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ABSTRACT 

Single-Cell Behavior and Population Heterogeneity: Fluorescence 

Microscopy-Based Inverse Population Balance Modeling 

by 

Konstantinos Spetsieris 

Cell population balance models can account for the phenotypic heterogeneity that 

characterizes isogenic cell populations. To utilize the predictive power of these models, 

however, we must determine the single-cell reaction and division rates as well as the 

partition probability density function of the cell population. These functions (collectively 

called Intrinsic Physiological State or IPS functions) can be obtained through the Collins-

Richmond inverse cell population balance modeling methodology, if we know the 

phenotypic distributions of (a) the overall cell population, (b) the dividing cell 

subpopulation and (c) the newborn cell subpopulation. 

This first part of this thesis presents the development of a novel assay that combines 

fluorescence microscopy and image processing to determine these phenotypic 

distributions. Morphological criteria were developed for the automatic identification of 

dividing cells and validated through direct comparison with manually obtained 

measurements. The newborn cell subpopulation was obtained from the corresponding 

dividing cell subpopulation by collecting information from the two compartments 

separated by the constriction. Finally, we applied the assay to quantify the heterogeneity 



of E. coli cells carrying the genetic toggle network with a green fluorescent marker. Our 

measurements for the overall cell population were in excellent agreement with the 

distributions obtained via flow cytometry. 

In the second part of the thesis, we develop and test a robust computational 

procedure for solving the inverse problem that yields the IPS functions. We employed 

numerical simulations in conjunction with a thorough parametric analysis to investigate 

the effect of various factors on the accurate recovery of the IPS functions. We also 

formulated and solved a minimization problem to obtain the bivariate partition 

probability density function (PPDF), which presents the most computational challenges 

of all three IPS functions. We successfully tested our method against uncertainty 

stemming from both finite sampling and measurements errors in the experimental data. 

We also investigated the feasibility of a more general solution for the PPDF and proposed 

methods to extend and solve the inverse problem in 2-D. Finally, we demonstrated the 

abilities and potential of our method by applying it to a model biological system 

involving E. coli cells carrying the toggle artificial regulatory network. 



ACKNOWLEDGEMENTS 

First, I would like to show my gratitude to my academic advisor, Professor Kyriacos 

Zygourakis, for his overall guidance and support throughout my graduate studies. Also, I 

would like to thank him specifically for his help with fluorescence microscopy and digital 

image processing back at the first year of my Ph.D., when I was taking my first steps in 

the biology lab. 

Besides my advisor, I would like to thank the rest of my thesis committee: Professor 

Ramon Gonzalez and Professor Steven Cox for their guidance, helpful recommendations 

and insightful comments. Also, I would also like to thank Dr. Mantzaris for his guidance 

the first two years of my Ph.D. 

I thank all the members of my research group and fellow classmates for the good 

times that we had together and for their support. In particular, I would like to thank: a) 

Michalis Stamatakis, a very good friend and colleague, for the interesting discussions and 

exciting scientific conversations we often had together, for his support and for helping me 

with his expertise in graphics and plots and b) Nikos Soultanidis and Venetia Rigou, both 

close friends and colleagues of mine, for their good company, support and all the fun we 

had the last four years. 

I am grateful to Professor Andreas Boudouvis, my undergraduate academic advisor 

at NTUA, for encouraging and supporting me to continue my graduate studies in the 

United States. Indeed, doing a Ph.D. in the States has been an exciting and unique 

lifetime experience. 



V 

My sincere thanks also go to all my friends for their support and the good time we 

shared. 

Last but not least, I would like to thank my family: my parents Gerasimos and 

Euagellia and my brother Tassos for their unlimited love, support, encouragement and 

understanding without which this thesis had not been possible. 



TABLE OF CONTENTS 

Abstract ii 

Acknowledgements iv 

List of Tables vi 

List of Figures x 

Abbreviations xviii 

1 Introduction 1 

1.1 Definition and Significance of Cell Population Heterogeneity 1 

1.2 Experimental Evidence of Heterogeneity 4 

1.3 Sources of Heterogeneity .5 

1.4 Cell Population Balance Models 8 

1.5 Inverse Population Balance Problem 12 

1.6 Literature Review on the Inverse Problem 14 

1.6.1 Theoretical and Experimental Work on Inverse Problem 15 

1.6.2 Literature Review 18 

1.7 Objectives 22 

1.8 Thesis Structure 24 

2 Materials and Methods 26 

2.1 Plasmid and Strains 26 

2.2 Cell Culture 27 



vii 

2.3 Flow Cytometry 28 

2.4 Microscope Slide Preparation. 29 

2.5 Image Acquisition 32 

2.6 Image Processing 33 

2.7 Calibration 36 

2.8 Photobleaching 39 

3 Quantitative Criteria for Identifying Cell Subpopulations 41 

3.1 Identification of Dividing and Newborn Cells 41 

3.2 A Morphometric Characteristic for Identifying Dividing Cells 41 

3.3 Automatic Identification of the Minimum Cell Thickness 44 

3.4 Cell Division Criterion 51 

4 Determining the Three Fluorescence Distributions 54 

4.1 Overall Number Density Function of Cell Population 54 

4.2 Statistical Analysis with Bootstrap Method 56 

4.3 Dividing Cell Subpopulation 62 

4.4 Newborn Cell Subpopulation 64 

5 Inverse Population Balance Problem: Part 1 68 

5.1 Inverse Problem 68 

5.2 Methodology 69 

5.3 Single-Cell Reaction and Division Rates 71 

5.4 Partition Probability Density Function 75 

5.4.1 Approach 75 

5.4.2 Minimization Formulation 76 



Vll l 

5.4.3 Nonnegativity Constraints 80 

5.4.4 Regularization 82 

5.4.5 Solving the Minimization Problem 85 

5.4.6 Effect of Numerical Parameters on the Inverse Solution 86 

5.4.7 Conclusions of Parametric Analysis for PPDF 102 

5.5 Minimization Approach for Simultaneously Determining T(x) and jx 104 

Inverse Population Balance Problem: Part 2 109 

6.1 Finite Sampling and Uncertainty in the Inverse Problem 109 

6.2 Methodology 110 

6.3 Effect of Sample Size on IPSF I l l 

6.3.1 Finite Sampling Simulation I l l 

6.3.2 Effect of Finite Sampling on Reaction and Division Rates 119 

6.3.3 Effect of Finite Sampling on Partition Probability Density Function 122 

6.4 Recovery of IPSF for Toggle 132 

General 1-D Inverse Solution and the 2-D Problem 140 

7.1 General Solution for the PPDF 140 

7.1.1 Mathematical Formulation of the General Inverse Problem 140 

7.1.2 Constraints of the Minimization Problem 143 

7.1.3 Constrained Minimization Problem 146 

7.1.4 Testing the Assumption about the Bivariate Basis Functions 149 

7.2 2-D Inverse Problem 152 

Summary, Conclusions and Future Work 156 

8.1 Summary and Conclusions 156 



ix 

8.2 Future Work 164 

8.2.1 Expansion of the Experimental Framework 164 

8.2.2 Application to Other Biological Systems 165 

8.2.3 Live Cell Experiments 166 

8.2.4 2-D Inverse Population Balance Problem 166 

8.2.5 General 1-D Inverse Problem 167 

Appendix 1 168 

Appendix II 172 

Appendix III 178 

Appendix IV 184 

Appendix V 188 

Appendix VI 192 

Bibiliography 199 



LIST OF FIGURES 

Figure 1.1: Illustration of cell population heterogeneity. Panel A: Fluorescence image of 

a heterogeneous E. coli cell population (strain JM2.300, plasmid pTAK117) Panel B: 

Distribution of total cell green fluorescent protein content in the heterogeneous 

population 2 

Figure 1.2: Major sources of cell population heterogeneity. Panel A: Environment, Panel 

B: Unequal cell partitioning at cell division and Panel C: Stochasticity 7 

Figure 2.1: The genetic toggle 27 

Figure 2.2: Effect of sample optical density (ODeoo) on the density of E. coli cells 

adhering to the microscopy slides. Optimal cell density for image analysis operations is 

obtained for OD600 ~ 0.1 31 

Figure 2.3: Overview of the method. Rectangles denote experimental steps, while 

rectangles with rounded corners stand for the inputs and outputs of different steps. 

Rectangles with a blunt upper left corner denote software routines developed to perform 

image processing operations and data post processing. Finally, the oval shaped blocks 

denote the final outputs of the developed assay 35 

Figure 2.4: Observed fluorescence intensity vs. exposure time for all six calibration bead 

sets with increasing concentration of fluorophore 37 

Figure 2.5: Normalized fluorescence intensity as a function of the fluorophore 

concentration of the calibration beads. Solid circles: experimental data. Dashed line: Fit 

ofeq. (2.2) 39 



xi 

Figure 2.6: Effect of photobleaching on E. coli cells. The three curves show the 

maximum (solid line), average (dashed line) and minimum (dotted line) observed 

fluorescence intensity 40 

Figure 3.1: Phase contrast digital images showing typical non-dividing (panels A and B) 

and dividing cells (panels C and D). The straight line passing through the two 

constriction pixels (B and C) separates a dividing cell into two daughter cells (panel E). 

43 

Figure 3.2: Panel A: Perimeter pixels of a dividing cell. Panels B and C: Plots of the 

objective functions dx and d2 respectively vs. the normalized arc length along T, (arc 

ABD or gray pixels on Panel A) 48 

Figure 3.3: A model rod-shaped cell dividing into two unequal parts (panel A) and the 

corresponding objective functions dx (panel B) and d2 (panel C) plotted as a function of 

the normalized arc length along T{ (arc ABD on Panel A) 49 

Figure 3.4: Effect of division ratio X on the location of the global and local minimum of 

the objective function d2for different values of the constriction ratio. Panel A: a = 0.4, 

Panel B: a = 0.6, Panel C: a = 0.8. G: indicates that the off - center minimum is global 

L: indicates that the off - center is local 50 

Figure 4.1: GFP fluorescence number density functions for the overall cell population 

obtained with fluorescence microscopy (solid lines) and flow cytometry (dashed lines) 

for three IPTG concentrations: 20, 40 and 2000 uM 55 

Figure 4.2: Effect of sample size on the average and standard deviation of the sampling 

distributions of the first five moments of the overall cell number density. FCM data have 

been used 59 



Xll 

Figure 4.3: Effect of sample size on the percentage error for the first five moments of the 

overall cell number density. FCM dataset used 60 

Figure 4.4: : Effect of sample size on the percentage error for the first five moments for 

the overall cell number density. FM dataset used 61 

Figure 4.5: Panel A: GFP fluorescence number density functions for the dividing cell 

subpopulation obtained automatically (solid line) and manually (dashed line) for 2000 

uM IPTG. Panel B: Effect of threshold value S on the GFP fluorescence number density 

function of the dividing cell subpopulation for 2000 uM IPTG 63 

Figure 4.6: GFP fluorescence number density functions for the dividing (Panel A) and 

newborn (Panel B) cell subpopulations for three IPTG concentrations: 20, 40 and 2000 

uM 67 

Figure 5.1: Schematic representation of the methodology used to assess the accuracy of 

the recovered IPSF by using simulated data 71 

Figure 5.2: The three number densities generated by forward population balance 

modeling for the IPSF given by eqs. (5.5) - (5.7) 72 

Figure 5.3: Comparison of the numerically obtained single-cell reaction rate R(x): a) the 

integral form (shown in blue) and b) the differential form (shown in green) to the 

analytical solution (shown in red) 74 

Figure 5.4: Comparison between the numerically recovered single-cell division rate r(x) 

(shown in blue) and the analytical solution (shown in red) 75 

Figure 5.5: Negative values for the predicted newborn number density (panel A) and the 

partitioning function (panel B) 80 



Xlll 

Figure 5.6: Nonnegative values for the predicted newborn number density (panel A) and 

the partitioning function (panel B) 82 

Figure 5.7: Comparison between the recovered partitioning function (shown in blue), 

obtained from the solution of the minimization problem, and the corresponding analytical 

solution (shown in red) 86 

Figure 5.8: Comparison between successive numerical solutions (shown in blue) and the 

analytical solution (shown in red). Panel A corresponds to m = 5, panel H corresponds 

m = 40 and Am = 5 89 

Figure 5.9: Comparison between successive numerical solutions of the inverse problem. 

Panel A corresponds to the pair m = 5 and m = 10 .whereas panel G corresponds to the 

pair m = 35 and m = 40 and Am = 5 90 

Figure 5.10: Normalized L2 norm difference for successive inverse and analytical 

solutions (panel A) and successive numerical solutions (panel B). The dashed line 

corresponds to the 3.5% error threshold value below which the analytical and the inverse 

solution or two successive inverse solutions are practically indistinguishable 91 

Figure 5.11: Effect of the type of basis functions on the inverse solution. Panel A: 

comparison between analytical solution and inverse solutions, obtained with three 

different sets of basis functions: sinusoidal (red), Chebysev (green) and Legendre (blue). 

Panel B: percentage error as a function of the number of basis functions. The dashed line 

represents the 3.5% error threshold value 92 

Figure 5.12: The effect of the regularization parameter on the accuracy of the inverse 

solution for the different types of basis functions: sinusoidal (red), Chebyshev (green) 

and Legendre (blue) 93 



XIV 

Figure 5.13: Percentage error between analytical and inverse solution as a function of the 

discretization points of the dividing number density. The dashed line represents the 3.5% 

error threshold value 94 

Figure 5.14: Panel A: Set of unimodal dividing number densities with standard deviation 

ranging from 100 to 300 Panel B: Set of unimodal partitioning functions with varying 

sharpness q = 5 to q = 80 95 

Figure 5.15: Panel A: Effect of CV of the dividing number density and the sharpeness of 

the unimodal partitioning function on the number of basis functions. Panel B: 

Comparison between the analytical and inverse solution for very sharp discrete like 

unimodal partitioning function (q = 80) 96 

Figure 5.16: Panel A: Set of unimodal dividing number densities with standard deviation 

ranging from 100 to 300 Panel B: Set of bimodal partitioning functions with npart.=- 0.3 

and varying sharpness opart = 0.01 to apart = 0.1 97 

Figure 5.17: Panel A: Effect of CV of the dividing number density and the sharpeness of 

the bimodal partitioning function on the number of basis functions. Panel B: Comparison 

between the analytical and inverse solution for very sharp discrete like bimodal 

partitioning function, apart = 0.01 98 

Figure 5.18: Effect of the distance between the modes of the bimodal partitioning 

function. Results of numerical simulation for apart = 0.03 and varying pipan. Panel A: jupart 

= 0.20, Panel B: npart = 0.30, Panel C: npart = 0.42, Panel D: fipart = 0.44, Panel E: /upart = 

0.45, Panel F: jupart = 0.46 100 



XV 

Figure 5.19: Effect of bimodality of the input data on recovery of partitioning function. 

Panels A-B: q = 30, Panels C-D: q = 60, Panels E-F: npan = 0.4 and opart = 0.06, Panels G-

H: fipart = 0.43 and opart = 0.033 101 

Figure 5.20: Effect of skewed input data on recovery of partitioning function. Panels A-

B: q = 5, Panels C-D: q = 60 102 

Figure 5.21: Single-cell division rate T\x): comparison between the analytical and 

inverse solution obtained with the minimization approach 108 

Figure 6.1: Simulation of finite sampling from cell population. Panel A: generation of N 

random measurements for the cell phenotypic characteristic x. Panel B: generation of the 

content of daughter 113 

Figure 6.2: Examples of nonparametric estimators for the distributions of phenotypic cell 

characteristics 114 

Figure 6.3: Example of histogram estimator for the number density function 115 

Figure 6.4: Comparison between kernel density (shown in red) and histogram (shown in: 

a) purple for nearest neighbor, b) green for linear and c) blue for spline interpolation). 

The dashed line corresponds to the error threshold value 118 

Figure 6.5: Comparison between the NDF(shown in blue) and CDF (shown in red) 

estimators. The 119 

Figure 6.6: Effect of finite sampling on single-cell reaction rate. Comparison between the 

NDF (shown in green) and CDF (shown in blue) methods to the analytical solution 

(shown in red) 120 

Figure 6.7: Effect of finite sampling on the single-cell division rate. Comparison between 

analytical (shown in red) and inverse solution (shown in blue) 122 



XVI 

Figure 6.8: Comparison between the NDF and CDF methods for obtaining the 

partitioning function Q(f), using exact input data. Panel A: symmetric beta distribution 

with q = 30, Panel B: symmetric beta distribution with q = 60 and Panel C: bimodal 

distribution with [ipart = 0.36 and opart = 0.05 126 

Figure 6.9: Effect of sample size in the accuracy of the partitioning function Q(J). 

Comparison between the NDF and CDF methods 127 

Figure 6.10: Eigenvalue spectrum for the coefficient matrix G of both NDF and CDF 

methods 128 

Figure 6.11 Comparison between analytical partitioning functions and the corresponding 

inverse solutions for Nd = 300. Panel A: Symmetric Beta distribution with q = 10 and 

-4% error, Panel B: Symmetric Beta distribution with q = 60 and ~5% error Panel C: 

Bimodal distribution with \ipart = 0.3, cpart = 0.08 and ~8 % error, Panel D: Bimodal 

distribution with Uparf = 0.4, opart = 0.035 and -10% error 130 

Figure 6.12: Simulation of the uncertainty in the experimental measurements for the 

phenotypic characteristic * 132 

Figure 6.13: Effect of uncertainty in the experimental data on the recovery of the PPDF 

for a 132 

20uM. 



xvii 

Figure 6.16: Recovered partitioning function Q(f) for toggle at three [IPTG]. Panel A: 

[IPTG] = 2000uM, Panel B: [IPTG] = 40uM, and Panel C: [IPTG] = 20uM 137 

Figure 6.17: Recovered PPDF for toggle at [IPTG] = 2000uM. Panels A and B show 

PPDF from different perspectives 138 

Figure 6.18: Recovered PPDF for toggle. Panel A: [IPTG] = 40uM, Panel B: [IPTG] = 

20uM 139 

Figure 7.1: Comparison between the analytical (panel A) and recovered (panel B) PPDF 

for the generalized 1-D inverse problem 148 

Figure 7.2: Test of the bivariate basis functions assumption. Panel A: analytical PPDF, 

Panel B: PPDF obtained from analytical through eqs. (7.3) and (7.46) 151 

Figure AIL 1: Examples of realistic dividing cells (Set 1). Panel A: X = 2 and a = 0.6 , 

Panel B: X = 2 and a = 0.5 , Panel C: X = 2 and a = 0.4, Panel D: X = 2 and a = 0.4 174 

Figure AIL 2: Examples of realistic dividing cells (Set 2). Panel A: X = 2 and a = 0.5 , 

Panel B: X = 2 and a = 0.5 , Panel C: X = 2 and a = 0.4, Panel D: X = 2 and a = 0.3 ..175 

Figure AIL 3: Examples of realistic dividing cells (Set 3). Panel A: X = 4 and a = 0.4, 

Panel B: X = 4 and a = 0.6 , Panel C: X = 4 and a = 0.8, Panel D: X = 4 and a = 0.9 ...176 

Figure AIL 4: Examples of realistic dividing cells (Set 4). Panel A: X = 4 and a = 0.4, 

Panel B: X = 4mda = 0.6, Panel C: X = 4and a = 0.8, Panel D: X = 4and a = 0.9 ...177 



ABBREVIATIONS 

CDF: Cumulative distribution function 

CPB: Cell population balance 

CV: Coefficient of variation 

FCM: Flow cytometry 

FM: Fluorescence microscopy 

GFP: Green fluorescent protein 

IPSF: Intrinsic physiological state functions 

IPTG: Isopropyl - D - thiogalactopyranoside 

ICPB: Inverse cell population balance 

NDF: Number density function 

OD: Optical density 

PPDF: Partition probability density function 



Chapter 1 

1 Introduction 

In this chapter, we introduce the concept of cell population heterogeneity along with 

experimental evidence and we explain its major sources and its significance. We then 

introduce the cell population balance equation and corresponding inverse population 

balance problem, which is the main focus for the current work. We follow with an 

extensive review of the literature. Finally, we present the objectives and the structure of 

the current thesis. 

1.1 Definition and Significance of Cell Population Heterogeneity 

Complexity at the single-cell level arises from many sources. The most important 

sources are interactions among the numerous biochemical components of a cell, 

interactions between the cell and its environment, and order-of-magnitude differences in 

the time scales at which key intracellular processes occur. Current biotechnological 

applications, however, have to contend with an additional level of complexity extending 

beyond the single-cell level. Because their primary objective is the maximization of the 

production of bio-products (such as proteins), these applications attempt to achieve their 

goal by optimizing the phenotype of entire cell populations. Moreover, state-of-the-art 

transcriptomic, proteomic and metabolomic technologies collect measurements from 

entire cell populations. In this context, it becomes more meaningful to define the 

biological system as the cell population instead of the single cell, as it is frequently done 

either explicitly or implicitly. Hence, an additional source of complexity must also be 

1 



considered and understood. This source is the heterogeneity of isogenic cell populations 

that exhibit at any given point in time significant variations in cell phenotype or specific 

cellular properties. 

x10 

B 

200 300 400 500 600 700 800 900 1000 

Total GFP Content 

Figure 1.1: Illustration of cell population heterogeneity. Panel A: Fluorescence image of a 
heterogeneous E. coli cell population (strain JM2.300, plasmid pTAKl 17) Panel B: Distribution of 
total cell green fluorescent protein content in the heterogeneous population. 
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The concept of heterogeneity of isogenic cell populations can be illustrated in Figure 

1.1. Panel A of Figure 1.1 depicts a heterogeneous E. coli cell population. Heterogeneity 

is manifested through the variation of phenotypic characteristics of individual cells 

comprising the cell population. One can easily notice that the cells have different lengths, 

areas and exist in different stages of their cell cycle, since some of them are clearly 

dividing while others are growing. Moreover, the cells have different protein contents, as 

it can be implicitly inferred through their varying fluorescence levels. An additional way 

to understand the concept of cell population heterogeneity is by looking at the 

distribution of one or more phenotypic cell characteristics. As panel B of Figure 1.1 

shows, the total protein content of each individual cell is distributed among the 

population. The spread of the distribution shown in panel B is indicative of the extent of 

heterogeneity in the cell population, while the appearance of the two peaks is 

characteristic of the existence of two distinct cell subpopulations, around low and high 

protein contents. 

Cell population heterogeneity is significant and thus worth studying and 

understanding in many contexts, a few examples of which will be present here. 

Heterogeneity plays an important role in the adaptation of cell subpopulations to 

environmental changes. For instance, some cells subpopulations may appear to be more 

resistant compared to others to a sudden change of the environmental conditions and thus 

survive. Therefore, heterogeneity is useful in viability and drug resistance studies for 

several organisms. Also, cancer treatment is dealing with heterogeneous cell populations. 

In fact, the cancer drugs should be designed such that they target and inhibit the 

proliferation of the metastatic and cancerous cell subpopulations, while leaving the 

3 



healthy cells intact. Last but not least heterogeneity is significant in biotechnology. 

Understanding the factors that suppress and enhance cell population heterogeneity and 

linking single-cell architecture to the desired cell population behavior is extremely useful 

in biotechnological applications; for instance, controlling and optimizing the total 

production of a pharmaceutical or a bio-product from cell populations. 

1.2 Experimental Evidence of Heterogeneity 

Over the past 60 years, several studies have established that in many biological 

systems isogenic cell populations are heterogeneous with respect to a variety of cellular 

properties, like intracellular content, cell cycle stage, and growth or production rates. 

Delbriick showed significant variation in the burst size distribution of virus infected 

bacteria [1]. Stocker illustrated heterogeneity through the changes in phases in 

Salmonella typhimurium [2]. Heterogeneity in division times was demonstrated by 

Powell [3], whereas other investigators illustrated the heterogeneity of P-galactosidase 

activities in bacteria [4, 5]. Spudich and Koshland demonstrated the differences in 

individual behavior of isogenic flagellated bacterial cells with respect to their tumbling 

and smooth swimming states [6]. Russo-Marie and coworkers showed the heterogeneity 

in the production of p-galactosidase in bacterial cell population [7]. Moreover, 

heterogeneity of transcriptional states was illustrated for Bacillus subtilis by Chung and 

Stephanopoulos [8]. Recently, Beak and coworkers [9] showed heterogeneity of the 

lysogenic states, whereas Elowitz and his coworkers demonstrated the heterogeneity in E. 

coli cell populations using various artificial genetic networks with different fluorescent 

markers [10]. 
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1.3 Sources of Heterogeneity 

Where does heterogeneity stem from? There are three major sources, namely, the 

environment, unequal cell partitioning and stochasticity. 

Intracellular cell processes and major cell functions such as growth, DNA 

duplication, mitosis, gene expression, migration, proliferation, adhesion and apoptosis 

heavily depend upon the environmental conditions. Temperature, pH, oxygen and carbon 

dioxide concentration, relative humidity, nutrient and substrate availability are some of 

the environmental factors that affect cellular processes [11-22]. Variations in any of these 

parameters can have an immediate effect on single-cell behavior. For instance, cell 

proliferation may occur at a higher rate for a higher temperature range or may be 

completely stalled, in the absence of nutrients. In a inhomogeneous, environment, namely 

one in which any of the aforementioned factors spatially vary, every cell in the 

population will be facing a different microenvironment. Therefore, each cell will behave 

differently, which leads to phenotypic variation (see panel A of Figure 1.2). However, 

cells demonstrate a heterogeneous behavior even in a spatially homogeneous 

environment. 

The phenotype of a cell is determined at each point in time by its intracellular 

biochemical components, which constitute its physiological state. Cells with different 

physiological state will have dissimilar phenotypes. The phenotypic variability, which is 

due to the different state of cells, emanates from the unequal cell partitioning at cell 

division. Each cell in a population undergoes its cell cycle during which it grows and at 

some point in time it divides to separate its intracellular content to the two daughter cells. 

However, the mechanism of cell division is not always symmetric. Therefore, the mother 
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or dividing cell can unevenly distribute its content amongst the two newborn cells. 

Unequal division of the mother cell, thus, results in the birth of two new cells at different 

initial states. Different initial physiological states, in their turn, lead to different 

phenotypes (see panel B of Figure 1.2). The whole phenomenon is further amplified and 

thus solidified by the fact that each of the two newborn cells undergoes the same cell 

cycle and at some point divides asymmetrically to its own daughter cells. The unequal 

cell partitioning has been very well documented in the literature for a variety of 

biological systems [23-29]. 

Phenotypic variability in a cell population can result even from cells with the same 

physiological state, due to stochasticity or the random occurrence of intracellular 

reactions. The phenotype of the cell is determined by gene expression and a typically 

largely complex internal chemical reaction network. In such a network, certain chemical 

reactions are controlled or catalyzed by molecules which are found within the cell in very 

small amounts. The low copy number of these regulatory molecules is what renders their 

action inherently noisy or stochastic. For instance, for two cells with identical states the 

occurrence of a reaction will depend on chance; the latter means that the reaction either 

happens or not. Thus, it results in a different phenotype for the cells that the reaction 

actually occurs. Hence, through this mechanism phenotypic variability can be generated 

(see panel C of Figure 1.2). Stochastic heterogeneity has been extensively studied. There 

are several examples in the literature [10, 30-35]. 

6 
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Figure 1.2: Major sources of cell population heterogeneity. Panel A: Environment, Panel B: 
Unequal cell partitioning at cell division and Panel C: Stochasticity. 
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1.4 Cell Population Balance Models 

Single-cell or continuum models have been widely used to describe the complex 

biological operations of the cell. These models are typically formulated as a system of 

nonlinear ordinary differential equations (ODEs), which describe the temporal change in 

the concentrations of various biochemical components within the cell and usually take 

into account the changes in the extracellular environment. The great amount of biological 

detail that can be built into the continuum models makes them a very useful tool for 

studying and better understanding the cell biological functions. 

Attempting to describe the dynamics of a cell population using a continuum model 

would essentially postulate that all cells in the population have the exact same properties. 

However, such an assumption would contradict the well-documented fact that the cell 

properties are not uniform but rather distributed among an isogenic cell population. Thus, 

it becomes obvious that continuum models have limitations, when it comes to describing 

cell populations. Therefore, the study of cell population dynamics requires mathematical 

models that take into consideration the cell population heterogeneity. 

In order to rigorously account for the heterogeneous nature of cell populations, 

Fredrickson and coworkers formulated in the mid 60s the first cell population balance 

(CPB) models [36-39]. These models consist of partial integro-differential equations that 

describe the dynamics of the distributions of cellular properties (such as size or 

intracellular content) and are nonlinearly coupled with ordinary integro-differential 

equations, describing substrate availability. The formulation of the CPB models lies on a 

major assumption: the state of each cell at any point in time can be both adequately and 
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uniquely determined by a physiological state vector x. The components of the 

physiological state vector JC can be morphometric properties (like cell length, width, etc.) 

or intracellular content (protein, DNA). The general mathematical formulation of a cell 

population balance model in a biochemical reactor [39], is described by the following 

equation: 

^ l + Vx[R(x,S)N(x,t)] + r(x,S)N(x,t) + DN(x,t) 
dt (1.1) 

= \p(x,y,S)T{y,S)N{y,t)dy 
n 

with initial condition 

N(x,t) = N0(x,0) (1.2) 

and is subject to the containment conditions 

R(x,S)N(x,t) = OyxedQ (1.3) 

The unknown of eq. (1.1) is the distribution N (x,t) and N(x,t)dx gives the number of 

cells per unit reactor volume that have a state between JC and x + dx at time t. In other 

words, at each time t, N (x,t) describes the distribution of the cell population 

characteristics that are contained in the physiological state vector x. The dynamics of 

TV(x,t) are given by the population balance eq.(l.l), which is simply a number balance 

in dx, an infinitesimal amount of the physiological state space Q. 

At this point, we will explain the terms that appear in eq.(l.l), moving from left to 

right. The first term shows accumulation in state JC . The second term expresses net loss of 

cells from state JC due to the growth of cells in larger states. The third and fourth terms 

denote, respectively, loss of cells from state JC due to the fact that cells divide and exit the 

9 



bioreactor (D is the dilution rate). The last term, gives the birth of cells in state JC , due to 

division of larger cells. The three functions, R(x, S), r(x, S)and P(x,y,S) that appear 

in the CPB equation (1.1) are collectively called intrinsic physiological state functions (or 

IPSF). The function R (or, S) is called single-cell reaction rate and denotes the rate of 

change of the physiological state variable JC . Also, r (AT, S) is the single-cell division rate 

and r(x,S)dt represents the fraction of cells with state x at time t which will divide in 

t + dt. In reality, the single-cell reaction and division rates R[x,S) and r ( x ,S ) , 

required to solve the corresponding CPB model, are averages of rates over cohorts of 

cells with the same physiological state vector x . However, we will use the simpler term 

"single-cell" here to refer to these rates in order to distinguish them from the rates 

obtained by averaging over the entire cell population independently of cellular content. 

Finally, the function P(x,y,S) is called partition probability density function (or PPDF) 

and expresses the probability that a mother cell with state y at time t, will divide and give 

birth to two daughter cells with states x and y - x, at time t + dt. Notice how in the 

general case the IPSF depend on S, a vector that contains the concentrations of the 

substrates in the bioreactor. 

The population balance model (1.1) is subject to an initial condition given by eq. 

(1.2) and to the containment conditions given by eq. (1.3). The physical meaning of the 

latter, is that the physiological state vector x cannot grow out of the boundaries dQ. of the 

physiological state space Q. 
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For the case where the cell state can be adequately described by a single property JC, 

the one dimensional CPB model describing the dynamics of a cell population, cultured in 

a batch reactor with excess substrate S, is given by the following equation: 

^ ^ + j-[R(x)N{xj)] + r(X)N(X,t) = 2[-p(X,y)r{y)N(y,t)dy (1.4) 

where xmin and jcmax are (respectively) the smallest and largest values of the state x. If 

instead of the distributionN[x,t), we use the number density function (NDF) n(x,t) 

defined by the following equation: 

n(x,t) = - V } (1.5) 

f N(x,t)dx 

then eq. (1.4) can be rewritten as: 

—^- L ^ +—[R(x)n(x,t)j + r(x)n(x,t) + n(x,t)/j = 

2£-p(x,y)r(y)n(y,t)dy 

The number density function n(x,t)dx gives the fraction of cells per unit reactor volume 

that have a state between x andx + dx at time t, and //is the average specific rate of 

growth, defined as follows: 

/j,= i™* r(x)n(x,t)dx (1.7) 
•*min 

and expresses on average the rate at which the cell population is increasing due to cell 

division. The average doubling time Td of a cell population is related to the average 

specific growth rate through the following equation: 
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In (2) 

In general, CPBs are difficult to solve analytically. However, significant progress has 

been made towards their numerical solution [40-46]. 

1.5 Inverse Population Balance Problem 

Although there has been substantial progress in the ability of researchers to 

numerically solve the CPB equation, the use of CPBs for predicting and optimizing cell 

population behavior has been limited. This is primarily due to the fact that CPBs require 

as inputs the IPSF. Thus, the greatest challenge that appears in utilizing the predictive 

power of the CPBs is the unknown IPSF. 

Obtaining the IPSF from the CPB model constitutes an inverse mathematical 

problem. In an inverse problem, experimental data from a physical system are utilized 

together with the corresponding mathematical model (that describes the behavior of that 

system) to determine the model parameters (vector of scalar values or functions). 

Conversely, in a forward problem the known model parameters are used as inputs in the 

mathematical model to describe and predict the behavior of a physical system. Inverse 

problems are challenging to solve, because they are typically ill-posed, which means that 

small errors in the experimental data are significantly amplified during the inversion 

process. 

The most general formulation of the inverse CPB problem would require the 

determination of the IPSF: a) for every possible phase of cell growth, b) when the 

culture's environment is changing and c) given that the IPSF are environmentally 

dependent. Such a problem is very complicated and therefore its general treatment 
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presents several challenges. For instance, the absence of a mathematical methodology to 

obtain the IPSF. However, under certain conditions of cell growth, it is feasible to obtain 

the IPSF through inverse modeling. An example of such conditions, is the well-known 

exponential balanced growth [36, 47, 48], at which the number density function n(x,t) 

becomes time invariant. 

In their pioneering work in 1962, Collins and Richmond [49] showed that when a 

cell population is in exponential balanced growth conditions, then the single-cell reaction 

rate can be obtained from the following closed-form expression: 

R(x)=-hl(2nb(y)-n«(y)-<y))dy a.9) 

if the following data have been experimentally determined: 

a) the average specific growth rate ju, 

b) the number density function n(x) of the state variable x for the entire cell 

population, 

c) the number density function nd (JC) for the dividing cell subpopulation, and 

d) the number density function nb (x) for the newborn cell subpopulation. 

The focus of Collins and Richmond's study was the growth of Bacillus cereus and in 

particular, its elongation rate at various lengths. For the purpose of their work, Collins 

and Richmond derived eq. (1.9), without considering any mathematical model to describe 

cell growth. 

Later on, Ramkrishna and coworkers (1968) re-derived the Collins and Richmond 

eq. (1.9) using a quite different approach [48]: they applied the one-dimensional CPB eq. 

(1.6), for a cell culture at balanced exponential growth conditions, in a batch reactor with 
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excess of substrate. Also, Ramkrishna et al. [48] showed that the single-cell division rate 

r(x) can be obtained from the following closed-form expression: 

/ % n, (x) 
r(x) = v-±ti (L 1 0> 

n(x) 

And that the bivariate partition probability density function P[x, y) satisfies the following 

integral equation: 

nb(x)= \P{x,y)nd{y)dy (1.11) 
X 

As a probability density, P(x,y) additionally satisfies the following normalization 

condition: 

y 

\p(x,y)dx = l (1.12) 
o 

It must be noted that the Collins and Richmond equation (1.9) has also been derived in a 

systematic way by Harvey et al. [50] and that the integral equation (1.11) has been also 

formulated by Powell [5 l]and Harvey et al [50]. 

The set of equations (1.9)-(1.12) defines the inverse problem of determining the 

IPSF for a cell culture at balanced exponential growth conditions, in a batch reactor with 

excess of substrate. Henceforth, we will refer to this problem as: inverse population 

balance problem (ICPB) or simply inverse problem. 

1.6 Literature Review on the Inverse Problem 

The study of entire cell populations to obtain single-cell information is not 

something new. Many investigators have been particularly interested in analyzing 

individual cells from a cell culture, in order to increase their insights into the behavior of 
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the cell population. Thus, there is a wealth of theoretical and experimental work in the 

literature spanning from the early 60's until recently, regarding the efforts of researchers 

to quantify the IPSF. 

1.6.1 Theoretical and Experimental Work on Inverse Problem 

In 1962, Collins and Richmond determined the elongation rate of Bacilus cereus at 

balanced growth [49]. The overall cell length distribution was obtained by analyzing a 

small number of cells in microfilms. In the absence of experimental data for the dividing 

and newborn length distributions, the latter were assumed to be normal. Koch (1966) 

used theoretical distributions to test the applicability of the Collins and Richmond 

approach, concluding on the importance of obtaining accurate experimental data [52]. 

Harvey and coworkers (1967) obtained the kinetics of growth for E. coli and Azobacter 

agilis cells [50], using the Collins and Richmond equation. The overall cell distribution 

was experimentally determined through electronic cell volume measurements. A probable 

functional form was postulated for the dividing cell volume distribution and equal 

partitioning of the mother cell was assumed to obtain the newborn cell density. Anderson 

and coworkers (1967) determined the growth rate and division probability functions for 

Chinese hamster cells (CHO), with respect to cell volume [53]. The investigators used the 

Collins and Richmond equation and employed the Coulter volume spectroscopy to 

experimentally determine the overall cell volume distribution. The dividing cell 

distribution was directly determined from experimental data, using the fact that for some 

mammalian cells, the mitotic cells could be separated from the interphase ones. Finally, 

symmetric partitioning at cell division was postulated to obtain the newborn cell 

subpopulation. Painter and Marr (1968) re-derived Collins and Richmond equation using 
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a systematic argument [54]. Zusman and coworkers (1971) studied and determined the 

kinetics of cell growth and protein synthesis during the division cycle of Myxococcus 

xanthus [55]. The distribution of cell size for both septated and nonseptated bacteria was 

obtained by direct measurement of the cell lengths. The Collins-Richmond equation was 

modified to consider bacterial growth in two phases: growth and division. Kempner and 

Marr (1979) worked to determine the volume growth rate in Euglena gracilis [56] using 

the Collins and Richmond methodology. The volume distribution for the overall 

population was determined at balanced growth conditions conductimetrically. An 

incomplete gamma function was postulated for the dividing cell volume distribution and 

the newborn number density was derived by the assumption of symmetric division. 

More recently, Block et al. (1990) used slit scanning flow cytometry to quantify the 

asymmetry of cell division in an asynchronous cell culture for Saccharomyces cerevisia 

[28]. The investigators developed an algorithm to analyze forward angle scattering signal 

and compute the contributions of mother to the newborn cells. Kromenaker et al. (1991) 

determined the single-cell rates of accumulation of cellular protein as a function of total 

protein content, by using flow cytometry and population balance equations for 

exponentially growing murine hybridoma cells in the individual Gl, S and G2 + M cell 

cycle phases [57]. The cells were stained with FITC (green fluorescent protein) and PI 

(DNA staining). The dividing cells were assumed to be given by the mitotic 

subpopulation (G2 + M), which was experimentally identified with multi-parameter flow 

cytometry. The corresponding newborn subpopulation was inferred, assuming equal cell 

partitioning. Sriench and Dien (1992) used flow cytometry and BrdUrd staining to obtain 

the single-cell kinetics of Saccharomyces cerevisiae [58]. Based on DNA content, the 
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investigators identified the S, G2+M and Gl cells and used the Richmond and Collins 

framework to get net rate of single-cell protein accumulation. . Koppes and Grover 

(1992) studied the relationship between the size of mother and daughter cells in E. coli 

cultures . Cell length and area data were obtained by the analysis of electron micrographs 

from cells at steady state exponential growth. The investigators fitted normal and 

symmetric beta distributions to the observed size distributions for the mother to daughter 

size ratio [59]. Sweeney and coworkers (1994) utilized slit-scanning flow cytometery to 

measure the unequal cell partitioning in Tetrahymena pyriformis and get significant 

insight in the partitioning mechanism at cell division [29]. The main result of the work 

was the frequency distributions with respect to the ratio of daughter to mother DNA 

content. Furthermore, the DNA distributions for the overall population as well as the 

dividing and newborn subpopulations were experimentally determined. Kromenacker and 

Srienc (1994) determined the effect of lactic acid on the single-cell kinetics of growth and 

antibody production in a murine hybridoma [60]. Cellular DNA contents were measured 

with flow cytometry and the Richmond and Collins methodology was utilized to 

determine the net antibody production rate. Ramkrishna (1994) proposed a mathematical 

methodology to obtain the IPSF from a cell culture at self-similar cell growth conditions, 

by utilizing transient flow cytometric data [61]. Certain forms of power law kinetics were 

postulated for the single-cell reaction and division rates during the formulation of the 

method. The investigator's approach requires additional information such as dynamic data 

from the dividing cell subpopulation to allow the identification of the large number of 

unknowns. Hatzis et al. (1997) determined the single-cell protein synthesis rate and 

probability of division as a function of cell protein content for Tetrahymena Pyriformis 
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[62], by using the Collins and Richmond approach. Flow cytometry was used to 

determine the overall cell protein distribution. The dividing and newborn subpopulations 

were collectively identified using the non-phagocytosis property of Tetrahymena 

Pyriformis before and after cell division. The investigators developed a statistical 

algorithm to decompose the experimentally determined non-phagocytosing subpopulation 

into the dividing and newborn distributions, postulating symmetric cell division. Trueba 

and Koppes (1998) used the Collins and Richmond equation to analyze the growth of 

individual bacterial cells. Birth size was derived from the size of deeply constricted cells 

in the samples observed with electron microscopy [63]. Natarajan and Srienc (1999, 

2000) measured the glucose uptake rates of single E. coli cells using flow cytometry both 

at steady and transient conditions [64],[65]. In Perthame and Zubelli (2007) developed a 

technique to obtain the single-cell division rate using the steady state size distribution of 

the cell population. Symmetric partitioning has been postulated and the single-cell 

reaction rate was regarded as known [66]. 

1.6.2 Literature Review 

From a theoretical standpoint, Collins and Richmond methodology remains the only 

methodology for extracting the IPSF from cell populations, until today. An exception has 

been Professor Ramkrishna's work. In 1994, Ramkrishna proposed a mathematical 

framework to determine the IPSF at self-similar conditions, a cell growth regime more 

general than the exponential balanced growth [61]. Ramkrishna's idea about self-

similarity is based on scaling transient flow cytometric data with appropriate cell 

parameters, in order to obtain time-invariant distributions of cell characteristics. The 

formulation of the mathematical framework requires the postulation of certain 
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mathematical conditions, which must hold true in order for a cell population to attain 

self-similarity. Such conditions include power law form expressions for the single-cell 

division and reactions rates and a certain form for the partition probability density 

function. Although self-similar conditions are more general than the exponential balanced 

growth, the generality of the IPSF at the first regime is reduced because of the certain 

assumptions made about them. Also, the identification of the large number of unknowns 

present in the mathematical framework requires transient data for the dividing cell 

subpopulation, in addition to the transient flow cytometric data for the overall cell 

population. Moreover, the suitable choice of the scaling parameter is an issue that 

requires further investigation. Although Ramkrishna's mathematical framework is very 

elegant, its applicability remains limited for the aforementioned reasons and therefore it 

has not been used so far to determine the IPSF from experimental data. 

The work presented in the previous section shows that the Collins and Richmond 

methodology has been extensively used for studying a variety of organisms, including 

bacteria, eukaryotic and mammalian cells. Such organisms have been studied with 

respect to cell volume, length, DNA and protein content. 

In their efforts to quantify the IPSF, researchers have frequently relied on certain 

assumptions. For instance, in many cases it has been postulated that the cell number 

densities for the dividing and newborn cell subpopulations as well as the partitioning 

frequency at cell division follow certain probable functional forms. Also, the cell division 

has been oftentimes assumed to be symmetric. Such postulations, however, limit the 

generality of the results obtained through the inverse problem. 
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Moreover, the majority of the investigators have been solely interested in 

determining the single-cell reaction rate for the organism they studied. Only in a few 

cases, the single-cell division rate has been determined. Furthermore, there have not been 

attempts to recover the bivariate PPDF from a cell population in a general way, by using 

the integral equation PPDF satisfies. 

Although the measurement of the average specific growth rate of a cell population is 

straightforward, computing the distributions of a cellular property for the overall cell 

population and, especially, for the dividing and newborn cell subpopulations, required by 

the Collins and Richmond inverse methodology, is a challenging task. Until 80's, 

investigators relied on postulating the information for cell subpopulations, they could not 

experimentally quantify. In 90's, however, it had been possible to determine such data 

experimentally. To this end, flow cytometry (FCM) has been extensively used to obtain 

time dependent population data [21, 67], to measure the distributions of entire cell 

populations with respect to cell size, DNA content, various fluorescent proteins and dyes, 

as well as to estimate growth rates and substrate uptake rates [60, 64, 65, 68-72]. 

Moreover, FCM has been employed to study cell cycle kinetics. However, this requires 

the identification of specific cell subpopulations in addition to the overall cell population. 

To accomplish that, investigators have developed FCM-based techniques involving DNA 

labeling, slit scanning, and the change of forward (FALS) and side (SALS) angle light 

scattering [28, 29, 57, 58, 62, 73-75]. 

Although the aforementioned FCM-based methods have provided us with unique 

insights, they can quantify only a few cell properties and do not allow direct visualization 

of the cells. Therefore, they rely on implicit and indirect criteria to identify the cell 
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subpopulations necessary for the solution of the inverse problem. For instance, FALS is 

only an estimation of cell size, since many other factors apart from size can affect FALS 

measurements [76]. Determination of the absolute cell size requires calibration using 

polystyrene beads of appropriate size. Such measurements, however, are greatly affected 

by the refractive indices of the calibration beads and, therefore, are subject to error [77]. 

SALS, a measure of cell internal complexity, offers only qualitative information and, 

thus, is not optimal for identifying cell populations. Furthermore, the cell physiology may 

be altered by the various offline steps involved in staining the genetic material to identify 

cell subpopulations such as the denaturation step during BrdUrd incorporation into the 

replicating DNA [74], or the acid and heat denaturation of the DNA of mitotic cells [57]. 

Slit scanning flow cytometry can obtain spatial information [76] about the cells that can 

be utilized to identify cell subpopulations. However, the accuracy of these measurements 

can be significantly affected by the presence of cell aggregates in the suspension or the 

orientation of the cells in the flow system. Neither of these two factors can be directly 

checked [76, 77]. An additional drawback of typical slit scanning systems is the small 

focal spot sizes which leads to rapid de-focusing of the laser beam of the instrument from 

focus [76]. 

Fluorescence microscopy (FM), on the other hand, can overcome several of the 

previously discussed problems, because it allows for direct visualization of individual 

cells with high spatial resolution. FM has been extensively used to study cellular structure 

and organization, as well as key cellular functions like mitosis, migration, adhesion and 

gene expression [78-95]. In contrast to FCM, FM can directly visualize cells and collect 

measurements of a much larger set of morphometric parameters (such as area, perimeter, 
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length, width, shape factor, orientation etc) and fluorescence cellular characteristics (such 

as maximum, minimum, average, or integrated intensity, etc.) These capabilities make 

FM particularly attractive for developing direct criteria for identifying specific cell 

subpopulations. 

Overall, the Collins and Richmond inverse methodology has been extensively used 

from researchers in their studies to determine some of the IPSF with respect to different 

cell parameters with the majority of the focus placed on the single-reaction rate. Also, the 

experimental data required for the cell subpopulations have been either postulated or 

indirectly determined using FCM-based methods. Additionally, the assumption of the 

symmetric division of the mother cell has been extensively utilized. However, such 

assumptions limit the generality of the obtained results and the indirect methods of cell 

subpopulation identification have certain drawbacks as explained above. 

1.7 Objectives 

Cell population heterogeneity is important, since it greatly affects cell population 

dynamics. Also, in order to understand the complex interplay between single-cell and cell 

population behavior, cell population heterogeneity needs to be accounted for. To this end, 

CPB models take into account the heterogeneous nature of cell population and can be 

numerically solved in one dimension. Their application to predict the time evolution of 

phenotypic distributions, however, has been limited by the fact that they require the three 

IPSF, which are unknown. Richmond and Collins have presented an approach that allows 

the determination of two of them at exponential balanced growth conditions. Although 

there has been an extensive use of the aforementioned methodology, the inverse problem 

has not yet been generally, completely and accurately resolved as we have explained in 
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the previous section. Specifically, we consider that is still required: a) to accurately and 

generally obtain the experimental data, necessary for solving the inverse problem, using 

direct visualization of cells with fluorescence microscopy, b) to completely resolve the 

inverse problem, in the sense of determining all three IPSF with respect to the same 

physiological state variable and for the same biological system and to develop a method 

to obtain the bivariate PPDF, c) to address the inverse problem in the context of cell 

population heterogeneity and apply it for model bacterial organisms carrying artificial 

regulatory networks. These challenges function as the motivation for the work presented 

in this thesis. 

The objective of the current thesis is to develop an experimental and computational 

framework based on quantitative fluorescence microscopy and digital image processing 

to generally, accurately and completely resolve the inverse population balance problem. 

The latter objective can be broken down into the two following major goals: a) 

development of experimental framework and b) development of the computational 

methods for the inverse problem. Each of these is further analyzed below: 

A) Development of experimental framework 

Until now, the main drawback of the application of FM to obtain data at the cell 

population level has been its low-throughput nature. To address this challenge, we will 

present in the current thesis the development of a new assay that integrates fluorescence 

microscopy and digital image processing to determine the distributionsn(x), nd (*) and 

nb(x) required for obtaining the intrinsic physiological state functions of a cell 

population. We will also develop and test novel rigorous quantitative criteria to identify 

the dividing and newborn cell subpopulations for rod-shaped bacteria cells. We chose E. 
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coli populations carrying the artificial genetic toggle network [96] as our model system to 

illustrate the ability of our assay to effectively determine the three distributions required 

by the Collins-Richmond approach. 

B) Development of computational methods for the inverse problem 

In the current thesis, we will investigate the challenges related to solving the inverse 

problem. We will develop a minimization approach to obtain the bivariate PPDF. Also, 

we will employ numerical simulations to assess the effect of numerical parameters and 

the qualitative characteristics of the data on the accuracy of the recovered IPSF. 

Moreover, we will assess the effect of finite sampling and the uncertainty present in the 

experimental data on the inverse solution. We will examine the feasibility of a general 

solution for the PPDF and the extensibility of the inverse problem in 2-D. Finally, we 

will obtain the IPSF for the toggle. 

1.8 Thesis Structure 

The current thesis is organized in eight chapters. Chapterl introduces the notion of cell 

population heterogeneity and its importance. It also includes the definition of the inverse 

cell population balance problem and a revision of the existing theoretical and 

experimental work. Finally, it describes the objectives and the organization of the current 

thesis. Chapter 2 presents the materials and methods used for the experimental part of the 

current thesis, including the model biological system, the protocols for cell culture and 

the setup of the flow cytometer and the fluorescence microscope. Chapter 3 describes the 

development of quantitative criteria used to identify cell subpopulations by FM. Chapter 

4 includes the methods developed to obtain the three number densities from FM 

experimental data. The methods are applied to the model biological system. Chapter 5 
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investigates the challenges of the inverse mathematical problem and assesses the effect of 

numerical parameters on the accurate recovery of the IPSF, through a full parametric 

analysis. It also contains the formulation of a minimization approach to obtain the 

bivariate PPDF. Chapter 6 presents the development of methods to assess the effect of the 

cell sample size and measurement errors on the accuracy of the recovered IPSF. Finally, 

the inverse computational framework is used to recover the three IPSF for the toggle. 

Chapter 7 examines the feasibility of a more general solution to the 1-D problem and its 

extensibility to 2-D. Chapter 8 summarizes and concludes the current thesis. It also 

contains ideas for future investigation. 
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Chapter 2 

2 Materials and Methods 

In this chapter, we present the materials and methods used in the experimental part of the 

current thesis. We describe the model biological system, the protocols for cell culture and 

the setup of the flow cytometer and the fluorescence microscope. 

2.1 Plasmid and Strains 

The E. coli strain JM2.300 (lambda-, lacI22 rpsL135 (StrR), thi-1, CGSC strain 

5002) is used for all experiments. This strain has a mutant lac repressor that is non

functional. It is transformed with plasmid pTAK117 that was a gift of Professor J.J. 

Collins of Boston University. Note that this strain is no longer available in the CGSC 

database. The cells are made chemically competent and transformed with plasmid [97]. 

The genetic toggle network [96] consists of two mutually-inhibiting promoter-repressor 

pairs. In the pTAK117 plasmid, the two repressors are the lac repressor and the 

temperature sensitive cits (lambda) repressor from phage lambda. The lac repressor 

inhibits the function of the Ptrc-2 promoter controlling expression of the lambda 

repressor, which in turn inhibits the function of the PLslcon promoter controlling 

expression of the lac repressor. The plasmid also contains an ampicillin marker and the 

gfpmut3 gene which expresses the green fluorescent protein (GFP) acting as a reporter of 

the cits expression levels, cits expression is inducible by isopropyl-B-D-

thiogalactopyranoside (IPTG) that binds to the lac repressor, thus reducing the repressive 
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Figure 2.1: Schematic representation of the genetic toggle, 

effect that the lac repressor has on the Ptrc-2 promoter. The toggle is shown 

schematically in Figure 2.1. 

2.2 Cell Culture 

Cells are grown to exponential phase in shake flasks. First, cells are grown for 12 

hours in 5 mL of LB medium containing 10 g/L NaCl, 10 g/L tryptone (BD Biosciences), 

5 g/L yeast extract (VWR), and 100 mg/L ampicillin (VWR). They are then subcultured 

at a low cell density (-2000 cells/mL) by placing 400 mL of prewarmed and aerated 

LSRB medium (4 g/L NaCl, 10 g/L tryptone, 5 g/L yeast extract, 100 mg/L ampicillin) 

and the appropriate concentration of IPTG (VWR) in 2 L flasks and shaking them at 250 

RPM and 32°C in an orbital refrigerated shaker-incubator (Innova 4330, New Brunswick 
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Scientific) covered from light. The 2 L flasks are capped with foam to allow oxygen 

transfer. Samples are withdrawn after 8 hours, at which point, as has been previously 

shown [21], the corresponding green fluorescent number density functions become quasi-

time-invariant for at least 3 generations before cells start entering stationary phase. The 

samples are kept on ice and shielded from light before being analyzed with the flow 

cytometer or the fluorescence microscope. 

2.3 Flow Cytometry 

Samples are taken from the culture and centrifuged at 13000 RPM for 1 min. The 

supernatant is discarded and the pellet of cells is resuspended with 0.5-1.0 mL of PBS. 

The procedure is repeated twice. Finally, the pellet is resuspended in PBS at a final 

optical density (OD600) of 0.01 in 2 mL plastic tubes (Falcon). Measurements are 

obtained with a flow cytometer equipped with a 15 mW, 488 nm, air-cooled argon-ion 

laser (FACScalibur, BD Biosciences). Low flow rates, a four-decade logarithmic 

amplifier and a 10 bit analog to digital converter (ADC) are used to collect between 

20,000 and 40,000 events for each sample. Green fluorescence (FL1) and side scatter 

(SSC) measurements are collected for each cell in the sample. A side scatter threshold is 

applied to gate out noise (at channel 130) as described earlier [21]. The voltage settings 

are the following: FSC:E01, SSC:381, FLL601, FL2:400, and FL3: 675. The fcs binary 

files are read with MatLab and appropriate code is developed to post-process them to 

determine the corresponding GFP distributions. 

28 



2.4 Microscope Slide Preparation 

The protocol for plating and fixing the cells on microscope glass slides significantly 

influences the quality of the images captured and, hence, the reliability of the quantitative 

information extracted from them. We base our approach on the protocol for fluorescence 

microscopy measurements described by Chen and coworkers [98]. However, we modify 

and optimize many parameters of the original protocol in order to achieve the following 

objectives: (a) align cells so that they are straight and flat on the surface of the slide, (b) 

avoid the formation of cell aggregates, and (c) optimize the density of cells on the slide to 

facilitate digital image processing. Figure 2.2, shows how the OD600 affects the alignment 

and density of plated cells. Clearly, an OD600 of around 0.1 offers the best compromise 

between number of cells visible on each image and lack of aggregates or out-of-focus 

cells. The following optimized protocol is employed for this study. 

Cell samples taken from the batch culture are concentrated to a final optical density 

(OD60o) equal to 0.1 using centrifugation and re-suspension of the cell palettes with 

appropriate volume of LSRB. After mixing well, an aliquot of 0.5 mL is added to the 

fixative containing lOOuL of 16% w/w paraformaldehyde aqueous solution (reagent 

grade crystalline, Sigma-Aldrich), 0.4 uL of 25% w/w glutaraldehyde aqueous solution 

(Acros Organics-Fisher) and 20 uL of sodium phosphate 1 M (pH 7.4). Subsequently, 

the mixture is incubated for 15 min at room temperature (shielded from light) and 15 min 

in ice. The cells are then washed three times with 1 mL of PBS (10 mM sodium 

phosphate [pH 7.4], 150 mM NaCl, 15 mM KC1) and resuspended with 50 uL of PBS. 

Glass slides (25 x 75 mm color frost slides, Fisher Scientific) are pretreated with 150uL 
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of poly-L-lysine 0.01% w/v (Sigma-Aldrich) and are incubated at room temperature for 

25 min. The suspension of cells is mixed well and 50uL are applied to the glass slide 

which is incubated for 25 mins at room temperature protected from light. Next, the slide 

is washed twice with PBS. A volume of lmL is added to the slide for 2 mins and the 

excess liquid is removed by slightly tilting the slide and aspirating the liquid from its 

corner with a pipette. To assess whether cells are healthy prior to fixation, the cells are 

then incubated for 7 mins with 50 uL of 4',6-diamidino-2-phenylindole, dihydrochloride 

(DAPI - Invitrogen/GIBCO) aqueous solution (2 ug DAPI per mL of milli Q water) at 

room temperature and protected from light. The cells are washed twice with PBS. 

Finally, 50 uL of glycerol 50% v/v (Fisher Scientific) is added to the glass slide before 

sealing with a cover glass (24 x 50 mm thickness 0.13-0.16 mm Sigma). The cover slip is 

pressed firmly with a wipe to remove excess liquids. The cells stained with DAPI are 

found to be healthy prior to fixation. 
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Figure 2.2: Effect of sample optical density (OD60o) on the density of E. coli cells adhering 
to the microscopy slides. Optimal cell density for image analysis operations is obtained for 
OD600 = 0.1. 
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2.5 Image Acquisition 

An inverted microscope (Eclipse TE300, Nikon) with phase contrast and 

fluorescence capabilities is used for this study. The microscope is equipped with a 

mercury lamp (X-Cite 120, EXFO Photonics), a controller (Proscan™ II, Prior Scientific) 

driving two filter wheels carrying the excitation and emission filters with the 

corresponding shutters, a multi-band filter set (86009 B/GFP/dsRed, Chroma), a lOOx oil-

immersion objective (Plan Apo 100X/1.40 Ph3, Nikon) and a 12-bit monochrome CCD 

camera (CoolSnapHQ, Photometries) with 1040x1392 pixel resolution. Different exposure 

times are used for capturing different types of images: 200 ms for phase contrast, 300 ms 

for DAPI and 150-200 ms for GFP. The exposure times have been appropriately chosen 

to visualize the cells without saturating the images. 

A commercial software package (MetaMorph or MM, Universal Imaging 

Corporation) is used to automate image acquisition, due to its capability of grouping large 

sets of basic commands that perform sequential tasks into scripts or "journals". 

Specifically, MM journals have been developed to: a) Load the appropriate exposure 

times for each kind of image captured, b) Load the appropriate settings of the digital 

camera, c) Select the appropriate filter combinations by moving the filter wheels, d) Open 

and close the shutters, e) Switch between illumination sources, and f) Save the captured 

images with sequential file names at predefined locations in the computer's hard drive. 

Using these journals, a pair of TIFF images is acquired for each field of view using the 

phase contrast and fluorescence optics, respectively. Approximately 300 such pairs of 

images are captured for each experimental condition and they eventually yielded ~ 4000 
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cells for image analysis. All the image acquisition steps are performed on a personal 

computer with dual 3.4 MHz Pentium-4 processors and 2 GB RAM. 

The phase contrast and GFP fluorescence TIFF images acquired are treated as two 

sequences of 1040 x 1392 matrices (A* and Gk respectively, where k = 1,2,...,M with M 

equal to the total number of image pairs acquired). Each matrix element corresponded to 

a pixel of the CCD sensor and had an integer value between 0 and 4095, since we used a 

12-bit digital camera. Thus, each element of the matrices A* and Gk are defined as 

follows: 

Afj = gray level intensity of pixel (i, j) of phase contrast image k, 0 < Af. < 4095 

G-j = gray level intensity of pixel (/, j) of fluorescence image k, 0 < Gf. < 4095 

where 1 < /< 1040, 1 < j< 1392 and k=\,2,...,M . Henceforth, the terms TIFF image 

and matrix will be used interchangeably. 

2.6 Image Processing 

In order to identify the cells, segmentation is performed on the phase contrast 

images. Since cells appear darker than their background, segmentation is achieved 

through the use of an upper and lower gray intensity threshold, and regions (defined by 

lines enclosing individual cells) are created around the identified cells. Using Integrated 

Morphometry Analysis or IMA, a tool embedded in MetaMorph, 62 distinct 

morphometric characteristics (including cell area, length, width, shape factor, fiber 

length, fiber breadth, and orientation) are measured for each cell identified in the phase 

contrast image and exported to an Excel Workbook. The regions defining the identified 

cells are then transferred from each phase contrast image A* to the corresponding 
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fluorescent one Gk and stored for later use. By applying the Region Measurements (RM) 

tool of MetaMorph, the integrated, average, minimum and maximum fluorescence 

intensities are measured for each cell (see Figure 2.3, block Al). 

We have developed MM journals to automatically perform the aforementioned tasks 

for each of the acquired images, as well as Visual Basic and FORTRAN codes to post-

process the MetaMorph results. The Visual Basic code formats the raw data obtained 

from MM (see Figure 2.3, block A2), while the FORTRAN code creates the desired 

distributions for the cell population as well as for specific subpopulations (see Figure 2.3, 

block A3). Special care is taken to exclude cells that touch or exceed the edges of the 

image, thus avoiding errors that would result from the inclusion of cell fragments in our 

calculations. 

34 



Cell culture (section 2.2) Input 

Slide preparation (section 2.4) 

CI 

Method 

Observation with 
microscope and image 
acquisition with MM 

(section 2.5) 

Image Processing MM: creation 

of GFP BIN images (section 4.4) 

i ' Al 

Raw phase contrast 
and fluorescence 

TIFF images 

GFP BIN 
images 

C2 

Image Processing MM: 
integrated morhometry 

analysis, region measurements, 
cell regions creation and 

storage (section 2.6) 

MatLab Code: processes 
and separates dividing cells, 

finds newborn and 
computes fluorescence 
content (section 4.4) 

RGN files 

Bl 

FORTRAN Code: finds 
cell 

perimeter by processing 
cell regions (section 3.3) 

Quantitative characteristics of 
entire cell population 

Newborn cells 

C3 

A2 

Visual Basic Code: brings 
quantitative cell 
characteristics to 

appropriate format 
(section 2.6) 

Cell characteristics in 
appropriate format 

A3 

FORTRAN Code: creates 
distribution of newborn cells 

(section 4.4) 

FORTRAN Code: 
processes morphometric 

and fluorescence cell 
characteristics and creates 

distributions for overall 
cell population 

(section 2.6) 

/ Fluorescence distributions of 
[ newborn cell subpopulation 
\ (section 4.4) 

Fiber length and 
fiber breadth 

data 

Cell 
perimeter 

B2 

FORTRAN Code: finds minimum 
in cell perimeter and identifies the 

dividing cells by applying the 
dual criterion (sections 3.3 & 3.4) 

Dividing cells 

B3 

FORTRAN Code: creates 
distribution of dividing cells 

(section 4.3) 

Output 

Fluorescence distributions of 
overall cell population 

(section 4.1) 

Fluorescence distributions of 
dividing cell subpopulation 

(section 4.3) 

Figure 2.3: Overview of the method. Rectangles denote experimental steps, while rectangles with rounded 
corners stand for the inputs and outputs of different steps. Rectangles with a blunt upper left corner denote 
software routines developed to perform image processing operations and data post processing. Finally, the 
oval shaped blocks denote the final outputs of the developed assay. 
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2.7 Calibration 

GFP expression levels of the genetic toggle network vary greatly with extracellular 

IPTG concentration [21, 96]. At low IPTG concentration most cells have very low GFP 

content, whereas the opposite is true for high IPTG concentration. Thus, we must use 

different exposure times to measure the intracellular GFP content at different 

extracellular conditions with FM. Since measurements obtained at different exposure 

times cannot be directly compared to each other, a normalization is necessary in order to 

study the effect of different conditions on the distribution characteristics. 

To find a suitable normalization for fluorescence intensity, we use six sets of green 

calibration beads (InSpeck™ Green (505/515) Microscope Image Intensity Calibration 

Kit 6(xm, Invitorgen). The beads in each of the six sets have different relative fluorescent 

content: 0.3%, 1%, 3%, 10%, 30%, and 100%. Using the slide preparation protocol 

described earlier, six slides, corresponding to each one of the different relative 

fluorescent contents, are prepared. Images are acquired at different exposure times and 

the total average fluorescence is computed for each bead set as a function of exposure 

time. 

The results for all the six sets of the beads can be viewed in Figure 2.4. Notice that at 

high exposure times and for the highest relative fluorescence content, the average 

fluorescence intensity saturates with exposure time. This is because at such high exposure 

times, the amount of light from the beads reaching the CCD sensor is so large that its 

photosites become saturated. Measurements obtained at such high exposure times are 

completely unreliable and will lead to significant quantitative errors. However, the 
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exposure times used in our experiments are small enough to avoid image saturation (see 

section 2.5). 
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Figure 2.4: Observed fluorescence intensity vs. exposure time for all six calibration bead sets with 
increasing concentration of fluorophore. 
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For this range of exposure times, the measured fluorescence intensity varies linearly with 

exposure time (see Figure 2.4). Thus, the normalized fluorescence intensity defined by 

the following formula: 

^ Ar ,. , ™ , . Fluorescence Intensity ._ ,. 
F = Normalized Fluorescence Intensity = (2.1) 

Exposure Time 

depends only on the fluorophore content and not on the exposure time. According to the 

theory of quantitative fluorescence microscopy [99], the relationship between 

fluorescence intensity and amount of fluorophore is given by the equation: 

F = OI0(l-e
KCd) (2.2) 

where F is the observed fluorescence intensity, O is the quantum yield, Io is the intensity 

of incident light, K is a characteristic constant of the absorber (or fluorophore), C is the 

concentration of fluorophore and d is the light path length through the medium. Figure 

2.5 shows the experimentally determined slopes of each of the six plots of average 

fluorescence intensity vs. exposure time (i.e. the normalized fluorescence intensity) as a 

function of the relative fluorophore content. The excellent fit of the theoretical equation 

(2.2) to the experimental data (R2 = 0.9996) provides validation of the calibration 

procedure. 
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Fit of eq. (2.2). 

2.8 Photobleaching 

To investigate photobleaching effects on our E. coli populations, randomly selected 

cells are continuously irradiated with fluorescence excitation light for 92 s and their 

fluorescent content is recorded every 0.2 s using a time lapse acquisition technique. 

Figure 2.6 shows the average, maximum and minimum (amongst all cells measured) 

fluorescence intensity normalized with the initial fluorescence as a function of time. 

Notice that cells lose half of their fluorescence after approximately 20-30 seconds of 

continuous irradiation. However, the typical exposure times used in our experiments are 

between 0.1 and 0.2 s, where loss of fluorescence is insignificant. Therefore, the effect of 

photobleaching in our fluorescence measurements is expected to be negligible. 
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Chapter 3 

3 Quantitative Criteria for Identifying Cell Subpopulations 

In this chapter, we present the development and validation of quantitative criteria used to 

identify the dividing and newborn cell subpopulations obtained with FM. 

3.1 Identification of Dividing and Newborn Cells 

As previously mentioned in the introduction, the first objective of the current work is 

to determine the distributionsn(x), nd (x) and nb(x) required for determining the 

intrinsic physiological state functions of a bacterial cell population. The state variable x 

considered here is the total GFP content that quantifies the expression of the cits 

promoter. While it is relatively easy to obtain the distribution n(;c)of the overall 

population, the quantification of the distributions of the dividing and newborn 

subpopulations is much more challenging. In this chapter, we will show how the dividing 

cells of a population can be identified using a fully automated method based on image 

processing of the fluorescence and phase contrast images acquired with the techniques 

presented in sections 2.5 and 2.6. Once the dividing cells have been identified, the 

corresponding newborn subpopulation can be obtained in a straightforward way as 

explained in section 4.4. 

3.2 A Morphometric Characteristic for Identifying Dividing Cells 

Recent studies have shown that E. coli and, generally, bacterial cell division is 

mediated by the localization of a family of proteins (with FtsZ the most well-known) at 
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the future division site [79, 80, 86, 87, 98, 100-104]. These proteins assemble into a 

cytokinetic ring. Initiation of the constriction of the septal ring causes the formation of a 

characteristic constriction in the cells. This denotes the beginning of cell division, a 

process that culminates with the splitting of the mother cell into the two newborn cells. 

Hence, the presence of the characteristic constriction in a cell shows that it is dividing. 

Although they contribute to the formation of the cytokinetic ring, FtsZ and the other 

proteins of its family do not appear at all the stages of division due to their complicated 

time dynamics [87]. This fact limits their usefulness as markers for identifying the 

dividing cells. On the other hand, the characteristic constriction always appears in a 

dividing cell. Thus, we will base our method for identifying dividing cells on a 

morphological criterion that involves the presence and relative size of this characteristic 

constriction. 

Figure 3.1 shows a representative example obtained with our FM protocol. The 

presence of the constriction clearly distinguishes dividing cells (panels C and D) from 

non-dividing ones (panels A and B). The challenge now is to develop an automated 

image analysis procedure that can accurately detect the dividing cells. The characteristic 

constriction of dividing cells can be identified by first determining the minimum 

thickness Dmin of each cell, defined as the minimum distance between perimeter pixels 

located on opposite sides of the center axis of the cell and away from its endpoints. If the 

minimum thickness of a cell is small enough to indicate the formation of a septal ring and 

the overall cell length exceeds another threshold value [105, 106], we will classify this 

cell as dividing. 
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Figure 3.1: Phase contrast digital images showing typical non-dividing (panels A and B) and dividing 
cells (panels C and D). The straight line passing through the two constriction pixels (B and C) separates a 
dividing cell into two daughter cells (panel E). 
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3.3 Automatic Identification of the Minimum Cell Thickness 

Using MM journals and a FORTRAN post-processing code, we first identify the 

perimeters of all cells and, hence, the regions they enclose (see block Bl of Figure 2.3). 

The N pixels defining the perimeter of an arbitrary cell (see panel A of Figure 3.2 for an 

example) form an ordered listPj,p2,...,pN, while the location of a perimeter pixel 

pj,i = \,2,...,N is specified by its coordinates (*,,)>,) in the corresponding phase 

contrast or fluorescence image. 

The search for the minimum thickness begins by dividing the perimeter into two arcs 

Ti (gray pixels on panel A of Figure 3.2) and T2 (black pixels) by computing an 

approximation to the center axis of the cell (line segments AM-MD of panel A of Figure 

3.2). We must now search for the minimum distance between a pixel belonging to Y\ and 

a pixel belonging to T2 defined as: 

^p,)=ji[4^^)] = j J{xi-xj)2+{yi-yj) for all pt, e Tx (3.1) 

It is clear that the minimum value of d; will always be obtained for pixels close to the 

beginning and ending pixels A and D of T\ (see panel B of Figure 3.2). Panel B of Figure 

3.2 also shows, however, that the plot of dl has a distinct local minimum for some pixel 

pk € Y{ between A and D that corresponds to the minimum cell thickness. 

In order to exclude the minima of d{ that will always appear close to the end points 

of arc Ti, we introduce a penalty function by dividing the Euclidean distance dyp^pA 
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by the length s(pr p,) of the smaller arc that connects the pixels pi and Pj along the 

perimeter of the cell. We then look for the minimum of the following objective function 

d(pi,pj) 
d2{Pi) = m^ 

•(PnPj) 
= mm 

p,<=r2 

^(xi-xjf+(yi-yjf 

S(P»PJ) 

for all p, e T, (3.2) 

By dividing the Euclidean distance dyp^pA of pixels p. and pj by the 

lengths(pnPjjof the smallest perimeter arc connecting them, we "penalize" the pixels 

close to the end points of arc Ti and shift the minimum d2 to the actual constriction 

defined by points B and C. We have also observed that the objective function d2 is, in 

general, less "noisy" than dx (note on panel B of Figure 3.2 the "oscillations" of dl 

before and after the local minimum corresponding to the constriction). 

In order to establish the general validity of our approach, we carry out a full 

parametric study to determine how the objective function d2 is influenced by the size of 

the constriction and the sizes of daughter cells. Although we will present our analysis for 

the model rod-shaped cell of Figure 3.3, the results are valid for cells that may be bent or 

have asymmetric shapes (see, for example the similarity of the objective functions of 

Figure 3.2 and Figure 3.3). The model cell of Figure 3.3 is dividing into two daughter 

cells of unequal lengths L, and Z*,. Its constriction is defined by drawing the arcs so that 

the tangent to the cell perimeter is everywhere continuous. Let us define the division ratio 

A as: 

and the constriction ratio a as: 

(3.3) 
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a = - (3.4) 
b 

where c is the distance between the points B and C that define the constriction and b is 

the thickness of the cell. The objective function d2 calculated for the model cell is shown 

in panel C of Figure 3.3. It clearly has a global minimum at the location of the 

constriction and this location corresponds to the local minimum of dx shown in panel B of 

Figure 3.3. The detailed formulas for computing the two objective functions and their 

extrema are presented in the Appendix I. 

Figure 3.4 presents some of the results of the parametric study that elucidates the 

effects of the division ratio A and the constriction ratio a on the objective function. 

When a cell divides into two daughter cells of equal length {A = l ) , the objective 

function d2 has a unique minimum at the midpoint of arc T, (ABD on Figure 3.4). When 

the cell divides unequally and A > 1, d2 has a unique global minimum away from the 

midpoint and as the division ratio increases, d2 has two minima. The first is located at 

the midpoint and second minimum that moves away from the midpoint as A increases 

(panels A through C of Figure 3.4). This second minimum can be either a global or local 

minimum depending on the value of the constriction ratio a. Large values of the division 

and constriction ratios shift the second minimum from global to local (see panels A 

through C of Figure 3.4). 

If d2 has a unique minimum, its location defines the minimum thickness. When d2has 

both a local and a global minimum, these extrema define two pairs of points (pu,pv) and 

(pr,ps), respectively. The points of each pair are located on opposite sides of the cell 
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center axis. Then, the minimum thickness is defined by the pair that gives by the smaller 

Euclidean distance: 

Anin = m i n [di (Pu>PV)>dl(Pr>Ps)] (3 -5) 

47 



B 

0.0 0.2 0.4 0.6 0.8 1.0 

Normalized Distance Along Arc r 1 

Figure 3.2: Panel A: Perimeter pixels of a dividing cell. Panels B and C: Plots of the objective 

functions dx and d2 respectively vs. the normalized arc length along Yx (arc ABD or gray pixels on 

Panel A). 
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Figure 3.3: A model rod-shaped cell dividing into two unequal parts (panel A) and the 
corresponding objective functions dx (panel B) and d1 (panel C) plotted as a function of the 

normalized arc length along T{ (arc ABD on Panel A). 

49 



Constriction Ratio a = 0.4 

B Constriction Ratio a = 0.6 

Constriction Ratio a = 0.8 
0.45 

Normalized Distance Along Arc r 1 

Figure 3.4: Effect of division ratio X on the location of the global and local minimum of the objective function 
d2 for different values of the constriction ratio. Panel A: a = 0.4, Panel B: a = 0.6, Panel C: a = 0.8.G: 
indicates that the off- center minimum is global L: indicates that the off- center minimum is local. 
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3.4 Cell Division Criterion 

We must now determine whether the minimum thickness Dmin computed above is 

small enough to signal that a cell is dividing. Clearly, such a criterion cannot be based 

only in the absolute value of Dmin. Any sample will contain dividing cells with different 

thicknesses and, consequently, different Dmin. It is therefore possible that the minimum 

thickness Dmin of narrow non-dividing cells (that is cells that do not have a visible septal 

constriction) may be smaller than the minimum distance of much wider cells that are 

dividing. To overcome this problem, we normalize the minimum distance Dmin with 

respect to a measure of cellular width and search for cells whose normalized minimum 

thickness Dmia relative to cell width falls below a certain threshold value. A good 

measure of cell width is the fiber breadth bf defined by the following equation: 

bf=-(p-^P2 -16A\ (3.6) 

where P is the perimeter and A is the area of the cell. The fiber breadth of each cell is 

given directly as one of the 62 morphometric characteristics computed through the IMA 

tool (see section 2.6). Therefore, the ratio: 

S=^- (3.7) 
bf 

can be viewed as a morphological measure of the extent that mitosis has progressed in a 

given cell. The closer to division a cell is, the smaller its S ratio should be. Thus, a 

necessary condition for classifying a cell as dividing is to have an S ratio that is smaller 

than a certain threshold value. 
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While we have shown that the objective function d2 defined by equation (3.2) will 

always exhibit at most two minima for the ideal cell of Figure 3.3, the actual cells 

obtained with our image processing operations have "jagged" perimeters due to 

pixelization errors introduced by the segmentation procedure. A detailed analysis 

presented in the Appendix II that accounts for the size of E. coli cells considered here, the 

magnification of our objective, and the resolution of our digital camera shows that the 

algorithm described here can robustly identify cell constrictions whenS < 0.8, even when 

pixelization errors may lead to the appearance of one or more additional local minima 

beyond the ones we described in the previous section (see equation (3.5)). For values of S 

is larger than 0.8, pixelization errors do not allow the algorithm to determine if an 

observed "dimple" is a constriction or an artifact of the segmentation procedure. 

To minimize the likelihood of false positives for our division test, we use the well-

known known fact that dividing cells are longer than non-dividing ones [105, 106] and 

supplement the aforementioned criterion with the requirement that the fiber length Lf (a 

good measure of cell length) of a dividing cell be larger than a certain threshold. The 

fiber length Lf is defined by the following equation: 

Lf =-(p + yJp2 - 1 6 A ) (3.8) 

We can now define the process that must be followed to identify the dividing cell 

subpopulation: 

1. For each cell, find its minimum thickness Dmin using the procedure of section 3.3. 

2. Compute the normalized minimum thickness S = —— 
bf 
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3. If S < Scri, (0 < Scrit < 1) and Lf = L, + [^ > Lcrit, then the cell is dividing. 

The appropriate values of Scri[ and Lcrit for our cell population were carefully 

selected to minimize the errors introduced by the segmentation process. We visually 

identified dividing cells in phase contrast images and computed their normalized 

minimum thickness S and their fiber length (Lj + ̂ ) . All cells with a septal constriction 

(indicative of division) were found to have 5 < 0.55 and fiber length Lf>5 /urn. The fact 

that all cells classified through visual inspection as dividing share these common 

characteristics indicates that the following dual criterion can be used to identify the 

dividing cell subpopulation in our case: 

S < 0.55 and Lf = L, + L2 > 5jum (3.9) 

53 



Chapter 4 

4 Determining the Three Fluorescence Distributions 

In this chapter, we present how we determine the three phenotypic distributions required 

by the Collins-Richmond approach [49]. The fluorescence distribution for the overall cell 

population can be determined using the protocols and methods presented in sections 2.2 

and 2.4-2.6. We also assess the accuracy of our assay through a comparison of our results 

with those obtained with flow cytometry and through statistical analysis with the 

bootstrap method. The fluorescence distribution of the dividing cell subpopulation is 

obtained by implementing and applying the criterion developed in section 3.3. Finally, 

we obtain the fluorescence distribution of the newborn cell subpopulation by applying a 

straightforward operation on the corresponding dividing cell subpopulation. 

4.1 Overall Number Density Function of Cell Population 

The GFP distributions of the overall cell population are determined by applying the 

FM methodology developed and presented in the previous sections for three different 

extracellular IPTG concentrations (20, 40, and 2000 uM). To assess the ability of our 

new methodology to yield accurate measurements for entire cell populations, its results 

are compared to those obtained using FCM. Since flow cytometry data are typically 

collected in a logarithmic scale, the FM data are transformed as follows in order to render 

the comparison meaningful. Let xe [0,1023] denote the logarithmic channel number 

measured with flow cytometry. For a four-decade log amplifier and a 10-bit ADC [76, 
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107], the corresponding relative linear fluorescence intensity y, is given by the 

equation: 

y = 10 256 (4.1) 

The minimum and maximum normalized fluorescence intensities obtained with FM are 

first linearly mapped to the corresponding minimum and maximum linear values obtained 

with FCM. The overall cell population distributions with respect to the normalized 

fluorescence intensity obtained with FM are then mapped to the FCM logarithmic domain 

x through the inverse of the transformation defined by eq. (4.1). The results of the 

comparison are shown in Figure 4.1. 

16.0 E-3 

0.0 E-3 
100 200 300 400 500 600 700 800 900 1000 

Channel Number x 
Figure 4.1: GFP fluorescence number density functions for the overall cell population obtained with 
fluorescence microscopy (solid lines) and flow cytometry (dashed lines) for three IPTG 
concentrations: 20, 40 and 2000 uM. 
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Note the excellent agreement between the two methods for all three different IPTG 

concentrations. This is despite the fact that there is a huge qualitative and quantitative 

effect of IPTG on the distribution characteristics. Specifically, at intermediate IPTG 

concentrations the distribution becomes bimodal (see Portle et. al, [21] for a detailed 

explanation of this behavior), while the average GFP expression levels differ by more 

than a factor of 2 between 20 and 2000 uM IPTG. Moreover, we note that the FM results 

are obtained with a much smaller number of cells (-4,000), while FCM typically collects 

measurements from a much larger number of cells (-20,000-40,000). 

4.2 Statistical Analysis with Bootstrap Method 

In the previous section, we saw that there is an excellent agreement between the FM 

and FCM cell number densities. Such a result strongly indicates that a number of cells 

between 3000 - 4000, analyzed with FM, is sufficient to obtain the overall cell number 

density with high accuracy. However, we want to confirm the sufficiency of the number 

of cells we use in FM, and thus we employ statistical analysis tools and the bootstrap 

method, in particular. 

The bootstrap method can be used to estimate the variability of the statistics of a 

finite sample of N measurements, drawn randomly from a population [108]. The 

bootstrap method is based on the idea that the original finite sample represents the 

population from which it was drawn [108]. Therefore, re-samples from this sample 

represent what we would get if we took many samples from the overall population. The 

bootstrap distribution of a statistic, based on many re-samples, represents the sampling 

distribution of the statistic, based on many samples [108-110]. The mean of the sampling 

distribution is equivalent to the expected value of any statistic such as the sample mean. 
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The standard deviation of the sampling distribution of the statistic is referred to as 

standard error of that quantity. The bootstrap algorithm consists of the following steps: 

Step 1: We start with the finite sample of size N. 

Step 2: Then, we take M re-samples with replacement. 

Step 3: For each resample, we compute the statistic of interest. 

Step 4: Finally, we compute the average of the statistic and the standard deviation 

based on theM re-samples. The distribution of the statistic of interest is the sampling 

distribution. 

We have developed a numerical code in FORTRAN to implement the bootstrap 

algorithm and randomly sample from a finite-size sample with replacement. We run 

numerical Monte Carlo (MC) simulations for two data sets: a) 12,000 cells measured with 

FCM and b) 3000 cells measured with FM, both sets obtained from the same cell culture. 

We will assume here that the distribution of the total fluorescence content of the overall 

population can be adequately described by its first five moments. Therefore, the statistics 

of interest are the five first moments of the finite samples. The number of re-samples 

M for each bootstrap MC simulation is selected high enough, M = 107 to guarantee 

convergence of the sampling distribution. 

To assess the effect of the sample size N on the accurate representation of the 

overall number density, we perform bootstrap simulations for increasing sample sizes and 

we estimate the corresponding error for each one of the five moments. Since the mean of 

the sampling distribution is equivalent to the mean of the population, the error between 

the sample statistic and the "true" one can be easily calculated. Additionally, the 

uncertainty can be quantified by the standard deviation of the sampling distribution or the 
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standard mean. The relative error for each moment is defined as the coefficient of 

variation (CV) of the sampling distribution, given by the following expression: 

Relative Error = <TsampUng " ' ' " " • 100% (4.2) 
resampling distribution 

The results of the simulations with the FCM dataset can be viewed in Figure 4.2 and 

Figure 4.3. Figure 4.2 shows how the average and the standard deviation of the sampling 

distribution of the five statistics of interest, namely the first five moments of the overall 

number density, change with the sample size iV. Similarly, Figure 4.3 shows how the 

percentage error drops with sample size TV for the same dataset. Notice that with only 

approximately 1000 cells all five statistics have almost converged. The results for the 

error of the five statistics for the FM dataset are shown in Figure 4.4. One can easily 

notice that the greater the sample size the smaller the percentage error. Also, we observe 

that with a finite sample of 3000 cells the error in the mean and the standard deviation of 

the overall number density is less than 1.5% and 6% respectively, whereas for the other 

three moments is to the order of 15%. Overall, the main result we have obtained through 

the bootstrap statistical analysis is that a sample size around 3000-4000 cells can be used 

to satisftactorily represent the overall number density function. 
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Figure 4.2: Effect of sample size on the average and standard deviation of the sampling distributions 
of the first five moments of the overall cell number density. FCM data have been used. 
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Figure 4.3: Effect of sample size on the percentage error for the first five moments of the overall 
cell number density. FCM dataset used. 
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Figure 4.4: : Effect of sample size on the percentage error for the first five moments for the 
overall cell number density. FM dataset used. 
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4.3 Dividing Cell Subpopulation 

The procedure in Chapter 3 correctly identifies the constriction in cells that divide in 

a highly asymmetric fashion and can thus be generalized to identify the dividing cells in 

other populations of rod-shaped cells. Software routines have been written to fully 

automate the identification of the dividing cell subpopulation. Details are provided in the 

flow diagram of Figure 2.3 (see blocks Bl, B2 and B3). 

Panel A of Figure 4.5 compares the number density functions for the GFP intensity 

of the dividing cell subpopulation obtained manually (that is, by visual selection of cells 

with a constriction) and automatically using the aforementioned procedure. The excellent 

agreement between the two sets of data validates the dual identification criterion given by 

eq. (3.9). Furthermore, panel B of Figure 4.5 shows that the number density function of 

the dividing cell subpopulation is relatively insensitive to changes (10% below and 4% 

above) in the threshold value of 0.55 for the S ratio, indicating the robustness of criterion 

(3.9). The automatic procedure we have developed is able to identify and analyze 1,500 

dividing cells in approximately 1 minute, whereas the manual analysis of 280 dividing 

cells by visual inspection requirs 6 hours. Thus, the automated identification procedure 

we have developed can greatly shorten the time required to obtain the number density 

function for the GFP intensity (or any other morphometric or fluorescence property) of 

the dividing cell subpopulation. 

By automatically implementing the cell division criterion, we compute the number 

density functions for GFP intensity of the dividing cell subpopulations obtained at 20, 40 

and 2000 uM IPTG (see panel A of Figure 4.6). The dividing cell subpopulation follows 

the patterns of the overall cell population shown in Figure 4.1, with the number density 
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function at 40 uM IPTG having a bimodal shape, and those at 20 and 2000 uM IPTG 

being unimodal. The average expression levels at each IPTG concentration are higher 

than the corresponding ones for the overall cell population. This is a consequence of the 

fact that the overall cell population contains a large number of cells at earlier stages of 

their cell cycle where they apparently accumulate smaller amounts of GFP compared to 

cells prior to division. 

I 

i 
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Normalized GFP integrated Intensity 

• i • • • 

S = 0.55 
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S = 0.57 
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0 2 1 0 4 4 10* 6 104 810* 1 1 0 s 

Normalized GFP Integrated Intensity 

Figure 4.5: Panel A: GFP fluorescence number density functions for the dividing cell 
subpopulation obtained automatically (solid line) and manually (dashed line) for 2000 uM IPTG. 
Panel B: Effect of threshold value S on the GFP fluorescence number density function of the 
dividing cell subpopulation for 2000 uM IPTG. 
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4.4 Newborn Cell Subpopulation 

The characteristic constriction separates each dividing cell into two compartments. 

We assume that each compartment will become a newborn cell when the cell actually 

divides. The newborn cell subpopulation thus identified has a one-to-one correspondence 

with the previously determined subpopulation of dividing cells. In fact, this is precisely 

the newborn cell subpopulation entering the original Collins-Richmond analysis [49] for 

evaluating the partition probability density function. We emphasize that this newborn cell 

subpopulation is different from the one co-existing with the dividing cell subpopulation at 

the time the sample is taken. The latter was produced by divisions occurred earlier and is 

thus not the one required by the Collins-Richmond approach. Hence, the fluorescence 

content of each of the cells in the newborn cell subpopulation must be determined by 

analyzing the corresponding dividing cell subpopulation. 

This idea is implemented in three steps. First, we compute the coordinates and 

fluorescence intensity of all pixels (not just the perimeter pixels) comprising each 

dividing cell. We then separate the pixels of the dividing cell into two compartments 

corresponding to the daughter cells. The final step consists of calculating the GFP 

fluorescence intensity of each compartment. 

To implement the first step, each segmented phase contrast image Ak is converted 

into a binary image Bk with the following definition for each of its pixels fi*. (or matrix 

elements): 

, f 1 if the pixel belongs to a cell 
B.=\ V 5 (4.3) 

[0 otherwise 
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We then create a new series of images Hk,k = 1,2,...,M by multiplying each element of 

the binary image Bk with the corresponding element of the GFP image Gk (see section 

2.5). Thus: 

Gk ( or GFP fluorescence intensity) if pixel (i, j) belongs to a cell 
" K V J> (4.4) 

0 if pixel (i,j) belongs to the background 
K,= 

These are the GFP BIN images of Figure 2.3. Each Hk image is then processed in 

conjunction with a data file containing the previously obtained information about the 

dividing cells located in this image. A search is first performed on the matrix elements 

Hkj to identify the pixels belonging to each dividing cell. Beginning with a characteristic 

pixel that is known to belong to a specific dividing cell, our algorithm finds all the 

neighboring pixels that have non-zero fluorescence values and associates them with this 

dividing cell. 

Next, the coordinates of the two pixels defining the narrowest point of the 

constriction of this dividing cell are then read from the data file. For the example of panel 

E of Figure 3.1, these are the pixels B and C. A straight line is drawn through the two 

constriction points to separate the dividing cell into two compartments or daughter cells 

(see panel E of Figure 3.1). 

Finally, the total fluorescence intensity of each newborn cell is computed by 

summing the numerical values of the corresponding matrix elements belonging to each 

compartment. By post-processing these data, the distribution of the normalized GFP 

intensity of the newborn cell subpopulation is obtained (see Figure 2.3, block C3). MM 

journals (see Figure 2.3, block CI) and MatLab (see Figure 2.3, block C2) routines have 

been written to fully automate the operations described above. 
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This procedure is applied to compute the number density functions for the GFP 

intensity of the newborn cell subpopulations obtained at 20, 40 and 2000 uM IPTG. As 

shown in panel B of Figure 4.6, the three newborn number density functions are shifted 

to lower fluorescence content compared to the corresponding dividing cell subpopulation 

number density functions (panel A of Figure 4.6). This is a direct consequence of the way 

that the newborn cell subpopulation is obtained from the corresponding dividing cell 

subpopulation. For 40 uM IPTG where the number density function is bimodal, the mode 

corresponding to lower fluorescence content is more pronounced compared to the high 

fluorescence one. This is not the case for the corresponding dividing cell subpopulation, 

where both peaks have the same magnitude. Moreover, at 2000 uM IPTG there is a small 

peak in the newborn number density function located at low fluorescence contents, while 

the majority of the newborn cells have much higher fluorescence content. Taken together 

these comparative observations for the dividing and newborn cell subpopulations at 

different IPTG concentrations indicate that partitioning of cellular material at cell 

division might be influenced by [IPTG]. 
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Figure 4.6: GFP fluorescence number density functions for the dividing (Panel 
A) and newborn (Panel B) cell subpopulations for three IPTG concentrations: 
20, 40 and 2000 uM. 
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Chapter 5 

5 Inverse Population Balance Problem: Part 1 

In the current chapter, we focus on the solution of the inverse population balance 

problem. We investigate the challenges related to the inverse mathematical problem and 

perform a thorough parametric analysis to assess the effect of various factors on the 

accurate recovery of the IPSF. Furthermore, we present the formulation of a minimization 

approach used to obtain the bivariate PPDF. Finally, we study how the characteristics of 

the dividing and newborn number densities and the unknown partitioning function affect 

the accurate recovery of the PPDF. 

5.1 Inverse Problem 

As we have seen in chapter 1, the inverse population balance problem is defined by 

the following set of equations: 

R{x) = -^-\2nb{y)-nd{y)-n{y)\dy (5.1) 
n\x) o 

r{x)=>^M (5.2) 

nb(x)= J P(x,y)nd(y)dy (5.3) 
x 

\p{x,y)dx = \ (5.4) 
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The single-cell reaction and division ratesR(x) and r[x)are given in closed-form by 

the expressions (5.1) and (5.2), respectively. The bivariate PPDF, P(x,y) satisfies the 

integral eq. (5.3) and the corresponding normalization condition is given by eq. (5.4). 

5.2 Methodology 

In chapters 2-4, we have presented the development of a novel experimental assay 

based on quantitative fluorescence microscopy and digital image processing, to 

accurately collect the experimental data required for the Collins and Richmond inverse 

methodology. Also, we have used the developed assay to obtain experimental data for E. 

coli cells carrying the toggle artificial regulatory network. Despite the availability of such 

experimental data, we choose not to use them at this point. The reason is that the solution 

of the inverse problem presents several computational challenges. Hence, it is required to 

get insight into these challenges, before we proceed with using the available experimental 

data in the inverse model to obtain the IPSF. Specifically, given a set of experimental 

data (the three cell number densitiesn(x),nd (x),nb(x) and the average specific growth 

rate ju), we need to answer the following questions: Which are the numerical parameters 

that affect the accurate recovery of IPSF and what are their optimal values? How are we 

going to obtain P(x,y) from the integral equation it satisfies? Does the method for 

obtaining P(x, y) converge to a solution? Is the converged solution accurate? How 

robust is the method for different types of the three cell number densities? How the 

characteristics ofP(x, y) affect its accurate recovery through the solution of the 

corresponding integral equation? It appears that we need a systematic way to answer the 
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aforementioned questions and obtain guidelines for appropriately using the available 

experimental data to accurately solve the inverse problem. To this end, we follow an 

approach that utilizes simulated rather than the actual experimental data and consists of 

the following steps: 

Step 1: First, we select IPSF with known expressions. These are called analytical or 

true solutions. The two terms will be used interchangeably, henceforth. 

Step 2: Then, we solve the forward population balance equation (1.6), until time-

invariant conditions are reached (exponential balanced growth regime). Thus, we 

generate the three number densities and the average specific growth rate, which we 

collectively refer to as input data. 

Step 3: Next, we use the input data in the inverse model to obtain the IPSF, the latter 

which are considered to be unknown at this stage. 

Step 4: Finally, we compare the recovered IPSF to the corresponding analytical 

solutions. The last step enables us to understand how the parameters of the numerical 

algorithms, used to solve the inverse problem, affect the accuracy of the recovered 

IPSF. 

The procedure described above is shown schematically in Figure 5.1: 
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Figure 5.1: Schematic representation of the methodology used to assess the accuracy of the 
recovered IPSF by utilizing simulated data. 

5.3 Single-Cell Reaction and Division Rates 

We start the analysis of the inverse problem by considering the single-cell reaction 

and division rates. The reason is that obtaining R(x) and r(x) is more straightforward 

compared to obtaining P(x,y), because of the existing closed-form solutions for the 

former. We use the following IPSF: 

R(x) = 2±^.d.x 
b + xA 

r(x) = xL 

P(x,y) 
K x f -V"1 

x 1-
v yj 

(5.5) 

(5.6) 

(5.7) 
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in the population balance equation (1.6) and solve the forward problem to obtain the 

input data, namely the three cell number densities and the average specific growth rate, at 

balanced growth conditions. The numerical values of the parameters used in (5.5)-(5.7) 

are the following: a = 0.4, 6 = 0.001, d = 0.005, 1 = 7, ^ = 1.7739 1018, # = 30. 

Mantzaris' moving boundary algorithm [111] is used to numerically solve the forward 

CPB equation (1.6). The three cell number densities obtained from the numerical 

simulation are shown in Figure 5.2. 
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Figure 5.2: The three number densities generated by forward 
population balance modeling for the IPSF given by eqs. (5.5) - (5.7). 

Let us now examine two alternative ways of computing the single-cell reaction 

ratei?(jc), by using: a) the integral form given by eq. (5.1) and b) the corresponding 

differential form given by the following equation: 

d —(R(x)n(x)) = fi[2nb(x)-nd(x)-n(x)] 
dx 

(5.8) 
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In the integral form, the values of the single-cell reaction rate can be explicitly calculated 

from the closed-form solution given by eq. (5.1). The integral in eq. (5.1) is numerically 

estimated, using the Gauss-Legendre quadrature rule as shown in the following equation: 

V*,.e{xpx2,...,*„}c[(Umax] 
Xj 

R{^) = -J-Tl^b{y)~nd(y)-n(y)]dy^ (5.9) 
n\xi)o 

ngP 

- T ^ r E wk (2"b (gPk)-nd {gpk)-n(gpk)) n{xt) k=i 

where ngp is the total number of Gauss points, and gpk and wk are the Gauss points and 

weights, respectively. Notice, however, that R(x)cannot explicitly be calculated by eq. 

(5.8). Therefore, to solve for the reaction rate, it is first required to approximate the first 

derivative operator with a finite differences scheme. The forward Euler scheme is used to 

approximate the first derivative operator and eq. (5.8) is discretized, as shown below: 

Vx, e{Xl,x2,...,xn}^[0,xmM] 

/?(x+,)n(x+,)-/?(x)n(x) r . x , x , x l (5-10) 

where Ax = xM - xt is the step or increment of the discretization. The containment 

conditions are given below: 

*(0)n(0) = * ( O n ( O = 0' (5-U) 

Equation (5.10) describes a system of linear algebraic equations that can be solved 

together with the containment conditions (5.11) for the unknown values of the single-cell 

reaction rate R(x) at the discretization points xi. The numerical solutions obtained with 

both methods discussed above, are compared to each other and against the analytical 

solution, as shown in Figure 5.3. 
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Figure 5.3: Comparison of the numerically obtained single-cell reaction rate R(x): 
a) the integral form (shown in blue) and b) the differential form (shown in green) 
to the analytical solution (shown in red). 

We observe that both methods fail to accurately capture the analytical solution at the ends 

of the interval [0, xmax ] of the physiological state variable x. The latter can be attributed 

to the numerical errors stemming from the divisions with very small values of the cell 

number densities, at the ends of the interval [0,xmax]. It is obvious from Figure 5.3 that 

the differential form is more accurate, since it captures a larger portion of the analytical 

solution and therefore should be used to recover the single-cell reaction rate R(x) from 

the experimental data. 

To obtain the single-cell division rate r (x) , we discretize the closed-form 

expression (5.2) as shown below: 

Analytical 
' — Integral 

Differential 

/ 
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V*, e{x„*2,...,*„} ^ [O.xJ 

fnd(x,) n*,)=-
(5.12) 

«(*,-) 

The recovered division rate is found to be in excellent agreement with the analytical 

solution as shown in Figure 5.4. 
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Figure 5.4: Comparison between the numerically recovered single-cell division rate 
r(x) (shown in blue) and the analytical solution (shown in red). 

5.4 Partition Probability Density Function 

5.4.1 Approach 

So far, we have discussed the numerical methods used to obtain the single-cell 

reaction and division rates. The most challenging part of the inverse problem, however, is 

to obtain the partition probability density function, P(x,y). There are many reasons in 

support of the latter statement. First, P{x,y) is a bivariate function that has no closed-

form solution. As it can be seen from eq. (5.3) the unknown partition probability density 
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function, P(JC, y) , appears in a linear integral equation which relates the densities of the 

dividing and the corresponding newborn cell subpopulations. Also, P(x, y) needs to 

satisfy the normalization condition given by eq. (5.4). Furthermore, one may easily 

notice, that the integral equation for P(x,y) does not belong to the well-studied classes 

of Fredholm and Volterra integral equations of the first and second kind [112, 113]. The 

approach we follow in this section is similar to the general methodology we have already 

presented in section 5.2 and consists of the following steps: 

Step 1: We start with a known P(x, v) and a known dividing cell number 

density nd (x). 

Step 2: Then, we generate the corresponding newborn number density nb (x) by 

using the integral equation (5.3). 

Step 3: Finally, we treat both number densities nd (JC) and nb (x) as input data, and 

recover P{x, y), which is considered unknown at this stage. 

5.4.2 Minimization Formulation 

To obtain the bivariate PPDF,P(jc,y) we use the minimal assumption that P(x, y) 

is a homogeneous function [51, 54], which means that P(x, y) has the following form: 

P(x,y) = -Q '-1 (5.13) 
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where Q 
*v 
W 

is the unknown partitioning function that shows how the daughter to 

x . mother cell content ratio f =— is distributed at cell division. The homogeneity 
y 

assumption expresses essentially the fact that the distribution of the daughter to mother 

content ratio / is independent of the size of the mother cell y . The benefit of using eq. 

(5.13) is that we only need to solve for the univariate function Q *V 
\y) 

to determine the 

unknown bivariate function P(x, y) . To determine the unknown partitioning 

function Q 
fx^ 

\y) 
, we express it as a finite sum of m real-valued unknown expansion 

coefficients a. and known real-valued univariate basis functions^, (z) as shown below: 

Q V 
<y. M \yj 

(5.14) 

By substituting eq. (5.14) in eqs. (5.3) and (5.4), we obtain: 

r f X I 
nb(x) = TtaJ ]tj\-'nd(y)dy 

yy J j=l 

(5.15) 

and 

M ^ 

W 
dx = \ (5.16) 

Discretization of eq. (5.15) results in the following set of algebraic equations: 

m ^maj f \ 
nb(xi) = 1Laj ]tj\— nu{y)dy^xi^{xvx2^-^xn}^[^xmm] 

\y J j=i 

(5.17) 
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It can be easily seen that eqs. (5.17) form a non-square system of linear algebraic 

equations which can be written in vector-matrix notation as: 

Ga=b (5.18) 

where G is the nxm coefficient or design matrix with elements: 

Gij=]<t>j{-)nAy)dy (5-i9) 
x, \y J 

and b is the nx\ data vector with elements the values of the newborn number density at 

the discretization points: 

bt=nb(Xl) (5.20) 

Finally, a stands for the mx\ vector of the unknown expansion coefficients. The 

normalization constraint (5.16) is given in vector-matrix notation as: 

cTa=l (5.21) 

where c is the mx\ vector with elements: 

*y \yj 
dx (5.22) 

The content of the mother cell y is preserved at cell division and is distributed among 

the two daughter cells. Therefore the following condition holds forP(x, y) : 

P(x,y) = P(y-x,y) (5.23) 

Given that P[x, y) is a homogeneous function it follows that: 

Q ( / ) = G ( 1 - / ) (5-24) 
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Equation (5.24) essentially shows that the partitioning function (2(/)for the daughter to 

mother content ratio / is symmetric. The condition (5.24) can be alternatively written 

as: 

m m m 

Tt°Mf)='ZaM1-f)^I.aM(f)-*j(1-f))=0 <5-25) 
7=1 7=1 7=1 

Discretization of eq. (5.25) leads to the following system of linear algebraic equations: 

E« J(MA)-« 1- /*))=0.V/^(/ l , / 2- . - /%)c[0, l ] (5.26) 
7=1 

which can be written in vector-matrix as: 

Knfl=° (5-27> 

where matrix Asymhas dimensions nsymxmand the vector 0 = (0,0,...,0) has dimensions 

mxl. To find a solution to the overdetermined (n>m) system of linear algebraic 

equations (5.18), we reformulate the inverse problem as minimization one, as shown 

below: 

min||Ga-ft|l 

(5.28) S.t. 

cTa = \ 

which is equivalent to solving the following constrained quadratic minimization problem: 

1 
min—aTHa + FTa 
aeR" 2 

S.t. 

where H is the Hessian matrix: 

79 

(5.29) 



H = 2GTG (5.30) 

and 

FT =-2bG 

A =c 
norm 

(5.31) 

(5.32) 

For a more detailed derivation of the minimization problem, see the Appendix III. 

5.4.3 Nonnegativity Constraints 

Solving the constrained minimization problem (5.29) for the unknown vector of 

expansion coefficients a, yields negative values for the predicted newborn number 

density as well as for the recovered partitioning function as shown in panels A and B of 

Figure 5.5, respectively. The results shown in Figure 5.5 correspond to a numerical 

simulation of the minimization problem (5.29) with a Gaussian dividing number density 

nd{x) with mean jufv =1000and standard deviation erfv = 200, and a partitioning 

function that is a symmetric Beta distribution as shown in eq.(5.33) with q = 25, 

500 1000 1500 

Cell Characteristic x 
2000 

0 0.2 0.4 0.6 0.8 1 
Daughter To Mother Cell Content f 

B 

Figure 5.5: Negative values for the predicted newborn number density (panel A) and the recovered 
partitioning function (panel B). 
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f _V_1 Z' ^ V 

A: 

v y ; 
(5.33) 

where Gamma (q) is the value of the Gamma function for the integer value q. The number 

of discretization points is n = 50 and the number of basis functions is m = 25. The 

inverse solution does not improve as either the number of basis functions and/or the 

number of discretization points is varied. 

Such results are unacceptable, since both the newborn number density and the 

partitioning function must be nonnegative. To remedy this problem, we impose the 

additional nonnegativity constraints to the minimization problem shown below: 

Q 
'x^ 

VyJ 
>0, \/(x,y)eD = {xeR+,yeR+,x<y}^Q(f)>0 V/e[0 , l ] (5.34) 

nh(x)>0, V*e[*min,xmax] 

which can be written in vector-matrix notation, respectively as: 

Apa>0 

(5.35) 

(5.36) 

and 

Ga>0 (5.37) 

Then, the quadratic minimization problem (5.29) with the additional nonnegativity 

constraints becomes: 

min—aTHa + FTa 
«€K" 2 

s.t. 

eq eq 

Ain<0 

(5.38) 

where 
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norm 
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— 
Hn ~ 

-A ' 
p 

-G 

Ce„ = 

(5.39) 

(5.40) 

(5.41) 

Re-running the numerical simulation for the same set of parameters, after incorporating 

the nonnegativity constraints, yields acceptable results for both the newborn number 

density and the partitioning function as shown in Figure 5.6. 
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Figure 5.6: Nonnegative values for the predicted newborn number density (panel A) and the recovered 
partitioning function (panel B). 

5.4.4 Regularization 

Inverse problems are very often ill-posed [114-121]. This means that the process of 

computing an inverse solution can result in a tremendous change in the estimated model 

or in other words in an unstable solution, if small changes (or errors) are present in the 

data. A continuous linear inverse problem that demonstrates such a behavior is called ill-
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posed, whereas the corresponding discrete linear inverse problem is called ill-

conditioned. Ill-conditioning of a discrete linear inverse problem is often manifested 

through the large condition number of the coefficient matrix G or the abrupt decline of 

its eigenvalue spectrum [114, 118, 120]. To treat an ill-conditioned problem usually 

additional information for the unknown model is imposed, through a process called 

regularization. Regularization stabilizes the solution of an inverse problem but at the 

same time inserts bias, since the problem finally solved is different from the original ill-

posed one [114, 117, 120]. Therefore, it is required for one to find the trade-off between 

obtaining a stable solution and minimizing the bias and such a process usually depends 

on the type of regularization selected. There are many different types of regularization 

that depend both on the nature of the inverse problem and the type of ill-conditioning. 

Some examples of regularization techniques are: the truncated singular value 

decomposition (TSVD), the Tikhonov regularization, the iterative regularization 

(Conjugate Gradient, Landweber), the Ratishauer's method, the maximum entropy 

regularization, the O'Brien and Holt method, and the truncated total least squares (T-

TLS)[114, 118]. 

As we have already seen, the discretization of the integral equation (5.3) leads to an 

overdetermined system of linear algebraic equations. To find a solution to the 

overdetermined system (corresponding to the discrete version inverse problem for 

PPDF), we have transformed it into a constrained quadratic minimization problem. We 

have also found that the discretization of the integral equation yields a coefficient matrix 

G with high condition number ~O\10s) which indicates the need for regularization. 

The appropriate type of regularization for the quadratic minimization formulation is the 
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Tikhonov regularization [117]. The idea behind this technique is to stabilize the inverse 

solution, by using additional information for the unknown solution. Specifically, 

Tikhonov regularization works by minimizing the L2 norm |Ga-6| |2 between the 

predicted and the measured data, and the L2 norm \Da\2 that corresponds to a measure of 

the inverse solution, which is the partitioning function Q(/), in our case. Depending on 

the appropriate choice of matrix D, called Tikhonov matrix, one can minimize the 

partitioning functionQ(f), its first or second derivative, Q (f) and Q (f), 

respectively. In other words, using the Tikhonov regularization we can impose a 

preference on the type or nature of the solution we are seeking for. Thus, we can look for 

the smallest, flattest or smoothest solution which at the same time minimizes the 

difference between the observed and the predicted data in a norm sense. By applying the 

Tikhonov regularization, the minimization problem defined by (5.38) is adjusted as 

shown below: 

min\\Ga-bt+A2\\Daf 

S-L (5.42) 
Aeq

a=Ce„ 

The positive parameter A2 is called regularization parameter and usually gets small 

positive values. The magnitude of the regularization parameter determines the degree of 

regularization added in the inverse solution and therefore the trade off between a stable 

solution and the bias. The minimization problem (5.42) can be written equivalently as: 
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min—aTH*a +FTa 
osE" 2 
SJ- (5.43) 
Aeq

a=Ceq 

For a more detailed derivation of the Tikhonov regularization see the Appendix IV. We 

use the second order Tikhonov regularization in the minimization problem, because the 

inverse solution Q(f) has to be a smooth function. 

5.4.5 Solving the Minimization Problem 

So far, we have modified the initial minimization problem (5.29) to obtain a non-

negative and smooth inverse solution: a) by incorporating non-negativity inequality 

constraints for the partitioning function and the newborn number density, and b) by 

applying the second order Tikhonov regularization. In this section, we use a symmetric 

Beta distribution for the partitioning function Q(f) together with a Gaussian function 

(jufv = 1000, erf" = 200) for the dividing number density nd (JC) , in order to generate the 

corresponding newborn number density^ (x). Then, we use the two number densities as 

input data to solve the inverse problem and thus recover the original partitioning function 

that we used to generate the input data. To solve the minimization problem (5.43), we use 

the following parameter set: discretization points n = 30, number of Legendre basis 

functions m = 25 and regularization parameter X1 = 10~24. Using this parameter set, we 

manage to accurately recover the partitioning function, as shown in Figure 5.7. Notice the 

excellent agreement between the analytical (or true) and the inverse (or numerical) 

solution. 
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Figure 5.7: Comparison between the recovered partitioning function (shown in blue), 
obtained from the solution of the minimization problem, and the corresponding 
analytical solution (shown in red). 

5.4.6 Effect of Numerical Parameters on the Inverse Solution 

Although, we have managed to accurately recover the partitioning functionQ(f), 

we still need a systematic way to understand the effect of the numerical parameters, 

namely the type and number of basis functions and the regularization parameter on the 

inverse solution (PPDF). These are the three degrees of freedom that the modeler can 

vary to accurately recover the partitioning function. We also need to look into the effect 

of the number of discretization points used for the cell number densities, although the 

latter is not a degree of freedom as we will explain later on, in this chapter. 
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5.4.6.1 Number and Type of Basis Functions 

Let us first look at the number of basis functions m that is required to accurately 

obtain the unknown partitioning function Q(f)- Given an analytical solution for Q(f), 

we increase the number of basis functions until the inverse and the analytical solutions 

become practically indistinguishable, when superimposed. We have determined that 

when the latter happens, the percentage normalized error for the L2 norm difference 

between the inverse and the analytical solutions, shown below: 

i 

Wo (f)-o mil \{QinAf)-Qanai(f)f
df 

% Error = " ^ , > ~.KJ )h • 100 = -2 ; 100 (5.44) 

0 

drops below the threshold value of 3.5% (for 3.5% error the two functions are 

indistinguishable). Further, increasing the number of basis functions m increases the 

resolution, however, the trade-off is that the inverse problem becomes increasingly more 

ill-conditioned. This is a fact well-known from the theory of inverse problems [114-116, 

118, 122, 123]. Also, the numerical simulations we have performed, show that the more 

basis functions we add, the higher the condition number of the coefficient matrix G 

becomes. 

In practice, however, the analytical solution will not be known and therefore, we will 

not be able to compare the inverse to the analytical solution to determine the appropriate 

number of basis functions m. What we can do instead, though, is to calculate the 

normalized L2 norm difference between two successive numerical solutions. For 

instance, one pair of successive numerical solutions is obtained for m = 5 andm = 10, 

with an increment Am = mnext - mprevious = 5. We solve the minimization problem and vary 
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the number of basis functions m. In Figure 5.8, we compare the successive numerical 

solutions of the inverse problem to the corresponding analytical solution, whereas in 

Figure 5.9, we compare the successive numerical solutions to each other. Notice that by 

gradually increasing the number of basis functions, the inverse solution overlaps with the 

analytical and that the successive numerical solutions overlap, too. Also, in panel A of 

Figure 5.10 we can view how the percentage error between the analytical and the inverse 

solution drops with the number of basis functions m, whereas in Panel B we see 

similarly the decline of the error but in this case for the successive numerical solutions. 

We can easily see from Figure 5.10 that when the error drops below the threshold vale 

3.5%, the inverse solution has converged to the analytical one. Therefore, we can use the 

latter fact as a criterion to select the appropriate number of basis functions, to accurately 

recover the unknown function Q ( / ) . 

Now let us move on to the type of basis functions required to capture the unknown 

partitioning function Q(f)- We will examine the following types of basis functions: 

Legendgre, Chebyshev and sinusoidal. The reason for that is that the latter basis functions 

have performed well in solving the forward population balance problem [45, 111] . To 

test the suitability of the selected basis functions, we solve the minimization problem and 

compare the analytical to the inverse solution, for each of the three types of basis 

functions. The results are shown in panel A of Figure 5.11. We observe that there is an 

excellent agreement between the analytical and the inverse solution for all three types of 

basis functions tested. However, Legendre and Chebyshev polynomials converge faster to 

the analytical solution (smaller m required) compared to sinusoidal basis functions as 

shown in panel B of Figure 5.11. 
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Figure 5.8: Comparison between successive numerical solutions (shown in blue) and the analytical 
solution (shown in red). Panel A corresponds to m = 5, panel H corresponds m = 40 and 
Am = 5. 
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Figure 5.9: Comparison between successive numerical solutions of the inverse problem. Panel A 
corresponds to the pair m — 5 and m = 10,whereas panel G corresponds to the pair m = 35 and 
m = 40 and Am = 5. 
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Figure 5.10: Normalized L norm difference for successive inverse and analytical solutions (panel 
A) and successive numerical solutions (panel B). The dashed line corresponds to the 3.5% error 
threshold value below which the analytical and the inverse solution or two successive inverse 
solutions are practically indistinguishable. 
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Figure 5.11: Effect of the type of basis functions on the inverse solution. Panel A: comparison between 
analytical solution and inverse solutions, obtained with three different sets of basis functions: sinusoidal 
(red), Chebysev (green) and Legendre (blue). Panel B: percentage error as a function of the number of 
basis functions. The dashed line represents the 3.5% error threshold value. 

5.4.6.2 Effect and Selection of Regularization Parameter 

In this section, we examine the effect of the regularization parameter on the accuracy 

of the recovered partitioning function. We discuss the results for a typical simulation. For 

A2 < 10~26 convergence to the analytical solution is not achieved. This is due to the high 

condition number of the coefficient matrix G, which results in highly unstable and 

therefore inaccurate solutions, as the number of basis functions increases. On the other 

hand, for A2 >10-20, the solution of the inverse problem is over-smoothed, and although 

convergence to a solution is achieved, this is highly inaccurate too, due to the significant 

bias introduced via the regularization process. For the intermediate range of values 
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10 26 < X2 < 10 20, we obtain acceptable solutions for all the values of the regularization 

parameter, within this range. These results are shown in Figure 5.12. 
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Figure 5.12: The effect of the regularization parameter on the accuracy of the inverse 
solution for the different types of basis functions: sinusoidal (red), Chebyshev (green) 
and Legendre (blue). 

From our analysis we conclude that there is a trade-off in selecting the regularization 

parameter. For our simulations, we seek the value of the regularization parameter that 

satisfies the following criteria: 

i) It is the minimum possible nonnegative value for which the minimization problem is 

solved for gradually increasing the number of basis functions. 

ii) It is such that the error of successive inverse numerical solutions drops below the error 

threshold value of 3.5% and remains bounded as the number of basis functions is 

gradually increased. 
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5.4.6.3 Effect of Discretization of Cell Number Density 

The dividing and newborn number densities are experimentally determined by 

measurements of the phenotypic characteristic of interest x, from the dividing and the 

corresponding newborn cell subpopulations. If we use a histogram to estimate the number 

densities, then the number of discretization points (or histogram bins) is determined by a 

statistical rule [124] that takes into account both the number and spread of data to 

calculate the optimal bin size that allows the estimation of the number density function in 

an unbiased manner (we will discuss this rule in detail in chapter 6). Therefore, it is 

apparent that the number of discretization points is not a degree of freedom for the 

modeler, but rather a fixed parameter dictated by the number and spread of the 

experimental data. 

Yet, we will treat the number of discretization points as variable in this parametric 

study, to understand its effect on the accuracy of the inverse solution Q(f)- In Figure 

Q. 10 

0 20 40 60 80 100 
Discretization of Dividing NDF 

Figure 5.13: Percentage error between analytical and inverse solution as a function 
of the discretization points of the dividing number density. The dashed line 
represents the 3.5% error threshold value. 
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5.13, we view how the percentage error between the analytical and the inverse solution 

varies with the number of discretization points. Notice that the partitioning function 

g ( / ) c a n be accurately recovered with as few as 20 discretization points for the dividing 

number density. 

5.4.6.4 Effect of the Characteristics of Input Data and Partitioning Function 

So far, we have studied the effect of: a) the type and number of basis functions, b) 

the discretization of number density and c) the regularization on the accuracy of the 

inverse solution £?(/)• However, our study has been performed for a specific 

partitioning function and dividing number density. In this section, we vary the input data 

and the partitioning function to examine and assess how their qualitative and quantitative 

characteristics affect the accurate recovery of P(x,y). 

Let us consider a set of dividing number densities (normal distributions) with 

different spread, quantified by their standard deviation <jdjv as shown in panel A of Figure 

5.14 and a set of unimodal partitioning functions (symmetric Beta distributions) with 
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Figure 5.14: Panel A: Set of unimodal dividing number densities with standard deviation ranging from 
100 to 300 Panel B: Set of unimodal partitioning functions with varying sharpness q = 5 to q = 80. 
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different degrees of sharpness as quantified by the parameter q, shown in panel B of 

Figure 5.14. The larger the value of the parameter #, the sharper is the partitioning 

function Q(f)- We perform numerical simulations, varying the standard deviation 

crdivof the dividing distribution^ (x) and the sharpness qof the partitioning function 

Q(f)- Then, we examine how the number of basis functions, required to accurately 

recover the unknown partitioning function, varies with: a) the spread of the dividing 

number density and b) the sharpness of the partitioning function Q(f). 
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Figure 5.15: Panel A: Effect of CV of the dividing number density and the sharpness of the unimodal 
partitioning function on the number of basis functions. Panel B: Comparison between the analytical and 
inverse solution for very sharp discrete like unimodal partitioning function (q = 80). 

The results of the numerical simulations are summarized in Figure 5.15. We observe that 

the number of basis functions required to capture a certain partitioning function is 

practically insensitive to the spread of the input data, but depends on the sharpness of the 

unimodal partitioning function as shown in panel A of Figure 5.15. Also, the sharper the 

partitioning function Q(f), the more basis functions are required. To test our method, 
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we stretch it to its limits and observe that it can successfully recover a very sharp discrete 

like unimodal distribution (q = 80) as shown in panel B of Figure 5.15. 

Next, we look at a qualitatively different class of partitioning functions, given by the 

following equation: 

Q(f) = K 
-(f-Mparl) 

exp 2a part 

+ exp 
-(/-i+/v<) 

2Y\ 

2a part 

(5.45) 

that describes a family of bimodal distributions. The parameter ju controls the distance 

between the two modes of the distribution whereas a controls the spread of the data 
part 

around the two modes of the distribution and K is the normalization constant. The 

smaller the value of the parameter <yparl, the sharper the bimodal distribution becomes. 
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Figure 5.16: Panel A: Set of unimodal dividing number densities with standard deviation ranging from 100 to 
300 Panel B: Set of bimodal partitioning functions with fipar,.= 0.3 and varying sharpness crpart = 0.01 to apart = 
0.1. 

Similarly to the case of a unimodal partitioning function, we consider a set of unimodal 

number densities together with the family of bimodal distributions as shown in panels A 

and B of Figure 5.16, respectively. 
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We perform numerical simulations and the results are presented in Figure 5.17. Panel A 
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Figure 5.17: Panel A: Effect of CV of the dividing number density and the sharpeness of the bimodal 
partitioning function on the number of basis functions. Panel B: Comparison between the analytical 
and inverse solution for very sharp discrete like bimodal partitioning function, apan = 0.01. 

shows that the number of basis functions required to capture a specific bimodal 

partitioning function is invariant to the spread of the input data. Also, the sharper the 

bimodal function is, the more basis functions are required to recover it. Our method, 

however, fails to provide an accurate inverse solution when tested against the extreme 

case of a vary sharp discrete-like bimodal partitioning function (juparl =0.3 and 

<rpart = 0.01) as shown in panel B of Figure 5.16. Specifically, we observe that the inverse 

solution, although it accurately identifies the location of the two modes, it underestimates 

their height, compared to the analytical solution. This is a result of the relatively high 

value of the regularization parameter that is required to solve the problem. To recover the 

discrete-like bimodal function requires a larger number of basis functions (m > 60) 

which renders the inverse problem more ill-conditioned. Therefore, more regularization is 

required to obtain a stable but at the same time inaccurate solution . 
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Let us now examine the effect of the distance between the two modes of the bimodal 

partitioning function Q(f) on the ability of our method to yield accurate solutions. We 

perform numerical simulations by fixing the parameter a n, while varying // that 

controls the distance between the two modes. Typical simulation results for apart = 0.03 

are shown in Figure 5.18. Notice that the inverse solution is in every case in excellent 

agreement with the analytical solution. 

Up to this point, we have considered only unimodal dividing number densities with 

different spread for our analysis. In practice however, it is not uncommon that the input 

data to be skewed or bimodal. Therefore, we need to examine how bimodality and 

skewness present in the input data affect the accurate recovery of the partitioning 

function Q(f)- To this end, we perform numerical simulations with both type of data. In 

Figure 5.19, we view that we can accurately recover the partitioning functions shown in 

panels B,D, F and H from the corresponding bimodal input data shown in panels A, C, E 

and G, respectively. Furthermore, in Figure 5.20 we notice the excellent agreement 

between the analytical and the inverse solutions for q = 5 and q = 60 as shown in panels 

B and D, respectively that correspond to the two sets of skewed dividing and newborn 

number densities shown in panels A and C. We may conclude, therefore, that the 

presence of bimodality and skewness in the input data do not affect the accurate solution 

ofthePPDF. 
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Figure 5.18: Effect of the distance between the modes of the bimodal partitioning function. 
Results of numerical simulation for apart = 0.03 and varying /upan. Panel A: /xpa„ = 0.20, Panel B: 
Impart = 0.30, Panel C: fxpan = 0.42, Panel D: npart = 0.44, Panel E: /xpar, = 0.45, Panel F: y.pan = 
0.46. 
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Figure 5.19: Effect of bimodality of the input data on recovery of partitioning function. Panels A-B: q 
= 30, Panels C-D: q = 
0.033. 
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5.4.7 Conclusions of Parametric Analysis for PPDF 

In this section, we summarize the main findings of our parametric analysis for the PPDF. 

1. The partitioning function Q( f) can be obtained with all three types of basis 

functions tested. However, Legendre and Chebyshev polynomials perform better 

compared to the sinusoidal, since fewer of them are required to achieve 

convergence of the inverse solution to the analytical one. 
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2. The number of basis functions m required to obtain a large number of 

qualitatively different partitioning functions tested, typically lies in the range of 5 

-60. 

3. The appropriate number m of basis functions can be determined by monitoring 

when the error between successive numerical solution drops below the error 

threshold value of 3.5%. 

4. The value of the regularization parameter is appropriately selected such that it: a) 

ensures convergence of the successive numerical solutions and b) allows the 

accurate recovery of Q( f). 

5. The partitioning function Q(f) can be accurately recovered with as few as 20 

data points from the dividing number density nd (JC) . 

6. The accuracy of the recovered partitioning function Q(f) is not affected by the 

presence of bimodal or skewed input data. 

7. The number of the basis functions m required to obtain a specific partitioning 

function for a certain ( ? ( / ) is practically insensitive to the spread of the input 

data. 

8. The sharper the partitioning function Q(f), the more basis functions are required 

to recover it. 

9. The accuracy of the inverse solution is not affected by the distance between the 

two modes of the a bimodal partitioning function Q(f). 

10. Although our method performs very well in accurately recovering very sharp 

discrete-like unimodal Q(f) it fails to perform similarly for the extreme case of 

103 



an almost discrete like bimodal partitioning function Q(f)- In the latter case, the 

height of the two modes is underestimated in the inverse solution. 

5.5 Minimization Approach for Simultaneously Determining T(x) and ji 

In this section, we examine whether it is feasible to simultaneously obtain the single-

cell division ra ter (*) and the average specific growth rate// for the situation where 

only the three cell number densities n(x), nd(x) and nb{x) have been experimentally 

determined. We propose a minimization approach to determine both unknowns 

simultaneously. We start with the equations defining the two unknowns: 

r(*) = ^ (5.46) 

ju= \r(x)n(x)dx (5.47) 
o 

The idea behind the proposed approach lies in that there is only one pair//and 

-T(x) satisfying both equations (5.46) and (5.47) exactly, given the distributions 

n(x) and nd (x). Therefore, out of all possible pairs of // and r(x) we seek for the one 

that: a) yields a zero value for the following L2 norm difference: 

\\r(x)n(x)-jund(x)f2 (5.48) 

and b) at the same time satisfies equation (5.47).To find r(x), we apply the following 

transformation of variables: 

0<x<xmm=>0< — <l^0<t<l (5.49) 
x 
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t = — (5.50) 
max 

then r(x) can be written as: 

r(x) = r{txmM) = r*(t) (5.51) 

It is obvious from (5.51) that if r* (?) is determined, then -T(^) can be explicitly 

calculated. The transformed division rate r* (?) is then expressed as a finite sum of m 

unknown expansion coefficients ay and known basis functions <f>j (?) as shown below: 

m 

r*(?) = | > , ^ ( ? ) (5.52) 
j=i 

Equation (5.46) can be written as: 

r(x)n(x>) = fj.nd {x) (5.53) 

or equivalently as: 

r*(t)n(x) = jund(x) (5.54) 

Substituting (5.52) in (5.54), we obtain: 

m 

J^a^j (t)n(x) = nnd (x) (5.55) 

If we discretize (5.55), we get: 

V7 = l,2,...,n 
m 

Yd
aA{hyi(xi)=^nd(xi) 

(5.56) 

where 

t,=-$- (5.57) 
mas 

The over-determined system of linear algebraic equations (5.56) can be written as: 
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*(*iM(0 ••• " M & M Y O (M*) 

"MAM ••• "MMOjUJ Un(*«) 
or more compactly in vector-matrix notation as: 

Ga=b 

The equation that defines // can be rewritten as: 

'"max 1 

/j= \r{x)n(x)dx=\r (txmax )rc (tamax) xmaKdt = 
0 0 

\r* (t)n(txmm)Xmodt = £ A; j> ; (f)n(ttmax)xmax^ 
o y'=i o 

(5.58) 

(5.59) 

(5.60) 

To find the unknown expansion coefficients a. and determine /"(*) for a given value of 

ju, requires that we solve the following constrained quadratic minimization problem: 

min||Ga-£|| 
aeR'" " " 

S.t. 

Aega = M 

A a < 0 

(5.61) 

where the solution r (JC) must satisfy: a) the equality constraint defining ju and b) the 

inequality constraint, which states that the division rate r(x) is a nonnegative quantity. 

Our methodology to simultaneously determine // and r(x) consists of the 

following steps: 

Step 1: We define a meaningful interval of values for // and set m equal to one 

Step 2: We use the Downhill Simplex method to determine the value of ju that 

yields the minimum value of the norm Lr(x)n(x)-//n ( / (x) , given the fixed value 
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for m. At each step of the Simplex method the quadratic minimization problem (5.61) 

is solved for a different value of//. 

Step 3: We increase the number of m by one and then we repeat step Step 2. 

Step 4: Out of all the pairs (m,/z)we select the one that gives a value for 

| r (x) n (x) - /und (x)| closest to zero. 

The aforementioned approach has been applied to successfully determine both ju and 

r(x) for the following case: a Gaussian (^veraU =1000, of""" =200) for the overall 

number density n(x) and a single-cell division rate with the following functional form: 

r(x) = ^ 

v»y 
(5.62) 

where L = 7 and b = 1000. We use the overall cell number density n(x) and the known 

7"(JC) to generate the corresponding dividing number density nd (x). Then, we perform 

the numerical simulation treating both n(x) and nd {x) as input data and r{x) unknown 

at this stage. Figure 5.21 shows the result of the simulation. Notice the excellent 

agreement between the inverse and analytical solution. Also, 

Mtm = 2.01471984918588and//,,,veTO = 2.01471984916256. The percentage error between 

the true value and the recovered value of the average specific growth rate is #(l0"9%). 
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Chapter 6 

6 Inverse Population Balance Problem: Part 2 

In this chapter, we investigate the effect of finite sampling and the uncertainty present in 

the experimental data on the accurate recovery of the IPSF, with most of the focus placed 

on the PPDF. We employ numerical simulations to assess the effect of the 

aforementioned parameters on the solution of the inverse problem. Finally, we recover 

the three IPSF from the experimentally determined distributions for our model biological 

system: E. coli cells carrying the toggle. 

6.1 Finite Sampling and Uncertainty in the Inverse Problem 

So far, we have described the development of a novel assay based on fluorescence 

microscopy and image processing that can: a) accurately quantify the three cell number 

densitiesn(x),nd (x),nb(x), required by the Collins and Richmond approach to obtain 

the three IPSF and b) account for unequal cell partitioning at cell division. Also, in 

chapter 5 we presented the development of a numerical procedure for solving the inverse 

problem and accurately recovering the three IPSF from simulated data, assuming that the 

three phenotypic distributions were exactly known. Furthermore, the thorough parametric 

analysis presented in chapter 5 has helped us to get insight into the challenges of the 

inverse problem and optimally select the numerical parameters required to accurately 

solve the inverse problem. 

In practice, however, the three phenotypic distributions are not known exactly but 

are rather determined from a finite sample of the cell population. For instance, as we have 
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seen earlier, the fluorescence microscopy assay only needs about 3000 E. coli cells to 

compute the overall phenotypic distribution of a cell population, with accuracy 

comparable to that achievable with flow cytometry. Such a typical sample size yields 

about 300 dividing cells. Moreover, there usually exists uncertainty in the experimentally 

obtained cell population data, due to random measurement errors. Therefore, we need to 

assess the effect of both finite sampling and random errors on solution of the inverse 

problem. 

6.2 Methodology 

To quantify the effect of the two parameters discussed in the previous sections, we 

can proceed with using the available experimental data for the toggle. However, their 

fixed size as well as the fact that the measurement errors are unknown, both limit their 

usefulness for drawing general conclusions. Instead, we can utilize simulated data and 

vary the number of measurements as well as the magnitude of errors to assess our ability 

to accurately recover the IPSF. We follow a systematic approach that involves several 

steps described below: 

Step 1: We simulate the finite sampling from a cell population by generating a finite 

number of random deviates that represent the cell property of interest x. 

Step 2: We employ nonparametric methods to estimate the distribution of the cell 

characteristic x, from a finite set of cell population data. Then, we compare the 

number density and the cumulative distribution functions to each other to determine 

which one is more appropriate for accurately representing the cell population data. 
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Step 3: We perform numerical simulations using the estimated distributions of cell 

characteristics and compare the recovered IPSF to their corresponding analytical 

expressions. 

Step 4: We reformulate the integral equation for the PPDF, using the cumulative 

distribution function. Then, we assess the accuracy of the recovered PPDF obtained 

by solving the reformulated integral equation. 

Step 5: Finally, we simulate the uncertainty present in experimental cell population 

data, by adding random errors to the finite set of simulated measurements. Next, we 

perform numerical simulations to recover the PPDF, in the presence of uncertainty. 

6.3 Effect of Sample Size on IPSF 

6.3.1 Finite Sampling Simulation 

Our developed experimental assay allows the identification and quantification of a 

finite portion of: a) the overall cell population and b) the subpopulations of the dividing 

and newborn cells. To assess the effect of the finite number of measurements on the 

accurate recovery of the IPSF, we need to simulate the finite sampling in a manner 

similar to the experimental assay. Thus, it is required that we generate Nt measurements 

for the overall population, Nd and 2Nd measurements for the dividing and newborn cell 

subpopulations respectively, where N, > Nd. To this end, we employ Monte Carlo (MC) 

techniques to generate non-uniform random deviates that represent the experimentally 

measured cell phenotypic property x of interest. We utilize two MC methods to generate 

non-uniform random deviates: a) random number generators (i.e. normally distributed 

random numbers), when they are available for the pre-selected distribution of the cell 
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property x, and b) the rejection method to generate random observations from a pre

selected distribution with known analytical expression but with no corresponding random 

number generator available. The rejection method is also commonly called the 

acceptance-rejection method. We develop numerical code in MatLab to implement both 

MC methods. The methodology for simulating the finite sampling from a cell population 

consists of the following steps: 

Step 1: We select three IPSF with analytical expressions and the overall distribution 

n(jc) of the phenotypic characteristic x. 

Step 2: Then, we user(x) and n(x) to determine the dividing cell density^ (x). 

Subsequently, we employ one of the two MC techniques described previously to 

generate Nd observations for the dividing cells, from the corresponding 

density nd (x). 

Step 3: Next, we generate Nt - Nd random deviates from the pre-selected 

distributionn(x). The Nt - Nd cells together with the Nd dividing ones add up toNt, 

which is the size of the finite sample from the overall cell population. 

Step 4: We generate Nd non-uniform random deviates in the interval [0, l] using the 

predefined partitioning function Q 
^ 

that corresponds to a known homogeneous 
y) 

PPDF,P(x,v).Then, we use the Nd random deviates, which correspond to the values 

of the partitioning ratio / for each one of the Nd dividing cells, to generate the 

corresponding 2Nd observations for the newborn cells. 
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Figure 6.1: Simulation of finite sampling from cell population. Panel A: generation of N random 
measurements for the cell phenotypic characteristic x. Panel B: generation of the content of daughter 
cells from the corresponding mother cells. 

The process of creating a finite number of measurements for the phenotypic cell 

characteristic x from a pre-selected distribution is shown schematically in panel A of 

Figure 6.1. Panel B illustrates the generation of measurements for the content of the 

newborn cells. 

6.3.1.1 Data Representation and Nonparametric Estimation 

To represent the three sets of cell measurements N,Nd,Nb we employ 

nonparametric estimation. The use of the latter methods allow us avoid any assumptions 

about the underlying functional form of the distribution of cell characteristic x, for the 
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overall cell population and the two cell subpopulations. Given a finite sample of N 

measurements from the cell population, we can represent the data, by using either: a) the 

estimator of the number density function (NDF) or b) the estimator of the cumulative 

distribution function (CDF), which are both nonparametric. Figure 6.2 presents an 

example of a NDF (panel A) and the corresponding CDF (panel B). 

500 1000 1500 
Cell Characteristic x 

2000 

B 

500 1000 1500 2000 
Cell Characteristic x 

Figure 6.2: Examples of nonparametric estimators for the distributions of phenotypic cell characteristics. 
Panel A: Number density function, Panel B: Corresponding cumulative distribution function. 

To estimate the distribution of any phenotypic cell characteristic, we will use the method 

that more accurately represents the finite set of measurements. Before we attempt to 

compare the two types of estimation to each other, we need to select an NDF estimator. 

In the following section we will look at two NDF estimators, namely, the histogram and 

the kernel density. 

6.3.1.2 Histogram and Kernel Density Estimator 

The histogram is the simplest, oldest and most widely used density estimator [125]. 

The construction of the histogram requires both a choice of the origin JC0 and the bin 

width h .The number of bins needs to be calculated as well. The bins of the interval are 
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defined as [x0 +kh,xQ + (£ + !)/*] where A: is a nonnegative integer. Then, the histogram 

is defined as follows: 

£ (JC) = — ( # of X; in same bin as x) 
V ' NhK ' ' 

(6.1) 

where N is the total number of available measurements of the random variable X . The 

choice of the bin size is what primarily controls the amount of smoothness in the 

histogram. Hence, inappropriate choice of the bin size can introduce significant amount 

of bias in the estimated density. An example of a histogram is shown in Figure 6.3. 
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Figure 6.3: Example of histogram estimator for the number density function. 

Notice the step-like discrete nature of the histogram. The accurate recovery of the IPSF in 

the inverse problem largely depends on the accurate representation of the input data, 

namely the three cell number densities. Therefore, we want to avoid arbitrarily selecting 

the bin size, when estimating the number densities with a histogram. Scott [124] has 

showed that the most efficient and unbiased estimation of a number density with a 
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histogram can be achieved by optimally selecting the bin width, given by the following 

formula: 

W = 3.94o-AM (6.2) 

where a is the standard deviation of the unknown distribution g (x) and N is the total 

number of available samples or measurements. Since the standard deviation a is not 

known the estimated standard deviation a is used in practice. Freedman and Diaconis 

[126, 127] obtained a similar, but more robust result for the optimal bin width given by: 

W = 2(IQR)N~3 (6.3) 

where IQR is the interquartile range (the difference between the 75th and the 25th 

percentiles). We use the Freedman and Diaconis relationship (6.3) to select the optimal 

bin size. 

The kernel density estimation is another nonparametric method for estimating a 

number density function [125, 128-130]. The kernel density estimator is defined by the 

following equation: 

H*)-k±* x-X A 

(6.4) 
Nh tt \ h 

where h is a positive real number, called the bandwidth or the smoothing parameter and 

K(x) is a known function called the "kernel". The kernel satisfies the following 

normalization condition: 

+00 

JK(x)dx = l (6.5) 

- o o 

and is usually a symmetric probability density. For instance, a normal distribution with 

mean equal to zero and standard deviation equal to one as shown below: 
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^(*)=7^e x p X 
(6.6) 

The kernel density estimator is an improvement over the histogram since it obviates the 

need for a selection of an origin and number of bins. Besides, the kernel density estimator 

is smoother than the histogram. Although less smooth density estimators such as the 

histogram density estimator can be made to be asymptotically consistent, others are often 

either discontinuous or converge at slower rates than the kernel density estimator. The 

kernel density estimator works by putting small "bumps" at each measurement rather than 

grouping them in intervals or bins and therefore is smoother [125]. Also, for most of the 

cases, the kernel density estimator appears to be practically insensitive to the type of 

kernel used, but very sensitive to the bandwidth selection [125]. Hence, a rule for 

selecting the optimal bandwidth h is of paramount importance to obtaining an unbiased 

estimator of the true density. In the Appendix V, we describe in detail two fully 

automatic data-driven methods for selecting the smoothing parameter h. We implement 

both methods using FORTRAN and MatLab. The methods select the bandwidth value 

that minimizes the estimator of integrated squared error between the true and the 

estimated number density [125, 128, 129]. These methods are the "least squares cross-

validation" and the "likelihood cross-validation" [125, 128, 129] and we use them to 

optimally select the bandwidth h value. 

To facilitate the comparison between the histogram and the kernel density 

estimators, we need to use the histogram in conjunction with an interpolation rule. Three 

interpolation methods are utilized: a) nearest neighbor, b) linear, and c) spline. 

Furthermore, to compare the kernel density to the histogram, we use a known distribution 

(or true) and then generate a finite sample of N measurements. We utilize the latter to 
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Figure 6.4: Comparison between kernel density (shown in red) and histogram (shown in: (a) purple for 
nearest neighbor, (b) green for linear and (c) blue for spline interpolation). The dashed line corresponds to 
the error threshold value. 

estimate the NDF using both the histogram and the kernel density. The error is defined as 

the normalized Z2 difference between the true number density (used to generate the 

random measurements) and the estimated number density (estimated from the finite 

sample). In Figure 6.4, we compare the two NDF estimators, namely, the histogram and 

the kernel density to each other. The true distribution is a Gaussian with CV = 0.2. Based 

on the results, we conclude that the kernel density estimator converges faster to the true 

number density than the histogram, since the corresponding percentage error is smaller 

for the same sample size. Therefore, we will use the kernel density as an estimator of the 

number density function. 

6.3.1.3 Comparison Between the NDF and CDF Estimators 
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Let us now examine how the kernel density and the CDF estimator compare to each 

other. To compare the two types of nonparametric estimators, we follow the approach we 

have described in the previous section. In Figure 6.5, we view how the percentage error 

for both methods drops with the sample size N. We observe that the CDF estimator is 

more accurate than the kernel density and therefore it is more appropriate for accurately 

representing finite set of data from the cell population. 
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Figure 6.5: Comparison between the NDF(shown in blue) and CDF (shown in red) estimators. The 

dashed line represents the error threshold value. 

6.3.2 Effect of Finite Sampling on Reaction and Division Rates 

In this section, we investigate the effect of finite sampling on the reaction and 

division rates. Let us start with the reaction rate. In chapter 5, we saw that we can more 

accurately capture the reaction rate R(x) by using its differential formulation. The 

differential form accepts as input data the three NDFs, which are estimated with the 

kernel density method. However, we saw that using CDF estimator results in representing 
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the same data set more accurately. Therefore, to take advantage of the faster convergence 

of the CDF estimator, we can calculate the single-cell reaction using the following 

expression: 

R{x) = -^-(2cb(x)-cd(x)-c(x)) 
nyxj 

(6.7) 

where c(x),cd(x),cb{x) are the CDF estimators of the overall population, and the 

dividing and newborn subpopulations, respectively. We perform numerical simulations to 

verify that computing the reaction rate from equation (6.7) gives more accurate results. 

We present results for the case of the reaction rate used in section 5.3. As Figure 6.6, 

shows the CDF formulation is more accurate than the NDF. The simulation corresponds 

to finite sample with 3000 cells, 300 dividing and 600 newborn cells. The actual and 
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Figure 6.6: Effect of finite sampling on single-cell reaction rate. Comparison between the NDF (shown 
in green) and CDF (shown in blue) methods to the analytical solution (shown in red). 
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exact distributions are shown in Figure 5.2. The error with the NDF method is ~15% 

whereas the error with the CDF is as low as ~6%. Our simulations show that the error in 

the single-cell reaction rate, using the CDF for the previously mentioned sample size, are 

in the range of 4-6%, which is considered acceptable. 

Now let us move to the division rate. Attempting to reformulate the reaction rate 

with CDF estimators, we lose the benefit of a closed-form expression. Therefore, we will 

use the number density estimator and in particular the kernel density. We have performed 

numerical simulations for sample sizes of 3000 cells and 300 dividing cells, which are the 

the typical sample sizes from our experiments. We present typical results from our 

numerical simulations and compare them to the analytical solution which is given by the 

following equation. 

^W = f|] (6-8) 

where £ = 1000, L = l . Also, the overall number density function is a Gaussian with 

mean 1000 and standard deviation 200. As shown in Figure 6.7 the analytical and the 

inverse solutions are in very good agreement to each other and the error is only 4%. Our 

simulations, overall show, that the typical sample size is sufficient for recovering the 

single-cell division rate with acceptable accuracy (4-5%). 
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Figure 6.7: Effect of finite sampling on the single-cell division rate. Comparison between 
analytical (shown in red) and inverse solution (shown in blue). 

6.3.3 Effect of Finite Sampling on Partition Probability Density Function 

In this section, we focus on the most interesting and challenging part of the inverse 

problem, which is to obtain P(x,y). 

6.3.3.1 Two Methodologies for Obtaining PPDF 

To recover the PPDF, we can estimate the number densities hd(x),hb(x) for the 

dividing and newborn cell subpopulations, respectively and then solve numerically the 

integral equation: 

Amax 

(6.9) 
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using the minimization methodology we have already described in chapter 5. However, 

we know that the CDF estimator converges faster to the true CDF with the sample size. 

In other words, the CDF represents the same set of finite population data more accurately 

compared to the NDF. Thus, we are expecting that if more accurate input data are used 

for the inverse problem, the recovered P(x, y) will be more accurate, too. This is the 

motivation to reformulate the integral eq.(6.9) so that it accepts as input data the CDF 

estimators cd (x),cb (x) for the dividing and newborn cell subpopulations, respectively. 

Below, we briefly derive the CDF form of the integral equation (6.9), but a more 

detailed presentation can be found in the Appendix VI. The dividing CDF is given by: 

, . dc,(x) 
na{x) = -JT-L (6-10) 

ax 

and similarly for the newborn CDF we have: 

, x dch (x) 

"* W ^ ^ T " 2 (6-11) 
ax 

Substituting (6.10) and (6.11) in (6.9), we obtain: 

-JL}-1= \maP{x,y)^-ldy (6.12) 
dx Jx dy 

Then, we use integration by parts to get: 

—£-± = lP(x,y)cd(y)\x ~l cd{y) ^ 'dy (6.13) 

By integrating both sides of (6.13) we obtain: 

f ^ * = f [P(*.y)cd WJ- A- f f~cd(y)d-^Aiydx (6.14) 
jA'min d x Jx™ x J x "™- * dy 

Using the properties of P(x, y) and switching the variable x with z leads to: 
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cb ix) = f P{z,xma,)cd (xmM)dz- J" P"c d (y)—^Uydz 

Given that P(x, v) is a homogeneous function, we get: 

(6.15) 

z 

V ^max J 

or equivalently: 

y 
• Q 

C < / ( * m a x ) * 

dydz V 
(6.16) 

z 

max V max / J \ J J 

+f f"-Tfif£V-(y)*«fe 
(6.17) 

Equation (6.17) expresses the CDF formulation of the integral equation (6.9) for the 

PPDF. Notice that (6.17) has a more intricate form compared to the corresponding (6.9). 

Discretization of eq.(6.17) and substitution of eq.(5.14) leads to an over-determined 

system of linear algebraic equations similar to the NDF case, showed in chapter 5: 

Ga=b (6.18) 

To find the solution of the over-determined system of linear eqs. (6.18), we use the 

minimization approach we have already described in chapter 5: 

min—aTHa + FTa 
aelK"' 2 

S.t. 

Ain<0 

(6.19) 
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6.3.3.2 Comparison of Two Methodologies for Exact Distributions 

In this section, we compare the NDF and CDF approaches to each odier to determine 

which one yields the most accurate inverse solution. Let us first use exact input data. To 

assess the performance of the two methods in terms of accuracy, we utilize qualitatively 

different partitioning functions with analytical solutions. Also, to facilitate a fair 

comparison between the two methods, the dimensions of the coefficient matrix G are 

kept the same for both methods. We perform numerical simulations to obtain the inverse 

solutions with both methods. An example of such results is shown in Figure 6.8, for three 

partitioning functions and the corresponding inverse solutions: a) a symmetric Beta 

distribution with q = 30 (panel A), b) a symmetric Beta distribution with q = 60 (panel 

B) and c) a bimodal distribution with // =0.36 and cr =0.05. Notice the excellent 

agreement of both inverse solutions to the analytical ones. Based on these results, we 

conclude that both methods perform equally well with exact input data, although the NDF 

method is slightly more accurate than the CDF. The percentage error for the NDF is 

-0.7% whereas for the CDF is - 1 % . However, such differences are insignificant since 

they are below the error threshold value of 3.5%. 
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Figure 6.8: Comparison between the NDF and CDF methods for obtaining the partitioning 
function Q(f), using exact input data. Panel A: symmetric beta distribution with q = 30, Panel B: 
symmetric beta distribution with q = 60 and Panel C: bimodal distribution with \ipart = 0.36 and 
opart = 0.05. 

6.3.3.3 Comparison of Two Methodologies for Estimated Distributions 

Let us now compare the NDF and CDF forms of the integral equation for estimated 

input data. We perform numerical simulations with both methods for different sample 

sizes of the dividing and newborn subpopulations and record the corresponding 

percentage error between the true and the recovered partitioning function Q(f)- A 

typical example of these simulations is viewed in Figure 6.9, for a symmetric Beta 
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partitioning function Q(f) with q = 30 and a Gaussian dividing number density with 

CV = 0.2. 
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Figure 6.9: Effect of sample size in the accuracy of the partitioning function Q(f). 
Comparison between the NDF and CDF methods 

First, we observe that the percentage error for both methods gradually declines as the cell 

sample size N increases. Also, notice that for approximately a total number of 800 

dividing cells we have reached the error threshold value. Additionally, a 10-15%in 

estimating the NDF from a finite sample with as few as 100 - 200 dividing cells, yields a 

relatively small error for the inverse solution ( < 6 - 7 % ) . Furthermore, we observe that 

both methods perform approximately in the same manner in terms of the pattern for the 

error decline. In contrary to what we have been expecting, we do not see any 

improvement in the accuracy of the inverse solution by using the CDF form. 

•NDF-Based Integral Equation 
•CDF-Based Integral Equation 
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To understand why the CDF is outperformed by the NDF method, we perform a 

singular value decomposition to the coefficient matrix G of both methods to obtain the 

corresponding eigenvalue spectrum. Figure 6.10 shows the eigenvalues for both methods. 
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Figure 6.10: Eigenvalue spectrum for the coefficient matrix G of both NDF and CDF 
methods. 

Notice that the eigenvalue decay occurs faster for the CDF method compared to the NDF. 

From the theory of inverse problems [114, 118, 120, 121] is known that the faster and the 

more abrupt the decay of the eigenvalue spectrum, the more ill-conditioned is the discrete 

inverse problem. Therefore, our results indicate that CDF formulation of the inverse 

problem is more ill-conditioned relative to the NDF one. Although the CDF method 

accepts more accurate input data (compared to the NDF method) due to its more ill-

conditioned nature it yields a less accurate inverse solution. 

Overall, the CDF-based integral equation is more complicated and more 

computationally demanding to solve but with no significant improvement in the accuracy 

compared to the NDF method. On the other hand, the NDF-based integral equation is less 
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complicated, it can be solved faster and yield more accurate inverse solutions. Therefore, 

we will use the NDF method to recover the PPDF, henceforth. 

6.3.3.4 Error Estimates for the Partitioning Function 

We use the NDF-based integral equation and perform numerical simulations with a 

sample size of Nd = 300 for the dividing cell subpopulation in order to quantify the error 

in the recovered PPDF. We use a variety of qualitatively different partitioning functions 

some of which we are shown in Figure 6.11. Notice that with as few as 300 cells the 

recovered partitioning functions are in very good agreement with the analytical solutions. 

Our simulations have shown that for unimodal partitioning functions the error typically 

lies within the range of 4-6%, whereas for bimodal partitioning functions it slightly 

increases up to 11%. However, as the numerical results of Figure 6.18 indicate, both the 

unimodal and the bimodal partitioning functions can be recovered with acceptable 

accuracy. 
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Figure 6.11:Comparison between analytical partitioning functions and the corresponding inverse solutions 
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6.3.3.5 Effect of Random Errors on the PPDF 

In this section, we assess the effect of the uncertainty in the experimental data on 

recovery of the PPDF. The reason for particularly focusing on the PPDF is that ill-

conditioned nature of the inverse problem (integral equation for the PPDF) can 

potentially result in a substantial amplification of small errors present in the experimental 

data. To account for the uncertainty in the experimental data, we first generate random 

deviates Xt, which represent the measured values of the phenotypic characteristic of 
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interest x, as we have explained in detail in section 6.3.1. Then, to simulate the presence 

of the measurement errors, we generate a random error ei drawn from a pre-selected 

error distribution, for each measurement Xt. We consider normally distributed random 

errors with zero mean. We further assume that the measurement error ei is proportional to 

the measurement Xt. Thus, the actual quantity we measure experimentally Xi will be the 

sum of the measurement plus the experimental error as shown below: 

Xl = Xl+el (6.20) 

The mean and the variance of the error distribution are given by the following equations 

(6.21) and (6.22), respectively, 

E(e,) = 0 (6.21) 

( i V 
Var(si)= X. (6.22) 

V ,J [SNR 'J 

where SNR is signal to noise ratio. Finally, we use nonparametric estimation to 

determine the distribution of the measured quantity X . The whole procedure is shown 

schematically in Figure 6.12. 

We perform numerical simulations in which we use 300 dividing cells and 

qualitatively different partitioning functions Q(f)- Also, we vary the SNR and record 

the corresponding percentage error. An example of typical results is shown in Figure 6.13 

for a unimodal (q = 60) and bimodal partitioning function (with \xpan = 0.4 and cpart = 

0.035). We observe that for a large range of values for the SNR , the error remains within 

an acceptable range (<11%). Therefore, we can conclude that our method is robust 

against in the presence of experimental error. 
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6.4 Recovery of IPSF for Toggle 
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In this section, we will use the insight obtained through the parametric analysis and 

the numerical simulations of chapters 5 and 6, to solve the inverse problem for toggle. 

Specifically, we will use the available experimental data obtained with the fluorescence 

microscopy assay described in chapters 2-4, to recover the three IPSF. We employ the 

nonparametric kernel density to estimate the three cell number densities, as required by 

the Collins and Richmond's inverse approach. The estimated densities are shown in 

Figure 6.14 for three IPTG concentrations, namely, 2000 uM, 40 uM, and 20 uM. The 

panels A,C and E of Figure 6.15 show the single-cell reaction rates for 2000 uM, 40 uM, 

and 20 uM, respectively whereas the panels B,D and G show the corresponding single-

cell division rates. We observe that the varying [IPTG], changes the range of values for 

the single-cell reaction rate. Also, R(x) appears to have a linear correlation with the 

measured total GFP content. For the single-cell division rate we notice an exponential 

correlation with the GFP content, for all three [IPTG]. The latter observation means that 

the higher the total GFP content of the cell, the more likely it is to divide, which gives 

credence to our results. In Figure 6.16, we view the recovered partitioning functions for 

three [IPTG]. First, we notice that all three partitioning functions are qualitatively the 

same; they are relatively narrow unimodal distributions. Second the [IPTG] does not 

practically affect the partitioning mechanism. The corresponding PPDF for 2000 uM is 

shown in panels A and B of Figure 6.17 from two different perspectives, whereas the 

PPDF for 40 uM, and 20 uM can be viewed in panels A and B, respectively of Figure 

6.18. Notice that although the three PPDF look qualitatively the same, the range of values 

for both PPDF and the content of mother and daughter cells varies with [IPTG]. The 

parameters used to recover the PPDF for the toggle are the following; a) [IPTG] = 2000 
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|xM, n = 54,m = 20and A2 =10~16, b) [IPTG] = 40 jiM, n = 54,m = 25and 

;t2 = 1.4.10"25, and c)) [IPTG] = 20 jiM, n = 54, m = 25 and /L2 = 1.4 • 10"19. 
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Figure 6.17: Recovered PPDF for toggle at [IPTG] = 2000^M. Panels A and B show PPDF from 
different perspectives. 
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Chapter 7 

7 General 1-D Inverse Solution and the 2-D Problem 

In this chapter, we investigate the feasibility of a more general inverse solution for the 

PPDF. We also explore the potential extension of the inverse problem in 2-D. 

7.1 General Solution for the PPDF 

In order to examine the feasibility of a more general solution for the PPDF, we first 

need to relax the minimal homogeneity assumption. Then, we seek to more generally 

recover the bivariate function P(x, y) , in the following form: 

/>(*,y) = J > ^ ( * , y ) (7.1) 

where bk are the unknown expansion coefficients and^. (x,y) are known bivariate basis 

functions. We assume that the bivariate functions can be expressed as tensor products of 

univariate basis functions as shown below: 

<Pk (x, y) = % (x, y) = & (x)jj (y) (7.2) 

Then, eq. (7.1) can be rewritten as: 

m m 

i=l 7=1 

7.1.1 Mathematical Formulation of the General Inverse Problem 

We consider the integral equation for P(x,y) and the corresponding normalization 

condition given by: 
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"Miiax 

nh{x)= J P(x,y)nd(y)dy (7.4) 
.V 

and 

y 

\p(x,y)dx = l (7.5) 
o 

We transform the dividing and newborn number densities nd {x), nh (x), respectively in 

the interval [0,1] by using the following transformation of variables: 

xmi^x<xmaK^0<x-xmm<xm!i}i-xmin^O< X~Xmin <l,xma^xmin=>0<x<l(1.6) 
x„„„ - x-max mm 

where the new variable x is defined by the following relationship: 

JC'= X~Xmin (7.7) 

It also holds that: 

dx = dx (7.8) 
x — x 

max min 

We use the transformation of variables defined by eqs. (7.6)-(7.8) in the integral eq. (7.4) 

to obtain: 

»'.(*')£ - H'M-'MKMf; (^-^)*' (7-9) 
x J 

The eq. (7.9) can be equivalently written as: 

i 

nb(x)=\P*(x,y)nd(y)dy (7.10) 
X 

where 

P*(x,y) = P(x(x),y(y))(xmm-xmia) (7.11) 
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Also, if we change the notation such that x —» x', y —» y , nd —> nd, nb —>• nb and 

P —> P* then eq. (7.11) can be written as: 

i 

nb(x)=\p(x,y)nd(y)dy (7.12) 
X 

If we substitute eq.(7.3) in eq. (7.12), we get: 

m m * 

To bring the integral limits in the interval [0, l ] , we apply the following transformation of 

variables: 

x<y<l^0<y-x<l-x=>0<^^<l,x^1^0<z<l (7.14) 
1-x 

where the new variable z is defined by the following relationship: 

* > - P (7.15) 
l-x 

It also holds that: 

dz = — dy (7.16) 

l-x 

We use the transformation of variables defined by eqs. (7.14). - (7.16) in the integral eq. 

(7.13) to obtain: 
m m 

^(x)=HllaiA(x)(l-x)^j(z(l-x)+x)nAz(1-x)+x)dz <7-17) 
i=l j=i 0 

We use, the Gauss-Legendre quadrature rule to compute the definite integral in eq.(7.17): 

ngp 
nb (x) = Z Z atA (x) (l - x) Z wrfj (sPk (l - x)+x) n<i(m(i-x)+x) O-18) 

1=1 7=1 /t=l 
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where ngp is the total number of Gauss points, wk the Gauss weights and gpk the Gauss 

points. By discretizing eq.(7.18), we obtain: 

V7 = l,2,...,n nb(xl) = 

m m ngp (7-19) 

Y.Y.aiA(xi)il-xi)^w^j(spk{
x-xi)+xi)nA^Pk{l-xi)+xi) 

i=l j=l k=l 

The equations (7.19) define a linear system of algebraic equations, which can be written 

in the following vector-matrix form: 

Ga=b (7.20) 

where G is the nx{mxm) non-square coefficient or design matrix with elements: 

i 

Giji=0i(*i)(l-xi)J0j{z(l-*i) + xi)n<i(z(l-xi) + x')dz = 

0 (7.21) 
ngp 

^(xl)(l-x1)^jwk<pj(gpk(l-xl) + xl)nd(gpk(l-xl) + xl) 
k=\ 

b is the nxl data vector with elements the values of the newborn density at the 

discretization points: 

bl=nb(xl) (7.22) 

and a stands for the (mxm)x\ vector of unknown expansion coefficients air Finding a 

solution to the overdetermined system of linear algebraic equations (7.20) calls for a 

minimization formulation, shown below: 

min||Ga-*|P (7.23) 

7.1.2 Constraints of the Minimization Problem 

In order to solve the minimization problem (7.23), we need to define appropriate 

constraints for the bivariate function P{x, y). 
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A. Mass conservation constraint 

The mass conservation simply expresses the fact at cell division the mother cell divides 

its content among the two daughter cells. Therefore, the mother's content is preserved. 

Mathematically it can be expressed as follows: 

P(x,y) = P(y-x,y) (7.24) 

If we substitute eq.(7.3) in eq.(7.24) we obtain: 

m m m m 

i=l j=l i=l y=l 

m m m m 

££M(*MM-£E^(y-*MW=o=> o-2^ 
m m 

EE^[>to-d(y-*)>,M=o 
i=i j=\ 

We apply eq. (7.25) \/xk e[0,l],& = 1,2,....«A and \/yt e[0,1],/= 1,2,....«,which becomes 

then: 

m m 

1=1 y=i 

The system of linear equations (7.26) can be expressed in vector-matrix notation as: 

Amassa=0 (7.27) 

B. Positivity constraint 

The positivity constraint states that P(x,y) can only yield nonnegative values. 

Mathematically it can be expressed as: 

P(x,y)>0, Vx<y x,ye[0,l] (7.28) 

Equation (7.28) can be written alternatively as: 
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We apply eq. (7.29) Vjct e[0,l],fc = l,2,....nvand Vy, e[0, l] , / = 1,2,....n,which becomes 

then: 

Z2>M(**M(y*)*0 (7.30) 
i=i >=i 

or in vector- matrix notation: 

^ V * ^ (7.31) 

C. Normalization constraint 

The partition probability density function y°(x, y) must satisfy the normalization 

condition given by eq. (7.5). We apply the following transformation of variables: 

0 < * < y = > 0 < - < l , y * 0 = > 0 < z < l (7.32) 
y 

where the new variable z is defined by the following relationship: 

z = - (7.33) 
y 

Also, it holds that: 

dz = -dx (7.34) 
y 

Using the transformation defined by eqs. (7.32) - (7.34), we obtain: 

i 

jP(zy,y)ydz = l (7.35) 
0 

If we substitute eq. (7.3) in eq. (7.35) we obtain: 

m m 1 

THaiA(y)yty(zy)dz=1 (7-36> 
< = 1 7 = 1 0 
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We then use the Gauss-Legendre quadrature rule to compute the definite integral in eq. 

(7.36): 

m m ngp 

££fl^Myz>t4(«pty)=i <7-37) 
(=1 7=1 k=l 

We now apply eq.(7.37) Vy, e [0,l],/ = l,2,....n, 

in m ngp 

£EVyU)yi2M(«p t y i ) = l (7.38) 
(=i ;=i k=i 

or in vector-matrix notation: 

A,orm«=i (7.39) 

7.1.3 Constrained Minimization Problem 

To determine unknown partition probability density function P(JE, y) , we need to 

solve the following constraint minimization problem: 

• 11^ t i l 2 

mm \\Ga-b\\ 
oeK'" " " 2 

S.t. 
Anorma = 2 (7.40) 

Aposa>0 

Ga>0 

We develop numerical code in FORTRAN and MatLab to solve the constrained quadratic 

minimization problem given by eq. (7.40). We run simulations and we compare the 

numerical results to the analytical solution. Our findings indicate that the inverse solution 

is far from being accurate. One example of the inverse solution is shown in panel B of 

Figure 7.1. The simulation is performed for a homogeneous PPDF with a symmetric Beta 

partitioning function with # = 20 (shown in panel A of Figure 7.1) and the dividing 
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number density is a Gaussian with mean 1000 and standard deviation 200. We notice that 

the analytical and numerical solutions are not in good agreement. Therefore, in an 

attempt to obtain a more accurate solution to the inverse problem, we vary the following 

parameters and observe their effect on the accuracy of the inverse solution. Specifically, 

we vary: 

• type of univariate basis functions (Legendre, Chebyshev, Sinusoidal) 

• the number of basis functions m 

• the number of discretization points n 

• the number of Gauss points for the numerical integration 

• the sharpness of PPDF controlled by q 

Despite significantly varying the aforementioned parameters, the accuracy of the 

recovered solution is not improved. 
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Figure 7.1; Comparison between the analytical (panel A) and recovered (panel B) PPDF for the 
-D inverse problem. 



7.1.4 Testing the Assumption about the Bivariate Basis Functions 

The inability of the minimization problem to accurately recover the inverse solution 

and particularly the fact that the inverse solution is not even close to the corresponding 

analytical one, lead us to re-evaluate our assumptions. 

We have postulated so far that by expressing the bivariate basis functions as tensor 

products of univariate basis functions suffices to recover P(x, y). We test here, if the 

latter assumption is satisfactory. We will use a P(x, y)with known analytical expression 

and attempt to determine the unknown expansion coefficients appearing in eq. (7.3). Let 

us start by multiplying both sides of eq.(7.3) with <f>k (x)fy ( v): 

P(x, y)<fik (x)4 (y) = YZa.-fr (xfa ( yft (*)* (y) (7.41) 

Then, we integrate both sides of eq. (7.41) in D = [0,l]jc[0,l] 

I 1 m m 1 1 

JJp(*,yMW4W^y = ££«JJ^W^(yHW^W^y (7-42) 
0 0 '=1 j=l 0 0 

By rearranging the terms on the right-hand side of eq.(7.42), we obtain: 

I I m m 1 1 

Jlp(x,y)^(x)^(y)dxdy = Y,Zaij\^(xH(x)dx^j(y¥i(y)dy (7-43) 
0 0 '=1 j=l 0 0 

The univariate basis functions we have selected are orthonormal (Legendre), therefore: 

)t(x)l(x)dx = fclrfk (7.44) 

Hence, eq. (7.43) can be written as: 

i i 

jjP(x,y)<f>k(x)<f>l(y)dxdy = akl Vk,l = l,2...,m (7.45) 
o o 
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Obviously, eq. (7.45) defines the unknown expansion coefficients, which can be 

explicitly calculated from the following equation: 

ngp ngp 
aki=JLllwnwjjP{xu^jj)A(8Pu)^(8Pjj) Vk,l = l,2...,m (7.46) 

11=1 ji/=i 

First, we will use eq. (7.46) to determine the unknown expansion coefficients. Then, we 

will calucalate P(x,y) through eq.(7.3). Finally, we will compare the calculated solution 

given by eq.(7.3) to the analytical one (for q = 20). We can view the results of the 

comparison in Figure 7.2 

Apparently, the computed solution is inaccurate. Notice also that the latter yields 

negative values. Despite the fact that we greatly vary the number of basis functions, the 

number of Gauss points, the type of basis functions and the analytical solution, it remains 

infeasible to improve the accuracy of the calculated solution. Hence, based on these 

results it turns out that the assumption we have made, namely expressing the bivariate 

functions as tensor products of univariate basis functions, is not good enough to 

accurately recover P(x,y). The latter result, also, explains why the minimization 

problem fails to yield an accurate inverse solution. 
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M 

Figture 7.2: Test of the bivariate basis functions assumption. Panel A: analytical PPDF, Panel B: 
PPDF obtained from analytical through eqs. (7.3) and (7.46). 
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7.2 2-D Inverse Problem 

As we have explained at the introduction of the current thesis, the Collins and 

Richmond approach has been extensively used by researchers to primarily quantify the 

rate of change of one phenotypic cell characteristic, for a variety of organisms. We have 

also emphasized that the 1-D CPB model can be a useful tool in predicting cell 

population dynamics, provided that the cell population can be sufficiently described by a 

single variable. What happens, however, when two or more phenotypic characteristics are 

required to describe the state of the cell. Then, the inverse problem needs to be solved in 

higher dimensions. In this section, we investigate how the 1-D inverse problem can be 

extended in two dimensions and propose numerical approaches for its solution. Let us 

start with the 2-D cell population balance equation (7.47). 

— '' 2' ' +Vx(R(xux2)n(xl,x2,t)) + r(xl,x2)n(xl,x2,t) + 

X\.max 2,max 

n(xl,x2,t) j j r(xl,x2)n(xl,x2,t)dxldx2 = (7.47) 
0 0 

-M .max jnax 

2 { J r(yl,y2)P(xl,x2,yl,y2)n(yl,y2,t)dy[dy2 

x, x2 

where xvx2 denote the physiological state variables, elements of the 2-D physiological 

state vector x = (xx,x2). Notice that the IPSF depend on both variables JC, andx2. Also, 

notice that although the single-cell division rate i"(^j,x2)and the partition probability 

density function P(xl,x2,y1,y2) are still scalar quantities, the single-cell reaction rate 

R(X1,X2) = [R1(X1,X2) /?2(JC,,;C2)] is a two-component vector. The average specific 

growth rate JU is defined by the following equation: 

152 



•*bi»tt 'V2.„ 

/ /= \ \ r(xl,x2)n(xl,x2,t)dxldx2 (7.48) 
0 0 

Then, eq. (7.47) can be equivalently expressed as: 

— '' 2' ' +Vx(R(xl,x2)n(xvx2,t)) + r(xl,x2)n(xl,x2,t) = 

x\ .max x2 mix 

2 1 I r{yvy2)p{xi>xi>yvy2)n{yvy2>t)dyidyi-n{xvx2>t)iLi 
(7.49) 

X, X2 

Similarly to the 1-D case of the inverse problem, at time-invariant conditions, the single-

cell division rate r[xl,x2) and the newborn number density nb (^,x2) can be defined by 

the equations (7.50) and (7.51), respectively: 

rWxi).!£&d£ ,7.50, 
n{xl,x2) 

M.inax *2,inax 

nb(xl,x2)= J J P(x1,x2,yl,y2)nd(yvy2)dyldy2 (7.51) 

We observe that the single-cell division rate7"(x1(x2) retains its closed-form expression 

even in the 2-D problem and therefore can be explicitly calculated. The PPDF on the 

other hand does not have a closed-form expression but rather satisfies the integral 

equation (7.51). One way to proceed with determining the unknown PPDF is to express it 

as a finite sum of unknown expansion coefficients and known basis functions that are 

defined in a four dimensional space, as shown below: 

m 

P(xl,x2,yl,y2) = Y^ak(p(xl,x2,yl,y2) (7.52) 
k=\ 

The estimation of PPDF can be simplified by assuming that the basis functions can be 

expressed as tensor products of bivariate basis functions: 

153 



<Pk{xvx2,yvy1) = (pij(xvx2,yvy2) = <j)i(xvyY)(j)j{x2,y2) (7.53) 

Substituting eq. (7.52) into the integral eq. (7.51) and discretizing the latter, results in a 

over-determined system of linear algebraic equations of the form: 

Ga=b (7.54) 

which can be addressed with the minimization techniques we have already described in 

chapters 5 and 6. The challenges here are two: a) the appropriate selection of the basis 

functions and b) the computational time required to solve the inverse problem in a 4-D 

space. An alternative way to determine the PPDF is assume that it can be expressed in the 

following form: 

P(xl,x2,yl,y2) = Pl(xvyl)-P2(x2,y2) (7.55) 

Such a solution, though, is warranted only in cases where the partitioning of 

property yx does not explicitly depend on the partitioning of v2 and vice versa. The benefit 

of the formulation (7.55) is that P(xl,x2,yl,y2) can be determined by solving two 

independent 1-D problems for each one of the unknown functions 

P1(xl,yl)andP2(x2,y2). 

Now let us examine how we can obtain the single-cell reaction rate/?(*,, ;t2). If we 

consider the 2-D population balance equation (7.47) at steady state and use eqs. (7.50) 

and (7.51), we obtain: 

OR. (x,,xAn(x,,x-,) dR^(x,,xAn(x.,xA , . 

dx, dx2
 M *V ' 2) (7.56) 

2/unh (.x,, x2 )2 - /un (x{, x2) 

One can easily notice that in contrast to the 1-D case, the single-cell reaction cannot be 

explicitly calculated. Also, eq. (7.56) represents a boundary value problem with 

154 



unknowns Rl(x1,x2) and R2(xvx2) which are the two elements of the single-cell 

reaction rate vectorR[xux2). The boundary conditions for problem (7.56) are the 

containment conditions on the boundaries of the 2-D 

domainD = \_xlmin,xlmax]x\_x2min,x2max]cMxl. To determine the unknown functions 

/?, (xvx2) and R2 (xvx2) we can express each one of them as a finite sum of unknown 

expansion coefficients and known basis functions as shown below. 

RAXVXl) = YjCk<l>k{XVX2) (7-57) 
k=\ 

m2 

R2(
x
l,

x
2) = Y,dk<pk(xl,x2) (7.58) 

k=\ 

Although the bivariate basis functions 0k(xvx2) used are the same, their number 

generally varies for each one of the unknown functions R{ and R2. If we substitute eqs. 

(7.57) and (7.58) back into the steady-state population balance eq. (7.56), we will get: 

A d<f>(xl,x2)n(xi,x2) ^X d(/>(xvx2)n(xvx2) _ 

hCk ^ +h " dx~2 ~ (7.59) 
/x{2nb(x{,x2)-nd(xvx2)-n(xvx2)) 

Discretization of eq.(7.59) in the domain D = \_xlmin,xhmax~\x[x2min,x2maxlicRxR leads 

to an over-determined system of linear algebraic equations : 

Ga = b (7.60) 

where 

a = [c d] 

To solve for the unknown combined vector of expansion coefficients a , we can employ 

the minimization techniques we have already used to solve the 1-D inverse problem 
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Chapter 8 

8 Summary, Conclusions and Future Work 

In this chapter, we summarize and conclude the current thesis. We also, propose and 

discuss directions for future experimental and theoretical-computational research work. 

8.1 Summary and Conclusions 

Biological systems are very complicated. Biological complexity primarily stems 

from the multiple and interdependent intracellular processes of a single cell as well as 

from its interaction with the environment. Yet, isogenic cell populations are characterized 

from an additional level of complexity, namely, the cell population heterogeneity. The 

latter is important since it affects cell population dynamics, and therefore, needs to be 

both considered and well-understood. Comprehending the complex interplay between 

single-cell behavior and cell population heterogeneity can potentially benefit 

biotechnological applications. Cell population balance models can account for phenotypic 

heterogeneity and therefore, are extremely useful tools for the aforementioned efforts. 

Although there has been significant progress towards the numerical solution of the CPB 

models, their application for biotechnological applications and, in particular for 

predicting the time evolution of the of phenotypic cell distributions has been limited. This 

is primarily due to the fact that CPB models require the three IPSF, which are unknown 

and difficult to obtain experimentally. Collins and Richmond's methodology offers a 

useful theoretical framework for obtaining two of the IPSF, under exponential balanced 

growth conditions. Specifically, it requires the experimental determination of the 
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distribution of one phenotypic cell characteristic for the overall cell population as well as 

for corresponding dividing and newborn cell subpopulations. Although the Collins and 

Richmond inverse methodology has been extensively used by researchers, the inverse 

population balance problem still remains unsolved in the sense of: a) generally and 

accurately obtaining the experimental data (required to solve the inverse problem) from 

cell populations, using direct visualization of cells with fluorescence microscopy and b) 

generally and accurately determining all three IPSF with respect to the same phenotypic 

characteristic and for the same biological system. 

The current thesis presents the development of a novel assay for determining the 

fluorescence intensity distributions of entire cell populations, as well as those of the 

dividing and newborn cell subpopulations. The assay is based on the integration of 

fluorescence microscopy with digital image processing. To illustrate its main features and 

potential, our assay is applied to E. coli cell populations carrying the artificial genetic 

toggle network, whose levels of expression are reported by a green fluorescent protein. 

The slide preparation protocol, we employ for studying cells under the fluorescence 

microscope, is optimized in order to yield the highest quality of images and the maximum 

number of cells per image. Calibration, which is performed using green fluorescent 

beads, enables the normalization of fluorescence measurements that are obtained with 

different exposure times, and thus renders possible the comparison of fluorescence 

intensity distributions obtained at vastly different induction conditions. We have also 

experimentally determined that photobleaching effects are negligible for the exposure 

times used in this study. 
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Our fluorescence distribution measurements for the overall cell population are found 

to be in excellent agreement with flow cytometric measurements for three different IPTG 

concentrations. We further assess the sufficiency of the total number of cells measured 

with our FM methodology, by employing the Bootstrap statistical analysis method. The 

Bootstrap-Monte Carlo simulations clearly demonstrate that 2500 - 4000 measured cells 

yield highly accurate results for overall cell number density function and at the same time 

confirm the excellent agreement between the FM and FCM measurements. Thus, the FM-

based method and the calibration procedure rendering the results exposure-time invariant 

are validated. 

A dual morphometric criterion for the identification of dividing cells is developed in 

the current thesis, by exploiting: a) the ability of fluorescence microscopy to visualize 

cells and b) the multitude of morphometric and fluorescence characteristics that are 

collected for each cell through digital image processing of FM images. The ratio S 

computed by dividing the minimum distance amongst perimeter pixels by a measure of 

the cell's width (fiber breadth) is found to be an excellent indicator of the extent that 

mitosis has progressed in a given cell. Specifically, we have found that cells with values 

of the S ratio below a certain threshold and size above another threshold can be classified 

as dividing. This criterion is validated through comparison with manually selected 

dividing cells. The number density function of the dividing cell subpopulation is found to 

be insensitive to changes in the threshold values with respect to the S ratio, thus 

indicating the robustness of the identification criterion. More importantly, its automatic 

implementation requires just a few minutes for a slide containing thousands of cells as 
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opposed to more than 5 hours required for manual analysis of cells that are visually 

selected to be dividing. 

Finally, the newborn cell subpopulation required for inverse cell population balance 

modeling with the Collins-Richmond approach[49] must be the one corresponding to the 

dividing cell subpopulation. Therefore, the fluorescence distribution of the newborn cell 

subpopulation is determined by assuming that the two compartments separated by the 

characteristic constriction of dividing cells will become the two daughter cells 

corresponding to a given dividing cell. 

Currently, the presented framework requires manual operation only at the image 

acquisition level for moving the microscope stage in order to take multiple pictures from 

a slide and to focus. However, switching between phase contrast and fluorescence 

acquisition mode, capturing and storing images is fully automated. Moreover, once all 

required images are collected and preliminary processing with MetaMorph is concluded, 

all remaining steps leading to the determination of the distributions of the three 

subpopulations are fully automated as well. Therefore, the presented integration of 

fluorescence microscopy with powerful digital image processing techniques overcomes a 

key limitation of FM. This limitation stems from the usually low throughput of FM 

techniques. In addition, we have seen that FM can provide more information about cell 

populations than high-throughput techniques like flow cytometry. 

Our method can be applied to other rod-shaped cells that divide by forming a 

characteristic constriction to obtain the distributions of fluorescence intensities or other 

morphometric cell characteristics (such as area, length, shape factor, etc.). It can also be 

used with other genetic networks equipped with a fluorescent marker to quantify their 
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expression levels. Other GFP mutants can be employed after appropriate calibration and 

photobleaching studies are performed. Furthermore, since fluorescence microscopy has a 

much wider flexibility than flow cytometry in choosing narrower excitation and emission 

spectra, it is expected that this methodology can be extended to study the behavior of cell 

populations and subpopulations carrying more than one fluorescent marker. 

In the current thesis, we employ numerical simulations to solve and at the same time 

get insight into the challenges of the inverse problem. Our parametric analysis, which 

utilizes exact distributions for the three cell number densities, shows that the single-cell 

division rate can be more accurately recovered through the differential than the integral 

form and the single-cell division rate is found to be in excellent agreement with the 

analytical solutions. 

The continuous integral equation for the PPDF is appropriately discretized and 

reformulated into a quadratic minimization problem. To allow for meaningful inverse 

solutions, suitable constraints are applied to the minimization problem and Tikhonov 

regularization is utilized to treat the ill-conditioned nature of the discrete integral 

equation. Furthermore, we have devised and verified a quantitative convergence criterion 

for the inverse numerical solutions along with an appropriate method for selecting the 

value of the regularization parameter. 

The effect of numerical parameters on the solution of the inverse problem is 

investigated in the current work. Our results indicate that accurate solutions can be 

obtained with as few as 20 grid points from the cell number densities. Moreover, our 

computational method for obtaining the PPDF is successfully tested against a variety of 

qualitatively and quantitatively different input data, including unimodal, bimodal and 
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skewed cell number densities. Our results also, point out that the number of basis 

functions, required to obtain the PPDF, is practically invariant to the spread of the cell 

number densities, but depends on the nature of the particular PPDF. The distance of the 

modes of the bimodal partitioning functions is also shown not to affect the accurate 

recovery of the PPDF. Moreover, our method is tested against a large number of 

partitioning functions and is found to be performing very well. The only exception 

appears for the extreme case of a very discrete bimodal partitioning function, for which 

the location of both modes is accurately determined but the height of the modes is 

underestimated. Finally, a minimization approach is developed to simultaneously and 

accurately obtain the unknown average specific growth rate and single-cell division rate 

for the case where only the three cell number densities are available. 

To integrate the developed numerical procedures to our novel experimental 

framework, we assess the effect of both finite sampling, which takes place in the lab, and 

the uncertainty present in the experimental data. The measurement of phenotypic cell 

characteristics in the lab is simulated exactly. Nonparametric estimation methods are 

utilized to determine the cell phenotypic distributions, thus avoiding any assumptions 

about the functional form of the latter, which would limit the generality of our approach 

and results. We have looked into the most accurate way for representing the cell 

population data by comparing the NDF to the CDF estimators. Our results show that the 

kernel density although more accurate than the histogram in less accurate than the CDF 

for the same set of cell measurements. Therefore, the CDF formulation is utilized to 

recover the single-cell reaction rate. The single-cell division rate, however, is determined 

through the kernel density to avoid losing the benefit of the closed-form solution. The 
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recovered solutions are obtained with acceptable accuracy, with the error lying in the 

range of 4-6%. 

The integral equation for the PPDF is reformulated using the CDF estimator, to take 

advantage of the ability of the latter to more accurately represent cell population data. 

The comparison between the NDF and CDF forms of the integral equation reveals that 

both yield excellent results, when exact phenotypic distributions are utilized. For 

estimated distributions, however, the CDF is found to be underperforming. Our singular 

value decomposition analysis for the coefficient matrix G reveals that the eigenvalue 

decline is faster and more abrupt for the CDF case, a fact strongly indicative of a more 

ill-conditioned discrete problem. Thus, although the CDF method accepts more accurate 

data than the NDF method, the former leads to less accurate solutions due to its more ill-

conditioned nature. Thus, we use the NDF form of the integral equation in our numerical 

simulations to recover the PPDF. The accuracy of the recovered solution increases by 

increasing the number of dividing cells in the sample. Approximately, 800 dividing cells 

are required to reach the error threshold value. Simulations for the typical size of 300 

dividing cells with a variety of input data and partitioning functions show that the PPDF 

can be recovered relatively accurately, with the error lying in acceptable range of 4-6% 

for a unimodal PPDF and extending up to 11% for a bimodal one. Last, we assess the 

effect of the uncertainty of experimental data on the PPDF. Our simulations reveal that 

our method is robust since the error remains bounded and within an acceptable level for a 

wide range of the signal to noise ratio. 

We demonstrate the ability to accurately recover the IPSF using the available 

experimental data for our model system: E. coli - toggle. Our results point out that there 
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exists a linear correlation between the single-cell reaction rate and the total GFP content, 

for all three [IPTG] conditions. Varying [IPTG] changes the range of values of for the 

single-cell reaction rate, with the lowest one corresponding to the lowest IPTG 

concentration. Such a result is in agreement with the design of the toggle and what is 

observed experimentally. The single-cell division rate is found to have an exponential 

correlation with the GFP content. This result indicates that the higher the content of the 

cell the more likely it is for it to divide, which is reasonable and in agreement with what 

know to be happening, and therefore it gives credence to our results. All three recovered 

partitioning functions appear to be relatively narrow unimodal distributions. The absence 

of a discrete partitioning function clearly demonstrates that unequal cell partitioning is 

present in the cell population thus, contributing to cell population heterogeneity. Despite 

the vastly different [IPTG], the three corresponding PPDF are qualitatively very similar, 

which shows that [IPTG] does not affect the partitioning mechanism at cell division. 

In the current thesis, we also examine the feasibility of a more general inverse 

solution for the 1-D problem, by relaxing the minimal assumption about the homogeneity 

property of the PPDF. To this end, the integral equation for the PPDF is reformulated by 

expressing the unknown PPDF more generally as a finite sum of known bivariate basis 

functions and unknown expansion coefficients. The results of our simulations show that 

there is a great discrepancy between the recovered PPDF and the corresponding 

analytical solution. Further investigation reveals that the source of this discrepancy can 

be attributed to the unsatisfactory assumption about the bivariate functions. Thus, 

expressing the latter as tensor products of the univariate basis functions is not sufficient 

to accurately reconstruct the analytical solution. 
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Finally, we examine the extensibility of the inverse problem in 2-D. Our analysis 

shows that although the single-cell division rate retains its closed-from expression , this is 

not the case for the single-cell reaction rate. We propose methods to numerically obtain 

the IPSF, using minimization techniques. 

Overall, the current work presents the novel integration of an accurate quantitative 

experimental FM-based framework with accurate and robust computational 

methodologies. The latter allows us to completely, accurately and generally solve the 

inverse population balance problem and obtain all three IPSF with respect to the same 

phenotypic characteristic, for rod-shaped bacteria populations that divide forming the 

characteristic septum. The developed computational methodologies can be applied to 

other biological systems, given that the three experimentally phenotypic distributions are 

available. The current research work constitutes a useful tool in quantifying the single-

cell behavior from data collected from highly heterogeneous cell populations. 

8.2 Future Work 

8.2.1 Expansion of the Experimental Framework 

The computational methodology, we have developed in the current thesis to solve the 

inverse population balance problem, can accommodate any biological system. However, 

the corresponding developed experimental FM-based framework is applicable only to 

populations of rod-shaped bacteria that divide by forming the characteristic constriction. 

Therefore, we propose the expansion of the current experimental framework so that it can 

account for other biological systems, including bacteria that do not divide forming a 

septum, yeast and mammalian cells. Such an effort requires the study of cell division for 
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these organisms and the formulation of appropriate quantitative criteria based on 

morphometric properties to identify the diving cells. The developed criteria can be easily 

incorporated as modules to our existing FM-based image acquisition and processing 

framework. 

8.2.2 Application to Other Biological Systems 

We have developed an FM-based inverse population balance methodology and we 

have demonstrated its applicability to the toggle system, which exhibits bi-stable 

behavior. We propose the application of our current framework to other biological 

systems. The latter can help studies that have as purpose to elucidate the complex 

interplay between genetic architecture and cell population heterogeneity. One interesting 

example of such a biological system is the repressilator, which is a synthetic oscillatory 

network. Two chemical inducers, IPTG and aTc are used to control the distribution of the 

E. coli population carrying the repressilator. It has been recently shown by Portle et al. 

[22] that variation of aTc can result in a novel bi-threshold behavior in which the entire 

cell population can exist in either of the three distinct steady states. The inverse 

methodology can be applied to obtain the three IPSF and show if and how these are 

affected by the inducers, thus complementing the understanding of the system's behavior. 

An additional interesting system, whose study we propose, is the lac operon. The lac 

operon can lead to a bi-stable behavior at a single-cell level due to the positive feedback 

loop genetic architecture. Our framework is suitable for the study of both systems, since 

they are both found in E. coli cell populations. 
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8.2.3 Live Cell Experiments 

To improve and complement our understanding of the complex interplay between 

single-cell behavior and cell population heterogeneity we recommend a set of live cell 

experiments starting with the toggle and the repressilator. Such experiments can be build 

upon the existing experimental assay, which requires an automatic stage and a bioreactor 

with temperature, oxygen and substrate control. The developed image acquisition codes 

and image processing modules can be used with slight modifications. Images can be 

captured at specified time intervals by scanning the glass slide of the bioreactor on which 

the cells are growing. Special attention is required on the selection of the substrate and 

the conditions at which the cells will grow. This is important since the results obtained 

from the study will complement the understanding of cell growth in batch cultures. The 

post processing of the images acquired with time lapse video and fluorescence 

microscopy can provide significant insight about the rate of change of the content of each 

individual cell in the population. Such an experimental setup would allow the 

determination of the single-cell reaction rate and its comparison to the phenomenological 

equivalent from the inverse problem. The latter, is expected to shed light on the 

implications of cell population heterogeneity. 

8.2.4 2-D Inverse Population Balance Problem 

In the current thesis, we have presented computational methods appropriate to 

accurately solve the 1-D inverse population balance problem. Such methods can be used 

when the studied organism(s) can be sufficiently described by a single physiological state 

variable. However, there are systems where two variables maybe required. Our FM-based 

framework can accommodate the measurement of up to 62 distinct cell characteristics, 
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including different fluorescent dies. This means that our current experimental assay is 

suitable for studying genetic networks with two or more fluorescent markers. Also, in this 

work we have derived the equations for the 2-D population balance problem and propose 

numerical methods based on minimization, to obtain the IPSF with two independent 

physiological state variables. The usage of simulated data and a theoretical investigations 

similar to the ones performed on the current thesis, are both required to establish 

convergence to accurate inverse-numerical solutions for the IPSF. Finally, we propose a 

set of lab experiments with the toggle, where two phenotypic characteristics are measured 

and the 2-D inverse problem is solved. 

8.2.5 General 1-D Inverse Problem 

In this thesis, we have shown that using tensor products of univariate functions is not 

a good approach to obtain the PPDF. We propose further research into the type of 1-D 

basis functions and appropriate bivariate basis functions to recover P(x, v) . 
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Appendix I 

Derivation of Analytical Expressions for the Cell Perimeter and the Objective 

Function d2of the Model Rod-Shaped Cell 

Consider the rod-shaped cell of Figure 3.3 that is dividing into two daughter cells of 

unequal lengths L, and L2, and consists of simple geometrical shapes put together, such 

as circles and straight lines. For every point (x, y)on the perimeter of the arc (ABD), its 

coordinates can be defined as follows: 

> 2 " ( * - * 2 ) 

y = / W = 

R 

0<x<R 

R<x<t, 

t{ < X < JCj <JR2-(X-R-W2) 

yc-^-(x-x]) 

^JR2-(x-2R-wl-w3f 
R 

JR2 —(X — 2R — W, -W2 - W 3 ) t2 + w2<x<L 

Xj < X < X2 

x2<x<t2 

t2<x<t2 + w2 

(Al l ) 

where: 

tl=R + wl 

t2=2R + wl + w3 

h=-
3R + w, 

•+w. 

L^L^+I^ 

x2=(l + S)xc, 0<S<1 

(AI.2) 

(AI.3) 

(AI.4) 

(AI.5) 

(AI.6) 
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7? = (ALIO) 

Similarly, if the point (x, y) belongs to the arc (ACD), then its coordinates satisfy the 

following function: 

y = g(x) = -f(x) (ALU) 

The arc length along the perimeter of the cell, starting from point A, is given by the 

following relationship: 
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Also, the perimeter of the cell is described by the following equation: 

P = 2 Rn + w, + w2 + 2R sin" -i I x\ h 

R 
+ 2rsin" (AI.13) 

To determine the values of the objective functiond2 shown below (Tl and T2 correspond 

to the arcs (ABD) and (ACD), respectively), 

d2(pt) = mm 
d(PnPj) 

s(P"Pj) 
= mm 

s(xi-xj)2+(y>-yjf 

s(PnPj) 
for all pieFl (AI.14) 

then for each value of xt we are seeking for the locations of the minima of h(x\ defined 

as: 

h(Xj) = 
KJXj) _^i-xj)

2+{yi-yj)
2 

K(XJ) s(PnPj) 
(AI.15) 

where 

s(Pi>Pj) = min{P-Larc (Xi)-Larc (Xj)>Larc (Xi) + krc ( * / ) ) (AI.16) 

The location of local and global minima of hixA can be found between the roots of its 

first derivative as is shown below: 

—ft(jc,.) = 0=> ' v " ^ J/ ' \ " 1V " = 0 : 

HXJ)]2 

th(Xj)h2(Xj)-l\{Xj)>h(*j) = Q 

(AI.17) 

And since 

yj = yj(xj) (AI.18) 

and 
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y, = y,(xi) (Ai.19) 

the equation (AI.17) can be rewritten as: 

[{xJ-xi) + (yj(xj)-yi(xi))yJ(xj)]h2(xj) = 
2 2n (AI.20) 

fa-*,) +(yJ(
xj)-yi(

xiJ) J^M 

Finally, to determine the minima of the objective function d2, one needs to solve the one 

dimensional minimization problem for 

d2 in the interval [0,L] using an appropriate numerical method (such as the golden 

search, the quadratic interpolation or the downhill simplex method). 
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Appendix II 

Effect of Pixelization of Cell Perimeter and Analysis of Realistic-Looking 

Rod-Shaped Cells 

In Chapter 3, we have performed a parametric analysis using the model rod-shaped 

cell, shown in panel A of Figure 3.3. We have derived and used analytical expressions for 

the cell perimeter to show that the objective function d2 will have at most two minima (a 

global and a local), one of which corresponds to the minimum thickness Dmin of the cell. 

Although the insights from the parametric analysis are very significant, in practice, we 

analyze real cells. The latter appear in the images we capture with the experimental setup 

described in Chapter 2. For real cells the corresponding objective function d2 will not be 

smooth but rather "jagged", due to the pixelization (discretization) of the cell perimeter at 

the image digitization - segmentation process. 

We want to assess the effect of the pixelization of the cell perimeter on the ability of 

our method to successfully identify the constriction in real dividing rod-shaped cells. To 

this end, we simulate the image processing of real-looking cells in a manner identically 

similar to the lab experimental procedures. Specifically, we create a dividing rod-shaped 

cell in a TIFF image with resolution 1040 x 1392, identical to that of our camera, and cell 

size within the limits observed experimentally. Next, we pixelize and segment the image 

to obtain the "jagged" cell perimeter. Then, we run our algorithm multiple times varying 

the following cell characteristics: cell orientation, length and thickness (within the range 

of values observed experimentally) as well as the division ratio (A = l upto/l = 4) and 

the constriction ratio (up to a = 0.9). The results of our simulations can be seen in Figure 
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All. 1, Figure AIL 2, Figure All. 3 and Figure AIL 4. The left part of each of the panes A 

through D in each of the four figures, shows the perimeter of the dividing cell. The pair 

of black dots on the perimeter of each dividing cell represents the location of constriction 

points as they are automatically identified by our algorithm. The plots on right hand side 

of each panel illustrate the corresponding objective function d2 as well as the location of 

the local maxima (shown in green) and local minima (shown in red). Notice that our 

method has successfully identified the location of the constriction in the all dividing cells 

examined (for S <0.8). It is also worth noting that the pixelization of the cell perimeter 

can lead to the existence of multiple local maxima and minima (usually three) for the 

objective function d2. These multiple extrema can be both detected and excluded by our 

algorithm, if they do not correspond to the minimum Euclidean distance d{. The results 

obtained from the analysis of a wide range of realistic-looking cells validate our 

algorithm. Therefore, the latter is both effective and robust, in the sense that it will 

always capture the two minima, if both exist. Finally, for our experimental setup: 1040 x 

1392 camera resolution and lOOx magnification, our algorithm will yield reliable results 

as long as the constriction ratio a (or S) takes values less than 0.8. For S > 0.8 the 

method may not be accurate due to the effect of pixelization error. For instance, panel D 

of Figure AIL 4 shows the case S = 0.9 where our method fails to correctly identify the 

location of the constriction. However, in this case the presence of the constriction is quite 

subjective even to the naked eye, since the constriction size is comparable to the size of 

the dimples on the pixelized cell perimeter. 
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Appendix III 

Detailed Derivation of the NDF Form of the Integral Equation for the PPDF 

We consider the integral equation for P(x,y) and the corresponding normalization 

condition given by the following equation: 

nb(x)= \ p(x,y)nd(y)dy (AIII.l) 

and 

y 

jp(x,y)dx = l (AIII.2) 

We assume that P(x, v)is a homogeneous function, which means that P(x, v) has the 

following form: 

P(x,y) = -Q (AIII.3) 

The unknown partitioning function Q 'V 
yyj 

is then expressed as a finite sum of 

m unknown expansion coefficients aj and known univariate basis functions $. (z): 

Q 
rx^ 

\yj 7=1 

' ^ 

w (AIII.4) 

To bring the integration limits into the interval [0,l] in eq.(AIII.l), we apply the 

following transformation of variables: 

x^y^xmaK^0<y-x<xmax-x^0< y-x < 1 , J C * 0 = > 0 < Z < 1 
Xmax X 

(AIII.5) 

where the new variable z is defined by the following relationship: 
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z = -
y-x (AIII.6) 

Xmax X 

It also holds that: 

dz = -
Xmax X 

•dy (AIII.7) 

We use the transformation of variables defined by eqs. (AIII.5)-(AIII.7) in the integral eq. 

(AIII.l) to obtain: 

i 
nb (x) = \ P (x^ (*max - x) + x) nd ( z (*max - x) + x) (xmax - x) dz (AIII.8) 

If we substitute the expressions (AIII.3) and (AIII.4) and in (AIII.8), we get: 

\{X) = Taai\-
f ( * - » - * ) 

*, 
M oZ(X™*-X) + X J{z(xmax-x) + X 

nd(z{xm^-x) + x)dz (AIII.9) 

We will use Gauss-Legendre quadrature rule to compute the definite integral in (AIII.9). 

m ngp 

**(*)=x^„j!max~!L>/ H ''*=./ 8Pk(
x
m„-x) + x J{8Pk(xmm-x) + x 

nt,(gpk(xmm-x) + x)(AUl.lO) 

Where ngp is the total number of Gauss points, wk the Gauss weights and gpk the Gauss 

points. By descritizing eq. (AIII.10), we obtain: 

V/ = l,2,...,n nb(xi) = 

(x^-x,) m ngp 

z«,z 
7=1 k=l 

wt • * > SPk (xma, -Xi) + xl
 J { gpk (xmax -x) + xt 

nd{gPk(X™x-Xi) + Xi) 

(AIII.l 1) 

We apply the following transformation of variables to the normalization condition which 

is given by eq.(AIII.2): 

0 < ; c < v = > 0 < - < l , v * 0 = > 0 < f < l 
y 

where the new variable t is defined by the following relationship: 

(AIII.12) 
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_ x 
(AIII.13) 

Also, it holds that: 

dt = — dx 
y 

Using the transformation defined by eqs. (AIII.12)-(AIII.14), we obtain: 

i 

\p(ty,y)ydt = \ 
o 

If we substitute eqs. (AIII.3) and (AIII.4) in eq.(AIII.15), then we get: 

7=1 0 

(AIII.14) 

(AIII.15) 

(AIII.16) 

We use the Gauss-Legendre quadrature rule to compute the definite integral in (AIII.16) 

m ngp 

2>,T>^te)=1 ( A I I L 1 7 > 
j=i k=i 

The set of equations (AIII.ll) defines a system of linear algebraic equations, which can 

be written in the following vector-matrix form as: 

Ga=b (AIII.18) 

where G is the nxm non-square coefficient or design matrix with elements: 

Gu= ]*, -My)dy = 
xi v y J 

V w (^max -^) A 5 

*-/ ' 8Pk(
x™*-xi) + xi J{8Pk(x

nm-x) + xi 

nd(8Pk(
x
nim-xi) + xi) 

(AIII.19) 
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b is the nx\ data vector with elements the values of the newborn density at the 

discretization points: 

bt=nb(Xi) . (AIII.20) 

and a stands for the mx\ vector of unknown expansion coefficients ai. The 

normalization constraint (AIII.17) can be written in vector form as follows: 

cTa=\ (AIII.21) 

where c is the mxl vector with elements: 

Cj = f-d - dx^wjjigpj (AIII.22) 
0y \yj k=\ 

Finding a solution to the overdetermined {n > m) system of linear algebraic equations 

(AIII.18) calls for a minimization formulation, shown below: 

min||Gfl-ft|L 

s.t. cTa = 1 
(AIII.23) 

A nonnegativity constraint is required for P(x, y), which is given below: 

P(x,y)>0 V(x,y)eD = {x>0,y>0:y>x} (AIII.24) 

Because P(x, y) is a homogeneous function, the nonnegativity constraint can take the 

following form: 

Q 
'x^ 

>0 V(jc,;y)eI>=>Q(/)>0 V/e[0 , l ] (AIII.25) 
yyj 

Equation (AIII.25) has to hold true for any point 0 < / , < / 2 < . . . < / <lof the 

discretized interval [0,l]. Thus, we end up with the following vector inequality: 
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'*(/,) - M/.r 
ti(fnp) "• 0m(fnp) 

(„ \ 

\a
mj 

> 

^ 

vOy 

(AIII.26) 

which can be written more compactly as: 

Apa>0 (AIII.27) 

The nonnegativity constraint for the newborn density can be simply expressed as: 

Ga>0 (AIII.28) 

Because the content of the mother cell y is preserved at cell division and is distributed 

among the two daughter cells, the following condition holds forP(jc, v): 

P(x,y) = P(y-x,y) (AIII.29) 

Given that P(x, y) is a homogeneous function, the following condition also holds: 

Q(f) = Q(l-f) (AIII.30) 

which shows that the partitioning function <2(/)for the daughter to mother content ratio 

/ is symmetric. The condition (AIII.30) can be alternatively written as follows: 

m m m 

Tt«Mf)=It
aM1-f)=*I,aM(f)-+j(1-f))=0 

Discretization of eq. (AIII.31) yields the following set algebraic equations: 

Z«y(^U)-^(l-A))=0'V/,e{/1,/2,...,4mJe[0,l] 

(AIII.31) 

(AIII.32) 

In vector-matrix notation, eq.(AIII.32) can be written as: 

Kfl=° (AIII.33) 
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where matrix A has dimensions nsymxm and the vector 0 has dimensions mx\. Taking 

into account all the constraints we have derived so far, the minization problem can be 

ten as: 

minllGa-
oeK'" " 

S.t. 

Anorn,
a=1 

Kfl=° 
Apa>0 

€ 

(AIII.34) 

Ga>0 

where A = cT .The constraint quadratic minimization problem (AIII.34) can be written 

equivalently as: 

mm.—aT Ha + FTa 
aeW" 2 

S.t. 
Ae1

a=Ce„ 

A <0 

(AIII.35) 

where 

H = 2GTG 

FT =-2bTG 

~ eq 

norm 

A 
sym 

(AIII.36) 

(AIII.37) 

(AIII.38) 

Ain = in 

~-A~ 
p 

-G 
(AIII.39) 

Ce« = (AIII.40) 
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Appendix IV 

Derivation and Application of Tikhonov Regularization 

The method of Tikhonov regularization is used to stabilize the solution of an inverse 

problem. Here, we describe how we apply the zeroth, first and second order Tikhonov 

regularization to the constraint quadratic minimization problem in order to find the 

unknown partitioning function Q(f)- In zeroth order Tikhonov regularization, we 

minimize a measure of the function Q(f), which is usually the L2 norm for real 

functions, defined as follows for the real univariate function g (x) in [a,b]: 

H4\2=Jk(4^^\H42 = Hxtdx (AIV.l) 

Minimizing the L2 norm of Q(f) is equivalent to looking for the smallest function 

Q(f) that solves the inverse problem. In first and second order Tikhonov regularization, 

we minimize the first and second derivative of the partitioning function—Q(f) and 
df 

df 
Q(f) respectively, which means that we seek for the flattest and the smoothest 

functions Q(f) that solve the problem satisfactorily. The most general form of Tikhonov 

regularization includes all three types (zeroth, first and second) and the corresponding 

objective function that needs to be minimized in this case is shown below: 

d2 

\\Ga~bf2+\\\Q(f)\\2+l2 jjQ(f) +k, 
df 

•Q(f) (AIV.2) 
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where the regularization parameters XI,k2,kj are relatively small nonnegative numbers 

that determine the relative importance of each corresponding term, when minimizing the 

objective function (AIV.2). The following relationships hold for the partitioning function, 

its first and second derivative. 

fi(/)=E«^(/) 
i=i 

aJ j=i aJ j=i 

aj j=\ aJ j=i 

Let us take the L2 norm of the partitioning function: 

\Q(ft = iZ°Mf) # = iIl°Mf) 
o y=i o v j=x 

1J m \ / m A m 1 ... 

\HaMf) \TaMf) 4f=-2>J (̂/) ZaMf) 
o\;=i J\k=i J j=\ o 
m m 1 

j=l *=1 o 

The matrix representation of (AIV.6) is the following: 

4T = 

4T = 

i m m » 

|e(/)| =Z«,Z«j4(/M(/)4r = 
y=i *=i o 

'O' 

vaw 

a rDa 

fc(/MM* - K(/)A,(/)4T 
Vo 

'a , ^ 

vaw 

(AIV.3) 

(AIV.4) 

(AIV.5) 

(AIV.6) 

(AIV.7) 

where D is an mxm matrix with elements: 
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0 

Similarly, for the L2 norm of the first and second derivative of Q(f), the following 

relationships hold: 

? m m * 

¥ (f% = I>,2>* K (M {f)df=aTDxa (AIV.9) 
7=1 k=l o 

where Di is the mxm matrix with elements: 

DUj = \(f){f)<fk{f)df (AIV.10) 

o 

and 

7 m m ^ 

|e"(/)| =£flyZfl*K(/K(/)4T=«rl>2« (AIV.ll) 
y=i k=\ o 

where £>2 is an mxm matrix with elements: 

02# = ft(/M"(/)4f (AIV.12) 

o 

By including Tikhonov regularization the quadratic minimization problem (AIII.34) is 

adjusted as follows: 

minllGa -&IL + /L2 ||D,a|L 
fl£R„ II 112 *2 II 2 ||2 

si. 

Anomfl=l (AIV.13) 

Apa>0 

Ga>0 

which can be written equivalently as: 
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min—aTH*a + FTa 
asR" 2 

s-t- (AIV.14) 

where H* is the modified Hessian defined as: 

H* = 2GTG + 2A*D2 (AIV.15) 
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Appendix V 

Data-Driven Methods for Automatic Bandwidth Selection 

A. Least squares cross-validation methods 

The kernel density estimator is: 

(x) = — tK W nhtt 
x-X, 

(AV.l) 
h 

Least squares cross-validation [125] is a fully automatic data-driven method for selecting 

the smoothing parameter h. The method is based on the principle of selecting a 

bandwidth that minimizes the integrated squared error of the resulting estimate. Thus, this 

method provides an optimal bandwidth tailored to all x in the support ofg(x). The 

integrated squared difference between g(x) and g(x) is: 

lg{x)-g(x)]2dx= lg(x)2dx-2\g(x)g(x)dx+ \g(x)2dx (AV.2) 

Minimizing (AV.2) with respect to h is equivalent to minimizing the following 

expression: 

§_g(x)-g(x)]2dx- lg{x)2dx= \g{xf dx-2\g(x)g(x)dx (AV.3) 

The right-hand side term of (AV.3) can be written as: 

Ex[g{x)]=\g(x)g{x)dx (AV.4) 

An unbiased estimator of (AV.4) is the following quantity: 

£x[£(*)WI>,(* , ) (AV.5) 

which replaces the expectation Ex by its sample mean, where: 
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M*,)^I/ X,-Xj 
h 

(AV.6) 

is the leave-one-out kernel estimator of g (X, ) . Also, the first term on the right-hand side 

of (AV.3) can be written as: 

W*-]l±±;Kfl'-X" 

n ws* 
_~? nh 

X~X^ 

dx = 
n2h2 J tt 

x-X, dx-

1 TLfc 
h 

''x-X, 

S* 

n h ,=1 j=l
 J h 

1 n " -fX-X.^ 

^htftfK[ h 

j=i 

K 

x-X, 
dx = 

X-X, 
\dx = 

(AV.7) 

where 

K 
X: ~ X , 

h 
L\=\K{y)K 

Xi~Xj 

h 
-y dy (AV.8) 

If we use the two transformations of variables defined by the following equations 

XJ 

~r+y = z 
h 

(AV.9) 

zh = x (AV.10) 

as well as the property of the kernel K [t) 

(AV.ll) 

in (AV.8), we get: 
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fx x; 

V 

) 

h h 

dz = 

— y dy = 

(AV.12) 

H 'zh-xA 
h 

K 
zh-X 

J h 
LM* x-X, 

v 
/z 

K 
fx-xA 

j v 
A 

d!x 

Then the right-hand side of (AV.3) can be approximated as: 

n n f V V \ 

n2hj^tt 
i n n 

n2ht!tt 
1 n n 

2»-1Z/-i(^i) = 
1=1 

-2n"lZ 
, = 1 (n- l ) / z , = u 

X - X 
' y 

yyjfp_^i ^ _ y y A: 
.•=i <=i I h ) n(n-\)h /=1 y=1,jW 

» A .-=i ,•= 

1 « « -[xi-xA 

i n n 

i=i i=l 

i n n 

Xi-Xj rt n 

IE* 
x,-x, 

n(n-\)h 

2 
n{n-\)h~^ j 

*•) n n 

y y K 
n(n-l)h~?j~l 

X>~XJ 
h 

n n (X-X^ 
(AV.13) 

-nK(0) 

X,-Xj}t 2nK(0) 

h J n(n-l)/i 

2K(0) 
(n-\)h 

Xs-X i J 

B. Likelihood cross validation method 

Likelihood cross-validation [125] is another fully automatic data-driven method for 

selecting the smoothing parameter h. The method is based on the principle of selecting a 

bandwidth that minimizes the following score function: 

1 ^ 
CV(h) = — X>*(M*,)) (AV.14) 

/=i 

where: 

M*,>=^j> X.-X, 
(AV.15) 
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by using (AV.15) in (AV.14), we obtain: 

1 ^ . f 1 f * » (X,-X,^ 
CV(h) = —YJlog - — r - E K 

n ,=1 {(n-l)hjmlM 

Equation (AV.16) can be rewritten as: 

1 

J) 
(AV.16) 

CV(h) = --fjlog 
f • " (X;-X ^ 

J = l yy 
1 " 

n ,=i 

1 

(n-\)h h 
-K(0) 

(AV.17) 
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Appendix VI 

Detailed Derivation of the CDF Form of the Integral Equation for the PPDF 

We reformulate the integral equation (5.3) for P(x,y) using the cumulative distribution 

functions (CDF) for the dividing and newborn cell subpopulations. The dividing CDF is 

given by: 

{x) = ̂ M (AVU) 
ax 

and similarly for the newborn CDF we have: 

, . dch (x) 
nb(x) = -^y- (AVI.2) 

ax 

Substituting (AVI.l) and (AVI.2) in (5.3), we obtain: 

^M=r-P{x,y)^Mdy (AVI.3) 
dx Jx dy 

Then, we use the integration by parts to get: 

^ M = [P(x,y)Cd {y)jr _ £- Cd (y)^^dy (AVI.4) 

By integrating both sides of (AVI.4), we obtain: 

J- ^ M ^ . J" [,(,, y)Cd {y)J- &_ J" J - Cd (,) ̂ fc^fe (AVI.5) 
J-Vmin dX Jx™« * * m i D Jx 8y 

and finally we have that: 

c
b{z)-cb(xmin)= J[ [P(xfxBax)cd(xim)-P(x,x)cd(x)]dx 

rz fw , .dP(x,y) 
- I I cd(y)—K-—^dydx 

"^min J A ay 

(AVI.6) 
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Switching the names of variables x and z to z and x, respectively in (AVI.6) leads to: 

C * ( * ) - C * ( * m i n ) + £ n [ ^ ( Z ' * m a x K ( * m a x ) - P(z,z)cd(z)]dz 

- I I cd{y) T—^dydz 

J-*mi„ * dy 

It holds that: 

P(x, y) = 0\/x>y^P(z,z) = 0 

and that: 
C» (X) = f "* ( 0 * => ̂  (*mi„ ) = f""" *A ( 0 dt => Cb (Xmin ) = 0 

Substituting eqs. (AVI.8) and (AVI.9) in (AVI.7), we get: 

(AVI.7) 

(AVI.8) 

(AVI.9) 

(AVI. 10) 

Given that P(x, y) is a homogeneous function, if we substitute eq. (5.13) into eq. 

(AVI. 10), we obtain: 

"Amin X 

( Z ^ cu(x^)dZ 
max V max / 

-LJ>M dy 
l-Q 
y 

V 
(AVI. 11) 

dydz 

Let us now define the function W (z, y) as: 

(AVI. 12) 

then we have that: 
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d_ 

dy 
iJz^ 
-Q 
y \y) 

V 

1 
Q 

' ^ 

v^y 
+ 

Q * 

i 4g(w) aw 
y dW dy y 

j__a_ 

y 5y 

- ^ 2 

G 
^ 

U 

y <y)^ 

(AVI. 13) 

y J 

Substituting eq. (AVI. 13) in (AVI.11), we get: 

^max V max / ^ V S / 

*y.* y yy) 

(AVI. 14) 

or equivalently: 

z iW- r. T-fi T- c'^)*+r. r-?fl ^kw** 
max \ max / 

+r r-rG' V 
<y. 

(AVI. 15) 

(y)dydz 

We will apply two transformations of variables to bring the double integral from the form 

g(x,y)dy\dx to the form f [g*(y,s)ds\dv. The first transformation is defined 

as follows: 

x<y<b=>x-x<y-x<b-x=>0<y-x<b-x-

0 < — < U 9 6 f c = > 0 ^ S ^ l 
b-x 

s = • 
y-x 
b-x 

ds = • 
dy 

b-x 

(AVI. 16) 

(AVI. 17) 

(AVI. 18) 

Using the transformation of variables defined by eqs. (AVI.16)-(AVI.18), we get: 

[(fxg(x,y)dy\dx = ̂ Ug(x,s(b-x) + x)(b-x)ds)dx (AVI. 19) 
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We apply a second transformation of variables defined by the following relationships: 

a<x<z=>a-a<x-a<z-a=>Q<x-a<z-a=> 

x-a (AVI.20) 

z-a 

v = ^-?- (AVI.21) 
z-a 

dv = — (AVI.22) 
z-a 

Then (AVI. 19) becomes: 

H ^g(x,y)ay\ax=^{jog(x,s(b-x)+x)(b-x)ds\dx = 

I \.8(v{z-a)+a,s{b-v{z-a)-a)+v(z-a)+a)(b-v(z-a)-a}ds\(z-a)dv = 
' (AVI.23) 

II ls{v{z-a)+a,s(b-v(z-a)-a)+v(z-a)+a){b-v{z-a)-aj{z-a)ds\dv = 

l(l8*(v,s)ds)dv 

where g* (v,s) is defined as follows: 

8*{v,s) = 
(AVI.24) 

g(y(z-a) + a,s(b-v(z-a)-a) + v(z-a) + a)(b-v(z-a)-a)(z-a) 

We use the Gauss-Legendre quadrature method to evaluate the double integral 

A I j \ ngp ngp 

Uigt(v,s)ds)dv^21lw
kl

w
kX(8PkrSPk2) (AVI.25) 

We will now use the transformations of variables, we have already defined to evaluate 

the three integrals that appear in (AVI. 15). 

Integral No. 1 
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( z ^ 7i = 7i M = f Q — c<i (xmax)dz = J > f <f> — cd (xmm)dz = 
Amax V Amax / J = 1 Amax V max / 

«,-], <t>i — ^{xmaj{x-xmio)ds = 
7=1 

m ngp 

max V max / 

m ngp i 

7=1 *=1 x max 

8Pk(X~X
min) + Xn 

Cd\Xmax)\X -"-minj 

(AVI.26) 

Integral No.2 

I2=I2{x) = l ^-jQ - crf(y)d>*fe = X f l , f f " - r ^ - " ^ ( y ^ 

2>,£ I n — r ~ ^ 

&n 
7=1 

4 

*(*max ~ z ) + Z 

Cd(4^~V(*~^)~^) + K*~^)+3kn) 

( 5 ( - ^ m a x - V ( ^ - ^ m i n ) - ^ m i „ ) + V ( X - X m i „ ) + ^min) 

^ ( ^ - ^ m i n ) + ^ m i n ^ 

cd {s ixm, ~ z) + z) {x^ - z) dsdz = 

2 •" 

( ^ • ™ x - V ( X - X m i n ) - ^ m i „ ) ( ^ - ^ m i „ ) ^ ^ : 

S(X™~V(X-X™n)-X™) + V(X-X™n)+X™ 

Cd [gPlt (*max ~SPh {X-X™n)-X™) + gPkl ( * - * m i „ ) + * „ * „ ) m ngp ngp 
W«, 2 • " 

*, 
mXx-x™)+x™ 

SPk, (*max ~8Pkl {X-X
nin)-

X
nJj + m i {X-Xmn)+X

m 

Integral No.3 

(*™x ~SPkx {X-X^)-X^){X-X^n) 
(AVI.27) 

7=1 - "i" 

*(*max ~ z ) + Z 
CU {S (*max - Z ) + Z ) (*max ~ z ) <*«& = 
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^ (S (*max - V(X - Xm i n ) - * m i n ) + V (x - Xmin ) + * m i n ) 
3 " • 

( 
V(*~*min) + *,T 

(^max-V(^-^min)-^mi„)-

(v(x- xmin ) + xmin)(x- xmin) dsdv = 

/ / r ^ U / ^ \ (AVI.28) 

L ^ I L ^ ^ - ; ; : ; ; ; —-

r 

( §Pk2 (*max - 8Pk{ {X ~ *mi„ ) ~ X
mia ) + 8Pk] (X ~ X

min ) + *min ) 

8Pk2 (*max - 8Ph (X-Xmin)- Xmin ) + gPki (X - XMn ) + Xmis 

(X
ma*-8Pkl (*-*min )-*„»„)(«?*, (*-*mi„) + *min)(*-*mi„) 

We substitute eqs (AVI.26)-(AVI.28) into the CDF integral equation (AVI.15), which 

then can be written as: 

m 

cb(x) = /, (*) +12 (x) +13 (x) = X aj (i; (x) +1[ (x) + V {x)) (AVI.29) 

Discretization of (AVI.29) yields: 

Vi = l,2,...,n 

m 

7=1 

(AVI.30) 

The set of eqs. (AVI.30) define a system of linear algebraic equations which can be 

written, similarly to the NDF case, as: 

Ga=b (AVI.31) 

The overdetermined system of linear eqs. (AVI.31) can be formulated as a minimization 

problem similar to the one for the NDF case, with the same equality and nonnegativity 

constraints: 
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min—aTH*a + FTa 
aeR'" 2 

**• (AVI.32) 

Ka=Ceq 
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