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Abstract 

State Cycles, Quasipositive Modification, and Constructing 

H-Thick Knots in Khovanov Homology 

by 

Andrew Elliott 

We study Khovanov homology classes which have state cycle representatives, and 

examine how they interact with Jacobsson homomorphisms and Lee's map As 

an application, we describe a general procedure, quasipositive modification, for con-

structing H-thick knots in rational Khovanov homology. Moreover, we show that 

specific families of such knots cannot be detected by Khovanov's thickness criteria. 

We also exhibit a sequence of prime links related by quasipositive modification whose 

width is increasing. 
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Chapter 1 

Introduction 

1.1 Background 

My research lies in knot theory, a branch of low-dimensional topology. A knot is the 

image of an embedding of the circle, S1, in the 3 dimensional sphere, S3; a link is the 

image of an embedding of several copies of S1 into S3, viewed up to ambient isotopy. 

Link complements are intrinsically related to the study of 3-dimensional manifolds: 

a theorem of Lickorish and Wallace states that every closed, connected orientable 

3-manifold may be obtained by removing a neighborhood of a link and replacing it 

in a twisted manner. 

Instead of working directly from such a 3-dimensional embedding, we will take 

the common tactic of working from a diagram of a knot. A diagram is just a planar 

projection, with broken arcs indicating crossings. See Figure 1.1 for an example. 

In knot theory, one typically associates algebraic objects, such as numbers, poly-

nomials, and groups, to the knot which remain unchanged by ambient isotopies. One 
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Figure 1.1: A diagram for the knot 63. 

of the more famous polynomial invariants associated to knots is the Jones polynomial. 

The Jones polynomial, V(K), is a Laurent polynomial discovered in 1983 by Vaugh 

Jones, which has been remarkably successful as a knot invariant. For example, it 

distinguishes a knot from its mirror image, and fully classifies knots of 9 crossings or 

less. However, it is not a complete knot invariant: for example, V(5i) = V^IO^). 

My dissertation deals primarily with Khovanov homology, a generalization of the 

Jones polynomial. Khovanov homology is a collection of abelian groups, indexed by 

two integer gradings i,j, whose graded Euler characteristic is a normalization of the 

Jones polynomial. As a knot invariant, it is stronger than the Jones polynomial: for 

example, the Khovanov homology of 5i and IO132 differs, even though the two knots 

have the same Jones polynomial. The underlying chain complex and differential used 

to construct the homology groups of Khovanov homology are defined in a combina-

torial way, based on a diagram of the knot. When working in rational Khovanov 

homology, one can just view these bigraded groups as rational vector spaces, and rep-

resent the homology as a plot of the ranks of each vector space against the bigradings, 

as shown in Table 1.1. 

Khovanov homology has been described as a categorification of the Jones poly-

nomial: a chain complex, where the ranks of vector spaces generalize the polynomial 

coefficients of the Jones polynomial. This procedure has since been applied to many 

other polynomials both in topology and in combinatorics, from the Alexander poly-
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-6 -5 -4 -3 -2 -1 0 1 2 3 

7 1 
5 2 
3 3 I 
1 5 2 

-1 1 4 
-3 4 4 
-5 3 1 
-7 2 4 
-9 1 3 

-11 2 
-13 1 

Table 1.1: Rational Khovanov homology of 941. The numbers represent the ranks of 
the appropriate vector spaces. The nontrivial ranks tend to lie on a certain number 
of diagonals of the form 2i — j = 6; here there are two diagonals which have been 
shaded. 

nomial of knot theory to the chromatic polynomial of graph theory. 

While Khovanov homology distinguishes many pairs which the Jones polynomial 

could not, Khovanov homology is also not a complete knot invariant: Liam Watson 

has shown in [Wat07] that there are infinite families of distinct knots with the same 

Khovanov homology. It remains an open question for both the Jones polynomial 

and Khovanov homology as to whether either "distinguishes" the unknot: in other 

words, is there any nontrivial knot whose respective invariant matches that of the 

unknot. Partial progress towards this problem on the Khovanov side has been given 

by [GW08, Hed08, HW08], 
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1.2 Thickness in Khovanov Homology 

After Bar-Natan circulated his initial calculations for Khovanov homology, a striking 

pattern emerged: when plotting the ranks of the homology according to the bigrading, 

most small crossing number knots had every nontrivial homology group lying on 

2 adjacent "diagonals" of slope 2, with y-intercept of the two diagonals being the 

signature of the knot ±1. Knots for which the Khovanov homology lies on only 2 

such diagonals are called H-thin, while those with 3 or more diagonals are called H-

thick. The number of these diagonals on which the homology is supported is called the 

homological width. An example of the homology of an H-thick knot with 3 diagonals 

is given in Table 1.2. 

-4 -3 -2 -1 0 1 2 

7 1 
5 
3 1 1. 
1 1 1 

-1 1 1 
-3 .1 1 
-5 
-7 1 

Table 1.2: Rational Khovanov homology of 942, an H-thick knot. The three diagonals 
are shaded in different colors. 

Recent work of Ozsvath and Manolescu [M008] has grouped all but one of these 

small H-thin knots into a single family, called quasi-alternating knots, for which both 

the Khovanov and Knot Floer homologies are a thin, in the sense that the knots are H-

thin with intercepts related to the signature. For these knots, the reduced Khovanov 
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homology is determined entirely by the Jones polynomial and the signature. From this 

perspective, the H-thick knots are the knots with "interesting" Khovanov homology. 

Most of the general theorems guaranteeing thickness are laid out in [Kho03]. 

Other authors have come up with upper bounds for the homological width of a knot. 

But, to actually show a knot is H-thick, one must either do an explicit calculation, 

or turn to the theorems of Khovanov from [Kho03], summarized below. 

Theorem 1.1. (Khovanov) K\j^K2 is H-thick if and only if at least one of Ki, K2 

are H-thick. 

Theorem 1.2. (Khovanov) The (usual) Jones polynomial of an H-thin knot is alter-

nating. 

Theorem 1.3. (Khovanov) Adequate non-alternating knots are H-thick. 

Some other knots for which we know the thickness come from explicit calculations of 

the Khovanov homology for those families. These include some torus knots [Sto09] 

[Tur08] and pretzel knots [Suz06]. Concurrently with our work, Adam Lowrance 

[Low09] has produced infinite families of knots of fixed width, by analyzing the long 

exact sequence for knots gotten by replacing "width-preserving" crossings with ratio-

nal tangles. 

1.3 Results 

In this paper, we will demonstrate a new method for constructing H-thick knots, 

which can produce examples not detected by Khovanov's thickness criterion: in par-



6 

ticular, we will construct several infinite families of H-thick hyperbolic knots (hence 

prime, and not torus knots) that are not adequate and have an alternating Jones 

polynomial. Instead of fully calculating the Khovanov homology, we will show that 

certain special homology classes, which have state cycle representatives, persist under 

an operation we call quasipositive modification. In brief, a state cycle is when a single 

generator in the Khovanov chain complex, represented by an enhanced state, is a 

cycle; quasipositive modification is the process of "gluing" in a quasipositive braid in 

a way that is compatible with state cycles one wishes to persist. See Figure 1.2 for a 

schematic of this procedure. 

Figure 1.2: A schematic for constructing thick knots via quasipositive modification. 

The first main result is a prescription for what a nontrivial state cycle has to look 

like. A rough statement is given by: 

Theorem 4.8. For a state cycle to represent a nontrivial homology class, the un-

derlying state must be "almost" adequate, and "most" loops of the 1-block must be 
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marked by v+, while all O-tracing loops must be marked by 

A precise statement is given in Chapter 4 where the theorem appears. Our next 

result is that these state cycles persist under the operation of quasipositive modifica-

tion: 

Theorem 6.4. Let D be an oriented diagram and a a nontrivial state cycle. Suppose 

D' is gotten from D by quasipositive modification compatible with a, and that V& is 

the associated Jacobsson homomorphism from Kh(D') to Kh(D). Then there exists 

a state cycle a so that ^(5) = ±a. If B is the quasipositive braid associated to this 

modification, then a is the enhanced traced state where: 

• All crossings from D are smoothed as in a. 

• Negative crossings from B are 1-smoothed, positive crossings from B are 0-

smoothed. 

• Every loop in a is marked the same as a. 

Furthermore, if multiple such state cycles are compatible with a quasipositive 

modification, the "lifts" of these state cycles retain the same relative grading differ-

ence; this acts as the main workhorse for constructing H-thick knots. 

Quasipositive modification is also compatible with Lee's homomorphism, in the 

following sense: 

Theorem 6.6. Let D be an oriented diagram, and a a nontrivial state cycle of D. 

Suppose D' is a diagram gotten by quasipositive modification on D compatible with a, 

and that a is the lift of a. Then 4'j($jr,ee(5)) = 5)) = $iee(a). 
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This last result is useful in reducing the number of state cycles needed to construct 

H-thick knots: one can find two nontrivial state cycles in distinct diagonals, and 

then examine Lee's spectral sequence to see that one of them is paired with a third 

nonzero diagonal by the Lee homomorphism. This pairing is then preserved under 

quasipositive modification, so that at least three distinct diagonals will be present in 

the modified knot. 

1.4 Layout 

In Chapter 2, we go over the basics of Khovanov homology. Chapter 3 introduces the 

notion of a state cycle, the special case when a single generator is a cycle in the Kho-

vanov chain complex. Chapter 4 gives the classification of state cycles which represent 

nontrivial homology classes, and Chapter 5 examines how state cycles interact with 

various maps and the Lee spectral sequence. Chapter 6 carefully defines quasiposi-

tive modification and discusses how it interacts with state cycles and related cycles. 

Chapter 7 lays out our examples of families of H-thick knots, and details other base 

knots where this construction works to construct H-thick knots. Included are two in-

finite families of H-thick knots which cannot be detected by the Khovanov thickness 

criterion, and a sequence of prime links related by quasipositive modification which 

have increasing width. 



Chapter 2 

Short Review of Khovanov 

Homology 

Experts in the field should feel free to skip this section, with the understanding 

that I follow Bar-Natan's [BN02] convention for labelling generators, and work with 

Q coefficients. What follows is a review of the cube of resolutions construction of 

Khovanov homology. 

) ( 
O-smoothing C r o s s i n g 1-smoothing 

Figure 2.1: Standard smoothing convention for a crossing 

Given a diagram D for an oriented link L, one can construct a state for that 

diagram by replacing every crossing with a choice of smoothing, per the convention 

in Figure 2.1. The result will be a collection of planar loops, as shown in Figure 2.2. 

By choosing an ordering for the crossings, and keeping track of the choice of 0 or 

9 
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f 

Figure 2.2: On the left, a choice of smoothings has been assigned to every crossing. 
On the right, each crossing has been replaced by its chosen smoothing, giving a state 
for the diagram. 

1-smoothing for each crossing, one gets a label for the state: a string of 0's and l 's 

encoding the smoothing choices. This label can also be viewed as a binary coordinate 

system for a hypercube whose vertices are all the possible states for the diagrams, 

arranged according to this coordinate system of the labels. This hypercube is what 

is called the cube of resolutions for the diagram D. 

The chain complex for Khovanov homology is constructed by associating a graded 

vector space to each state, and then organizing them in some fashion that respects 

the structure of this cube of resolutions. The construction is modelled on a categori-

fication of the Kauffman state-sum formula for the Jones polynomial, with a slightly 

different normalization. 

2.1 Chain Groups 

Specifically, let V be the graded vector space over Q with basis < v+,v- > of grading 

+1, -1 respectively. Given a state a, let Ca be the graded vector space V®k, where 

k is the number of loops in a. Let h(a). the height of the state, be the number 

of 1-smoothings in the label for a. Then, the r i h unnormalized chain group of the 

diagram is defined by: 
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CT{D) = 0 C t (2.1) 
h(a)=r 

This breakdown of generators by state lends itself to viewing generators of the 

chain groups as enhanced states: states with a basis element of V marked on each 

loop. 

2.2 Differentials 

The differential is also defined recursively at the level of these state groups, and 

further broken down into edge differentials, corresponding to the edges of the cube of 

resolutions. An edge between two states exists if the labels for the two states differ 

in only a single place, where a 0 changes to a 1. The associated edge differential is 

viewed as going from the state with the the 0 label to the state with the 1 label, and 

corresponds to the cobordism of the change from the 0 smoothing to the 1 smoothing. 

This cobordism either merges two circles from the initial state, or pinches off a second 

circle from a circle in the initial state, and the edge differential is defined in accordance 

with this dichotomy, as shown in Table 2.1. One labels an edge by taking the label 

of its originating state and substituting a * for the 0 which changes to 1 in the target 

of the edge. 

These edge differentials are then bundled into a state differential, with a sprinkling 

of negative signs added in such a way that squares in the cube of resolutions anti-

commute. Namely, let |e| be the number of l 's which occur in the edge's label before 

the *, and choose (—l)'e' to be the sign for edge differential de. We then combine all 
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o o - ^ o o ^ - o o 
V+ <g) V+ I ^ V+ V + I ^ V+ <g> V - + f _ ® 

(g> V- i ^ V- V- i eg) 
(g) i ^ V -

v- < g 1 i ^ 0 

Table 2.1: The edge differential, de takes one of the above forms depending on whether 
the associated cobordism takes two circles to one, or vice versa. Outside of the 
changed part of the state, the edge differential acts as the identity. 

of the state differentials into another direct sum, to obtain the full chain differential: 

da : Ca —> Cr+1 dT :Cr —>• Cr+1 (2 .2) 

da = 0 ( - 1 )]e]de <? = 0 da 
edges e h(a)=r 

For our purposes, the most important thing to remember is that edge differentials 

leave a state's chain group for every 0 in the state's label, and enter the state's chain 

group for every 1 in the state's label. Much of the analysis of whether things are 

nontrivial cycles will revolve around careful analysis of the edge differentials from 

this perspective. 

2.3 Gradings 

To get the bigrading of Kh(L), there are some index shifts from the writhe and the 

cube construction that need to be addressed. Since we will be dealing directly with 

chain generators, it will be sufficient to describe the bigrading of a chain generator. 

So, let ot-a be a chain generator based on state a. Let n + and n_ be the number 
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of positive and negative crossings of L respectively, following the usual righthanded 

sign convention. Let v+{a) and v-(a) denote the number of v+ and V- elements in 

the tensor for a. Then, the bigrading (t, q), representing the homological grading and 

quantum grading respectively, is given by: 

t(a) = h(a) — (homological grading) 

q{a) = u+(a) - v-(a) + h(a) + n+ — 2n_ (quantum grading) 

All cycles constructed later will be in terms of chain generators, so this gives a 

concise way to calculate their bigrading. 

2.4 Diagonals 

Finally, let's review information about the diagonals of Khovanov homology. A com-

mon way to present the Khovanov homology of a link is in a table of the following 

form, where the ranks of the Khovanov homology at bigrading (i,j) are plotted so 

that homological grading goes horizontally, and quantum grading vertically. Note 

that the quantum gradings shown are either all even or all odd, because the Kho-

vanov homology of a link of n components is supported only on quantum gradings 

j = n (mod 2). An example is given in Table 2.2. 

A pattern for the support of the Khovanov homology is that it always lies on a 

certain number of slope 2 diagonals (this has to do with Khovanov's Krull-Schmidt 
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-6 -5 -4 -3 -2 -1 0 1 2 3 

7 1 
5 2 
3 3 1 
1 5 2 

-1 4 4 
-3 1 4 
-5 3 4 
-7 2 1 
-9 1 3 

-11 2 
-13 1 

Table 2.2: Rational Khovanov homology of 941, an H-thin knot. Its two diagonals are 
shaded. 

decomposition of the chain complex in [Kho03]). A diagonal of grading 5 comprises 

all Khl^{L) of the form <5 = 2i — j. When a link's homology is supported on only 2 

such diagonals, we say the link is H-thin. An example is shown in Table 2.2. 

-4 -3 -2 -1 0 1 2 

7 1 
5 
3 1 1 
1 I 1 

-1 1 1 
-3 1 I 
-5 
-7 1 

Table 2.3: Rational Khovanov homology of 942, an H-thick knot. The three diagonals 
are shaded in different colors. 

When a link's Khovanov homology is supported on 3 or more diagonals, we say 

the link is H-thick. An example is seen in Table 2.3. We say that the width of a link's 

Khovanov homology is the number of diagonals on which its Khovanov homology is 
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supported. 



Chapter 3 

State Cycles 

Enhanced states comprise the generators of the Khovanov chain complex. But some-

times, a single enhanced state turns out to be a cycle representative. These special 

cycles are especially convenient to manipulate, and serve as the foundation for the 

cycles we will construct explicitly to generate our H-thick families. 

Definition 3.1. We say that an enhanced state a is a state cycle if the associated 

element of the chain complex is a cycle; namely, d(a) = 0. We say that a state cycle 

is nontrivial if it represents a nontrivial homology class. 

By the definition of the Khovanov differential in terms of edge differentials leaving 

a state's chain group, it is a much simpler task to determine if a single enhanced state 

a a is a cycle than it is to show that it is nontrivial. Indeed, a quick look over the edge 

differentials in Table 2.1 reveals that for this to happen, every edge exiting a must 

fall in the /i case, with the respective loops marked by v_ in a a . This forces every 

edge differential leaving aa to vanish; since aa lies in ker(d), it is a cycle in Kh(L). 

16 
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< X 
O-smoothing C r o s s i n g 1-smoothing 

Figure 3.1: Smoothings marked with traces of the crossings. O-smoothings will be 
red, dot-and-dashed lines; 1-smoothings will be blue, dotted lines. 

To better analyze this situation, it is helpful to record not just the smoothings of 

a, but also the traces of the crossings, as shown in Figure 3.1. The trace of a crossing 

is a shadow to show where a crossing has been smoothed to get the state a, and 

represents where an edge differential either enters or exits a chain generator based on 

a. See Figure 3.2 for a schematic of this relation. A state with all its tracings marked 

is said to be a traced state-, an enhanced state with all its tracing marks is said to be 

an enhanced trace state, or ET state. See Figure 3.3 for an example of an ET state. 

Figure 3.2: Schematic for how traces correspond to edge differentials. Red dot-and-
dash edge differentials exit the chain group, and come from the red dot-and-dash 
0-traces; blue dotted edge differentials enter the chain group, and come from the blue 
dotted 1-traces. 

Figure 3.3: On the left, a choice of smoothings has been assigned to every crossing. 
On the right, an ET state corresponding to t>+ ® g) is shown. 

Let us introduce some further terminology to discuss these traces of crossings. We 

say that a trace is a mergetrace or pinchtrace if the trace connects two or one loop 

in <j, respectively. See Figure 3.4 for some examples. The terminology is meant to 

V. 
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suggest that when the crossing associated to a mergetrace is changed to the opposite 

smoothing, the two loops joined by the mergetrace are merged together; similarly, 

when the crossing associated to a pinchtrace is changed to the opposite smoothing, 

the original loop is pinched into a pair of loops. 

D - D 

Figure 3.4: The left half shows examples of mergetraces; the right half shows examples 
of pinchtraces. 

We can further differentiate traces by keeping track of which kind of smoothing 

they are associated to in a. If a mergetrace is associated to a crossing that has been 

0-smoothed in a, we say it is a O-mergetrace, and so on. Returning to the discussion 

of state cycles, the condition now becomes that a must be a state such that every 0-

trace is a mergetrace, and that every loop touched by a O-mergetrace must be marked 

by in a.a. 

Now, let us introduce some terminology describing a state in terms of its traces. A 

state is said to be 0-merging if every 0-trace in the state is a mergetrace. Similarly, a 

state is said to be 1-merging if every 1-trace is a mergetrace, and so on for 0-pinching 

and 1-pinching. This leads to the definition of an adequate state as a state that is 

both 0-merging and 1-merging (compare to Ozawa's definition [0za06]). 

Unfortunately, the term "adequate" has been overloaded in the literature. Build-

ing off the above definition, a diagram is said to be adequate if its all-0 state and its 

all-1 state are both adequate as states, + adequate if its all-0 state is adequate as a 

state, and - adequate if its all-1 state is adequate as a state. Similarly, a link is said to 

—i 

• [ 
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be any of the above if it admits a diagram with that property. This was the context 

in which Ozawa introduced the notion of an adequate state in [0za06], where he 

studied properties of the surfaces associated to such states in the knot complement. 

As a final bit of terminology useful in discussing ET states, we say that a loop 

in a is 0-tracing if it is touched by a 0-trace in the traced state a. The 1-block of a 

is the set of loops which are 1-tracing, but not 0-tracing. It follows from our earlier 

discussion that for state cycles, the ET state a a must be 0-merging and mark every 

0-tracing loop with , but there is no condition on loops in the 1-block. In summary, 

we have: 

Proposition 3.2. Let a„ be an ET state. Then aa is a state cycle if and only if a 

is 0-merging and every 0-tracing loop of aa is marked by v-. 

Proof. Suppose aa is a state cycle. Since it is only a single generator in the chain 

complex, the only way it can lie in the kernel of the differential is if every outgoing edge 

differential is zero. Looking over Table 2.1, one sees that the only way an individual 

edge differential can be zero is when de corresponds to multiplication and acts on two 

loops marked by Since we have an outgoing edge differential for every 0-trace in 

the state, this means that every 0-trace must be a mergetrace and every loop touched 

by a 0-trace must be marked by i/_, as claimed. 

For the opposite direction, the setup guarantees every outgoing edge differential 

will be zero, by the above discussion. As the total differential is a sum of these edge 

differentials, aa lies in ker(d) and is a state cycle. • 

Example 3.1. Suppose D is a + adequate diagram. Let cr0 denote the all-0 state 
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of D. By definition, cr0 is an adequate state, and in particular 0-merging. Let a 0 

be the ET state of ao where every loop is marked by v-, as shown in Figure 3.5. 

Proposition 3.2 tells us that «0 is a state cycle, but because cr0 is at the very bottom 

of the cube of resolutions for D, there are no differentials entering CTQ. Therefore 

ao actually represents a nontrivial homology class, one of minimal homological and 

quantum grading since it is at the bottom of the cube of resolutions. 

Figure 3.5: On the left is a + adequate diagram of 63. On the right, the all-0 ET 
state ao is shown. 

Example 3.2. Suppose D is a - adequate diagram. Let <Ji denote the all-1 state of 

D. Again, o\ is an adequate state, and so is both 0- and 1-merging. Let a.\ be the 

ET state of o\ where every loop is marked by v+, as shown in Figure 3.6. The set 

of 0-tracing loops is empty because this is the all-1 state, so Proposition 3.2 trivially 

holds and a\ is a state cycle. 

However, because o\ lies at the top of the cube of resolutions, Cai is the only 

chain group of its height h in the Khovanov chain complex for D. This means that 

every edge differential of height h — 1 targets Cai, allowing us to restrict to a single 

edge differential for each chain group of height h — 1. Because every 1-trace of <Ji 

is a mergetrace, every incoming edge differential must lie in the A half of Table 2.1. 

By inspection, no edge differential contains a term marking on every loop of an 

ET state for a\. So, no linear combination of terms can have boundary equal to a \ . 
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Therefore, a i does not lie in im(d) for the Khovanov differential, and hence must 

represent a nontrivial homology class of Kh{L). 

V+ x j n r 

v+ 

Figure 3.6: On the left is a - adequate diagram of 63. On the right, the all-1 ET state 
ot\ is shown. 

Example 3.3. Let D be a braid diagram, and a be the oriented resolution, the state 

where every positive crossing has been 0-smoothed, and every negative crossing has 

been 1-smoothed. This smoothing choice is such that the loops of the resulting state 

are just the strands of the braid, a concentric set of circles, with each trace going 

between two strands. So, each trace is a mergetrace, and the state is adequate. Let 

ip be the ET state where every loop of a has been marked by , as shown in Figure 

3.7. Proposition 3.2 tells us that ^ is a cycle in Khovanov homology, but more can 

be said: Plamenevskaya has shown [Pla06] that ['(/>] is a transverse knot invariant, 

the Plamenevskaya class for Kh(L). 

v. I ; ; 
v. ! 

Iv. 1 

Figure 3.7: On the left is a braid diagram of the negative trefoil. On the right, the 
ET state for the oriented resolution is shown, a representative for the Plamenevskaya 
class. 

Examples 3.1 and 3.2 are of special interest because the respective state cycles 
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represent nontrivial homology classes. They were a critical part of Khovanov's proof 

that adequate, nonalternating knots are H-thick [Kho03], and will turn out to be 

good models for what a general state cycle which represents a nontrivial homology 

class must look like. 

Note that Examples 3.2 and 3.3 choose different values for their respective 1-

blocks: v+ is marked on the 1-block of 3.2 while v- is marked on the 1-block of the 

Plamenevskaya class. Furthermore, for all three examples, the underlying state is not 

simply 0-merging, but actually an adequate state. In fact, every state cycle used in 

constructing the H-thick families will come from an adequate state. 



Chapter 4 

Classifying Nontrivial State Cycles 

In this section, we will work towards a classification of nontrivial state cycles. The 

tools are a series of limits on how the 1-block can be assigned, and at the end of 

the section we will have a strong necessary condition for a state cycle to represent a 

nontrivial homology class. 

The first step towards the classification is to place a restriction on the 1-traces of 

a nontrivial state cycle: 

Proposition 4.1. Let a be a state in a diagram D, and aa an associated ET state 

which represents a cycle in Khovanov homology. Suppose a has a 1-pinchtrace, and 

let La be the loop this 1-pinchtrace touches. If La lies in the 1-block of a, then [aa\ 

is trivial. 

Proof. Let b be the crossing associated to the 1-pinchtrace. Let ab be the state 

obtained by replacing this 1-smoothing by a 0-smoothing, and otherwise matching 

the smoothings of a. Let Li and L2 be the two loops La was split into in a*,. Note 

23 
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that since La lies in the 1-block, it is only touched by 1-traces in a: this means that 

splitting it into two loops for a& will not affect any of the 0-traces coming from <r, so 

that they remain mergetraces. 

Case 1: Suppose La is marked by v+. Let .3 be the ET state associated to a^ where 

L\ and L2 are marked by v+, and all other loops match their marking in aa. Every 

0-trace except that coming from b will be a mergetrace between two loops marked 

by V- since a a is a state cycle. So, all of the edge differentials applied to f3 will be 0 

except for dj,, the one coming from b. Examining Table 2.1, one sees that rlfe takes the 

v+ <g> v+ on Li and L2 to the v+ on La, and otherwise acts as the identity. In other 

words, db(f3) = a„, and since all other edge differentials were zero, d(8) = ±aCT. It 

follows that [aa] is trivial. 

Case 2: Suppose La is marked by Let 3 be the ET state associated to where 

L\ is marked by v+, L2 is marked by and every other loop matches the marking 

of a.a. From the same argument as above, the only nonzero edge differential is d\;. 

examining Table 2.1, we see that dt, again takes f3 precisely to a a . So, d(Q) = 

and hence [aCT] is trivial. • 

Remark 4.1.1. In fact, one can loosen this condition to having one of Lj or L2 "lie" 

in the 1-block, in the sense that the only 0-trace touching it is the one associated to 

b. This only matters for Case 2, where La was marked by i;..: in such a situation, 

one marks the loop which is only 0-traced by b with v+, and the other by V-, and 

the same proof holds. When both such loops are 0-traced by traces other than b, 

one has potentially many different nonzero edge differentials, and a priori one is not 
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guaranteed a method of cancelling these unwanted factors. 

So, every trace touching a loop in the 1-block must be a 1-mergetrace for a state 

cycle to represent a nontrivial homology class. The next proposition gives some 

restrictions on how the loops of the 1-block can be marked: 

Proposition 4.2. Let a be a state in a diagram D, and aa an associated ET state 

which represents a cycle in Khovanov homology. Suppose that there is some pair of 

loops in a which are only connected by 1-traces. If those two loops are marked by v^ 

in aa then \aa\ is trivial. 

Proof. Let b denote one of the 1-traces between the two loops in question, and ab 

the state gotten by changing the smoothing for b to a 0-smoothing, and otherwise 

retaining the smoothing choices of a. Since b was a 1-mergetrace in a, b becomes 

a O-pinchtrace in ab] all other O-smoothings in ab remain O-mergetraces, since there 

were no 0-traces between the two loops that have been merged by changing b. 

Let P be the ET state for ab gotten by marking the newly merged loop by t>_ , and 

all other loops by their markings on a a . Since a a is a state cycle, every 0-tracing loop 

is a mergetrace between two loops marked by . This same situation holds for [i for 

every 0-trace except b. since no 0-tracing loop of a was altered by changing b. Let the 

edge differential associated to b be denoted db\ then every edge differential on /? except 

df, will remain 0, as it each comes from a mergetrace between two loops marked by 

In contrast, the edge differential db associated to this 0-trace is nonzero: examining 

Table 2.1 one sees that db takes the v- on the merged loop to v- g> So db(f3) 

is a a , since edge differentials act as the identity outside of the changed part of the 
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state. Because every other edge differential was zero, d{0) = Therefore [aa] is 

trivial. • 

Remark 4.2.1. This is a generalization of Plamenevskaya's triviality condition for her 

transverse invariant, but the method of proof is different. Compare to Proposition 3 

of [Pla06]. 

Even a single O-mergetrace between the loops of Proposition 4.2 has the chance to 

make [aa\ nontrivial, though, depending on how the rest of the cube of resolutions is 

structured. Each extra O-mergetrace gives a new O-pinchtrace, and another nonzero 

edge differential to complicate the situation. 

Adjacency of a pair of loops is not the only problem with V- loops in the 

1-block: in fact, if there is a pair of v_ loops that can be joined by a path of 1-traces 

in the 1-block, then the ET state is trivial: 

Proposition 4.3. Let a be a state in a diagram D, and aa an associated ET state 

which represents a cycle in Khovanov homology. Suppose that in aa there are two 

loops La and L7 marked by v_, and that there exists a path of 1-traces {6i, b2, • • •, bn} 

between these loops, so that every loop in this path (including La,L1) lies in the 

1-block. Then [a„] is trivial. 

Proof. Essentially, we will construct a telescoping series of boundaries, finishing with 

the kind of boundary constructed in Proposition 4.2. We will assume that the path 

chosen is minimal, in the sense that every loop between La and L7 in the path is 

marked by v+ in aa. Furthermore, Proposition 4.1 lets us assume every 1-trace in 
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this path is a mergetrace, as otherwise we already know that [aa\ is trivial. So, let's 

establish some notation. 

Let <jj be the state where crossing bi has been 0-smoothed, and all other smoothings 

match those of cr. Let di be the edge differential from a% associated to the trace bi. 

Let Li be LA, and L, the loop besides L,_i which trace 6;_i touches: L1 then becomes 

L„+1. Furthermore, note that in cr̂ , the loops LT and L.L+I are merged, while every 

other loop remains the same. Denote this merged loop in cr, by Mf. 

Let fa be the ET state associated to cr, where the loops L\ and Mj are marked by 

v+ and all other loops match the marking of ae. Let Si be the ET state associated to 

cr where L\ and LL are marked by LI+I is marked by and all other loops are 

marked as in a a . See Figure 4.1 for an illustration. 

Because the only traces between each pair LI and L%+\ are 1-traces by assumption, 

the only new edge differential out of will be di. Furthermore, since Lt, L,+1 lie in the 

1-block, di is the only edge differential out of which involves the merged loop Mj. 

This means that all the other edge differentials remain zero: none of the 0-tracing 

loops from a a are marked differently, and none of the 0-traces from a„ have been 

changed in j3i, so that each edge differential other than di comes from a mergetrace 

between two loops marked by . 

Consulting Table 2.1, we see that di acting on j3t will take the v+ on loop Mj to 

a pair of ET states, where <gi v+ + v+ ® suggests the marking on loops Li and 

Li+1, and otherwise the markings match a„. In particular, writing only the tensor 
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V. V+ V+ V+ V. a 
a 

Li I-2 L3 

Li L2 L3 

Li L2 L3 

' "n ' " n + l 

V+ I . . . v+ V+ . . . . V. 

M 1 L3 L n + 1 

V. v + ; V+ . . . . V. 

Li M 2 

V+ . . . . V. . . . V+ V+ . . . . V. 

Li L2 L3 Ln Ln+1 

V+ . . . . V+ . . . V. v + V. 
mmmmmm mmt^ 

Pi 

P2 

6, 

L n L n + 1 

V+ . . . . V+ . . . V+ V. . . . . V. 
n 

' "n ' "n+ l 

Figure 4.1: ET states showing relevant loops for a a , and the 3t and Si 

elements for the loops Li, and marking the cobordant loops in parentheses: 

di(Pi) = (v- <g> v+) <g> • • • 0 + (v+ <g) <g> • • • (8) v. 

= aa + 8i 

^2(^2) = v+ ® (v~ <g) v+) <8> • • • ® V- + v+ (g) (g) t>_) 

= + S2 

di{/3i) = 6i-1 + <5; 
n 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
i=l 
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Now, note that in 5n we have an ET state where there are loops Ln, Ln+\ marked 

with v_ and joined only with 1-traces. The proof of Proposition 4.2 gives us an 

explicit boundary for 5n: let 7 be the ET state associated to an where Mn is marked 

by v-, Li is marked by v+, and other loops are marked as in aa. Then d(7) = ±5n. 

Adding this to our sum above gives an explicit boundary for a a , modulo some sign 

changes which come from the signs of the edge differentials when passing from di to 

d. Therefore, [aa\ is trivial. • 

Remark 4.3.1. The restriction that each loop in this path must lie in the 1-block is 

needed to guarantee triviality. Even a single 0-trace touching one of the loops will give 

a second potential nonzero edge differential for this construction that can obstruct 

triviality, as the following example shows: 

Figure 4.2: On the left is a diagram for a link, and on the right is a particular enhanced 
state giving a state cycle. Direct calculation shows that this state cycle represents a 
nontrivial homology class. 

Example 4.1. Consider the link diagram and enhanced state for that diagram shown 

in Figure 4.2. The two leftmost loops marked by can be joined by a path of loops 

joined by 1-traces, but direct calculation shows that the associated homology class 

is nontrivial. So, the extra 0-traces coming off the starting and ending loops can 

sometimes obstruct triviality. 

Using these propositions, we can give a fairly restricted picture of what enhanced 

states can represent nontrivial homology classes. Roughly speaking, the underlying 

v. v+ 
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state must be "almost" adequate, and "most" loops of the 1-block must be marked 

by v+, while all 0-tracing loops must be marked by To be precise about what 

"most" loops means, we will need to introduce a number of definitions related to a 

graph theoretic interpretation of the traced states. 

Definition 4.4. Given a state a, the associated state graph rff is constructed by 

taking the loops of a to be vertices, and the traces to be edges. 

Remark 4.4.1. In general this is really a pseudograph, because an edge may start and 

end at the same vertex if the state is not adequate, and two vertices may be joined by 

multiple edges. When the state is adequate, the state graph is an honest multigraph. 

The state graph, and subgraphs of the state graph, turns out to be a useful tool 

for describing conditions for triviality and nontriviality of a state cycle. For example, 

consider the following definition: 

Definition 4.5. We say that a state is even if every circuit in its state graph has 

even length. Otherwise, we say that the state is odd. 

Remark 4.5.1. A pinchtrace gives a closed path of length 1 from the loop it joins to 

itself. So, an even state is also an adequate state. 

Remark 4.5.2. A graph theory consequence is that if a is even, Tn is 2-colorable. 

Namely, there is an assignment of a color to every vertex, using only 2 colors, so that 

two vertices joined by an edge have distinct colors. One can view a 2-coloring as a 

sign choice for something associated to each vertex, so that one color represents "+" 

and the other represents "-". 
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Example 4.2. The primary example of an even state is the Seifert state crs, the state 

gotten by choosing the smoothing for each crossing corresponding to that used in 

Seifert's algorithm. a s is also called the oriented resolution, because the smoothing 

choice is the one consistent with the orientation of the link: positive crossings are 

0-smoothed, and negative crossings are 1-smoothed, as shown in Figure 4.3. For an 

example of a Seifert state and graph, see Figure 4.4. 

x - x x - x 
Figure 4.3: The smoothing choice for Seifert's algorithm is the smoothing consistent 
with orientation. 

The reason the Seifert state is even has to do with the surface E associated to 

this state by Seifert's algorithm, formed by gluing disks to each loop of the state, 

and twisted bands to every trace which match the original crossing. An odd path 

of traces means there is an annulus with an odd number of twists contained in the 

surface (gotten by following the twisted bands associated to the traces of the path), 

contradicting orientability of the Seifert's algorithm surface. 

r?°f| T-o-r 

a b 
Figure 4.4: On the left is a diagram of the figure 8. In the middle is its Seifert state. 
On the right is the state graph for this state. By inspection this is an even state. 

The fact that even states can be 2-colored turns out to be quite useful: using 

this 2-coloring turns out to be the key step in showing there are two nontrivial state 

cycles based on the all-1 state when it is even (Theorem 4.10). But, for general state 
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cycles, we will want to consider similar notions of even and oddness, restricted to the 

1-block. To describe these notions, we will examine a particular subgraph of the state 

graph: 

Definition 4.6. Given a state a, the associated 1-block graph Ti is constructed by 

taking the loops of the 1-block of a to be vertices, and the 1-traces to be edges. 

In general, Ti will not be connected, and its connected components turn out to 

be the natural setting for describing restrictions on the 1-block. 

Definition 4.7. A connected component of the 1-block refers to the set of loops from 

a connected component of Ti. We say that a connected component of the 1-block is 

even if every circuit in that component of Tx has even length, and odd otherwise. 

Now we are ready to state the classification theorem precisely. Restrictions (Si) 

and (S2) give the precise definition of an "almost" adequate state, and restrictions 

(L2)-(L4) spell out the full obstructions to having loops in the 1-block marked by v_: 

Theorem 4.8 (State Cycle Classification). For a state cycle a based on state a 

to represent a nontrivial homology class in Khovanov homology, it must satisfy the 

following restrictions: 

(51) a must be 0-merging. 

(52) a can have no 1-pinchtraces touching loops in its 1-block. 

(LI) 0-tracing loops of a must be marked by 

(L2) No pair of loops both marked by v- can be joined by only 1-traces. 
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(L3) Every loop in an odd connected component of the 1-block must be marked by v+. 

(L4) At most one loop in an even connected component of the 1-block may be marked 

by v_; all other loops in that component must be marked by v+. 

Furthermore, other than condition (L2), changing which loop is marked by V- for a 

fixed even component from (L4) only changes the sign of the resulting homology class. 

Proof. Most of the tools have been assembled already. First we will deal with the 

restrictions on the underlying state: 

(LI) : Proposition 3.2 tells us that the underlying state for any state cycle must be 

0-merging. 

(L2) : Proposition 4.1 tells us that every 1-trace between loops in the 1-block must 

be a mergetrace. 

Now, we will address the restrictions on the loop markings. 

(51) : Proposition 3.2 tells us that the 0-tracing loops of any state cycle must be 

marked by V-. 

(52) : Proposition 4.2 obstructs such a pair of loops marked by v- which are joined 

by only 1-traces. 

(53) : If there are two or more loops in this odd component marked by , then there 

is a path of 1-traces from one to the other involving only loops in the 1-block, so 

Proposition 4.3 tells us [a] = 0. 

Suppose only one loop in the odd connected component is marked by V-. Denote 

this loop by La. Since the component is odd, there is some closed path of 1-traces in 
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that component with odd length. Let this path be P. We can construct a path Pa 

from La to itself of odd length by taking a path P' from La to any loop of this odd 

path, follow the odd path P, and then follow the reverse of path P' back to La. The 

length of Pa is then twice the length of P' plus the length of P, and so must be odd. 

Let's view Pa as a sequence Ti of traces going from loop L; to Li+1, of length n. 

To each trace Ti, we can associate an enhanced state in the following way. The 

underlying state for is a, modified by changing the trace Tt from 1 to a 0. The 

loops of fa will have a merged loop corresponding to the change of the mergetrace 

Ti to a pinchtrace, and will otherwise match the loops of a. So, we will label the 

loops of j3i by the matching label of a for every loop that was unchanged, and by v+ 

for the merged loop. See Figure 4.5. 

M1 L3 Lk 

Figure 4.5: Schematic showing the local picture for the a; and pi in Case lb. 

Following the loop numbering of trace T% joining loop L% to loop Li+1, let a,t denote 

the enhanced state where a is marked so that a v_ is on loop Li, and all other loops 

are marked by v+, as shown in Figure 4.5. By this convention, = an+\ = a. By 

construction, d(Pi) = =t(«j + a i + i ) : there is only one edge differential from each state 
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to the all-1 state, and we are in the case A(v+) = v_ ® v + + v+ ® of Table 2.1. 

For our purposes, we can ignore this sign associated to the edge differential during 

calculations and correct by the correct sign at the end. 
n 

With this setup, the claim is that 2a = The reason is that this is a 
i=1 

telescoping series - observe that = (ai+Oi+i) — (aj+i+a; i+2) = ai—ai+2-

So, since the path is of odd length, the alternating sum collapses to ai + an+i = 2a, 

as claimed. It follows that [CK] is trivial. 

(S4) : If there are two or more loops in this component marked by then there 

is a path of 1-traces from one to the other involving only loops in the 1-block, so 

Proposition 4.3 tells us [ct] = 0. 

The last claim to check is that if some loop in such an even component of the 

1-block is marked by then the choice of which loop in that component to mark 

only changes the sign of the resulting homology class. 

Label the loops of this component of the 1-block by L\ to Ln, and the traces by 

T\ to Tm. Let a, be the enhanced state where loop Lj is marked by the other Lk 

are marked by v+, and loops outside this component are marked as in a. Let a3 be 

the state where a is modified by changing trace 7) from 1 to 0. Because of restriction 

(L2), we know that Tj is a mergetrace in a, so aj will have one loop Mj which was 

merged by the change of smoothings, and otherwise will match the loop structure of 

a. Let (3j be the enhanced state where Oj is the underlying state, Mj and the other 

Lk are all marked by v+, and the other loops retain their marking from a. 

Given i and j. there is some path of traces from Ll to L3 in this connected 

component of the 1-block. Let this path of traces be T[,.... 7 '̂, and trace T'h join 
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loop L'h to loop L'h+ j. Similarly, let a'h and j3'h be the obvious analogues in this 

renumbering of loops and traces. By this setup, d(/3'h) = a'h + a'h+1, and we have the 

familiar telescoping series X X - = a i i = i So, up to sign any 

choice of a* represents the same homology class, as claimed. • 

Remark 4.8.1. While this classification theorem narrows down the candidates for 

nontrivial state cycles, it is a necessary condition, not a sufficient condition. So one 

still must check that a particular candidate represents a nontrivial homology class in 

practice. 

In general, there may be several nontrivial state cycles associated to a given state. 

However, there is a unique state cycle for a given state which has maximal quantum 

grading: 

Definition 4.9. Given an almost adequate state a, we say that the maximal state 

cycle for a is enhanced state where the 0-tracing loops of a are marked by and 

the loops of the 1-block are marked by v+. 

Note that this paradigm of for 0-tracing loops, v+ for the 1-block, matches up 

nicely with our extreme state cycles for adequate knots in Examples 3.1 and 3.2: ao 

has only 0-tracing loops, each of which is marked by ai has only a 1-block, each 

loop of which is marked by v+. 

For the families of H-thick knots and links in Chapter 7, we will only need such 

maximal state cycles. However, nonmaximal state cycles can still represent nontrivial 

homology classes: 
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Theorem 4.10. Suppose that the all-1 state a for a nonsplit link diagram is even. 

Then there are always two nontrivial homology classes represented by state cycles 

based on a: one is uniquely represented by marking a v+ on every loop, and the other 

is represented up to sign by marking a single loop of choice by i>_ and all other loops 

by v+. 

Before going through the full proof, let's go through a small example. 

Figure 4.6: On the left side is a diagram for the mirror of Solomon's knot. In the 
middle is the all-1 state, and on the right is the all-1 state's state graph. 

Example 4.3. Consider the mirror of Solomon's knot (which is really a link). As 

shown in Figure 4.6, its all-1 state a is even, with a square state graph. We already 

know by Example 3.2 that marking every loop of this state by v+ gives a state cycle 

representing a nontrivial homology class. So, let's number the four loops of the state 

and let a* be the enhanced state where loop Lx is marked by and all other loops 

are marked by v+. Similarly, number the traces so that trace % goes from L; to 1, 

with T4 going between L4 and Li. Finally, let be the enhanced state where trace 

Ti has been changed from 1 to 0, and all loops are marked by v+. See Figure 4.7. 

This setup should be familiar by now, and it should be no surprise that d(j3i) = 

a j + ctj+i, up to sign. Setting up the usual telescoping series, this means that ai±otj = 

XX-1 )k+1d(/3k), so that up to sign the a, represent the same homology class. Because 

•-P r ? 
6 - b * * 
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Figure 4.7: On the left side is the numbering convention for loops and traces of the 
all-1 state. In the middle is an enhanced state for ai , and on the right is an enhanced 
state for Pi. 

there are only even closed paths in this state graph, however, we cannot use the same 

trick we used in Case lb of Theorem 4.8 to conclude that each [a;] is trivial. 

So, let's try to show that a\ does not lie in the image of d. Every edge differential 

entering Ca takes the A form of Table 2.1, because every trace in a is a mergetrace. 

Since there is only a single v- in there is no chance for a ® D. term to be 

nontrivially involved in any linear combination resulting in ai . So, we may restrict 

our attention to the other kind of A output, that of the form v+®v- + <g>v+, which 

comes from the image of the Pi under the differential. In particular, [aj] is trivial if 

and only if a i is some nontrivial linear combination of the d(pi). 

Suppose a.i = JZaid(Pi)• Approaching this via linear algebra, we get a simple 

system of equations, knowing that the coefficient of all a^ other than i = 1 must be 

zero: 



39 

ai + a2 = 0 

a2 + a3 = 0 

ci3 + 04 = 0 

Consequently, 01 + 04 = 0. But, that sum was the coefficient of from the sum, 

so ai cannot be realized as such a linear combination. 

This works for small cases, but seems to hide the combinatorics of the state: ideally 

a proof of nontriviality would exploit this added structure to take advantage of the 

hypothesis. One way to take this into account is to associate such a linear combination 

to a weighted state graph, where the edges of the state graph have weight a;. 

Note that rf(/3f) contributes a,; copies of a l and By interpreting the edge 

Ti as the d(/3i), and the vertices bounding that edge as the associated state cycles 

^ and cxj+i, we can interpret the linear algebra constraint on the coefficients as the 

condition that the sum of the weights around every vertex other than Li must be 0. 

In our case, every vertex is adjacent to exactly two edges. So, the weight condition 

means that the two weights must have the same magnitude and opposite sign. As we 

travel around the square, the weights follow this pattern: alternating in sign, same 

magnitude. So, let's pick an edge adjacent to L\ to start a traversal, and propagate 

this condition on the edge weights until we return to L\. Starting with ai, the other 

weights must then be —ai, ai, — 01, and the sum of the two weights of the edges around 
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are then a\ — a\ = 0. This same pattern holds any time we have such an even 

closed paths based at L\. See Figure 4.8. 

* + f • • f "t • * • f i , * t 

3-j 3-j 3-| 3 1 

Figure 4.8: From left to right, a propagation of the weight condition over a traversal 
of a closed path based at Li. 

The weighted graph interpretation may be overkill for an easy case like this, but 

the idea is to use this interpretation to take advantage of geometric information 

in solving the associated linear algebra problem. The general case involves a more 

complicated graph, but it turns out the fact that the graph is 2-colorable is enough 

to force the linear combination to be trivial, with this setup. 

So, let's generalize the weighted graph approach of Example 4.3 to the general 

case of Theorem 4.10. 

Proof of Theorem 4-10. The first nontrivial homology class associated to this even 

all-1 state comes from marking every loop by v+. By the discussion of Example 3.2, 

we know this enhanced state represents a nontrivial homology class. 

The new content of this theorem comes in dealing with the enhanced states which 

mark a single loop by V- and all other loops by v+. The first claim is that our choice 

of loop to mark only changes the sign of the associated homology class. 

Label the loops of the traced all-1 state a by L\ to Ln, and the traces by T\ to Tm. 

Let cti be the enhanced state where loop Li is marked by v- and all other loops are 
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marked by v+. Let aj be the state where a is modified by changing trace Tj from 1 to 

0. Since a is adequate, a3 will have one loop Mj which was merged by the change of 

smoothings, and otherwise will match the loop structure of a. Let (3j be the enhanced 

state where <jj is the underlying state and every loop is marked by v+. 

Given i and j, there is some path of traces from Lj to L3 in a because a is a state 

of a nonsplit link. Let this path of traces be T[,... ,T', and trace T'h join loop L'h 

to loop L'h+1. Similarly, let a'h and p'h be the obvious analogues in this renumbering 

of loops and traces. By this setup, d((3'h) = a'h + a'h+1, and we have the familiar 

telescoping series ^2(—^-)h+1d(/3'h) = a\ ± a'p = a t ± ar So, up to sign any choice of 

ai represents the same homology class. 

The meat of the proof is showing that this homology class represented by a j 

is nontrivial. As was the case in Example 4.3, this boils down to showing that 

no nontrivial linear combination of the can equal ot\. To show this, we will 

reinterpret such a linear combination as a weighted state graph r a . If a.i = ^ a,id(f3i), 

we will place weight a,t on the edge associated to trace Tj. The sum of weights about 

the vertex for Lj corresponds to the coefficient of a, in this linear combination, so the 

sum of weights about every vertex except L] must be zero. 

Because a is even, the state graph is 2-colorable. Since the state graph is path-

connected, a choice of color on one vertex determines the 2-coloring, so let's use the 

colors "+" and "-", and assume that vertex Li is colored "-". Let sign(Lj) denote 

this color, overloaded to be an actual sign choice. 

Now, let's use this sign choice to take an alternating sum of the weights around 

every vertex. Let weight (Lj) denote the sum of the weights around vertex Lj. We 



claim that sign(^i) weight(L,) = 0. To see this, note that if we ignore the sign 
i=1 

choice, every edge's weight is counted exactly twice, once for each vertex at the 

endpoints of the edge. But, the 2-coloring guarantees that in this weighted sum, the 

two occurences of weight show up with opposite sign, since if two vertices are joined 

by an edge in the 2-coloring, they have opposite colors, or opposite signs in this color 

scheme. 

We chose the sign of the Lj vertex to be negative, which means that we can bring it 
n 

to the other side of this equality to conclude that weight(Li) = sign(/^) weight(L,). 
i=2 

But, weight (L.t) = 0 for every i other than 1 by construction, so weight (Li) = 0. This 

means that the coefficient of ot\ in the original linear combination ^ a i c K f i i ) must be 

zero. In other words, a i does not lie in the image of the differential, and represents 

a nontrivial homology class. • 

In fact, the proof of Theorem 4.10 can be generalized to a larger class of state 

cycles. Towards this end, we need to consider yet another subgraph of the state graph. 

Definition 4.11. Let a be a state in a diagram. Let Ai denote the graph whose 

vertices correspond to the 1-tracing loops of a (i.e. loops touched by at least one 

1-trace). We say that a is 1-even if Ai has only even circuits. If a is any state cycle 

based on a, we say that a is 1-even if a is 1-even. 

Definition 4.12. Let a be a state cycle based on state a. We say that a is 1-isolated 

if every connected component of Ai has at most one loop marked by 

Theorem 4.13. Let a be a state cycle which is 1-even and 1-isolated. Then a rep-

resents a nontrivial homology class. 



Proof. The idea here is that with this setup, each connected component of Ai looks 

exactly like the state graph we considered in Theorem 4.10. Let the underlying state 

of a be a. The 1-traces of a are the source of edge differentials that target Ca, the 

chain group in the Khovanov chain complex in which a lies. The difference here is 

that since a is no longer the all-1 state, there will be other chain groups of the same 

height as Ca. This means that, for some 1-trace T of <r, if we have dx(7) = a, d(7) 

may also have nonzero image in other chain groups besides Ca. 

However, our strategy here is to simply restrict our attention to the component of 

the differential which targets Ca, which we will denote da. What we will show is that 

there is no 7 so that dcr(7) = a. Consequently, there can be no 7 so that ^(7) = a, 

and [a] 0. 

Given a 1-trace T of a, let o~t be the state where the T is changed from a 1-trace 

to a 0-trace, and all other smoothings remain the same, and let dr denote the edge 

differential dr : Ca,r —> Ca. Thinking through the definitions, it is easy to see that 

da = (—1)'t'C?T- Since we are only considering this restricted differential, we 
T 1-trace 

can safely ignore the signs in front of these edge differentials: we can pick a negative 

basis for CaT any time the sign for dr should be negative, and end up with the same 

result as if we had ignored the sign and chosen the positive basis. So, we will view da 

as simply X] dr-
T 1-trace 

Because a is 1-even, we know that every 1-trace is a mergetrace (a 1-pinchtrace 

would give an odd closed path in Ax). So, we know that every edge differential df will 

take the A form. In general, A can locally return either V- (g> V- or v+18) V- + v- <g> v+, 

where the tensor here corresponds to a 1-trace joining the two loops in a. However, 
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because a is 1-isolated, each connected component of Ai has at most one loop marked 

by , so that the v_ ® v- form of A cannot be involved in any potential boundary 

for a. So, the only terms of interest will have the local form v+ ® + v_ ® v+. 

Label the 1-traces of a by T\ through Tn, and let denote the enhanced state 

based on a^ where the merged loop, and every loop in the connected component of 

Ai in which this loop lies, are marked by v+, and every other loop is marked as in a. 

We have argued that the only possible linear combination whose da image can be a 
n 

must take the form a A -
i=1 

Now, we may proceed exactly as in Theorem 4.10, building a weighted graph 

version of Ai, where the weights of the edges are the a,, and the sum of weights 

around all but one vertex of every connected component of Ai must be 0. Since Ai is 

even, it is 2-colorable, and the alternating sum of weights arguments lets us conclude 
n 

again that the sum of weights around every vertex is 0. Consequently, Y^ do{<hl3i) = 0, 
i=1 

so that a cannot lie in the image of da. It then follows that [a] ^ 0. as desired. • 

v. 
• i -•• 

V. V+ V. 

^ r i - n n - M 

0 C 
E K 

Figure 4.9: Example of a 1-even state cycle which is not 1-isolated, and represents a 
trivial homology class. On the top left is the diagram of the knot; on the top right 
is the state cycle in question. The bottom right shows the state graph for the state 
cycle, and the bottom left shows Ai, with the vertices marked as in the state cycle. 
Clearly Ai is 1-even but not 1-isolated. 
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Example 4.4. As an example of why the 1-isolated condition is needed, Figure 4.9 

shows a state cycle which is 1-even, but not 1-isolated. Calculation shows that the 

associated homology class is trivial. 

However, there is still a lot of room for improvement in terms of detecting non-

triviality of a state cycle, as the following examples show: 

v+ V. — 

V 

V+ V. 

v+ 

v+. 

v+ 

•v. 
v..:' >v+ 

-v. 

Figure 4.10: Example of a 1-even state cycle which is not 1-isolated, and represents a 
nontrivial homology class. On the top left is the diagram of the link; on the top right 
is the state cycle in question. The bottom right shows the state graph for the state 
cycle, and the bottom left shows Ai, with the vertices marked as in the state cycle. 
Clearly Ai is 1-even, but since the lefthand component of Ai has two loops marked 
by V-, it is not 1-isolated. 

Example 4.5. Often 1-even state cycles which are not 1-isolated still represent non-

trivial homology classes. An example is illustrated in Figure 4.10, which can be shown 

by direct calculation to represent a nontrivial homology class. Presumably there is 

some condition on the 0-tracing loops that can extend this result to a larger class of 

1-even state cycles. 

Example 4.6. Similarly, it is possible for a 1-isolated state cycle which is not 1-even 

to represent a nontrivial homology class. An example is illustrated in Figure 4.11, 

which can be shown by direct calculation to represent a nontrivial homology class. 
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88sa 
V+ 

i '>v_ v.<;;;;>v+ 
v+ 

Figure 4.11: Example of a 1-isolated state cycle which is not 1-even, and represents a 
nontrivial homology class. On the top left is the diagram of the link; on the top right 
is the state cycle in question. The bottom right shows the state graph for the state 
cycle, and the bottom left shows Ai, with the vertices marked as in the state cycle. 
Clearly A1 is 1-isolated, but since the lefthand component of Ai has an odd length 
closed path, it is not 1-even. 

m 

[t i 
V. 

- 0 
V. V+ 



Chapter 5 

Maps acting on State Cycles 

This section examines how state cycles interact with various homomorphisms and 

spectral sequences. Here we follow the paradigm that sometimes one can understand 

objects better by studying the maps which act on them. 

The first maps we will examine are the Jacobsson homomorphisms, which give a 

way to relate Khovanov homology classes of two different links. It turns out that in 

certain situations, Jacobsson homomorphisms can take state cycles to state cycles. 

Suppose a, j3 are state cycles, [a] ^ 0, and v&(/3) = a, for some Jacobsson homomor-

phism It follows that [0\ 0, since homomorphisms take 0 to 0. In this way, 

Jacobsson homomorphisms can let us "lift" nontrivial state cycles to nontrivial state 

cycles, under the right setup. 

The second kind of map we will examine is the Lee homomorphism 3>£ee. Because 

of the convergence of an associated spectral sequence, in many cases $ gives a way to 

organize the homology classes of a fixed diagram D into pairs of the form (a, 3>(a)), 

of relative bidegree (1,4). We will see later that when the a of such a Lee pair is a 

47 
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nontrivial state cycle, there is a natural way to lift the Lee pair of one diagram to 

one of a related diagram. So, we examine a special case where we can guarantee the 

existence of such a nontrivial Lee pair. 

Finally, we conclude the section by examining a relationship between state cycles 

based on the Seifert state, and Rasmussen's s-invariant, which comes from the Lee 

spectral sequence. In certain cases, we can use this information to conclude that the 

state cycle based on the Seifert state represents a nontrivial homology class. 

5.1 Jacobsson Homomorphisms 

The first maps we will work with are the Jacobsson homomorphisms. For every ori-

entable cobordism between two links, Jacobsson [Jac04] constructed homomorphisms 

between the Khovanov homology of the two links and showed this construction is 

functorial up to sign, meaning that given two isotopic cobordisms Ei, £2, the induced 

homomorphisms are the same up to sign. These homomorphisms preserve the ho-

mological grading, and shift the quantum grading by the Euler characteristic of the 

cobordism. In other words, a cobordism £ induces a (0, %(£)) homomorphism \I/£ on 

Kh%'i(Li), as shown in Table 5.1. 

Table 5.1: A cobordism £ induces a (0, x(£)) homomorphism on Khh^(Li). 

The construction defines maps at the chain level for each Morse and Reidemeister 

£ 
Li 

Vi 
Kh^fa) 

L2 
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move, and shows that these chain maps take cycles to cycles, inducing homomor-

phisms. Jacobsson's paper follows the Viro convention for marking enhanced states, 

so we will rewrite the homomorphisms used here in terms of the Bar-Natan genera-

tors, for convenience. The definitions are shown in terms of ET states: ET states not 

shown in the definitions will go to 0 under the homomorphisms. The light turquoise 

lines in the figures indicate how arcs in the local picture of the diagram complete to 

loops in the state in question. 

Our goal now is to analyze situations in which these homomorphisms take state 

cycles to state cycles, so that we can have a way of "lifting" nontriviality of state 

cycles from one diagram to another. In this subsection we will describe a special case 

where this happens, which we will call positive modification. This construction will 

later be generalized to quasipositive modification in Chapter 6. 

Birth (O-handle) Death (2-handle) 

4J 
1 

D D1 [w] J t 0 
D D' 

Figure 5.1: Simplest Jacobsson homomorphisms, coming from the Morse moves for 
birth and death of loops. Compare to Figure 15 on page 1226 of [Jac04]. 
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Figure 5.2: Jacobsson homomorphisms coming from the saddle Morse moves. Note 
that there are no traces here joining the loops. Compare to Figure 3 on page 1216 of 
[ Jac04]. 

Figure 5.3: Jacobsson homomorphisms coming from negative and positive Reidemeis-
ter I, from left to right. Compare to Figure 16 on page 1228 of [Jac04]. The p here 
indicates that either or v+ can be marked on the loop marked by p. 
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P 

P 
0 4> p:q 

q 1 (-D1 p 

q:p 
p:q 

0 
q:p 

qj. 

Figure 5.4: Jacobsson homomorphisms coming from Reidemeister II. The p:q, q:p 
convention indicates that locally there is a saddle cobordism from the pair of arcs 
(p, q) to the pair of arcs (p : q, q : p). Given a choice of generators for p and q, the 
values of p : q and q : p match those of the saddle move from Figure 5.2 whose initial 
arcs match p and q. Compare to Figure 17 on page 1229 of [Jac04], 
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Definition 5.1. Let D be an oriented diagram, and a an ET state representing a 

cycle in Kh(D). We say that an oriented diagram D' is obtained from D by positive 

modification on D compatible with a if there is a positive crossing b in D' so that 0-

resolving b yields D as an oriented diagram and the 0-trace of b connects two distinct 

0-tracing loops of a. 

D a 

CL 

Figure 5.5: Illustration of positive modification at diagram and state level. 

Lemma 5.2. Let D be a diagram for a link, and a a state cycle based on state a of 

D. Consider a diagram D' obtained from D by positive modification compatible with 

a. Let tyj be the Jacobsson homomorphism induced by the cobordism of 0-resolving 

this positive crossing b associated to the positive modification. Then there exists a 

state cycle a such that ^j(a) = a. In particular, if [a] is nontrivial, so is [a]. 

Proof. Let a be the ET state in D' corresponding to a: the loops and markings 

match a, with the only difference being the added O-mergetrace for the extra crossing 

b. Because the two loops joined by b are 0-tracing in a, they are marked by Note 

that since the new 0-trace for b joins two loops marked by in a, the new edge 

differential for b will also be zero, so that a is also a state cycle. 

The cobordism between D' and D can be broken down into adding a 1-handle, 

followed by undoing a positive Reidemeister I twist - see Figure 5.6. When adding 
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Figure 5.6: Illustration of cobordism involved in Lemma 5.2 at diagram and state 
level. 

the 1-handle, we are splitting one loop into two, so the associated Jacobsson homo-

morphism takes the v_ on that loop to v- <8> i>_. Then, for undoing the Reidemeister 

one twist, the Jacobsson homomorphism takes the v-<8>v- pair of loops joined by the 

0-trace of 6 to a single merged loop marked by i>_. So, writing this out in tensors, we 

have 

a = (v-) (E> v-

V - (G) <8> V - ) 

(E) <8> V-

(8) ( f - ) ® • • • = a 

(1-handle) 

(RI+) 

See Figure 5.6 for an illustrated version of this. • 

Remark 5.2.1. This is a generalization of Plamenevskaya's theorem about positive 

resolution (see Theorem 4 of [Pla06]) to state cycles, and gives the key idea for 
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"lifting" state cycles by Jacobsson homomorphisms. Chapter 6 will extend Definition 

5.1 to a slightly more general kind of modification, for which we will give an analogue 

of Lemma 5.2. 

The Euler characteristic of the cobordism constructed in the lemma is -1, meaning 

that the quantum grading of a is 1 higher than that of a. But, this shift is applied 

uniformly to every lift associated with this cobordism. 

Corollary 5.3. Suppose there are two state cycles, a and f3, which are compatible 

with the same positive modification. Then, the Khovanov bigrading difference between 

the lifts, a and (3, matches the bigrading difference between a and (3. In particular, 

this means that if a and (3 lie on two distinct diagonals in Kh(D), a and j5 lie on 

distinct diagonals in Kh(D'), of the same relative separation. 

In theory one could try to check the nontriviality of a cycle by relating it to an-

other known nontrivial state cycle by a more complicated series of Jacobsson homo-

morphisms. In practice, this is not so easy to produce. Even if one had a cobordism 

between two diagrams, the projection down of some cycle you want to investigate 

will probably not end up as a state cycle, limiting the option of iterating the process. 

It's also very possible for the induced homomorphism to be trivial on your cycle of 

interest, which gives no information. 

5.2 The Lee Homomorphism 

Lee's homomorphism <&iee, which serves as a differential on Kh(L) and induces a 

spectral sequence [Lee05], is the next map we will analyze, to see what we can learn 
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about state cycles. For knots, the Lee spectral sequence converges to Q © Q; by work 

of Rasmussen [Ras04], there are two homology classes in Kh which survive to those 

two copies of Q of bigrading (0, s ± 1), where s is a smooth concordance invariant to 

be discussed in the next subsection. In practice, the quick convergence of this spectral 

sequence gives a (1,4) pairing of the other homology classes of Kh, which will prove 

of interest for state cycles. 

&Lee is defined analogously to the Khovanov differential: first Lee defines edge 

differentials, as shown in Table 5.2, then she pieces them together with signs based 

on the edges in exactly the same way as done in the Khovanov differential. So, $ 

is defined on the same chain groups as Khovanov homology; it satisfies $ o $ = 0, 

anticommutes with the Khovanov differential, and is invariant under Reidemeister 

moves. This means that $ + d gives a differential on the Khovanov chain complex 

CKh, and the resulting homology H(CKh, d+(I>) is called the Lee homology of a link, 

Kh,Lee(L). Note also that since $ anticommutes with d, $ takes cycles of ( C K h , d ) 

to cycles of (CKh, d) and induces a (1,4) homomorphism on Kh. 

o o - ^ - o o — ^ - o o 
v+ <g> v+ I o v+1 ^ o 
v+ (E> v- i 0 v-1 v+ ® v+ 

(8) v+ i s- 0 
V - (g) i ^ v+ 

Table 5.2: The edge differential for $ shifts every nonzero result by +4 in quantum 
grading. 

In terms of the Khovanov bigrading, $ has bidegree (1,4), while the differential 

$ + d either preserves the quantum degree or raises it by 4 for each monomial in 
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its result. As Rasmussen [Ras04] observed, this means that quantum grading gives 

a filtration on the Khovanov chain complex which the differential <E> + d respects. 

This induces a spectral sequence converging to KhLee whose E1 page is given by 

(Kh(L), $). 

$ gives more information about knots whose Khovanov homology we have already 

calculated, particularly when this Khovanov homology has homological width less 

than 4. Because the bidegree of the differentials in the Lee spectral sequence, in terms 

of the Khovanov bigrading, is (1, 4i), one can often show that the spectral sequence 

converges at the E2 page; in fact, it is conjectured that the spectral sequence always 

converges at the E2 page. In such a case, $ gives a (1,4) pairing between all nontrivial 

Khovanov homology classes which vanish in the Lee spectral sequence. This is not a 

bilinear pairing, but rather an enumeration of the homology classes by pairs of the 

form (a ,$(a) ) , plus the pair of homology classes which survive under the spectral 

sequence. It comes from the fact that convergence of the spectral sequence at the E2 

page means that: 

KHLA = 
im($) 

We will be interested in Lee pairs (a, $(a)) where a is a nontrivial state cycle. 

Because of the (1,4) bigrading, a and $(a) lie on adjacent diagonals, so one can 

interpret this Lee pair as a pair of diagonals related to the state cycle a. Theorem 

6.6 will tell us later that we can then lift this pair of diagonals from one diagram to 

another via quasipositive modification. For now, we give a useful situation where this 

state cycle Lee pairing arises: 
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Proposition 5.4. Suppose D is a + adequate diagram of a knot with homological 

width less than 4, and that its minimum homological dimension is less than 0 (i.e. D 

is not a positive diagram). Then (ao, <&(ao)) is a Lee pair, where ao is the ET state 

in which the all-0 state has every loop marked by 

Proof. Following Proposition 5.2 of [Ras04], the width condition on Kh(D) forces 

the Lee spectral sequence to converge at the E2 page. The E\ page of the spectral 

sequence is given by (Kh(D),<&): convergence means that the homology of Kh(D) 

under this differential $ is Q © Q in homological dimension 0, and trivial elsewhere. 

Consider the ET state ao, which marks every loop of the all-zero state cr0 with v_. 

As observed in Example 3.1, this represents a nontrivial homology class, in minimal 

quantum and homological grading. We claim that [$(ao)] cannot be 0. 

ao definitely dies in the E2 page of the spectral sequence, because its homological 

dimension is not 0 by hypothesis (ao has minimal homological grading, which we 

assumed was less than 0). But, because ao is in the minimal bigrading and $ is a 

(1,4) homomorphism, there cannot be any fi so that $(/?) = ao- So, since ao does 

not lie in the image of <5, if it lay in the kernel of it would survive to the E2 page, 

a contradiction. It follows that [<E>(ao)] is nontrivial, so that (ao, $(ao)) is a Lee 

pair. • 

Remark 5.4.1. Note that $(ao) will not be a state cycle, but its form is sufficiently 

simple that we can see how it interacts under a certain class of Jacobsson homomor-

phisms later (see Theorem 6.6). 
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5.3 The s-invariant 

In this subsection, we will examine how to exploit the relationship of certain state 

cycles to the s-invariant to conclude nontriviality of those special state cycles. Ras-

mussen's s-invariant [Ras04] is defined roughly to be average of the quantum gradings 

of the generators which survive to the E00 page of the Lee spectral sequence. It turns 

out that s is a smooth concordance invariant, and it is intrisically linked to the Seifert 

state (the state smoothed according to the algorithm for the canonical Seifert surface 

of a diagram). 

When a state cycle for the Seifert state has quantum grading equal to s — 1, one 

can try to generalize an argument of Baldwin and Plamenevskaya [BP08] and prove 

that the state cycle is nontrivial. Recall that the Seifert state is always adequate, per 

the argument of Example 4.2. 

Proposition 5.5. Suppose a is a state cycle associated to the Seifert state, and its 

quantum grading is s — 1. If a has no 1-block, then a represents a nontrivial homology 

class. 

Proof. Let So be the Seifert state, where each loop is marked by ± v+ in such a 

fashion that loops which share a crossing alternate in the sign for v+. In other words, 

So is given by the tensor + v+) ® (i>_ — i;+) ® • • - <8> (v- ± v+). By Corollary 3.6 

of Rasmussen [Ras04], the smallest quantum grading term of s0 that is nontrivial 

in the Lee homology has grading s — 1. Following Rasmussen's notation, this means 

that s(so) = s — 1. 

When a has no 1-block, every loop is marked by t;_. So, if you multiply out the 
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tensor for So, one sees that So = a + r , where every term in r has higher quantum 

grading (since it has one or more v+ factors). 

Suppose that [a] is trivial. Then there is some 7 so that dry = a. Note that since 

the Khovanov differential d preserves quantum grading, 7 also has quantum grading 

s-1. 

Let d! = d + $ be the Lee differential. By definition, $ shifts quantum grading 

up by 4. So, d!7 = dn + $ 7 = a + v, where the quantum grading of every term of v 

has strictly higher quantum grading than s — 1. 

Consider So — d!7. This is homologous to So, so should have the same minimum 

nontrivial quantum grading as So. But, So — d'7 = r + v, so that s(s0 — d!7) > s — 1, 

a contradiction. Therefore, no such 7 exists and a represents a nontrivial homology 

class. • 

Remark 5.5.1. The argument for this case is essentially the same as that of Theorem 

1.2 of Baldwin and Plamenevskaya [BP08]. We reorganize it slightly here since it 

will serve as a model for other state cycles. 

Theorem 5.6. Suppose a is a state cycle associated to the Seifert state, and its 

quantum grading is s — 1. If a has a single loop in its 1-block, and that loop is marked 

by v+, then a represents a nontrivial homology class. 

Proof. This time, we will show that SO = A) + A + OL + T, where r has quantum 

grading higher than a, and both (30 and fti are trivial cycles in Khovanov homology, 

of quantum grading < s — 1. Then, if a is trivial, we will again look at something 

homologous to SQ in Lee homology, and show that it has quantum grading strictly 
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greater than s — 1, getting a contradiction. 

First, consider a. Since every loop outside of the 1-block must be marked by 

up to ordering of the loops a = v + <g) <g> • • • ® . Since the quantum grading of a 

is s — 1, this means that any marking of the Seifert state with one v+ and the rest 

of the loops will also have quantum grading s — 1; a state marked by only V- will 

have quantum grading s — 3. 

Let /3o be the Seifert state marked by on every loop. By Proposition 4.2, we 

know that Po is trivial because the (only) loop in the 1-block is marked by t>_: it must 

be connected to some 0-tracing loop by only 1-traces, and that 0-tracing loop is also 

marked v-. So, there is some 70 so that f/70 = pQ, and as before, d!70 = Po + Vo for 

wo of quantum grading 4 higher than the grading for j30, namely s + 1. In particular, 

Vo has quantum grading higher than s — 1. 

Next, number the loops of the Seifert state other than the one in the 1-block by 1 

through n, where the first loop is connected by a 1-smoothing to the loop marked by 

v+ in a. Let St be the Seifert state where loop 1 is marked by v+ and all other loops 

are marked by V-. Let q denote the number of traces in a path from the loop marked 

by v+ in a to loop i in the Seifert state, modulo 2. Note that this is well-defined, 

because the Seifert state is even, as discussed in Example 4.2; one can also view this 

sign choice simply as a choice of a 2-coloring for the associated state graph. Define 

Pi by: 
n 

P, = 
i=l 

If we choose So SO that a + term lies on the circle marked 011 a, then the sign 
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of each term of will match up with the sign of the corresponding monomial in So, 

since loops in So are marked by an alternation of v- + v+ and — v+ by Corollary 

2.5 of Rasmussen [Ras04], Either such choice satisfies s(so) = s — 1 by Corollary 3.6 

of Rasmussen, so we are free to pick this convention for s0. By construction, we now 

have that s 0 = fio + Pi + a + r , where r are terms of quantum degree higher than 

s - 1. 

We claim that Pi is a cycle. To see this, consider first dSi. The only nonzero edge 

differentials will come from 0-traces joining the loop marked v+ with an adjacent ?;_ 

loop: the edge differential of such a 0-trace will result in a state where those two 

loops are merged, and every loop is marked by V-. Suppose the adjacent loop 

was numbered j ; then Sj will also have an edge differential from that 0-trace with the 

same output on that edge differential. In short, every such nonzero edge differential 

appears twice in fix: the only question is whether they appear with opposite sign in 

the total differential of (3\. 

loop i loop j 

Figure 5.7: <5j and Sj sharing a common 0-smoothing. 

By construction, we already have that Si and Sj have opposite sign in the sum 

for /?i, since loops i and j are adjacent. But note that S,l and Sj have the same 

underlying state, so the signs of the edge differentials for the same edge (coming from 

the 0-smoothing between loop i and loop j) will be the same. So, since the two 
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enhanced states occur with opposite sign in j3i, each such edge pair will cancel out in 

the total differential, as desired. So, j3\ is a cycle. 

Now, we want to construct 71 so that d-fa = Let c be the crossing associated 

to a 1-smoothing joining loop 1 to the 1-block. Let a c be the state which matches 

the Seifert state, except that c is now 0-smoothed. The result is that the loop of the 

1-block is merged together with loop 1 in ac; by the definition of the 1-block, there 

were no O-smoothings between loop 1 and the 1-block loop in the Seifert state, so 

there is only a single O-pinchtrace in ac. 

Let /ii be ac marked with a v+ on the merged loop, and V- on every other loop. 

Let fa for i > 1 be a c with the merged loop marked and the other loops marked 

as in 5i. In other words, /i; has a v+ on loop i in ac and every other loop is marked 

by 

Define // by: 

n 

i=i 

We claim that d/j, = fi\ ± a, where the sign is determined by (—1)£1. 

First, we will assume that the crossings are ordered so that the crossings 1-

smoothed in the Seifert state come last, and that the first 1-smoothing which appears 

in the ordering is that associated to crossing c. We claim that this ordering of cross-

ings guarantees that the signs associated to the edge differentials out of ac will all be 

positive. 

Recall that the sign for an edge differential e is (—l)le', where \e\ counts the number 

of crossings 1-smoothed which come before the * crossing of edge e in the crossing 
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ordering. The set of possible * positions for an edge differential out of ac corresponds 

to the set of O-smoothings of the Seifert state, together with the extra crossing c which 

is 0-smoothed in a c but not the Seifert state. Thus |e| = 0 for every choice of *, and 

all edge differential signs are positive as claimed. 

Consider the edge differential dc for c, applied to ji. Since c is a O-pinchtrace in ac, 

this edge differential takes the A form. Applied to this differential returns a + 8\ 

(this is the v+ —> v+ <g> + <g> v+ case); applied to ^ for i > 1, this differential 

returns Si (this is the —> v_ ® case). So, dcfi = ft ± a. 

Now we need to show that nonzero edge differentials from crossings other than c 

come as cancelling pairs in as was the case for ft. Other than c, all 0-traces are 

mergetraces; O-smoothings between two v- loops will thus have zero edge differentials. 

The nonzero edge differentials will come from a v+ loop joining with t>_ loop along a 

0-smoothing; each such edge differential will appear exactly twice, once from marking 

v- on one loop and v+ on the other, and the second time from choosing the opposite 

markings. Since the two loops in question are connected by a 0-trace in the Seifert 

state, the edge differentials appear with opposite sign in //, similar to the case we had 

before with edge differentials from ft. So, d/j, = ft ± a as claimed. 

Assume that [a] is trivial; then there exists 7 so that dj = a. Similarly, ji = fi-P7 

now satisfies d'ji = ft. Both a and ft have quantum grading s — 1, so the same holds 

for 7 and 71. It follows that 7 = a + v and d'71 = ft + U\ for v. i>\ of quantum 

grading s + 3. 

Consider So— c?'(70 + 7 1 + 7 ) . This is homologous to So, so s(so — ^ ' ( 7 0 + 71 + 7 ) ) = 

s — 1. But, So — d'(70 + 71 + 7) = T — vq — vi — v, so it has no monomials of degree 
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5 — 1; therefore, S(SQ) > s — 1, a contradiction. It follows that a could not be a trivial 

Remark 5.6.1. Regarding the hypothesis on the loop in the 1-block, if that loop were 

marked by v-, the associated state cycle would necessarily be trivial by Proposition 

4.2. Spelling this out, since this is a knot, the loop of the 1-block must be connected 

to some 0-tracing loop. By definition, these two loops are only connected by 1-traces, 

because if any 0-trace touched our loop in the 1-block, it would not be a loop of the 

1-block. The 0-tracing loop must also be marked by v-, so with the 1-block loop 

marked by v- the hypotheses of Proposition 4.2 apply and the state cycle must be 

trivial. 

Figure 5.8: The Seifert state cycle for 942 has a single loop in its 1-block, and quantum 
grading —1. 

Example 5.1. The s invariant for 9,12 is 0. For the usual Rolfsen diagram of 942, the 

state cycle associated to the Seifert state has quantum grading —1 = s — 1 and a 

single loop in its 1-block, as seen in Figure 5.8. So, by Theorem 5.6, this state cycle 

is nontrivial. 

Remark 5.6.2. Since the Seifert state is even, it is certainly 1-even, so there is some 

overlap between this result and Theorem 4.13. However, the assumption here on the 

quantum grading allows for state cycles which are not 1-isolated. For instance, in 

cycle. • 



Example 5.1, Ai is connected and contains three vertices, two of which are marked by 

v_ (the top rightmost "island" in the state is the only loop which does not correspond 

to a vertex in Ai). 

So, how about other state cycles based on the Seifert state with quantum grading 

(0, s — 1)? There is a big jump in difficulty when one adds even a second loop marked 

by v+, but we conjecture that this relationship holds in general: 

Conjecture 5.7. Suppose a is a state cycle associated to the Seifert state, and its 

quantum grading is s — 1. Then a represents a nontrivial homology class. 



Chapter 6 

Quasipositive Modification 

In the last section, we saw a simple procedure, positive modification, that allowed 

one to lift a nontrivial state cycle of one diagram to a nontrivial state cycle of another 

diagram. A benefit of lifting from a state cycle to a state cycle is that the process 

can be iterated, allowing one to construct families of knots or links which each have 

nontrivial lifts of these cycles. This section will focus on a more interesting general-

ization of this procedure, quasipositive modification, which still offers the ability to 

lift state cycles to state cycles. 

Roughly speaking, positive modification is the insertion of a positive crossing into 

a special place limited by the state cycle of interest. Similarly, quasipositive modifi-

cation is the process of "gluing" in a quasipositive braid in a way that is compatible 

with a state cycle. A braid is quasipositive if, in terms of the braid group generators 

Ti, it can be written in the form c^r^u^T1, for some sequence of braid words ujy. 

and positive crossings TIK. We will call the r^ from such a presentation the central 

positive crossings of the braid word, to distinguish them from the positive crossings 
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that might occur in the av 

Figure 6.1: Closure of the quasipositive braid for the mirror image of 820-

Example 6.1. The mirror image of the knot 820 has a diagram of the form 

( n ^ T f ^ r i ^ V f x ) ^ T i r a - 1 ) . Here, the breakdown into each factor u^-r^w^1 is 

marked by parenthesis, with the central positive crossings underlined. See Figure 

6.1. 

For further examples, Baader has classified which prime knots up to 10 crossings 

can be realized as quasipositive braids, and Appendix A of [Baa05] has a full list 

of knots up to 10 crossings which are positive and quasipositive, with quasipositive 

braid words for those which are honestly quasipositive. Be aware that this table does 

not distinguish mirror images - usually a Jones polynomial calculation will establish 

that the braid in question is for the mirror image of the knot, as is the case here for 

8 2 0 -

When we glue in a quasipositive braid, orientation will be an issue, as we want 

the resulting diagram to keep the orientations of the crossings of the quasipositive 

braid. We will also want to place restrictions based on the state cycle we wish to lift. 

This leads to the next iteration of state-based definitions: 

Definition 6.1. Let D be an oriented link diagram. An Oriented Traced State, or OT 

State, is a traced state for D, for which every arc between traces has been marked by 



Figure 6.2: Oriented diagram for the figure 8, and the OT state for its all zero state. 

the orientation of that are in the original diagram. Similarly, an Oriented Enhanced 

Traced State, or OET State, is an ET state marked by this orientation information. 

If a is an ET state, denote the associated OET state by < a >. 

As shown in Figure 6.2, the orientations of the subarcs of a loop in an OT state 

will not in general give a consistent orientation for this loop. But, these oriented arcs 

will help specify the region we will be gluing in quasipositive braids, for quasipositive 

modification. 

Definition 6.2. Let D be an oriented link diagram, and < a > an OET state for 

that diagram representing a nontrivial homology class. A collection of oriented arcs 

from < a >, Aa, is said to be braid-parallel with respect to < a > if: 

1. Each of the arcs comes from separate loops in a. 

2. Each of the arcs is marked by in a. 

3. The arcs can be joined by a line transverse to each which touches only the arcs 

of Aa and meets each arc in the same orientation. 

Roughly speaking, the braid-parallel arcs are what we will replace by a quasi-

positive braid, for quasipositive modification. The matching orientation of each arc 
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agrees with how each braid strand is oriented in a braid, so that when replacing the 

braid-parallel arcs by the braid, positive and negative crossings in the braid will re-

main positive and negative in the new diagram. Alternatively, one can replace the 

transverse line by a "box" around the arcs, so that inside the box, the arcs look like 

the trivial braid on n strands. See Figure 6.3. 

Figure 6.3: Oriented diagram for a figure-8 look-alike version of the positive trefoil, 
OT states for the all zero state, and a collection of 3 braid-parallel arcs marked by a 
transverse line, then a box. 

Definition 6.3. Given oriented diagrams D and D', and an OET state < a > of D, 

we say that D' is a quasipositive modification on D compatible with < a > if there 

is a collection of arcs of D braid-parallel with respect to < a > and a quasipositive 

braid B on as many strands so that replacing the arcs in D with the quasipositive 

braid results in D'. 

Example 6.2. Let D be the figure-8 look-alike diagram of the positive trefoil (same 

diagram as Figure 6.3). This is a + adequate diagram, so let ao be the ET state 

for the all-zero state where each loop is marked by t>_. Figure 6.3 has a collection 

of 3 arcs braid-parallel with respect to < a >, so let D' be the diagram obtained by 

replacing those arcs with the quasipositive braid for the mirror of 820- Then D' is a 

quasipositive modification of D compatible with a. See Figure 6.4. 
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Figure 6.4: On the left, the figure-8 look-alike diagram of the positive trefoil is iso-
toped so that the braid-parallel arcs shown in Figure 6.3 are actually parallel. On 
the right is the quasipositive modification of this diagram by the mirror of 820-

Alternatively, one can view quasipositive modification as a procedure where one 

does a series of Reidemeister II moves followed by adding positive crossings, in such a 

way that removing the positive crossings yields a diagram that can be simplified, using 

Reidemeister II only, to the original diagram. The compatibility condition with a state 

cycle then limits where one can do the Reidemeister moves and add positive crossings; 

from this perspective, quasipositive modification is a series of positive modifications 

on a Reidemeister II modified diagram. 

The first main benefit of quasipositive modification with respect to a nontrivial 

state cycle is that the state cycle can be lifted to a nontrivial state cycle for the new 

diagram, via an associated Jacobsson homomorphism. 

Theorem 6.4. Let D be an oriented diagram, and < a > an OET state for a nontriv-

ial state cycle. Suppose D' is gotten from D by quasipositive modification compatible 

with < a >, and that is the associated Jacobsson homomorphism from Kh(D') to 

Kh(D). Then there exists a state cycle a so that \&(a) = ±a. If B is the quasipositive 

braid associated to this modification, then a is the ET state where: 

• All crossings from D are smoothed as in a. 
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• Negative crossings from B are 1-smoothed, positive crossings from B are 0-

smoothed. 

• Every loop in a is marked the same as a. 

Proof. The basic strategy here is to first "remove" the central positive crossings, via 

Lemma 5.2, then use Reidemeister II moves to get rid of the remaining conjugate pairs 

from the braid word. At each stage, the loops, and the markings on the loops, should 

remain the same: the only difference is that there are less traces from crossings, since 

we are progressively simplifying the diagram. 

x-x x-x 
Figure 6.5: Illustration of how the oriented resolution looks at the ET state level for 
positive, negative crossings respectively. 

The first thing to check is that 5 makes sense: it needs to have the same underlying 

loop structure as a, with additional traces coming from all the extra crossings in 

D'. Because of the orientation condition on the collection of braid-parallel arcs, the 

braid segment from the quasipositive modification retains all the crossing signs of the 

original braid: positive crossings remain positive, negative crossings remain negative. 

Checking the cases shown in Figure 6.5, we see that the smoothing choice given for 

a locally results in the original braid-parallel arcs, with extra traces coming from the 

additional crossings. So, the loops of a are exactly the same as for a, and the marking 

choice gives us the entirety of an ET state. 

All of the new crossings in D' go between the braid-parallel arcs, and the choice of 

resolutions has the traces of those crossings going between two arcs of the collection. 
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Since each arc comes from its own loop in a and a has the same loop structure, each 

of the new traces are mergetraces in 5 between loops marked by In particular, the 

new 0-traces are mergetraces between two loops marked by v-, and the old 0-traces 

remain mergetraces between loops marked by v-, since the underlying loop structure 

of a is the same as that of a and none of the original traces have been altered. It 

follows from Proposition 3.2 that a represents a state cycle. 

At each step, whether we 0-resolve a central positive crossing, or perform a Rei-

demeister II move, the loop structure will remain the same: we will just be removing 

traces going from ET state to ET state. So, as long as the markings on the loops in 

question do not change, we will have a sequence of Jacobsson homomorphisms going 

from a to ± a as desired. The Positive Modification lemma (5.2) shows this holds for 

resolving the central positive crossings, so it suffices to check this situation holds for 

the Reidemeister II moves. 

For the Reidemeister II moves, at each step we have a negative and positive 

crossing adjacent in the diagram. At the state level, these have been 1-smoothed 

and 0-smoothed, and the respective traces are both mergetraces going between the 

same two arcs. This puts us in the situation of the top left part of Figure 5.4, 

where we see that the markings of the two arcs remain the same after the Jacobsson 

homomorphism is applied, with a possible sign change on the resulting state cycle. 

So, the Reidemeister II homomorphisms act as claimed, and the resulting image of 

the last homomorphism will be ± a . • 

Remark 6.4.1. This is a generalization of Lemma 5.2; the corresponding result in 



73 

Plamenevskaya's case is that the contact invariant of a quasipositive braid is non-

trivial (Corollary 1 of [Pla06]). A feature of our construction is that a quasipositive 

modification can be compatible with multiple nontrivial state cycles, a fact we will 

exploit in Chapter 7 to construct families of H-thick knots. Additionally, since it takes 

nontrivial state cycles to nontrivial state cycles, it is a process that can be iterated. 

Suppose the braid associated to the quasipositive modification has k central pos-

itive crossings. Then the cobordism associated to this modification has Euler char-

acteristic —k, so that the quantum grading of a lift is k higher than the quantum 

grading of the original state cycle. As was the case with positive modification, this 

shift is the same for every state cycle compatible with the quasipositive modification, 

because the Jacobsson homomorphism induced by cobordism £ is a (0, map: 

Corollary 6.5. Suppose < a > and < (3 > are both compatible with the same quasi-

positive modification. Then the relative grading difference of a and j3 also holds for 

the lifts a and (3. In particular, if a and f3 lie on distinct diagonals of Kh(D), then 

a and j3 lie on distinct diagonals of Kh(D'). 

In other words, if one can find nontrivial state cycles in D on n different diagonals 

which are compatible with a quasipositive modification, the lifts guarantee that D' 

will also have homological width at least n. Unfortunately, without more tools it can 

be difficult to find that many nontrivial state cycles. 

However, another feature of quasipositive modification is that the associated Ja-

cobsson homomorphism also lifts state cycle Lee pairs: 
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Theorem 6.6. Let D be an oriented diagram, and < a > an OET state for a nontriv-

ial state cycle of D. Suppose D' is a diagram gotten by quasipositive modification on 

D compatible with a, and that a is the lift of a. Then = <l?£ee(\I/j(a)) = 

Proof. By Theorem 6.4 we have a state cycle lift of a, a. The first thing to consider 

is how $ acts on these two state cycles. In both cases, every 0-trace is a mergetrace 

between two loops marked by t>_, so the edge maps from $ will be of the form: 

® —> v+ 

Each of these edge maps targets a different state, so <E>(a) and $(5) will be a sum 

of ET states, each of which has a merged loop marked by v+ corresponding to the 

associated O-mergetrace. 

Furthermore, regardless of whether the Lee spectral sequence converges at E2 in 

D', $(5) will still be a cycle, since $ is a homomorphism on Kh(D'). We want to 

show that this maps down to ± $ ( a ) under the Jacobsson homomorphism for the 
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quasipositive modification. This can be broken down into three cases, by the kinds of 

terms in $(5): image states coming from 0-traces of central positive crossings, image 

states coming from 0-traces of other positive crossings in the braid, and image states 

coming from 0-traces of a. The claim is that under the Jacobsson homomorphisms, 

the first two kinds of terms vanish, and the last terms survive to the equivalent terms 

of $(a) . 

D' p 

X 
v+ 

v+ 

I j 

f - i + i 
J ' 

0 

J L -
D |B 

Figure 6.6: ET states and diagrams showing how a term coming from a central positive 
crossing vanishes under the Jacobsson homomorphism associated to O-resolving that 
crossing. 

Case 1: Suppose p G Kh%^{D') is the $ edge image of a 0-trace of a central 

positive crossing. Jacobsson homomorphisms commute up to sign, so it suffices to 

show P vanishes under the O-resolution of this central positive crossing. As shown in 

Figure 6.6, this ET state survives the homomorphism for the 1-handle, but vanishes 

under the homomorphism for positive Reidemeister I. Consulting Figure 5.3, one sees 

that each state where the 1-trace of that positive crossing occurs is not listed, which 

means that it is sent to 0 under this Reidemeister I homomorphism. 
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D' 

X 
si 
i , , 

U - R P 

D 6 

v. 

1 

R P * 
p v . 

1 
V. 

D' 

X 
si ] 

JL-
D 3 

v+ 

V. 

p V- + P v+ 

' — ' — i y I i _ j y 
I 

v+ 

Figure 6.7: ET states and diagrams showing how ET states which have 0-traces for 
a positive crossing behave under O-resolution of that positive crossing. 

Case 2: Suppose (3 G Khl^(D') is the $ edge image of a 0-trace of a noncentral 

positive crossing from the braid. Figure 6.7 shows that (3 is "preserved" under 0-

resolution of every central positive crossing, in the sense that the underlying loop 

markings and state remain the same under each such Jacobsson homomorphism. To 

see that it vanishes under the Reidemeister II move which cancels this 1-smoothed 

crossing, consider the lefthand side of Figure 5.4. [3 will have 1-smoothed both the 

positive and negative crossing of this Reidemeister II pair, but the only nonzero images 

under the Jacobsson homomorphism come from 0-smoothing one of the two crossings 

and 1-smoothing the other. So, (3 vanishes under this Jacobsson homomorphism as 

claimed. 

Case 3: Suppose j3 E Khl^(D') is the $ edge image of a 0-trace not coming from 

the braid. As in Case 2, (3 is preserved under the O-resolution of every central positive 

crossing. As for the Reidemeister II moves, since the 1-smoothed crossing does not 
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occur on any of the Reidemeister II pairs, we fall into the top lefthand case of Figure 

5.4, which preserves the markings of the loops involved each time the homomorphism 

is applied, up to sign. So, the net result is ±$ e ( a ) , where e is the associated edge. 

The last thing one must deal with is whether there are any global problems with 

all the sign changes that are taking place in the Jacobsson homomorphisms. But, 

each of the homomorphisms will apply the same sign change to all of the surviving 

terms, so that we really do have = as claimed. • 

Example 6.3. Suppose D is a quasipositive diagram for a knot of homological width 

less than 4, with at least one negative crossing. As seen in Proposition 5.4, if a 0 is the 

usual + adequate all-zero cycle, then «o and are nontrivial homology classes. 

Therefore, SO and $(SQ) are nontrivial homology classes in D'. This theorem thus 

provides a method of lifting the two adjacent diagonals these homology classes lie on, 

so that there is a diagonal that lies above the diagonal for So. 

If D' remained + adequate, this would follow immediately from Khovanov's anal-

ysis of the Krull-Schmidt decomposition of the Khovanov chain complex in [Kho03], 

but D' as a diagram does not remain + adequate under quasipositive modification. 

Without knowing that So is minimal in Kh(D'), one cannot a priori tell whether the 

second diagonal lies above or below the diagonal for So. 

Furthermore, this process of lifting such Lee pairs can be iterated even when the 

resulting D' is not + adequate: for nontriviality of the lifts, all we require is that [a] 

and [^(a)] are both nontrivial homology classes. 



Chapter 7 

Families of H-thick knots via 

Quasipositive Modification 

In this section, we examine the state cycles of a diagram of the knot 942 and ex-

hibit how to perform several compatible quasipositive modifications. In this way, we 

construct several families of H-thick knots which cannot be detected by Khovanov's 

thickness criterion, and a sequence of prime knots and links related by quasipositive 

modification for which width is increasing. Finally, we discuss other potential sources 

of base knots for quasipositive modification. 

7.1 The Base Knot 942 

942 is an H-thick knot, and this subsection will show three homology classes, one in 

each of its diagonals, which we can lift by quasipositive modification. Table 7.1 lists 

its rational Khovanov homology according to the Knot Atlas [BNM], with the three 
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homology classes we will lift marked by shading. 

-4 -3 -2 -1 0 1 2 

7 1 
5 
3 1 1 
1 1 1 

-1 1 1 
-3 1 1 
-5 
-7 1 

Table 7.1: Rational Khovanov homology of 942. Homology classes which will be lifted 
under quasipositive modification have been shaded. 

The first thing to note is that the "usual" diagram from Bar-Natan's Knot Atlas 

[BNM] for 942 is + adequate; an isotoped form of this diagram is shown in Figure 

7.1. This gives us a state cycle representative, o:0, for the minimal quantum and 

homological graded entry of its rational Khovanov homology, (-4, -7). Following 

Example 6.3, this gives us a second nontrivial, liftable homology class from its Lee 

pair at bigrading (-3,-3), since 942 has width 3. 

Figure 7.1: Usual diagram for 942 and the all-zero OT state, showing this diagram is 
+ adequate. 

For the third homology class, we would like to find a state cycle representative for 

the "thick" diagonal of 942's homology. There is only one nontrivial homology entry 
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for that diagonal, at bigrading (0, -1). The s-invariant of 9,I2 is 0, which would give 

us a representative for this class if we had an explicit form of this generator. But, we 

lack a general form for this generator in terms of the Khovanov chain generators. 

However, the "Seifert state", gotten by smoothing the diagram according to the 

rules for constructing the canonical Seifert surface, is an adequate state. And, marking 

it as a state cycle, with on the 0-tracing loops and v+ on the 1-block, gives a state 

cycle a s of the desired bigrading, (0,-1). Since there is only one loop in its 1-block, and 

its quantum grading is s — 1, Theorem 5.6 guarantees this state cycle is nontrivial. 

Figure 7.2 shows the associated OET state for this state cycle. The ET state has 

marking 4 loops, and 4 1-smoothings in a 9 crossing diagram with 

4 negative and 5 positive crossings, for those wanting to verify the bigrading. 

Figure 7.2: OET for a s , the Seifert state cycle for 942. 

To lift these three homology classes, we need to choose a set of braid-parallel 

arcs compatible with both state cycles, and a quasipositive braid. The next two 

subsections will do this for two variants of this diagram, and analyze two families 

based on these choices of braid-parallel arcs. 
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7.2 Adding Positive Twists 

Looking over the OET states for a0 and as, it is easy to find pairs of braid-parallel 

arcs compatible with both states: Figure 7.3 shows the pair we will examine here. 

Since there are only two arcs, whatever quasipositive braid we would use for the 

modification will in fact be Reidemeister equivalent to the braid word r": n positive 

half-twists between those two strands. By the quasipositive modification theorems, 

this gives a simple family of thick links Kn, where n is the number of half-twists. 

r i 

- A—| * 

r t i 

r ^ O ' 
1 — * L + r 

— » ' 

r 

b 
—4 

j 

Figure 7.3: OET states for ao and as, with a pair of compatible braid parallel arcs 
marked. 

Using SnapPea [Wee], one can check that the surgery link associated to this 

positive twisting is hyperbolic. Using Thurston's hyperbolic Dehn surgery theorem 

[Thu02], it follows that all but a finite number of such Kn must be hyperbolic. So, all 

but a finite number of the Km must be prime knots, showing that this family cannot 

be obtained by taking connect sums of something with a thick knot. 

Furthermore, adding positive twists lends itself well to a recursive formula for 

the Jones polynomial of these knots. Recall that the skein formula for the Jones 

polynomial V(L) is given by: 
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<rV(L+) - qV(L-) = tf/* - q^2)V(L0) (7.1) 

Here, L+, L_ and L0 are the link where a crossing is circled and replaced by 

a positive crossing, a negative crossing, and the oriented smoothing, respectively. 

To apply this to our Kn, note that changing one of the added positive half-twists 

to a negative half-twist will cancel the next positive half-twist, leaving Kn_while 

the oriented resolution of a positive half-twist just reduces the number of positive 

half-twists by 1, yielding Kn-\. So, we can rewrite (7.1) as the following recursion: 

V(Kn) = q2V(Kn„2) + {q3'2 - q^ViK^) (7.2) 

Using KnotTheory' [BNMG], one can verify the following calculations, which 

begin the recursion and suggest that the Jones polynomials of the K2n knots is alter-

nating: 

V(K0) = q3 - q2 + q - 1 + q'1 - q~2 + q~3 

V{KX) = j*'2 - q7'2 + q5/2 - 2q3'2 + q1'2 - 2q'1'2 + q^2 - q~5'2 

V{K2) = q6 - q5 + q4 - 2q3 + 2q2 - 2q + 2 - g"1 + q~2 

V(K3) = q15/2 - q13'2 + q11'2 - 2q9'2 + 2q7'2 - 2>qb'2 + 2q3'2 - 2q1'2 + q^'2 - q'3'2 

V{Ka) = q9 - q8 + q7 - 2q6 + q5 - 3qA + 3q3 - 2q2 + q - 1 + q'1 

In fact, this pattern continues, leading to: 
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Theorem 7.1. The Jones polynomial of the knots K2n is alternating, in the following 

sense: if V(Kin) = Yl^l1) then either all the a2k terms are positive and the a2k+i 

terms negative, or vice versa, with no zero coefficients within Span(V(K2 n)) . 

Proof The proof is by induction on the number of half-twists. For convenience, we 

will consider everything in terms of the renormalization P(Kn)(x) = V(Kn)(x2): this 

way we can describe the odd n case without worrying about all the half-powers. In 

this renormalization, (7.2) becomes: 

P(Kn) = x 4 P(i f n _ 2 ) + (x3 - x)P(Kn^) (7.3) 

Rewriting the base examples in terms of this renormalization, we have: 

P(K0) = x6 - x4 + x2 - 1 + x"2 - x~4 + x"6 

P(Kx) = x9 - x7 + x5 - 2x3 + x - 2x_ 1 + x"3 - x~5 

P(K2) = x12 - x10 + x8 - 2x6 + 2x4 - 2x2 + 2 - x~2 + x"4 

P(K3) = x15 - x13 + x11 - 2x9 + 2x7 - 3x5 + 2x3 - 2x + x"1 - x"3 

P(K4) = x18 - x16 + x14 - 2x12 + x10 - 3x8 + 3x6 - 2x4 + x2 - 1 + x"2 

Furthermore, as a consequence of the skein relations for the Jones polynomial, we 

know that P(K2n) will have only even powers of x, while P(K2n+i) will only have odd 

powers, since the respective link familes have an odd and even number of components, 

respectively. To account for these two cases at once, we will consider the following 
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induction hypothesis: 

Induction Hypothesis. For all n < k, P(Kn) has leading coefficient +1; if the leading 

power is t, then coefficients a" of P(Kn) will be positive for j = t (mod 4), and 

negative for j = t + 2 (mod 4). Coefficients of powers i within Span(P(Kfc+i)) so 

that i = t (mod 2) are nonzero. The leading power t of P(Kn) will be 3(n + 2), and 

the trailing power will be n — 6. 

We will build this up by a few other inductive claims first. 

Claim 7.1.1. P(Kn) has leading power 3(n + 2) and leading coefficient +1. 

By inspection, it is clear this holds for the base cases P(K0) and P{Ki). So, 

assume everything holds for n < k, and consider P(Kk + i) . The leading powers of 

P(Kk) and P(K k^i) are 3k + 6 and 3k + 3 respectively, so by the skein formula, 

the highest powers each will contribute to P(Kk+1) are 3 + (3k + 6) = 3k + 9 and 

4 + (3k + 3) = 3k + 7 respectively. Clearly 3k + 9 will be the highest power of the 

result, and because the sole such term comes from P(Kk) and is multiplied by +1, 

the resulting coefficient will remain +1 by induction. 

Claim 7.1.2. P(Kn) has trailing power n — 6 and trailing coefficient (—l)n. 

By inspection, this holds for P(KQ) and P(KI). Now, assume this holds for all 

n < k. Observe that —XP(KK) will contribute lowest power k — 5, while x4P(KK~i) 

will contribute lowest power k — 3. So, the trailing term will come from —xP(Kk), 

and the coefficient will be —1 multiplied by the trailing coefficient of P(KK), namely 

( -1 ) * ( - l ) f c = ( - l ) f c + 1 . 

Claim 7.1.3. Denote the coefficient of x? in the expansion of P(Kn) by a™. Then 
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K l l ^ IK-sll-

Proof. Inspecting the first few examples, it is clear this holds for the base cases. 

To account for the general case, we need to rewrite the recursion in terms of the 

coefficients. For a fixed power .xJ and polynomial P(Kn), (7.3) becomes: 

a] = a^zt + q i l - a"Zi (7.4) 

So, assume ||a™|| > 1 1 | | holds for n < k. Expanding by (7.4), we get: 

H = II J—4 + j—3 - aj-1 II ( 7 ' 5 ) 

We want to compare this to 11â Ẑ 11, which appears as a summand in (7.5). Let's 

first analyze the relative sign distribution inside the absolute value sign: we will 

normalize so that a^z\ is positive, multiplying the interior of the absolute value by 

— 1 if needed, a^zl is a coefficient from the same polynomial which differs by an x2, 

so it must appear with the opposite sign from a*z\- So, ~ok-Z\ is positive when ak-Z\ 

is positive. 

On the other hand, a^zl comes from P(/Cfc_2)- an x3 factor lower term than 

which is negative. We know from Claim 7.1.1 that the leading power of P(Kk _i) is 

3k + 3, while that of P(Kk-2) is 3k. So, af*zl must match the negative sign of a*z\-

This means that within the absolute value sign of (7.5), when a^Z3 and —ofjZ\ are 

both positive terms, a^zl will be negative. 

The upshot is that if ||a)~J|| > | |a j l | | | , then a!jzl — a*Z\ > 0. In such a case, 
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atj-1 — Uj- i and have the same sign under the absolute value sign, giving us the 

following equality: 

\\aj-4 + aj-3 - a}!}|| = \\akrl - a)z\|| + Ha^l l (7-6) 

> IIS-sll (7-7) 

But, > \\a!jlt\\ is simply an index shift of the induction hypothesis, com-

pleting the proof of this claim. • 

We're now ready to tackle the last part of the induction. The claims have already 

dealt with the leading and trailing coefficients and powers, so we have only to show 

the alternating signs of the coefficients. 

Note first that all the terms from the x3P(Kk) expansion will match the parity 

of the terms from the —xP(Kk) expansion, since .'/;3 and —x differ by an even power. 

However, all terms from the expansion of x4P(Kk- 1) will have the opposite sign parity, 

since the leading power is 3k + 7, which differs by 2 from the lead power of x3P(Kk). 

To account for this discrepancy, we need to show that, for each power, we get a 

larger coefficient sum from (x3 — x)P(Kk) than from x2P(Kk-1). As in Claim 7.1.3, 

we will show this on a coefficient by coefficient level. We want to show that the 

coefficient of xJ in the expression (x3 — x)P(Kk) is greater in absolute value than that 

of xk in the expansion of x2P(Kk-1). At the coefficient level, this becomes: 

\\aj-3 ~ a j - i \ \ > llaji-4ll (7-8) 
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We then expand the lefthand side of this using the recursion relation, getting: 

1 1 4 - 3 H (7-9) 

= 1 1 ( 4 - 7 + 4 - 6 - 4 - 1 ) - ( 4 - 5 + 4 - 1 - 4 - 2 ) 1 1 (7-10) 

l|„fc-l r,„k—1 , „k—1 I „k—2 nk-2|| f7 ii\ =| |a j_6 - 2a,,_4 + Qj_2 + a^y - a,j_51| (7.11) 

Now, consider the relative parity of each term in (7.11). We would like to compare 

this to 4 - 4 ' s o l e t ' s assume that coefficient is negative (if it were positive, we could 

multiply the whole sum in the absolute value by —1). Clearly, —241] will be positive 

with this sign choice, and ultimately we would like to break off one of these copies as 

a separate absolute value part, as we did in Claim 7.1.3. 

4 - 6 differs in power from this by 2, so it has the opposite sign, becoming positive. 

The same thing happens to 4-2- contrast, 4 - 7 comes from the next lower poly-

nomial, and differs by a power of 3, so it has the same negative sign as 4-4- On the 

other hand, 4 - 5 differs from af-Zj by a power of 2, so must be positive: this makes 

—4-5 a negative number. In summary, our sign choice yields the following parity in 

the absolute value sign: 

|| a g j - 2 a g + 4l7
2 - a g || (7.12) 

+ - + - + 

Termwise, the left three terms become positive, while the right two are negative. 

If we are to use our earlier trick of separating out one of the "positive" terms, — 4-4> 
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we need to check that the remaining difference remains "positive". Namely, we need 

to show: 

1 1 4 - 6 - 4 - 1 + 4 - 2 I I > 1 1 4 - r - 4 - 5 I I (7.13) 

But, by induction using (7.8), we already know that: 

H 4 4 - 4 - 4 ll > 114-711 (7-i4) 

And, Claim 7.1.3 gives us the remaining piece, suitably shifted: 

114-211 > 1 1 4 - 5 II ( 7 - 1 5 ) 

Now, thanks to all the lefthand terms of (7.13) being positive, we can break 

apart the absolute value with equality, and then apply (7.14) and (7.15) to verify the 

inequality of (7.13): 

(7-16) 

(7.17) 

(7.18) 

(7.19) 

||„fc—1 „k—1 , fc-III 

||Oj_6 - aj~4 + S - 2 I I 

=114^ - 4 : 1 1 1 + 

> 1 1 4 - ? II + I I4-5 2 I I 

= l l 4 - 7
2 - 4 - 5 2 l l 

The very last equality comes, again, from our earlier sign analysis in (7.12). Now, 
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since (7.13) holds, we can break up our earlier absolute value from (7.11) with equality, 

obtaining: 

(7.20) 

= ll j—6 ~ j—4 + j—2 + a
: 

= 11 +a^zl + a 

>1141111 

k—2 
'j-r 

+ a 'j-4 II 

(7.23) 

(7.21) 

(7.22) 

This verifies (7.8), completing the claim that the coefficients of P(Kk+i) alternate 

in the appropriate fashion. The remaining claim to verify is that the appropriate 

coefficients within Span(P(AV|_i)) are nonzero. This follows largely from Claim 7.1.3: 

this tells us that coefficients of powers 3 higher than nonzero coefficients of P(Kk) will 

be nonzero, since their magnitude is greater than that of nonzero coefficients of P(KK). 

This covers coefficients of powers (3k + 6) + 3) = 3k + 9 down to (k — 6) + 3 = k — 3, 

leaving only the trailing coefficient, of xk~5 in question. But by Claim 7.1.2, we know 

this coefficient is nonzero. • 

Corollary 7.2. ^ n cannot be detected as thick using the alternating Jones polyno-

mial test of Khovanov. 

Corollary 7.3. Span (V(K 2 n ) ) = 2n + 6 

Proof. In terms of x coefficients, we know the leading power of P(K2n) is 6n +6 and 

the trailing coefficient is 2n — 6, so Span(P(K2n)) = 4n + 12. It follows from the 
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change of variables that Span(K(/f2n)) = 2n + 6. • 

Theorem 7.4. For each n, Kin is not an adequate knot. 

Proof. Since the Jones polynomial of these knots begins and ends with ±1, we need 

to analyze the Kanffman polynomial to determine adequacy conditions. What we 

will show is that K2n is not - adequate, and hence admits no adequate diagram. 

Following the conventions of Thistlethwaite and Stoimenow, the Kauffman poly-

nomial we consider will differ from that listed on Bar-Natan's Knot Atlas by the 

substitution a —> a - 1 . Recall that the Kauffman polynomial F(K)(a, z) is defined by 

the following relations, where D is the chosen diagram for K, D+ is a diagram where 

a circled crossing is positive, is that same diagram with the crossing replaced by 

a negative crossing, Do replaces the crossing by a 0-smoothing, and D\ replaces it by 

a 1-smoothing: 

F(K)(a, z) = aw^A(D) (7.24) 

A (D+) + A (£>_) = z(A(D0) + A ( A ) ) (7.25) 

A (positive RI twist) = a XA(|) (7.26) 

A (negative RI twist) = aA(|) (7.27) 

A(O) = 1 (7.28) 

Looking over the ingredients of (7.25), we know that if D+ focuses on one of the 

positive half-twists of Kn, then as with the Jones recursion, D_ is 2, and Dq is 
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KN_I- D\ is the new quantity to understand, but it turns out that 1-smoothing the 

leftmost half-twist results in the mirror of 819 with n negative Reidemeister I twists 

added. This leads to the following A recursion: 

A (KN) = - A {KN.2) + zA(if„-i) + ^a"A(819!) (7.29) 

The writhe of our diagram for KN is easily seen to be 1 + n, as 942 has 4 negative 

crossings, and 5 positive crossings in its usual diagram. We will be concerned with 

coefficients of F(D), since this is a knot invariant and can give obstructions to the 

knot being - adequate. So, translating (7.29) into the Kauffman polynomial, we 

obtain: 

F{Kn) = —a1+nA(Kn^2) + za1+nA(Kn_i) + za1+2"A(819!) (7.30) 

Let [F(D)](m,i) denote the coefficient of zmal in F{D). By (2.10) of Stoimenow 

[Sto07], if I — rn is the maximum integer so that [F(D)]^m^ is nonzero, then if 

any such coefficient is negative, K cannot be - adequate (note that Stoimenow's 

A-semiadequate corresponds to our convention for - adequate). So, for the recursion, 

we just need to see how these maximal terms carry over for each term. 

For our base case, KnotTheory' [BNMG] can be used to show that F(KQ) is given 

by: 
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F(K0) =a~lz7 + z7a + a~2z6 + z6a2 + 2z6 - 5a-1*5 - 5z5a - 5a~2z4 

- 5z4a2 - 10z4 + 6 a ^ z 3 + 6z3a + 6 a ~ V + 6z2a2 + 12z2 - 2a'1 z 

- 2za - 2a~2 -2a2 

So, the maximum I — m term here is —2a2, and the knot is not - adequate. The 

writhe for the standard diagram is +1, so dividing by a, one gets that the maximum 

I — m term for A(K0) is —2a. This will prove useful for the recursion. 

Next, the Kauffman bracket for Ki is: 

F(Ki) =3 + 3a2 + a4 - 2a" V 1 - 3az^1 - a3z~1 + 8a~ lz + 15az 

+ 8a3z + a5z - 2z2 - 7a2z2 - 5 a V - 11 a~lz3 - 27az3 - 16a3z3 

- 5z4 + 5a4z4 + 6a - 1 z5 + 17az5 + l la 3z 5 + 5z6 + 4a2z6 - a4z6 

- a~1z7 - 3az7 - 2 a 3 / - z8 - a2z8 

The maximum I — m, terms are a4 — a3z~l + a5z. One of the terms is negative, 

so this link is also not - adequate. The corresponding maximum I — m terms from 

A(A'i) are given by a2 — az~ 1 + a3z. 

For the recursion, one can calculate that A(8ig!) is: 
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A(819!) = - 5 - 5a"2 - a2 + 5aTxz + 5az + 10z2 + 10a~2z2 - 5a'1z3 

- 5az3 - 6z4 - 6a~2z4 + + az5 + z* + a,~2ze 

Thus, the term for which I —mis maximal is —a2, which has a negative coefficient. 

We can now use these values to examine how the maximal I — m terms behave under 

the recursion, for both A and F: 

Claim 7.4.1. For n > 2, the maximal I — m term for F(Kn) is — za2n+3, and the 

maximal I — m, term for A ( K n ) is — zan+2. 

Proof. Proof of the claim is a simple induction, using the recursion and the base 

values established above. For our base case n = 2, the recursion tells us that: 

m a X F ( K 2 ) > —a3 max A(iCo) + za3 max A(i^i) + za5 max A(8ig!) 
l—m l—m l—m l—m 

= -a3(-2a) + za3(za3 - az'1 + a2) + za5(-a2) 

= 2a4 + z2a6 - a4 + za5 - za7 

So, the maximum I — m term for F(K2) is — za7, and dividing by the writhe, 

the maximum I — m term for A (K 2 ) is — za4, which matches the claim. We need to 

analyze Ks also before the induction: 
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max F(K3) > -a 4maxA(/( r
1) + za4 max A(K2) + za7maxA(8i9!) 

l—m l—m l—m l—m 

= —a4(a2 - a z - 1 + a3z) + za4(-za4) + za7(-a2) 

= - a 6 + a5-?"1 - a7z - z2a8 - za9 

Again, the — za9 term is maximal for F(K3), and correspondingly — za5 is maximal 

for A(Ks). We can now catch the rest of the cases by induction: 

max F(Kn) > - a 1 + n max A(ifn_2) + za1+Tlmax A ^ ^ ) - za2n+3 

l—m l—m l—m 

= -a1+n(-zan) + za1+n{-zan+1) - za2n+3 

= za2n+1 - z2a2n+2 - za2n+3 

So, the maximal I — m, term for F(Kn) is —za2n+i: dividing by the writhe (1 + n), 

we get that the maximal I — m term for A(Kn) is —zan+2 as claimed. • 

The claim tells us that the maximal l — m term for the Kauffman polynomial of 

every Kn has a negative coefficient, so the corresponding knot or link cannot admit 

a - adequate, and hence adequate, diagram. • 
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7.3 Setup for modification by a 3-braid 

For a more complicated example of quasipositive modification, we need to find a trio 

of braid-parallel arcs. While there is no such trio in the previous diagram, we can do 

a positive stabilization to get a new + adequate diagram for 942 which now has a set 

of three braid-parallel arcs compatible with the two state cycles. See Figure 7.4. 

Figure 7.4: Positive stabilization of 942 and the new OET states for ao and a s , with 
a trio of braid parallel arcs marked. 

Any quasipositive 3-braid can now be glued in for a quasipositive modification. 

This gives a lot of variety in kinds of H-thick knots and links one can construct by 

modification of 942; in the next two subsections, we will consider two such families. 
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7.4 Conjugating a Positive Crossing 

For another family of thick knots which are prime, not adequate, and have alternating 

Jones polynomial, we can simply conjugate a positive crossing with a 3-braid word of 

choice. For this example, we will conjugate by w\ = r ^ r f l , to modify by the quasi-

positive braid word Q\ = Ti T2 T{ 1 T2 T\ T2
1 t ^ 1, choosing the same 3 braid-parallel arcs 

as in Figure 7.4. Note that inserting multiple copies of this braid word consecutively 

is isotopic by Reidemeister II cancellation to conjugating multiple positive crossings 

by W!. 

Figure 7.5: Diagram of K(942,qi,n)-, the n represents n positive half-twists. 

So, consider the family formed by successively doing quasipositive modification 

of 942 by the 3-braid word qi, denoted n). It turns out that this family is 

closely related to that of Subsection 7.2, though comparison of the Jones polynomial 

suggests these families are distinct. 

Using SnapPea [Wee], one can again check that the surgery link associated to this 

positive twisting is hyperbolic. Using Thurston's hyperbolic Dehn surgery theorem 

[Thu02], it follows that all but a finite number of such K(942,Qi,n) must be hyperbolic. 

Hence almost every member is prime. Next, calculating the Jones polynomial via 

Knot Theory' [BNMG] for the first three members of the family, one sees that their 



Jones polynomials are alternating: 

V(K(942, < 7 1 , 1 ) ) = - 2 q ~ 5 ' 2
 + 3 q ' 3 ' 2 - 5q^2 + 5q1 '2 - 6q3 '2 + 6q h ' 2 - 5q1 '2 + 4q*'2 

- 2q11'2 + q13'2 - q15/2 

V(£T(942, qi, 2)) = 2g"2 - Aq~x + 7 - 9 g + 10g2 - l lg 3 + 10g4 - 8g5 + 6q6 - 3g7 + 2qs 

- Q 9 

V(K(9i2: qi, 3)) = -2q~ 3 ' 2 + 4g-V2 _ Sg1/2 + llq3'2 - 14g5/2 + 15q1'2 - 15q*'2 

+ 13gn /2 _ 10q13/2 + 7g15/2 - iq1 7 / 2 + 2<?19/2 - g21/2 

This pattern holds in general, yielding: 

Theorem 7.5. TTie Jones polynomial of K(942,gi,n) is alternating, with no gaps. 

Proof. The proof is almost the same as that of Theorem 7.1. Doing the change of 

variables, the Jones polynomials of the first three members can be renormalized to: 

P ( i f (942, qx, 1)) = —2x-5 + 3x~3 - 5x~J + 5x* - 6x3 + 6x5 - 5x7 + 4x9 - 2xn + x13 

- x 1 5 

P{K(942, ft, 2)) = 2x~4 - 4 x - 2 + 7 - 9x2 + 10x4 - l l x 6 + 10x8 - 8x10 + 6x12 - 3x14 

+ 2x16 — x18 
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P(K(942, qu 3)) = + 4x _ 1 - 8x* + llx3 - 14x5 + 15x7 - 15x9 + 13a;11 - 10x13 

+ 7x15 — 4x17 + 2x19 — x21 

The only difference of note is the recursion for the leading and trailing powers and 

coefficients: in this family, the leading power is 12 + 3n and leading coefficient is — 1; 

the trailing power is n — 6 and trailing coefficient is (—1)™ * 2. Otherwise, the proofs 

of the corresponding claims from Theorem 7.1 follow without change. • 

Corollary 7.6. K(942, qi, n) is not adequate. 

Proof. Because the trailing coefficient is (—l)n * 2, K(dA2. qi, n) admits no adequate 

diagram by Proposition 1 of Lickorish and Thistlethwaite [LT88]. • 

So, K(942, Qi: 2n) gives another infinite family of H-thick knots which is not de-

tected by Khovanov's thickness criterion. Presumably doing other such conjugations 

of a positive crossing will yield more families of this kind. 

7.5 Modification by the Mirror of 820 

Now we will consider the case of gluing in multiple copies of the quasipositive mirror 

of 820, which will form a different family of H-thick knots. Call such a knot with n 

copies of the mirror of 820 glued in via this quasipositive modification K (942, 820, n). 

In actuality, this will not always return a knot: in the case that n = 2 (mod 3), the 
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permutation of the strands gives a 3 component link, but otherwise K(942,820, n) will 

be a knot. 

Figure 7.6: First three members of family K(942,820, n). Notice that the second 
member is a link, while the first and third are knots. 

An interesting pattern in this family of H-thick links is that the width of successive 

members seems to be increasing. Using JavaKh-v2, an update of Jeremy Green's 

program by Scott Morrison written for [FGMW09], one can calculate that the width 

of the first four members is 3, 4, 5, and 6 respectively. Furthermore, this increasing 

width is not coming from some well-hidden connect-sum operation hiding in the 

quasipositive modification: 

Proposition 7.7. For n = {1,2,3,4}, K(942,820, n) is a prime link. In particular, 

it is not a nontrivial connect sum with a thick link as a summand. 

Proof. The method of proof is to use prime tangle decomposition, following Lickorish 

[Lic81]. We will first examine the case of K(942, 820,1); primeness for the other links 

will follow the same general pattern. 

Figure 7.7 illustrates a breakdown of K(942,82o, 1) into two tangles. If we can 

show that both tangles are prime, then the original knot is prime by Theorem 1 of 
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the exterior is Tangle B. 

[Lic81]. 

Tangle A is a variant on prime tangle (a) of Lickorish, which just has two extra 

positive half-twists added. Lickorish's same argument shows Tangle A is prime -

we add the untangle as shown in Figure 7.8, and get an unknot with no nontrivial 

summand. As in (a), Tangle A itself is not the untangle, because one of its arcs is a 

knotted spanning arc of the ball; primeness of Tangle A follows. 

Figure 7.8: If we add the untangle to Tangle A as shown here, we get an unknot with 
no nontrivial summand. To see the unknotting, look at rightmost part and just start 
undoing twists via Reidemeister I. 

Figure 7.9: An isotoped version of Tangle B. The grey and black parts are both 
unknotted arcs, when viewed by themselves. 

Primeness of Tangle B follows Lickorish's example (c). Each of the two arcs of the 

tangle are unknotted, seen by examining Figure 7.9. And, by adding an untangle to 
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Tangle B as shown in Figure 7.10, we get a 3-bridge knot, the mirror of 821 (the Jones 

polynomial is enough to determine this identification). Because the bridge number 

of this composition is higher than 2, Tangle B could not have been untangled. So, 

Tangle B is prime. 

Figure 7.10: Tangle B composed with an untangle. This is a 10 crossing diagram, 
and only one knot of 10 crossings or less matches its Jones polynomial, so it is the 
mirror of 821. 

Now let's consider similar tangle decompositions to prove the primeness in the 

cases n = 2,3,4. The idea is to make Tangle A the same, and consider what happens 

to the more complicated Tangle B cases. The only new thing one must check is 

that adding an untangle to the new variants of Tangle B are not 2-bridge. To show 

this, one can calculate the Khovanov homology for these links. In each case, the 

Khovanov homology is H-thick, of width 3, 4, and 5 respectively. But, 2-bridge links 

have alternating diagrams, which means their Khovanov homology must be H-thin. 

So, the bridge index of these two links is higher than 2, and the new Tangle B's are 

prime, as desired. • 

Remark 7.7.1. Note that via this prime tangle decomposition, we end up using H-

thickness of some subtangles to prove these knots and links are prime. A better 

understanding of why the width seems to increase when adding the mirror of 820 

would also give a proof that this full family of links is prime. 
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On the other hand, these links have nonalternating Jones polynomial, so their 

thickness (but not increasing width) can be detected by Khovanov's thickness criteria. 

For reference, the Jones polynomials of the first four in this family are listed below, 

calculated using KnotTheory' [BNMG]: 

V ( K ( % 2 , 8 2 0 , 1 ) ) = 2 q - 2 - 3 q ~ l + 5 - 5 g + 4 g 2 - 4 g 3 + 2 q 4 - g 5 + q7 

V{K(942,820,2)) = - g " 3 + 3 q ~ 2 - 5 g " 1 + 9 - l l g + 1 6 g 2 

- 1 7 g 3 + 1 9 g 4 - 1 7 g 5 + 1 4 g 6 - 1 0 g 7 + 6 g 8 

- 2 g 9 4 - g 1 1 — g 1 2 

V { K ( 9 4 2 , 8 2 0 , 3 ) ) = q~4 - 4 g - 3 + 1 0 g ~ 2 - 2 0 g _ 1 + 3 4 - 5 1 g + 6 9 g 2 - 8 5 g 3 + 9 8 g 4 

- 1 0 4 g 5 + 1 0 5 g 6 - 9 7 g 7 + 8 4 g 8 - 6 7 g 9 + 4 8 g 1 0 - 3 1 g n + 1 6 g 1 2 

- 6 g 1 3 + 2 g 1 5 - 2 g 1 6 + g 1 7 

V ( K ( 9 4 2 , 8 2 0 , 4 ) ) = - g " 5 + 5 g ~ 4 - 1 5 g " 3 + 3 5 g " 2 - e S g " 1 + 1 1 8 - 1 8 3 g + 2 6 4 g 2 

- 3 5 3 g 3 + 4 4 4 g 4 - 5 2 6 g 5 + 5 8 7 g 6 - 6 2 0 g 7 + 6 1 9 g 8 - 5 8 5 g 9 + 5 2 2 g 1 0 

- 4 3 8 g n + 3 4 3 g 1 2 - 2 5 0 g 1 3 + 1 6 6 g 1 4 - 9 8 g 1 5 + 4 9 g 1 6 - 1 7 g 1 7 

+ g 1 8 + 5 g 1 9 — 5 g 2 0 + 3 g 2 1 — g 2 2 

For completeness, one might ask whether these links have adequate diagrams. 

Unfortunately, the Kauffman polynomial, which provides most of the obstructions to 

being adequate, is too computationally intensive to calculate even for the 20 crossing 
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diagram of the n = 1 case. For n = 1, the last coefficient of the Jones polynomial is 

not ±1, guaranteeing there is no adequate diagram for this first knot by Proposition 

1 of Lickorish and Thistlethwaite [LT88]. But, subsequent Jones polynomials for the 

next 3 cases all have first and last Jones coefficient ±1, leaving only the Kauffman 

polynomial obstructions. 

Conjecture 7.8. For each natural number n, K(942,820, n) admits no adequate dia-

gram. 

7.6 Other Base Knots 

942 is not the only valid base knot for constructing H-thick knots by quasipositive 

modification: IO132, 10]3C, and IO145 all have the same setup of a + adequate diagram, 

and a "thick" state cycle representative in the third diagonal, for a knot of width 3. 

Note that for all these knots, 942 included, the "thick" state cycle representative has 

bigrading (0, s — 1), where s is Rasmussen's s invariant. Also, in each case, the s 

invariant is smaller than the signature of the knot. 

One can also find examples with a slightly different setup, by direct computation. 

IO161 has a - adequate diagram for its standard minimal diagram, but there is a state 

cycle representative for its lowermost corner homology class at (—9, —23). Its width 

is 3, so even though the diagram is not + adequate, the same methods will give us 2 

diagonals from the Lee pairing of this data. And, there is a third off diagonal state 

cycle which is nontrivial, at bigrading (—3, —13). For these state cycles, nontriviality 

was checked by a Java program written by the author. 



In general, though, this program is limited to calculating nontriviality for diagrams 

of 10 crossings or less, restricting the number of H-thick base knots that can be 

examined by direct computation. Better methods of checking nontriviality for state 

cycles are needed, if one is to extend the selection of base knots for such thick families. 
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