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Segmentation and Visualization of Volume Maps 

Powei Feng 

Abstract 

Volume data is a simple and often-used representation for exchanging and processing 

data in various scientific domains, such as medicine and molecular biology. The 

segmentation of volume data is an essential part of data interpretation. Researchers 

have extensively studied the problem of segmentation focusing on efficient algorithms 

for segmenting and rendering volumes. Our contribution is two-fold. First, we propose 

a tri-linear classification method that can implemented on the GPU to reduce artifacts 

and jaggedness along the material boundaries that appear when rendering segmented 

volumes. Our representation provides sub-voxel accuracy for representing segmented 

materials. Second, we demonstrate our interactive painting-based segmentation tool, 

which can be used to rapidly produce an intuitive segmentation. We compare our tool 

against known results and show that we can generate similar segmentations using a 

simple and intuitive control scheme. 
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Illustrations 

1.1 2D example of segmented volume visualization. 1.1(a) shows the 

input segmented volume, and 1.1(b) renders a piecewise bi-linear 

function over the segmented domain. Note that the bi-linear 

classification produces smoother boundary but also maintains the 

correct partition. 1.1(c) and 1.1(d) are the three material variants. . 3 

1.2 Example of segmentation and our multi-material representation. 

1.2(a) illustrates a typical segmented material over a low-resolution 

map. The segmentation is performed by thresholding. 1.2(b) shows 

the same material under our representation. 1.2(c) shows the same 

map after further segmentation. 1.2(d) shows our representation 

after the second segmentation. This example is the replicative 

helicase G40P molecular structure 4 

1.3 Two-dimensional comparison of methods, (a) is a multi-material 

voxel with no intensity information, (b) is the naive approach of 

classifying by nearest neighbor, (c) Tiede et al. proposes a linear 

filter for classification [27], but it leaves points unclassified, (d) We 

propose a tri-linear representation that classifies all points within a 

voxel, (e) and (f) are examples of our approach that demonstrate the 

flexibility in representing contours 5 
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1.4 Three-dimensional comparison of methods, (a) is the input of a 

sphere-like segment, (b) is rendered using Tiede et al.'s classification 

scheme [27]. Note that it produces a bumpy surface, (c) is our 

representation for the segment contour. Details for constructing (c) 

from the segment (a) is described in Section 3.4 5 

1.5 The GroEL molecular structure and an engine block. 1.5(a) shows 

the raw density map, and 1.5(b) is the result of its segmentation into 

14 subunits using our tool. 1.5(c) shows the raw engine data and 

1.5(d) shows the result of the segmentation with transparency. . . . 7 

2.1 Two material example. 2.1(a) shows the bilinear function of a single 

cell. Red represents the parts of the cell that has positive values in 

the bilinear evaluation, and green represents the negative values. The 

arrows indicate the direction of the gradient. 2.1(b) is the plot of the 

bilinear function in 3D with the same color representation 11 

2.2 2 material example continued. 2.2(a) is the plot of the function in 

2.1 by replacing the negative voxels (coefficients of the bilinear) with 

O's. 2.2(b) is the plot of the same function by replacing the positive 

voxels with O's and taking the absolute value of the coefficients. 

2.2(c) is the maximum of the functions in 2.2(a) and 2.2(b) 12 

2.3 3 material example. 2.3(a) is the classification of the bi-linear 

function under our scheme. The arrows denote the gradient. 2.3(b) 

is the plot of 3 functions that are created under our evaluation 

scheme. 2.3(c) is the maximum plot of the three functions 12 

2.4 The perspective view of a multi-material volume of size 333 rendered 

using GPU tri-linear contouring (a) and as polygonal contours 

generated by Dual Contouring (b), showing the grid structure (c). (d) 

depicts the mesh generated from Dual Contouring without the letters. 15 
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2.5 A close up example of rendering using our piecewise tri-linear 

representation 19 

2.6 A close up example of rendering using our piecewise tri-linear 

representation 19 

3.1 These figures show the result of building scalars from existing 

segmentation. The top row of figures is a two-material example, and 

the bottom four figures represent the three-material case. 3.1(a) 

and 3.1(d) are the binary classification input. 3.1(b) and 3.1(e) are 

results of assigning all l's as the scalar field. 3.1(c) and 3.1(f) are the 

results of blurring using the heuristic described in Section 3.1 21 

3.2 Figure 3.2(b) shows a multi-material map generated from the 

iso-surfaces of Figure 3.2(a) 22 

3.3 Interactive painting-based segmentation of human head: the density 

volume 3.3(a), restricting painting to thresholded bones 3.3(b), user 

painting with spherical brush 3.3(c), and labeling result after 

graph-cut segmentation 3.3(d) 23 

4.1 PDB examples segmented using our painting interface. In order of 

left-to-right, the images of first row are of datasets 1E08 and 1R8J. 

The second row images are of 1XTC and 2P1P 31 



2 Gallery of examples segmented using our painting interface. In the 

order of left-to-right, the figures of the first row are: myosin V 

(EMDB 1201), and Hsp 26 (EMDB 1226), glutamate synthase 

1.2-MDa hexamer (EMDB 1440), and engine block (General Electric 

and volvis.org). The figures of the second row are: Stanford bunny 

(The Volume Library), foot (Philips Research and The Volume 

Library), Ambystoma Tigrinum (Digital Morphology Library), and 

piggy bank (Michael Bauer and The Volume Library) 

http://volvis.org
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Chapter 1 

Introduction 

Volume data is defined by a three-dimensional grid of scalar values or tuples. Each 

point on the grid is called a voxel. (The two-dimensional version of volume data 

is a grey-scale or colored image). Volume data can be generated for simulations 

or generated through imaging technology such as computed tomography (CT) in 

medicine and electron microscopy (EM) in bio-molecular imaging. The most intuitive 

analysis of a 3D volume map is through visualizing the data. For example, given a CT 

scan of a hand, we can reconstruct a 3D model of the hand that allows for interactive 

visual manipulation such as rotation, translation, and magnification. In addition to 

visualizing the entire volume, sometimes it is useful to visualize the components that 

reside within a volume map. (In the case of the hand CT, it would be useful if we can 

separate out the bones from the flesh). To visualize components within a volume, the 

first step is to separate out regions of interest within the data set. This separation 

is called segmentation. Besides bone/flesh separation in medicine, segmentation also 

corresponds to other high-level semantics such as locating symmetric subunits from a 

reconstructed image of a protein (see Figure 1.5(b)) and identifying individual parts 

of a mechanical object like an engine (see Figure 1.5(d)). 

Our work addresses the specific problem of visualizing segmented volumes. We 

focus on reducing the jagged boundary associated with binary classification of seg­

mented volumes. In addition to visualization, we also develop a semi-automatic seg­

mentation interface and demonstrate that this interface is an intuitive and efficient 

method for segmentation. 

In the rest of this chapter, we will discuss the background and motivation of our 
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work on volume visualization and segmentation. We will also briefly describe our 

approach, which is elaborated in the following chapters. 

1.1 Visualizing Volume Data 

Visualizing volume data requires interpreting the discretely-sampled volume as a con­

tinuous function. One approach is to interpret the space between samples as a tri-

linear interpolation function by treating the discrete samples as the interpolant at the 

corners of the function domain. The entire domain of the volume is then covered by 

piece-wise tri-linear functions. To display the function defined on the volume, we can 

choose a threshold value and extract a level-set from the combined function. This 

approach is a form of implicit modeling, which is a standard technique for modeling 

shapes in computer graphics [1]. Given a function f(x,y,z) (our previously defined 

volume function), the set of all points such that f(x,y, z) < 0 defines the one region 

and the set of all points such that f(x,y,z,) > 0 defines a second, complementary 

region (excluding the surface where the function is zero). For a multiple material 

viewpoint, the implicit function f(x,y,z) partitions space into two materials; one 

material where the function f(x, y, z) is positive and another where f(x, y, z) is nega­

tive. Numerous contouring method such as Marching Cubes [15], Dual Contouring [9] 

and others [5, 12, 20] can then generate a polygonal surface that separates the positive 

space from negative space. 

Alternatively, the two spaces can be visualized using various volumetric approaches 

implemented on the GPU [28, 4, 22]. The key ideas behind these approaches are that 

the signed grid can be stored as a 3D texture and that a single texture load can be 

used to evaluate f(x,y,z) via tri-linear interpolation at an arbitrary point. In prac­

tice, this tri-linear boundary surface provides better normals for shading and better 

silhouettes than the discrete voxelized approach. 

While the use of two signs to distinguish between two materials is simple and 

elegant, the idea of using three or more signs to represent a partition of space into 



(a) Two material (b) Two mate- (c) Three material (d) Three material 

binary classification rial + / - bilinear binary classification bilinear contour 

contour 

Figure 1.1 : 2D example of segmented volume visualization. 1.1(a) shows the input 
segmented volume, and 1.1(b) renders a piecewise bi-linear function over the seg­
mented domain. Note that the bi-linear classification produces smoother boundary 
but also maintains the correct partition, 1.1(c) and 1.1(d) are the three material 
variants. 

multiple material has received only limited attention. A simple representation of a 

segmented volume map is to attach an auxiliary discrete volumetric grid whose voxels 

each consist of a single material, which can be denoted with integers. The materials 

comprising the volumetric grid can be stored as a 3D array of integers. While this 

approach is fairly simple to implement, its drawbacks are obvious. The resulting 

materials have blocky boundaries that are hard to shade in a natural manner and have 

jagged silhouettes and inter-material boundaries [7] (see Figures 1.1(c) and 1.2(c)). 

In Ju et al's Dual Contouring, in which material indices are attached to a grid 

to represent three or more materials [9]. In this approach, the boundaries between 

materials are represented as polygonal surfaces created from point and normal data 

stored on edges in the grid. Ju et al's work assumes that auxiliary data (such as 

edge intersections) is provided in addition to the volume. In our work, we make no 

assumption about the data beyond the segmentation of the volume. Other researchers 

have studied multiple material rendering in different contexts. Fujimori et al. and 

Shammaa et al. focus on the related problem of extracting multi-material surfaces 

from volume maps that do not have labeled voxels [6, 25]. Their extraction involves 
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(a) (b) (c) (d) 

Figure 1.2 : Example of segmentation and our multi-material representation. 1.2(a) 
illustrates a typical segmented material over a low-resolution map. The segmentation 
is performed by thresholding. 1.2(b) shows the same material under our represen­
tation. 1.2(c) shows the same map after further segmentation. 1.2(d) shows our 
representation after the second segmentation. This example is the replicative helicase 
G40P molecular structure. 

surface construction with respect to inter-material threshold values. In contrast, our 

work assumes that segmentation is defined by voxel labeling. 

Researchers have also tried to alleviate the voxelization defects of discrete classifi­

cation for segmented volumes. Kadosh et al. and Gibson both describe interpolation 

methods for smoothing out binary density maps by using scalar maps that represent 

distances to the surface [10, 7]. In comparison, our scalar map generalizes to three or 

more materials, and our representation enables a texture-based GPU implementation 

for rendering. Stalling et al. presents a scheme for sub-voxel contours by attaching 

probabilities to each voxel and bilinear interpolating for arbitration between mate­

rials [26]. Though our approaches are similar, our work describes a more compact 

representation of the scalar field that extends from the two-material case. We also 

show how our representation can be efficiently implemented in the GPU. 

In another significant work on multi-material rendering, Tiede et al. introduced a 

multi-material classification scheme for volume raycasting [27]. Hadwiger et al. inte­

grated this classification scheme into their hardware implementation of high-quality 
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Figure 1.3 : Two-dimensional comparison of methods, (a) is a multi-material voxel 
with no intensity information, (b) is the naive approach of classifying by nearest 
neighbor, (c) Tiede et al. proposes a linear filter for classification [27], but it leaves 
points unclassified, (d) We propose a tri-linear representation that classifies all points 
within a voxel, (e) and (f) are examples of our approach that demonstrate the flexi­
bility in representing contours. 

(a) (b) (c) 

Figure 1.4 : Three-dimensional comparison of methods, (a) is the input of a sphere­
like segment, (b) is rendered using Tiede et al.'s classification scheme [27]. Note 
that it produces a bumpy surface, (c) is our representation for the segment contour. 
Details for constructing (c) from the segment (a) is described in Section 3.4. 

volume rendering [8]. The classification scheme described by Tiede et al. focuses on 

segments produced by thresholding. In the case where the threshold ranges of mul­

tiple materials overlap, Tiede et al.'s approach is to linearly interpolate the binary 

mask associated with the material. For each material A, space where the interpolated 

value (with respect to A's tri-linearly interpolated binary mask) is greater than 0.5 

is classified as A. Although linear filtering resolves the overlap of threshold ranges, it 

also produces unclassified regions within a single voxel (see Figure 1.3(c)). In the case 

where the input is a segmented volume without intensity information, Tiede et al's 
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approach would produce a classification that has ripple-like effect (see Figure 1.4(b)). 

Our method guarantees classification for all points within a voxel (see Figure 1.3(d)) 

and provides greater flexibility in sub-voxel classification (see Figure 1.3(e)), hence 

capable of representing smooth inter-material boundary (see Figure 1.4(c)) . Also 

note that both Tiede et al. and Hadwiger et al. tackled the problem from a visual­

ization perspective, where they improved multi-material rendering for one particular 

visualization technique. Our approach is to present a geometric representation for 

multi-material volume that can be used for various visualization methods. 

Our approach is to generalize the idea of two-sign tri-linear contouring to that 

of multi-sign tri-linear contouring with the goal of creating a partition of space into 

disjoint materials whose boundaries are piecewise tri-linear surfaces. The advantage 

of this approach is that the resulting material boundaries would better approximate 

given boundaries and reduce rendering artifacts inherent in voxel rendering. Our 

fundamental approach to multi-material contouring is viable for any type of implicit 

function and not restricted to the tri-linear case. Figure 1.5 shows how our approach 

reduces the artifacts of the input segmented volume. 

1.2 Volume Segmentation 

In conjunction with our contribution on visualization, we also present a simple method 

for rapid segmentation. Segmentation is the process of partitioning a set voxels into 

subsets, each of which is called a segment. More formally, segmentation can be 

viewed as the partition of voxels coordinates. Let V be the input volume. V defines a 

function in 3-Space where V : N3 —> Y and Y can be a space of any finite dimension 

(usually Y = R). The volume data is discrete so there exists a finite set X C N3 

such that a point p is in X if and only if V{p) is well-defined. Finally, segmentation 

is the construction of sets S\, S2, • • •, Sn where Si C X, and each of the Si is called a 

segment. Two other common requirements are that l)i=i...nSi = X and Si fl Sj = 0 

for i ^ j . These two conditions express the disjoint-union property for segmentation. 
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(a) (b) (c) (d) 

Figure 1.5 : The GroEL molecular structure and an engine block. 1.5(a) shows 
the raw density map, and 1.5(b) is the result of its segmentation into 14 subunits 
using our tool. 1.5(c) shows the raw engine data and 1.5(d) shows the result of the 
segmentation with transparency. 

Figure 1.5 shows raw volumes before and after segmentation. 

Many researchers have studied the problem of 3D segmentation in different do­

mains. In particular, automatic methods for segmenting volume data have received 

much attention. Automatic techniques usually involve quantifying low-level features 

to identify regions of interest in each specific data set. Such features include similarity 

in values between voxels, proximity of voxels, and values of high-order derivatives of 

the implicit function. Various techniques have been explored on this front including 

thresholding, region growing, and water-shed [29]. However, automatic methods suffer 

from an excess of parameter manipulation. The user often has to repeat the process 

of inputting parameters and executing the algorithm to perform segmentation. More­

over, each automatic segmentation technique is tailored towards a specific problem. 

Transferring a technique across problem domains often results in poor segmentations 

because segmentations often require semantic interpretations and different domains 

have different semantics attach to their segmentation. Emulating human semantics in 

one domain is already a difficult task, and trying to emulate all the possible semantics 

that could arise in all domains is a far more daunting problem. 

In contrast to a fully automatic approach, other works focus on semi-automatic 
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methods that require some level of user input. These methods provide more accuracy 

and more control over automatic methods. Work in this area involves using an input 

device (i.e. the mouse) and marking the segments manually. Given enough user 

input, automatic techniques can then be applied to the volume with greater accuracy. 

The additional input from the user helps guide the automatic process, and using 

automation prevents the user from manually marking the entire volume, which can 

be an error-prone and time consuming process. 

Previous works on semi-automatic methods include Owada et al.'s Volume Catcher 

and Yuan et al.'s Volume Cutout [19, 29]. Volume Catcher allows the user to draw 

2D free-form strokes on volume; the strokes are then extended using region growing 

and set as constraints for graph-based segmentation. Volume Cutout uses two kinds 

of strokes to denote the foreground and the background on a two-dimensional view 

of the 3D volume. The strokes are then used in a graph-based approach to automate 

the segmentation for the rest of the volume. These two approaches both focus on 

the problem of two-material segmentation. We are interested in generalized, multi-

material segmentation. 

Another difficulty in semi-automatic segmentation is in manipulating 3D objects 

using a 2D interface. Many of the existing methods involve extending 2D segmen­

tation techniques by applying segmentation to 2D slices and re-constructing the 3D 

segmentation. However, it is hard to identify 3D spatial correlation and features using 

this approach. We choose an approach that operates directly on the 3D volume with 

semi-automated segmentation using graph-cut. Graph-cut methods have proven to 

be useful for segmenting 2D images. Typically, 2D graph-cuts involve denoting the 

foreground and background of the graph/image through user input and performing 

a min-cut/max-flow variant to identify two sets of nodes/pixels. The min-cut in­

duces a natural component partition across the image that satisfies the criterion of 

segmentation. The 3D complement of this approach has been used by Liu et al. for 

bone segmentation [14]. Their work takes the rectilinear grid as the graph for the 
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cut. Seeds are placed by the user on 2D slices to perform segmentation. We build 

upon their method, using a 3D interface and complementing the process with hard­

ware rendering that allows for interactive visualization and editing of volume data 

sets. Our tool lets the user partially paint the desired segmentation and fill in the 

unpainted portions by applying the graph-cut optimization. 

The following chapters will be organized as the following: Chapter 2 will present 

the details of our visualization representation for segmented volumes; Chapter 3 will 

cover how our representation can be applied in practical settings; Chapter 4 will 

discuss our painting-based segmentation interface and present the results. 
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Chapter 2 

Tri-linear Representation of Segmented Volumes 

2.1 Multi-material Contouring 

2.1.1 Classification method 

Our approach for multi-material contouring is to replace a signed grid of scalars with 

a grid whose vertices have an associated scalar and material. In the two material 

case, our method should reproduce the standard +/— interpretation using normal 

contouring. In the case of three or more materials, the contouring method should 

generate piecewise tri-linear contours that join continuously along the faces of the 

grid. 

Given a grid cell whose corners have associated non-negative scalars Sj and ma­

terial indices m,, the following method can be used to determine the material index 

of a point x inside the cell. The index i ranges from 0 to 7, representing the eight 

corners of a cell. 

Material Classification Method 

• For each distinct material index present in the cell, construct a set of scalars tk 

associated with the corners of the cell via the following rule: 

tk — Si if k = rrii 

tk = 0 otherwise 

• Compute the values of the tri-linear interpolant tk{x) for each distinct index k. 

The tri-linear coefficients are tk for i = 0 , 1 , . . . 7. 
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(a) (b) 

Figure 2.1 : Two material example. 2.1(a) shows the bilinear function of a single cell. 
Red represents the parts of the cell that has positive values in the bilinear evaluation, 
and green represents the negative values. The arrows indicate the direction of the 
gradient. 2.1(b) is the plot of the bilinear function in 3D with the same color 
representation. 

• Return the material index k for which tk(x) is maximum. 

This classification method has several important properties. The first property is 

that the classification method reproduces the contours produced by standard +/— 

contouring. Given a signed set of scalars S;, the associated tri-linear interpolant s(x) 

is either positive or negative. According to our material classification method, the 

coefficients Sj can be partitioned in a two sets of non-negative coefficients tf and t~. 

Note that these coefficient sets satisfy the relation 

sl = tt-t~ (2.1) 

Therefore, the associated tri-linear functions t+(x) and t~(x) also satisfy 

s(x) =t+{x)-r(x). (2.2) 

It follows that the function s(x) is positive if t+(x) is larger than t~(x) and negative 

if t~(x) is larger than t+(x), agreeing with the result computed by our classification 

algorithm. 

Figure 2.1 illustrates the standard bi-linear approach to contouring in 2D. Fig­

ure 2.1(a) shows a single cell whose corners have attached signed scalar values. Fig-
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(a) (b) (c) 

Figure 2.2 : 2 material example continued. 2.2(a) is the plot of the function in 2.1 by 
replacing the negative voxels (coefficients of the bilinear) with O's. 2.2(b) is the plot 
of the same function by replacing the positive voxels with O's and taking the absolute 
value of the coefficients. 2.2(c) is the maximum of the functions in 2.2(a) and 2.2(b). 

(a) (b) (c) 

Figure 2.3 : 3 material example. 2.3(a) is the classification of the bi-linear function 
under our scheme. The arrows denote the gradient. 2.3(b) is the plot of 3 functions 
that are created under our evaluation scheme. 2.3(c) is the maximum plot of the 
three functions. 

ure 2.1(b) shows the associated bi-linear s(x) interpolant partition into positive and 

negative regions. Figure 2.2 illustrates our classification method on this example. Fig­

ures 2.2(a) and 2.2(b) shows the functions t+(x) and t~(x), respectively. Figure 2.2(c) 

shows a plot of the maximum of these two functions. Note that the partition of the 

pixel in figures 2.1(b) and 2.2(c) are equivalent. 

Figure 2.3(a) shows another 2D example in which the four corners of the pixel 

have three distinct materials, red, green and blue. Figure 2.3(b) show plots of the 

three bi-linear functions associated with the materials. Finally, Figure 2.3(c) shows a 
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plot of the maximum of these functions and the associated partition of the pixels into 

three distinct materials via three bi-linear contours that meet at a common point. 

2.1.2 Characterization of the Contours 

The multi-material contours produced by this method have several important prop­

erties. First, the contours are continuous across cells sharing a common face. This 

fact follows from the observation that two cells sharing a common face have the same 

scalars and material indices on that face. Since the restriction of the tri-linear func­

tions used in defining the multi-material contour on this face depend only on the 

scalar and material indices on that face, the multi-material contours must agree. 

Piecewise Tri-linear Surfaces 

Inside a single cell, the resulting contours are simply piecewise contours of various 

tri-linear functions. To understand why, note that the contours bounding the region 

associated with a material with index k are simply surfaces where the tri-linear func­

tion th(x) and another tri-linear function tj(x) both reach the maximum. Therefore, 

this contour is an iso-surface of the form 

tk(x)=tj(x) 

We have used a GPU-based, volume rendering approach to find the contour in 

our implementation. However, it is possible to solve this classification problem using 

polygonal methods such as Dual Contouring. Under Dual Contouring, we find a 

point within the cell that best describes the intersection of all the pairwise tri-linear 

surfaces. More formally, let M be the set of materials within a cell and let x be a 

point inside the cell. Consider the function 

E(x)= £ {tk{x)-V{x)Y (2.3) 
j,k€M,jjtk 
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The minimum of this function describes a point that is closest to the intersection of all 

the surfaces that satisfy tk(x) = tj(x). This is a non-linear optimization problem that 

can be costly to compute. We approximate the solution using an QEF-based approach 

that is described by Schaefer et al [24], This method locates the intersections, p^, of 

the surfaces along the cell edges. These intersections and the normals, r^, at these 

points describe a set of planes per cell. We then find a point that minimizes 

E'{x) = Y,{n%-{x-Pl)f (2.4) 
i 

This minimization gives an approximation of Eq. 2.3 that is reasonable for our pur­

pose. Note that this is an outline for computing the contour point. Please refer to 

the work of Schaefer et al. for more implementation details [24]. 

Since we are replacing the tri-linear function in each cell with linear approxima­

tions, the contour may not retain enough details of the original function. We can 

retrieve these details by subdividing the grid space into finer cells. The new mask in­

dices are determined by the classification method described previously; the new scalar 

for the refined map must be computed per each material. In effect, this approach will 

expand the storage size for the scalar by a factor of n, where n is the number of ma­

terials. This can be done adaptively to subdivide cells only along material border to 

reduce the computation and storage size. In our experiments, we perform a uniform 

subdivision over the entire volume, but we also notice that refinement is not necessary 

in most cases. Figure 2.4 shows the results of meshing using Dual Contouring. 

Gradient 

One useful property from standard implicit modeling is that the gradient of the 

implicit function is normal to the contours of that function. In the multi-material case, 

a similar property holds. Given a contour formed by the iso-surface tk(x) = P(x), the 

gradient of the function tk(x) — P(x) is simply the normal to this surface. The key 

observation here is that the pair of material indices j and k change as the point x varies 
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(a) (b) (c) (d) 

Figure 2.4 : The perspective view of a multi-material volume of size 333 rendered 
using GPU tri-linear contouring (a) and as polygonal contours generated by Dual 
Contouring (b), showing the grid structure (c). (d) depicts the mesh generated from 
Dual Contouring without the letters. 

over the cell. For the three material case, tk(x) and P(x) denote the largest and second 

largest tri-linear interpolant at x. Using the difference of the top two interpolated 

values will produce the exact gradient field, since we can view the local neighborhood 

of a point on the two-material boundary as defined by the two dominant tri-linear 

functions. Note that points where more than two materials meet are degenerate with 

unknown gradients. Figure 2.1(a) show the gradient field for a two material pixel, 

while Figure 2.3(a) shows the gradient field for a three material pixel. 

2.2 Set Operations on Multi-material Contours 

Given that the goal of this thesis is to apply multi-material contours to the problem 

of representing segmentations, we next develop analogs of the set operations Union 

and Intersection for multi-material contours. These operations will provide the basis 

for the painting operations described in the next section. 

2.2.1 Operations on Two Materials 

One of the primary attractions of implicit modeling is the ease with which it can model 

Boolean operations from constructive solid geometry [23, 18]. In the signed (two-
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material) case, the typical convention is to represent a solid as the set of solutions to 

the inequality f(x, y, z) < 0. Now, given two solids f(x, y, z) < 0 and g(x, y, z) < 0, 

the union of these two solids is simply the set min(/(x, y, z),g(x, y, z)) < 0 while the 

intersection of two solids is the set max(/(x, y, z),g(x, y, z)) < 0. 

If the functions / and g are represented by signed grids, a standard technique 

for approximating their union or intersection is to take the min or max of their 

associated sign grids. Our goal is to develop equivalent rules for the two-material 

case that generalize to the multi-material case in a natural manner. 

Our approach is as follows; consider two materials A and ->A (not A). A can be 

interpreted as being the inside of a solid (i.e; negative in the implicit model) and ->A 

can be interpreted as being the outside of a solid (i.e; positive in the implicit model.). 

Given a multi-material map consist of only these two materials, we can attempt to 

construct rules for computing new non-negative scalars and material indices on the 

grid that reproduce the operations Union and Intersection. 

In particular, give a grid point with two associated pairs (s\, kx) and (s2, k2) (where 

both the Si are non-negative), our goal is to compute a scalar/index pair (s,k) for 

the union of the material S. This new pair can be computed using the following case 

look-up given in Table 2.1. 

Note that the rule for computing k is straightforward. For Union, the new material 

index is A if and only if at least one of the material indices is A. For Intersection, the 

new material index is A if and only if both of the material indices are A. The rule for 

computing the new scalar s is only slightly more involved. The key is converted back 

to the signed case and then return the result of taking the min of the converted scalars. 

For example, if both material indices are A, we take the negative of both scalars S\ 

and s2, compute their min and then negate the result. These three operations are 

simply the equivalent of taking the max of the original scalars. In particular, if both 

Si and s2 are non-negative, 

max(si, s2) = — min(—Si, —s2) (2.5) 
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Union 

fci 

A 

A 

-^A 

-^A 

k2 

A 

-^A 

A 

^A 

k 

A 

A 

A 

-^A 

s 

max(si,s2) 

S\ 

s2 

min(si,s2) 

Intersection 

fci 

A 

A 

-u4 

^A 

k2 

A 

-^A 

A 

-IA 

k 

A 

^A 

-IA 

^A 

s 

min(si,s2) 

«2 

S\ 

max(si,s2) 

Table 2.1 : Rules for performing Intersection and Union operations. We consider 
the pairs (si,fci) and s2,&2, as the input. The output of Union and Intersection is 
denoted as pair (s, k). 

Similar argument can be used to derive the formulas given for the remaining cases. 

Another interpretation of these operations on the scalars si and s2 is to view these 

numbers as estimate of the distance from the grid point to the boundary of the region 

A. In the case of Union, the rule is that if both grid points lie in A, a good estimate 

of the distance from the grid point to the boundary of the union is the maximum of 

these two distances. Similar arguments again apply in the other cases. 

2.2.2 Operations for Three or More Materials 

Given the method for union and intersection defined above, the generalization of these 

operations to three or more materials is relatively easy. We suggest two operations 

analogous to Union and Intersection for the multi-material case. The first operation 

Overwrite takes a multi-material map and a two-material map (with material A and 

-iA) and performs the multi-material analog of Union. In particular, it treats the 

material in the first multi-material map as either A or -<A and applies the two material 

rules for Union described above. The result of an Overwrite operation is that the 

material A in the second map overwritten onto any existing materials in the first 

map. The resulting map contains the union of the materials A in both maps. 
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model 

engine 

foot 

head 

GroEL 

size 

256 x 256 x 256 

256 x 256 x 256 

128 x 256 x 256 

240 x 240 x 240 

basic (fps) 

34 

37 

40 

38 

classify (fps) 

14 

10 

13 

16 

Table 2.2 : The rendering speed for each of the data sets. All results were measured 
in Frames per Second (fps). 

The second operation Restrict again takes as input a multi-material map and a 

two-material map (with materials A and ->A). In this case, the Restrict operation 

modifies the second map to return the intersection of the first map (viewed as ma­

terials A and ->A) and the second map. Essentially, the second map is restricted to 

only those regions where the material A exists in the first map. 

2.3 Results 

Our method has been implemented and tested on a Intel Xeon 5150 machine with 2 

duo-core CPUs running at 2.66GHz. We use an nVidia GTX280 graphics card with 

1GB of video RAM. The shaders are written in GLSL. We use OpenMP to enable 

multi-core processing for easily parallelizable portions of the code. 

We gather rendering times for each of our test cases. The models are displayed 

in Figure 4.2. The running time largely depends on the maximum dimension of 

the volume as we use that to determine the number of quads to use as proxies for 

rendering. The rendering screen is 512 x 512 pixels. The intensive portion of the 

shader is called only for inhomogeneous cells, which implies that the rendering is 

slower for examples with a higher number of materials. This slowdown is evident in 

the "foot" example, where the number of materials is high. Note that the rendering 

speed also depends on the pixel estate required to display each volume; the smaller 
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the volume appears on the screen, regardless of Input size, the faster the rendering 

will be, which is as expected. Our results are taken from the slowest rendering time 

for each of the test sets. Our method maintains a reasonable frame-rate even under 

classification. 

(a) (b) (c) 

Figure 2.5 : A close up example of rendering using our piecewise tri-linear represen­
tation. 

(a) (b) (c) 

Figure 2.6 : A close up example of rendering using our piecewise tri-linear represen­
tation. 
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Chapter 3 

Applications using Tri-linear Contours 

3.1 Building Scalars from Existing Segmentation 

In the case where segmented data are given as input, we present a simple heuristic to 

produce scalars off of the binary classification of a typical segmentation. Segmentation 

inputs are typically defined by associating an integer value at each voxel or by creating 

multiple 0-1 mask volumes, where each one represents a segment. Either of the two 

representation can be easily converted to the other. Without loss of generality, we 

assume the input is n 0-1 (binary) masks, where each masks represents one of n total 

segments. 

Under our contour representation, we can an assign arbitrary scalar to each voxel, 

and the resulting surface should be a smoother surface than a binary classification. 

Unfortunately, this type of assignment does not produce desirable rendering of the 

segmented map (see Figures 3.1(b) and 3.1(e)). Instead, we blur each of the binary 

masks using a truncated 3 x 3 x 3 gaussian function as our kernel [7]. We can view 

the output of the blurring as n scalars defined for each voxel, but the final output we 

want is a single scalar defined for each voxel. Using the convention defined previously, 

we write the following as the final output scalar, tnew(x), at the voxel x. 

tnew(x)=tk(x)-tj{x) (3.1) 

where tk(x) and P(x) are the largest and second largest of the n values computed 

from the blurring step. 

This heuristic is guided by the same intuition given in the gradient discussion of 

Section 2.1.2. In the two-material case, the contour will correspond the blurring of a 
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(b) (c) 

(d) (e) (f) 

Figure 3.1 : These figures show the result of building scalars from existing segmenta­
tion. The top row of figures is a two-material example, and the bottom four figures 
represent the three-material case. 3.1(a) and 3.1(d) are the binary classification 
input. 3.1(b) and 3.1(e) are results of assigning all l's as the scalar field. 3.1(c) 
and 3.1(f) are the results of blurring using the heuristic described in Section 3.1. 

+ / - density map. In the three material case, the contour is formed by the top two 

dominant trilinear interpolants (tk(x) and V(x)), and Eq. 3.1 is an approximation of 

that contour at the voxel x. Figure 3.1 shows the result of our heuristic. We see the 

improvement over the arbitrary assignment scheme. 

3.2 Importing Iso-surfaces 

One standard technique in volume visualization of a function f(x, y, z) is to create a 

piecewise constant transfer function that highlights certain ranges of iso-values [13, 

11], Figure 3.2 shows an example of several nested iso-surfaces visualized in this 

manner. 

This type of functionality can be reproduced in the multi-material setting in a 

natural manner. The basic idea is to import the various volumes bounded by the iso-
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> * j * i \ 

(a) (b) 

Figure 3.2 : Figure 3.2(b) shows a multi-material map generated from the iso-surfaces 
of Figure 3.2(a). 

surfaces as distinct materials using Overwrite and then assign some level of partial 

transparency to each material. 

Given an iso-surf ace f(x,y,z) = c, we can construct a signed grid formed via 

samples of the function f(x, y, z) — c. Since the material boundaries are invariant up 

to multiplication by a scalar, we need to pick a normalization factor for the scalar 

field to ensure good utilization of the floating-point precision. First, we collect the 

voxel values along the contour c; for every cell that has densities above and below the 

contour level in its eight corner voxels, we store those values. We process the values 

so that a small percentage of the top and bottom values are discarded. This screens 

out extreme outliers that might force the majority of the values into a small range of 

the histogram. The maximum and the minimum of the truncated histogram are used 

to normalize the voxel values into the range [0,1]. These normalized values are used 

as part of the new scalar field Snew. Additionally, we store 1 in Snew for cells whose 

corner values are strictly above or below c. We then perform an Overwrite operation 

by overwriting Snew onto the old scalar field. The mask indices of grid values that are 

above c are set to a new mask value. This simple heuristic generates a single material 

that corresponds to a threshold segmentation. 
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(a) (b) (c) (d) 

Figure 3.3 : Interactive painting-based segmentation of human head: the density 
volume 3.3(a), restricting painting to thresholded bones 3.3(b), user painting with 
spherical brush 3.3(c), and labeling result after graph-cut segmentation 3.3(d). 

3.3 Tri-linear contours with Interactive Segmentation 

We developed a simple painting-based segmentation interface to test and demonstrate 

our proposed representation. Our segmentation interface considers the input as a raw 

density map. The first step involves choosing one or more thresholds and generating 

material masks as described in Section 3.2. This step corresponds to an initial stage of 

segmentation by thresholding. Once these threshold materials have been generated, 

the user has the choice to turn the materials into visible or non-visible regions for 

painting. For example, when working on a human appendage, we can first turn the 

flesh invisible to paint and segment out the individual bones from the threshold level 

that corresponds to the bones. Figure 3.3 is an example of this process. 

For painting, we provide the user with a spherical brush whose radius is vari­

able. To position the sphere, we construct a ray that is perpendicular to the viewing 

plane and passes through the mouse position. The brush is positioned at the closest 

intersection point between the projecting ray the the visible regions. 

The user can then hold down a button to indicate the start of a sweep. The 

sweep ends when the user releases the button. The sweep is constructed as a union 

of spheres, where the center of each sphere corresponds to the position of the mouse 

at some sampled instance during the the sweep. We compute a scalar field Sphere, 
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using the union of spheres and the computation detailed in Section 3.4. The Sphere 

is then restricted to the visible region using the Restrict operation to build a new 

field S'new The restriction will enable users to paint only on regions that are visible. 

After the restriction, we perform an Overwrite of the old scalar field with the new 

field S'new All grid points that lie inside the union of spheres are assigned the mask 

index associated with the current brush. 

Manual painting can be time-consuming. It is also prone to human error in con­

trolling the painting device. Therefore, we decided to use automatic segmentation to 

aid our process. In particular, we find the graph-cut approach of segmentation to be 

very effective. We follow the method described by Liu et al. and extend it to a 3D 

interface [14]. We will briefly describe this method in the next chapter; please refer 

to Liu et al.'s work for more information. The scalars along the new inter-material 

boundaries can be computed using our method from Section 3.1 or the distance map 

method described by Gibson [7]. 

3.4 GPU-implementation 

We use texture-based volume rendering as our algorithm for visualizing density maps. 

All volume maps (i.e. density map, auxiliary scalars, mask, etc.) are stored as 3D 

textures [28, 2]. Coloring a single screen fragment involves a number of texture loads 

to determine the density, color, and shade of the fragment in texture space. For our 

classification algorithm, we need to load an additional 8 scalar values and 8 integers as 

part of the fragment shader program. Texture loads are typically expensive operations 

in shader programming. However, these 16 loads can be reduced to 4 loads by packing 

the values into the RGBA channels for a single texel. 

We store both the distance scalars and material masks as 8-bit textures, which 

allows up to 256 materials. With only 8-bits of precision for the distance scalars, 

we need to ensure that the precision is not wasted on non-essential portions of the 

representation. Note that the scalars are used for arbitration only on the border 
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between different materials. This property implies that the scalars need to be accurate 

only for cells that intersect the inter-material boundary. We call a cell homogenous if 

its eight corners are marked as the same material; otherwise, a cell is inhomogeneous. 

For the spherical brush, we use the following distance metric for the new scalar field 

g(x, y, z) = \r — \Jx2 + y2 + z2\ 

if (x, y, z) is part of an inhomogeneous cell (3-2) 

g(x,y,z) = l otherwise 

Here r is the radius of the brush, and x £ { 0 , 1 , . . . ,nx — 1} denote the grid space 

coordinates where nx is the number of grid points in the x direction, and similar 

definitions holds for the variables y and z. 

From Eq. 3.2 for any grid point (x, y, z) on a inhomogeneous cell, the associated 

scalar is bounded by 0 < g(x,y,z) < y/3. Because the Euclidean distance function 

ensures that the distance between any two points in a cell cannot exceed y/3. In 

contrast, the squared distance function g~(x, y, z) = \r2 — (x2 + y2 + z2)\ does not have 

this property; that is, the absolute difference \~g{pi) — ~g{V2)\ for any two points P\,P2 

within a single cell is unbounded. 

The bounded property of the Euclidean distance enables us to easily convert to an 

8-bit representation, and it concentrates the precision only to inhomogeneous cells. 

This boundedness means that we can minimize the amount of texture memory and 

retain sufficient accuracy for our representation. 
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Chapter 4 

Painting-based Segmentation 

Painting assigns voxels into segments. Using our data representation, internally every 

voxel is associated with an integer, which we call the mask index or index. Visually, we 

use color to distinguish between two mask indices; that is, each mask index is assigned 

a color, and two different segments can be identified visually by their difference in 

colors. 

Painting is performed in 3D using a spherical brush whose radius is adjustable. 

We determine the position of the brush by shooting a ray from the viewer eye position 

to the volume, where the direction of the ray is dictated by the mouse position. An 

intersection between the ray and the volume is computed by restricting the intersec­

tion to the first point on the ray with the visible volume. The point of intersection is 

used to place the center of the sphere. The user can then paint the volume by press­

ing a key, which indicates that all visible voxels within the sphere will be assigned 

a certain mask index. The visibility of a voxel is determined through the transfer 

function; a voxel v is visible if T(f(v)) > e where T is the transfer function, / is the 

volume function, and e is a small tolerance. 

The mask indices are stored in a mask volume, which is updated per painting 

operation. We choose an index as the base index to represent the unpainted portion 

of the volume. Painting writes over the indices of the voxels contained within the 

sphere with the brush denoted index. To allow operations such as drilling through 

the volume, we also set the condition that the sphere will not intersect with a voxel 

that has the same index as the brush. This condition has the effect that the user can 

drill through the volume by repeatedly painting a region or gradually peel away the 
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surface of a volume by painting only the outer surface. We also provide the option 

to hide or display a particluar segment. Hiding a segment can help the user to paint 

segments that might be occluded by other segments. 

4.1 Segmentation with Graph-cut 

The segmentation problem involves assigning each voxel a designation. Consider the 

graph induced by the inherent connectivity in the volume data. We let each voxel 

in the volume represent a node in the graph, and two nodes are connected if the 

manhattan distance between their corresponding voxels is 1. The problem is then 

viewed as a graph-cut problem: we want to find a minimum cut (a set of edges) that 

separates the graph into k connected components where two nodes are in different 

components if there does not exist a path that connects them with respect to the 

cut. This construction is a fc-way min-cut/max-flow problem, which is known to be 

NP-Hard. However, the classical 2-way max-flow/min-cut problem is known to be 

solvable in polynomial time. Dahlhaus et al. proposes a simple approximation to the 

k-way min-cut problem by performing repeated 2-way cuts, taking the union of the 

cuts, and removing the cut with the largest sum of weights [3]. This method has a 

worst-case approximation ratio of 2. 

Li et al uses the graph-cut approach in their segmentation, which is done through 

a 2D interface and seeding points. The users would select points on a 2D slice of 

the volume; each point denotes a point in the different segments. We build on their 

basic algorithm and extend it to a 3D interface. In our method, we let the user paint 

rough regions for each component of the segmentation; the user can then issue a 

command to grow each rough region automatically so that each region contains one 

approximate geometric component. Given n painted segments, we run n iterations 

of 2-way min-cut, where each iteration i is trying to grow segment Si. We add the 

segmented voxels into the graph thus: for each iteration i, we consider the voxels 

marked as segment i as nodes that are connected to the source with infinite weight. 
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This iterative marking ensures that voxels chosen as part of Si will not be re-colored 

as part of another segment. Furthermore, for all voxels v such that v G Sj where j ^ i, 

v is connected to the sink node with infinite weight. These edge connections ensure 

that segments that are already painted will not be over-written. All other visible 

voxels are considered to be free nodes in the graph. After a min-cut is performed, we 

classify all nodes in the graph as part of either the source or sink component of the 

graph. Voxels that correspond to nodes that are part of the source component will 

be re-grouped as part of 1%. This process is repeated for all Si for i = 1 , . . . , n. 

To reduce the size of the graph, we do not include colored voxels whose neighbors 

are all painted. These inner voxels do not affect the outcome of the cut as the edges 

that connect them cannot be removed under our construction of the graph. This 

constraint also implies that as the user paints more regions, the number of nodes in 

the graph-cut will reduce, and the min-cut will perform faster. 

Note that our algorithm is not explicity finding an approximate minimum cut, 

but rather, heuristically separating the volume into components. Therefore, our cut 

does not maintain an approximation ratio of 2; furthermore, it is often the case that 

there will be un-colored voxels (or voxels that do not belong to a segment) at the end 

of the process. These regions will require further input from the user to be further 

segmented. Leaving voxels un-colored is an acceptable approach as the unpainted 

regions are often regions that require further input from the user. 

4.2 Results 

Our method has been implemented and tested on a Intel Xeon 5150 machine with 2 

CPUs running at 2.66GHz. We use an nVidia GTX280 graphics card with 1GB of 

video RAM. The shaders are written in GLSL. We use OpenMP to enable multi-core 

processing for easily parallelizable portions of the code. We use the Boykov et al's 

implementation of min-cut, which has good practical running time. 
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model 

engine 

foot 

head 

GroEL 

Hsp26 

Pig 

bunny 

volume size 

256 x 256 x 256 

256 x 256 x 256 

128 x 256 x 256 

240 x 240 x 240 

128 x 128 x 128 

512 x 512 x 134 

512 x 512 x 361 

nodes 

54485 

337546 

368512 

589863 

110875 

5109185 

1825425 

segs 

7 

19 

7 

14 

13 

6 

7 

m in-cut 

8.89 

27.22 

7.535 

23.83 

3.05 

69.93 

73.37 

total 

123 

157 

234 

200 

95 

888 

971 

Table 4.1 : The timing results for segmenting various data sets. The "segs" column 
represents the number segments in the output. The "nodes" column represents the 
number of nodes in the induced graph. The min-cut column is the time (in seconds) 
to perform min-cut on the graph. The "total" column represents the total time (in 
seconds) to perform the segmentation. 

4.2.1 Heterogenous Examples 

Table 4.1 shows the approximate times it took to segment the different data sets. We 

chose 7 test sets of varying sizes and domains. We consider the user experience time 

in painting these data sets. Each model is painted three times with the best time 

being recorded. The painting time includes all processing time and the segmentation 

time. The processing time depends largely on the size of the segmentation graph and 

the number of segments. In our largest test case, the bunny, the induced graph has 

over one millon nodes and seven segments. The graph-cut algorithm for the bunny 

model runs on the order of a minute. 

Except in the case of the two molecular structures, we do not have any expert 

knowledge on the proper segmentation; in most cases, we do not think there is an 

absolute baseline comparison. Therefore, we segment out components that we feel 

is an intuitive component of the whole. In the cases of molecular data, we have 

prior knowledge of the separation of the GroEL and Hsp26 structures into symmetric 

subunits. 

The molecular data sets are the least difficult to segment. They have the property 

that corresponding graph connectivity between each symmetric subunit is low; this 
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is exactly the optimal condition for the graph-cut to perform well. The two bone 

data share this characteristics as the connectivity between bone fragments is low. As 

indicated from Table 4.1, the time to segmenting each of the four data sets is less than 

five minutes. The piggy bank and bunny data sets presented the most difficulty in our 

tests. In all our tests, they were the largest in size. The time it took to perform single 

min-cut segmentation was on the order of a minute, and this hindered interactivity 

greatly. Furthermore, the piggy bank example was difficult due to the lack of distinct 

separation between the coins the the inner surface of the pig. Also problematic was 

the fact that the components were defined less by graph-connectivity and more by 

curvature. Both of these factors componded to slow the segmentation. The bunny 

example shared the connectivity/curvature problem, which contributed as well to its 

slower times. However, the two data sets were segmented in around fifteen minutes 

even with the aforementioned difficulties. 

4.2.2 Protein Data Bank Examples 

We have segmented datasets from the Protein Data Bank (PDB) entries. The PDB 

models are specified as a set of atomic coordinates, where each atom can have se­

mantics attached to them. From the atomic coordinates, we build a volume over the 

dataset by convolving the atoms with a radial function, such as a gaussian [17]. For 

our purpose, we simply invoked the EMAN function pdb2mrc [16] to construct a vol­

ume over the input PDB. For comparison, we use a molecular visualization program 

called UCSF Chimera [21]. Chimera colors protein entries by chains. By examin­

ing the models visually, we reproduced the chain segmentation using our painting 

interface. Figure 4.1 illustrates that we were able to reproduce the segmentation 

closely. 
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Chapter 5 

Conclusion 

We present a technique for multi-material classification in the context of segmenta­

tion of density maps. Our classification method provides a smoother boundary than 

found in typical segmentation. Furthermore, it enables sub-voxel flexibility in shape-

representation. This alleviates artifacts and jaggedness that can occur in visualization 

of segmented volumes. 

We have also developed an intuitive segmentation interface that uses a graph-cut 

approach to combine user-knowledge and simplicity in segmentation. We have shown 

that our tool can be effectively used to rapidly create segmentation. 

For our future work, we will experiment with using higher level interpolants such as 

B-splines for classification. This will give us greater flexibility and accuracy in defining 

the boundary between materials. Additionally, we will examine segmentation in the 

context of large cryo-electron tomography, which current techniques cannot address 

due to size and fidelity of the volume. 
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