
RICE UNIVERSITY 

Time-Varying Stability Analysis of Linear 
Systems with Linear Matrix Inequalities 

by 

John Wilder 

A THESIS SUBMITTED 
IN PARTIAL FULFILLMENT OF THE 
REQUIREMENTS FOR THE DEGREE 

Master of Science 

APPROVED, THESIS COMMITTEE: 

Pol D. Span^,,Profes^or, L. B. Ryon 
6hfirJB^Kgineering 

ew J/Meade, Professoi Andrew J/Meade, Professor 
Mechanical Engineering & Materials Science 

Ilinca Stanciulescu, Assistant Professor 
Civil & Environmental Engineering 

Jiann-Woei Jang, Technical Supervisor 
Principle Member of the Technical Staff 
The Charles Stark Draper Laboratory 

HOUSTON, TEXAS 
MAY, 2010 



UMI Number: 1486044 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMI 1486044 
Copyright 2010 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



ii 

ABSTRACT 

Time-Varying Stability Analysis of Linear Systems with Linear Matrix Inequalities 

by 

John Wilder 

Aerospace attitude control systems are often modeled as time-varying linear 

systems. In industry, these systems are analyzed with linear time-invariant (LTI) 

methods by treating the system as slowly varying. Stability analysis with parameter 

dependent Lyapunov functions and linear matrix inequalities (LMIs) enables the 

consideration of bounds on system parameters' rates of variation while accounting for 

time-varying behavior. The LMI criteria are adapted to predict robustness in time-

varying systems. In a case study, stability envelopes are created for time-varying 

uncertain parameters in a spacecraft. The time-of-flight is divided into intervals and 

analyzed using typical trajectories of time-varying parameters. For the uncertain 

parameter combinations considered, LMI stability criteria deduce that the system is stable 

and possesses stability margins that meet or exceed requirements for the time intervals 

that can be approximated by linear system models. 
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1 Introduction 

The objective of this thesis is to explore methods of modeling the uncertainty and 

analyzing the robust stability of linear time-varying systems such as spacecraft attitude 

control systems. Polytopic and parameter dependent methods for modeling time-varying 

system uncertainty are reviewed. The performance and convenience of multiple linear 

matrix inequality methods of stability analysis are also analyzed. Further, these methods 

are expanded to predict the robust stability of linear time varying systems using gain 

margins and phase margin approximations. The described modeling and stability 

analysis methods are applied to a case study involving a launch vehicle attitude control 

system with rigid rotation, rigid translation, and sloshing fuel included in the dynamics. 

Spacecraft attitude control systems in the aerospace industry can be modeled as 

linear time-varying systems. Most control systems must be stable throughout the entire 

time of flight. This is certainly the case in a crew launch vehicle, where instability can 

lead to mission failure and the loss of several lives and millions of dollars [1]. One 

approach to analyzing the stability of spacecraft attitude controls systems is using the 

frozen-time analysis technique, which assumes that control system parameters hold 

constant over a short period of flight time. Frequency domain methods, including 

Nyquist, Nichols, and Bode plots, ju-analysis, characteristic gain frequency, and Hurwitz 

stability criteria are then used to analyze system stability and robustness, even though 

they are intended for time-invariant systems [1][2][3][4][5]. Since a real spacecraft 

attitude control system is time-varying, the stability prediction from a frozen time 

analysis must be verified via a time varying technique. Further, Monte Carlo analysis has 

been used to check the robustness of spacecraft attitude control system. The Monte Carlo 
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screening technique, which is widely accepted as a valid analysis, can be quite time-

consuming and computationally costly due to the large number of realizations required to 

account for all possible operating conditions [1][6][7][8]. Moreover, it is still frequently 

associated with frozen time analysis. In this thesis, an alternative stability analysis 

approach is taken; a time-varying stability analysis approach is developed to predict the 

robust stability of a linear control system without the frozen time assumption. 

Time-varying stability analysis techniques have been applied to industry control 

systems for decades. One technique, commonly known as quadratic stability, is based on 

Lyapunov stability theory and assumes the time varying system can change infinitely 

fast. This method can effectively predict stability of a time-varying system; the results, 

however, tend to be conservative, meaning that a system that is actually stable for the 

tested operating conditions may be deemed unstable because of the infinite rate 

assumption [9][10][11]. In the real application, the control system parameters often vary 

slowly or at finite rates. With the rate information, Lyapunov stability criteria can be used 

to better estimate the robustness of the time varying spacecraft attitude control system. 

While available literature shows that parameter dependent Lyapunov functions provide a 

less conservative method for evaluating the stability and performance of time-varying 

systems, the application of these methods to large complicated spacecraft-type systems is 

not as well documented [11][12][13]. 

There is a need for a less conservative method of stability analysis to evaluate the 

stability and robustness of a time-varying control system. Further, the method must take 

into consideration the rate of change of the system and/or its parameters to minimize 

conservatism while still ensuring that the system is stable over the relevant time intervals. 
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The method must be applicable to several different systems and should be able to handle 

multiple combinations of uncertain and/or time-varying parameters. Finally, the method 

must be suitable for the evaluation of the robustness of a linear time-varying system in 

the form of gain and phase margins. 

This thesis seeks to review and analyze techniques that can be applied to time-

varying linear systems to assess their robust stability. For this reason it is advantageous 

to limit the number of simplifications and assumptions. On the other hand, it is necessary 

to implement a number of simplifications and assumptions that limit its scope in the 

interests of making efficient use of available tools. 

Many mechanical systems, including the launch vehicle considered in the case 

study, depend on many uncertain time-varying parameters. However, for many of the 

methods considered in this thesis, treating all of those parameters as uncertain and/or time 

varying would lead to excessive computation times and, perhaps, conservative results. 

Therefore, the thesis treats only a small number of parameters as uncertain and time-

varying at a time while holding the other parameters at their nominal, time-invariant 

values. To account for this simplification, several parameters and combinations are 

considered for each system. 

The case study used to showcase the methods discussed in the thesis features a 

numerical example of the robustness and stability analysis for a crew launch vehicle. Not 

only does this kind of system involve several time-varying parameters, but it also 

involves a complicated mathematical model representing the spacecraft dynamics [14]. 

To evaluate this case study efficiently, the following simplifications are made. 



The aforementioned launch vehicle example has the potential to feature rotational 

and translational dynamics for roll, pitch, and yaw. Roll, however, is omitted because it 

is modeled in a non-linear fashion [15]. Since pitch and yaw are assumed to be 

essentially symmetrical and negligibly coupled, only yaw dynamics is considered in this 

case study to reduce the size of the system model [1]. 

The full dynamics of the numerical launch vehicle example dictates that if 

bending motion is included, a flex filter is required to guarantee stability even for the 

nominal operating condition [1][2]. Since including this filter increases the size and 

complexity of the linear system, it also increases the required computation time for 

stability analysis. Therefore, the case study initially considers the numerical example 

without the bending dynamics and the flex filter. These parts of the system are then 

reinstated to in an attempt to apply the methods at hand still apply to the more 

complicated system even though it is more computationally demanding. 

The bending and slosh dynamics of the launch vehicle in the case study example 

are simplified in the example to only include the two largest modes. For the bending 

dynamics, these are the two bending modes with the largest nominal magnitude of 

response because they are preserved by the filter [1][16]. In the slosh dynamics, the slosh 

characteristics for the two largest fuel tanks on the vehicle are considered. 

The chapters in this thesis are organized as follows: 

Chapter 2 provides an overview of uncertain linear systems and outlines various 

methods of modeling different kinds of uncertainty in them. This includes a discussion 
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on which modeling methods are most suitable for capturing the dynamics of systems 

subject to time-varying parameters and uncertainties. 

Chapter 3 presents multiple methods for analyzing the stability of linear systems, 

based on the models featured in Chapter 2. After a discussion of the theory, a spring-

mass-damper system is used as an example of a simple mechanical linear system to 

portray the relative strengths and weaknesses of several of the stability tests deemed most 

applicable to time-varying systems. 

Chapter 4 discusses methods for extending the tools and theories in Chapter 3 to 

include stability margins as a measure of system robustness. 

Chapter 5 applies the methods featured in the previous three chapters to analyze a 

numerical case study evaluating the robust stability of a crew launch vehicle. The 

chapter commences with an overview of the relevant spacecraft dynamics and necessary 

assumptions. Initially, the bending dynamics and the flex filter are ignored to reduce the 

complexity of the system and to allow for more in-depth analysis without excessive 

computation time. The stability criteria described in Chapter 3 are applied to create 

stability envelopes for multiple time-varying parameters. The methods illustrated in 

Chapter 4 are utilized to perform a robustness analysis on the spacecraft model. 

Subsequently, bending dynamics and a flex filter are reintroduced into the system to 

create a higher fidelity spacecraft model for future analysis with similar methods. 

Finally, Chapter 6 summarizes the findings and draws conclusions from the 

results of previous chapters and suggests themes and directions for future research. 
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2 Linear Time-Varying Systems 

This chapter provides an overview of time-varying linear systems. First, the basic 

concepts of linear control systems are reviewed. Subsequently, it details different 

methods of modeling linear systems and uncertainty therein. The advantages and 

limitations of these methods concerning their applicability to time-varying systems are 

also discussed throughout. 

2.1 Review of Linear Systems 

The brief overview of linear systems presented in this section is primarily based 

on information available in [17], [18], and [19]. 

A "control system" is "an arrangement of physical components connected or 

related in such an manner as to command, direct, or regulate itself or another system" 

[17]. A control system is often defined by the relationship between its input, the stimulus 

or command applied to the system, and its output, the response to that stimulus. The 

properties of a physical system dictate the form in which the input-output relationship is 

expressed. Considering a system for which the input u^t) creates the output y^t) and 

the input u2(t) produces the output y2(t) that is initially at rest (i.e. initial conditions are 

all zero). The system is linear if the input c-^u^t) + c2u2(t) yields the output cxyx(t) + 

c2y2(t) for all constants cx and c2and inputs ut(t) and u2(t) [17]. 

Alternatively, a system is linear if the input-output relationship can be described 

by the equation, 

y(0 = .C Kt, T)u(r)dr, (2.1) 
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with the assumption again that the system is initially at rest, and y{t) is the output, or 

forced response, u(t) is the input, and h(t, T) is a function that embodies the internal 

properties of the system and quantifies the response to the impulse 8(t — T) applied at 

timer[17][19]. 

The outputs of many physical systems depend only on past and/or present values 

of the inputs. This concept, known as causality, also places a restriction on the form of 

the output. If a linear system is causal, Equation 2.1 becomes 

y(t) = f_mh(t,T)u(T)dT, (2.2) 

which is equivalent to setting h(t, T) equal to zero for T > t in Equation 2.1. Moreover, a 

linear system is finite-dimensional if the input-output relationship is characterized by a 

linear differential equation of the form 

y ( n ) (0 + SfJo1 a;(t)y ( 0(t) = E£o ^ ( O u « ( t ) . (2.3) 

In this equation, y^(t) is the ith time derivative of y(t), u^(t) is the ith time 

derivative of u(t) at(t) and b^t) are real functions representing the system behavior, n 

is the order of the differential equation with respect to y(t), and m < n is the order with 

respect to u(t). 

As suggested by the time dependence in Equations 2.2 and 2.3, linear systems are, 

in general, time-varying. A system described by Equation 2.2 is time-invariant if and 

only if 

h(t + y,T + y) = h(t,T), Vt,r ,y £ l . (2.4) 
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Likewise, a system in the form of Equation 2.3 is only time-invariant if at(t) = at and 

bi(t) = bt, for all i = 1,2, ...n — 1. 

In certain cases, it is useful to describe a system with a set of first order linear 

differential equations instead of one or more higher-order equations in the form of 

Equation 2.3. To accomplish this task, the state vector, output vector, and input vector 

are designed, and linear algebra concepts are used to develop coefficient matrices that 

represent system behavior. An n -dimensional linear system with m inputs and p outputs 

can be represented with the state model 

E(t)x(t) = A(t)x(t) + B(fi)u(t) (2.5) 

y(t) = C(t)x(t) + D(t)u(t). (2.6) 

In this system, Equation 2.5 is the state equation, Equation 2.6 is the output equation, 

A{t) is the system matrix, B{t) is the input matrix, C(t) is the output matrix, D{t) is the 

direct feed matrix, x{t) is the n -dimensional state vector, y(t) is the p -dimensional 

output vector, and u(t) is the m -dimensional input vector. Guidelines and simple 

examples on transforming linear systems into state model representations are available in 

[17] and [18]. 

In many physical systems, the time-varying nature of the matrices in the state 

model results from a dependence on one or more time-varying parameters. In this case, 

Equations 2.5 and 2.6 can be expressed as 

*(t) = A(p(jt))x(t) + B(p(t))u(t) (2.7) 

y(t) = C(p(t))x(t) + D(p(t))u(i), (2.8) 
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where p(t) is a vector of the parameters upon which the linear system depends. This 

notion of parameter dependence is considered further in the following sections devoted to 

uncertainty and modeling. 

2.2 Modeling Uncertain Linear Time-Varying Systems 

As suggested by the previous section, real world systems are analyzed by 

modeling them with one or more equations. However, equations, especially linear 

equations, cannot always capture the true dynamics of the real world system or predict 

disturbances that may affect it. While not all uncertainty can be predicted and/or 

modeled, a mathematical model that accounts for more uncertainty will yield a control 

system that is more likely to be stable and meet performance requirements in all 

operating conditions. There are many options for modeling uncertainty in a control 

system, and each lends itself to different methods of analysis. 

2.2.1 Linear Fractional Transformation 

Linear fractional transformation (LFT) is a method in which uncertainty is 

modeled as a separate system from the known, or nominal, portion of the model. It can 

be used to model several different kinds of uncertainty, and it is suitable for stability 

analysis by way of several different methods, including /^-analysis, characteristic gain 

frequency, and non-linear methods like Popov criterion [1][9][20]. 

It is common for LFT models to be portrayed with block diagrams. Figure 2.1 

shows two representations of a general LFT uncertain system model. Notice that LFT 

models can be utilized in either the frequency domain (Figure 2.1(a)) or the time domain 

(Figure 2.1(b)). 
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Figure 2.1: (a) Frequency Domain and (b) Time Domain LFT Representation 

In the figures above, the uncertain system has input, u, and output, y. P(s) and 

M represent a time-invariant transfer function and a block matrix, respectively. The 

symbol A denotes the system uncertainty, structured as a transfer function or matrix 

relating a fictitious output, z, to a fictitious input, w [21]. 

To understand how to model uncertainty using linear fractional transformation, 

consider an uncertain coefficient or parameter, p, with input, u, and output, y, portrayed 

in equation and block diagram form in Equation 2.9 and Figure 2.2, respectively. 

y = pu = (p0 + Sp)u (2.9) 

u 
Po + 6P 

y 

Figure 2.2: Block Diagram Representation of Uncertain Parameter 
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Above, p0 represents the nominal value of the parameter and Sp represents any variation 

from the nominal [1]. An equivalent LFT uncertain system model for p is shown in 

Figure 2.3. 

M 

W 

*v 

P 

z 

y 

In the LFT above, P is a block matrix representing the nominal system in the form 

of 

P = 
22, 

(2.10) 

and Ap represents the uncertainty and can take the form of a scalar or a matrix depending 

on the parameter's structure [1]. Combining the equations for z, y, and w, 

z = Pltw + P12u, (2.11) 

y = P2\W + P22U, (2.12) 

and 

w = Apz, (2.13) 

yields an alternative expression for the relationship between u and y, [22] 
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y = (.P22 + P2iAp(/ - PnAp)_1P12)u. (2.14) 

The last step for completing the uncertain system for p is to choose values for the block 

elements of P such that Equations 2.9 and 2.14 are equivalent. One example of a method 

for selecting these elements along with an example LFT model for a spacecraft can be 

found in [1]. 

A system model formed using linear fractional transformation can be a powerful 

tool for analyzing stability and robustness for many different examples of uncertain 

control systems. However, time-varying systems pose certain shortcomings of LFT. 

Since the nominal blocks must be time-invariant, time-varying elements of the system are 

generally modeled as part of the uncertainty [9]. While one of the strengths of LFT is 

that it can be used for an array of different analysis and design methods, some of the 

methods, such as /i-analysis and characteristic gain frequency, assume time-invariance 

[1]. Time-varying LFT models, therefore, are typically analyzed with non-linear methods 

such as Popov's criterion [9]. These methods, used to predict absolute stability, may 

yield conservative results, especially for linear systems. Moreover, LFT models 

generally do not take into consideration the finite rates for slowly time-varying systems. 

2.2.2 Uncertain State Space Models 

As mentioned in the overview of linear systems, state-space form is a convenient 

and powerful way of modeling and analyzing control systems. Linear systems with 

uncertainty that meets certain requirements, to be explained later in this section, can be 

described with the uncertain state space model, 
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E(t)x(t) = A(t)x(t) + B(t)u(t) (2.15) 

y(t) = C(t)x(t) + D(t)u(t), (2.16) 

where A(t), B(t), C(t), D(t), and £ ( t ) are all uncertain and/or time-varying matrices. The 

remainder of this section will discuss how this structure can be used to model different types of 

uncertainty. 

2.2.2.1 Polytopic Systems 

The equations and concepts presented in this section can be traced in the 

developments of [9]. 

A polytopic system is a linear time-varying system of the form of Equations 2.15 

and 2.16 with uncertainty such that the matrix, 

5(t) = [ •A(t)+jE(t) B(ty 
C(t) D(t). 

(2.17) 

varies inside a given convex polytope of matrices, 

S(t) E Co{S1 Sk} :=T.U^iSi •• at>0, Zf= 1a { = 1. (2.18) 

In this polytope, S1;..., 5 k are constant vertex systems such that 

Si = 
Ai+jEt B{ 
. Ct DL 

(2.19) 

For a detailed description of the concept of convex polytopes, refer to [23]. Polytopic 

models can be useful in several cases, including modeling a system that changes between 

different sets of operating conditions, some non-linear systems, or systems that are 
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afflnely dependent on uncertain or time-varying parameters. The following section 

discusses systems of the latter category. 

2.2.2.2 Affine Parameter Dependent Systems 

The equations and concepts presented in this section can be traced in the 

developments of [9]. 

Linear control systems that vary as a result of their dependence on uncertain or 

time-varying parameters can be represented using the uncertain state-space model of a 

parameter dependent system (PDS), 

E(p(f))x(f) = A(p(t))x(t) + B(p(t))u(t) (2.20) 

y(t) = C(p(t))x(t) + D(p(t))u(t), (2.21) 

where p represents a vector of uncertain or time-varying parameters. Systems with 

dependence on p such that 

^P) [ C(p) D{p) (2.22) 

A(p) =A0+ PlAt + p2A2 + - + pnAn, (2.23) 

B(p) = B0 + PlBr + p2B2 + - + pnBn, (2.24) 

S(P) =So + PISI + p2S2 + - + PnSn (2.25) 
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are referred to in the literature as affine PDSs and are well suited for several different 

analysis methods. Refer to [23] for more information on affine sets and relationships. In 

these system models, each element of p represents a parameter and is defined with a 

range of extreme values, 

Pi£[Pi_,Pi], (2-26) 

and upper and lower bounds on its rate of change, 

Pi < pt(t) < Pi • (2-27) 

Also known as the "bounding box" method, this process creates a multi-dimensional box 

within which all parameter variations occur [24]. As stated in the previous chapter, the 

inclusion of bounds on the rate of variation in time-varying stability analysis can 

effectively reduce the conservatism of the results. This characteristic makes PDS 

modeling a powerful tool for evaluating the types of systems considered in this thesis. 

Another possibly useful characteristic of an affine PDS model is that it can be 

transformed into a polytopic model by calculating the system's matrices at each vertex, 

ri;, where i = 1,2,... 2n and n is the number of uncertain parameters. Figure 2.4 presents 

a simple illustration of how a set of parameter vertices can be mapped to a polytope of 

systems. 
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Potytope of Systems S(p) 

Figure 2.3: Mapping an Affine PDS Model to a Polytopic System Model 

In performing this transformation, however, the rate information on each individual 

parameter is typically lost in the polytopic analysis. Since the lack of a finite rate bound 

leads to the assumption that the system parameters can vary arbitrarily fast, this sort of 

transformation is most effective for rapidly time-varying systems. 

2.2.2.3 Higher-Order Parameter Dependent Systems 

The concepts and equations presented in this section can be traced in [11]. 

While many linear control systems can be seamlessly modeled by affine PDSs, 

others have a higher-order dependence on uncertain time-varying parameters. In other 

words, the parameters appear in the system in such a manner that they are multiplied by 

one another in one or more instances. Modeling these systems affinely would require 

treating higher-order terms as separate parameters. This, in turn, would require real 

interval arithmetic [25] to determine the correct bounds on the range and rate of the new 

parameters in addition to adding to the overall number of parameters. 
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Instead of creating separate higher-order parameters, [11] introduces a method by 

which higher-order parameter dependent systems can be modeled. In this context, 

consider the homogeneous, or zero input, time-varying linear system, 

*(t) = A(8(!J)x(t\ (2.28) 

where S(t) is a vector of time varying parameters [26]. To express the system in terms 

of its parameter dependence, let 

x = A(S)x = Y.qi=0Aini, (2.29) 

where i = 0,..., q — 1 and 

ni+1 = Qi(S)Ui, n0 = x. (2.30) 

In this formulation, 0j(5) are affine matrices containing elements of S(t), iii are 

auxiliary functions of x and S(t) used to capture the dependence on higher-order 

parameters, At are constant matrices representing the known elements of the system, and 

q represents the highest order of parameter dependence. 

Figure 2.4 shows a block diagram of the system model presented in Equations 

2.29 and 2.30 that helps to visualize how the parameters in each 0j are multiplied 

together to represent higher-order parameter dependence. 

Once the matrices in the system are defined, it is possible to show the separation 

the known elements of the system and the unknown parameters. These steps are shown 

in Figure 2.5 and Equations 2.31 and 2.32. 



Figure 2.4: Block Diagram of Higher-Order PDS Model 
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Note that the selection of the 0, matrices is not unique. More guidelines for 

choosing the structure of these matrices to aid in stability analysis are presented in the 

next chapter. 
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3 Stability Analysis for Linear Time-Varying Systems 

3.1 Stability 

The response, or output, of a control system is comprises the natural response and 

the forced response. The natural response describes whether a system dissipates, 

maintains, or acquires energy. It is a function only of the system dynamics and is 

independent of the system's input. The forced response, on the other hand, is a function 

of the input to the system. For linear systems, these two parts are summed to create the 

total response of the system [18]. 

As stated in Chapter 2, the objective of a control system is to command, direct, or 

regulate [17]. For this to be possible, the natural response must either dissipate or 

maintain energy so that the system's input can control the response. Systems that acquire 

energy may have a natural response that increases in magnitude in an unbounded fashion, 

eventually rendering the control input useless and leaving the control system unable to 

regulate or direct the response. The latter condition is known as instability [18]. 

Stability, therefore, is a term used to describe the natural, or homogenous, 

response of a system. A system is stable if its natural response decays to zero as time 

approaches infinity. A marginally stable system is one whose natural response does not 

approach zero but oscillates within a bounded region. In marginally stable systems, 

however, bounded inputs may cause an unbounded response. Therefore, marginally 

stable systems will henceforth be considered unstable in this thesis [17] [18]. 
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3.2 Time-Invariant Stability Analysis Review 

As mentioned above, a control system's natural response is determined by the 

system dynamics which, as suggested in Chapter 2, is often modeled with one or several 

linear differential equations. Therefore, stability analysis involves obtaining information 

about the natural response from a system's mathematical model. There are several 

commonly used methods for determining the natural response characteristics, and thus 

the stability, of linear time-invariant (LTI) systems. 

One such method of determining stability involves expressing the mathematical 

model in the frequency domain. For instance, performing a Laplace transform [17], 

£[/(t)] = F(s) = Cf(t)e-Stdt, (3.1) 

on the system equation and setting initial conditions to zero creates a transfer function of 

the form, 

Y(s) = G(s)U(s), (3.2) 

where s represents the complex number s = a + jco, Y(s) is the Laplace transform of the 

system response, U(s) is the Laplace transform of the input, and G(s) is the transfer 

function which relates the output to the input. For more information and examples on 

using Laplace transforms to create transfer functions, consult [18]. 

Using Equation 3.1 or a table of Laplace transforms, it can be confirmed that the 

transforms, 

fit) = e-"'u(t) o F(s) = — (3.3) 
s + a 
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are true, where u(t) is a unit-step input such that 

rO, t < 0 ^<'Ml ™ 
and a is a complex number. In Equation 3.3, the value s = —a is known as a pole, or a 

value of s which causes the transfer function to become infinite. From the transformation 

it follows that a pole with a negative real value creates an exponential decay in the 

response, where as a pole with a positive real value yields a response with exponential 

growth. Since exponential growth is unbounded, a positively real valued pole yields 

instability. Conversely, a negatively real valued pole goes to zero as time goes to 

infinity, indicating a stable system. 

For linear systems with multiple poles, the transfer function takes the general 

form 

Q(S) - H&. = ^Ml (3 5) 
0(S) (.S+p1)(s+P2)...(s+Pm)~(s+Pn)' 

Using partial fraction expansion, this transfer function becomes 

G(5) = _*L_ + _*2_+.. ._*2£_+.. ._£*_, (3.6) 
(S+Pi) O+P2) (S+Vm) (S+Pn) 

where Kx ...Kn are constants, known as residues, which take the place of the transfer 

function numerator. Notice that for any of the poles s = — p; for i = 1 ...n, the value of 

the entire transfer function goes to infinity in both Equations 3.5 and 3.6. Also, the 

Linearity Theorem for Laplace transforms, 

£[AO0 + /2(t)l = ^ I O ) + f2(s) (3.7) 
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implies that the total response of the linear system can be obtained by summing the 

response created by each individual pole of the system's transfer function [18]. 

Therefore, if one transfer function pole causes a response that grows unboundedly, the 

total response is also unbounded. From all of this, the conclusion is drawn that for a LTI 

system to be stable, all the poles of its transfer function must have negative real parts 

[27]. 

This criterion for stability enables the use of several frequency domain methods 

for analyzing LTI systems including Routh-Hurwitz tables, Nyquist criterion, Nichols 

criterion, Bode plots, and root locus design. For more details on these frequency domain 

methods and relevant numerical examples, see [17] and [18]. 

Even though the preceding process involves analyzing the system in the 

frequency domain, system stability can also be related to the characteristics of the state 

space system, particularly the eigenvalues of the system matrix. Consider the state space 

system, 

x(t) = Ax(t) + Bu(t) (3.8) 

y(t) = Cx(t) + Du(t), (3.9) 

developed from the differential equations for a LTI system. Using the Laplace transform, 

these equations become 

(si - A)X(s) = x(0) + BU(s) (3.10) 

Y(s) = CX(s) + DU(s), (3.11) 
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where / is an identity matrix with dimensions equal to those of-A (i.e. an n x n matrix 

where n is the order of the linear system). Note that in Equations 3.10 and 3.11, the 

Laplace transform of a vector implies the transform of each of the elements. The transfer 

function is then formed by solving Equation 3.10 for X(s), substituting into Equation 

3.11, and evaluating the expression with zero initial conditions. That is, 

G(s) = C(sI-A)-1B + D, (3.12) 

where G(s) represents the transfer function as shown in Equation 3.2. By the 

relationship between the inverse of a square matrix, M, to the determinant, det(M), and 

the adjoint matrix, adj(M), 

det (M) ' v ' 

it follows that for values of s such that det(sl — A) = 0, the transfer function G(s) 

becomes infinity [28]. Therefore, the roots of det(sl — A) = 0 are the poles of the 

system transfer function. For a square matrix, M, the roots of det(sl — M) = 0 are 

known as its eigenvalues [28]. It follows that for the linear system described in 

Equations 3.11 and 3.12 to be stable, its system matrix, A, must have eigenvalues with 

negative real values. These eigenvalues can be determined without resorting to the 

frequency domain to determine a system transfer function [18]. 

3.3 Time-Varying Stability Analysis 

In industry, the criteria and methods outlined in the previous section are often 

used to analyze control systems by taking advantage of frozen time analysis. This 
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process involves using system information at a select set of times and analyzing the 

system under the assumption that the dynamics varies sufficiently slowly [1][2][3][4]. 

The methods mentioned above, however, may not be adequate for the analysis of 

the system response for time-varying systems. For example, time-varying linear systems 

are presented in [27] and [29] where either the system matrix eigenvalues are negatively 

real valued for all time but the system response grows unboundedly, or the system matrix 

has at least one positively real valued eigenvalue but its response is stable. Given these 

cases, a different set of criteria must be used to determine the stability of time-varying 

linear systems. Lyapunov stability theory presents an alternative set of tools for 

analyzing these types of systems. 

3.3.1 Lyapunov Stability Theory 

The objective of this section is to describe Lyapunov stability theory, more 

properly called Lyapunov's direct method, in a concise and comprehensible manner. 

Sources for more information on the basis and background of Lyapunov stability theory 

include [27], [30], or [31]. 

Consider a time-varying linear system with no external inputs, much like the 

homogeneous linear system in Equation 2.28, and that the system is at equilibrium when 

all of its states are zero valued. If a function v{x, t) can be found, where x represents the 

system's state vector, t is time, and a, b, and c are positive constants such that the 

following are all true: 

1) v(0,t) = 0and v(0,t) = 0, vt £ R+, (3.14) 

2) a\\x\\2 <v(x,t)<b\\x\\2, Vt e E+ and Vx G Rn , (3.15) 
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and 

3) v{x, t) < c\\x\\2, Vt £ R+ and Vx S Rn, (3.16) 

then the system is exponentially, or uniformly asymptotically stable [27]. That is, the 

response is bounded and approaches zero as time approaches infinity. 

Obviously, the Lyapunov Direct Method seeks a function that represents, i.e. 

possesses the same properties as, the system's total energy. Like the total energy of a 

stable system, the value of this function is zero and at a local minimum when the states 

are zero, positive when the states are non-zero, and always decreasing from its initial 

value [30]. 

For the unforced linear time-varying system, 

x(t) = A(t)x(t), (3.17) 

the most common candidate Lyapunov function for linear systems takes the form 

v(x, t) = xT{t)P(t~)x(t), (3.18) 

where P(t) is an nxn matrix and n is the order of the system. Clearly, the quadratic 

dependency of this candidate function on the states dictates that it meets the first of the 

three criteria mentioned above in that its value is zero and at a local minimum when the 

states are equal to zero. For the function to be positively valued for non-zero state values, 

P(t) must be positive definite (the definitions and explanations of "positive definite" and 

"negative definite" can be found in [32]), written 

P(t) > 0. (3.19) 
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Next, conditions are developed to show that the function is always decreasing. First, the 

expression for the time derivative of the candidate function, Equation 3.18, is expanded 

using the chain rule and the product rule [33]. Specifically, 

v(x,x,t) = d^tWfm)<0, (3.20) 

and 

d(xT(t)P(t)x(t)) d(P(0x(t)) d ( ^ ( t ) ) _ 
it = x ( t ) — i t — + - ^ r ~ n t M t ) 

at at 

= * ' M [ P W ^ + ^ x ( 0 ] + ^ P ( t M t ) < 0. (3.21) 

Next, Equation 3.17 is substituted into Equation 3.21, yielding 

v(x,x,t) = xT(t) \P(t)A(t)x(t) + ^ p * ( 0 ] + xT(t).4T(t)P(t)x(t) < 0. (3.22) 

Finally, factoring out the quadratic state vectors gives 

v{x,x,t) = xT(t) [p(t)A(f) + ^p- + AT(t)P(f)]x(t) < 0 (3.23) 

P(t)A(t) + ^ p + AT(t)P(t) < 0, (3.24) 

where Equation 3.24 states that the value on the left side of the inequality must be 

negative definite. 
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Quadratic stability, named because of the candidate function's quadratic 

dependence on the state, is an extension of Lyapunov's Direct Method commonly 

associated with time-varying linear systems. For quadratic stability, the candidate 

function takes the form, 

v(x,t) = xT(t)Px(t). (3.25) 

Notice that the matrix, P, is now assumed to be constant. This assumption simplifies the 

conditions in Equations 3.19 and 3.24. Specifically, 

P(t) > 0 => P > 0 (3.26) 

and 

P(t)A(t) + ^ p + AT(t)P(i) < 0 =» PA{t) + AT(t)P < 0. (3.27) 

Since P is now a constant, its time derivative becomes zero, yielding Equations 3.26 and 

3.27. If a constant matrix, P, meets the conditions in Equations 3.26 and 3.27 for all 

times t0 < t < co , the time-varying system (Equation 3.17) is stable. Moreover, since 

Equation 3.27 no longer has a time derivative term, the system is stable even for a system 

A(t) that varies arbitrarily fast, or -co < A(t) < co. 

Since quadratic stability evaluates the stability assuming that a system can vary 

arbitrarily fast, the resulting analysis is potentially conservative, especially for systems 

that vary slowly, or with rates of variation that are bounded by finite numbers. For 

example, the proof, summarized below and found in its entirety in [27], shows that LTI 
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stability criteria can accurately predict stability for time-varying systems with sufficiently 

slow rates of variation. 

Consider again an unforced, time-varying system (Equation 3.17) and assume that 

1) system matrix A(t) is bounded such that 

||i4(t)ll <m , V t £ R + , (3.28) 

2) the eigenvalues of A(t) are negatively real valued (recall that this would be 

enough to show stability if the system was time-invariant), and 

3) there exists a positive scalar, e, such that 

| | i4( t ) | |<e , V t £ R + . (3.29) 

Due to the assumption that A(t) has negatively real-valued eigenvalues (assumption 2 

above), the Lyapunov equation, 

P{t)A(t) +AT(t)P(t) = -Q, (3.30) 

where Q is any constant positive definite matrix, yields a positive definite solution P(t). 

It is important to realize that Equation 3.30 does not directly imply system stability 

because P(t) is a function of time, but the —-— term is absent, differentiating it from 

the stability criterion in Equation 3.24. This solution, P(t) can be bounded as 

^ ^ / < P ( t ) < f c 2 A m a * ( < 3 ) / , (3.31) 

where Amjn(Q) and Amcu.(Q) represent the minimum and maximum eigenvalues of Q, 

I represents the identity matrix with the same dimensions as P(t), m is the positive 

scalar bound on the system matrix from Equation 3.28, and k and a are positive scalars 
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from the definition of exponential stability for a LTI system (the development of 

Equation 3.30 and the use of k and a is described in detail in [27]). Next, the time 

derivative of P(t), written here as P(t), is added to both sides of Equation 3.30, and the 

expression is given as 

P(t)+AT(t)P(t)+P(t)A(t) = P(t)-Q< (||P(t)|| -Amin(Q))l. (3.32) 

Taking the time derivative of Equation 3.30 yields 

AT(t)P(t) + P(t)A(t) = -(AT(t)P(t) + P(t)A(t)). (3.33) 

Next, | |^(t) | | is given an upper bound using the same concepts that were used in 

Equation 3.31 to bound P(t) (except that P(t) cannot be assumed positive definite). 

Specifically, 

Ipmll < k2\\ATWpW+pV>AW\\ < ... 

(P(t))M(t)|| < k2Xmax(Q)e 

Finally, substituting this upper bound into Equation 3.32 yields 

P(t) + AT(t)P(t) + P(t)A(t) < rXm™2
(Q)e - Amin(Q) ) I. (3.35) 

Clearly, for values of e such that 

* 2 W Q ) e < u ( ( ? ) | ( 3 3 6 ) 
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the left side must be negative definite, meaning that the system is stable by Lyapunov's 

Direct Method. Due to the abstract values of k and a, this proof does not readily enable a 

simple quantitative analysis on whether or not time-invariant stability criteria are 

adequate for a given time-varying system. However, it suggests that as the bound on a 

system's rate of variation decreases, the range of operating conditions for which the 

system is stable will begin to resemble the corresponding range obtained with LTI 

stability criteria. Similar results for parameter dependent systems are presented in [34]. 

It is expected, therefore, that considering bounds on the system or its parameters' rates of 

variation will cause results from slowly varying systems to differ from quadratic stability 

results and resemble the results obtained from LTI stability analysis as the bounds 

decrease. The decreasing rate bounds may also lead to a decrease in the conservativeness 

of the results. These expectations are tested later in this chapter using a simple example 

of a time-varying linear system. 

3.3.2 Linear Matrix Inequalities for Stability Analysis 

The introductory paragraphs of this section present a brief introduction to linear 

matrix inequalities (LMIs) and their use in the analysis of control systems. They relate 

strongly to the material given in [22] and [35]. 

A linear matrix inequality takes the form, 

Fix)S:Fo + I^1xiFi>0, (3.37) 

where Fj are given symmetric real matrices, Xj are real variables, and the "greater than" 

symbol states that the left side is positive definite. Equation 3.37 is referred to as a strict 

LMI, whereas the form, 
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F(x) > 0, (3.38) 

is a nonstrict LMI. This thesis, with the exception of the bounded rate proof in the 

previous section, deals with strict LMIs. 

An LMI can be formulated to represent many different convex constraints on the 

variables xt including linear and quadratic inequalities and matrix norm inequalities. 

Furthermore, multiple LMI's representing different constraints can be diagonally 

appended to each other to combine into a single, larger LMI. That is 

F1(x)>0,...,Fp(x)>0 <=> F(x) = 
FiOt) 0 0 

0 \ 0 
0 0 Fp(x) 

> 0 . (3.39) 

The variables, xi5 in Equation 3.37 can also be matrices, as is the case in the 

Lyapunov stability criteria in Equations 3.19 and 3.24. For example, the Lyapunov 

inequality for quadratic stability, 

PA + ATP < 0, (3.40) 

can be transformed to resemble Equation 3.37. Let the symmetric matrix variable, 

P = PT , comprise elements P1 ...Pm such that 

Pi 

p2 

p3 

p2 

P-n+1 

Pn+2 

Ps 
Pn+2 

Pin 

rn 

Pln-l 

P = P — ™cj Pn + 2 P-ln ••• F 3 n _ 3 

r n r2n-l r3n-3 

(3.41) 

where 

m = n(n + l ) /2 (3.42) 
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and n is the order of the system (i.e. A and P are n x n matrices). Finally, let 

F0 = 0, Ft = -PtA - ATPi (3.43) 

to complete the transformation. 

The Lyapunov stability problem and others like it are known as feasibility 

problems. They are among the most common and basic LMI problems used in control 

systems analysis. As suggested by the name, the objective of such a problem is to either 

find a feasible solution, x, such that Equation 3.37 holds true, or establish that no such 

solution exists and the LMI is infeasible. 

The previous section gave an overview of Lyapunov stability and how 

Lyapunov's Direct Method provided the basis of stability analysis criteria for time-

varying systems. In the current section, it has been shown that LMIs provide a medium 

for using these criteria to evaluate control systems. Consider again, however, that the 

relevant control systems are time-varying. Therefore, in order for the system to be stable, 

the LMI problems presented by Lyapunov's criteria (as written in Equations 3.19 and 

3.24) must be simultaneously feasible for all possible values of the system matrix A(t). 

Solving this problem would, of course, require an infinite number of LMI formulations, 

and is therefore not a viable option [9][11]. 

In special cases like the systems modeled in the previous chapter, however, the 

number of LMIs can be reduced to a finite number, and thus incorporated into one larger 

LMI problem, based on the characteristics of the systems' uncertainty, time-variance, 

and/or parameter dependence. The sections that follow describe how this objective is 

accomplished for the three different types of system models presented in Chapter 2. 
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3.3.2.1 LMI Stability Analysis for Polytopic Models 

Recall that the a polytopic model for a homogeneous linear time-varying system, 

E(t)x(t) = A(t)x(t), (3.44) 

varies such that A(t) + jE(t) is bounded by a fixed convex polytope of matrices, 

A(t) = Ylt=1ai(t)Ai (3.45) 

E{t)=YH=1ai{i)El (3.46) 

at>0, Sf=1a; = l, (3.47) 

where k denotes the number of vertices of the polytope and at are the polytopic 

coordinates of the matrices [9]. 

For quadratic stability, the system must meet the Lyapunov criteria 

v(x, t) = xT(t)Px(t) > 0 (3.48) 

and 

v(x,x,t) = dixT^m)<0, (3.49) 

where P is a constant matrix. For the system in Equation 3.44, these criteria reduce to 

Q > 0 (3.50) 

and 

E(i)QA(t)T + A(t)QE(t)T < 0, (3.51) 
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where Q = P~l > 0 is introduced to simplify the LMI in the presence of the matrix E(t), 

which is assumed to be invertible. The fact that the systems range within a convex 

polytope asserts that the system is stable if each of its vertex systems are stable, reducing 

the number of constraints on the LMI to a finite quantity. Therefore, the system in 

Equation 3.44 is quadratically stable if a matrix Q = QT > 0 and scalars t;;- = tji can be 

found such that 

EjQAiT + AtQEj7 + EtQAf + AjQE? < 2ttjl (3.52) 

and 

txi ... tlk 

tkl ••• tfek 

< 0, (3.53) 

where i,j £ 1,..., n and n is the number of vertex systems. 

Furthermore, in cases where either E(t) or A(_t) are constant, Equation 3.52 

becomes a sufficient condition for quadratic stability, where ti;- = 0 [9]. 

As stated in Chapter 2, polytopic modeling does not account for information 

about the rate of change of the system or its parameters. Therefore, quadratic stability is 

the primary stability analysis criteria applicable to time-varying linear systems that are 

modeled using this method [9]. 

3.3.2.2 LMI Stability Analysis for Affine PDS Models 

The equations, specifically the LMIs, and concepts presented in this section can 

be found in their original form in [9]. 
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From Chapter 2, recall that an afflne parameter dependent model for the 

homogeneous response of a system takes the form, 

E(p(t))x(t) = A(p(t))x(t), (3.54) 

where p = [px p2 ••• VnV ls a vector of uncertain parameters, and 

A(p) =A0 + PlAt + p2A2 + ••• + pnAn (3.55) 

£(p) = EQ + ptEt + p2E2 + ••• + pnEn. (3.56) 

Each parameter, pt, and its rate of variation, pu are bound as shown in Equations 2.26 

and 2.27, creating a hyper-rectangular parameter box within which the parameter vector 

and its rates can vary. Assuming each parameter has a range and a rate interval, the 

resulting parameter region has In dimensions, and thus has 22n vertices [24][36]. Due to 

the affine dependence on the parameters and the convex nature of the parameter box, 

stability can be determined by analyzing the systems at the vertices of the box instead of 

at every possible operating condition. Therefore, let 

V = {(6>lf6)2j ....(On): a>i £ {Pi_.pl}} (3.57) 

represent the vertices of the hyper-rectangle of parameter ranges, and 

7 = {(TI,T2 , ....Tn): T; 6 \p_,pi}} (3.58) 

represent the vertices of the hyper-rectangle of parameter rates of variation. The overall 

parameter box is thus defined by 

(O>,T) E V XT. (3.59) 

http://%7bPi_.pl%7d%7d
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To take advantage of the information provided by the parameter box, parameter 

dependent models are often analyzed using parameter dependent Lyapunov functions. 

The form of an affine parameter dependent Lyapunov function is 

v(x,p{t)) = xT(t)P(p)x(t) = xT(t)Q~1(pMt) > 0, (3.60) 

where 

Q(P) = Qo+ PlQl + P2Q2 + - + PnQn- (3-61) 

For this Lyapunov function, the stability criteria of Equations 3.48 and 3.49 become 

Q(p) > 0 (3.62) 

and 

E{p)Q(p)A{p)T + A(p)Q(p)E(p)T -E(p)^MlE(p)T < 0, (3.63) 
dt 

where 

d(Q(p)) = d(QQ + VxQx + p2Q2 + - + pnQn) 
dt dt 

= PlQl + p2Q2 + - + PnQn 

= Q(P) ~ Qo- (3-64) 

The system, Equation 3.54, is stable if matrices Q0 = Q0
T, [Qt = QiT}._ and [Mt = 

MiTi=ln>0 can be found such that the criteria 

E(w)Q{o))A((o)T + A(o))Q(o))E(o))T -
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E(<U)(Q(T) - Q0)E(o))T + T.i cofMt < 0, (3.65) 

EtQ(to)AiT + AiQi^Ei7 + E^QtA? + A^E^Oi)7 + 

EiQtA(<a)T + AMQiE? + Mt>0, (3.66) 

and 

Qitti) > 0 (3.67) 

are met at all of the vertices of the parameter region, V x T. In the preceding criteria, 

Equation 3.66 is referred to as the multi-convexity constraint. For a more detailed 

discussion on the origin of this constraint (with slightly different notation), refer to [37]. 

For the purpose of this thesis, it suffices to know that this constraint places a geometric 

constraint on the system to enable stability analysis by testing only at the vertices of the 

parameter region [38]. Furthermore, it is only necessary for parameters that enter two or 

more of the matrices E(p), A(p), and/or Q(p) [9]. 

Recall that for quadratic stability, all parameters are assumed to change arbitrarily 

fast. If this is the case, Equations 3.65, 3.66, and 3.67 can only be found feasible if 

[Qi = 0}?=1. Therefore, if matrices Q = QT > 0 and {M< = MjT}n
=i > 0 can be found 

such that 

E(o))QA(o)T + A(o))QE(o)Y + £< (ofMt < 0 (3.68) 

and 

EJQA^+AJQE^ + M^O, (3.69) 
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the system in Equation 3.52 is quadratically stable for the specified uncertain parameters. 

Note that in the case of quadratic stability, the Lyapunov function is no longer dependent 

on the uncertain parameters, or {Qi = 0}f=1. Therefore, if E(p) and A(p) do not share a 

dependence on any of the parameters, pt, (i.e. {£"; = 0 or At = 0}f=1) then the 

multiconvexity constraint, Equation 3.69, can be removed and it is sufficient to evaluate 

Equation 3.51 at the vertices of the parameter region [9]. 

3.3.2.3 LMI Stability Analysis for Higher-order PDS Models 

In industrial application, modeling some systems as affinely parameter dependent 

would require making new parameters to represent instances where parameters were 

multiplied together. Creating more parameters increases the number of vertices that must 

be tested with the LMIs. Moreover, using interval math to get the range and rate 

information of these new parameters can create more conservativeness unless each 

parameter is individually inspected [25]. To circumvent these difficulties, it is useful to 

have a set of stability criteria, in the form of LMIs, for higher-order parameter dependent 

system models. 

One example of such a set is presented in [11] and is presented in an abridged 

form in the current section. 

Consider the homogeneous parameter dependent system, 

±(t) = A(8(t))x(i), (3.70) 

where S(t) is a vector of time varying parameters, analogous to p(t) in the previous 

section. Recall that this system can be modeled as higher-order parameter dependent 
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using Equations 2.29, 2.30, and 2.31. Similar to the previous section, a parameter 

dependent Lyapunov function, 

v(x,8) = x{i)TP{8(t))x(i), 

is utilized, rendering the stability criteria 

P{8) > 0 ; V(S,S) E/3 

(3.71) 

(3.72) 

and 

P(S, S) + A(SyP(S) + P(S)A(S) < 0; v(S, S) 6 p. (3.73) 

In these equations, /? denotes the region of parameter ranges and rates being tested. 

Further, 

P(5) = P(Q(8)) = I 
0(8) 

/ 
0(8) 

(3.74) 

where 

P = 
P0 Pi 
Pi P2 

(3.75) 

and 0(8) is an affine matrix function of the parameters in 8. 

As with the systems in the previous two sections, LMI conditions must be 

formulated such that the system can be proven stable while limiting the LMIs to a finite 

number. This is accomplished by creating LMIs that are affine in S and 6, even though 

the system itself may be higher-order parameter dependent. Given the definitions 
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An-\ — *al L0o + 0<A> <MJ' 

A-al — 
A2 

%A2 ®0"-q 

Cai = [©0 -ImA, 

(3.76) 

(3.77) 

(3.78) 

and 

- a 2 

©0 
0 
0 

'm1 

\ 

0 

0 
'•. 

©q-1 

0 
0 

-h 
(3.79) 

a system of the form of Equation 3.70 is stable for values of (S, S) varying within the 

fixed polytope (3 if matrices P = PT, L1( and L2 can be found such that 

u/ = 
Ani'P + PA„i PA xal 

An7'P la2 

a l r-na2 
0 

V + L2Ca2 + Ca2'L2' <0, 

(3.80) 

(3.81) 

and 

P + L±Cal + C f l l V > 0 

are true at the vertices of /?. In this case, the function, 

(3.82) 

v(*,e0(8)) = *(t)7 

e0(«). 
/ 

e0(«). 
x(t), (3.83) 

is a valid Lyapunov function for the system. 
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The proof of criteria in the form listed above can be found in [39], which also 

presents similar criteria for linearly parameter dependent systems. For more details on 

methods for transforming bilinear or quadratic matrix inequalities to affine LMI's, refer 

to [22]. 

As mentioned in Chapter 2, the selection of %, and thus 0O(S), is not unique. 

However, the manner in which 0O(8) is implemented into the stability analysis criteria is 

such that its composition affects the method's performance. Firstly, it is important that 

any parameters with bounded rates are included in the formulation of 0o(8). Since the 

rate of ©o(8) is the only rate considered in the LMI criteria, any parameters not included 

in its composition are assumed by the LMIs to vary arbitrarily fast. On the other hand, 

increasing the dimensions of 0O(8) also increases the dimensions of the decision 

matrices P, L1, and L2, rendering the feasibility problem more computationally costly. In 

addition to the example that is provided in the next section, details and examples on 

selecting 0O(8) in an adequate and efficient fashion can be found in [11]. 

Note that, despite the different form of the LMI conditions, quadratic stability and 

affinely parameter dependent Lyapunov functions are accounted for in the criteria 

described in the present section. In Equation 3.83, with P taking the form of Equation 

3.75, the Lyapunov function becomes affinely parameter dependent if P2 = 0. Moreover, 

if P2 = P\ — 0, P becomes a constant and the criteria test for quadratic stability [11]. In 

the general case where P2 and Px are both non-zero, Equation 3.83 is referred to as a 

biquadratic Lyapunov function due to its quadratic dependence on the state and the 

uncertain parameters. 
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3.3.3 Simple Numerical Example for LMI Stability Analysis 

This section uses a simple mechanical system as an example to display some of 

the properties of the modeling and stability analysis techniques presented in the previous 

and current chapter, respectively. 

Consider the zero input spring-mass-damper system portrayed in Figure 3.1 

described by the linear differential equation, 

m(i)x(t) + c(t)x(t) + k(t)x(t) = 0. (3.84) 

C7TT 
Figure 3.1: Time-Varying Spring-Mass-Damper System 

This system can be expressed in state-space form used throughout the current 

chapter as 

E(p(t))x = A(p(t))x, (3.85) 

where 

= S (3.86) 
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P(0 = 
'fc(t)' 
c(t) 
m(t) 

^ W ) = U°(t) -c(f)l 

(3.87) 

(3.88) 

and 

W ) B [ o m(t) (3.89) 

Alternatively, by pre-multiplying both sides by E(p(t)) 1, Equation 3.83 can be recast in 

the form, 

x = A(p(t))x, (3.90) 

where 

A(p(t)) = Ftecor^Cpco) = 
0 
fc(t) 
"i(t) 

1 
c(Q 
m(0 

(3.91) 

The latter representation (Equation 3.90) is used in this section where it is necessary to 

discuss the techniques involving higher-order parameter dependence. 

From the preceding equation, it is obvious that this system behaves as a parameter 

dependent system. In this case, it is most convenient to use the parameter dependent 

system model to map the system to a polytopic model as shown in Figure 2.4. Therefore, 

the system (Equation 3.85) is first modeled as affinely parameter dependent using the 

form of Equations 3.55 and 3.56 where A{jp) comprises the matrices 

0 0 0 0 ro oi A° ~ Lo or Ak " Li or Ac ~ lo - J ' Am ~ lo or (3.92) 



and E(p) comprises the matrices 
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° - [ o J' Ec-E*-[ 0 0 ' Cm Lo iJ ' (3.93) 

Further, the parameters vary such that 

k(i)e[kjk\, c(t) G [c_,c], m(t) 6 [m_,rn\, (3.94) 

and 

k < fe(t) < k, c < c(t) <c, m< m(t) < rh, (3.95) 

thus creating a convex parameter region with 64 vertices. 

To transform this system into a polytopic model, the rate boundaries in Equation 

3.95 are ignored, leaving a system defined by the 8 vertices of the parameter ranges. It is 

readily observed that A(t) varies within the four-sided polytope defined by 

A(t) G Co 

0 m 
0 

-fe(t) 

1 
-£(t)J' 

1 • 

-£(0. 

0 
-kit) 
• o 

' -Kt) 

1 
-c(t). 

1 
-c ( t ) 

(3.96) 

and F(t) varies within 

meCo([l ^},[l ^ 1 ) . (3.97) 

From this information, the polytopic system model is created in the form of Equations 

2.17, 2.18, and 2.19 or Equations 3.44 through 3.47. 
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To create the higher-order parameter dependent model, the system takes the form 

of Equations 3.90 and 3.91. The relevant uncertain parameters become 

V{t) = 8(t) = 
AW 
52(t) 
83(t) 

k(t) 
c(t) 

I 

.m(t). 

Examining the system in terms of these parameters, 

x = A(p(t))x = 0 
S1(t)S3(t) 

(3.98) 

-52(t)<53(t)JUl' (3-99) 

recall that the system must be expressed as shown in Equations 2.29, 2.30, and 2.31 in the 

form 

A(p(t))x = ?,l0Aini. (3.100) 

Letting n0 — x, A0 becomes 

An = 0 1 
0 0 

(3.101) 

to represent the parameter independent part of the system. The first auxiliary variable is 

chosen as 

7T, = 

51{t)x1 

82(t)x2 

S3(t)x1 

(3.102) 

to reflect the necessary combinations of parameters and state variables while making sure 

to include any parameters with bounded rates so that they appear in Q0(.S). Given 

Equation 3.102, A1 becomes 
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A - \ ° ° ° Al~k o o (3.103) 

reflecting that there are no first order parameter dependent terms in the system. The 

second auxiliary variable is defined 

n2 

81(t)83(t)x1 

82{t)83(t)x2 
(3.104) 

to resemble the parameter dependent terms in Equation 3.99. Thus, A2 now becomes 

A, _ r o o i 
l - i -iJ (3.105) 

Substituting into Equation 3.100 yields 

A(p(t))x = A0n0 + A1n1 + A2n2 (3.106) 

= [ 0 1 
0 0 

• * 1 

x2 + 
0 0] 
o oJ 

0 0 01 
0 

S1(t)x1 

S2(f)x2 

83{t)x1 
+ L0x -°J[ 

0 1 \S1(t)83(.t)x1 

62(t)53(t)x2 

0 1 lrXi-j 

-81(t)83(t) -82{t)83(t)\[x2b 

which verifies that this model is an accurate representation of the original system. Using 

Equation 2.30, the auxiliary variables are related such that 

7Ti = Q0(8)n0 (3.107) 

and 

n2 = Qiffln-L. (3.108) 

These relationships yield affine parameter matrices of 
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0O(5) = 
'tfl(t) 

0 

s3(t) 

0 
82(t) 

0 
(3.109) 

and 

« r ^ _ [ w ) o i (3.110) 

Next, the spring-mass-damper system will be used as a numerical example to 

explore the usefulness of the preceding modeling methods and the stability analysis 

criteria of Chapter 3 for various combinations of uncertain parameters and time-varying 

behavior. The analysis is performed by creating stability envelopes for each combination 

and each method. The axes show the percentage that the parameters can vary from the 

nominal. If a given point (x,y) is colored, it means that the stability criteria were found 

infeasible for the uncertain parameter vector, 

'=£] (3.111) 

ranging such that 

Pxe[pxo,(pXQ+-^pXo)] (3.112) 

and 

PyeK'(p>o+^o)l- (3.113) 

On the other hand, if a point (x, y) on the stability envelope is left unmarked, it means 

that the LMI stability conditions were found feasible for uncertain parameter vector 
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shown above. To visualize this test, for any point, (x, y), on the graph, the criteria are 

simultaneously testing parameter percentage variations at the vertices of the rectangle 

defined by 

(x,y) = (Apx%,Apy%) e Co{(0,0), (x, 0), (0,y), (x,y)}. (3.114) 

For a simple example, consider the first numerical test case below. 

For all of the cases that follow, the nominal values assigned to the mass, damping, 

and stiffness are m0 = 1, c0 = 2, and k0 = 3, respectively. 

The first and simplest case holds the mass constant at its nominal value while the 

stiffness and damping coefficients, k and c, respectively, are uncertain but time-invariant. 

Using time-invariant stability criteria on the system matrix for this case, it is readily 

observed that for the eigenvalues to be negatively real valued, the conditions k > 0 and 

c > 0 must hold. These analytic findings are supported by a Monte Carlo analysis from 

[1] along with analysis performed using the three LMI methods from this chapter (Figure 

3.2). 

To analyze these plots, start at the nominal point, (x, y) = (0,0), and pick a point 

on the graph. Consider, for example, the point {x,y) = (50,100). By forming the 

rectangle outlined in Equation 3.114 and obtaining the parameter ranges using Equations 

3.112 and 3.113, it is apparent that this point corresponds with the parameter vector 
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The fact that this point is unmarked signifies that the stability criteria were found feasible 

for these vertices of the parameter region, meaning that the system is stable for all values 

in the region. Consider a second point, (x,y) = (—125,100). Using Equations 3.112, 

3.113, and 3.114, this point corresponds with the parameter vector 

V 
p;yu^m-f\m-^ (3.116) 

Stability Plot Stability Plot (Polytopic Model) 

-200-180-160-WO-120 100-80 -60 -40 -20 0 

Damping, c (% Variation) 

Stability Plot (Afflne PDS Model) 

•150 -100 -60 0 SO ISO 150 
Damping, c (% Variation) 

Stability Plot 6HO PDS Model) 

-150 
-150 - 1 0 0 - 5 0 0 SO 100 150 

Damping, c (% Variation) Damping, c (% Variation) 

Figure 3.2: Stability Envelopes for LTI Spring-Mass-Damper 

Since this point is marked red on the plot, the stability criteria were found infeasible for 

the vertices of this parameter region. As stated previously, the results shown in Figure 3.2 

support the analytical prediction for a LTI uncertain spring-mass-damper system. 
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Next, the quadratic stability analysis methods are tested. Recall that quadratic 

stability assumes that all uncertain parameters vary arbitrarily fast, and may therefore 

produce conservative results. In other words, the assumption of infinitely fast rates of 

variation may cause the LMI stability criteria to be found infeasible for regions of 

parameter values that would otherwise be stable under the system's actual operating 

conditions. The process for reading the quadratic stability plots is the same as the process 

for reading the plots from the LTI example. 

Figures 3.3, 3.4, and 3.5 show the quadratic stability plots for different 

combinations of uncertain, time-varying stiffness, damping, and mass. 

These plots illustrate the conservative nature of the quadratic stability criteria. 

Notice that for all three sets of uncertain parameters, the size of the rectangle that can be 

drawn from the origin, (x,y) = (0,0), to another point without any of the vertices 

crossing into the red region is limited in size. This trait stems from the assumption that 

the parameters vary infinitely fast. By restricting the Lyapunov function to a function of 

the state variables but not the parameters, this assumption limits the size of the parameter 

regions for which the LMI criteria can be found simultaneously feasible at the vertices. 
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Figure 3.3: Quadratic Stability Plots for Uncertain Stiffness and Damping 

Quadratic Stability Plot (Poiytopic Modal) Quadratic Stability Plot (Affina PDS Model) 
500 r 

I) 200 400 
Maes m(% Variation) 

0 200 400 
Mass, m (% Variation) 

Quadratic Stability Plot (HO PDS Model) 

0 200 
Maes, m (% Variation) 

Figure 3.4: Quadratic Stability Plots for Uncertain Stiffness and Mass 
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$00 
Quadratic Stability Plot (Poiytopic Modal) Quadratic Stability Plot (Mint PDS Modal) 
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Figure 3.5: Quadratic Stability Plots for Uncertain Damping and Mass 

Analyzing the stability of systems dependent on parameters with finite rates may be less 

conservative than assuming the rates to be infinite. From the analysis in Section 3.3.1 

[27], it is expected that decreasing bounds on the parameter rates will cause the stability 

envelopes to approach those created with LTI stability criteria. Recall that poiytopic 

modeling does not allow for the incorporation of bounds on the parameter rates. 

Therefore, the analysis will heretofore be limited to parameter dependent system models. 

A second higher-order model is included with the limitation that the Lyapunov function 

must be affinely parameter dependent (i.e. P2 = 0 in Equation 3.75). The higher-order 

model cases are labeled 'Ql ' and 'Q2,' for affine and biquadratic parameter dependent 

Lyapunov functions, respectively. (The terms 'Ql ' and 'Q2', presented in [11], have 

since been abandoned but are useful here to differentiate the higher-order plots from one 
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another.) In the figures that follow, the different colors representing stability envelopes 

corresponding to different bounds on the absolute value of the parameters' rate of 

variation. Note that a parameter region found infeasible for a given rate bound is also 

infeasible for any faster bound. Therefore, the envelopes for slower bounds have been 

plotted over top of the more conservative envelopes resulting from faster bounds. As 

expected, slower rate bounds yield less conservative stability envelopes that begin to 

resemble the results of the LTI stability criteria from Figure 3.2. 
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Figure 3.6: Stability Plots for Uncertain, Time-Varying Stiffness and Damping 
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Figure 3.7: Stability Plots for Uncertain, Time-Varying Stiffness and Mass 
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Figure 3.8: Stability Plots for Uncertain, Time-Varying Damping and Mass 
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These plots also begin to show certain differences in the performance of the 

various methods. In Figures 3.7 and 3.8, the cases where mass was time-varying, the 

criteria for the affine model appear to be less conservative than the criteria for the higher-

order parameter dependent model. This occurs because in order to use the higher-order 

system model, the mass parameter, m, must be inversed (as shown in Equations 3.88 and 

3.95), requiring the use of interval arithmetic to determine the bounds on the new 

parameter's range and rate. On the other hand, the mass needs not to be inversed for use 

in the affine system model. The performance of the affine and higher-order PDS models 

will be compared further in the case study in Chapter 5. 
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4 Relative Stability of Linear Time-Varying Systems 

This chapter provides a review of gain and phase margin concepts and how they 

are typically used with time-invariant systems. Subsequently, methods for incorporating 

gain and phase margin into the previously described LMI stability analysis criteria are 

introduced in the interest of analyzing the relative stability for time-varying systems. 

4.1 Relative Stability for Time-Invariant Systems 

Relative stability is a design specification quantifying the amount of change that a 

system or its parameters can withstand before it becomes unstable [17]. Like stability, as 

presented in Chapter 3, this quantity is most readily evaluated using the system transfer 

functions. 

Recall from Chapter 2 that a transfer function is the expression defining the 

relationship between the input and the output of a control system. Consider Figure 4.1, a 

generalized block diagram of a transfer function where U is the input, Y is the output, and 

G and H are transfer functions of individual system components [17]. 

^ ) J 
> — 

+ 

G 

H 

Y 

Figure 4.1: Block Diagram of Control System Transfer Function 
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Systems where H is non-zero are known as closed loop systems because the control 

action is dependent on the output to some degree. The '+ ' at the summing block 

indicates the option for either negative or positive feedback. Systems designed for 

stability typically utilize negative feedback. The transfer function of the closed loop 

system takes the form 

Chapter 2 states that a system becomes unstable when its transfer function value 

approaches infinity. For the general transfer function shown above, this occurs when 

1 ± G(s)tf(s) = 0. (4.2) 

Quantifying relative stability, therefore, involves analyzing the open loop transfer 

function, G(s)H(s), to determine how much it can vary before this occurs [17] [18]. 

For example, in a negative feedback system, Equation 4.2 is true when 

G(s)//(s) = —1. Recall that transfer functions are functions of s = a + ja) and 

therefore take on complex values, which can be plotted in the "s-plane." Subsequently, 

the value can be expressed as a combination of the magnitude and phase angle of the 

vector from the origin to the point (Figure 4.2), which are defined 

\p\ = Va2 + b2 (4.3) 

and 

tan(0p) = g), (4.4) 
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respectively, for a complex number p = a + jb. 

Im 

b l \p\y^mp 

Figure 4.2: Magnitude and Phase Angle of a Complex Number 

The gain and phase margins are determined by evaluating the magnitude and 

phase of the open loop transfer function, G(s)//(s), over a range of frequencies. This 

technique is known as finding the transfer function's frequency response and is 

performed by letting s = jco. Consider again the example of a negative feedback 

system. G(s)H(s) = - 1 corresponds to |G(5)H(s)| = 1 and (f>GH = -180° + n360°, 

where n is any integer. Therefore, gain margin is defined as 

gain margin = |C(s)H(s)| 
(4.5) 

s=jcon 

where a)n is the frequency (or frequencies) at which cpGH = —180° + n360°. Likewise, 

phase margin is defined as 
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phase margin = 180° + <PGH\S=JO>1> (4-6) 

where u>1 is the frequency (or frequencies) at which \G(s)H(s)\ = 1 [17]. 

The gain and phase margin of a LTI system can be designed for and analyzed 

using one of the graphical methods mentioned in beginning of Chapter 3, including 

Nyquist, Nichols, root locus, and Bode plots. For detailed discussion and examples of 

these graphical methods, refer to [18]. 

4.2 Relative Stability for Time-Varying Systems 

As stated in Chapter 3 and in the previous section, frequency response methods 

are typically associated with time-invariant systems. Like stability analysis, evaluating 

the relative stability of systems in industrial applications is often accomplished with 

frozen time analysis under the assumption that the system at hand is sufficiently slowly 

varying. Quadratic stability margins [27] and non-linear techniques like absolute stability 

and circle criterion [40] are tools that can determine the margins for time-varying 

systems. However, these methods may be conservative for linear systems with bounded 

rates of variation. 

The goal of stability analysis in industry is often to ensure a certain level of 

robustness against parameter uncertainty for a designed control system. Stability margins 

tell the engineer(s) if a new controller must be designed or if the system meets the 

relative stability specifications. By imposing desired gain and phase margin requirements 

on the system models, the LMI criteria described and tested in Chapter 3 can determine if 

a designed system meets margin requirements for time-varying parameter uncertainty by 

taking advantage of knowledge on the system's parameter ranges and rates of variation. 
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4.2.1 Gain Margin Testing for Time-Varying Systems 

Since the aforementioned LMI criteria make use of state space system models, it 

is important to understand how gain margin, described in the previous section for the 

frequency domain, appears in time domain models. Recall the general block diagram 

from Figure 4.1, but let G and H be modeled in the time domain as the state space 

systems 

*c(0 = AG(t)xG(t) + BG(t)uG(t) 

yG(0 = cc(t)xG{t) + Dc(t)uc(t) 

(4.7) 

(4.8) 

and 

xH(t) = AH(i)xH{t) + BH(t)uH(t) 

yn(t) = CH(t)xH(t) + DH(t)uH(t). 

(4.9) 

(4.10) 

Figure 4.3 is an updated block diagram of this system. 

U 

«cO) X 
1 

"\ wc(0 

J 
+ 

3«(0 

G 

H 

ye(0 

««(?) 

Y 

Figure 4.3: Block Diagram of Control System Transfer Function in State Space Form 
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From this diagram, it is obvious that the input to the feedback transfer function, H, of the 

system is equivalent to the output of the forward transfer function, G, or 

« H ( 0 = yc(t). (4.11) 

Furthermore, the input to G is expressed 

uG(t)=uc(t)+yH(t). (4.12) 

By substituting these equations with Equations 4.7 through 4.10, the equations for the 

closed loop system become 

XCL = 
AG+BGA-1DHCG +BGA~1CH 

BHCG + BHDGbTlDHCG AH + BHDC^CH. 
XCL + 

Br.A'1 

VBHDGA - l 

yCL =yG = [CG + DGA~XDHCG +DGA-xCH\xCL + [DGA-^UC 

uc (4.13) 

(4.14) 

where 

XCLV) = 
xG(ty 

A^= (I + DH(t)DG(t)y\ 

(4.15) 

(4.16) 

In this regard, note that the matrices in Equations 4.13 and 4.14 are still time-varying, but 

the time dependence is not explicitly shown in order to simplify the notation. Referring 

back to the block diagram for LTI systems in Figure 4.1, note that if a desired gain 

margin, K, is placed in the system, as shown in Figure 4.4, 
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Figure 4.4: Block Diagram of Transfer Function Control System with Gain 

the system transfer function for the left side becomes 

Trr = 
KG 

CL 1+ifGH' 
(4.17) 

and the transfer function for the right side becomes 

TCL = 1+KGH 
(4.18) 

The denominators for these transfer functions are identical. Therefore, from a stability 

standpoint, it does not matter where in the system the gain margin is multiplied. 

Multiplying the output equations in the state space representation of the system 

yields similar results. If the gain margin, K, is incorporated into system G, the closed 

loop system becomes 

*CL = 
AG + KBCA^DHCG +BGA-1CH 

KBHCG + K^MDCA^DUCG AH + KBHDGL~XCH. *CL + 

l - l BGA 
KBHDGA-\ uf 

(4.19) 

yCL = KyG = [KCG + K2DG^DHCG +KDG^CH\xCL + [KD^-^Uc. (4.20) 
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If AT multiplies the output of system H, the system becomes 

XCL — 
+KBGA'1CH 1 r BcA"1 

IH + KBHDGA^CJ CL VBHDGA-\ 

AG+KBCA^DHCG +KBCA~1CH
 n r D A-I 

lBHCG +KBHD^DHCG Ah 
uc 

(4.21) 

yCL = yG = [Cc + KDCA^DHCG +KDGA-1CH]XCL + [DGA-^UC. (4.22) 

For both systems, 

A^= {I + KDH{t)DG{t))-\ (4.23) 

Noting the differences in the system matrices above, it must be determined whether they 

have equivalent stability characteristics with respect to the criteria used for time-varying 

systems. To simplify the differences, realize that the system matrices of the above 

systems resemble the matrices 

^ = [ ; c a (4-24) 

and 

*n.-C !\ <4-25> \-c d 

Clearly, the eigenvalues of these two system matrices are the same even if a, b, c, and d 

are time-varying. This means that there is no combination of a, b, c, d, and K that will 

make the one of the systems (Equations 4.42 and 4.23) stable and the other instable 

according to the quadratic Lyapunov criteria in Equation 3.27. This statement is readily 

verified using Monte Carlo analysis to create several realizations of the systems with 
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random variables for the parameters [8]. Therefore, it can be concluded that even in the 

presence of time-varying parameters, it does not matter where the gain margin, K, is 

applied to the open loop. 

Using this information, the desired gain margin, K, is applied to the system 

wherever it is most convenient. If the LMI stability criteria are found simultaneously 

feasible for the original system and the new system for a certain region of parameter rates 

and ranges, the original system has a gain margin of at least K for all parameter values 

within that region. In some cases, it may be desired to test for two gain margins 

simultaneously: a margin, K, for amplification and a margin, /%, for attenuation. In this 

case, two new systems can be formed, one with each desired margin. If the LMI stability 

criteria from Chapter 3 are found simultaneously feasible for both systems, the original 

system has a "positive" and "negative" gain margin of at least K for all operating 

conditions described by the tested parameter region. 

4.2.2 Phase Margin Testing for Time-Varying Systems 

Phase angle is used to describe the relationship between a complex number's real 

and imaginary parts, as shown in Equation 4.3. Figure 4.5 shows the phase angle and 

related trigonometry for a complex number p = a+ jb. 
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The relationships 

and 

Im 

h 

p[cos(<pp) 

p\sin(<f>p) 

Figure 4.5: Phase Angle in the S- Plane 

a = |p|cos(0p) 

b = |p|sm(0p) 

provide an alternate expression for p in terms of its phase and magnitude, 

p = \p\cos(4>p) + j\p\sin(<pp). 

(4.26) 

(4.27) 

(4.28) 

Recall, however, that the phase angle of a system originates from the frequency 

response technique, which is based on LTI transfer functions. Hence, an alternative tool 

will be used to measure the relative stability. Delay margin, as presented in [41] and 

described in the remainder of this section, is a viable substitute. To see the relationship 
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between time delay and phase angle, consider the representation of a time delay, T, in the 

s-domain, 

L[f(t - T)] = e~TSF(s). (4.29) 

In block diagram representation, the time delay above takes the form of Figure 4.6. 

u F(s) 
X 

e-TS Y 

Figure 4.6: Block Diagram of Transfer Function with Delay 

Consider that the frequency response technique evaluates the transfer functions at 

s = jco, meaning that 

e-TS _ e-rja>_ (4.30) 

Using Euler's formula [33], 

eiy = cos(y) + ; sin(y), (4.31) 

the time delay can be expressed 

g-Tja - C O S ( - T O ) ) + ; sin(-TO)). (4.32) 

Comparing Equations 4.28 and 4.32, the relationship between a time delay and phase 

angle becomes 

-TO)! = cf>d, (4.33) 
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where (pa is the phase change caused by the delay and 0)r represents any frequency (in 

radians) where the magnitude is unity [41][42]. 

Control systems analysis software may require that the delay transfer function be 

represented by a transfer function other than an exponential function in order for the 

closed loop system matrix values to reflect the change. In this case, [41] presents 

methods for applying a so-called Pade approximation, a method for accurately 

approximating a function as a rational function of a finite order [43]. 

Specifically, Equation 4.30 can also be written as the nth-order Pade 

approximation, 

e~TSF(<t') = 1-P^TS^+P2(js)2...pn{Ts)n 

K J l+p 1(TS)+P 2(TS) 2 . . .P n(TS)" • <• ^ ) 

In the first order approximation, 

e-TSF(s) ~ m*L, (4.35) 
V J 1+PiTS V ' 

the delay margin, T, can be isolated, making it simple to apply a desired margin [41]. 

This is accomplished by first representing the delay as an additive perturbation such that 

± - ^ = l - D ( s ) . (4.36) 
1+PiTS V J V ' 

Figure 4.7 presents the general structure of this representation. From Equation 4.36, the 

transfer function, £>(s), is determined 

0 ( s ) = - i E i « . (4.37) 
V J 1+Pi.TS V ' 
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z 

Figure 4.7: Block Diagram of Additive Perturbation 

The selection of p1 = - gives 

0(5) = 
l+-2s 

(4.38) 

Rearranging £>(s) in terms of X and Z from Figure 4.7 yields 

i+-s 
Z = T s ( * - f ) (4.39) 

which is shown in block diagram form in Figure 4.8. This delay transfer function is then 

applied to the open loop transfer function of the original time-varying system (Figure 4.3) 

as shown in Figure 4.9. 

Given a desired phase margin, Equation 4.33 yields the appropriate time delay, r, 

to include in the delay transfer function described above. However, due to the frequency 

dependence in the expression, the process requires more calculation than the gain margin. 



70 

Figure 4.8: Block Diagram of First Order Pade Approximation of Delay Margin 

u 
K) 

6̂  
2 

Ms 

dO 

Figure 4.9: Application of Delay Margin Approximation to Transfer Function 

To account for this dependence, LTI systems are formed at the vertices of the parameter 

ranges of the system being tested, and the phase margins of these vertex systems are 

obtained using methods mentioned in Section 4.1. The frequency, o>l5 for the smallest 

phase margin is determined for each vertex system. The slowest of these vertex 

frequencies is then used to calculate the appropriate time delay using the formula 
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T = ± * £ £ 2 £ j ( 4 4 0 ) 

where (j>test is the desired phase margin in radians. 

If the LMI criteria are feasible for the systems with the incorporated time delays, 

then the system has a phase margin, or the equivalent time-delay margin, of at least 4>test 

for all parameter ranges and rates tested. 

Knowledge of the behavior of real life systems may dictate that only positive or 

negative delay margins be tested. For example, if a certain system is designed without 

any delay (i.e. T = 0 for the nominal case), it is susceptible only to a positive time delay 

(assuming it is a physically realizable system). Therefore, it is extraneous to test for a 

negative time-delay margin. In this case, the system has a phase margin of at least (ptest 

if the LMI criteria are found simultaneously feasible for the original system and the 

system with the positive time delay included. 
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5 Case Study: Time-Varying Stability and Robustness for 
Spacecraft 

The many interesting case studies that could be used to evaluate and compare 

stability analysis methods for time-varying systems include, but are not limited to, a 

flexible manipulator [44], spring-mass-damper [11][13], a high-performance aircraft 

[34][41][45], a launch vehicle [14][46][47][48], and other high-performance machines 

[49]. This thesis presents a case study featuring the attitude control system for a launch 

vehicle modeled as a parameter dependent linear time-varying system. 

The several different categories of launch vehicles range in complexity from 

missiles [48] and single-stage-to-orbit (SSTO) vehicles [46], to larger spacecraft with 

liquid fuel tanks [47] and/or multiple stages. In order to include time-varying parameters 

like the behavior of sloshing fuel [50] and a larger variety of operating conditions, this 

case study features a two-stage vehicle with solid and liquid fuel tanks, represented by 

the dynamics presented in [14]. 

The first section presents the assumptions that were made in the course of the 

analysis. This is followed by a section reviewing the relevant spacecraft dynamics. 

Subsequently, the system is analyzed using the parameter dependent LMI methods for 

time-varying stability analysis described in Chapter 3. First, stability envelopes for 

aerodynamic coefficient, thrust, slosh frequency, and slosh damping, are presented for the 

system at certain time-slices to compare the results from LMI methods to one another and 

to the results from frozen time analysis. Furthermore, rate bounds are added to examine 

how time-varying parameters affect the stability envelope. The time of flight is then 
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divided into overlapping time intervals to evaluate stability margin requirements for 

system model. 

5.1 Assumptions 

For a complex system like a spacecraft, it is necessary to make simplifying 

assumptions in order to efficiently use the stability analysis tools discussed in this thesis. 

First of all, the methods described thus far are valid for linear systems only. Therefore, 

the inherent non-linearities in the dynamics of the spacecraft are either treated as 

negligible or represented with linearized approximations in the equations of motion 

[1][5][14]. 

The system's six degrees of freedom (DOF) include rotation and translation in 

each of the roll, pitch, and yaw, axes. The roll, however, is typically directed by a non­

linear controller that is separate from the attitude control system being examined in this 

case study. Further, it is assumed that the vehicle is quite close to symmetrical in the 

pitch and yaw axis (Figure 5.1), so a control system designed for the yaw axis will meet 

the same stability requirements in the pitch axis, and vice versa [1][5]. This 

simplification reduces the system to 2 DOF. 

5.2 System Dynamics 

Due to the assumptions in the previous section, the spacecraft can now be 

represented as a system of linear equations. These equations, presented in their entirety 

in [14], can be divided into rigid body dynamics, flex (bending) dynamics, and slosh 

dynamics. 
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Figure 5.1: Spacecraft Coordinate Frame 

Figure 5.2: Spacecraft Sign Conventions 
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Figure 5.2 shows the sign conventions for the equations of motion that will be 

presented in the remainder of the current section with variables as defined in the List of 

Variables [1][14]. Note that the 2 DOF in this depiction include translation in the Z-axis 

and rotation in the Y-axis. 

Rigid body dynamics includes rigid rotation about the center of gravity and the 

rigid body translation of the center of gravity. Specifically, 

1 1 V 1 

4>c.g.s2 = ~cxa - c2/3E - — (Xc.gSE + IE)pEs2 + — y msj{lsjs
2 + k3)ZsJ 

'xx 'xx r—i 

(5.1) 

and 

Zc.g.s2 = k7a + k^pE + /c30c.5. + ^PEs2 - ^YTjS
=1

msjzsjS2. (5.2) 

Both kinds of rigid body motion depend on forces created by aerodynamic properties, 

gimbal angle (including the "tail-wags-dog" effect), thrust, drag, and sloshing fuel 

masses. Equations 5.1 and 5.2 are linked together by the equation, 

« = (T) + &* - ^ (5-3> 

which expresses angle of attack in terms of attitude and translation. 

Bending motion (Equation 5.4) depends on flexibility characteristics such as 

natural frequency, damping, and generalized mass in addition to the forces mentioned 

above for the rigid body dynamics. Specifically, 
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(s2 + 2!Bia)Bis + (Oet^Mirii = R'YBipE + (SEYBi - IEYBi')pEs2 -

I^UmsjYsijZsjS2 + CZvia. (5.4) 

Each bending mode is represented by a separate equation. The inclusion of more bending 

modes in a model leads to an increase in model fidelity. However, this also leads to an 

increase in the size of the system. The number of modes included in an analysis 

ultimately depends on the required model fidelity, the vehicle's frequency spectrum, and 

the available computation tools [1]. 

The dynamics of sloshing fuel is described by an equation for each fuel tank being 

considered in the analysis. Specifically, 

(s2 + 2S5ja>sjS + a>Sj
2)Zsj = -Zc_gs

2 + (lsjs
2 + fe3)0c.5. - I ^ ^ s 2 . (5.5) 

Similar to bending modes, the inclusion of more slosh masses (up to the true number) 

yields a higher fidelity model. As shown in Equations 5.1, 5.2, and 5.4, the slosh tanks 

with greater slosh masses have a larger effect on overall vehicle motion. 

Equations 5.1 through 5.5 describe the overall motion of the spacecraft and 

collectively form the plant system. In addition to the plant, the control system includes a 

combination of other systems designed to regulate the spacecraft's attitude. Sensors on 

the body of the vehicle determine the attitude and attitude rate according to the equations 

and 
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respectively. It is apparent that sensor output only differs from plant output if bending 

dynamics is included in the model. Note that, when convenient, the sensor equations can 

be included as part of the plant's output equations. 

Sensor output is filtered in order to attenuate the higher frequency bending modes 

[1][16]. The filter output becomes the controller input. The controller is a proportional-

integral-derivative (PID) controller that outputs a gimbal command angle 

PCMD = Ki S(<t>p - 4>c) + Kp(<PP - <Pc) + Kd<p RG- (5.8) 

The controller gains, Ku Kp, and Kd, are designed using gain scheduling, a process that 

involves optimizing a controller for specific design points throughout the time of flight 

and linearly interpolating between these points to obtain gain values for any flight time 

[1][18][44]. The command angle translates the gimbal angle via the dynamics of the 

actuator. Figure 5.3 presents the basic structure of how the separate systems interact to 

form the attitude control system. 

$T\^J~* 

Figure 5.3: Spacecraft Attitude Control System Block Diagram 

After transforming each system into its state space representation, the process in 

Equations 4.6 through 4.15 can be used to represent the system as one larger state space 
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model. With an understanding of the system's parameter dependence, the LMI stability 

criteria from Chapter 3 can evaluate the stability of the system subject to different sets of 

uncertain parameter ranges and rates. 

5.3 Stability for a Rigid Spacecraft 

In this section, the system is simplified to reduce the size of the model and enable 

faster computations. This simplification facilitates the stability analysis for several sets 

of uncertain parameters and operating conditions. Testing such large ranges of operating 

conditions yields stability envelopes for the different parameter combinations. These 

results are compared to the corresponding stability envelopes from frozen time analysis 

methods to quantify the LMI methods' conservativeness. 

To reduce the size of the system, the bending dynamics is removed from the 

original model. From Equations 5.6 and 5.7, it is apparent that this enables the removal 

of the sensor system. More importantly, the flex filter is no longer needed to attenuate 

the effects of the bending motion. Finally, to further simplify the system model, the "tail-

wags-dog" effect between the plant and the actuator is ignored. Figure 5.4 shows the 

reduced structure of the attitude control system. 

T^CA + 

9C
 

PCMD 

Act 
PE 

P 

4>sc. 

.&RG. 

Figure 5.4: Simplified Attitude Control System Model 
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Given the state space models, 

xp = Ap{8)xp + Bp{S)BE (5.9) 

y = Cpxp + DpBE = Cpxp, (5.10) 

xact = AactXact + BactBc (5.11) 

HE = Cactxact + ^actPC = Cactxact-> (5-12) 

and 

*K = AKxK + BKy (5.13) 

Pc = CKxK + DKy, (5.14) 

for the plant, actuator, and controller, respectively, the homogeneous closed-loop control 

system becomes 

x = 

Note that the parameter dependence in the system is limited to Ap(8) and Bp(S), and that 

the system has been structured so the time-varying parameters are confined to two 

adjacent block elements, simplifying the creation of the uncertain state space systems. 

Using Equations 5.1 through 5.5 and the processes illustrated in the numerical example in 

Chapter 3, the state space model is put in the form of the parameter dependent uncertain 

state space systems from Chapter 2 to proceed with the stability analysis. 

In this analysis, one parameter is considered uncertain at a given time. For 

each parameter, several different parameter rate bounds are considered. The stability 

envelope, marked by the area between the lines of a given color, is the area between 

largest positive and negative variations from the nominal parameter value for which the 

xp 
xact 
XK 

= 

AP(S) 

^act^K^p 

BRCV 

Bp(S)Cact 

"•act 

0 

0 

Bact^K 
AK 

Xp 

xact 

.xK . 
= A(t)x(t). (5.15) 
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LMI stability criteria are found feasible. The area between the dotted red lines represents 

the parameter values for quadratic stability. Table 5.1 compares the stability envelopes 

obtained using the LMI criteria for a zero rate bound to results from LTI criteria. 

Table 5.1: Stability Envelope Comparison for Rate Bound = 0 (t = 60 sec) 

Aero. Coeff. 

Thrust 

Slosh Freq. 

Slosh Damp 

Affine 
PDS 
Lower 
Bound 

-1 

-.59 

-.94 

-1.02 

HO 
PDS 
Lower 
Bound 

-.99 

-.59 

-.94 

-1.02 

True 
Lower 
Bound 

-1 

-.59 

-.97 

-1.02 

Affine 
PDS 
Upper 
Bound 

1.67 

4.9 

10+ 

10+ 

HO PDS 
Upper 
Bound 

1.68 

9.08 

10+ 

10+ 

True 
Upper 
Bound 

1.68 

10+ 

10+ 

10+ 

Aero. Coefficient Stability Envelope 
t=tOfC 

J™ 5"° 

© 400 

l" 
CJ00 

i' 
«0 100 « 0 * » 

i Bound (% of Nominal Value/sec) 
o u 100 i«o 200 
Rate Bound (X of Nominal Value / sec} 

Affine PDS Criteria Envelope 
- H.O. PDS Criteria Envelope 
- Quadratic Stability Envelope 

10 100 WG 200 
ind (Xof Nominal Value/sec) 

Figure 5.5: Aerodynamic Coefficient Stability Envelope 
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Figure 5.6: Thrust Stability Envelopes 
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Figure 5.7: Slosh Frequency Stability Envelopes 
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For all of the parameters except thrust, the time-varying stability envelopes correspond 

with the LTI results quite well when the parameter rates are held to zero. The thrust 

stability envelope, however, displays conservativeness in the LMI results. Further, the 

highlighted portion of Figure 5.6 shows that at 60 seconds, the stability envelope upper 

bound for thrust is lower at a rate bound of 30% of the nominal value per second than it is 

for a rate bound of 50%. Since the former, slower rate is included in the latter, it should 

yield a stability envelope of equal or larger size. The thrust uncertainty most likely 

causes conservativeness when associated with parameter dependent Lyapunov functions 

because the high order of magnitude typically associated with thrust causes a violation of 

limits placed on the norm [28] of the solutions to the feasibility problem. These limits 

are not currently able to be removed or increased due to limited computational abilities. 

By additional study, it is hoped to confirm the origin of and subsequently circumvent the 

computational difficulties encountered for the uncertain thrust parameter. 

In this case study, the higher-order PDS model and stability criteria yields a less 

conservative stability envelope than the affine PDS model and LMIs for almost every 

uncertain parameter. This is contrary to the performance of the methods in the simple 

spring-mass-damper example in Chapter 3. For some of the test cases, the affine PDS 

stability envelope reverts immediately to the quadratic stability envelope. This trend of 

conservativeness is attributed to the multi-convexity constraint in the affine PDS stability 

criteria which applies when the system and the Lyapunov function depend on at least one 

of the same uncertain parameters. Due to the discrepancy in the performance of the 

methods for this spacecraft system, the higher-order PDS model and stability criteria are 

used for the remainder of the case study. 
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5.4 Relative Stability for a Rigid Spacecraft 

As stated in Chapter 4, the LMI stability criteria can be used to determine whether 

or not a time-varying control system meets relative stability requirements. This is 

accomplished by applying a system representative of the desired margin to the system's 

open loop transfer function. 

Knowledge of the parameter values and rates of change can be used to reduce 

conservativeness in testing for stability margins in a spacecraft control system. Dividing 

the entire timeline into smaller time intervals decreases the uncertain parameter regions 

that must be tested in the LMI criteria. The parameter rates of variation can be derived 

by analyzing the varying parameter values over time. The extreme values of the 

uncertain parameters' ranges and rates within a specific time interval define the 

parameter region for a given LMI test, as shown in Figure 5.8 for a theoretical parameter 
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Figure 5.8: Time Interval Analysis of Parameter Trajectory 
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To test for gain margin in the vehicle examined in this case study, a static gain 

equal to the desired gain margin is added to the controller, as shown in Figure 5.9. 

Figure 5.9: Block Diagram System with Desired Gain Margin 

If the LMI criteria are found simultaneously feasible for the system in Equation 5.15 with 

and without the applied gain margin, the system meets the gain margin requirements for 

the tested operating conditions. The results in this section are based on the evaluation of 

the system for overlapping time intervals which are pieced together to cover longer 

periods of the time of flight. Therefore, the LMI criteria must be determined feasible or 

infeasible for the parameter rates and ranges in each interval. 

A common minimum gain margin requirement in industry is ±6dB [46], which 

implies stability for magnitude changes of the open loop system between 

GM_ = lo(~^~) = .5012 ~ -
2 

(5.16) 

and 

GM 
(6dB\ 

+ = lOHSv = 1.995 ~ 2. (5.17) 
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As stated in Chapter 4, testing for these two margins simultaneously will determine if the 

system meets the design specifications. 

To avoid optimistic results, phase margin testing requires that time-invariant 

systems be formed at the vertices of each time interval's uncertain parameter region. The 

frequency, 0)1, is selected as the lowest of the crossover frequencies for the smallest 

phase margin of each system. The phase margin is applied to the system in the form of a 

time delay as described in Chapter 4 and illustrated in Figure 5.11 and 5.12. 

eoi 
+ 

K H PM 
\0c* 

Act 

Figure 5.10: Block Diagram with Desired Phase Margin Attached 

PM 

Figure 5.11: First Order Pade Approximation of Desired Phase Margin Block 

A common phase margin requirement for an attitude control system is 
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(Ptest = ±30° = ± - rad. (5.18) 

[46] [47]. Since the nominal system includes a delay, it is necessary to test for positive 

and negative phase changes. Therefore, if the stability LMIs are found simultaneously 

feasible for the system in Equation 5.15 with the positive and the negative phase margin 

included, the original system meets phase margin requirements for the time interval 

tested. 

In the plots that follow, a green asterisk indicates that the stability criteria are 

feasible for all uncertain parameter rates and ranges in the time interval. A red asterisk, 

indicates that the criteria were found infeasible for those parameter values. The values 0, 

1, and 2 on the vertical axis correspond to quadratic, affine-quadratic (i.e. affinely 

parameter dependent), and biquadratic LMI stability criteria, respectively. See Section 

3.3.2.3 or [11] and [39] to recall the differences between these criteria. 
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Figure 5.12: Interval Testing for Uncertain Thrust 
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Figure 5.14: Interval Testing for Uncertain Aero Coeff. and Velocity 

600 

Note that the time interval between 120 seconds and 130 seconds into the time of 

flight is left out of the analysis. For this case study, this is the interval of time during 

which the first stage separates from the rest of the spacecraft. This separation features 
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non-linear behavior which is not captured by the system model considered in this thesis 

[51]. Since analyzing the separation subinterval does not offer valuable insight for this 

thesis, the time of flight is divided into the two intervals of time before and after 

separation. 

According to these results, this attitude control system model possesses the 

required stability margins for the tested combinations of uncertain, time-varying 

parameters throughout the pre- and post-separation time intervals. With the exception of 

brief time intervals surrounding the separation subinterval, the system is found 

quadratically stable for most of the flight. When the quadratic stability criteria are found 

infeasible for the uncertain thrust or slosh characteristics, the parameter rates are slow 

enough for the system to be found to meet requirements by the parameter dependent 

Lyapunov LMI criteria. The time subintervals for which the requirements are not met can 

be verified with simple time-responses. For example, according to the red star in the 

bottom row of Figure 5.12, the system does not meet requirements for the range of thrust 

values on the ten second subinterval centered around t = 115 seconds if the thrust may 

vary arbitrarily fast. To verify this finding, a system is created with all parameters frozen 

at the nominal values for t = 115 seconds except for thrust. Thrust is time-varying within 

the range of values expected in that time interval but at faster rates. Figure 5.15 shows 

that at least one example of such a time-varying thrust causes the otherwise invariant 

system to go unstable. In the real control system, thrust varies at a bounded rate. The top 

row of Figure 5.12 models the system as a higher-order PDS and considers the rate 

bounds in the stability criteria as described in Chapter 3. According to this analysis, the 

system meets the robustness requirements. Therefore, parameter dependent system 
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models and LMI stability criteria based on biquadratic Lyapunov functions should be 

used for time-varying robustness analysis of the linear control system. 

x - I01 9 Time-Varying Thrust w/System Frozen System att = 115sec 
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Figure 5.15: Time-Response for Frozen System at t = 115 sec w/ Time-Varying Thrust 

The subintervals for which the LMI stability criteria predict that the system meets 

the requirements are quite difficult to validate with time responses because every possible 

operating condition within the range and rate boundaries must be considered. Note that 

the cases considered here feature small quantities of uncertain time-varying parameters 

relative to the number of parameters that are actually time-varying on a spacecraft 

system. For this reason, the analysis featured in this thesis is not intended to replace high 

fidelity time-domain simulation like that presented in [3]. Instead, these results serve 

only as evidence for the possibility of beneficial applications of LMI stability analysis 

methods for spacecraft systems. 
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5.5 Stability for Full Spacecraft Dynamics 

In addition to the simplified system of the previous sections, it is important to 

make sure the methods described in this thesis can also be applied to more complicated 

control system models. This section considers a higher fidelity model of the vehicle 

described in the case study. 

In the current and following sections, the bending dynamics and filter are replaced 

into the control system model. This model will also include the effect of "tail-wags-dog" 

and "dog-wags-tail" dynamics between the plant and actuator. 

Figure 5.19 portrays a block diagram of the larger system model. 

*« 
"V 
+ 

K 
PcMD 

1 

PU 

F 

h 

Sn 

Figure 5.16: Spacecraft Attitude Control System Block Diagram 

The block designated PU represents the plant and the actuator in series with the 

"tail-wags-dog" and "dog-wags-tail" represented as a part of the component's internal 

dynamics. Consider the state space models, 

xact — Aactxact + BactyK 

_ r ^ l _ r v J. n \Pcmd\ 
fact ~ \n \ — Lactxact ">" uact T 

(5.19) 

(5.20) 
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and 

XP = ixp 
= Ap(S)xp + Bp(S)yact (5.21) 

yP = Xp 

Vact 

= Cp(S)xp + Dpyact, (5.22) 

for the actuator and plant, respectively. Then, the state space system equations for the 

open loop plant-actuator combined system can take the form 

Xpu ~ ™puXpu + tjpuUpu — 

XP] 

xact 

p4p(5) Bp(8)Cact 

L 0 A a c t 

xpu > 
Bp(8)Dact]\Bcmd 

B IE act J i-'dwt 
(5.23) 

Vpu ~ ^puxpu ' '-'pvV-pu ~ 

AP 

BE 

PE 

= [Cp{8) DpCu]Xpu + [DpDu] Pcmd 

Tdwt. 
(5.24) 

This open loop system is shown in Figure 5.17. 
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Figure 5.17: Block Diagram of Actuator and Plant Systems 

The effect of the vehicle motion on the gimbal angle described by the "dog-wags-tail" 

dynamics, 

*dwt — Ddwtypu, (5.25) 

is included in the plant-actuator system dynamics by closing the loop. The state space 

system equations for the closed loop, single-input, plant-actuator system become 

Xpu ~ ™puXpU T t>pUpcm(i 

= (Apu{S) + flpu^WZWr-1^*)) xpu + Bpu^S)Pcmd (5.26) 

Vpu ~ ^pu^pu "•" UpuPcmd 

1 LpUXpU + UpunHcmdi (5.27) 

where 

r = 0-DpUdwtDdwt). (5.28) 

In these equations, Bpu and Dpu represent the columns of Bpu and Dpu that correspond 

to Bcmd. Likewise, Bpu and Dpu represent the columns of Bpu and Dpu that 
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correspond to the Tdwt input from Figure 5.17 and Equations 5.23 and 5.24. The closed 

loop plant-actuator system is shown in Figure 5.18. 
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Figure 5.18: Closed Loop D W T Dynamics in Plant and Actuator 

This model and the state space models, 

ys = 

<t>P 

4>RG1 

4>RG2 

4>RGZ 

4>RGab 

= Dsypu, (5.29) 

xF = ApXF + BFys (5.30) 

3V = 

<t>P 

&RG 

tpRGab-i 

= CFxF + DFys, (5.31) 

and 

XK — AKxK + BKyF 

yK = Bc = CKxK + DKyF, 

(5.32) 

(5.33) 
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for the sensor, filter, and controller, respectively, yield the overall homogeneous closed-

loop control system 

Xp 

XK 

APU(S) Bpu(S)DKCF Bpu(.8)CK 

BFDsCpu(S) AF + BFDsDpuDKCF BFDsDpuCK 

0 BKCF AK 

Apu 
XF 
XK 

(5.34) 

Notice that, even in the more complex system, the parameter dependence is restricted to 

the plant matrices. Using knowledge of the parameter dependence obtained from 

Equations 5.1 through 5.5, uncertain state space models of the system in Equation 5.34 

can be formed and evaluated using LMI stability criteria. 

5.6 Relative Stability for Full Spacecraft Dynamics 

The testing of relative stability specifications for the higher fidelity model can be 

performed using the same methods as for the simplified model in Section 5.4. Parameter 

value and rate over time subintervals can be used to determine whether or not the gain 

and phase margin requirements are met over periods of the time of flight. 
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Figure 5.19: Spacecraft Attitude Control System with Gain Margin 
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Figure 5.20: Spacecraft Attitude Control System with Phase Margin 

Figures 5.19 and 5.20 display the full spacecraft attitude control system with the gain and 

phase margins included, respectively. 

Due to limits in computational tools available for this work, the increased system 

size resulting from the inclusion of the bending dynamics and the filter leads to memory 

problems and excessive computation times. Given the right tools and sufficient time, 

however, the described LMI methods can provide meaningful stability analysis for time-

varying linear systems like the spacecraft in this case study. 
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In this thesis, three sets of LMI stability criteria have been described. Two of 

these methods have been explored further in the case study to test the tools' ability to 

analyze the stability of an example spacecraft attitude control system model. The set of 

criteria pertaining to the polytopic system model has not been applied in the case study 

due to its inability to consider bounds on parameter rates of variations and its resulting 

conservative stability predictions for slowly time-varying linear systems. 

In addition to using the stability criteria for stability analysis, the time-varying 

systems and LMI conditions have been adapted to determine whether or not required gain 

and phase margins are met over a range of parameter ranges and rates. 

In the case study, parameter dependent Lyapunov functions and LMI stability 

criteria have been used to find stability envelopes, or ranges of parameter variations for 

which the system is stable, for several parameters. These stability envelopes have been 

compared to stability envelopes found using linear time-invariant stability criteria. The 

comparison has indicated minimal conservativeness when the uncertain parameters had 

rates of variation equal to zero for all tested parameters except thrust. Further, the 

theoretical expectation that the stability envelopes calculated with LMI criteria decrease 

in size as the parameters are allowed to vary more quickly has been confirmed. 

Additionally, the time of flight for the case study system has been divided into 

overlapping time intervals. Example parameter trajectories have been consulted to obtain 

ranges and rates for the time-varying parameters over each interval. For several 

combinations of uncertain parameters, the LMI criteria have determined that the attitude 
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control system in the case study possessed gain and phase margins at or above the 

assumed minimum required levels throughout the pre- and post-separation time intervals. 

The use of LMI's for time-varying stability analysis presents several interesting 

avenues for future research, especially in the areas of stability and robustness analysis for 

complicated mechanical control systems like the spacecraft from the case study. 

One area where the research findings from this thesis can be readily expanded is 

the size and fidelity of the control system model used in the case study. Given a more 

specific scope, more time, and/or more computing resources, it is possible to use tools 

like the ones described in this thesis to analyze larger systems or systems with more and 

different combinations of uncertain parameters. This kind of research yields results that 

are more applicable to answering actual engineering design questions for aerospace 

systems. 

Similar research with other LMI formulations may assist in finding the most 

efficient methods for analyzing the stability and relative stability for time-varying linear 

systems. For example, in [45], LMls are formed using integral quadratic constraints 

based on an LFT model to analyze the stability and performance of time-varying linear 

systems, including those with slowly varying uncertain parameters. [27], [52], and [53] 

describe other LMI formulations for analyzing polynomial linear-parametrically-varying 

(LPV) systems. Moreover, [24] suggests that making educated choices about the 

parameter values in the testing regions may yield less conservative results than those 

obtained by using hyper-rectangular parameter regions like the ones used in this thesis. 
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The combination of this "small-hull" parameter modeling and the use of parameter rate 

information as described in this thesis may reduce conservatism even further. 

The possibility for extending this research to include more kinds of uncertain 

systems is also interesting. In [54], LMI methods are used to design a controller for a 

system with saturation. Similar methods may be able to be applied to the non-linear 

controller described in [15] to see how they compare with other non-linear analysis 

methods. If this analysis yields acceptable results, the next step may be to analyze a 

system similar to the spacecraft in the case study without eliminating the non-linearities, 

like those described in [3], that have been linearized or deemed negligible in this thesis. 
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