . The last three 

subtypes have good prognosis, x, = 1, i — 10 , . . . , 12. The remaining six subtypes 

have Xi = 0. The sample sizes Nt are chosen to match the expected accrual under 

the 12 sarcoma subtypes in the motivating phase II sarcoma trial. For the simulation 

truth on pi we consider five scenarios, SO through S4, summarized in Table 4.2. 

Scenarios SO and Si favor the HLRM model. The grouping by prognosis is perfect 

and the monotonicity assumption implicit in the HLRM is satisfied. The remaining 

scenarios represent varying levels of mismatch between prognosis and true success 
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probabilities and violations of the monotonicity assumption of the HLRM model. In 

S2, monotonicity is overall satisfied but the grouping by covariates is not perfect. In 

S3 the grouping is perfect but monotonicity violated. Finally, in S4 both, grouping 

by covariates and monotonicity are violated. 

We generated M = 200 repeat simulations of the entire trial under these five 

scenarios (the match of M — 200 with Ni is coincidence). For each simulation 

m — 1 , . . . , 200, and for each i = 1 , . . . , n, we estimated by the posterior mean p 

We evaluated bias and mean square error by 

i.e., we use Monte Carlo averages to evaluate the (frequentist) means with respect to 

repeat experimentation. For scenario SO, we estimated the three models described 

earlier in this section plus two versions of the proposed NEPPM, once with 7 = 1/2 

and once with 7 = 1 in (4.4). The comparison of all these models is summarized 

in Figure 4.1. In terms of MSE, the two version of the NEPPM perform similarly. 

The HLRM (4.10) produces the estimators with the lowest values of the MSE. This 

is to be expected since scenario SO strongly favors HLRM. The NEPPM and HLRM 

perform better than the remaining models because they are the only ones that borrow 

strength across sarcoma subtypes and acknowledge the similarity of the success rates 

corresponding to the same prognosis. Figure 4.2 compares the CP of the central 95% 

credible interval (CI) under the HLRM vs. the NEPPM with 7 = 1. The HLRM has 

low CP for the subtypes with lowest and largest intermediate prognosis success rates. 

This is due to the fixed grouping of all intermediate prognosis subtypes, leading to 

excessive shrinkage for the subtypes with x, = 0 with lowest and highest true pt. The 

HLRM model does not allow any change or weighting of the grouping. 

Figure 4.3 compare NEPPM vs. HLRM under scenarios S1-S4. In scenario SI the 

HLRM performs overall better than the NEPPM. Scenario S2 is the same as Si but 

swapping in the simulation truth one intermediate (p8) for a poor prognosis success 



93 

0.12 -

0.10 -

0.08 -

CO 
CQ 0.06 -

0.04 

0.02 -

0.00 -

0.035 

\ s 
V \ 

% \ 

•c • * n 
Vf ' 

\ 

s I • 

\ k \ \ 

V \ 
\ \ 

w 

• 1 / / , / 
' / 

> / 
/ 

y • 
/ \ * 

' p - ' / / \ ® ' V rf . * 
/ f \ 

/ / 

V 

• 4 

\ / 
W 

0.030 -

0.025 

LU 
C/) 0.020 

0.015 -

0.010 -

0.005 -

x ' V 

~ i — r 
O) 

n r n — r 
(O co co 

" i — r 
in r̂ -co OJ co CM 

o -a- 05 in 

Simulation true success rates 

Figure 4.1: Comparison of the estimated success rates under the four models under 

SO. The horizontal axis shows the n = 12 success rates under the simulation truth 

So- The upper panel shows the absolute bias. The lower panel shows mean squared 

error. Both are arranged by true The five lines and labels correspond to the 

models NEPPM with 7 = 1 [1], NEPPM with 7 = 1/2 [2], parametric Hierarchical 

[3], HLRM [4] and separate [5] models. 
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rate (pn) and another intermediate (p7) for a good prognosis success rate (p3). Figure 

4.3 (b) shows that the HLRM fails to accurately estimate the swapped probabilities. 

The fixed grouping (by covariate) is inappropriate for these subtypes, leading to poor 

estimates of the corresponding success rates. Scenario S3 favors the NEPPM. The 

grouping is exact but the monotonicity assumed by the HLRM is violated. Figure 4.3 

(c) shows how the NEPPM outperforms the HLRM in this scenario. The success rate 

estimates under the NEPPM have the favorable bias and MSE. The HLRM performs 

poorly in terms of CP even for the intermediate prognosis success rates in subtypes 

with large sample sizes N.In S4 the grouping by prognosis is inappropriate and 

the monotonicity assumption of the HLRM is violated. As Figure 4.3 (d) shows, the 

NEPPM performs better than the HLRM in this scenario. 

4.4.2 Average Sample Size and Stopping Probabilities 

We continue the comparison of NEPPM versus HLRM. We now focus on summaries 

that are relevant for early stopping for futility. We will accrue patients by cohorts of 

10. We will stop recruiting patients for sarcoma subtype i and cancel the i-th study 

arm if 

Pr[pi > 0.175 | data so far] < 0.10. (4.11) 

Already accrued data for canceled study arms will continued to be used in the infer-

ence for other sarcoma subtypes, i.e., it remains part of the data set. 

For both models we continue to use the same hyperparameters as in the previous 

section. The (maximum) sample sizes Ni, i = 1 , . . . , n, remain as before. The best 

model should accrue the smallest number of patients in study arms for which the 

treatment is inefficient, that is when the success rate pi is less than 0.175. 

Results are summarized in Figure 4.4. Each panel reports the average number of 

patients in each study arm (Ni), and for each study arm, the probability of early stop-

ping (p j . Like the reported bias and MSE in the earlier comparison, both summaries, 

Ni and pz, are with respect to repeat experimentation, i.e., they are an expectation 
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Figure 4.3: Scenarios SI through S4. Panels (a) through (d) summarize simulation 

under scenarios Si through S4. Comparison of the estimated success rates under 

the NEPPM (star "*") vs. the HLRM (circle "o"). The horizontal axis shows the 

n = 12 true success rates under the assumed scenario. The upper, medium and lower 

panels show absolute value of the bias, mean square error and coverage probability of 

the central 95% credible interval, respectively. All are arranged by subtype. Under 

SI (panel (a)), from left to right, the first three success rates correspond to poor 

prognosis (Xi — —1), the following six to intermediate (xl = 0) and the last three to 

good prognosis (x^ = 1). The point sizes are proportional to the sample size N. 
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and a probability with respect to repeated simulations. 

Recall that scenario SI favors the HLRM. In particular, the success rates are or-

dered according to prognoses as assumed by the HLRM. Not surprisingly, the HLRM 

outperforms NEPPM for the subtypes with few patients. The implicit monotonicity 

assumption and the fixed grouping (which happens to match the simulation truth) 

greatly improve inference for these subtypes. The early stopping probability for sub-

types with poor prognosis is (correctly) high and is low for subtypes with good prog-

nosis. In contrast, under S2 there is no clear winner. See Figure 4.4 (b). The HLRM 

is overall more aggressive in the sense that it leads to higher early stopping proba-

bilities. But it does so even when the treatment is effective (i.e., pi > 0.175). We 

observe similar summaries under S3. Figure 4.4 (c) indicates that the HLRM stops 

earlier, across study arms, including those with pi > 0.175. Finally, Figure 4.4 (d) 

shows comparable average sample sizes under S4 for both models. 

In summary, we gain precision when incorporating the information of the covari-

ates in the model and the covariates have predictive power. Among the 5 competing 

models considered in Section 4.1, the partially exchangeable HLRM and the NEPPM 

with random partitions show the best overall performance. Comparing these two 

models directly, when the assumed true success rates are monotone increasing with 

respect to prognosis, then the HLRM is optimal in terms of bias, MSE and coverage 

probability. However, if the assumed simulation truth does not match the grouping 

by prognosis x̂  or the monotonicity is violated, then the NEPPM performs better. By 

its nature, the HLRM introduces strong prior beliefs about the similarity of the suc-

cess rates. The model groups subtypes by Xj, and allows no modification of this fixed 

clustering. Inference is precise when these beliefs happen to be right. In contrast, 

the NEPPM introduces similar beliefs, but allows for uncertainty. The model allows 

the data to speak and correct the clustering in case the prior beliefs were inaccurate. 

In terms of early stopping probabilities, the HLRM tends to stop study arms earlier 

than the NEPPM. In all but SI where HLRM wins, there is not is a clear winner 
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Figure 4.4: Si through S4. Panels (a) through (d) show the average number of 

patients (Ni) and early stopping probabilities (Pi) under scenarios Si through S4. 

Both summaries are with respect to repeat experimentation. Summaries are arranged 

by the simulation truth P i , shown on the horizontal axis. In each panel, the upper 

part shows the average number of patients Ni that enter into the study for each 

arm. The lower part shows the early stopping probability (Pi). The stars ("*") show 

summaries under the NEPPM. The circles ("o") show summaries for the HLRM. The 

character size is proportional to Ni} the maximum sample size for each subtype. 
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model. 

4.5 Results 

We implemented inference for the data described in Section 4.2 using the proposed 

non-exchangeable partition model 4.1 with 7 = 1 . The parameter a of the Dirichlet 

process associated with the probability in the space of partitions of the space of indices 

was assumed to be Ga(5,0.5) distributed. 

Saving every 10t/l iteration after a 10,000 iteration burn-in, a Monte Carlo posterior 

sample of size 10,000 was saved to estimate the success rates. The Markov chain mixed 

well.Both the central 95% credible intervals and the 5% percentile of the success 

rate pi for each sarcoma subtype in the study are shown in Figure 4.5. Only for 

Angiosarcoma, Synovial and MFH we find posterior probabilities greater 95% that pi 

is greater than 0.1. 

4.6 Discussion 

We proposed an approach to borrow strength across non-exchangeable subpopula-

tions. The usual approach to borrow strength across subpopulations is through hier-

archical models, perhaps one of the most successful Bayesian approaches in biomedical 

data analysis. In a hierarchical model, the estimation of any subpopulation-specific 

effect borrows the same amount of strength from all observation in other subpop-

ulations. In a partially exchangeable hierarchical regression model inference bor-

rows strength across all subpopulations that are grouped together in some fixed a 

priori grouping by covariates. In contrast, the proposed model introduces the non-

exchangeability only stochastically, with random partitions, through the prior distri-

bution and the estimation of subpopulation-specific effects p̂  borrows more strength 

from the subset of observations, that according to our prior beliefs, are exchangeable 
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Figure 4.5: Central 95% credible intervals for the success rates of the treatment in the 

sarcoma subtypes in the study when applying the proposed NEPPM with parameter 

7 = 1. Right square bracket marks the 5% percentile. The upper two and the rest 

CI's correspond, respectively, to the two and ten sarcoma subtypes with good and 
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with the observation i. The proposed model is robust in the sense that it allows the 

data to speak and correct prior assumptions when the prior beliefs happen not to be 

confirmed by the data. However, the precision of estimates under the proposed model 

can be lower than under a partially exchangeable hierarchical regression because in-

ference has to account for the uncertainty in the grouping. This was confirmed in the 

simulation study. The proposed model performed better when the prior beliefs were 

not matched by the simulation truth. 

The proposed model is useful when sample sizes are small in some subpopulations. 

With large samples in all subpopulations, a separate model for each subpopulation 

could be considered. However, small samples are usually the case in early phase 

clinical trials. In particular due to the rare nature of the sarcomas studied in the 

motivating phase II clinical trial borrowing strength is essential to obtain precise 

estimations. 

The proposed model included a novel distribution over random partitions that 

gives increased a priori weights to homogeneous partitions. The additional compu-

tational effort compared to a conventional Polya urn (induced by a Dirichlet process 

mixture) is minimal. Depending on the application, in principle any sampling model 

and any distribution for the cluster-specific effects can be considered. The proposed 

model is a particular case of the more general PPMx model introduced in Miiller et 

al. (2009). Their model uses covariate information to change the prior probability of 

clustering. They consider continuous, ordinal and nominal covariates. 

In summary, we have proposed an easy to implement model to borrow strength 

across non-exchangeable subpopulations. The approach compromises between bor-

rowing too much strength (such as the hierarchical regression model) and no borrow-

ing at all (such as separate models for each subpopulation). The proposed model is 

suitable to estimate the success rates in the motivating sarcoma trial presented here 

by borrowing strength across the different subtypes of the disease. It considers a pair 

of sarcoma subtypes to be a priori likely to be exchangeable when they are related 
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with the same prognosis. 

Appendix 

Gibbs Sampling Scheme 

Any set of imputed parameters 9\,...,9n corresponds to a partition p = (Si,..., Sk) 

of the indices { 1 , . . . , n } . Let 9\,... ,9*K the unique values in the sample in order of 

appearance and define Sk = {i 9i = 9*k]. 

Consider the Dirichlet process mixture model (Antoniak, 1974) in (3.9). Let 

d~l — (0i,..., 0i-i,9i+i,... ,9n) denote all values but Let K~l be the number of 

unique values in 0~ l, let 9\~l,..., 9*Klt be these different values in order of appearance 

and p~l be the partition implied by 9~l. Use equation (4.5) with the n—1 observations 

and let the observation i be the future observation (exchangeability allows us to 

permutate the indices) to get: 

K-I 

p[0i I < n = fK-Hi(P~l)9o(9i) + Y V<(0 i ) , 
k=1 

where 5X is a pointmass at x and g0 is the pdf corresponding to Go- Therefore, 

V{0i\e-i,yn]<xp[yn\0i,O-i\p[0l\e-i) 
K 

<i=i 
fK-i+iip-^Gofr) + J2f*(P~i)6er(di) 

k=I 

cx v\Vi I diUK-Hiip-^Gotfi) + Ytf"(p~i)p[yi I 
k=I 

Using (4.5) we get: 

p[9i | 0-\yn] oc ^p[Vi | 0,]Go(*i) + £ # S f c ( ^ f ^ Y P h I 

where I is the value of the categorical covariate (in our particular, the prognosis) 

corresponding to the ith experimental unit (patient). 
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Observing that 

V(yi I 0i)G„(0i) = 
p(Vi | ^)go(gj) 

p{y%) 
•p(Vi) = P(0i I Vi) JP(Vi I e ) 

we get that with probability : = a/Qy x f p(yt \ 9) dd, 9i is a new observation from 

Consider the DPM Gibbs sampling scheme (MacEachern and Miiller, 1998 and 

Neal, 2000), described in Subsection 3.2.3, with a Dirichlet process with total mass 

parameter a and base measure Go- In this scheme, 9i is set equal to 8*k~l with 

probability q^. :— p(6i\yi)- In contrast, we will set 9t equal to 9]with probability 

The expression above has an important practical implication. Assume we have 

code for posterior simulation under the DP prior with parameters a and Go. Only a 

slight modification in the predictive probability function, i.e., in Pr[9i = 9*k \ 0~l, yn], 

of the Dirichlet process is necessary to implement posterior simulation under the 

proposed 

nonexchangeable product partition model. 

In the implementation of the NEPPM in (4.1) the normal prior for 91 in model 

plays the role of G0 in the algorithm described above. Besides, we assume a gamma 

distribution for the DP total mass parameter a . To do so, we use the model augmen-

tation with a latent Beta random variable proposed by West (1992) (step (d) of the 

Section 3.2), to implement posterior inference for a. 

PiVi 10<). 



Conclusion 

In this thesis I have presented three research projects using non-parametric Bayesian 

model-based statistical inference for biomedical data. The common themes of these 

analyses are flexible statistical models and a refinement of previously published para-

metric analyses for similar datasets. Some limitations remain. 

In the second chapter, I introduced a model to analyze adverse event data gathered 

in a phase III clinical trial. Each data record consists of the observed grades of seven 

different adverse events exhibited by a patient (including grade 0 for adverse events 

that were not recorded for the patient). To my knowledge, this approach is the first 

model-based inference that accounts for and assesses the very plausible correlation 

of the grades of the adverse events exhibited by the same patient. Besides, the 

proposed model is more flexible than standard models for ordinal data in the sense 

that it is able to fit cell probabilities (i.e. the probability that a patient exhibits 

certain adverse event at a determined level) that do not necessarily satisfy the parallel 

regression assumption. The parallel regression assumption is the probit version of the 

proportional odds assumption for the logit model. The data structure in this problem 

is very common in other applications, for example in a survey where each question has 

an ordinal outcome and it is expected that the answers given by the same respondent 

are correlated. The implementation of the model presents one difficulty. The latent 

variable that determines the ordinal outcome is distributed according to a mixture 

of normal distributions. Determining the correct number of components, G, in this 

mixture is not trivial. We empirically explore different values of G and make a 

104 
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recommendation. Another approach is to make G random by using, for example, 

reversible jump. This would greatly complicate inference. Since the parameter G is 

not of primary interest we did not pursue this direction. The model has two more 

limitations. First, we showed that for any given set of toxicity probabilities under 

placebo (x — —1), there exists a mixture of normal densities that can represent 

these probabilities as the area under the curve in the (fixed) intervals (9k, 9k+1]. The 

model assumes that by a simple shift of this mixture on the horizontal axis we can 

represent the toxicity probabilities under treatment (x — 1). Second, a univariate 

parameter, the patient-specific random effect, models the dependency of the different 

toxic grades reported by the same patient. This implies, in particular that toxic 

grades are positively correlated. For the particular application this is appropriate. 

Nevertheless, in general, a scalar patient-specific random effect may not be sufficient 

to model the correlation structure across adverse events. A possible solution is to 

consider a multivariate patient-specific random effect. Modifications of the model to 

analyze data with different dependence structures could be studied. An example is 

mentioned in the discussion section of the second chapter. It considers the analysis 

of repeated toxicity measures of the adverse events in the same patient. 

In chapter 3, I introduced a semi-parametric model to analyze the outcome of 

multistage phage display experiments with humans. The aim of the phage display 

experiment is to identify peptides that bind with high affinity to specific tissues. That 

is, the objective is a list of peptides binding to specific tissues. The particular ex-

periment considered has three stages. For every peptide-tissue pair, we only have 

one observation: the triplet of counts in the three stages. The hierarchical structure 

of the model allows borrowing strength across all pairs. The binding behavior of a 

peptide is reflected by the event of having increasing mean counts across the three 

stages. The model allows a biological interpretation of the parameters and an easy 

representation of the event of increasing mean counts. Besides, the model is math-

ematically tractable. The MCMC simulation is straightforward due to the use of 
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conjugate families. A simple inspection of the data suggests that there are outliers. 

The semi-parametric nature of the model allows for possible heterogeneity of the data 

and robustifies inference. A limitation of the model is that it assumes all pairs to be a 

priori exchangeable. Instead, a more realistic model should assume that the peptide 

A in tissue T is more likely to behave similar to the same peptide A in other tissue 

or similar to any other peptide in the same tissue T. 

In the same chapter, we propose an inference from a decision theoretic point of 

view. At the moment of selecting the list of pairs to report to the biologist collaborator 

for further research and interpretation, we face a massive multiplicity problem. For 

each peptide/tissue pair we are testing the alternative hypothesis of increasing means. 

The most commonly used multiplicity adjustment is Bonferroni's Criterion. This 

procedure works well for testing few hypotheses, but it is too conservative when 

the number of hypotheses is very large. A more recent method to address massive 

multiplicity problems is by controlling the (frequentist) False Discovery Rate (FDR). 

FDR is the expected proportion of false positives in the list of reported comparisons 

("discoveries"). We control the related posterior FDR, i.e., the posterior expected 

proportion of false discoveries. By controlling I mean establishing an upper bound 

on the posterior expected FDR while maximizing the number of reported pairs in 

the list. This Bayesian procedure can be characterized as a Bayes rule under a 

utility function that considers statistical significance. But the utility function ignores 

biological significance. That is, it only takes into account whether or not the pair has 

(significantly) increasing counts, but ignores the size of this increase. This observation 

leads us to consider an alternative FDR that does account for biologic significance, 

simply by modifying the underlying utility function. 

In chapter 4 I address inference for non-exchangeable experimental units. The 

motivating application is to a clinical trial for rare sarcomas, including patients from 

n = 12 different disease subtypes with very slow accrual for some of the subtypes. 

A practical clinical trial design requires borrowing of strength across the disease 
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subtypes to reach any meaningful conclusion. The disease subtypes are the non-

exchangeable experimental units. In general, I consider problems when experimental 

units are grouped according to a categorical covariate, with small sample sizes in some 

groups and when the experimental units may not be exchangeable across the values 

of the covariate. In the motivating application the covariate is the overall prognosis 

for each disease subtype. Borrowing strength across the categories is necessary to 

increase the precision of inference in the small-size categories, in our case the disease 

subtypes with few patients. A standard procedure to borrow strength across sub-

populations is a hierarchical model when the experimental units are exchangeable, 

or a hierarchical regression under partial exchangeability. The hierarchical regres-

sion groups all experimental units with the same categorical covariate together and 

borrows strength across them. When the outcome is binary the model becomes a hi-

erarchial logistic regression model (HLRM). Under the hierarchical regression model 

the grouping is fixed. Inappropriate grouping induced by the covariate can lead to 

poor inference. 

I propose a semi-parametric model that is more robust against inappropriate 

grouping by considering random grouping, or partitions. The model introduces the 

covariate through the prior on the random partition. Inference for the parameter 

corresponding to the i—th subpopulation borrows more strength from observations in 

subpopulations that are with high probability grouped together with i. The data can 

correct a prior guess on the grouping when the prior (grouping) beliefs are inaccurate. 

In the same chapter I compare the proposed model with some parametric approaches. 

I compare the performance in terms of bias, mean square error and coverage probabil-

ities under different scenarios. I show that the proposed model is more robust against 

inappropriate grouping than standard approaches. Unfortunately, we could not show 

that the model is any better than the HLRM in terms of stopping probabilities and 

average sample sizes when applied in a clinical trial design. That is, the proposed 

model does not detect inefficient treatments any faster than the HLRM. The model 
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is applied to the motivating sarcoma phase II trial. The rare nature of the disease 

makes borrowing strength essential. 

The proposed model is based on a product partition model for random partitions. 

The model assigns high prior probability to partitions with homogeneous clusters. 

That is, clusters with few different values of the covariate associated to the indices 

in the cluster. The model is a particular case of the more general PPMx model 

introduced in M"uller et al. (2009). Their model considers continuous, ordinal and 

categorical covariates. In the same paper their model is applied to examples with 

ordinal and continuous covariate. To my knowledge, this is the first application of 

the PPMx model with categorical covariate. The computation burden associated with 

the implementation of this model is only slightly greater than the computational effort 

involved in inference for random partitions induced by the Dirichlet process mixture 

model (Polya urn). 

In summary, the three flexible and non-parametric Bayesian models proposed in 

this thesis are an improvement over previously used parametric models to analyze 

similar data-sets. All models can be extended and applied to other problems with 

appropriate modifications. They all have limitations and improvements are possible. 
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