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Abs t rac t 

Model Reduction of Large Spiking Neurons 

by 

Anthony Richard Kellems 

This thesis introduces and applies model reduction techniques to problems associ­

ated with simulation of realistic single neurons. Neurons have complicated dendritic 

structures and spatially-distributed ionic kinetics that give rise to highly nonlinear 

dynamics. However, existing model reduction methods compromise the geometry, 

and thus sacrifice the original input-output relationship. I demonstrate that linear 

and nonlinear model reduction techniques yield systems that capture the salient dy­

namics of morphologically accurate neuronal models and preserve the input-output 

maps while using significantly fewer variables than the full systems. Two main dy­

namic regimes characterize the voltage response of a neuron, and I demonstrate that 

different model reduction techniques are well-suited to each regime. 

Small perturbations from the neuron's rest state fall into the subthreshold regime, 

which can be accurately described by a linear system. By applying Balanced Trunca­

tion (BT), a model reduction technique for general linear systems, I recover subthresh­

old voltage dynamics, and I provide an efficient Iterative Rational Krylov Algorithm 

(IRKA), which makes large problems of interest tractable. However, these approxi­

mations are not valid once the input to the neuron is sufficient to drive the voltage 

into the spiking regime, which is characterized by highly nonlinear behavior. To re-



produce spiking dynamics, I use a proper orthogonal decomposition (POD) to reduce 

the number of state variables and a discrete empirical interpolation method (DEIM) 

to reduce the complexity of the nonlinear terms. 

The techniques described above are successful, but they inherently assume that the 

whole neuron is either passive (linear) or active (nonlinear). However, in realistic cells 

the voltage response at distal locations is nearly linear, while at proximal locations it 

is very nonlinear. With this observation, I fuse the aforementioned models together 

to create a reduced coupled model in which each reduction technique is used where 

it is most advantageous, thereby making it possible to more accurately simulate a 

larger class of cortical neurons. 
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Chapter 1 

Introduction 

In this thesis I present model reduction techniques that can be used to simplify 

and accelerate simulations of single neurons and neuronal networks. The fundamental 

motivation for pursuing such reductions is the bottleneck created by the large-scale 

nature of the problems of theoretical neuroscience. The ultimate goal of this field 

is to provide a working model of a realistic brain, but the computational power 

required to achieve this end exceeds current technology. Thus, I propose techniques 

that shrink the size of the simulated systems while preserving their fidelity to the 

originals, thereby allowing current technology to solve problems orders of magnitude 

larger than at present. 

1.1 Motivation 

The brain is the most complicated organ in animals, containing on the order of 

1010 neurons (of which there are many different types) which are interconnected via 

approximately 1014 synapses (Shepherd and Koch, 1998). From this extraordinarily 

complex and heterogeneous network an order emerges whose product is a range of 
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functions, from basic survival responses to higher-level cognitive functions such as 

memory and emotion (Kandel et al., 2000). However, changes to this order, whether 

they arise from trauma or from disease, can have life-changing consequences ranging 

from tremors (as with Parkinson's disease) (Kandel et al., 2000), sudden seizures 

(as with epilepsy) (Traub and Miles, 1991), or the inability to form new memories 

(Johnston and Amaral, 1998). In order to diagnose and treat such disorders, it is 

necessary to understand how the brain works from the small scale of single neurons 

to the large scale of functional regions. 

For example, the hippocampus is a cortical structure that is of critical importance 

in the formation and storage of memories (Traub and Miles, 1991) as well as in spatial 

navigation tasks (Witter and Moser, 2006) (Yoganarasimha et al., 2006). Multiple 

hippocampal regions, each with their own distinct cell types, are involved in these cog­

nitive functions (Ahmed and Mehta, 2009). In order to realize a multi-scale model, 

one must know the density of connections between these regions, the prototypical 

morphology and kinetics of each cell type, and the spatio-temporal structure of the 

inputs to each region. Experimental studies have provided insight into each of these 

features, thereby enhancing the biophysical accuracy of the resulting models (Koch, 

1999). However, having proper initial data is only part of the story; actual simu­

lations allow investigators to validate experimental data and explore new questions. 

To achieve this, the tools of computational neuroscience must be able to deal with 

problems on the massive scales described above, which has proven to be a challenge. 
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1.2 Neuronal Modeling Methods 

Currently it is impossible to simulate a biophysically accurate brain, though signif­

icant progress has been made toward this goal. The common approach to this problem 

is to build networks of individual cells and then perform simulations to investigate 

neural functions. The Blue Brain Project leads this area of research, having reached 

a milestone of simulating a full cortical column (Markram, 2006). However, these 

successes generally have come from advances in hardware rather than in modeling 

methodologies. For example, the Blue Brain Project utilizes thousands of processors 

running in parallel to achieve its goals, but progression to larger or more detailed 

simulations will require waiting for Moore's Law to yield corresponding increases in 

processing power (Lansner, 2009). In contrast, a better model of individual cells will 

work with existing hardware and, if it is more accurate or faster than current models, 

will permit the next step in brain simulation to be achieved. 

This type of "bottom-up" approach to brain modeling has as its foundation the 

type of single-cell model that is used. Over a century of research has produced a 

myriad of model neurons whose complexity has grown steadily. At the simplest level 

are isopotential cells, which compress the entire neuronal morphology into a single 

compartment. These can be extremely basic, such as the binary summing units of 

McCulloch-Pitts models (McCulloch and Pitts, 1943), or they can be more complex 

and include nonlinear biophysical mechanisms like ion channel kinetics, as in the 

case of the Hodgkin-Huxley model (Hodgkin and Huxley, 1952). Between these 
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two lies the integrate-and-fire model (Abbott, 1999), which is very common in the 

literature because of its ease of implementation while still retaining some biophysically 

meaningful parameters. 

Researchers knew, however, that neurons did not behave as isopotential units and 

therefore incorporated cell morphology into their models. Initially, single dendrites 

were considered, with Wilfrid Rail being the first to bring a rigorous mathematical 

description of cable theory to neuroscience (Rail, 1959). The basic form of the cable 

equation is the same as the heat equation, and hence it is possible to derive analytical 

solutions in the absence of active ionic mechanisms, as shown by (Rail, 1959) and by 

Wilson (Wilson, 1999). But since such ionic mechanisms gave rise to the nonlinear 

spiking behavior that was known to be the method of communication between cells, 

modeling pursuits shifted from analytical to numerical methods. Rail pioneered this 

change when he introduced compartmental modeling to the neuroscience community 

(Rail, 1964). 

Multi-compartment modeling soon became standard, allowing both the intricate 

dendritic structure and the active membrane properties to be incorporated into the 

models. This spatial extension permitted the inclusion of more detailed biophysics, 

such as mechanisms describing intracellular processes like calcium exchange, and also 

allowed observation of neuronal functions such as back-propagating action potentials. 

Such detail has been facilitated by software suites, such as NEURON (Hines and 

Carnevale, 2001), which give neuroscientists standardized interfaces through which 
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to build detailed models. With the advent of multi-core workstations and high-

performance computing clusters, these tools have been augmented with parallel capa­

bilities (Migliore et al., 2006), permitting ever more realistic simulations. Data acqui­

sition techniques have correspondingly improved along with computing power so that 

dendritic structure need not be done via manual tracing, a tedious and error-prone 

process, but rather by automated processes using advanced microscopy techniques 

and state of the art image processing software (Losavio et al., 2008). Together, the 

advances in computational and experimental tools have led the field of neuroscience 

to a point where an almost arbitrary level of detail can be achieved, provided one can 

wait long enough for the simulation to finish. 

1.3 Model Reduction in Computational Neuroscience 

In the midst of these rapid increases in model complexity, a fundamental question 

remains: is such detail necessary to accurately model neuronal behavior? Guided by 

the maxim of "minimal modeling", researchers continually sought qualitative accuracy 

in models of much smaller dimension than their full-scale counterparts. Arguably 

the greatest success was achieved by Traub and Miles (TM) in their 19-compartment 

reduction of a pyramidal cell (Traub and Miles, 1991), which was even further reduced 

by Pinsky and Rinzel (PR) to a 2-compartment model (Pinsky and Rinzel, 1994). 

Though the TM and PR models generate similar outputs to the full-blown pyramidal 

cell model, they are developed ad hoc (instead of algorithmically) and the inputs and 
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model parameters are not the same as those used in the full model. This disparity 

in the input-output map makes it difficult for investigators to directly compare the 

results of experiments to those of simulations that employ the reduced models. A 

truly reduced model would preserve the input-output relationship of a neuron, but 

such models have been rare and of limited utility. 

Until recently, the only true morphologically accurate model reduction effort has 

been that of Wilfrid Rail. In 1959 he demonstrated that a passive morphology which 

satisfies the "3/2" power law and has symmetric synaptic inputs can be collapsed 

into an "equivalent cylinder", thereby drastically reducing the size of the system to 

simulate (Rail, 1959). While this was applicable to motoneurons, the assumptions 

on the morphology and the inputs precluded the use of this technique in general. 

Development of techniques that are applicable to a broader class of neurons has 

recently been motivated by a need for efficient computations rather than theoretical 

derivations. 

Nonlinear ion channel kinetics are expensive to evaluate, but sometimes the ki­

netic variables for different ion channels are similar enough to permit reduction. In 

1992, Kepler, Abbott, and Marder introduced the method of "equivalent potentials" 

to take advantage of this fact (Kepler et al., 1992). By representing the kinetic vari­

ables as potentials, they were able to identify dependencies between variables and 

use these dependencies to reduce the Hodgkin-Huxley model from a four-variable 

system to a two-variable system, thus permitting faster simulations. This technique 
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was generalized in 2005 by Sorensen and DeWeerth to deal with arbitrary numbers of 

channel variables as well as to provide an algorithmic, rather than ad hoc, method for 

computing the reduced system (Sorensen and DeWeerth, 2006). An important draw­

back of this technique, however, is that it has been developed for single-compartment 

models; it's applicability to non-uniform (i.e., spatially-varying) kinetics, as would be 

found in realistic models, has not yet been studied. 

Steps toward preserving the nonlinear dynamics for morphologically realistic mod­

els have also been motivated by the need for computational efficiency. Though not 

exactly a model reduction scheme, spatial adaptivity is one way to speed-up sim­

ulations without sacrificing nonlinear dynamics. For a CAl pyramidal cell in the 

hippocampus, Rempe et al. devised a solution technique in which only areas of the 

cell which are "active" need to be updated, whereas areas which are quiet need not 

be (Rempe et al., 2008). They were able to achieve an 80% reduction is compu­

tation time for certain problems, but the adaptivity mechanism is dependent upon 

the synaptic input pattern (Rempe et al., 2008). As a consequence, simultaneous 

multi-branch stimulation, such as that found in realistic cortical cells, will render 

this scheme ineffective. While this method did not solve the problem of efficiency 

in general, it does underscore an important property that is necessary for a truly 

reduced model: it must be able to handle any general input pattern without severe 

degradation of computing speed. 

Perhaps the closest attempt at incorporating both nonlinear dynamics and mor-
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phology in a coherent model reduction framework has come in the past five years. 

Drawing on tools from computational physics, Woo, Yang and Choi demonstrated 

that a passive cable can be simulated using an eigenfunction expansion approach us­

ing more than an order of magnitude fewer ordinary differential equations (ODEs) 

and having greater accuracy than the compartmental approach (Woo et al., 2005). 

Woo and Choi subsequently extended this work to deal with myelinated axons (Woo 

and Choi, 2007), and, using a pseudo-spectral method, Shin, Yang, and Choi further 

extended these ideas to work with active cables (Shin et al., 2009). 

While in each case these methods produced more accurate results with fewer 

ODEs, the work raises some questions. First, the authors present no timing com­

parisons between the full and reduced models, making it hard to determine how 

computationally efficient this reduction really is. Second, the active cable model used 

in (Shin et al., 2009) is not a conductance-based model, but a simpler system used 

by Wilson (Wilson, 1999). Finally, and most importantly, the authors consider input 

patterns only to single locations along the cable. Although they vary the stimulus 

location for different examples, they do not give results for simultaneous spatially-

distributed inputs, and in fact the dimension of the reduced models appears to depend 

significantly on the stimulus location. Despite these criticisms, the work from Choi's 

group demonstrates that nonlinear model reduction is possible in simple cases and 

bolsters our conviction that drastically reduced models can be found for realistic 

neuronal models. 
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1.4 Implications for Network Simulations 

The results of this thesis have implications beyond just accurate single cell sim­

ulations, and in fact they have profound implications for network simulations. The 

overarching goal of network reduction is to model the behavior of a network of cells 

with a system of much smaller dimension. It is not as simple as the single-cell case, 

however, because often the desired output is an emergent property, meaning that it 

arises from the interactions of the many individual cells in the network. One such 

output is the mean firing rate of the network, which can be an important feature when 

studying brain disorders such as epilepsy. When a network receives too much excita­

tion, or if there is not enough inhibition to counter such excitation, it can fall into a 

state of seizure, which is marked by extremely high rates of single cell firing, resulting 

in a highly oscillatory network behavior (Traub and Miles, 1991). Understanding how 

large networks respond to different input patterns is thus of great importance, but 

full-scale simulations can be expensive. It makes sense to look for reduced models 

which capture these salient behaviors using many fewer variables and hence which 

are faster to simulate. 

The network reduction problem has proven to be very difficult and usually has 

required assumptions which restrict either the type of cells used, the specific inputs, 

or the synaptic connections. All model reduction efforts thus far have also focused on 

networks of single-compartment cells. For instance, in 1994 Ermentrout showed that 

the firing rate of a network of conductance-based cells can be modeled by a simple 
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algebraic formula, but the model requires that synapses be slow (i.e., that they have 

long time constants) (Ermentrout, 1994). Ermentrout does not suggest that the 

reduced model will necessarily be a replacement for the full model, but rather that 

it can be used to find parameter ranges of interest before simulating the full system 

(Ermentrout, 1994). However, the slow synapse assumption limits the usefulness of 

this technique. 

In 2003 a new technique was proposed by Shriki, Hansel, and Sompolinsky to 

deal with fast synapses as well (Shriki et al., 2003). The firing rate of a network 

of conductance-based cells can be characterized using far fewer equations if the f-I 

curve (the firing rate versus stimulus strength curve) is approximately linear, and if 

the network is in an asynchronous state (Shriki et al., 2003). There is no assumption 

on the synaptic time constants, and thus this technique has opened up new brain 

regions to model reduction, specifically cortical networks, which they studied. Yet, 

in order to achieve this reduction, the extra assumptions of the f-I curve and the 

network state prohibit their technique from general use. One can debate that the f-I 

curve assumption is not too strict, for it is possible that the presence of certain ionic 

currents can have a linearizing effect (Morel and Levy, 2009). However, restricting the 

output to be only asynchronous is strong, because it effectively limits the behaviors 

that can possibly be recovered. 

Most recently, Stefanescu and Jirsa have developed a reduction technique based 

on mode decomposition which gives good qualitative reproductions of network dy-
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namics (Stefanescu and Jirsa, 2008). Although they make certain assumptions on 

distributions of relevant parameters and the network architecture in order to make 

the analysis tractable, they are able to recover a broad range of population behaviors 

with a very small reduced system. While this is an important step, our model reduc­

tion goal is to be able to quantitatively reproduce the dynamics of individual cells in 

the network. 

In contrast to these approaches, which deal with simple models of single cells and 

attempt to reduce the dimensionality of the network itself, the techniques in this 

thesis can be applied to realistic single cell models. These reduced single cells can 

then be simulated in a network in order to obtain the full network dynamics without 

sacrificing properties of the individual neurons or of the input patterns, and thus this 

thesis provides a new perspective on how to tackle the problem of model reduction 

of networks. 
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Chapter 2 

Linear Model Reduction 

The focus of this chapter is to introduce linear model reduction techniques by 

considering a basic neuronal model and then extending it naturally to a realistic 

morphology. Using a single-compartment model, I illustrate the important dynamical 

features of neurons. This model is then linearized to obtain the quasi-active model in 

order to illustrate subthreshold behavior. Once these concepts have been introduced 

in this simple framework, I present the general morphologically accurate model and 

proceed with linear model reduction. I demonstrate the efficacy of two techniques, 

one dense and one iterative, and discuss their application to various investigations of 

behavior in large-scale neurons. 

2.1 The Isopotential Cell 

One of the most basic isopotential models is the leaky integrate-and-fire (IAF) 

model, in which the cell can be modeled as a circuit (see Figure 2.1). Following the 

material found in my Master's thesis (Kellems, 2007), using Kirchhoff's Current Law, 

the change in voltage v is given by the ordinary differential equation 
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'stim 

F i g u r e 2 . 1 : Circuit diagram of an integrate-and-fire cell. The voltage v is defined as v = vin — vout. 

Slightly edited from my Master's thesis (Kellems, 2007). 

while v(t) < Vth 

Cmv'{t) = -gL(v{t) - EL) + Istim(t)/A 

end 

(2.1) 

The cell has surface area A and consists of a battery of voltage EL, a capacitance 

per unit area Cm, and a resistance per unit area QL which defines the leakage current 

due to Cl~ ions. This cell is purely passive, meaning that in the absence of input 

(i.e., when Istim(t) = 0) the voltage v will decay back to its resting value v (in this 

case v = EL)- By itself, the ODE in (2.1) does not exhibit spiking behavior, but the 

while condition aims to mimic spiking by instantaneously resetting the voltage to v 

if v(t) > Vth, at which time the cell is said to have spiked (or fired). 

An experimentally-derived single-compartment model that captures spiking be­

havior was introduced in 1952 by Hodgkin and Huxley. Through experiments on the 

squid giant axon, they found that the spiking dynamics could be captured through 

voltage-gated ionic mechanisms. Specifically, by isolating the Na+ and K+ channels, 

they discovered that the flow of ions could be modeled by gating variables that ac-



14 

m,x =0.50142 
max 

h,x =8.5821 
max 

50 100 150 50 100 150 

n,x =5.792 
max 

0 

-1000 

-2000 

-3000 

-4000 

I. 
ion 

— ^ ~ " \ 
^ \ 

\ v 

\ ^ 

\ 
50 100 

F i g u r e 2 .2: Gating variable functions for m, h, and n for the standard Hodgkin-Huxley model. 

tivated or inactivated the channels. Each of these gating variables takes on values 

between 0 and 1, and thus serve to modulate the conductance of their respective ion 

channels. The ODE for a generic gating variable, call it w, has the form 

, Woo(v) - W 
W = f- , 

rw{v) 
(2.2) 

where Woo and TW are the voltage-dependent steady-state and time constant functions, 

respectively. The standard Hodgkin-Huxley model consists of three gating variables, 

m and h for Na+ and n for K+, shown in Figure 2.2. 

Now if we write the circuit diagram for this cell as in Figure 2.3, we obtain a 

capacitor and a battery in parallel with one constant resistor (Cl~) and two variable 
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Figure 2.3: Circuit diagram of the Hodgkin-Huxley cell. The voltage v is defined as v ~ v-m — vout. 

resistors (Na+ and K+). Applying Kirchhoff's Current Law again yields the following 

system of ODEs describing the Hodgkin-Huxley (HH) model: 

Cmv' = -gL{v - EL) - gNam
3h(v - ENa) - gKn4(v - EK) + Istim/A 

, rn^v) - m 

Tm(v) 

, ^oo(^) - h 

i~h(v) 

, "oo(v) - n 

Tn{v) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

2.2 The Quasi-Active Isopotential Cell 

It is well-known that, while linear models do not reproduce spiking dynamics, 

they do provide information about the frequency response of a system. For neuronal 

modeling, the linearized systems are good at reproducing the nonlinear system's sub-
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threshold behavior, which is important in certain neuronal functions. Hence it makes 

sense to consider the linearized version of the HH model in order to address these two 

concepts. 

Noting that v' = 0 at rest, this implies w = w = lOoo(TJ), and thus v is computed 

by solving the nonlinear equation 

0 =-gL{v - EL) - gNam^hoo(v - ENa) - g K n^ (v - EK), (2.7) 

for v, which can be done using any standard rootfinding algorithm, such as Newton's 

Method. With v in hand we can proceed with the linearization process. 

Following the lead of Koch (Koch, 1999), consider a small stimulus /stim(0 = 

e/stim(i). Such a stimulus will give rise to perturbed voltage and gating variables, 

which are assumed to be of the form 

v = v + ev + 0{e2) 

m — m + em + 0(e2) 

h = h + eh + 0(e2) 

n = n + en + 0{e2). 

Upon substitution into (2.3) we can then solve for the perturbation terms of order e, 



17 

which yields 

Cmv' = -giy - 9Na [nfhv - (3m27im + rn3h)ENa] ~ 9K [r^v - An3nEK] + Istlm/A 

(2.8) 

rn' = ^ ( g ) g - m 
Tm(v) 

h' = h°°{V)*- ^ (2.10) 
Th\V) 

n^i^v - n 
n = j— . (2.11) 

Tn[v) 

This system is called "quasi-active," and since it is linear, it can be written in the 

standard form 

z'(t) = Az{t) + Bu(t), (2.12) 

where 

* = [ v rh h n]T> «(*) = 4im(*), # = [l Q 0 o]T> 

and 

'-l/TL~m}h/TNa~n4/TK 3m2hENa/TNa m3ENa/rNa An^Ex/r^ 
m/Tm(v) -l/Tm(T>) 0 0 
V T ^ ) 0 -1/TACV) 0 
n/T„(t7) 0 0 -l/r„(U) 



where the time constants are 

18 

TL = Cm/gL, rNa = Cm/gNa, and TK = Cm/gK. 

Representing the quasi-active system as a linear system permits both an analytic solu­

tion via the eigenvalue decomposition and also a description of the resonant behavior 

of (2.3) in terms of the eigenvalues of A. 

Recall that the linear system given in (2.12) has the analytic solution 

- u t 
As z(t) = eAtU e-AsBu(s)ds + z(0) J . (2.14) 

Assuming A is diagonalizable, it has an eigenvalue decomposition 

A = VAV~\ (2.15) 

where A is a diagonal matrix. That is, the j th column of V is the eigenvector corre­

sponding to the eigenvalue A; = Ajj. Then substituting (2.15) into (2.14) yields 

z(t) = VeM ( f e-Ascu(s)ds + z(0) 

= y]vje^t ( f e~^scjU{s)ds + Zj(0) 

where c = V lB, which is a vector in this example system. The integral can be 
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Eigenvalues of A for standard Hodgkin-Huxley kinetics 
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Figure 2.4: Left: Eigenvalues of the 4-by-4 matrix A given in (2.13). Right: Frequency 
response of the active (solid) and quasi-active (dashed) models using standard HH kinetics. 

evaluated numerically via a high-order quadrature scheme such as Clenshaw-Curtis 

quadrature, as described in (Trefethen, 2007). 

Not only does the eigenvalue decomposition yield an analytic solution, but also the 

eigenvalues of A will tell us whether resonant frequencies exist and, if so, where in the 

spectrum to look for them. Recall that if A is an eigenvalue of A and if Imag(A) ^ 0, 

then the resonant frequency is in the neighborhood of 

UJr = 
27rImag(A) 

1000 : 

where the 1000 in the denominator is to convert from milliseconds to seconds (i.e., 

from mHz to Hz). If Real(A) = 0 then cur is exactly the resonant frequency. However, 

the quasi-active system is dissipative, meaning that it is possible that some eigenvalues 

have Real(A) ^ 0, and thus the above equation is only an approximation to ujr. 
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Figure 2.4 shows the location in the complex plane of the eigenvalues of the matrix 

A given in (2.13). There is one complex pair: A RS — 0.19±0.38z. From the imaginary 

part we obtain ur « 61.5 Hz. This is close to the actual resonant frequency ur = 67 

Hz, which can be computed numerically via a parameter sweep or by using a ZAP 

current 

/ZAp(t) = asin(6ic), (2.16) 

which is a just a sine current with a time-dependent frequency. The frequency re­

sponse to (2.16) is then computed as the Fourier transform of the voltage divided by 

the Fourier transform of the input current (Puil et al., 1986). 

2.3 Active and Quasi-Active Branched Neurons 

The notions of active and quasi-active will now be extended to branched neurons 

with accurate morphologies, general Hodgkin-Huxley-style kinetics, and spatially-

distributed synaptic inputs. These three features of realistic neuronal models make 

the modeling process more complex by requiring that the following be taken into 

account: 

• Continuity of potential and current balance must be enforced at junction points. 

• The "sealed end" condition must be enforced at the distal end of branches with 

no children. 

• Branch radii and ionic conductances can be spatially-varying. 
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• Any number of ion channels and gating variables can be allowed. 

• Either current injection or synaptic conductance may be used as input. 

With these assumptions in mind, we introduce and explain the nonlinear cable equa­

tion, which is the partial differential equation that will be the focus of the model 

reduction techniques in this thesis. 

The remaining subsections of this chapter come nearly verbatim from my first 

paper with Roos, Xiao, and Cox (Kellems et al., 2009), which is used here, with some 

modifications, with kind permission from Springer Science+Business Media: Journal 

of Computational Neuroscience, Low-dimensional, morphologically accurate models 

of subthreshold membrane potential, 27(2): 161-176, 2009, A. R. Kellems, D. Roos, 

N. Xiao, and S. J. Cox, copyright Springer Science+Business Media, LLC 2009. 

2.3.1 Nonlinear Cable Equation 

We consider dendritic neurons (see, e.g., Figure 2.5) with D branched dendrites 

meeting at the soma. The d\h dendrite possesses Bd branches, and we denote by 

lb the length of branch b and encode its radius, as a function of distance from its 

distal end, by cib(x). The transmembrane potential along branch b will be denoted by 

Vb(x, t). We assume that the axial resistivity, Rt (kSl cm), and membrane capacitance, 

Cm (/xF/cm2), are uniform throughout the cell. We suppose that branch b carries C 

distinct currents, with associated densities, Gbc{x) (mS/cm2) and reversal potentials 

Ec, c = 1 , . . . , C. The kinetics of current c on branch b are governed by (powers of) 
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as(x) 

x = t8 
x = 0 

F i g u r e 2 .5 : Example of a simplified neuron to demonstrate our labeling scheme (taken from my 
paper with Roos, Xiao, and Cox (Kellems et al., 2009)). Branches are indexed using the Hines 
ordering (Hines, 1984), and junctions are labeled with italics. For this cell there are D — 3 dendrites 
and J = 4 junctions. Our labeling scheme implies, for example, that at junction 3 the children are 
indexed by 63 = 5, £>§ = 6 and the mother is indexed by 6| = 8. 

the Fc gating variables, Wbcf, f = 1,...,FC. When subjected to input at Sb synapses, 

these gating variables, together with Vb, obey the nonlinear cable equation 

1 c FC 

abCmdtvb = —dx{a2
bdxvb) - ab ^ Gbc(x)(vb ~ Ec) J J wq

h
c
c
l
f 

c=\ / = 1 

sb 

dtWbcf = 

s = l 

Wcf,°o(Vb) - Ulbcf 

bs) 

Tcf(vb) 
0 < X < £h, 0<t. 

(2.17) 

(2.18) 

Here gbs (nS) is the time course, xbs is the spatial location, and Ebs is the reversal 

potential of the sth synapse on branch b. 

These branch potentials interact at J junction points, where junction J denotes 
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the soma. At junction j < J we denote by 6] and bj the branch indices of the two 

children and by 6? the branch index of the mother. Continuity of the potential at 

each junction requires 

vbi(£bi,t) = vb2(£y>,t) = vb3(0,t), j = l,...,J~l (2.19) 

while current balance there requires 

ali{^)dxVbi{Zbi,t) + al2(£b2)dxvb2(eb2,t) = a2
b3(0)dxvb3(0,t), j = 1 , . . . , J - 1. 

j 3 3 3 j 3 3 3 j 3 

(2.20) 

The D dendrites join at the soma and associated branch indices are bdj, d = 1 , . . . , D. 

Continuity of the potential at the soma then reads 

^ ( 4 ^ = ^ ( 4 5 , * ) , d = 2,...,D. (2.21) 

We denote this common value by va(t) and note that current balance there requires 

D c FC 

cmdtva{t) = ^J2 aldj(ebdj)dxvbdj(ebdj,t) - J2 GacMt) - EC) J ] w%{t) 
/=! ( 2 2 2 ) 

--rJl9*a(t)(Mt)-Eaa) 
^ 5 = 1 

dtwac}{t) = — — — , 0<x<ib, 0 < t, (2.23) 
TcfMt)) 

where a is the somatic index and Aa is the surface area of the soma. Finally, we 
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denote by C the set of leaf indices, where a leaf is a branch with no children. We 

suppose that each leaf is sealed at its distal end, i.e., 

dxvb(0,t) = 0, beC. (2.24) 

Initially the neuron is at rest, implying that dtvb(x, 0) = 0. We solve for the rest state 

and denote it by vb(x), and similarly for the gating variables, which yields the initial 

conditions 

vb(x, 0) = vb(x) (2.25) 

wbcf(x, 0) = wbcf(x) = wcf>00 (vb(x)). (2.26) 

With the rest state defined, it is easy to modify (2.17) to use current injection instead 

of synaptic conductance. If we substitute the rest state vb(x) for the vb(x) in the 

synaptic input term, then this is equivalent to directly injecting current into the cell, 

which yields 

Im},b(t) = ^^29bs{t)S{x - xbs){vb(x) - Ebs). (2.27) 
s = l 

2.3.2 Linearizing the Cable Equation 

The linearization process follows the same technique as that described in §2.2. 

Consider (2.17) for branch b at its resting potential vb. If gbs = gbs + egbs(x, t), where 
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e is small, then the perturbed voltage and gating variables are assumed to be 

vb = vb + evb + 0(e2) (2.28) 

wbcf = wbcf + ewbcf + 0{e2). (2.29) 

Note here that the rest values vb and wbcf are now spatially-varying. Substituting 

(2.28) into (2.17), we construct a linearized model by solving for the perturbation 

terms vb, wbcf of order e. After substitution we find 

1 ° Fc ( \ 
eabCmdtvb = E—dx(a

2
bdxvb) - ab ^ Gbc(x)(vb + evb - Ec) J J I wbcf + ewbcf(t) 1 

1 S" 
- -Z- ^2 (gbs + £9bs{t))5(x - xbs)(vb + evb - Ebs) 

Qcl 

2TT 

(2.30) 

o ~ ,.x ^c / ,oo(^b + eVb) - ( w b c / + £ W b c / ) 
£dtwbcf(t) = —i T — — r r • (2.31) 

The initial conditions are now 

vb(x,0) = wbcf(x,0) = 0 

while boundary conditions, because they are already linear, remain the same as in 

(2.19), (2.20), (2.24). The soma conditions contain nonlinear terms, but they may be 

linearized in the same manner as shown here. 
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Expanding wcfi00 and TCJ in (2.31) in a Taylor series about vb yields the linearized 

equations for the gating variables 

dtwbcf(t) = 
W'cf,oc(Vb)Vb ~ Wbcf 

Tcf(vb) 

In (2.30), if the product of gating variables is written as 

Fbc(e) = J J (wbcf + ewbcf{t) 
Qcf 

then differentiating with respect to e yields 

Hc(e) = £ 
P = i 

qcp{Wbcp + £Wbcp)9cp 1 Y\. ( Wbcf + £,l"bcf{t) ) Wbcp 

f=hf*p 

Qcf 

The order 0 and order e terms of Fbc are 

^ c 

FbM = JKlf and F'bc{Q) = Y,Ucp<Z~l \{ <c
c
f
fwbcp), 

respectively. Hence the linearized ionic currents take the form 

° ( 
vb, u>b) = Yl Gbc(x) Fbc(0)vb + Flc(0)(vb - Ec) 

c=l ^ 
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The linearized synaptic input in (2.30) has the form 

4ynaptic(*, X, Vb) = — ] P lgbs(t)(vb - Ebs) + gbsVb J 5(x - Xbs). 

s=l ^ ' 

To complete the linearization process, we equate the terms of order e and arrive at 

c FC 

dtvb = Vbvb + Kb(x)vb + ̂ 2 Y2 dbcf{x)wbcf + Vb 
c=l /=1 

dtWbcf{t) = (f>bcf{x)vb + tpbcf(x)wbcf, 

where 

zumHiab 

1 c .. sb 

Kb(x) = - 7 7 - J2 Gbc(x)Fbc(0) - ^ V ^ ( i - xbs) 
c=l s=l 

1 -1 Fc 

dbcf(x) = --w-Gbc{x)(vb - Ec)qcfwlc
c
f
f J J 

Qcp 
Wbcp 

ym , , , 

1 . _ 

= ~~ jr ^SlbsitfSix - xbs){vb - Ebs) 2nabC, 
s=l 

, , s W c / , O o ( ^ ) , , v 1 
<t>bcf{x) = 7Z-T-, Wbcf{x) = - ; 

Tcf(vb) ' rcf(vb)' 

It is now apparent that this is a linear system for the 6th branch, namely 
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d, 

( vb \ 
U>bU 

WblFi 

U>b21 

U>b2F2 

WbCl 

\WbCFcJ 

or, more concisely. 

(Vb + Kb dbu dbu 

0611 Ipbll 

0612 ^612 

V fibCFc 

dbCFc \ 

^bCFcJ 

( h \ 
U>bU 

WhlFr 

Wb2\ 

U>b2F2 

WbCl 

\wbCFcJ 

+ 
0 

W 

dtzb = Qbzb + ub. (2.32) 

We discretize the neuron in space by dividing each branch into j b = ceil(£b/h) com­

partments, where h is some desired step size. The connectivity of the full morphology 

is encapsulated in the Hines matrix H, which is the spatial discretization of each T>b 

coupled with (2.19) to (2.21) and (2.24) (Hines, 1984). More detail about constructing 

this matrix will be given in §A. 

Using the Hines matrix imposes an outside-in ordering of branches and compart­

ments, which leads to minimal fill-in for Gaussian Elimination (Hines, 1984). If m 

and n denote, respectively, the number of gating variables per compartment and the 

total number of compartments, i.e., 

c 
m = ^ F C and n = 1 + ^ 7 6 , 

c=l 6=1 

file:///WbCFcJ
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then the discretized system has N = n(m + 1) variables. Restricting our attention 

to the 6th branch, we compartmentalize the voltage by v-jy G R.76, and similarly the 

gating variables, to obtain 

dtzb = Q6z6 + B6u6 

where 

/ v,b \ 
W-.fiU 

Zb 
j^76(m+l) 

Qb 

Bh 

\w.,bCFc) 

fdiag(K:fi) d.^n d>6i2 

(f>:,bU 1p:,bU 

4>:,bU i>:,bl2 

\ 4>:,bCFc 

d-bCFn \ 

g Jp7b(™H-l)x7!>(m+l) 

i>:,bCFcJ 

(^ G R 7 "^ 1 )* 7 * , I G R7 6 X 7 \ u6 G R76. 

For example, if branch b receives synaptic input at xb\ and xb2, then we have, 

Ufc 
2nabhbCri 

0 

0 

0 

gb2(t){vb(
xb2) - Eb2) 

V 0 / 
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where /i& = 4/76 is the step size on branch b. This term arises as 1/hb when the delta 

function is discretized. Gathering the branch and soma equations together we define 

/ Q i 

Q = 
Qt 

B = 

M 

V 
B, 

\ 

QCT/ 

*-

e R NxN Z = 

€ R JVxn 
U = 

/"A 

\ u C T / 

G R " , 

en". 

Now coupling the branch conditions via the Hines matrix by A = Q + H, we arrive 

at the compartmental model 

z'(t) = Az(t) + Bu(«). (2.33) 

We view u as the input to the neuron. The neuron's output, y, is the voltage at the 

site of initiation of action potentials, which is expressed as 

y(t) = Cz(t). (2.34) 

We suppose that the output is the soma potential, formally written as y(i) = ZN-m(t). 

This implies C € R l x i V where C = 0 except for the entry C^jv-m = 1. Together 

(2.33) and (2.34) give the standard form for linear dynamical systems, where z is 

called the state vector, u is the input vector, and y is the observable vector. Our 
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goal is to reduce the dimension of this system while exactly preserving the inputs and 

without sacrificing the accuracy of the soma potential. 

2.4 Linear Model Reduction Techniques 

I have used two different techniques for linear model reduction. One technique is 

the classical time-domain method known as Balanced Truncation (BT), which enjoys 

rigorous theoretical grounding and error analysis but which generally requires dense 

matrix computations. To combat the computational cost associated with this, I use 

a newer frequency-domain approach called the Iterative Rational Krylov Algorithm 

(IRKA). This method achieves essentially the same accuracy as BT in practice, but 

with an increase in speed of orders of magnitude, thus providing an efficient and 

accurate algorithm for model reduction of quasi-active systems. 

2.4.1 Balanced Truncation 

To balance a linear dynamical system is to transform it into one where the 

controllability and observability gramians coincide. As a result, and in a rigorous 

quantitative sense, the states that are difficult to reach are rarely observed. We 

present the method below. For the early history, and further details and applications, 

see (Moore, 1981), (Kailath, 1980), (Antoulas and Sorensen, 2001), and (Antoulas, 

2005). 
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The controllability gramian V and observability gramian Q are defined via 

roo roc 

V= eAtBB*eA'tdt, Q= eA'lC*CeAtdt, 
Jo Jo 

but typically are computed as solutions to the Lyapunov equations 

AV + VA* + BB* = 0, A * Q + Q A + C*C = 0. 

We gather the Cholesky factors of the gramians, 

V = UU*, and Q = LL*, 

and compute the singular value decomposition of the mixed product 

U*L = ZTY*. 

Here E is a diagonal matrix whose entries are the eigenvalues of U*QU, Z is an or­

thogonal matrix whose columns are the eigenvectors of U*QU, and Y is an orthogonal 

matrix whose columns are the eigenvectors of L*VL (for details on the SVD, see (Tre-

fethen and Bau, 1997)). The diagonal elements of E, nonnegative and in descending 

order, are known as the Hankel Singular Values (HSVs) of the dynamical system 
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described by (2.33) and (2.34). We now compose 

T = Z~1/2Y*L*, and T" 1 = UZYT 

and note that the transformed gramians 

1/2 

V = TVT* and Q = T~*QT * / T T > - l 

are balanced and diagonal in the sense that 

P = Q = E. 

Moreover, they are the gramians of the transformed state, z = Tz, which itself is 

governed by the transformed dynamical system 

^ = Az(i) + Bu(i), y(t) = Cz(t), (2.35) 

where A = T A T - 1 , B = TB, C = C T - 1 . Based on the decay of the singular values 

in S, we can construct a reduced model by using only the k largest singular values. 

This corresponds to approximating (2.35) with 

^ = Aut(t) + B l U ( t ) , 9(t) = C^(t), (2.36) 
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where A n is the initial k x k submatrix of A, Bi consists of the first k rows of B, 

and Ci consists of the first k columns of C. 

The reduced state vector £ e Rfc has no apparent physiological sense (though 

see (Freund, 2008) for details about the interpretation of such low-dimensional state 

vectors) until it is fed to the equation for y, but when k <C n the computational 

savings from this model reduction is great. Moreover, contrary to the brute force 

approach of compartment coarsening, we have not sacrificed the rich input structure. 

In §2.5.1 we demonstrate that the system in (2.36) allows for numerically exact (near 

machine precision) reproduction of the soma potential computed from the quasi-active 

system in a fraction of the time. 

2.4.2 Iterative Rational Krylov Algorithm 

For small systems, Balanced Truncation is a clean, precise, and feasible method, 

but as the system dimension grows the cost of computing the gramians becomes 

prohibitive. Since the reduction comes after the gramians have been computed, this 

requires storage of dense N x N matrices before the reduction step, meaning that 

memory is also an issue. 

Some alternative methods for large-scale model reduction of linear systems do ex­

ist, such as sparse Lyapunov solvers, as extensively studied in (Sabino, 2006). How­

ever, in the context of neuronal modeling here, these methods do not perform well 

because of the large number of possible inputs. More specifically, the eigenvalue decay 
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of the controllability gramian is much slower than that of the observability gramian, 

which can be understood intuitively by the fact that there is only one output but 

the reduced system must be able to accurate represent the action of many inputs. In 

this case, these Lyapunov solvers converge slowly and are not of practical use in this 

setting. 

Krylov methods, on the other hand, construct approximate reduced systems of a 

given dimension from the beginning. Instead of transforming the original system and 

then truncating, the Krylov process iteratively projects the dynamics of the original 

system onto a smaller subspace. This reduces the memory requirements significantly, 

since only matrix-vector products are used, and in turn drastically speeds up the 

reduction process. We now describe the main ideas behind this algorithm; for full 

details see (Gugercin et al., 2008). 

Consider the quasi-active system given in (2.33) and (2.34). We construct two 

matrices, V*, Wfc G RNxk such that z(t) — Vk£(t) for some £(t) G Rfe and such that 

W [ (Vfc£'(<) - AVfc£(i) -Bu(t))=0 (2.37) 

and 

Range(Vfc) n Null(W^) = {0}. (2.38) 

From (2.38) we see that WjVfc is invertible. Hence we can use (2.37) to construct a 



36 

reduced model 

dm 

dt 

where 

Ak£(t) + Bfcu(i), y(t) = Ck£(t), (2.39) 

Ak = {Wk
rVk)-

1Wk"AVk, Bfc = ( W ^ V k J ^ W ^ B , Cfe = CVfe. (2.40) 

The reduced-order system is computed by finding V/. and Wfc so that the L2-norm 

of the error between the transfer functions of the original and reduced systems along 

the imaginary axis is minimized, i.e., we solve the optimization problem 

mm 
/

CO 

| | C T ( ^ I - A ) - J B - CI(ILUI - Afe)
_1Bfc||

2dw. 
• o o 

One strategy for solving this is to interpolate the full transfer function, to first order, 

at the negative of each of its poles. Since these poles are not generally known o 

priori and may be hard to compute, we make an initial guess and then iterate until 

convergence, indicating that we have arrived at the reduced system. This is achieved 

in a computationally efficient manner via the Iterative Rational Krylov Algorithm 

(IRKA), whose implementation details are found in (Gugercin et al., 2008). 

I give the IRKA algorithm here for the multiple-input multiple-output (MIMO) 

case, which is exactly what we have in the quasi-active system. 



37 

Algorithm 1 : An Iterative Rational Krylov Algorithm (IRKA) for MIMO Systems 

Input: Matrices A, B, and C; desired reduced system size r; 
shift convergence tolerance es 

Output: Reduced order matrices Ar, Br, Cr 

1: Initialize Ar, Br, Cr to be random matrices of appropriate reduced dimensions 

2: Compute shifts Oi < \i(Ar) for i = 1 : r 

3: Construct Vr and Wr so that 

Ran(K) = s p a n l ^ I - ^ ) - 1 ^ ! , . . . , ^ / - ^ ) - 1 ^ } 

Ran(Wr) = spaniel-AT)-1CTc1,...,(arI-A
T)-1CTcr}, 

where 

ArXi = Xi\u yfAr — \yj and yjxi = 1, 

Oj — yi±3ri Ci — L^rXi-

4: while (relative change in Oi > es) do 

5: Set AT = (W?Vr)-
lWjAVr, Br = (WjVr)-

lW?B, and Cr = CVr 

6: a, < Aj(A-) for i = 1, . . . , r 

7: Update Vr and Wr so that 

Ran(K) = sp&n{(aj - A)-1Bb1,...,(arI - A)-lBbr} 

Ran(Wr) = sv&n{{alI-A
T)-lCTcll...,{orI~AT)-1CTcr}, 

where 

ArXi = XiXi, yi Ar = Xiyi a n d yi Xi = 1, 

8: Ar = (W?Vr)-lW?AVr, Br = {WjVr)-
lWjB, and Cr - CVr 

9: end while 
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2.5 Balanced Truncation Model Reduction Results 

We have written a MATLAB suite of functions that loads morphology and channel 

kinetics and distributions, constructs the associated quasi-active system and both its 

BT and IRKA reductions, and computes and displays the response of the 4 (nonlinear, 

quasi-active, BT, IRKA) models to random (in space and time) sequences of synaptic 

input. These codes are available from the authors upon request. All computations 

were performed on a Sun Ultra 20 computer with a 2.2 GHz AMD Opteron processor. 

Morphologies, shown in Figure 2.6, were obtained from the Rice-Baylor archive 

(Martinez) and from NeuroMorpho.org (http://NeuroMorpho.org) (Ascoli, 2006), and 

then imported to our software suite, which lets the user visualize and simulate the neu­

ron via graphical user interfaces. Pyramidal and interneuron ion channel models were 

obtained from the literature and from ModelDB (http://senselab.med.yale.edu/modeldb) 

(Hines et al., 2004), as detailed in Tables B.l and B.2 of the Appendix. Unless oth­

erwise indicated, gbs — 0. 

2.5.1 Dimension Reduc t ion Ra t io 

Consider a forked neuron as shown in Figure 2.6A. Each of the three branches is 

200 /jm long and is divided into 2 /xm-long segments. The root has radius 2 jura while 

the leaves have radius 1 /^m. Ion channels with Hodgkin-Huxley kinetics (see Table 

B.l) were uniformly distributed. This leads to a quasi-active system of dimension 

1204. We computed BT matrices and found that the Hankel singular values decay 

http://NeuroMorpho.org
http://NeuroMorpho.org
http://senselab.med.yale.edu/modeldb
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A B 

F i g u r e 2 .6 : Renderings of the three morphologies used in this paper: A) a forked neuron; B) 
cell AR.-1-20-04-A, a projection neuron from rat entorhinal cortex (Martinez); C) cell n408, a rat 
hippocampal cell from region CA1 (Pyapali et al., 1998). 

quite rapidly (Figure 2.7A). To emphasize this, we note that the smallest floating point 

number emach such that 1 + emach gives a value different than 1 is commonly called 

machine precision and has a value of about 10 - 1 5 . Indeed, an < emach for n > 65, 

indicating that a reduction of at least 20-fold can be obtained. Numerically we observe 

in Figure 2.7B that, compared to the computed quasi-active soma potential, nearly 5 

digits of accuracy can be obtained using only 12 HSVs, a reduction of fully two orders 

of magnitude. The BT dynamics also track the dynamics of the soma potential from 

the nonlinear system qualitatively well, though the error is larger (Figure 2.7C). 

Tonic synapses have a significant effect on the dynamics, but no effect on the 

accuracy of the reduced model versus the quasi-active one. We demonstrate the 

impact of tonic synapses by randomly choosing 10% of the compartments to have 
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F i g u r e 2.7: A) Hankel singular values for the forked neuron given a 2 /xm compartment size. Since 
there are 301 compartments and the HH ion channels have 3 gating variables, the quasi-active system 
has 1204 variables; hence the BT system has the same number of HSVs. B) Absolute and relative 
errors between the computed soma potentials of the quasi-active and BT systems. C) Computed 
soma potentials from the nonlinear, quasi-active, and BT simulations. At the 1 ms mark a 1 nS 
alpha-function synaptic input with time constant r = 1 ms was applied to the midpoint of the 
top distal branch. Notice that the quasi-active and BT curves are indistinguishable. D) Resting 
potential of each node for the forked neuron with 10% tonic synapses of ~gbs = 0.2 nS each. In the 
absence of tonic synapses, each node is at rest at « —64.9186 mV. The faint dotted line indicates 
the end of a branch. E-F) Same as (B-C), but for the case of tonic synapses. Notice that tonic 
synapses induce more oscillations for the exact same stimulus. 

tonic components gbs = 0.2 nS, which changes the rest potential of the neuron from 

a uniform value of J=S —64.9186 mV to one that is now spatially-varying and elevated 

(Figure 2.7D). Using the exact same stimulus as used for Figure 2.7B-C, we find that 
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the neuron's output is now more oscillatory, but the reduced system's accuracy is 

unchanged (Figure 2.7E-F). 

Computing the BT matrices required about 72 seconds, while the 30 ms simulation 

required only 0.02 seconds. At first glance this appears expensive when compared to 

the nonlinear and quasi-active simulation times, both requiring about 1.3 seconds. 

However, the BT matrix computation is a one-time cost, since these matrices can 

now be reused to facilitate simulation with their associated morphology. 

In fact, it can be seen that the decay of the normalized Hankel singular values 

almost directly corresponds with the numerical accuracy achieved, as Figure 2.8 il­

lustrates on a more realistic neuron. This result is not surprising, however, given 

that an error bound exists for BT model reduction (Antoulas and Sorensen, 2001). 

Therefore, the normalized Hankel singular values may be used as a reliable guide to 

achieving any desired numerical accuracy compared to the quasi-active system. 

2.5.2 Application to Synaptic Scaling 

An immediate application for such low-dimensional systems is to accurately quan­

tify how synaptic input scales with distance to the soma, also known as "dendritic 

democratization" (Magee and Cook, 2000) (Hausser, 2001) (Timofeeva et al., 2008). 

One standard form of synaptic input is an alpha function, which describes the input 
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Error follows Hankel singular value decay 
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F i g u r e 2.8: Simulations demonstrate converging accuracy for the quasi-active versus reduced 
system. We used the neuron of Figure 2.6B with the nonuniform channel model of Table B.2. The 
discretized neuron had 1121 compartments, leading to a 6726-dimensional system. For each reduced 
system size k, we performed 10 simulations of 50 ms each with 35 random alpha-function synaptic 
inputs for which <?(,,, £ [0, 2]. 

onto synapse s of branch b as 

- / . \ -- t ^start / -. * ^start \ fn M\ 

9bs(t) = 9bs e x p l l I , (2.41) 

where tstart is the time (in ms) of stimulus onset, and the time constant r = 1 ms 

is the time at which the conductance reaches its maximum value of <7bs. In order to 

know the strength required for a single synaptic input at a given location to produce 

a peak target depolarization at the soma, we need to run a parameter sweep for g^. 

Using the reduced system on the forked neuron with the uniform channels of Table 

B.l, we execute the bisection method with a tolerance of 10 - 8 to obtain values for 
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F i g u r e 2 .9: Strengths 'cjbs of alpha-function synaptic input needed at each compartment to get 
a 0.2 mV peak soma depolarization. Dots were computed using the BT system, while circles were 
computed using the nonlinear system. Notice that the conductance on the root branch increases 
slowly with increasing distance from the soma, but at the branch point this trend splits. The 
large difference at the junction occurs because of the disjoint radii of the root branch and the child 
branches. Only one distinct set of points can be seen from 200-400 fim because the child branches 
are identical. 

each compartment, shown in Figure 2.9, in a total of 4.7 minutes. By contrast, the 

nonlinear system would require about 100 minutes to do the same. 

For more realistic morphologies, and more complex channel models, the one-time 

cost of computing the BT matrices grows as (D(n3), but the speed-up gained from 

using the resulting reduced system is substantial. As an example, neuron AR-1-20-

04-A (see Figure 2.6B) was discretized into 1121 compartments, each with length « 

2 /ira. We included I^a and IK currents following Hodgkin-Huxley kinetics, and used 

Connor-Stevens kinetics (see Table B.2) (Connor and Stevens, 1971) for the A-type 

K+ current I A whose spatial distribution followed that suggested by (Hoffman et al., 

1997). The resulting system had 5 gating variables per compartment, and hence the 
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F i g u r e 2 .10 : Strengths </(,s of alpha-function synaptic input needed at each compartment of neuron 
AR-1-20-04-A to get a 0.2 mV soma depolarization using the BT method. Dots were computed using 
the reduced system, while circles were computed using the nonlinear system. The reduced system 
size was k = 25. 

dimension of the linearized system was 6726. The BT matrices were computed in 

about 4.6 hours, and setting k = 25 we obtained a reduced system that was 269 times 

smaller than the original linearized system and accurate to more than 5 digits. 

Using this reduced model, we executed a parameter sweep for cjbs fc>r each compart­

ment, taking a total of 42 minutes. To compare the output to that of the nonlinear 

model, we did a sweep for 7 compartments in each branch, taking 268 total minutes. 

The results indicate (see Figure 2.10) that the reduced system accurately tracked the 

scaling of proximal synaptic inputs while underestimating the scaling for distal con­

ductances. The error in the distal computations is not due to our reduction scheme 

but rather to our initial quasi-active hypothesis. Regarding Figure 2.10, a value of 
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cjbS for every compartment was obtained using the reduced model, whereas to do so 

for the active model would have required about 21 hours. Hence, to obtain a full 

portrait of synaptic scaling for this neuron, even factoring in the cost of computing 

the BT matrices, the reduced system offers a factor of 4 speed-up. 

2.5.3 Application to Dendritic Resonance 

Neurons have been shown to respond preferentially to stimuli occurring at spe­

cific frequencies (Hutcheon and Yarom, 2000) (Hasselmo et al., 2007) (Ulrich, 2002), 

and quantifying how this resonant frequency varies with stimulus location is a dif­

ficult experimental task. However, our reduced model is well-suited to this type of 

simulation. 

Acquiring the resonant frequency data is time-consuming if high frequency reso­

lution is desired. Typical experimental studies stimulate the cell with a ZAP current, 

which has the form 

I(t) = a sin(btc + d) (2.42) 

for some constants a, b, c, and d, with t in ms. The resonant frequency can then be 

obtained by dividing the Fourier transform of the voltage by the Fourier transform 

of the input current (Puil et al., 1986). However, this limits the frequency resolution 

unless very long or detailed simulations are performed. On the other hand, brute force 

methods give better resolution, but are slow because they require many simulations 



46 

to be performed using oscillatory currents, such as 

I(t) = io(0.5 + 0.5 sm(2nuj(t - f)/1000)), (2.43) 

where IQ is the peak amplitude, i is the time of stimulus onset (in ms), and to is the 

frequency (in Hz). 

Our reduced model is useful here because we can use the ZAP current to get a 

band in which the resonant frequency oor may be and then run a brute-force search to 

pinpoint this value, all in much less time than the full system requires. For example, 

using the ZAP current in (2.42) with parameters a — 50, b = 10~6, and c = 3, we 

find that the forked neuron with uniform channels has a definite peak near 65 Hz (see 

Figure 2.11A). Refining this estimate via a brute-force search using (2.43) in a small 

interval around this peak reveals that u>r increases linearly as distance from the soma 

increases. 

2.6 IRK A Model Reduction Results 

With the BT method as a benchmark, we test the model reduction technique 

based on using IRKA. First we demonstrate typical convergence of IRKA for our 

problems, and then we show that cells of much larger dimension can be tackled. 

Consider neuron AR-1-20-04-A from Figure 2.6B. We compute the maximum ab­

solute error in the soma voltage between the quasi-active and reduced systems using 
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F i g u r e 2 . 1 1 : A) Frequency-response curves for ZAP current injection at different dendritic lo­
cations on the forked neuron with uniform channels. We applied ZAP current for 1000 ms with 
time-step At = 0.1 ms and computed the normalized impedance versus frequency. Both curves 
show the same trend, with a peak near 65 Hz, but the reduced system took only 2 seconds, whereas 
the nonlinear system took 39 seconds. B) Scatter plot of resonant frequencies versus distance from 
the soma (o), with the least-squares linear fit to the data (thick line). For this experiment, we 
sampled frequencies every 0.1 Hz on the interval [55,75] using the current in (2.43) and found that 
the resonant frequency increases nearly linearly as the stimulus location moves away from the soma. 

IRKA (Figure 2.12B), and we compare this to the error curve shown in Figure 2.8A. 

Notice that nearly 5-digit agreement occurs for a 25-dimensional system using IRKA. 

This is close to what we would expect from the BT method (20-dimensional system), 

but IRKA required only 5 seconds to compute the reduced system (Figure 2.12A), 

whereas BT required 4.6 hours. Thus similar accuracy with IRKA can be obtained 
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Figure 2.12: A) Time to compute reduced system, and B) maximum absolute error between 
quasi-active and reduced system output using IRKA for cell AR-1-20-04-A (N = 6726). 

in a fraction of the time needed for BT. Notice that although the error in IRKA does 

not decrease as consistently as k increases as it did in BT, nor does the error decrease 

as rapidly, the accuracy is more than enough for neuroscience applications. 

The main difference between IRKA and BT is that IRKA computes a system 

of a given size, whereas BT computes full matrices that are then truncated to the 

desired size. If a reduced system of a different size is desired, IRKA must recompute 

the matrices, whereas BT can just truncate. However, the premium we pay for 

immediate BT changes is far too expensive, considering that IRKA's results are just 

as good but are obtained in a fraction of the time. As an example, the reduced 

system from IRKA with k — 20 was used to run the same dendritic democratization 

parameter sweep as in Figure 2.10. The computed synaptic conductances for the BT 

and IRKA systems agree to nearly 5 digits for each compartment, indicating that 

IRKA is indeed computing the right reduced system. 
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A clear advantage of IRKA is that it handles systems of much larger dimension 

than BT. We could not use BT for systems where N > 7000, due to lack of memory, 

and even if we could, the computation time would preclude any practical use for such 

large systems. IRKA does not suffer from this drawback, which translates into the 

ability to compute reduced models of cells with much finer discretizations and to 

reduce cells with much more complex dendritic structure. 

As an example, we consider neuron n408 (Figure 2.6C), a rat hippocampal cell 

from region CA1 (Pyapali et al., 1998). We use a 2 //m spatial discretization, yielding 

6894 compartments. With a Connor-Stevens ion channel model this gives a total 

linear system size of N = 41364. Using IRKA we find that 5 digits of accuracy can 

be obtained using a system of dimension k « 15, which is a 2700-fold reduction, or 

more than 3 orders of magnitude, in less than a minute (see Figure 2.13). If we use a 

finer discretization of h ~ 0.5 /um, we arrive at a system of size N = 165330. IRKA 

produces a 15-dimensional system that is accurate to nearly 5 digits, a monstrous 

11000-fold reduction, or 4 orders of magnitude! 

2.7 A Quasi-Integrate-and-Fire Model 

Quasi-active neuron models cannot spike, but adopting an integrate-and-fire (IAF) 

mechanism allows such models to emulate this behavior. Under our assumption that 
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computation time around k = 10 occurs for both cases because at that point, though the shifts have 
not converged, the reduced system is accurate to a tolerance of 3 digits or more 

the soma is the site of action potential generation, we only need to check whether 

?{t) = va{t) > Vt th (2.44) 

where Vth is some threshold voltage (recall that va(t) = Vi(£bi,t)). At each time-

step during the simulation we check if threshold was reached, and if so then we 

instantaneously reset the soma voltage to the rest and hold it there for a refractory 

period of rref ms. 

2.7.1 Thresholding at the Soma 

Reset values should be chosen to produce as much similarity as possible between 

the outputs of the active and quasi-active models while still being biophysically rea-
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sonable. However, the state variables of the reduced system do not have apparent 

biophysical significance until transformed into the observable y(t). This implies our 

choice of rest as the reset value for £(t). 

Using the forked neuron as our test case, we implement the IAF mechanism using 

the non-uniform channel model. We discretized using h m I /xm so that the nonlinear 

model had 3606 variables; IRKA computed a reduced model having only 10 variables. 

First we simulate using the nonlinear system, and then we compare this to the output 

from the reduced system simulation. The spikes generated from both systems are 

compared to determine if there are any matches. A match is said to occur when the 

reduced system's spike occurs within rref ms before or after a spike in the nonlinear 

system. 

In order to quantify how well the mechanism captures spiking behavior, we com­

pute the coincidence factor T (Kistler et al., 1997) (Jolivet et al., 2006), defined as 

-p J^coinc ^*nonlin™reduced(Jret/J- ) /O /IK\ 

(Afnonlin + A r
r educed)( l ~ Nnon\in(TTef/T))/2' 

where A„onijn and Adduced are the number of spikes in the nonlinear and reduced 

models, respectively, and T is the length of the simulation. The coincidence factor 

measures how close the spike train from the reduced model approximates that of 

the nonlinear model by comparing the number of coincident spikes, Ncomc, with the 

number of coincident spikes occurring by chance. T is scaled to ensure that T = 1 

implies the spike trains are equal and T = 0 implies the spike trains would occur 
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purely by chance. 

However, T can be quite low even when most spikes from the reduced system 

are coincident. Thus, to better evaluate the effect of false positives, we introduce two 

metrics: percentage matched, which is the number of spikes from the nonlinear system 

that are also found in the reduced system; and percentage mismatched, which is how 

many spikes from the reduced system do not match any spikes from the nonlinear 

system: 

rw , , .™ # matched .„ ,„, 
% matched = 100 „ , — (2.46) 

# nonlinear spikes 

„ , , , „ „ # unmatched reduced spikes ,n ,„. 
% mismatched = 100— : : : . (2.47) 

# reduced spikes 

We vary Kh between 8 and 20 mV, with at least 20 simulations at each threshold 

value, and we use rref = 4 ms throughout. Each simulation lasts 1000 ms, during 

which time alpha-function synaptic inputs arrive at random locations and at random 

times. 

We ran two sets of simulations to assess the effect of low- and high-activity inputs. 

The low-activity set used 250 "strong" inputs per simulation, while the high-activity 

one used 1250 "weak" inputs. These inputs are realistically calibrated by computing 

5bs values for the reduced system (as in §2.5.2). These values are scaled to obtain 

synaptic conductances at each compartment that would give approximately 3 mV 

depolarizations at the soma for the strong inputs, but only 1 mV depolarizations for 
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Figure 2.14: Ratio of matched and mismatched spikes, as well as the coincidence factor, as Vth 
increases for A) 250 "strong" inputs and B) 1250 "weak" inputs per simulation. For each Vth value 
we used rref = 4 ms and ran at least 20 simulations of 1000 ms with alpha-function synaptic inputs 
to random locations. Ratios are given for the match and mismatch values rather than percentages 
for ease of comparison with I \ 

the weak ones, which agrees with typical values in Chapter 3 of (Traub and Miles, 

1991) and (Thomson and Lamy, 2007). 

As shown in Figure 2.14, low thresholds capture a large number of the nonlinear 

spikes, but also yield more mismatched spikes. Fewer mismatched spikes occur as Vth 

increases, but this also leads to greatly diminished numbers of spikes generated, and 

hence fewer nonlinear spikes captured. More mismatched spikes were observed in the 

"weak" input simulations, but more spikes were matched as well. The coincidence 

factors were also low for these simulations, reaching a peak of 0.43 at Vth = 10 mV 

for the "weak" input case and a peak of 0.52 at Vth = 8 rnV for the "strong" input 

case. 

The spike data is shown explicitly in the soma potentials of Figure 2.15. It is 

evident from these plots that the reduced system captures the subthreshold behaviors 

very well even for large depolarizations. Furthermore, the spike times computed by 
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F i g u r e 2 .15: A-B) Soma potentials corresponding to the first and second halves of simulation 
1 of the "weak" input case using Vth = 10 mV. Note that the reduced system spikes are drawn 
for clarification, and that the voltage axis has been scaled so that subthreshold behavior is more 
easily seen. Subthreshold behavior is of the nonlinear model is captured well by the reduced model, 
especially when less firing occurs, and stars below spikes in (A) indicate that four spikes have been 
captured by the reduced model. 

the reduced system tend to be very close to the actual spike times. 

2.7.2 Thresholding at Multiple Sites 

Of course one has no right to expect high accuracy when applying supra-threshold 

stimuli to a sub-threshold model. Nonetheless, there are a number of means by which 

our crude mechanism may be improved. If we fail to detect a somatic spike because 

it was generated in the dendrite, then it may pay to build the reduction in order that 
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F i g u r e 2 .16: Raster diagrams showing spikes computed for the nonlinear system (x 's) and the re­
duced system (o's) for A) "strong" and B) "weak" input cases demonstrate that a variable-threshold, 
multi-site IAF mechanism improves accuracy of spike generation. The same input patterns as used 
for Figure 2.14 were applied to the forked neuron, but this time voltages were observed at the soma 
and the midpoints of each branch. Threshold values are given in §2.7.2. In total, the "strong" and 
"weak" input simulations had match scores of 56% and 65%, respectively, and mismatch scores of 
15% and 13%, respectively. 

it accurately tracks the quasi-active response at several, say p, distinct locations. 

Proper investigation of this issue would address the questions of optimal placement 

of p observers, placement and calibration of threshold mechanisms at each site, and 

the trade of accuracy for speed as p is increased. We offer here only empirical evidence 
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that such an investigation is indeed warranted. 

In particular, we apply a multi-site IAF mechanism to the forked neuron subject 

to the same input streams that generated Figure 2.14. Since there are 3 branches and 

a soma, we set p = 4 and designate as observables the voltages at the soma and the 

midpoints of each branch. Threshold values are Vth = 22 raV at the leaf midpoints, 

Vth = 16 mV at the root midpoint, and V^ = 14 mV at the soma (these values 

were chosen after manual trial-and-error). Using the same discretization as in §2.7.1, 

IRKA computes a reduced model with k = 40 that is accurate to nearly 5 digits, and 

hence Ak G R40x40, Bk G R40*601, and Ck G R4 x 4 0 . 

Using the same input patterns as above, we find a significant increase in the accu­

racy of the spiking behavior (see Figure 2.16) with very little change in computational 

cost. For the strong input case we match 56% of the actual spikes and have only a 

15% mismatch rate. For the weak input case, we get 65% matched with 13% mis­

matched. The coincidence factor improves in both cases: from 0.43 to 0.73 for the 

"weak" input case, and from 0.52 to 0.66 for the "strong" input case. Moreover, 

the difference in simulation time was negligible when compared to the thresholding 

mechanism of §2.7.1. 

Table 2.1: A multi-site variable-threshold IAF mechanism improves spike-capturing accu­
racy. 

Input scheme iVnoniin A r̂educed % Matched % Mismatched T 

1250 weak 136 101 64.7 12.9 0.73 
250 strong 582 385 56.2 15.1 0.66 
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Rather than simple thresholding we note that a number of investigations of single 

compartment models have achieved better spike capturing by incorporating more so­

phisticated firing mechanisms. For example, (Fourcaud-Trocme et al., 2003) includes 

a voltage-dependent exponential term, while (Jolivet et al., 2006) and (Brette and 

Gerstner, 2005) consider adaptive thresholding. For the class of morphologies and 

channel distributions of the previous sections, adaptive thresholding, in our hands, 

did not produce a significant improvement in spike accuracy. Regarding the imple­

mentation of an exponential integrate-and-fire model, we note that there is not a 

natural means by which to nonlinearize our reduced quasi-active system. More pre­

cisely, as we observed at the close of §3.1, the reduced state £ in (2.36) is governed 

by the small but dense pair A n and Bi and hence reflects a complex combination of 

thousands of gating and voltage variables. The physiological soma potential does not 

surface until after multiplication by Ci . As such there is not a distinguished voltage 

term in the differential equation for £, so it is not clear yet how one might apply a 

biophysically inspired firing mechanism here. 

2.8 Discussion 

We have applied two distinct methods to the reduction of dimension of large scale 

single neuron models. We have demonstrated that in typical settings one may reduce 

models with tens of thousands of variables to models with merely tens of variables 

that still accurately track the somatic subthreshold response of spatially distributed 
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synaptic inputs. In regimes where subthreshold stimuli dominate, such as questions 

of (proximal) dendritic democratization and resonance, our reduced model reveals 

in minutes what the full models require hours or days to simulate. Although there 

is no reason to trust our subthreshold integrator on suprathreshold stimuli, we have 

demonstrated that simply thresholding the reduced voltage at a number of observation 

points has the potential to capture the cell's full spiking behavior. Further refinement 

of this approach holds the promise of bringing morphological specificity to the large 

scale network contributions of (Rudolph and Destexhe, 2006) with significantly fewer 

compartments than the approach proposed by (Markram, 2006). 
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Chapter 3 

Nonlinear Model Reduction 

This chapter, like the previous one, follows almost verbatim from another paper by 

Kellems, Chaturantabut, Sorensen, and Cox, which has been published in the Journal 

of Computational Neuroscience (Kellems et al., 2010), which is used here, with some 

modifications, with kind permission from Springer Science+Business Media: Journal 

of Computational Neuroscience, Morphologically accurate reduced order modeling of 

spiking neurons, published online March 19, 2010, A. R. Kellems, S. Chaturantabut, 

D. C. Sorensen, and S. J. Cox, copyright Springer Science+Business Media, LLC 

2010. 

Here we extend the results of our previous work to reproduce the full nonlinear 

behavior of morphologically accurate models by applying two model reduction tech­

niques. The first reduces the number of state variables, while the second reduces 

the complexity of the nonlinear term by interpolating at a small number of dendritic 

locations. These techniques preserve the spatial precision of synaptic input while 

reproducing the global voltage dynamics, including both subthreshold and spiking 

behaviors. 
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We start in §3.1 with a description of the full model and the solution methods we 

employ. In §3.2 we apply the model reduction techniques to simulation data to arrive 

at the reduced system. Using this framework, in §3.3 we examine the accuracy of the 

reduced system on simplified morphologies and discuss challenges that branched cells 

pose. We promptly introduce algorithms to tackle these challenges, and show that 

they succeed for simple branched cells. In §3.4-3.5 we show that these techniques 

accurately reproduce the spiking dynamics of a broad class of realistic cells. We end 

this section with a discussion of applications, improvements, and extensions in §3.6. 

3.1 Nonlinear Cable Equation 

Using the derivation of the nonlinear cable equation given in §2.3.1 we can proceed 

with nonlinear model reduction. 

It will be useful to consider not only synaptic input but also direct current in­

jection, for reasons which will become apparent in this section. With the rest state 

defined, it is easy to modify (2.17) to use current injection instead of synaptic con­

ductance. If we substitute the rest state Vb{x) for the vb(x) in the synaptic input 

term, then this is equivalent to directly injecting current into the cell, which yields 

Imib{x, t) = — Y^ 9bs{t)5{x - xbs){vb(x) - Ebs). (3.1) 
s= l 

If we now partition the cell into N compartments, with C distinct ionic currents 
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per compartment and at most F gating variables per current, then we arrive at the 

following system of ordinary differential equations 

v'(t) = Hv(t) - (*(w(t))e).v(t) + *(w(t))Ei + G(t).(v(t) - Es), v(t) G KN (3.2) 

w'(t) = (A(v(i)) - w(t))./B(v(t)), w(t) G R " x C x F (3.3) 

where H is the N-by-N Hines matrix, e = [1 1 • • • 1]T e R c , 

$ : R * *CxF _ R^vxc ) G . R _ , R w 

A i R ^ R ^ ^ and B : KN - R w * C x F , 

Ej is the vector of channel reversal potentials 

Ei = [Eci ENa EK • • • ] € R , 

Es is the vector of synaptic reversal potentials 

Es = [Eex Eex Ein • • •} E R , 

and the 'dot' operator, a.b, denotes element-wise multiplication and a./b denotes 

elementwise division. In this section, we use only excitatory synapses with Eex = 0 
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mV. Here A and B are pointwise functions whose actions are denned, recall (2.18), by 

A(v)4 = u>:,oo(vi), B(v)i = r :(v i), i = l,...,N. (3.4) 

We discretize (3.2)-(3.3) following the second-order staggered Euler scheme of 

(Hines, 1984). More precisely, for a fixed time-step At, we evaluate 

G« = G(0'-3/2)At), w« «w( ( j -3 /2 )At ) a n d v « « v ( ( j - l )A t ) , j = l,2,... 

via the marching scheme: Given w^-1^ and v ^ _ 1 \ evaluate 

w^ = [(2B(v^-1)) - At).w^-1 ' + 2A(v(J-1))At]./[2B(v0-1}) + At] (3.5) 

and 

v 0 ) = 2vmid - v ^ 1 ' (3.6) 

where vmjd is the solution to the linear system 

(2/ /At - H + diag($(ww)e + Gw))vmid = 2^~l)/At + $(ww)E, + G(j).Es, (3.7) 

where the 'diag' operator takes a vector and transforms it into a diagonal matrix. In 
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the case of current injection, vm;d is the solution to the linear system 

(21/M - H + diag($(w(j))e))vmid = 2v ( j '-1)/Ai + $(wW))Ei - Gw.(v - E,), (3.8) 

where v is the rest potential of the discretized system. 

3.2 The Reduced Cable Equation 

We apply two model reduction techniques to this ODE system, both of which 

use the proper orthogonal decomposition (POD). The first technique generates a 

low-dimensional basis for the state variables, v and w, while the second generates a 

low-dimensional basis for the nonlinear term. 

3.2.1 Proper Orthogonal Decomposition 

Given that v G RN , we wish to find a subspace U C RN of dimension k <C N in 

which the relevant states v are nearly contained. Specifically, given n "snapshots" of 

the state variables X = [£(£i) £(h) • • • £(*«)], we wish to find an orthonormal basis 

{<f>i}i=i C R N that solves the minimization problem 

mi
fc
n E ft*) - E(^')T (^ 

i=\ 

(3.9) 

i.e., we desire the fc-dimensional basis that best fits, in the least squares sense, the 

snapshot data (Kunisch and Volkwein, 2002). The proper orthogonal decomposition 
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(POD) provides a solution to this problem via the singular value decomposition (SVD) 

(Liang et al., 2002). 

To obtain the POD basis we first take "snapshots" of the voltage and nonlinear 

terms at specific (usually equally-spaced) time points during the simulation. For 

convenience we denote the nonlinear term by 

N(v(t), w(0) = ($(v(t))e) .v(t) - $(w(i))Et. (3.10) 

We save the values of v and N(v,w) at times ti,t2,---,tn, where tj = jAt. The 

snapshots are stored column-wise in matrices 

V = [v(ti) v(t2) • • • v ( 0 ] 

F=[N(v(t1),w(t1))N(v(«2)Jw(«2)) ••• N(v(tn),w(tn))]. 

The matrix V € R N x " will be used to build the POD basis, while F e R i V x n will be 

used in §3.2.2. 

We begin with the SVDs of the snapshot matrices 

V = UEXT, F = WAYT, 

where UTU = / , XTX = / , WTW = I, YTY = I, and S and A are diagonal 

and non-negative. These diagonal elements are ordered in a descending fashion. We 
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choose kv < n and kf < n, set 

V = U(: ,l:kv) and W = W(: , 1: kf). 

The columns of these matrices form the bases which are the solutions to (3.9) for the 

corresponding snapshot sets (Liang et al., 2002). 

To complete the POD reduction, we define the reduced voltage variable by 

v = Uv (3.11) 

and, upon substitution into (3.2), we arrive at the reduced-order system 

v' = UTHUv - UTN(Uv, w) + UTG.(Uv - Es). (3.12) 

3.2.2 Reduction of the Nonlinear Term via the Discrete Empirical Inter­

polation Method 

While the dimension of (3.12) is now kv <C N, the nonlinear term still depends 

on the full dimension N, which indicates that the system has not been truly reduced. 

For, the reduced voltage v must be projected up by U to the full subspace before we 

can evaluate the nonlinear term, and the result must be projected back down to the 

reduced subspace by UT. We apply an empirical interpolation method to find a set of 

kr 

spatial interpolation points z = {z,}^ from which the behavior of the full nonlinear 
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Algorithm 2 : DEIM (Discrete Empirical Interpolation Method) 

Input: {Wi}^! C R w linearly independent 
Output: z = [z i , . . . , zkf]

T E Rkf 

1: Define z\ = argmax|Wi(j)| 
3 

2: W = [W1],P=[eZl], z = [zi] 

3: for i = 2 to kf do 

4: Solve (PTW)s = PrWi for s 

5: r = Wj - W s 

6: Define Zj = argmax|r(j) | 

7: W^[W Wi], P - [P e*J, z 

S: end for 

term can be approximated, thus reducing the complexity of N to kf <C iV (Barrault 

et al., 2004). This method, originally described for use with finite elements, has 

been extended to our case of finite differences via the discrete empirical interpolation 

method (DEIM) as given by (Chaturantabut and Sorensen, 2009). 

We begin with the basis W for the snapshot set F of nonlinear terms and seek a 

"maximally independent basis set" for W (Nguyen et al., 2008). The first interpolation 

point z\ is the index of the entry of W! with the largest magnitude, where Wi is the 

first column of W. For i = 2 , . . . , kf each point zt is chosen as the index of the entry 

of the largest magnitude of the residual vector r = Wj — Ws, where P is the matrix of 

the % — 1 coordinate vectors corresponding to the previous interpolation points, W is 

the matrix of the previous i — \ DEIM basis vectors for N (that is, W = W(:, 1 : i — 1)), 

and s is the coefficient vector of components of W in Wj relative to the previous i — 1 
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interpolation points, as given in Algorithm 2 (Chaturantabut and Sorensen, 2009). 

We define the reduced gating variables by 

w = Pw, (3.13) 

substitute into the nonlinear term, and apply the matrices computed from the DEIM 

to obtain 

N(Uv, w) » W(PTW) -1P rN(Uv, Pw). (3.14) 

Substituting (3.13)-(3.14) into (3.12) and (3.3), and applying (3.10), we obtain 

v' = Hv - (R*(w)e).(Zv) - R$(w)E, + UTG.(Uv - Es) (3.15) 

w '=(A(v)-w) . /B(v) , (3.16) 

where the reduced functions are 

A(v) = PTA(Uv), B(v) = PTB(Uv), and 4>(v) = PT$(Pw) (3.17) 
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Z = PTU : ~Rkv -» Rk' 

H = UTHU : Kkv -» Rfe" 

R = UTW(PTW)_ 1 : Rfc/ -»• R*». 

Since in (3.17) all are pointwise functions, the matrix PT just picks off the entries at 

the interpolation points z, and thus by recalling (3.4) we find 

A(v)i = w.0O((Zv)i), B(v)i = r:((Zw)i), i = l,...,kf 

and, similarly, <J> just computes the rows of 3> corresponding to the indices z. Hence 

the reduced functions are of complexity kf, as desired. 

We solve the reduced system using the same staggered Euler scheme. We denote 

G& = G((j-3/2) At), ww » w((j-3/2)At) and v 0 ) w v ( ( j - l ) At), j = 1,2,... 

and use the scheme: Given w^_1) and v ^ _ 1 \ evaluate 

vW) = [(2B(v(j'"1)) - At ) .^ ' - 1 ) + 2A(v°-1))At]./[2B(v°-1)) + At] (3.18) 
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and 

v W = 2 v m i d - v ^ - 1 ) , (3.19) 

where, for current injection, vmid is the solution to the linear system 

L0)vmid = r ^ - UT(G«.(v - Es)), (3.20) 

where 

L0 ) = 21/At - H + Rdiag(*(wW))e)Z 

r 0) = 2v{j~l)/At + R$(w^))Ei. 

In the case of synaptic conductance, vmid is the solution to the linear system 

(LG) + uTdiag(G^))U)vmid = r w + UT(GW.E5). (3.21) 

3.2.3 Numerical Solution of the Reduced System 

We have written a MATLAB software suite that loads morphology and channel 

kinetics and distributions, simulates the full system and obtains POD and DEIM 

snapshots, and then simulates the reduced system and displays the response of these 

models to the desired inputs. Gating variable evaluation was performed via a look­

up table similar to (Hines, 1984). These codes are available from the authors upon 
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request. All computations were performed using MATLAB version 7.4 (R2007a) on a 

Sun Ultra 20 computer with a 2.2 GHz AMD Opteron processor. Detailed simulation 

documentation can be found in the Supplementary Material of (Kellems et al., 2010). 

Three ion channel models were used in this study. One follows Hodgkin-Huxley 

kinetics, while the second augments this model by including an A-type K+ current 

with a spatially-varying conductance density given by 

GA{x) = 4.15(1 + x/100), (3.22) 

where x is the distance (in jum) from the soma. We refer to these models as HH and 

HHA, respectively. Parameters for these two models are the same as given in Tables 

B.l and B.2. The third model seeks to mimic weakly excitable dendrites, following 

the kinetics and spatially-varying conductance densities of (Migliore et al., 1999). We 

refer to this model as MIG, and we give its parameters in Table B.3. 

3.2.3.1 Computational Notes 

Since the soma is large but assumed to be isopotential, its surface area is often 

greater than that of any dendritic compartment. A common practice in coding the 

solution to (3.2) is to divide each ODE by the surface area of the corresponding com­

partment. While this is mathematically sound, it yields entries in H (and potentially 

other quantities) that can vary by orders of magnitude, resulting in poor accuracy 

for the reduced system. The solution is to not divide through by surface area, which 
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provides accurate results for the reduced system. 

For the purpose of analyzing spiking behavior, we need only consider the voltage 

traces from one site (namely, the soma). It is easy to obtain this voltage vsoma from the 

reduced system via (3.11), but computing the full matrix-vector product at each time 

step becomes expensive. However, noting that vsoma = U(jsoma, : )v, it is clear that 

performing this inner product is much cheaper. Thus we can accelerate the reduced 

system by saving voltage data at different temporal resolutions: a fine resolution for 

the soma, and a coarse one everywhere else. For instance, saving the somatic potential 

every rs time-steps and saving all other potentials every rc time-steps, where rs < rc, 

will reduce the computational expense of (3.11) while still giving the detail we desire 

at the soma. In this chapter, all timings reflect the use of rs — 1 and rc= 10. 

3.3 Results on Simplified Morphologies 

3.3.1 Straight Fiber 

Consider a uniform fiber that is 1 mm long with N — 1401 compartments with 

HH kinetics. We generate a reduced model using 200 snapshots over 10 ms (solving 

(3.5)-(3.8) with At = 0.01 ms) for both the POD and DEIM bases by applying 

a suprathreshold step current of 500 pA for 1 ms at the distal end. This choice 

of stimulus location permits the action potential to traverse the whole fiber, thus 

providing a sufficiently rich set of snapshots from which to build the reduced system 

(see Figure 3.1A). Computing the singular values for the POD and DEIM snapshot 
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matrices as in (3.2.1), we find that they decay quite rapidly (see Figure 3.IB), thus it 

is reasonable to expect that a small reduced system can approximate the full system 

well. 

0 500 1000 1500 
Compartment index 

18 11 7 15 3 13 8 17 4 10 5 20 14 2 16 9 6 12_ 19 1 

Figure 3.1: (a) Sample traces of voltage snapshots used to construct the HH fiber reduced 
system. Shown are snapshots 22:10:132 of the simulation, (b) Decay of singular values for 
the POD and DEIM bases for the HH fiber, (c) Location of the first 20 DEIM points on 
the fiber, indexed by order in which they were computed. 

Note tha t the decay of these singular values to some tolerance does not necessarily 

imply a corresponding accuracy of the reduced system as compared to the full one. 

As shown in §2, for linear systems there exist SVD-based model reduction methods, 

such as Balanced Truncation, for which rigorous error bounds exist in terms of the 

decay of Hankel singular values (Glover, 1984) (Antoulas and Sorensen, 2001), and 

these have been successfully applied to the linearized version of (2.17) (Kellems et al., 

2009). For nonlinear systems the reduction relies upon having a good snapshot set. 

Hence if the snapshot set is poor, then the decay of the singular values need not be 

indicative of the existence of a good reduced system. However, if the snapshot set is 

(b)o 

1 -10 
E 

HH Fiber Singular Value Decay 

50 100 150 200 
Index of singular value 
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good then the singular value decay can be used as a guide to estimate how large the 

reduced system must be. 

To test accuracy and speed, we perform a series of simulations using random inputs 

and compare the reduced system's performance with that of the full system. A match 

is said to occur when a spike, indicated by a somatic depolarization of Kh = 40 mV 

or more from rest, in the reduced system occurs within rref = 2 ms of a spike in the 

full system. Our metrics for quantifying the spike-capturing accuracy of the reduced 

system are the same as those in §2.7.1. We use the coincidence factor T (Kistler et al., 

1997), defined as 

p _ N m a t c h ~ NfuuiVreduced(rref/T') /o oo\ 
" (iVfull + iV r e d u c e d ) ( l - 7 V f u l l ( r r e f / r ) ) / 2 ' l ' > 

where iVfull and A r̂educed a r e the number of spikes in the full and reduced models, 

respectively, iVmatch is the number of matches, and T is the length of the simulation. 

To better evaluate the effect of false positives, we use the percentage matched and 

percentage mismatched measures of §2.7.1, rewritten here explicitly as 

% matched = i 0 0 % ^ (3.24) 
•Wftill 

% mismatched = 100Nndw** ~ Nmatch. (3.25) 
^reduced 

We simulate for 1 second with 200 random step currents, each lasting 0-5 ms 

and having amplitudes of 0-100 pA, applied to random locations on the fiber. To 
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solve both systems we use At = 0.1 ms. We vary the dimension of the reduced 

system, using kv = kf, and run 20 simulations at each value (the same 20 input 

patterns were used for each reduced system). The results, shown in Table 3.1, indicate 

that reduced systems nearly 100-fold smaller than the original ones reproduce highly 

accurate spiking patterns and are about 5 times faster. 

It should be noted that throughout this thesis we use kv = kf, which is justified by 

results of studies we performed on simple morphologies. For these studies we varied 

kv and kf independently and computed the performance metrics for each pair, but we 

always found that kv = kf was the best choice. Hence we use this empirical heuristic 

even for complex morphologies. 

Table 3.1: Performance of reduced model (here kv = kf) of HH fiber, N = 1401, as 
compared with the full model. 

kv 

10 
15 
20 
30 

Speed-up 

6.3x 
5.9x 
5.6x 
4.6x 

% Matched 

87.4 
98.9 
99.7 
100 

% Mismatched 

8.2 
1.1 
0 

0.6 

r 
0.893 
0.988 
0.998 
0.997 

To assess the effects of different ion channel models on accuracy and speed, we 

perform the same experiment, but with a channel model incorporating an A-type 

K+ current (HHA model). Due to the decreased excitability of the distal part of the 

fiber, we increase the number of stimuli to 500 and the range of amplitudes of the 

step currents to 0-300 pA. As shown in Table 3.2, although the accuracy initially 

decreases for very small kv values, it is rapidly regained so that nearly exact spike 
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dynamics (T = 0.990) are reproduced with kv = kj = 30, a 46-fold reduction in 

dimension. Additionally, the reduced systems show greater speed-ups versus the full 

systems than do the reduced systems using the HH model. Examination of voltage 

traces (Figure 3.2) shows that not only are the spike times correct, but in fact the 

sub- and suprathreshold voltage dynamics agree very well. 

One may wonder why the speed-up is basically one order of magnitude while the 

dimension reduction is two orders of magnitude. The reason lies in the fact that the 

full system matrices are large but sparse, whereas the reduced matrices are small 

but dense. Hence the associated matrix-vector products have different computational 

costs, and we ought not expect the same scalings. 

Table 3.2: Performance of reduced model (here kv = kf) of HHA fiber, N = 1401, as 
compared with the full model. 

Kv 

10 
15 
20 
30 

Speed-up 

8x 
7.5x 
6.9x 
5.8x 

% Matched 

81.7 
77.7 
95.8 
98.6 

% Mismatched 

64.3 
7.7 
0.5 
0.5 

r 
0.457 
0.840 
0.976 
0.990 

3.3.2 Challenges of Branched Cells 

Now consider the forked neuron which has one mother branch and two daughter 

branches, all with radius 1 //m and length 500 ^m. The cell consists of N = 1501 

compartments having HH kinetics. The first step in constructing a reduced model is 

to generate a sufficiently rich set of snapshots, but this simple cell illustrates that the 

task is not trivial. 
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Comparison of Full and Reduced Systems for HHA Fiber 

<D 
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N = 1401 
- - -k = 30 

0 100 200 300 400 500 600 700 800 900 1000 
Time (ms) 

Figure 3.2: Comparison of somatic voltage traces as computed by the full (solid) and 
reduced (dashed) systems for the HHA fiber. Although two curves are plotted, only one 
is seen because the reduced system is so accurate (kv = kf = 30) that it nearly exactly 
reproduces the dynamics. 

3.3.2.1 Phantom Spiking 

We desire a reduced model that will reproduce the correct dynamics of the full 

model independent of the location of the inputs. In order to capture spiking behavior, 

this implies that the snapshots to be used must contain local descriptions of action 

potentials. For example, on the fiber we needed to ensure that each node experienced 

spike dynamics. This was accomplished by initiating a spike at one end and allowing 

it to travel to the other end (this includes the after-hyperpolarization as well). 

For the forked neuron, isolating the local spiking behavior is not so simple because 

each spike that is initiated will split upon reaching the junction point, and thus at 

least two branches will contain a spike at the same time. Such a situation is not 

good, because the snapshots will contain information about both spikes simultane­

ously, causing phantom spiking. This phenomenon consists of stimulus arriving at one 

location, but, because of the simultaneous spikes in the snapshots, a similar output 

is observed at a different location on another branch, thus corrupting the computed 
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3.3.2.2 Branch-Ortho: Branchwise Orthogonalization 

To excise these phantom spikes, we simulate the full model with a suprathreshold 

stimulus applied at a location that will allow a spike to propagate throughout the 

whole cell; this location should be the soma, a junction point, or the distal end of a 

leaf in order to prevent two spikes from occurring on the same branch. Let us denote 

the resulting set of snapshots as <S. To isolate the dynamics of branch j we create a 

local set Cj which is initially the same as «S. The snapshots in Cj are then modified by 

setting to rest all the values of elements that do not belong to branch j . The final set of 

snapshots S is then the union of the local sets. Hence the snapshots are "orthogonal" 

in the sense that only one branch is active in each snapshot. While intuitive, this 

technique is a bit naive because it completely isolates branches, effectively throwing 

away information about the coupling that occurs at junctions. 

An improvement of this method can partially recover this coupling information 

by not just generating snapshots of isolated branches, but of connected branches that 

form continuous routes throughout the dendritic tree. A route R is defined as a set 

of branches in which 

• at most one branch is present at each depth in the dendritic tree 

• the branch at depth j — 1 is the parent of the branch at depth j . 

Hence the dimension of a route, dim(R), is equal to the number of branches it contains, 
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Original Snapshot Set ... Branch-Ortho with Routes Snapshot Set 

0 50 100 150 200 0 50 100 150 200 
Snapshot index Snapshot Index 

Figure 3.3: Illustration of Branch-Ortho with routes on a forked neuron, (a) The original 
set of snapshots, with white dashed lines bounding the global active zone obtained via the 
first application of V-Slim. (b) The resulting snapshot set after the Branch-Ortho algorithm 
is run. Two routes are used: one consisting of branches 1 and 3, and one of just branch 2. 
Notice that information about the coupling at the junction is preserved in the first route. 
White dashed lines in this plot enclose the snapshots to be removed, as computed via the 
second V-Slim application. 

and the length of a route is the sum of the lengths of the branches it contains, 

i.e. len(R) = £ 6 e R 4 . 

Routes are useful because if we are given a set of snapshots in which an action 

potential travels from the soma throughout the dendritic tree, then routes form long, 

continuous snapshots of the dynamics and maintain coupling information between 

parents and children (see Figure 3.3). Not only does using routes improve accuracy, 

but it further shrinks the size of the snapshot set. Since the active zones of the parent 

and child branches overlap, routes yield more information in fewer snapshots than the 

naive method. 

Which routes should comprise the Branch-Ortho snapshot set? Let TZ denote a 

set of routes and let dim (TZ) be defined as the number of routes in the set. We define 

TZ to be optimal if 
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• it contains every branch of the cell 

• all routes are non-intersecting (i.e., no branch appears in more than one route) 

• it contains the fewest routes possible, 

and we denote an optimal set of routes by TZ. After a little thought, we can conclude 

that we can build an optimal set of routes entirely of routes which begin with leaves. 

Thus we know that if there are L leaves in a cell, then we need to store only L routes, 

and hence dim(7?.) = L. Thus the smaller the ratio of L/B the better this method 

should be. It also follows that every TZ contains at least one R such that dim(R) = 1. 

Algorithm 3 implements Branch-Ortho with a set of optimal routes, which is obtained 

by proceeding outside-in from leaves to soma. 

3.3.2.3 V-Slim: A Snapshot Elimination Algorithm 

In order to implement the Branch-Ortho algorithm in any generality, we must 

ensure that the snapshot set does not become so large that computing the SVDs 

of the POD and DEIM inner product matrices becomes prohibitively slow. Since 

the SVD scales as C(max(n, N)3), taking more snapshots will dramatically increase 

the computation time to obtain the reduced bases. For small numbers of snapshots 

(dim(<S) < 1000) this may not be so bad, but if Branch-Ortho generates many thou­

sands of snapshots (as may be the case for highly-branched cells) then the SVD step 

may become prohibitively slow. 
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Algorithm 3 : Branch-Ortho 

Input: A set of snapshots S 
Output: Optimal set of routes 1Z and set of "orthogonalized" snapshots <S 

1: for j = 1 to L do 

2: Let n = 1, pn = the index of leaf j 

3: p„+i = index of parent of branch pn 

4: while (Pn+i £ Ui=i Rfe) AND (p„+i is not the soma) do 

5: Increment n 

6: p n + i = index of parent of branch pn 

7: end while 

8: Route Rj; = {pi,...,pn} 

9: end for 

10: Optimal set of routes is 71 = U,-=i Rj 

11: for j — 1 to L do 

12: £ , = 5 

13: Bj = {indices of compartments that DO NOT belong to route j} 

14: Set values of elements Bj of each snapshot in Cj to their rest values 

15: end for 

16: "Orthogonalized" set is S = Uj=i A' 

To keep the final snapshot set small while retaining the salient dynamics, we 

implement a snapshot elimination algorithm. A snapshot is "active" if its deviation 

from rest 

1 N 

exceeds a preset threshold. The deviation can be similarly defined for the snapshots 

of the nonlinear term. This process, called V-Slim, is detailed in Algorithm 4. 
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Algorithm 4 : V-Slim 

Input: A set S of m snapshots, and a tolerance e 6 [0,1) 
Output: The set S of active snapshots 

1: for j = 1 : m, compute the deviation of the jib. snapshot (Vj := V(Sj)) 

2: Let M = m&Xj=i:m(Dj) 

3: Normalize deviations (set Vj := Vj/M for all j = 1 : m) 

4: A= {j : P j < e} 

5: 5 = {5j : j e i } 

Another technique to shrink the size of <S is to store only every fcth snapshot in 

the local set Cj. This is reasonable because snapshots that are close together in time 

are more similar. Keeping every snapshot gives maximal information, but we expect 

that we can get by with less (and our results indicate that this is indeed the case). 

In our current implementation, such attention to shrinking the set of snapshots 

is necessary, but in the future one could use ARPACK (via the e igs command in 

MATLAB), which is a suite of iterative eigensolvers tailored to large-scale problems, 

to drastically reduce the cost of computing these SVDs. Previous experience gives 

us confidence that by using this package we can even eliminate the need for the 

aforementioned snapshot-shrinking algorithms. Nevertheless, the methods given here 

contribute a one-time cost, because results of these computations can be stored and 

reused for all future simulations of a specific morphology. This, along with the fact 

POD and DEIM set-up times for the simulations in this paper often required ~ 1 

second and at most ~ 10 seconds, means we do not include set-up times in any of 

our timing comparisons. 
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3.3.2.4 Branch-Ortho and V-Slim Implementation 

We can efficiently apply both Branch-Ortho and V-Slim if we consider the struc­

ture of the snapshots. The initial set S is likely to have a significant number of 

inactive snapshots, because of either delay due to onset of the stimulus or of the de­

cay back to rest after hyperpolarization. We call the set of active snapshots from this 

initial set the global active zone, <Sgi0bai, since it defines when any part of the neuron 

is active. Applying Branch-Ortho to the global active zone will produce a smaller 

orthogonalized snapshot set than applying it to all of S, so it is natural to use V-Slim 

on «S to obtain «Sgi0bai before applying Branch-Ortho. 

Once the orthogonalized snapshot set is in hand, we apply V-Slim again to find 

the local active zone for each route, that is, the set of snapshots in Cj that are active 

for route j . The local active zone is often significantly smaller than Cj because an 

individual route is not active during all of the global active zone, but rather it could 

be inactive when other routes are active (due to travel time of the action potential 

or different dendritic lengths). Thus applying V-Slim to the orthogonalized snapshot 

set filters out these unnecessary local snapshots and can drastically reduce the size 

of the final snapshot set. 

Thus our implementation of Branch-Ortho and V-Slim uses a 3-step process. First 

we apply V-Slim with a tolerance egi0bai to S to obtain the global active zone, <Sgi0bai-

Next we run Branch-Ortho with Cj = <Sgi0bai to obtain <S. Finally, we apply V-Slim 

with a tolerance of eiocai to <S, which effectively isolates the local active zones for each 
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branch and yields the final snapshot set (see Figure 3.3). Note that since we have two 

snapshot sets, one for voltage and one for the nonlinear terms, the tolerances egiobai 

and eiocai can be different for each set. 

3.3.3 Forked Neuron Results 

Equipped with the tools from the above sections, we return to the task of reducing 

the forked neuron. We take 200 snapshots over a 10 ms window (using At = 0.1 ms), 

and we obtain them by giving a suprathreshold stimulus to a distal branch. We 

use the branchwise orthogonalization algorithm to generate snapshots of branches 

in isolation, where the active zone is computed by applying V-Slim with tolerances 

£focal = °> £ L a l = °» global = 1 0~6> a n d £global = 1 0 " 5 > a n d t h e n s a v i n g e v e r Y 4 t h 

snapshot from this resulting set. Simulations consist of 750 random step currents 

injected over a 1 second interval, with each current having amplitude 0-60 pA and 

lasting 0-5 ms. 

Branch-Ortho turns out to be a very effective method of improving the accuracy 

of the reduced system, as Table 3.3 demonstrates. Not only are spike times accu­

rately reproduced, but the somatic voltage traces are nearly exactly duplicated in the 

reduced system, as shown in Figure 3.5. The improvement can be seen qualitatively 

in Figure 3.4 by observing that the DEIM points are more evenly spaced throughout 

the neuron than they are without Branch-Ortho. 

Our next test is done with the HHA model, but with all the other parameters 
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Table 3.3: Performance of reduced model (here kv = kf) of HH fork, N = 1501, as 
compared with the full model. The first simulation set does not use Branch-Ortho for the 
reduced system, while the next four sets use it, leading to far superior accuracy. 

kv 

30, no Branch-Ortho 

10 
15 
20 
30 

Speed-up 

17.5x 

24. l x 
22.5x 
21.2x 
17.5x 

% Matched 

34.9 

63.4 
91.5 
94.3 
99.6 

% Mismatched 

19.0 

18.7 
4.5 
1.5 
0 

r 
0.484 

0.707 
0.933 
0.963 
0.998 

Table 3.4: Performance of reduced model (here kv = kf) of HHA fork, N — 1501, as 
compared with the full model. 

kv 

20 
25 
30 
40 

Speed-up 

23.5x 
22.0x 
19.7x 
15.4x 

% Matched 

48.27 
85.87 
98.9 
100 

% Mismatched 

41.42 
0 

2.6 
0 

r 
0.515 
0.924 
0.981 

1 

kept the same, except in this case, we use efocal = 10 - 4 and e ^ ^ = 10~5, and we 

use 1000 random stimuli of between 0-250 pA. Note that the tolerances here are 

not tuned to give the best performance, but rather have been chosen after just a 

little experimentation to give good performance; it is possible that a better choice 

may exist. Even though the spatially-varying A-type K+ conductance necessitates a 

slightly larger reduced system in order maintain the accuracy seen in the HH fork, 

we still observe a similar speed-up, as Table 3.4 indicates. 
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(a) 

130nm 

(b) 

Figure 3.4: DEIM points computed for the HH forked neuron when branchwise orthogonal-
ization is (a) not used and (b) used. The improvement from using Branch-Ortho is evident 
in the qualitative difference in DEIM point location: notice that in (a) the lower-right 
branch has few DEIM points, whereas in (b) the DEIM points are more evenly distributed. 
In (b) there is a small cluster of points near the junction, with each point lying on distinct 
branches. 

3.3.4 Branched Cell Obeying Rail's 3 / 2 Power Law 

To examine more complex branching patterns we now consider a binary branching 

tree which satisfies the 3/2 power law as explained in (Rail, 1959). The cell has a 

depth of 3 (for a total of 15 branches), and the root branch has length 200 fxm and 
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Figure 3.5: Somatic voltage traces of the nonlinear and reduced models for (a) first half 
and (b) second half of simulation 1 of the HH forked neuron. 

radius 8 //m, agreeing with the morphological parameters as given in Rallpack 2 of 

(Bhalla et al., 1992). We consider two variants of such a tree: one in which the 

dendritic radii do not taper and one in which they taper linearly along the length 

of the dendrites. In the reduced systems, the V-Slim tolerances are e"ocai = 10~2, 

J — i n -3 
'local 10 3, £giobai = 10 6, and £globa] = 10 5, and the step between snapshots in the -global 

global active zone is 4. We run 20 simulations of 1000 ms each with At = 0.1 ms, 

just as for the forked neuron, only this time we use 600 random currents of 0-500 pA 

amplitude and 0-5 ms duration. 

The results shown in Table 3.5 show that the reduced system recovers spiking 
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Figure 3.6: Rendering of a binary branching cell of depth 3 obeying Rail's 3/2 power 
law. The root branch has length 200 jum and radius 8 /xm, agreeing with the morphological 
parameters as given in Rallpack 2 of (Bhalla et al., 1992). 

Table 3.5: Performance of reduced model (here kv = kf) of HH Rail cells of depth 3 for 
tapered and non-tapered branches as compared with the full model (N = 1823). 

kv Speed-up % Matched % Mismatched T 

30, tapered 
30, non-tapered 
40, non-tapered 
50, non-tapered 

19.0x 
18.9x 
14.8x 
12.0x 

95.9 
79.2 
91.5 
93.9 

1.1 
8.9 
5.6 
5.4 

0.974 
0.836 
0.847 
0.874 

dynamics to high accuracy. The tapered cell is less excitable than the non-tapered 

cell (which may be expected since there are more compartments with greater surface 

areas in the tapered cell). Also, the non-tapered cell requires a larger reduced system 

to capture the dynamics, which suggests that cells with smoothly varying dendritic 

radii may yield better results than cells whose radii change abruptly. 

3.4 Results on Realistic Morphologies 

3.4.1 Results on Neuron AR-1-20-04-A 

Consider the projection interneuron AR-1-20-04-A (Martinez), which has 35 bran­

ches and 20 leaves. At 1 /im resolution, the full system has N = 2233 compartments. 



We conduct a set of 20 simulations of 1 second duration, each using 500 random 

current injections of amplitudes between 0-150 pA and lasting 0-5 ms. We compare 

the spike-capturing accuracy of the full system to that of reduced systems of different 

dimensions. In the reduced systems, the V-Slim tolerances are £"ocal = 0.002, e{ocal = 

0.0005, £global — 10~6, and £global = 10~5, and the step between snapshots in the global 

active zone is 4. The application of Branch-Ortho leads to highly accurate and fast 

reduced systems, as Figure 3.7 and Table 3.6 show. 

<b), 
Accuracy of Reduced Systems 
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Figure 3.7: (a) Rendering of cell AR-1-20-04-A (Martinez) with proximal and distal voltage 
traces computed from the full and reduced systems (blue and red lines, respectively) in 
response to a 500 pA step current stimulus lasting 9 ms applied at the soma. The reduced 
system size for this plot is kv — kf = 90. (b) Bar plot showing the percentage matched and 
mismatched for the reduced systems for cell AR-1-20-04-A. 

3.4.2 Results on Other Morphologies 

The POD and DEIM modeling framework is applicable to a wide class of neurons. 

We have assembled a broad test group of neurons from (http://NeuroMorpho.org) 

(Ascoli, 2006). In Table 3.7 we summarize the accuracy and speed of the correspond-

http://NeuroMorpho.org
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Table 3.6: Results of model reduction for neuron AR-1-20-04-A, N = 2233 (here kv = kf), 
500 step currents, HHA model. 

kv 

30 
45 
60 
75 
90 
105 

Speed-up 

29.0x 
19.7x 
14.8x 
9.6x 
6.9x 
5.3x 

% Matched 

19.2 
50.8 
87.9 
95.5 
98.1 
99.5 

% Mismatched 

27.7 
8.9 
4.0 
2.7 
2.6 
0.8 

r 
0.299 
0.650 
0.916 
0.963 
0.977 
0.992 

ing reduced systems, and we plot the coincidence factors for a range of reduced system 

sizes in Figure 3.8. In general, the reduced systems are successful at capturing the 

spiking dynamics of each cell, and they simulate faster than their full system coun­

terparts. Additionally, the voltage dynamics at any location can be recovered from 

the reduced system, not just the somatic potential (for example, see Figure 3.7). 



90 
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Figure 3.8: Coincidence factors T show spike capturing accuracy for seven different cells 
using various sizes of reduced systems (k = kv — kj) and Algorithm 3 (see (h)). The strongly 
excitable channel models are used here (see Table 3.7 for the model used on each cell). From 
top to bottom the cells are: (a) projection interneuron AR-1-20-04-A (Martinez), (b) CA3 
hippocampal interneuron 951005a (Chitwood et al., 1999), (c) CA3 hippocampal pyramidal 
cell 12299402 (Chitwood et al., 1999), (d) CA1 hippocampal interneuron 100103a from 
the stratum oriens (Golding et al., 2001) (Golding et al., 2005), (e) retinal ganglion cell 
mp_tb_40984_gcl (Toris et al., 1995), (f) hippocampal cell 512882 from the dentate gyrus 
(Rihn and Claiborne, 1990), and (g) pyramidal cell P8-DEV66 from the cerebral cortex 
(Furtak et al., 2007). Scale bars on all cells represent 100 ^m. 
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Table 3.7: Specifications and performance of reduced systems (kv = kf) for the morpholo­
gies shown in Figure 3.8 using the HH or HHA channel models. Coincidence factors shown 
correspond to using Algorithm 3. Here B = number of branches in each cell, and for each 
cell we set h = 1 /itm to be the desired compartment size. 

Cell 

AR-1-20-04-A 
951005a 
12299402 
100103a 
mp_tb_40984_gcl 
512882 
P8-DEV66 

Model 

HHA 
HHA 
HH 
HHA 
HH 
HH 
HH 

B 

35 
44 
61 
32 
54 
35 
47 

N 

2233 
1106 
5021 
2707 
2541 
4655 
1712 

Kv 

75 
45 
105 
90 
105 
90 
60 

N/kv 

29.8x 
24.6x 
47.8x 
30. l x 
24.2 x 
51.7x 
28.5x 

Speed-up 

9.6x 
lO.Ox 
9.2x 
7.3x 
4.7x 
11.5x 
9.8x 

r 
0.963 
0.960 
0.880 
0.903 
0.899 
0.981 
0.905 

3.4.3 Cells With Weakly Excitable Dendrites 

Up to this point we have considered ion channel distributions (HH and HHA) 

that lead to strongly excitable dendrites. However, real neurons often have weakly 

excitable dendrites due in large part to the increase of the density of K+ channels 

with distance from the soma. In order to assess how well the POD and DEIM capture 

the spiking dynamics of these weakly excitable cells, we use the MIG channel model 

(see Table B.3) with the previously considered morphologies. 

In addition to considering the full model versus the reduced model, we also offer 

a comparison of the accuracy of coarsened models. That is, we use larger values of 

h for the full system and compare the resulting spike trains to those computed by 

the full system using the fine reference value of h = 1 /mi. As shown in Table 3.8, 

coarsening of cell AR-1-20-04-A yields less accurate results than the reduced systems, 

and the reduced systems are also much faster. This presents a strong argument in 
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Figure 3.9: Voltage traces at various spatial locations along cell AR-1-20-04-A for the full 
and reduced systems (blue and red lines, respectively) in response to a 1000 pA step current 
stimulus lasting 2 ms applied to the soma. The traces show that accurate reduced systems 
can be generated even when using ion channel models that yield weakly excitable dendrites. 
Here we use the MIG channel model and a reduced system of size kv = kf = 90 and the 
time-step is At = 0.01 ms. The locations in this figure are the same as those of Figure 3.7a. 

favor of using the model reduction techniques presented here over the current s tandard 

method of coarsening for simulations of single neurons. 

Just as in the previous section, in Table 3.9 we summarize the accuracy and speed 

of the reduced systems for these cells with the MIG channel model, and we plot the 

coincidence factors for a range of reduced system sizes in Figure 3.10. Though the 

accuracy is generally lower than for cells with the HH and HHA models, the reduced 
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Table 3.8: Accuracy of coarsened full systems (top section) and reduced systems (bottom 
section) for the projection interneuron AR-1-20-04-A with the MIG channel model. Simu­
lations were conducted using 2000 random current injections of duration and magnitude as 
in §3.4.1, and kv = kf for the reduced systems. 

h (/xm) 

5 
2 

Speed-up 

4.6x 
2.0x 

% Matched 

74.1 
77.9 

% Mismatched 

49.2 
42.4 

r 
0.595 
0.656 

Kv 

60 12.3x 87.8 22.3 0.821 
75 8.1x 88.6 21.6 0.829 
90 5.9x 82.4 12.2 0.849 
105 4.3x 93.9 10.2 0.917 

Table 3.9: Specifications and performance of reduced systems (kv = kf) for the morpholo­
gies shown in Figure 3.10 using the MIG channel model. Cell mp_tb_40984_gcl is marked 
with a '*' because the reduced system became unstable before kv was large enough to cap­
ture any significant dynamics, thus this was the only cell for which the reduced system 
failed for the MIG channel model. 

Cell 

AR-1-20-04-A 
951005a 
12299402 
100103a 
*mp_tb_40984_gcl 
512882 
P8-DEV66 

Model 

MIG 
MIG 
MIG 
MIG 
MIG 
MIG 
MIG 

B 

35 
44 
61 
32 
54 
35 
47 

N 

2233 
1106 
5021 
2707 
2541 
4655 
1712 

Kv 

120 
75 
150 
120 
60 
105 
75 

N/kv 

18.6x 
14.7x 
33.4x 
22.5x 
42.4x 
44.3x 
22.8x 

Speed-up 

3.3x 
4.3x 
4.6x 
4.0x 
14.7x 
9.2x 
6.7x 

r 
0.933 
0.893 
0.882 
0.886 
0.471 
0.928 
0.856 

systems are still successful at capturing the spiking dynamics of most cells. However, 

larger reduced systems must be used to resolve these dynamics, so smaller speed-ups 

are observed. The MIG channel model also shows us a case of utter failure for the first 

time: for the retinal ganglion cell in Figure 3.10e, we find that numerical instabilities, 

most likely due to poor snapshots, in the reduced system occur for larger dimensions. 
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(a) 

(b) 
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Figure 3.10: Coincidence factors T show spike capturing accuracy for seven different cells 
using various sizes of reduced systems (k = kv = kf) and Algorithm 3 (see (h)) using the 
weakly excitable channel model (see Table 3.9). Cells are the same as those of Figure 3.8, 
and scale bars on all cells represent 100 /im. 

3.5 Synaptic Conductances vs. Current Injection 

The reduced system can handle synaptic conductances and current injections, 

and they can be used interchangeably (i.e., a set of snapshots generated using current 

injection can also be used for a simulation with synaptic conductances). But, synaptic 

conductances take a computational toll on the reduced model because, in order to 
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maintain an implicit time-stepping scheme, (3.21) implies that we must compute 

Urdiag(G(£))U, where G(£) is the input synaptic conductance to each compartment. 

When many synaptic inputs are present, this becomes an expensive double-matrix 

product which can dominate the total simulation time. If alpha functions are used 

to model synaptic events, we can decrease the number of active inputs via a shutoff 

mechanism, thus greatly accelerating this computation. In fact, shutoff mechanisms 

can be analogously implemented for any decaying synaptic conductance time course. 

Alpha functions have a characteristic form 

9{t) = 9 ^ e x p ( l - * - ^ (3.27) 

where r is the time constant and ~g is the maximal conductance. Now we assume that 

the synaptic event is inactive after some shutoff time, t0ff, at which g(£0ff) = £ and 

g'i'tott) < 0 f° r some small tolerance e. The truncated alpha function can then be 

implemented as 

i g(t), ton < t < toff 

(3.28) 
0, otherwise. 

Shutoff mechanisms can significantly speed up simulations when many synaptic 

inputs are used. For example, for cell AR-1-20-04-A with N = 2233, kv = kf = 60, 

and 500 inputs with ~g = 2 nS and r = 1, we observe a speed-up in calculating the 

double-matrix product from 30 seconds to 3.3 seconds when the shutoff tolerance 

e — 10~4 is used. Now the reduced system is much more competitive with the full 
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system, as Table 3.10 illustrates. Compared to Table 3.6 the accuracy and speed-

ups in Table 3.11 are less, due to the fact that synaptic input is more complex than 

current injection, but the reduced system is still very successful at capturing the cell's 

behavior. 

Table 3.10: Alpha synapse shutoff mechanism (e = 10~4) accelerates the reduced system 
of neuron AR-1-20-04-A. 

Sim. Time (sec) 
Type Dimension Without shutoff With shutoff 

Full TV = 2233 
Reduced kv = kj = 60 
Reduced kv — kj = 90 

Table 3.11: AR-1-20-04-A, N = 2233 (here kv = kf), 500 alpha synapses, HHA model. 

115 
41 
73 

115 
15 
32 

kv 

60 
75 
90 
105 
120 

Speed-up 

8.4x 
5.9x 
4.7x 
3.6x 
2.9x 

% Matched 

86.6 
92.8 
93.9 
98.6 
98.6 

% Mismatched 

22.8 
12.8 
15.1 
6.8 
5.9 

r 
0.807 
0.894 
0.886 
0.955 
0.961 

3.6 Discussion 

We have applied nonlinear model reduction techniques to morphologically realistic 

cells in a way that preserves the input-output relationships while accurately reproduc­

ing the complete voltage dynamics. We approximate the voltage using a POD basis, 

which reduces the number of state variables. Using the DEIM we build a set of spa­

tial interpolation points and basis vectors to reduce the complexity of the nonlinear 
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term so that it is proportional to the number of reduced variables. These techniques 

rely upon having "snapshots" of the dynamics that are rich enough to reproduce the 

full range of neuronal behavior. We introduce simple methods for obtaining these 

snapshots, and we develop algorithms to eliminate unimportant snapshots and to 

maximize the information in the important ones. When these tools are applied to 

realistic cells, they can generate reduced systems of dimensions nearly two orders of 

magnitude smaller than the originals and which yield highly accurate simulations in 

an order of magnitude less time. 

Application of these model reduction techniques is likely to have the greatest 

effect on neuronal models with realistic ionic currents. Our simulations currently use 

standard, but limited, channel kinetics. Behaviors such as action potential initiation 

near the soma (Colbert and Pan, 2002) (Kole et a l , 2008) rely upon better models 

for the spatial conductance densities, as well as the inclusion of different channels 

(Mainen and Sejnowski, 1998). Additionally, in this paper we have only considered 

excitatory inputs, but inhibition plays a key role in modulating neuronal output, 

both at the single cell and network levels (Brunei and Wang, 2003). Inhibition can 

be included with no change to the present methodology. 

An improvement of the model reduction technique can be made when it is applied 

to cells with weakly excitable dendrites. One consequence of using such channel 

models is that some distal branches do not experience action potentials, but rather 

have more attenuated responses, which can result in poor snapshot dynamics. A 
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remedy for this is to augment the snapshot set with extra snapshots generated by 

giving inputs to these "dead branches" in order to more accurately capture their 

dynamics. We have found this to yield significant improvements for some cells, though 

our selection of the branches to stimulate has been ad hoc; developing an automated 

algorithm for this process will be part of our future work. 

Synaptic conductances can also be treated via AMPA, GABA, and NMDA recep­

tors, and their implementation in the reduced model is straightforward. The DEIM 

can even be used to reduce the dimension of the voltage-dependent NMDA receptor, 

as we have done in preliminary codes. 
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Chapter 4 

The Reduced Strong-Weak Model 

In the previous two chapters I introduced two different techniques to reduce the 

dimension of neuronal models, and in this chapter I will fuse them together in a 

model that uses both techniques where they are most advantageous. If the ion chan­

nel models were purely linear (that is, if the dendrites were purely passive), then the 

linear reduction techniques would be able to reproduce to multi-digit accuracy the 

somatic voltage. As explained in §3.4.3, many real cells have weakly excitable distal 

dendrites, and these branches behave like passive cables, whereas the proximal den­

drites are active cables. It makes sense, therefore, to consider a model in which the 

weakly excitable dendrites are modeled as a linear system, while the strongly excitable 

dendrites are modeled as a nonlinear system, and then to apply the corresponding 

reduction techniques to each part. 

This reduced strong-weak model, while not a cure-all for neuronal simulations, 

opens doors to accurate reduced simulation of certain cells that otherwise would 

be out of reach. Since the linear reduction techniques work when there are only a 

few observables, we do not aim to accurately reduce cells with non-tufted or weblike 
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branching patterns, such as Purkinje neurons (Stuart et al., 2008). However, cells such 

as pyramidal neurons with branching patterns that are organized into two distinct 

dendritic tufts are better suited for success with the reduced strong-weak model. 

Here I derive the strong-weak model and its reduction, and I demonstrate that it 

improves upon the spike-capturing accuracy of the reduced model that uses only the 

POD and DEIM techniques. First I begin with the derivation for a uniform fiber in 

order to more clearly show the changes that occur, and then I generalize the derivation 

to apply to any morphology. 

4.1 Constructing the Strong-Weak Model 

I begin with the simplest morphology, a uniform fiber of radius a and length t. 

Using an ion channel model that yields weakly excitable distal dendrites (see Table 

B.3), we identify the transition location XT on the fiber at which we say the voltage 

behavior transitions from strong (active) to weak (quasi-active). The method to 

identify XT is to be determined, but once we have it we can partition the fiber into 

two separate fibers, one strong (from x = 0 to x = XT) and one weak (from x = x-r 

t o s = £), which join at the point XT, as shown in Figure 4.1. 

The absolute voltages of each fiber will be denoted Vs and Vw, while the voltages 

with respect to rest will be denoted vs and vw. Similarly, V? and VT will denote the 
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Strong Weak 

x = 0 X = XT X = 

rNa 

* V T 
\^NW 

* v2 

w 

Figure 4.1: Schematic of the strong-weak model for a uniform fiber, along with its spatial 
discretization to illustrate the ordering of compartments 

absolute and relative voltages at the transition point: 

VT(t) = Va(xT,t) = Vw(xr,t), vT(t) = VT(t) - VT. (4.1) 

It will be computationally advantageous to work with voltages with respect to rest. 

The strong fiber obeys the nonlinear cable equation, while the weak fiber obeys 

the quasi-active version of this PDE. Hence, using the cable equation from §2.3.1, we 

write the strong-weak system as 

c 

2Ri 
c=l 

dtwscf = 
Wcf,oo(vs) - Wscf 

Tcf{Vs) 

dt 
vw = QU + 0 

-Ec)[[wHf
f-Ia(vs,x,t) 

/ = i 

0 < X < XT, 0 < t, 

xT < x < £, 0 < t, 

(4.2) 

(4.3) 

(4.4) 

where vw and wWt. denote the linearized weak voltage and gating variables, $ denotes 

the ionic current function, Is and denotes the inputs to the strong fiber, Iw denotes 

the linearized inputs to the weak fiber, and Qw is the quasi-active operator, as in 
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equation (2.32), which is applied to the weak voltages and gating variables. 

The initial condition for this system is that the two fibers are at rest, and this rest 

potential is identical to that of the full fiber. The sealed end conditions imply that 

dxva(0,t) = dxvw(e,t) = 0. (4.5) 

Continuity of voltage at the transition point implies 

vs(xT,t) - vw(xT,t) (4.6) 

and continuity of current at the transition point implies that 

dxvs{xT, t) = dxvw(xT, t). (4.7) 

Now we discretize this model. Assume that we are given a compartment length 

Ax, and further assume that the transition compartment (the one containing XT) 

belongs to neither the strong fiber nor the weak one, but is rather shared by both. 

Then there are Ns and Nw compartments in the strong and weak fibers, respectively, 

and the total number of compartments in the full fiber is N = Ns + Nw + 1. Indexing 

the compartments from the outside in for each fiber implies that discretizing (4.7) 



yields 

103 

v i _ V r V r _ #v« 

Ax Ax 

where vr is the voltage at the transition compartment. By (4.6) this implies 

v1 + v 1 " 
vr = - ^ ^ - (4-8) 

Although the implementation above is only first-order accurate, it can be improved 

to second-order accuracy as described in §A.2. However, all the results in this thesis 

were produced using the first-order scheme. 

Discretizing the dxx terms in the above systems and substituting in for vT we 

arrive at expressions for the voltages at the compartments adjacent to the transition 

compartment: 

, v2 — 2vJ + VT 

(Ax)2 

v2 _ 2V1 + iv 1 + ±VN" 

~ (Ax)2 

v 2 _ 3 1 , 1~NW 
v s 2 s ' 2 iv 

(Ax)2 

xx ™ ~ (Ax)2 

This reveals the coupling between these two systems. Using the Hines ordering, I now 

discretize (4.2)-(4.4) and the conditions given in (4.5) and (4.7) to arrive at 
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dt 

Q/c 

(l/2)eL 
0 

0 

(V2)eWw 

- 3 / 2 
1 

0 
1 

- 2 1 

1 

0 

- 2 1 
1 - 1 

+ 

+ 

0 
0 

($(ws(t))e).(v,(«) + vs) - *(w8(t))Ei 

0 

0 

(*(wa )e) .va ( t ) -$(w s )Ei_ 

BIw ( i ) 
27raAx 

w's(i) = (A(v8(t) + vs) - w8(t))./B(vs(t) + vs), 

(4.9) 

(4.10) 

where vs G R^8, vw G R ^ , and ww G R^-"1, and where Q G R^(m+i)xjv„(m+i) 

is the quasi-active system matrix, B = / / C m 0 G Rw-(m+!)x W- is the quasi-

active input matrix, c = 2R ?A,2, and where e ^ G R/Mm + 1) is the coordinate 

vector corresponding to Nw. The definitions of the ionic term $ and the strong 

gating variables ws follow as in §3, just adjusted to the proper number of strong 

compartments. 

Notice that the nonlinear term $ has been split into two parts, one at which 

to evaluate the ionic currents at the absolute strong voltage and one at the resting 

strong voltage. This is because the state variables are with respect to rest, but $ takes 

absolute voltage values, implying that the ionic term is not computed with respect 

to rest, unlike the other quantities in the system. This nonlinear ionic contribution 



105 

must also be adjusted to be with respect to rest, and including the resting ionic term 

*=($ (w, )e ) .v a (« ) -$ (w 8 )E i (4.11) 

achieves this goal. 

Also note that the transition compartment is not explicitly represented in (4.9). 

Rather, in order to obtain v^, equation (4.8) must be used. One implication of this 

compartment being left out is that any inputs which would arrive here are ignored. 

To remedy this, the present solution is to shift the input into one of the adjacent 

compartments. 

Defining the matrices 

1 7 - rtpT CL lRlxJV„(m+l) 

-3/2 1 

H, = c 

1 - 2 1 
1 - 1 

we write the coupled strong-weak "Hines" matrix as 

-2 1 

e R NsxN, S - ^ J * S 

H = 
" Q 

7 

0 

zs o " 
Hs (4.12) 
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N(vs(i),ws(i)) = ($(ws(t))e).(vs(t) + vs) - <S>{va{t))Ei (4.13) 

which, along with (4.11), simplifies (4.9) to 

vw 

Wu, 

_CmVs_ 

= H 
vw 

w«, 
_Gmvs_ 

-
0 
0 

N(vs(t),ws(t)) 
+ 

"0 
0 
$ 

5* 

4.1.1 Model Reduction of the Weak Part 

+ 
1 

2-na/S.x 
BIw(t)' (4.14) 

We focus first on reducing the weak part of the model by applying the linear 

model reduction techniques of §2. In order to proceed with the model reduction we 

need to write the weak part in the form of a standard linear system, but the coupling 

term from Zs causes a problem. We make the assumption that this term can really 

be treated as an input, i.e., we assume that v\ is an input to the linear part, rather 

than treating it as a state variable. 

With this assumption on the inputs, let zw = y • w be the state vector for 

the weak part. Then the linear system whose observable is the voltage v^w at the 

weak compartment adjacent to the transition compartment is 

•z!{t) = Qz(t) + [B Za] 
vi(t). (4.15) 

< - ( * ) = Cz(«) 



where C = 1 0 ••• 0 
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G jRix/Mm+i) rp0 c o m p U t e a reduced system of dimension 

kWl we apply either BT or IRKA to (4.15) to obtain 

*'(*) = Q*(<) + [B z,] 
7i(*). 

where £ € Rkw, Q € Rfc«x*«', B <E R**^^, Zs E R*"-*1, and C 6 Rlxfc*\ 

We insert this reduced system back into the coupled system of (4.14). Now we 

assume that the matrix Zs can be applied to the state variable v* directly, and hence 

we obtain the coupled, weakly-reduced system 

dt = 
Q 

(c/2)C 
0 

zs o " 
Hs — 

0 
N(vs(t),ws(t)) + + 2iraAx 

(4.16) 

4.1.2 Model Reduction of the Strong Part 

With the weak part reduced, we now proceed to apply the POD and DEIM to 

reduce the strong part following the procedure as detailed in §3. First we take n 

snapshots of vs and store them as 

V = 
1 

vs(*i) ••• vfl(tn)j ^ 
>N3xn 
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We take the SVD of this matrix, V = UT,XT, and choose a strong reduced system 

size ks < Ns. The P O D matrix is then the first ks columns of U, i.e. U = [/(:, 1 : ks). 

Now we define the reduced variable by 

v s = Uvfl, v s G Rfes, U € R*"**', 

and then we subst i tute into (4.16) to obtain 

dt 
CmUv5 

(c/2)C 
0 

z., o 

+ + 

Cm\5vs 

BIw(i)~ 

0 

N(Uv,(t),w,(i)) 

2-iraAx 

Multiplying through by the projection matrices U and UT, we obtain the I R K A + P O D 

reduced system 

dt 

Q 

U 

+ 

T I (c/2)C 

(Z. 0)U 
UJ'HSU 

(smvs 

0 
UrN(Uvs,ws) 

(4.17) 

0 
+ 

1 Blw{t) 
UTI s(f) 2iraAx 

where the new "Hines" matrix is now completely dense, but of dimension (kw + ks) x 

\kw + fCs). 

The final step is to reduce the nonlinear term, which follows the same procedure 

as in §3.2.2. In this way we obtain a basis for the nonlinear term by taking snapshots 

of N, and then using the DEIM to obtain the set of ks spatial interpolation points z. 
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We define the reduced strong gating variables by 

w. = Pw, 

and we approximate the strong nonlinear term N by applying the matrices obtained 

from the DEIM as in (3.14). Substituting these into (4.17) and simplifying yields the 

fully reduced strong-weak (RSW) system 

a LrnVs I]1 (c/2)C 
(Z, 0) U 

UrH,U 
0 

RN(U(:,z)vs,ws) 

+ 
0 

+ 2iraAx 
BIw(t) ' 
UTIs(t) 

where R € RfcsXfcs. 

4.1.3 Results for the Reduced Strong-Weak Fiber 

The uniform fiber is not morphologically interesting, but it can be used as a proof-

of-concept. Since the RSW model is only really useful for weakly excitable dendrites, 

we apply the MIG channel model (Table B.3) to the fiber. I run 20 simulations of 1000 

ms each with 1000 step current inputs, each lasting 0-2 ms and having amplitudes of 

0-500 pA, applied to random locations on the fiber. 

To assess the accuracy of this new method, I simulate the full system and two 

RSW systems, with XT located 500 ^tm and 400 jum, respectively, from the distal end, 

and I compute the spike-capturing statistics as described in §3.3.1. I also simulate 
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the POD+DEIM model in order to compare its accuracy to that of the RSW model. 

For the full and POD+DEIM system simulations, the inputs are permitted to arrive 

at the transition compartment, but in the RSW model, since this compartment is 

absent, I redirect those inputs into the adjacent compartment on the strong fiber. 

Table 4.1 shows the performance results of these simulations. It is not totally clear 

whether or not the RSW model has improved upon the spike-capturing accuracy of 

the POD+DEIM model, but at least these results show that it is competitive. Note 

that the location of XT has an effect both on the simulation speed and on the accuracy. 

Furthermore, I have used kw = 10 for both RSW systems, and varying this parameter 

may have an effect on the accuracy as well, and it will certainly affect the speed-up. 

It appears at first glance that the RSW system is much slower than the POD+DEIM 

system. However, profiling the code in MATLAB has shown that much extra time 

is spent in directing the inputs to the proper strong and weak locations in vectors, a 

task which is absent from the POD+DEIM code. Also, updating the "Hines" matrix 

and performing Gaussian Elimination seems to take a bit longer, which is counterin­

tuitive. However, the expectation is that with a bit more optimization and perhaps 

some very inexpensive pre-processing, the timings can be improved to be more in line 

with what we would expect from the POD+DEIM simulations. 
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Table 4.1: Top section: Performance of reduced strong-weak model of the MIG fiber as 
compared with the full model. Here kw = 10, N = 1001, and XT is located 500 /mi from 
the distal end. Middle section: Same as the top section, but now XT is located 400 /*m from 
the distal end. Bottom sect ion performance of the POD+DEIM model (here kv = kj) on 
the same fiber with the same inputs. 

Reduced strong-weak model: XT located 500 jum from distal end 
ks Speed-up % Matched % Mismatched T 

10 3.2x 98.9 
20 2.9x 98.1 
25 2.7x 98.5 

Reduced strong-weak model: 
ks Speed-up % Matched 

10 3.3x 98.9 
20 3.0x 97.7 
25 2.7x 98.5 

POD+DEIM model 
kv Speed-up % Matched 

10 5.5x 75.4 
20 5.0x 95.8 
25 4.6x 99.2 

15.7 
2.3 
3.4 

0.905 
0.978 
0.974 

XT located 400 //m from i 
% Mismatched T 

22.4 
3.4 
2.3 

% Mismatched 

12.5 
3.1 
0.8 

0.863 
0.970 
0.980 

r 
0.807 
0.962 
0.992 

4.2 Generalizing the Strong-Weak Model to Arbitrary Mor­

phologies 

The RSW model can be extended to handle arbitrary branched neurons, with two 

main changes that must be considered. First, in partitioning the cell into strong and 

weak components, there is a possibility that the branches of the individual compo­

nents will not be ordered to take advantage of the improvements of (Hines, 1984) that 

permit efficient Gaussian Elimination. Hence we must reorder the branches locally 

and reindex the compartments locally in order to achieve this result. Second, the 
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* * * 

X - - Strong 

Weak 

Figure 4.2: Partitioning a realistic cell into strong and weak components. This cell is 
pi8, a pyramidal cell from the cerebral cortex (Vetter et al., 2001). The strong component 
encompasses dendrites that are close to the soma, where the active membrane properties 
will have the largest effect, while the most distal tuft comprises the weak part, since there 
the dendrites behave more like passive cables. The scale bar indicates 100 /xm. 

entries of the coupled "Hines" matrix resulting from the discretization of the transi­

tion condition will change because real neuronal morphologies will have non-uniform 

branch radii. Once these changes are taken care of, writing the generalized RSW 

model and discretizing it are straightforward. 

For a general morphology, assume that we have placed the transition point XT on 

branch br- This naturally segments the morphology into two components, one strong 

and one weak, as shown in Figure 4.2. The weak component consists of the segment 

[0, XT) of branch br and all branches that are its descendants. The strong component 

is then the complement of this set, namely the segment [XT, hT] °f branch br and 

all branches which are not its descendants. Hence there are a total of Bs and Bm 

branches in the strong and weak parts, respectively. 
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With this partition in place, it is necessary to reorder the branches in the strong 

and weak parts. This means that we assign local branch indices according to decreas­

ing dendritic depth with respect to a specific reference point. For the strong part 

the soma is the reference point, and for the weak system it is the transition point 

XT- This reordering allows for construction of a coupled "Hines" matrix for which 

Gaussian Elimination can efficiently be used. As a consequence of the reordering, the 

transition point XT lies at the proximal end of branch @w = Bw in the local ordering of 

the weak part, but XT lies at the distal end of branch (3S € [1, Bs}. Thus the absolute 

voltages for the strong and weak parts of branch b? in the local indexing are denoted 

by VgS)S and VpWtW, and the radii of these components are denoted by a^S)S and apw<w. 

The boundary conditions, initial conditions, and soma conditions for the strong-

weak model are the same as those given in (2.19)-(2.26), but we must include condi­

tions at the transition point to account for the strong-weak coupling. The voltage at 

the transition point XT is given by 

VT(t) = Vf}.ia(xT,t) = V0WiW(xT,t), vT(t) = VT(t) - VT. (4.18) 

We assume that the dendritic radii are not discontinuous in space, and thus continuity 

of current at the transition point requires 

dxV0s,s{xT,t) = dxv0WtW(xT,t). (4.19) 
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Now we discretize the neuron in space, which yields Ns and Nw compartments in 

the strong and weak parts, respectively, as well as the transition compartment, for 

a total of N = Ns + Nw + 1 compartments. This implies that the strong and weak 

voltage vectors are 

vseRNs, vBeR"«. 

To construct the coupled "Hines" matrix properly we will need the local indices 

of the compartments adjacent to the transition compartment. These local indices are 

denoted by Nw and iVT for the adjacent strong and weak compartments, respectively. 

Using these local indices, the voltage of the adjacent weak compartment is denoted 

by v^m, and the voltage of the adjacent strong compartment is denoted by v^T . The 

voltage of the transition compartment is denoted as before as vy. 

Discretizing (4.19) yields 

Ax 

where Ax is the compartment length for branch br- Using the continuity of potential 

condition of (4.18) we solve for vT: 

T 2 » -r 2 u, 

Now we are ready to apply the generalized cable equation's second-derivative oper­

ator. We can use our previously derived results (see Appendix A) for all compartments 

vT 
-it^w 

Ax 
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except those adjacent to the transition compartment. 

Consider first the adjacent strong compartment. Discretizing at this compartment 

yields 

a , ( ( a ^ ) 2 a x v f - ) = (a^)2dxx^+2^dx^dxVNT 

NT\2 (afr) 
(Ax)2 [vf r+1 _ 2vfr + vT] + 2af r 

,JVT+1 
&T 

2Ax 

vfr+l _ V T 

2A x 

where a^ is the radius of the transition compartment. After substituting in (??) 

for v^, followed by much tedious algebra and gathering like terms, we arrive at the 

following expressions for the voltage coefficients: 

a x ( ( a ^ ) 2 9 x v ^ ) « v ; JVT+1 
NT\2 ,NT 

+ 

NT + v; 

' W 

(Ax)2 ' 2(Ax)2 

" 3 ( a ^ ) 2 , a ^ 
+ [ 2 (Ax)2 4(Ax)2 

l(afr)2 , a?' 

(*r ~ a ^ + 1 ) 

+ 2 (Ax)2 4(Ax) 
(ar - a?**1) 

v „NT+1 I v ,.NT , -AT™ 
Xs,lvs + X3,2VS + Xs,3Vw , 

where \s,i, Xs,2, and %s,3 are the coefficients of the voltage terms. Similarly, for the 
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adjacent weak compartment we find 

^ ( ( a ^ ) 2 ^ - ) * ^ 
1 (a£")2 a; Nw 

1 °~w /'-.„ aNw-l\ 

2 (Ax)2 4(Ax)2 

+ v :NW 
3(a£«) JV„,\2 ,iV„ 

2 (Ax)2 4(Ax) 

+ v; 
•Nw-1 

Nw\2 ^Nw 

(Ax)2 ' 2(Ax)2X~w 
K")a

+ ^ M""1 - aT) 

X w , l v s -+- Xtu,2Vw -t- Xiu,3v«, 

Now we are ready to write the complete coupled strong-weak system. Letting 

c = - ^ and cw = l 

2Rn.a"T OR a.N™ 

and defining the coordinate vectors 

e « , 6 R w - ( m + 1 ) and e ^ e R " ' , 

we can write the coupling matrices as 

Zs = $LXwil{eNve
T

NT) G R^-(".+Dx^ 

and let Hs G R^8*-^ be the Hines matrix for the strong part and Q be the quasi-active 

matrix for the weak part. Then the coupled strong-weak "Hines" matrix is 
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' Q 
7 

1s' 

Hs 
(4.20) 

Thus the discretized strong-weak system is 

dt 

vw 

Wtu 

Cmvs_ 
= H 

V™ 

ww 

}^m^s_ 

— 
0 
0 + + 27raAa; 

BI^(i) (4.21) 
_N(vs(t),w8(t))J 

which is of the same form as (4.14). The notable exception here is that the inputs 

are now given according to their local indices. 

Model reduction of this system follows in the same manner as that of §4.1.1-4.1.2, 

yielding the reduced strong-weak system for arbitrary morphologies: 

dt Ur {(c.Xs,3)C) 

0 

(z.) u 
\Fnsv RN(U(:,z)vs,ws) 

+ UT$ + 2iraAx \JTIs{t) 

(4.22) 

One important point should be made concerning the selection of snapshots for 

both the POD and DEIM. Although it may seem reasonable to take snapshots of 

the strong branches from the simulation of the strong-weak system, this yielded very 

poor results for realistic morphologies. However, if the snapshots are taken of these 

branches from the full system simulation then the results improve dramatically. 
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4.3 Results on Branched Cells 

The RSW model is in its early stages of development, but the goal of this section 

is not to demonstrate a complete solution. Rather, I offer evidence that this model 

can yield higher accuracy than the POD and DEIM reduced model, and that the 

RSW model may permit accurate simulation of larger, more highly branched cells 

than are currently feasible. 

I have tested the RSW model on two branched cells with two different weakly 

excitable channel models. The familiar forked neuron from the previous sections 

appears again as the most basic branched cell to test. In order to show the utility of 

the model on larger cells, I use neuron pl8 from (Vetter et al., 2001), which is the 

pyramidal cell shown in Figure 4.2. For both cells I use the MIG channel model of 

Table B.3, but I also use a modified version of this model to demonstrate the effect 

of having purely passive dendrites beyond a certain distance from the soma. This 

model, called MIG-P, contains the exact same parameters as the MIG model except 

that the conductances (except the leak conductance) are set to zero for compartments 

whose distance to the soma is greater than 400 fim. 

4.3.1 Forked Neuron Results 

Consider again the forked neuron which has one parent branch and two child 

branches, all with radius 1 /xm and length 500 /xm. The transition point x-r is located 

20 i/m from the distal end of the parent branch. Using a compartment length of 
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Ax = 1 jLtm, the discretized cell consists of N = 1501 compartments, and the strong 

and weak parts have Ns = 481 and Nw — 1019 compartments, respectively. I ran 

two different simulation sets, one with the MIG ion channel model and one with the 

MIG-P model. I ran 20 simulations of 1000 ms each using the full, POD-f DEIM, 

and RSW models. For each simulation I applied 1000 step current inputs lasting 

0-5 ms and having amplitudes of 0-250 pA to random locations. I computed the 

performance statistics for both reduced models against the full model, and these 

results are summarized in Table 4.2. 

Note that when the MIG-P model is used, the RSW system is significantly more 

accurate at smaller reduced system sizes than the POD+DEIM system is. While the 

RSW system's timings are worse compared to the POD+DEIM system's, the RSW 

code is not yet optimized. Therefore I believe that, as mentioned in §4.1.3, with a 

better implementation the RSW system's timings should scale similarly to those of 

the POD+DEIM system. Also worth noting is that for the MIG-P model, the RSW 

system of size ks = 40 achieves a T that is about 0.1 higher than that of the best 

POD+DEIM system (kv = 60). Hence I hypothesize that when the weak part of the 

neuron consists of dendrites with mainly passive conductances, the RSW model will 

perform better than if there are active conductances present, even if these active ones 

have very little effect on the voltage dynamics. 
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Table 4.2: Performance of RSW and POD+DEIM models of the MIG and MIG-P fork as 
compared with the full model. Here kw = 10, iV = 1501, and XT is located 20 fim from the 
distal end of the parent branch. 

RSW model, MIG ion channel model 
ks Speed-up % Matched % Mismatched T 

30 6.8x 98.1 4.6 
40 5.7x 100 5.4 

POD+DEIM model, MIG ion channel model 
kv Speed-up % Matched % Mismatched 

30 16.8x 97.1 2.9 
40 13.4x 97.1 2.9 

RSW model, MIG-P ion channel model 
ks Speed-up % Matched % Mismatched 

30 9.2x 96.5 14.5 
40 7.5x 98.3 1.2 

0.967 
0.972 

r 
0.971 
0.971 

r 
0.904 
0.985 

POD+DEIM model, MIG-P ion channel model 
kv Speed-up % Matched % Mismatched T 

30 
40 
50 
60 
70 

16.3x 
13.2x 
10.6x 
8.4x 
6.2x 

96.5 
97.1 
97.1 
97.1 
97.1 

23.3 
20.2 
19.0 
15.7 
17.8 

0.850 
0.872 
0.879 
0.899 
0.887 

4.3.2 Neuron p l 8 Results 

With the success of the RSW model on the forked neuron, it is now time to 

examine its performance on a realistic cell. The morphologies used in §3.4.3 are not 

really good candidates for the RSW model because they lack very well-separated weak 

and strong parts. In this section I consider neuron pl8, a pyramidal cell from the 

cerebral cortex (Vetter et al., 2001) which has two distinct tufts of dendrites connected 
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by a long branch, as shown in Figure 4.2. This neuron is the most highly-branched 

one considered thus far, having 132 dendrites, and nearly half of these are contained 

in the weak part, indicating the potential for a large reduction in dimension. 

I discretize this cell with a desired compartment length of Ax = 2 /xm, yielding 

a model with 3996 compartments. The transition compartment is located ~ 94 

/j,m from the distal end of dendrite 60 (see Figure 4.4), leading to strong and weak 

dimensions of iVs = 1898 and Nw = 2097. The weak system is approximated using 

kw — 15. Like the fork studies of the previous section, I run sets of 20 simulations 

of 1000 ms each using the MIG and the MIG-P ion channel models. During each 

simulation I apply 2000 step currents lasting 0-2 ms and having amplitudes of 0-

1500 pA to random dendritic locations. In order to reduce numerical instabilities in 

the computed solutions, I use a time-step of At = 0.01. 

The results of these simulations are shown in the histograms of Figure 4.3. Note 

that the RSW model consistently performs better than the POD+DEIM model. The 

RSW model is still significantly slower than the POD+DEIM one, but as mentioned 

before this can be improved with optimized code. Furthermore, as shown in Figure 

4.4, the RSW voltage traces more closely match those of the full system. This offers 

evidence that the RSW model can improve accuracy for large cells using smaller 

reduced system sizes than the POD+DEIM model alone. 
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Figure 4.3: Coincidence factors T show the accuracy of the RSW and POD+DEIM models 
when compared to the full model for neuron pl8. For the RSW system kw — 15, and the 
values of ks for the RSW systems and kv = kj for the POD+DEIM systems are given on 
the x-axis. Top: using the MIG ion channel model. Bottom: using the MIG-P ion channel 
model. 

4.4 Discussion 

This section has provided an explicit derivation of the RSW model and yielded 

evidence that this model can improve upon the accuracy of the linear and nonlinear 

reduced models alone, but it is far from an exhaustive study. Aside from improving 
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Figure 4.4: Dendritic voltage traces for cell pl8 with MIG channel model. Three computed 
solutions are shown: the full system (blue), the RSW system (green), and the POD+DEIM 
system (red). The dimensions for the reduced systems are kv — kf — ks = 120, and for the 
weak part of the RSW system kw = 15. The transition location is indicated by the black x 
on the cell. Note that the voltage traces computed by the RSW system more closely match 
the full system solutions than the POD+DEIM solutions do, and also at locations in the 
weak part the POD+DEIM solutions do not match the full model with any accuracy. 

the computational efficiency by optimizing the present codes, there are many con­

siderations that will need to be addressed so that this model will be applicable to a 

wider class of cells, and I present the most pressing issues here. 

Select ion of the Transit ion Locat ion 

Perhaps the most critical parameter, but the least studied in this thesis, is the 
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transition location XT- Choosing a transition location that is too close to the soma 

will cut out important active dendritic segments, but choosing XT to be too far out in 

the morphology may leave too many passive segments that are not well-approximated 

in the strong part. My method for selecting this location has been by inspection of 

the morphology. However, for a general-purpose implementation, this ought to be 

algorithmic and should remove much of the burden of selection from the user. For 

instance, a transition location selection algorithm could suggest candidate locations by 

analyzing voltage data to determine where the voltage attenuates to a small fraction 

of the amplitude of an action potential. 

Multiple Transition Locations 

Depending on the branching pattern of the morphology, it may make sense to 

consider having multiple transition locations. This could occur if there are multiple 

apical tufts, or if there is not a sufficiently long dendrite connecting the weak and 

strong parts. If there are p transition points, then the complete weak system is really 

a set of p smaller weak systems that are each coupled to the strong system but not 

to each other, leading to a quasi-active matrix of the block diagonal form 

Q 

Qi 

(4.23) 

where the matrices on the diagonal correspond to the individual small weak systems. 

To compute the reduction of weak systems of this form, there are two options, both 

of which incur extra computational cost and which alter the entries of the coupled 
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"Hines" matrix. The first solution is to consider one weak system with multiple 

observables, meaning that we use (4.23) as the linear system matrix to be reduced. 

In order to obtain the same accuracy as a system of the same size but with just 

one observable, the reduced system will need to be larger. The second solution is to 

consider the matrices Qi , . . . , Qp in isolation and compute p different reduced systems, 

each having (potentially different) dimensions kWj, Vj G [l,p], meaning that the total 

reduced weak dimension is kw = YTj=\ kWj • ^ *s unclear at this point which of these 

two approaches is superior, but it is obvious that kw will need to be larger than it 

would if only one transition point is used. This degrades the performance of the RSW 

model because more computational effort is focused on resolving the passive system, 

when those extra dimensions are intuitively more valuable when used in the reduction 

of the strong system. 

Input to the Transition Location 

As noted in §4.1, the present derivation of the RSW model does not explicitly 

handle inputs to the transition compartment. While the simple solution is to redirect 

such inputs into adjacent compartments, this is not rigorous and is intellectually 

unsatisfying. The justification for this method is that as Ax —> 0 this will not matter, 

and thus such shifting of inputs should have little effect if the compartment length is 

small enough. Still, solutions computed in this way this can only be regarded as an 

approximation to the dynamics of the model given the true input pattern. Thus it 

is important, for accuracy and rigor, to explicitly derive how to handle inputs to the 
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transition compartment. 

Alternating Solutions of the Strong and Weak Systems 

Since the RSW system consists of weak and strong systems that are coupled at the 

transition location, it may be possible to efficiently solve (4.22) in a two-step process. 

The first step is to solve for the weak state variables, using the strong voltage variables 

as inputs. At the next time-step, we solve for the strong state variables, using the 

weak voltage variables as inputs. The process is then repeated, so that we alternate 

solving the strong and weak systems independently. In this way the system would 

likely be less accurate, but would also be faster, and so perhaps this speed gain would 

permit using a smaller time-step, which could then recover the lost accuracy. 
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Chapter 5 

Future Work 

Each of the model reduction techniques presented in the previous chapters prompt 

a number of questions about improving their efficiency and functionality, as well as 

about how to optimize certain parameters. However, rather than enumerate many 

small details, I will focus on two concerns. The first is a way to include more realistic 

biophysics in the model and the second is a possible way to improve the performance 

of the models which use the POD and DEIM. 

5.1 Modeling Synaptic Inputs via Receptors 

Synaptic inputs can be modeled more accurately by kinetic equations than by 

alpha functions or similar conductance time courses (Destexhe et al., 1994). In the 

cell, synaptic input occurs when a presynaptic neuron releases neurotransmitter into 

the synaptic cleft. Neurotransmitter activates receptors on the synapse, allowing ions 

to flow into the cell and thus induce changes in voltage. These processes are efficiently 

modeled by (usually) first-order differential equations that dictate the fraction r of 
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open receptors of a given type: 

- = k+[T\(t)(l-r(t))-k.r, (5.1) 

where [T] is the concentration (in mM) of neurotransmitter, k+ is the forward rate 

constant in (mM ms)_ 1 , and fc_ is the backward rate constant in (ms)"1 (Destexhe 

et a l , 1998). 

To include these types of inputs in the reduced models is rather straightforward, 

but these ODE's must be solved at each compartment. When [T] has the form of a 

step function, (5.1) can be solved analytically (Destexhe et al., 1994), but for more 

general dosage functions time-stepping schemes must be used. Due to this computa­

tional cost, efficient numerical methods must be applied if the reduced systems are 

to yield fast simulations. One technique is to implement a shutoff mechanism like 

that of §3.5 so that (5.1) is only solved for compartments where r is not close to 

zero. However, this shutoff mechanism is likely to be more effective for fast synapses 

(primarily excitatory ones) than for slow synapses. 

Receptors fall into two categories, excitatory and inhibitory, depending on the 

type of neurotransmitter which activates them. AMPA and NMDA receptors are 

excitatory and are activated by glutamate, while GABA^ and G A B A B receptors are 

inhibitory and are activated by GABA (Destexhe et al., 1998). AMPA and GABA^ 

operate on much faster timescales than NMDA and G A B A B do. For now, we ignore 

G A B A B because it requires second-order kinetics. Translating the receptor kinetics 
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into input to a branched model neuron is easy because the input terms look much 

like currents from ion channels. On branch b the synaptic current from receptors of 

type Q is given by 

sb 

IbQ(x, t) = ^2 GQrbsQ(t)S(x - xbs) (vb - EQ), (5.2) 

where GQ is the maximal conductance, and EQ is the reversal potential of that re­

ceptor. One notable exception to this form of synaptic current is the NMDA current 

because it is voltage-dependent, a fact that poses an extra problem for model reduc­

tion. 

5.1.1 Reduction of the N M D A Magnesium Block Term 

The NMDA receptor is governed by a magnesium block that is in the bound state 

when the voltage is close to rest. When there is sufficient depolarization, Mg2+ is 

unbound from the receptor and this permits a larger synaptic current to flow. Hence 

the NMDA synaptic current has the form 

h,NMDA{x, t) = 2_] GNMDA?VNMDA(*)Bb(vb)6(x - xbs)(vb - £NMDA), (5.3) 
s = l 

where 

RJnA = 
1 + exp(-0.062u6)[M£2+]o/3.57 

Mvb) = , , „ „ , A n e o . . , f , , , _ 2 + 1 / o c ^ (5-4) 
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where [M<72+]0 is the concentration of magnesium outside the cell (Destexhe et al., 

1998). If the r^NMDA^) term were not there, this would be a straightforward DEIM 

reduction, treating Bb(v) just like a gating variable. But this term is coupled to 

fbs,,NMDA(*)I which so far cannot be reduced because it is a synaptic input that is local 

to each compartment. Since we cannot reduce this term, we focus our attention on 

extracting the Bi,(v) term. 

After discretizing the morphology, applying the POD reduction to the NMDA 

synaptic input term yields 

J-NMDA (t) = UrGNMDArNMDA(i)B(Uv)(Uv - E NMDA ). (5.5) 

The product r(i)B(Uv) is actually a pointwise multiplication, and this is what allows 

us to extract B and reduce it. We first approximate B via the DEIM as 

B(Uv)^RBB(U(:,zB)v), 

where ZB are the interpolation points. We can then use pointwise multiplication to 

write 

INMDA(£) ~ GN MDACSB(U(: , ZB)V).UTrNMDA(£) (Uv - #NMDA), (5.6) 

where CB = UTRB. 

With this derivation in place, reduced order models using receptor kinetics can 

now be simulated. Perhaps the most pressing issue for further study is determining 
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how the extra cost of solving the receptor ODEs and performing the reduction of the 

voltage-dependent Mg2+ block term impacts the speed of simulation, and how the 

reduction of this term affects the accuracy of the system. 

5.2 Augmenting the POD and DEIM Snapshot Sets 

For cells with weakly excitable distal dendrites, the RSW model has shown the 

promise of increasing accuracy when compared to the POD+DEIM model alone, but 

the accuracy of both can be improved by enriching the snapshot sets. Currently the 

snapshot sets are generated from a single suprathreshold input, which is appropriate 

for ion channel models with conductances that do not strongly attenuate the voltage 

with distance from the soma. However, for models that yield weakly excitable den­

drites, the somatic spike may nearly disappear after it has propagated sufficiently far 

from the soma. The result of this attenuation is that branches that are farther away 

are underrepresented in the snapshot set, which yields a reduced system that is less 

accurate than desired. 

As mentioned in §3.6, a solution to this problem is to augment the snapshot set 

with snapshots generated by multiple inputs to some of these more distal locations. 

The inputs would need to be sufficiently strong to elicit the dynamics of interest, 

otherwise the snapshots will contain too little information to appreciably improve 

the accuracy of the model. The inputs should also be staggered so as to prevent 

overlapping dynamics that would lead to a phenomenon similar to that of phantom 
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spiking. What is needed is a method to identify the underrepresented branches and 

then determine those that should receive inputs and how strong these inputs should 

be. While this technique has yet to be tried in any rigorous setting, preliminary 

results have shown that it can yield more accurate results than using just one input. 

5.3 Network Simulations of Reduced Cells 

A natural extension of the work in this thesis is to employ reduced cells in net­

work simulations. Prototypical reductions can be computed for cells with different 

biophysical properties. For example, if a network of the hippocampus is to be mod­

eled with regions CA3 and CAl represented, each with 1000 cells in each region, then 

at least two prototypes could be created: one being a reduction of a stereotypical 

CA3 cell and the other of a stereotypical CAl cell. Note that these cells can have 

different kinetics and morphologies, as well as different reduced system sizes. How­

ever, within each brain region there are multiple (but a finite number of) subtypes 

of cells, and some are excitatory while others are inhibitory (Shepherd and Koch, 

1998) (Traub and Miles, 1991). Hence the network population of 1000 cells may be 

composed of, say, 20 different prototype cells, each represented according to their 

proportion of occurrence in the brain. These reduced cells are then building blocks 

that can be linked together to form networks by implementing a synaptic transmis­

sion mechanism. This opens the door to investigation of other neuronal functions, 

such as synaptic plasticity, using realistic morphologies but without the price of slow 



133 

simulations. 

Preliminary codes have been developed as a proof of concept for very small net­

works (less than 20 cells), and the results are promising. In fact, if the prototype cells 

simulate 10 times faster than their full system counterparts, then the network simu­

lations also show the same speed-up. Of course, the network simulation speed will be 

limited by the simulation speed of the slowest prototype cell. However, the drastic 

speed-up without sacrificing the input-output map of the individual cells means that 

this reduce-then-connect framework for network model reduction could be revolution­

ary. 
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Chapter 6 

Conclusion 

Using the tools in this thesis, models of morphologically accurate spiking cells can 

be reduced to systems with significantly fewer variables while maintaining the input-

output properties of the original model. Balanced Truncation (BT) offers a rigorous 

theoretical approach to linear model reduction in order to reproduce subthreshold 

voltage dynamics, but it is slow and may be computationally intractable for some 

systems. An Iterative Rational Krylov Algorithm (IRKA) achieves the same goal, 

but it computes the reduced system drastically faster and also makes simulations of 

realistic morphologies tractable. Depending on the discretization and the morphology, 

the dimension of the system can be reduced by a factor of more than 10000, and the 

simulation time can decrease by a factor of nearly 100. 

The spiking regime requires a different approach in order to capture the highly 

nonlinear voltage response. The Proper Orthogonal Decomposition (POD) reduces 

the dimension of the state variables, while a Discrete Empirical Interpolation Method 

(DEIM) reduces the complexity of the nonlinear terms that account for ion channel 

kinetics. In order for these methods to be accurate for branched cells, I have de-
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veloped a branchwise orthogonalization algorithm that improves the accuracy of the 

POD+DEIM system, and a snapshot elimination algorithm that removes snapshots 

that provide little information. Using these techniques together, spike times can be 

accurately computed to within 2 ms with coincidence factors T > 0.9 for a broad 

class of realistic neurons, and simulation times can decrease by a factor of nearly 10. 

While these model reduction techniques perform very well in isolation, together 

they can be even more effective. The Reduced Strong-Weak (RSW) model incorpo­

rates a reduced linear system to model regions with weak (linear) dynamics while 

using a POD+DEIM system to model the dynamics of strong (nonlinear) regions. 

This method is still under development, so the main contribution of this thesis is 

to present the theory and derivation for this model. However, I have also offered 

computational evidence that the RSW model can be more accurate than the linear 

or nonlinear reduced models individually. 

Until now, model reduction of realistic spiking neurons was not robust to inputs 

nor faithful to the spatial description of the cell. In this thesis I have developed 

and implemented multiple techniques that satisfy these two requirements and out­

perform all current model reduction efforts on such cells. These results demonstrate 

that hidden within the complicated dendritic structure there exists a low-dimensional 

subspace that describes the neuronal dynamics. This knowledge is important not only 

because neuronal simulations can be drastically accelerated, but also because it en­

courages exploration into model reduction for other complex systems in the brain. 
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Appendix A 

Constructing the Hines Matrix 

A.l Current Implementation 

Applying finite difference schemes to the spatial derivatives involved in the cable 

equation and the boundary conditions is a straightforward procedure, but care must 

be taken to properly account for coupling at junctions in order to maintain an accurate 

numerical solution. 

The Hines ordering implies that compartments are labeled in increasing order from 

most distal to most proximal on a branch, starting with the most proximal branch 

and ending with the soma. The latter is measured by called a branch's depth, which 

is defined as the number of branches it must traverse to reach the soma, including 

itself. Hence the soma compartment has depth = 0, roots have depth = 1, and so 

on. Without loss of generality, assume further that each branch has N compartments 

numbered 1 through N. This gives 6 possible compartment types whose entries in 

the Hines matrix we must compute: 

1. Interior compartment 
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2. Leaf compartment: the most distal compartment of a leaf 

3. Parent compartment (non-soma): compartment N of a child branch whose 

parent is another branch 

4. Parent compartment (soma): compartment N of a root branch 

5. Branch compartment: the first compartment of a parent branch 

6. Soma 

For clarity in the following derivations I will drop the branch subscript b and in­

stead will indicate quantities by their compartment index k. Thus here a^ should be 

interpreted as a{xk), and similarly for v^. 

1: Interior compartment 

From the main cable equation we compute the partial derivative term as 

dx(a?(x)dxv) = a2(x)vxx + 2a(x)axvx. 

Using the standard discretization scheme for the second partial derivative and cen-
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tered differences for the first partial derivatives we obtain 

dx{a2(x)dxv) « a2(xk) 

+ 2a(xfc) 

v(xk+i) - 2v(xk) + v(xk-i) 
h? 

a(xk+i) - a(xfc-i) 

2/i 

h2 

Vk+l 

vk+\ - 2vk + vk-i + 
ak 

2h? 

v{xk+1) -v(xk-1) 

2h 

ak+\vk+i — ak+ivk-i — ak_ivk+i + ak-ivk~\ 

- + —2(ak+1 - afc_x) 

+ vk 

+ Ufc-l 

2 a | 

/ i 2 

2: Leaf compartment 

Leaf compartments satisfy dxv(£,t) = 0, which is discretized as 

dxv(t,t) V2 ~V\ 

h 

However, because the membrane current must be accounted for from the active dy­

namics in the cable equation, we must divide through by one more h, bringing the 

final expression to 
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3: Pa ren t c o m p a r t m e n t (non-soma) 

A non-soma parent compartment is that on a child branch immediately before the 

branch point, i.e., it is compartment N on that branch. Such compartments follow 

the same derivation as interior ones, except that the vk+\ and ak+\ terms are replaced 

by Vparent.i and aN, yielding 

dx(a
2(x)dxv) s=s 

^parent, 1 

+ Vk 

ak , ak , x 

h? + 2h?{aN ~ ak~l) 

2o| 

/ l 2 

ak ak i s 

4: Pa ren t c o m p a r t m e n t (soma) 

A non-soma parent compartment is that on a child branch immediately before the 

soma. Hence they follow the same derivation as interior compartments, except that 

the Vk+i and ak+i terms are replaced by fsoma and a^, yielding 

dx(a
2(x)dxv) « vs, a ak 

+ vk 

+ vk~i 

¥ + 2h*{aN ~ak-l) 

2a\ 

h? 

a ak 

h? ~ 2h^N ~ ak~l] 
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5: Branch compartment 

A branch compartment is the first one on the parent branch. These nodes satisfy 

the boundary conditions 

Vpk(^Pk,t) = vci{0,t) + v<pk{0,t) 

alkdxVPk(epk,t) = a2
clkdxvci(0,t) + a2

cldxvc2(0,t). 

I discretize the second of these conditions by forward and backward differences using 

the radii that are one compartment away from the branch point to explicitly show 

the effect of varying radii entering the branch; in the limit as h —> 0 these are the 

same values: 

> , 2 
Vp,2 ~ Vp,\ 

h„ = a ci,N 
Vp,\ -Vg,N 

+ a c2,N 
Vp,l ~ Vc2,N 

Gathering like terms to the left and scaling by l/hp because of the membrane current 

yields 

0 = vPti 

+ VP,2 

+ VcuN 

+ VC2,N 

ap,2 acuN
 ac2,N 

p •*JC\"Jp '^C2'^pJ 

T „ 2 
lci,N 

'"ci'^p 

r < , A f 

_ *̂ C2 ^P 
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6: Soma 

The soma satisfies the three conditions (2.21) and (2.22), and hence for the dth 

root we write 

it 

R-a-^a 
ad{0)dxvd{0,t) « vsi 

TV 

+ Vd,N 

RaAahd 

n 

RaAahd 

ld,N 

Ld,N 

A.2 Second-order Approximations of Boundary Conditions 

The derivations in the previous section describe the implementation of the codes as 

used to generate the results in this thesis, but they involve mixed orders of accuracy. 

The interior nodes are computed to second-order accuracy, but the boundary nodes 

(and the junction nodes) are only computed using first-order accurate schemes. 

Second-order accuracy for the boundary conditions can be obtained by implement­

ing an appropriate one-sided finite difference scheme (Niebur and Niebur, 1991). For 

example, the sealed end condition dxv(£,t) = 0 can be discretized as 

dxv(£,t) 
—3t>i + 4v2

 — ^3 
2h ' 

and similarly this may be applied to the junction conditions to recover second-order 

accuracy across the whole spatial grid. 
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Appendix B 

Ion Channel Kinetics 

The following tables contain all the information pertaining to the ion channels and 

gating variable kinetics used in this thesis. Table B.l is for the uniform channel model, 

which uses the Hodgkin-Huxley squid giant axon parameters. Table B.2 is for the 

non-uniform channel model, whose non-uniformity comes from an A-type K+ current 

following Connor-Stevens kinetics and consistent with the graded channel distribution 

of (Hoffman et al., 1997). In order to simulate cells with weakly excitable dendrites, 

the model in Table B.3 is based on that of (Migliore et al., 1999) for I^a, IKDK, IKA, 

and /leak, though there have been some modifications to the time constants for lproK 

and Zdist, which was done to obtain a good fit to the original functions without the 

need for defining them piecewise. 
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Table B.l: Uniform channel model and kinetics, which corresponds to the Hodgkin-Huxley 
squid giant axon parameters at 6.3°C (Hodgkin and Huxley, 1952). 

Ionic Current 

Leak 
INO, 

IK 

Gating Var. 

h 

Gating Variables 

m3, h 
n4 

a 

0.1(i>+40) 
l-exp(-0.1(u+40)) 

0.07exp(-(v + 65)/: 
0.01(^+55) 

l-exp(-0.1(i;+55)) 

G(x) (mS/ 

20) 

0.3 
120 
36 

4exp(-

cm2) 

0 
-(y + 

I 
l+exp(0.1(-

| exp( - (u + 

E (mV) 

-54.3 
56 

- 7 7 

65)/18) 

3 5 - t i ) ) 

65)/80) 

r 

l 
a+0 

1 
a+0 

1 
a+0 

Woo 

a 
a+0 

a 
a+0 

a 
a+0 

Table B.2: Non-uniform channel model and kinetics. I^a and IK use Hodgkin-Huxley 
type kinetics, while IA uses Connor-Stevens type kinetics and a spatial distribution of 
conductance based on Hoffman's work. For G(x), x is measured in /j,m from the soma. 
Note that the I A channel kinetics do not have a and (3 functions explicitly defined (Connor 
and Stevens, 1971) (Hoffman et al., 1997). 

Ionic Current Gating Variables G(x) (mS/cm2) E (mV) 

Leak 0.3 - 4 7 
INa m3, h 60 55 
IK n4 20 - 7 2 
IA a3,b f^ (0.2 + 0.002a;) - 7 5 

Gating Var. a f3 r w^ 

m 

n 

i - ^ ( S S S / i o ) 15.2exp(-0.0556(^ + 54.7)) ^ ^ 
0.266exp(-0.05(U + 48)) 1+exp(_^8

+18)/10) ^ S?3 

.-e^Sio) 0.25exp(-0.0125(t, + 55.7)) ^ ^ 

Gating Var. r w^ 

n QfiQO i 1.158 /0.0761exp(0.0314(t.+94.22))\ 1 / , S 

a U.JOOZ •+• 1+exp(o.0497(t)+55.96)) ^ l+exp(0.0346(u+1.17)) J 

h 1 2 4 + 2*Z§ ( l- V 
u ±.z,<± - r i+ e x p(o.0624(v+50)) ^ l+exp(0.0688(t;+53.3)) J 
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Table B.3: Channel model and kinetics that allow weakly excitable dendrites. For G(x), 
x is measured in /im from the soma. The model for IKA is divided into two components, 
proximal and distal, which are denoted IKA,PTOX) and lKA,dist), respectively. Some of the 
gating variables in this model have time constants r that depend on temperature T via 
a so-called Q\Q factor. The temperature is set to T = 35°C to match the value used in 
(Migliore et a l , 1999). 

Ionic Current Gating Variables G(x) (mS/cm2) 

•fleak 

iNa 

^Afdist) 

n 

m3, h, i 

proxi ^prox 

n d i s t , 'dist 

0.3 
32 
10 

[48(1+1/100) x < 100 /Ltm 
10 x > 100 fim 
10 x < 100 fim 
I48(l+x/100) x>100 / im 

E (mV) 

-65 
55 

-90 

-90 

-90 

Gating Var. 

'prox 
"dis t 
'dist 

0.4(v + 30) 
l - exp ( -Vv+30) /7 .2 ) 

0-03(v + 45) 
l - e * p ( - ( u + 4 5 ) / l . 5 ) 
exp(0.45(u + 60)) 

exp(-0.11(i> - 13)) 
exp(-0.038(1.5 + 1 + e x p ( i + 4 0 / 5 ) ) ) ( « - U) 

exp(0.11(t> + 56)) 
exp(-0.038(1.8 + 1 + e x p ( i + 4 o / 5 ) ))(« + 1) 

exp(0.11(K + 56)) 

0.124(u + 30) 
exp ( (u+30) /7 .2 ) - l 

0 . 0 1 ( T J + 4 5 ) 
e * p « v + 4 5 ) / 1 . 5 ) - l 
exp(0.09(i> + 60)) 

exp(-0.08(t/ - 13)) 
exp(-0.038(0.825 + 1 + c x p ^ + 4 0 / 5 ) ))(v - 11) 

exp(-0.038(0.7 + 1 + e x p ( ^ + 4 0 / 5 ) ) ) ( « + 1) 

Gating Var. Qio factor 

771 

/ l 

i 

" D R 

^prox 

tprox 

"d i s t 

'dist 

nn 
0.2 + 

0.5 
a+0 
0.5 

a+0 
3xl04ff 

1 + a 
50,9 
1 + a 
4/3 

1 + a 
27 

l+exp(0 .2 -u /22 ) 
2/3 

1 + a 
u z ^ l+exp(0 .2 -» /22 ) 

a+0 
1 

l+exp((i)+50)/4) 
l+0.5exp((i)+58)/2) 

l+exp((j)+58)/2) 
1 

1 + a 
1 

1 + a 
1 + a 

1 
1 + a 

1 + a 

2 ( T - 2 4 ) / 1 0 

2 ( T - 2 4 ) / 1 0 

5 ( T - 2 4 ) / 1 0 

5 ( T - 2 4 ) / 1 0 
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