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Abstract 

Functional Data Classification and Covariance 

Estimation 

by 

Hongxiao Zhu 

Focusing on the analysis of functional data, the first part of this dissertation 

proposes three statistical models for functional data classification and applies them 

to a real problem of cervical pre-cancer diagnosis; the second part of the dissertation 

discusses covariance estimation of functional data. 

The functional data classification problem is motivated by the analysis of fluores

cence spectroscopy, a type of clinical data used to quantitatively detect early-stage 

cervical cancer. Three statistical models are proposed for different purposes of the 

data analysis. The first one is a Bayesian probit model with variable selection, which 

extracts features from the fluorescence spectroscopy and selects a subset from these 

features for more accurate classification. The second model, designed for the prac

tical purpose of building a more cost-effective device, is a functional generalized lin

ear model with selection of functional predictors. This model selects a subset from 
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the multiple functional predictors through a logistic regression with a grouped Lasso 

penalty. The first two models are appropriate for functional data that are not contam

inated by random effects. However, in our real data, random effects caused by devices 

artifacts are too significant to be ignored. We therefore introduce the third model, 

the Bayesian hierarchical model with functional predictor selection, which extends the 

first two models for this more complex data. Besides retaining high classification ac

curacy, this model is able to select effective functional predictors while adjusting for 

the random effects. 

The second problem focused on by this dissertation is the covariance estimation of 

functional data. We discuss the properties of the covariance operator associated with 

Gaussian measure defined on a separable Hilbert Space and propose a suitable prior 

for Bayesian estimation. The limit of Inverse Wishart distribution as the dimension 

approaches infinity is also discussed. This research provides a new perspective for 

covariance estimation in functional data analysis. 
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Chapter 1 

Introduction and Literature 

Review 

1.1 Introduction 

Statistical theories generally fall into two categories: univariate and multivariate, 

according to the dimensionality of the underlying random variables. For univariate 

theory, the object of interest is a one-dimensional random variable (denoted by X) 

which maps the sample space Q to the real line R, i.e., 

Here, for a given set A, 13(A) represents the cr-field generated by subsets of A. The 

pair (A, B(A)) is a measurable space, and the map X is measurable by the definition 

of random variable. If the random element of interest is more than one dimensional, 

1 
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we use a random vector (denoted by X) instead and the measurable map becomes 

X: (n,B(n)))^(Rm,B(Rm)), 

where E m is a m-dimensional Euclidean space. Statistical analysis for finite dimen

sional random vectors (or random matrices) is called multivariate data analysis (see, 

for example, Muirhead [50]). When m approaches infinity, the random vector becomes 

a random sequence. A more general extension is to treat m as an index variable tak

ing values from some index sets T (which can be uncountable). Then the measurable 

map can be treated as a random function with argument in T. Under this setting, we 

call the observed data, usually in forms of curves and images, "functional data". The 

statistical methods for analyzing functional data are named "functional data analy

sis" (FDA), coined by Ramsay and Dalzell [59]. In many cases, the index set T is a 

dense set such as a temporal or spatial domain, therefore ideally functional data can 

have as high resolution as possible. In this dissertation, we let X(t) be the random 

function indexed by t, t £ T and x(t) be its data realization. Alternatively, Ferraty 

and Vieu [19] call X(t) a functional variable, defined as follows: 

Definition 1.1.1. A random variable is called functional variable if it takes values in 

an infinite dimensional space (or functional space). An observation of the functional 

variable is called a functional data.(Ferraty and Vieu [19]) 

Many real data, such as most images and signals, can be treated as functional 

data. Figure 1.1 shows an example of multivariate data and functional data. Another 

practical example in medical research is shown in Section 1.2. 
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A Two-variate Data Example A Functional Data Example 

Figure 1.1: The left panel is the data plot for the sepal length and width (in 
centimeters) for 150 iris flowers, which is an example of multivariate data. There are 
two measurements,length and width. The right panel is the plot of 39 boys' heights 
measured through age 1 to 18, which is is an example of functional data. 

The research in FDA started in the 1980s. As time goes on, FDA becomes one of 

the most important new statistical methodologies with diverse applications in many 

areas. As a relatively new field, FDA borrows many ideas from non-parametric 

statistics and multivariate data analysis, and adopts techniques from signal/image 

processing, longitudinal data analysis and data mining. Generally speaking, we can 

categorize current statistical methods in FDA literature as follows: 

1. Smoothing and Registration. As preprocessing steps, smoothing and reg

istration techniques help filter out noise (or observation errors) of the original 

data and align them appropriately on their domain. Nonparametric regression 

methods, such as smoothing spline and penalized methods, are usually used 

for smoothing functional data. Registration is usually done by setting up a 
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registration criterion, or using landmarks or warping functions. 

2. Functional Principal Component Analysis (FPCA). As an important 

dimension reduction technique in multivariate analysis, Principal Component 

Analysis (PCA) finds the dominate modes of variation in the data. By changing 

summations to integrations, this technique can also be extended to the func

tional case. 

3. Regression. Many works concerning regression problems in functional data 

have been done, from both frequentist and Bayesian perspectives. It turns out 

that most classical regression models in multivariate analysis, such as multi

variate ANOVA, mixture effects model, generalized linear regression, have their 

analogous version in FDA. 

4. Hypothesis Testing. The topic of hypothesis testing in functional data is 

not as well developed as other FDA methods. The main difficulty lies in the 

assumption of infinite-dimensionality of the functional space. Recently, some 

new methods are proposed on testing whether one group of functional data has 

zero mean, or whether two groups have the same mean function. 

1.2 A Functional Data Example. 

The work in this dissertation is motivated by a series of fluorescence spectroscopy 

data in cancer research. As a special type of functional data, spectroscopy data 
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Figure 1.2: Using fluorescence spectroscopy to detect cervical pre-cancer in vivo. 
This picture is obtained from http://www.eng.ucy.ac.cy/biaolab/Education/tutorials 
[65]. 

contain the spectra of particular lights emitted (or absorbed) by a given material. 

This section gives a brief introduction to the fluorescence spectroscopy data used in 

cervical pre-cancer diagnosis. 

Cervical cancer is known to be one of the leading causes of cancer deaths in 

women. Early-stage diagnosis using automatic, low cost screening devices plays an 

important role in the prevention of cervical cancer. Among the existing diagnosis 

tools, fluorescence spectroscopy is a promising technology to quantitatively detect 

cervical pre-cancer in a non-invasive way [57]. Figure 1.2 illustrates the mechanism of 

measuring fluorescence spectroscopy in vivo. This technology works as follows: First, 

an excitation light at a fixed wavelength illuminates the cervical tissue. During illu

mination, the endogenous fluorescent molecules in tissue absorb the excitation light 

and emit fluorescent light. The emitted light is then captured by an optical detector 

http://www.eng.ucy.ac.cy/biaolab/Education/tutorials
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Spectral Curves at 8 Different Excitations Excitation-Emission Spectra 
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Figure 1.3: Left panel: spectral curves at 8 different excitation wavelengths ranging 
from 330nm to 400nra. Right panel: heat plot of an excitation-emission matrix 
(EEM). 

which produces the corresponding spectrum as a smooth curve. By adjusting the 

wavelength of the excitation light, the detector records multiple spectral curves. In 

each measurement, the excitation light is varied at 16 different excitation wavelengths, 

ranging from 330 nm to 480 nm with increments of 10 nm. This produces 16 spectral 

curves for each measurement. In each curve, the fluorescence intensities are recorded 

at emission wavelengths ranging between 385 nm and 700 nm. Through data prepro

cessing, the curves are truncated so that some intensity points at the smallest and 

largest emission wavelengths are removed. 

Figure 1.3 illustrates one observation. The left panel shows the first 8 of the 

total 16 spectral curves in this observation. The right panel shows a heat plot of 

the spectral intensities, by stacking up all the 16 spectral curves in the order of their 

excitation wavelength. We call such a set of fluorescence spectroscopy curves an 
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Disease Level 
Cancer 
CIS 
CIN III 
CINII 
CIN I 
HPV 
Atpia 
Normal 

Discription 
Evidence of cancer 
Carcinoma in situ 
Severe cervical intraepithelia neoplasia 
Moderate cervical intraepithelia neoplasia 
Mild cervical intraepithelia neoplasia 
HPV associatied changes 
Atpia 
No evidence of disease 

Diagnosis 

Diseased 

Normal 

Table 1.1: The diagnosis levels and the discription 

excitation-emission matrix (EEM). 

The data considered in this dissertation contain 2414 measurements taken from 

1006 patients. Each patient has 1 or more (up to 6) sites measured and there exists 

repeated measurements (although not for every patient). All measurements come 

from two devices (called Fast EEM2 and Fast EEM3), four probes and three clinics 

(MDACC, LB J and BCCA). The colposcopic tissue type of the measurements can 

be either squamous or columnar. The menopausal status of the patients can be pre-

peri- and post-menopausal. After pre-processing such as background correction and 

smoothing, the data were carefully split into training set and test set by balancing 

various factors. The proportion of diseased cases in the training and test sets are 10% 

and 9%, respectively. 

The goal of our study is to discriminate normal from diseased measurements based 

on the EEM. Table 1.1 lists the detailed disease categories provided by pathologists 

in a progressive order. In our study, we consider all cases from CIN II or worse as 

diseased, and cases from CIN I or better as normal. 
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Figure 1.4: The heat plots for the median values of all normal-case EEMs versus the 
median values of all disease-case EEMs. 

Figure 1.4 shows the heat plots of the median values of all normal-case EEMs 

versus those of all disease-case EEMs. Differences between the two plots are hard to 

be detected by naked eyes, although the normal-case EEM seems to have higher peak 

than the diseased-case EEM. 

1.3 Literature Review 

Much attention has been given to FDA since the 1980s. Early works include Ramsay 

[58], Ramsay and Dalzell [59] and Rice and Silverman [64]. More recently, Ramsay and 

Silverman ([62],[60]) did a systematic survey and addressed some applications issues 

[61]. As summarized in Section 1.1, there are mainly four areas of FDA that have 

received considerable attentions. Since this dissertation focuses on classification and 

covariance estimation, we will only review the literature related to such topics, which 
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include functional principal component analysis, regression and covariance estimation. 

Other topics, like smoothing and registration of functional data, are well presented 

in Chapter 3 — 5 and Chapter 7 of Ramsay and Silverman [62]; and one can find a 

detailed review of hypothesis testing of FDA in Chapter 4 of Lee [36]. 

1.3.1 Functional Principal Component Analysis 

As one of the basic and widely used techniques proposed for FDA, Functional principal 

component analysis (FPCA) is a direct extension of multivariate principal component 

analysis(PCA). FPCA was first introduced by Ramsay ([58], [59]), Rice and Silverman 

[64], and was studied in detail by Ramsay and Silverman ([62],[60]). We briefly 

summarize these works in this section. Later chapters will use compatible notations. 

In multivariate data analysis, principal components are computed by eigenvalue 

decomposition of the covariance matrix. Let X be a multivariate data matrix of size 

nxp, its sample covariance V can be computed by V = ^XTX. The first eigenvector 

of X (denote 4>\) can be obtained by 

4>\ = argmax 4>TV(j), 

which is equivalent to solving for the largest eigenvalue A and the corresponding 

eigenvector 0 from 

V<j> = \(j). (1.1) 

The first principal component scores can thus be obtained by XT4>\- Solving Equa

tion (1.1) subject to the condition (j^^i = 0 gives the second eigenvector. Similarly, 
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one can find out all eigenvectors. 

In the functional data case, one can define the covariance operator V by 

V'4>(s) = I v(s,t)(f>(t)dt, 

where v(s,t) = l/n'^2iXi(s)xi(t) is the sample covariance function and <f>(-) is the 

eigenfunction. The largest eigenvalue p and the corresponding eigenfunction <f>(-) can 

be solved from 

V<j> = fxj>t (1.2) 

which is of the same form as Equation (1.1) except that V and (f> are defined differently. 

The first principal component score for Xi(t) can be computed from {xi(t),(f)i(t)). 

Similar to the multivariate case, the second and later eigenfunctions can be obtained 

by adding the orthogonal constraint to Equation (1.2). To solve Equation (1.2), one 

can either discretize the Zj(£)'s on a finite grid, or expand them on another set of 

orthonormal basis. 

In order to obtain eigenfunctions with sufficient smoothness, Rice and Silverman 

introduces a smoothed PCA method by adding a roughness penalty [64]. In their 

paper, the first eigenfunction is obtained by 

<fii = argmax(0, (V — \D)4>), 
Il0ll=i 

where D is a roughening operator taking form of FTF, where F is a second-order dif

ferencing operator. The subsequent eigenfunctions are obtained by adding additional 
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orthogonal conditions. The estimation of smoothed eigenfunctions is obtained by-

finding the eigenfunctions of V — \D, where A is chosen by cross-validation. Later on, 

this method was improved in Silverman [68], where the first eigenfunction is solved 

by 

4>i = argmax • 
|2 + A[<M' 

and [0, <j>] = ${<t)"(t))2dt. 

Following Silverman's smoothed FPCA, more theoretical results of FPCA have 

been investigated. Ocafia, Aguilera and Valderrama [54] assume Hilbert valued ran

dom variables and established equivalences between FPCA with a proposed inner 

product in the data space and certain FPCA with a given well-suited inner product. 

They also extended Silverman's method to a more general framework based on Hilbert 

valued random variables. Cardot [12] proposed a non-parametric conditional FPCA 

method and provided some consistency properties. Hall and Vial [29] studied the 

extrema of empirical principal component functions and compared them with those 

of the true principal component functions. They found that the empirical principal 

component functions can hardly distinguish a "shoulder" in a curve from a small 

bump. So they suggest a bootstrap method to assess the strength of the extrema. 

More properties of FPCA were discussed by Hall and Hosseini-Nasab [27], where they 

studied properties of FPCA through stochastic expansions. Their work demonstrated 

the fact that the properties of eigenfunction estimations are affected by the spacing 

among eigenvalues. They also propose bootstrap methods to construct simultaneous 
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confidence regions for eigenvalues and eigenvectors. 

The sparsity of functional data has also caught much attention. James, Hastie 

and Sugar [33] introduce a reduced rank mixed effect model to estimate the principal 

component functions when data are irregular and sparse. Hall, Muller and Wang 

[28] focus on the effect of the sampling plan to the estimation of principal compo

nent functions. They indicate that the sparsity of the functional data can affect the 

convergence rates for the estimated eigenfunctions, but not for the estimated eigen

values. Yao and Lee [80] propose penalized spline models for sparse functional data or 

longitudinal data. They developed an iterative procedure to reduce the dependence 

between the measurements within each subject (the dependence between the discrete 

points measured on the same curve). 

Besides these theoretical works, many others aim at applying FPCA to solve a 

broad range of functional data problems, such as Grambsch et al. [25], James [32], 

Chiou, Muller and Wang [15], Park [55]. 

1.3.2 Functional Data Regression 

To extend multivariate regression to the functional case, the most straightforward way 

is by using the point-wise models, which is similar to the varying coefficient model 

or the contemporary model (see Hastie and Tibshirani [31] and Staniswalis and Lee 

[70]). Let Yi(t) be the functional responses and Xi(t) be the covariates, i = 1 , . . . ,n. 
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Suppose that the point-wise model takes form 

Vi{t) = a(t) + Xi(t)(3(t) + 6i(t). 

Cardot, Ferraty and Sarda [13], James [32] and Malfait et al. [41] considered the case 

where the the response values at time t are explained by the predictor curves Xi(s) 

through: 

yi(t) = a(t) + / Xi(s)P(s, t)ds + ei(t), 
JTi 

where T* = [0,t] or [t-S,t]. 

In many cases, regression with functional predictors and scalar responses is of 

particular interest. James [32] extended the generalized linear model (GLM) using 

spline basis to include functional predictors. Miiller and Stadtmiiller [51] proposed 

a similar method based on truncated Karhunen-Loeve expansion and proved some 

asymptotic properties of the estimation. To summarize the basic structure, let us 

assume that the functional generalized linear model takes form 

Y = g(a+ fp(t)X{t)dt) + e, 

where Y is a univariate response variable, X(t) is the functional predictor, and g(-) 

is an appropriately defined link function. Cardot and Sarda [14] analyzed the link 

between a scalar response and a functional predictor in a regression setting by means 

of a functional GLM. Besse et al.[6] also discussed several estimation methods under 

functional GLM setting. Li and Hsing [38] investigated the convergence rate of the 

estimation of the regression weight function in a functional linear regression model. 
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Another interesting model is the functional analysis of variance (FANOVA), in 

which functional responses are assumed. The predictors are usually real or dummy 

variables. The FANOVA model can be written as 

Yu(t) = fjt(t) + ai(t) + eii(t), 

where Yu is the zth observation in group I, n(t) is the grand mean and a/(i) is the 

effect of group I such that Yli a(t) = 0 for all t. This model can be written in a more 

general form as 

y(t) = Z(3(t) + <t), 

where Z is a design matrix and (3(t) is a vector of regression functions. Here both 

y(t) and e(t) can be vector of functions. Detailed fitting procedures can be found 

in Ramsay and Silverman [60]. Cardot[ll] proposed a nonparametric estimator of 

regression function when the predictor is real but the response is functional. 

From Bayesian perspectives, Morris et al. applied discrete wavelet transform 

(DWT) to the modeling of hierarchical functional data [49]. Morris and Carroll [48] 

extended linear mixed model to functional mixed model, which is given by 

Y(t)=XB(t) + ZU(t) + E(t), 

where Y(t) is a vector of N functional responses and B(t) is a p—vector of fixed 

effect functions associated with the N x p design matrix X. U(t) is a m—vector of 

random-effect functions associated with the N xm design matrix Z. E(t) is a vector 

of error process. The above model is transformed to wavelet domain through DWT, 



15 

where Bayesian methods are used to estimate the regression parameters. A similar 

model was applied to the accelerometer data in Morris et al. [46], [47]. McKeague 

[42] used Bayesian nonparametric regression and time warping to solve the signature 

verification problem. Behseta et al. [5] discussed some methods to account for esti

mation variation using Bayesian hierarchical models. More recent works on Bayesian 

functional data regression can be found in [10], [71], etc. 

1.3.3 Functional Data Covariance Estimation 

The most popular way of estimating the covariance of functional data is through 

orthogonal expansions, that is, write the covariance function as a weighted linear 

combination of eigenvalues and eigenfunctions: 

k 

and the estimation methods are the same as in FPCA in Section 1.3.1. Smoothing 

steps are usually introduced when estimating the eigenfunctions, such as the penalized 

method in Rice and Silverman [64] and the scatter-plot smoothing in Yao et al. [79]. 

Alternatively, Lee [37] estimated the covariance matrix through sample estimates on 

a finite grid. They then smoothed the eigenvectors of the covariance matrix to obtain 

the eigenfunctions. A summary of these works can be found in the dissertation of Lee 

[36]. 

Yao [78] applied kernel method in Longitudinal data analysis to estimate the 

mean and covariance function of functional data, based on the Nadaraya-Waston 
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estimator or local linear estimator. He also derived the asymptotic distribution of 

such nonparametric estimator for functional data contaminated with measurement 

error. 

1.4 Outline of the Dissertation 

We introduce some background knowledge in Chapter 2. In Chapter 3, a Bayesian 

probit model with variable selection is proposed for functional data classification and 

applied to the fluorescence spectroscopy data. To select a subset of the multiple 

functional predictors for more cost-effective classification, we propose a functional 

generalized linear model with a grouped-lasso penalty in Chapter 4, from a frequentist 

point of view. Chapter 5 extends the Bayesian probit model in Chapter 3 to account 

for random effects and to select functional predictors. Chapter 6 discusses covariance 

estimation of functional data. Further conclusions and discussions are put in Chapter 

7. 



Chapter 2 

Background 

2.1 Convergence of Markov Chain Monte Carlo 

Markov Chain Monte Carlo (MCMC) originated in statistical physics, marked by a 

paper of Metropolis et al. [44] in 1953. Since then, MCMC has become increasingly 

popular in Bayesian modeling. In this section, we review some theoretical background 

of MCMC, especially on the convergence of Gibbs and Metropolis algorithms. The 

review is based mainly on Tierney's work [73], and partly on Professor Dennis D. 

Cox's class notes for Stochastic Process (taught in Spring, 2008). We only consider 

Markov Chains with continuous state space. 

17 
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2.1.1 General Definitions and Results 

Let 7r be the posterior distribution of interest. Suppose n is supported on E C Mfe and 

is absolutely continuous with respect to a cr-finite measure fj,, i.e., Tr(dx) = n{x)n(dx). 

The main purpose of MCMC algorithms is to generate dependent samples (Markov 

chain) Xn, n = 1, 2 , . . . with equilibrium distribution IT. In other words, we want Xn 

to converge in distribution to n as n increases. 

Assume that a time-homogeneous Markov chain with invariant distribution n has 

transition kernel defined by 

P(Xn, A) = Pr{Xn+1 G A\X0, . . . , X„} = Pr{Xn+1 G A\Xn} = Pr{X1 G A\X0} 

for all measurable sets A e S, where £ is the a-field generated by E. n is called 

an invariant distribution with respect to P(-,A) if n(A) — f P(x,A)n(dx). The 

conditional distribution of Xn given XQ is written as 

Pn(X0,A) = Pr{XneA\X0}, 

where Pn denotes the nth. iterate of the kernel P. A formal definition of the transition 

kernel is stated in Definition 2.1.1. 

Definition 2.1.1. (Transition Kernel) Let £ be a countably generated a-algebra 

on E. A (Markov) transition kernel on (E, £) is a map P : E x £ —* [0,1] such that: 

(1) VA G £, the function P(-,A) is measurable; 

(2) Vx G E, the function P(x, •) is a probability measure on (E,£). 
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For a probability measure v, a transition kernel P on (E,£) and a real-valued 

^-measurable function h, define uP, Ph and vh by 

(uP)(A) = J P(x,A)u(dx), (Ph)(x) = J h(y)P(x,dy), vh = Jh(y)v(dy), 

Vrr G E and A £ £. In other words, P(-, •) is an operator that plays two roles. For 

a probability measure v on (E,£), vP is a probability measure. vP can be thought 

of as the distribution of Xn+i when Xn ~ v. For a bounded function h : E —> R, Ph 

can be thought of as a conditional expectation: (Ph)(x) = E[h(Xn+i)\Xn = x\. A 

non-negative real-valued function h is called harmonic for P if h = Ph. 

Definition 2.1.2. (Irreducible) A transition kernel P on (E,£) is n-irreducible if 

ir(E) > 0 and for each x E E and each A & £ with TT(A) > 0, there exists an integer 

n = n(x, A) > 1 such that Pn(x, A) > 0. 

A Markov chain with invariant distribution n is irreducible if, for any initial state, it 

has positive probability of entering any set to which IT assigns positive probability. 

Definition 2.1.3. (Periodic) A n-irreducible transition kernel P is periodic if there 

exists an integer d>2 and a sequence {E0, E\,..., E^-i} of d nonempty disjoint sets 

in £ such that for all i = 1 , . . . , d — 1 and all x G Ei} 

P(x, Ej) = 1 for j = i + l(mod) d. 

In this case, we call C = (Ji=o -^ a d-cycle. If P is not periodic, we call it aperiodic. 

In other words, a chain is periodic if there are portions of the state space it can only 

visit at certain regularly spaced times. 
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Definition 2.1.4. (Recurrence) A n-irreducible chain {Xn} with invariant distri

bution ir is recurrent if for each B with 7r(B) > 0, 

Px{Xn e B i.o.} > 0 for all x, 

Px{Xn € B i.o.} = 1 for ix-almost all x. 

The chain is Harris recurrent if Px{Xn E B i.o.} = 1 for all x. 

Here .PE{>1} denotes the probability that event A happens when a Markov chain with 

transition kernel P starts at x. The notation {An i.o.} means that sequence An occurs 

infinitely often, i.e., Yl ^-An
 = °°- The chain is called positive recurrent if the total 

mass of its invariant measure is finite; otherwise it is null recurrent (Note here we 

assume the chain is 7r-irreducible and 7r-invariant). 

Theorem 2.1.5 summarizes the condition for the convergence of a Markov Chain. 

The total variation norm used there is defined by 

\\fi\\ = supn(A) - mf u(A) 
AeS A££ 

for a bounded signed measure fi on (E, £). 

Theorem 2.1.5. Suppose P is n-irreducible and nP = IT. Then P is positive recur

rent and 7r is the unique invariant distribution of P. If P is also aperiodic, then for 

iT-almost all x, 

HF'foO-Trll-O, 

with 11 • 11 denoting the total variation distance. If P is Harris recurrent, then the 

convergence occurs at all x. [73] 
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In fact, the assumptions in Theorem 2.1.5 are essentially necessary and sufficient: if 

| |Pn(x, •)— 7r|| —> 0, for all x, then the chain is 7r-irreducible, aperiodic, positive Harris 

recurrent and has invariant distribution IT. 

In practice, given a Markov chain, we need to check the following rules to guarantee 

the convergence: 

Rule 1. Check that n is a proper probability measure. 

Rule 2. Check TTP = TT. 

Rule 3. Check that P(-, •) is irreducible. 

Rule 4. Check that P(-, •) is aperiodic. 

Rule 5. Check Harris recurrence (optional). 

Rule 6. Convergence diagnostics. 

For Rule 6, several methods can be used to test the convergence of a Markov 

Chain (see, for example, Gamerman and Lopes [20]). Rule 5 is usually optional, but 

in many situations, it can be verified by the following results stated in Theorem 2.1.6 

and Corollary 2.1.7. 

Theorem 2.1.6. If P is recurrent, then it is Harris recurrent if and only if every 

bounded harmonic function is a constant. [73] 

Corollary 2.1.7. Suppose P is irreducible and irP = n. If P(x,-) is absolutely 

continuous with respect to TT for all x, then P is Harris recurrent. [73] 
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2.1.2 Gibbs Sampling 

Gibbs sampler constructs a Markov chain with invariant distribution -K using condi

tioning. We give a simple definition for Gibbs sampler as in Gamerman and Lopes 

[20]. Let x — ( x i , . . . , xd)
T and x ~ n. Each component of x can be a scalar or a 

vector. Assume that all full conditional distributions iTi(xi\x-i), i = 1 , . . . , d are avail

able, i.e., samples can be drawn from the conditional distributions. Here X-i denotes 

the vector formed by knocking out Xi from 

A Gibbs sampler includes the following steps: 

Step 1. Set initial value x^°\ 

Step 2. Based on current sample x, obtain a new sample x through successive 

generations of values: 

Xi ~ •Ki(Xi\x2,...,Xd), 

x2 ~ 7r2(x2\x1,x3,...,xd), 

Xd ~ 'Trd(xd\xi,...,xd-i); 

Step 3. Repeat step 2 until convergence is reached. 

Example 2.1.8. Consider E = R2. x £ E can be written as x = (xi, x2)
T, where xi 

and x2 represents the two coordinates of x. Assume x ~ n, with 

TT(X) OC Cexp < —-{x\ + x\x\ + x\) > , 
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where C is a constant. From here we can easily find that the conditional density 

-KI{XI\X2) oc c(x2) exp{-^xj(x2 + 1)} and ir2(x2\xi) oc c(xi) exp{-|x^(a;f + 1)}, for 

c(xi) and c(x2) functions of x\ and x2, respectively. This indicates that xi\x2 ~ 

iV (0, TT~^), and x2\x\ ~ N (0 , 'TTS )• A Gibbs sampler can thus be constructed as 

follows: 

Step 1. Initialize x. 

Step 2. For current value of x, obtain a new sample x through successive genera

tions of values 

xi\x2 ~ N(0,——2), 
1 -\- x2 

x2\Xl ~ j V ( 0 > T - ^ ) . 

Step 3. Repeat step 2 until convergence is reached. 

We now check Rule 1 to Rule 5 for the convergence of this Gibbs sampler. We first 

find the transition kernel P(x, A) = Pr{x € A\x} with the corresponding transition 

densityn{x\x) = -K((XI,X2)\(XI,X2)) = n2(x2\xi)'Ki(xi\x2). 

Rule 1 Since TT(X) OC Cexp{—\{x\ + x\x\ + x\)} < Cexp{—\{x\ + x\)}, and 

Cexp{—\{x\ + x\)} is integrable, hence n is a proper probability measure. 
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Rule 2 Check -KP = -K. 

dx\d%2 

dx\dx2 

dx\dx2 

7rP(A) = / P(x, A)n(dx) = / / Tr(x\x)n(x)dxdx 
JE JE J A 

= / / TT2(X2\xi)ni(xi\x2)7r(xi,X2)dXidX2dXidX2 

E A 

= // TT2(x2\xi)ni(xi\x2) ( 7r(xi,x2)dx1)dx2 

JJ UK \JR J 
A 

= 7r2(:Z2|£i)7ri(£i M ^ ^ ) ^ 
J J Urn. 
A 

= // 7T2(^2|5i) f / 7ri(x1\x2)n(x2)dx2 

A 

= // [7r2(x2|5i)Ti(5i)]dxidx2 
A 

= [ ir(x)dx = ir(A),VAe£. 
J A 

Rule 3 Check that P(-, •) is irreducible. It is easy to see that that ir(x) is fully 

supported on R2, thus E = R2. We then have Vx e E, VA e S with ir(A) > 0, 

P(x,A) = Pr{(x e A\x)} > 0, 

hence P(-,-) is irreducible by definition. 

Rule 4 Check that P(-, •) is aperiodic. From Rule 3, the chain can get anywhere 

starting from any x in one-step. Therefore P(-,-) is aperiodic. 

Rule 5 Check Harris recurrent. Since TT(X\X) = "^2(^2(^1)^1 (̂ 11^2) and P(x, •) is 

absolutely continuous with respect to n, Harris recurrent follows from Corollary 2.1.7. 

Therefore by Theorem 2.1.5, the Gibbs sampler constructed here converges to an 

equilibrium distribution n in total variation, and the convergence occurs for any start

ing values x £ R2. 
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2.1.3 Metropolis Sampling 

Assume that ir is absolute continuous with respect to \i and let Q be a transition 

kernel of the form 

Q(x,dy) = q(x,y)n(dy). 

Let E+ = {x : n(x) > 0} and assume that Q(x,E+) = 1 for x 0 E+. Also assume 

that 7r is not concentrated on a single point. For a given Xn = x, we propose a 

candidate value Y = y for the next point Xn+\ from the distribution Q(x, •), and 

accept it with probability 

a{x, y) = mm < r, 1 } . 

{n(x)q(x,y) J 

Otherwise, the candidate is rejected and the chain remains at Xn+i = x. 

If we define the off-diagonal density of a Metropolis kernel as 

p(x,y) = q(x,y)a(x,y)l{x^y}, 

and set r(x) = 1 — f p(x, y)dy, then the Metropolis kernel P can be written as 

P(x, dy) = p(x, y)n(dy) + r(x)5x(dy), (2.1) 

where 5X denotes a point mass at x. The value r(x) is the probability that the 

algorithm remains at x. 

Proposition 2.1.9. For the Metropolis kernel defined above, we have 

n(x)p(x,y) = n(y)p(y,x), (2.2) 

which is called reversibility condition. 
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Proof. If x = y, then p(x,y) = 0, both sides equal 0. If x ^ y and n(y)q(y,x) > 

7r(x)q(x, y), we have a(x, y) = 1. Therefore the left hand side(LHS) of Equation (2.2) 

is 

LHS = n(x)p(x, y) = ir(x)q(x, y)a(x, y) = n(x)q(x, y). 

The right hand side(RHS) of Equation (2.2) is 

RHS = ir(y)p(y,x) = n(y)q(y,x)a(y,x) = n(y)q(y,x), . , ' = n(x)q(x,y). 

Therefore LHS=RHS, the equality holds. By symmetry, the case of n(y)q(y, x) < 

ir(x)q(x,y) is obvious. • 

Proposition 2.1.10. For the Metropolis kernel defined above, we have irP = ir, hence 

n is an invariant distribution for P. 

Proof For all A G £, we have P(x,A) = fAp(x,y)n(dy) +r(x)8x(A) by (2.1) and 

TTP(A) = P(x,A)n(dx) 

= / / P{x,y)v>{dy) n(x)iJ,(dx) + r(x)Sx(A)n(x)fj,(dx) 

fji(dy) + / r(x)ir(x)fj,(dx) 
J A 

H(dy) + / r(x)n(x)fi(dx) 
J A 

= / P{x,y)Tr{x)n{dx) 

= / P(y,x)ir{y)fi(dx) 

= (l-r(y))ir(y)p,(dy)+ / r(x)n(x)n(dx) 
J A J A 

= I ir(y)fi(dy) = ir(A). 
J A 

u 
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For the Metropolis kernel P to be irreducible, it is necessary that Q is irreducible. 

But this is not a sufficient condition because irreducibility of P depends on both Q 

and 7T. If P is irreducible and i:{{x : r(x) > 0}) > 0, then the Metropolis kernel is 

aperiodic. [73] 

Corollary 2.1.11. Suppose P is a n-irreducible Metropolis kernel. Then P is Harris 

recurrent. [73] 

The Metropolis sampler is very general in the sense that there exists different 

choices for the "proposal" distribution q(x,y). Tierney introduced four types of 

chains: random walk chains, independence chains, rejection sampling chains and 

grid based chains [73]. One can also combine different sampling algorithms to form a 

hybrid algorithm. More advanced algorithms can be found in Liu [40]. 

2.2 Bayesian Variable Selection 

As a type of model selection method, Bayesian variable selection (BVS) has received 

much attention in recent years (see, for example, Chipman, George and McCulloch 

[16], Clyde and George [17] for literature reviews on this topic). In this section, we 

summarize the basic scheme of Bayesian variable selection for normal linear models 

based on the work of George and McCulloch ([21],[22]). 

Given a dependent variable Y and p predictor variables {Xi,... ,XP}, a multiple 
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linear regression model takes the form 

Y = p0+X1p1 + ...+Xp/3p + e, (2.3) 

where e ~ iV(0, a2). Here p can be large (e.g., larger than the number of observations). 

The purpose of variable selection is to find a subset of the p predictors which can 

"best" explain the response Y. This often happens in the case when some predictors 

in {Xi,..., Xp} are redundant and a parsimonious model is sought. There are totally 

2P choices for such a subset. When p is moderate (e.g., less than 20), one can go 

through all the possible choices and determine the best subset based on some selection 

criteria such as SSE, adjusted R2, Cp, AIC, BIC, etc. (see, for example, Kutner et 

al. [35], Page 353-360). When p is large, however, it becomes unrealistic to compute 

the criteria for all possible models. Therefore it becomes necessary to develop some 

efficient computational algorithms to search for the best subset. There are some 

traditional searching methods such as forward or backward selection (details can be 

found in Miller ([45], Page 42-46). From a Bayesian point of view, this problem can 

be solved by formulating a hierarchical mixture prior to the regression coefficients, 

which is called Bayesian variable selection (BVS). 

The BVS method introduces a hyper-parameter r to the priors of /?*,« = 1, . . . ,p, 

where r = (TX, . . . , r p ) T . Each component of r takes values either 1 or 0, indicating 

whether the corresponding regression coefficient is included in the subset. Posterior 

inferences of r then help to decide the best subset of the predictor variables. The 

prior distribution of $ is usually set to be a mixture normal distribution controlled 
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Figure 2.1: The plot of normal densities with relatively large (1) and small (0.1) 

variances. 

by r. For example, the mixture normal prior can be 

Piln ~ TiN(0,vlJ + (1 - Ti)N(0,vl), (2.4) 

where vu and ?% are nonnegative parameters, and vu is far from zero but voi is close 

to zero, i.e., vu » voi > 0. Usually we set u^'s and i>0i's to be constant for all 

index i. The prior (2.4) is actually a normal distribution with variance either large 

or close to zero depending on the value of Tj. When T{ = 0, $ has a normal prior 

with small variance v^, and since v^ is close to zero, $ can be a priori excluded from 

the subset. Figure 2.1 shows the plot of two normal densities, one with relatively 

large (1) variance and the other with small (0.1) variance. One could also introduce 
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correlations between /Vs by letting f3 = (Pi,... ,PP)T and write priors for f3 as 

P\T~N(Q,DTRTDT), (2.5) 

where DT = diag(tti, . . . , up) with Wj = TiVu+(l —Ti)v0i, and RT is the prior correlation 

matrix. T; is usually set to have a hyper-prior of independent Bernoulli^). The prior 

for Po can be normal or non-informative (i.e., rc(Po) oc 1). The prior for a2 is often 

chosen to be the conjugate prior of the normal likelihood, i.e., Inverse-Gamma(<ii,ca

using Bayes theorem, the posterior distribution corresponding to the above prior 

settings can be determined as: 

7r(r, fa, P, a2\y) oc ir(y\r, p0, P, a2)n(p0)n(p\r)7r(r)7r(a2). (2.6) 

It is always possible to integrate out Po, P and a2 from (2.6) to obtain the marginal 

posterior ix{r\y). MCMC algorithms can thus be designed to obtain the posterior 

samples of r based on n(r\y) or 7r(r, /30, P, <?2\y), which will be discussed later in this 

section. 

As a modification of the mixture normal prior in (2.4), we can let vQi = 0 so the 

prior for Pi becomes 

Piln ~TiiV(0, vl) + (1-T i )5 0 , (2.7) 

where £0 is a point mass at zero. This prior is different from (2.4) in that when Tj = 0, 

Pi follows a degenerate distribution (constant), hence the joint prior 7T(P\T) in (2.5) 

has singular covariance. In such a setting, we usually replace P by PT, where Pr is a 
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sub-vector of p formed by removing the zero components of f3. The prior in (2.5) is 

then reduced to 

pT\T~N(0,DlTRlTDlT), (2.8) 

With this prior, the posterior distribution can be derived similarly as in (2.6). 

The prior correlation R? in (2.5) can be chosen to be an identity matrix or a 

so called g-prior Ft,- oc (XTX)~1, where X is a n x p design matrix when there 

are n observations. The ith row of X is (Xa,... ,Xip). In case of the (3T prior in 

(2.8), the g-prior for R\T takes the form RiT oc (X%XT)~l, where XT is formulated by 

removing the columns of X with zero coefficients (i.e., columns that the corresponding 

r components are 0). 

The MCMC algorithm plays an important role in posterior inference. In case that 

one can integrate out PQ, /3 and a2 from the joint posterior to obtain the marginal 

posterior n(r\y), several algorithms are available to sample r from n(r\y), including: 

1. Gibbs Sampling. A Gibbs sampling can be used to update r component-

wisely. For each component Tj, compute the posterior odds 

7r(7i=l,T( i ) |y) 
di~~i n i~T> ^ - 9 J 

n(Ti = Q,T{i)\y) 

where T(j) = (TI, . . . ,Ti-i,ri+i,...', rp). Using this ratio, we can compute the 

posterior probability of Tj = 1 (i.e., 0j/(l + #»)) and sample 7$ based on this 

probability. Tj can be updated in either a fixed or random order. It is also 

feasible to update components of r in groups rather than one by one. 
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2. Metropolis-Hastings. Metropolis-Hastings is another choice to update r. 

We first generate a candidate sample f from a transition kernel (a proposal 

distribution) / ( f | r ) , then update r by f with probability 

m t o { ^ ) ^ , l } . (2.10) 
*(T\y) f(r\T) 

For convenience, the transition kernel can be chosen to be symmetric so that 

the / ( r | f ) term and f(f\r) term in the proposal ratio in (2.10) are canceled. 

For example, the candidate sample f can be generated by one of the following 

operations to form a symmetric transition kernel: 

(a) Randomly change one component of r . 

(b) Randomly change d components of r with a pre-specified probability qj. 

(c) With probability 0, randomly change one component of r; with probability 

1 — 0, randomly choose two components with value 0 and 1 and swap them 

([9], Page 524). 

More adaptive sampling schemes can be found in Nott and Kohn [52]. Note 

that the MCMC algorithm will be different if using priors in (2.7) rather than 

that in (2.4). When using the point mass prior (2.7) to compute the posterior 

density n(r\y), the dimension of the design matrix X need to be adjusted in 

each MCMC iteration according the value of r, i.e., for each proposed value f, 

the marginal posterior n(f\y) need to be computed by plugging in Xf rather 

than X. This may speed up the computation since only part of the data are 
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used in most iterations. When using the mixture normal priors in forms of (2.4), 

we do not have to adjust for the size of X. 

When the parameters j30, (3 or a2 can not be integrated out from the joint 

posterior, such as in the case of generalized linear models (see, for example, 

Nott [53]), we need to adopt more complex MCMC algorithm for posterior 

sampling. In such a case, if using point mass prior, the dimension of (3 varies 

when the number of "1" components in r changes. More advanced algorithms 

such as reversible jump MCMC can be applied for better mixing of the posterior 

samples. 



Chapter 3 

A Bayesian Probit Model with 

Variable Selection for Functional 

Da ta Classification 

3.1 Introduction 

In this chapter, we propose a Bayesian variable selection (BVS) model to perform bi

nary classification based on multiple functional predictors. We use a latent variable to 

connect the functional predictors with the binary response. Priors for the coefficient 

functions are set to be Gaussian processes which depend on a hyper-parameter that 

enables variable selection. An orthonormal basis is used to decompose the covariance 

function of the Gaussian process priors and to represent the functional predictors and 

34 
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the coefficient functions by their basis coefficients. Posterior inference is implemented 

by function approximation with truncated orthonormal basis expansion. For poste

rior sampling, we suggest a Hybrid Gibbs/Metropolis-Hasting sampler. Simulations 

show that this model produces accurate variable selection and good classification re

sults. Application to the EEM measurements of fluorescence spectroscopy data gives 

improved classification as compared to several other classification methods. 

3.2 The Proposed Model 

Suppose we observe n i.i.d. observations, each contains J functions. For i = l,...,n 

and j — 1 , . . . , J, denote Xij(t) as the jfth function observed from the ith observation. 

We assume Xij(t) G L2(Tj) for a compact domain Tj. Let the response y, be a binary 

class that the 2th observation belongs to. Here y^s are assumed to be condition

ally independent given the functional predictors Xij(t),j = 1 , . . . , J. Similar to the 

method used in James [32] as well as Miiller and Stadtmuller [51], a generalized func

tional linear regression model for multiple functional predictors can be constructed 

by associating a univariate latent variable Zi with yi through 

{ 1 if Zi < 0, 

0 if Zi > 0. 

where 

z% = A> + V ! / Xij(s)Pj(s)ds + ei, (3.1) 
3=1 jTi 
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and €i ~ N(0,1) determines a probit link between yi and Zi. We assume 0j(t) G L2(Tj) 

for j = 1 , . . . , J. Based on the above model setting, standard functional regression 

estimation paradigms, such as the EM algorithm in James [32], or the estimating 

equation method in Miiller & Stadtmuller [51], can be performed to estimate the 

intercept PQ and the coefficient functions /?,•(£)'s. However, these standard estimating 

paradigms are designed for cases with J = 1. It is not clear whether they can be ex

tended to models with multiple functional predictors. Also, when the Xij(tys contain 

redundant information, the efficiency of the model will be reduced. This motivates us 

to consider the variable selection method. Due to the infinite dimensionality of func

tional data, point-wise selection from the predictors xij(t) is not a practical choice. 

A simple method is to discretize Xij(t) on a finite grid and transform the problem to 

a multivariate model, but this ignores the correlation between contiguous points on 

the grid. In this paper, we consider variable selection in the orthogonally transformed 

domain. 
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3.3 Priors 

Based on the model proposed in Section 3.2, we construct priors to the regression 

coefficients from a functional data perspective. The priors are set to be 

Po~N(0,h2), 

^ ( * ) | r * ~ G P ( 0 , 7 r O . <3-2) 

T{ ~ Bernoull i^) , k e N, j = 1 , . . . , J. 

Here r J = {rk}k^=1 is a binary sequence of l's and O's. Components of r-7' are assumed 

to be independent across index k and j . GP(0,7Tj) represents a Gaussian process 

with zero mean and covariance function jTj. The covariance function yTj can be 

decomposed as 

oo 

7Ti(M) = Ewfc ft"? + C1 " * M riW^tW. (3-3) 
fe=l 

where { t ^ } ^ is a complete orthonorrnal basis of L2(7}), and {yj3
k}

<^=l is a sequence 

of weights such that Y^k=i wi < °°- We let z/i >> u0 > 0, and let u0 to be close to 

zero so that the factor \rd
kv\ + (1 — r^)^] is either ^i or u0 according to the binary 

value of rk. Note that we treat {wk}k and {<̂ }fc as prior parameters and will make 

specific choice of them. The values for h, vi, UQ and u^'s are also pre-specified. For 

simplicity, we assume the priors for flj(t) are independent across index j . 
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3.4 Posteriors 

Based on the model in Section 3.2 and prior settings in Section 3.3, posterior in

ference can be conducted by finite dimensional approximation. Since {4>i}T=i *s a n 

orthonormal basis on L2(Tj), we can expand Xjj(£)'s and Pj(t)'s by 

OO OO 

*«(*) = 5>,-fc#(*), pj(t) = ^2bjk4(t). (3.4) 
fc=i fe=i 

The truncated version of (3.4) can be used to approximate Xij(t) and (5j{t) since 

YlT=i cljk < °° anc^ S)fcli tfk < °°- Note that the orthonormal basis {(fy'k}k
x
=1 can 

be chosen to be a known basis such as a Fourier or wavelet basis. If we assume in 

addition that Xij(t)'s have zero mean and fT, E[xij(t)2]dt < oo, Mercer's theorem 

and Karhunen-Loeve theorem (Ash and Gardner [3]) suggest to take the orthonormal 

basis to be the eigenfunctions of the covariance operator K defined by 

Kx(t) = / x(s)k(s,t)ds, k(s,t) = Cov(x(s),x(t)). (3.5) 

In this case, the coefficients { c ^ } ^ are called functional principal component (FPC) 

scores of Xij(t). The FPC method is different with orthonormal expansion using 

known basis in that the eigenfunctions need to be estimated. Various methods for 

estimating the eigenfunctions can be found in Ramsay and Silverman [60], Hall, Miiller 

and Wang [28]. 

Once the orthonormal basis has been chosen or estimated, we can approximate 

Equation (3.1) by 

J Pi 

Zi = 0o + ] P 1>2 CiikbJk + e*> (3-6) 
j = l k=\ 
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where pj is the truncation parameter for the jth functional predictor. We thus transfer 

the functional regression to a multiple linear regression. For convenience, denote 

P — (Po,bn, • •• , &iPl, • • • ,bji,... ,bjPJ) , 

Equation (3.6) can be simplified to 

zi = Ci(S. + ei. (3.7) 

Let Z — (zi,..., zn)
T, Y = (yi,..., yn)

T and X = (Ci , . . . , Cn)
T, the conditional 

density ir(Z\P,Y) is 

n 

J ] *(* - dP) [®-\-CiP)I{Zi<^{yi=i} + (1 - *(-Ci/9))-1/{,i>0}n{yi=o}] , (3.8) 

where <?!>(•) represents a standard normal density with corresponding distribution func

tion $(•), and /{.} is an indicator function. Equation (3.8) shows that the conditional 

distribution of Z given (3 and Y is truncated normal. 

Using the truncated orthonormal basis expansion, the priors for /3j(£)'s in Equa

tion (3.2) become 

7r(/?|T) = JV(0,£T), (3.9) 

where r = fa1,... , 7 ^ , . ..,T(,.. . ,-r/J and 

S r = DTW1/2i*W1/2A... (3.10) 
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Here we have R = I because of the independence assumption between /3j(t)'s, and 

W = diag(lX, . . . ,«£ , . . . X , . . . , wJ
pj). (3.11) 

Finally, DT = diag(/i, un,..., vXpi ,...,uJlt..., uJpj) with 

^ = 7 ^ 1 + ( l - r > o , (3.12) 

for k = 1,... ,pj and j = 1 , . . . , J. The diagonal form of ET makes the components 

of /? a priori independent, î -fc's in the diagonal of D r have mixture normal priors, 

which indicate whether the components of (5 have large or nearly zero variances. Such 

a prior was used in George and McCulloch ([21], [22]) for Bayesian variable selection 

in multiple linear regression. 

The joint posterior distribution can therefore be obtained by multiplying condi

tional distribution in Equation (3.8) with the priors, i.e., 

TT(/?, T, Z\Y) = ir(Z\P, r, r)7r(^|r)7r(r) (3.13) 

Integrating out /3 from Equation (3.13) gives the marginal posterior density 7r(r, Z\Y). 

Conditional on Z and Y, we have 

ir(r\Z,Y) OC \XTX + Z;l\-2|ET|-s exp UzTX(XTX + Y.-1)-lXTz\ TT(T).(3.14) 

Based on Equation (3.8), (3.13) and (3.14), we can design a MCMC algorithm for 

posterior inference. 
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3.5 Parameter Settings 

Note that in Section 3.3, the truncation parameters pj are pre-determined parameters 

for function approximation. One could set up priors for each pj and adopt reversible 

jump MCMC[26] for posterior sampling. This strategy is reasonable but causes extra 

complications for MCMC. Another way of determining Pj is through cross-validation, 

i.e., maximizing the prediction performance on test set. This method is straight

forward but only applicable for Pj = p. It is also computationally expensive since 

it requires training the model on all possible choices of p. In this study, we pro

pose a simple practical method for determining p/s by setting an approximation 

criterion. For example, if we use FPC analysis, the criterion can be set as f(pj) = 

XlfcLi -W X]fc=i ^k > c1? for 0 < cl < 1, 1 < pj < K. Here A '̂s are the estimated 

eigenvalues, K is the maximum number of non-zero eigenvalues. Note that / ( ^ r e p 

resents the proportion of variability explained by the first Pj FPC's. Empirically we 

often choose c\ between 0.99 and 1. In the case of using a known orthonormal basis, 

we suggest the criterion to be f(pj) = l-J^i l l^ 'W ~ ^j(*)ll2/Z)i IkvjWII2 ^ c2> 

where Xj(t) is the estimated function of Xj(t) after truncating at Pj, and || • || is the 

I? norm. Similarly, the suggested value for c2 is also between 0.99 and 1. 

The weights sequences { w ^ } ^ in Equation (3.3) determine the weight matrix 

W in (3.10). Here we give a brief discussion on the choices of {wl}^=1. First we 

know that w3
k > 0 and Yl'kLi wl < °°- ^ n e m a m effect of u^ is to shrink more on 

the higher orders of the orthonormal basis {(^k{t)} toward zero so that the series in 
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(3-3) converges. In this paper, we always set 1 = w{ > uP2 > • • • > 0 so that all the 

weights are between 0 and 1. Let w^ = m\~ for all k = 1 , . . . , oo and all j , where 

0 < mi < 1 and m2 is a positive integer. Clearly, smaller value of mi or larger value 

of m2 makes {wi}^=i decay to zero faster. The values of {w]
k}fi

=1 are truncated at pj 

to form the weight matrix W. We usually take mi between 0.7 and 1, and m2 to be 

1,2 or 3. 

The prior parameters u\ and v0 must satisfy v\ » u0 > 0. Usual value for V\ is 

between 10 and 1000, and for u0 is between 0.0001 and 0.2. 

3.6 Markov Chain Monte Carlo 

Based on the results derived in Section 3.2 through Section 3.4, we propose the 

following MCMC algorithm for posterior sampling: 

Step 0: Set up initial values for /?, r and the prior parameters for h, ui,u0 and 

WVS-

Step 1: Conditional on Y and current values of 0, sample Z from the truncated 

normal distribution with density (3.8). 

Step 2: Conditional on Y and current values of Z, update r using Metropolis-

Hastings. Based on current r, a candidate r c is firstly generated using 

the "switch/swap" proposal (see Brown et al. [8]), i.e., with probability 

(p, randomly swap one 1 term with one 0 term; and with probability 1 — ip, 
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randomly pick one position and switch it. Compute the ratio 

TT~ *(T\Z,Y)' 

and update T = TC with probability min(l, rT). 

Step 3: Conditional on Y and current Z, r, update (3 from a multivariate normal 

distribution: 

p\z, T,Y~ N((xTx + ^;l)-1xTz, (xTx + s;1)-1) 

Repeat Step 1 — 3 until convergence. 

This MCMC algorithm is a hybrid Gibbs/Metropolis-Hasting sampling process 

since it performs Metropolis-Hasting updates within a large Gibbs sampling iteration. 

Note that although Tj = 0 indicates that the jih covariate (among the concatenated 

basis coefficients of the functional predictors) is not selected, we do not remove this 

covariate in the MCMC iteration. 

3.7 Simulation Study 

Two simulations are conducted to evaluate the performance of the proposed BVS 

model on functional data classification. Simulation 1 uses only one functional predic

tor, i.e., J = 1 in Equation (3.1). For simplicity, the functional predictor is generated 

using only 5 orthonormal cosine bases on interval [0,1]. Simulation 2 considers mul

tiple functional predictors for each observation, i.e., J = 20 in Equation (3.1). Thus 
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the total number of variables to be selected is relatively large. The variable selection 

results are discussed and prediction results are compared with several other classifiers. 

Simulation 1: Let the sample size n = 1000, we simulate a single functional 

predictor for each observation, i.e., J = 1 in Equation (3.1). Functional predictors 

Xi(t) are generated using the first 5 cosine bases on closed set [0,1], i.e., <f>o(t) — 

l,4>k(t) = y/2cos(kirt),k = 1,...,4. The mean curve is determined by cosine co

efficients c = (—1.12,-1.82,7.77,2.15,-3.25). By adding an independent random 

error N(0,1) to each component of c, we generate the functional predictor for each 

observation. For the true coefficient function /?(£), we set the first 5 cosine bases 

scores as b\ = b3 = 64 = 0, 62 = 5, and 65 = —4, corresponding to the true value of 

r = (0,1,0,0,1)T. Latent variables Z{ are generated using Equation (3.1) by numeri

cal integration. Here the true /?o is set to be —3.5. Binary responses yi are generated 

from the sign of Z{. We randomly take 800 observations as training set and the rest 

as test set. Note that in this simulation, the way of functional data generation is 

actually multivariate, in the sense that all the true parameters are pre-defined as the 

coefficients of a fixed number of cosine bases. This simplified simulation helps to 

verify our proposed model and MCMC algorithm in a straightforward way. 

The proposed model is applied to the above simulated data. For convenience of 

comparing the estimated regression coefficients with the true on their basis coeffi

cients, we choose to use cosine basis to approximate the functional predictors. The 

criterion in Section 3.5 with c2 = 0.99 gives the truncation parameter p = 5. This 
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True 

r P 

- -3.5 
0 0 
1 5 
0 0 
0 0 
1 -4 

MLE 
p S.E. 

-2.28 1.02 
0.12 0.11 
4.41 0.37 
0.01 0.12 
-0.25 0.12 
-3.51 0.30 

BVS 
p S.E. 

-2.77 0.46 
0.00 0.00 
4.37 0.39 
0.00 0.00 
0.00 0.00 
-3.44 0.31 

95% C.I. 
2.5% 97.5% 
-3.67 -1.88 
0.00 0.00 
3.64 5.18 
0.00 0.00 
0.00 0.00 
-4.09 -2.87 

a)j 

0.0 
1.0 
0.0 
0.0 
1.0 

Table 3.1: Simulation 1: the estimation of P compared with maximum likelihood 
estimation (MLE). Note that u>i indicates P{TJ = 1}. BVS: The Bayesian variable 
selection model proposed in Section 3.2. 

model is trained on the training set using the MCMC algorithm stated in Section 3.6, 

with u>i = u = 0.2, R — I, ui = 100, and u0 = 0.001. The weight sequence {wfc}^0 

is set by the method stated in Section 3.5 with parameters mi = 0.9, m,2 = 1. The 

Markov chain consists of 20000 iterations in total with a 3000 burn-in period. By 

averaging the posterior samples of r, we obtain the marginal posterior probability 

P{Ti = l,z = 1,.. . ,5} as (0,1,0,0,1)T, which indicates that our algorithm has 

picked out the correct non-zero basis (second and fifth) scores successfully. Table 3.1 

lists the estimation results for P, using the BVS model and the maximum likelihood 

estimation method (the GLM with probit-link). From Table 3.1, we see that the 

posterior estimation of the coefficient scores is as good as the maximum likelihood es

timate. The posterior prediction of the coefficient curve p(t) can be easily computed 

by conducting inverse cosine transform to the posterior samples of {6fc, k = 1 , . . . , 5}. 

Figure 3.1 shows the posterior mean of the coefficient function and the corresponding 
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Posterior Mean for p(t) with 95% Credibility Band 

—i i i i i r~ 
0.0 0.2 0.4 0.6 0.8 1.0 

Figure 3.1: Simulation 1: the posterior estimation of /3(£)and the corresponding 
simultaneous 95% credibility band compared with the true value of f3(t). 

simultaneous 95% credibility band, as compared with the true. The simultaneous 

credibility band is obtained by finding a constant M, such that 95% of the simulated 

posterior functions fall into the interval /3(t) ± Ma(t),Vt, where J3(t) and a(t) are the 

posterior mean and standard deviation of the cofncient functions. From Figure 3.1, 

we see that the true coefficient function lies in the 95% credibility band. 

Prediction can be done by applying the posterior samples of (3 to the test set using 

Equation (3.6). If treating y, = 1 as diseased and yi = 0 as normal class, the out-

of-sample prediction of the test set provides sensitivity 92.7% and specificity 97.1% 

with corresponding threshold 0.526. The resulting misclassification rate is 5% and 

the area under ROC curve (AUC) is 0.99. Note that the sensitivity and specificity 
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reported here is obtained by maximizing the sum of sensitivity and specificity. For 

more information about ROC curves, see Zweig and Campbell [86]. 

Instead of using cosine basis for dimension reduction, we also tried to use FPC 

for orthonormal basis expansion. We use the approximation criterion stated in Sec

tion 3.5 with c\ = 0.99, and get p = 5. The prior parameters are set to be the 

same as in the cosine basis case. After 20000 MCMC iterations with a 5000 burn-in 

period, prediction on the test set gives sensitivity of 96.9% and specificity of 91.3% 

under threshold 0.282. The corresponding misclassification error is 6% and the area 

under ROC curve (AUC) is 0.988. These results shows that using FPC for function 

approximation produces as accurate prediction as using cosine basis, although the 

data are generated based on a different type of basis. 

Simulation 2: In this simulation, we evaluate the performance of the model with 

multiple functional predictors. The functional predictors are generated similarly as 

in simulation 1 using the first 5 cosine bases, except that now we set J = 20 in 

Equation (3.1). Therefore the total number of scores K = J x p = 100. For the 

coefficient scores fi, we randomly choose 24 out of 100 and set them to be nonzero, 

which take values from a uniform distribution with support [—4,5] (the 0 value is 

excluded). We set the intercept fi0 = —1-5. Latent variables and binary responses 

are generated following the same way as in Simulation 1. 

Similar to Simulation 1, we choose cosine basis to approximate the functional 

predictors for simplicity. The approximation criterion in Section 3.5 with c2 = 0.99 
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Figure 3.2: Simulation 2: marginal posterior estimate of r as compared with the 
true r . The solid dots represent the true values of r. The vertical bars indicate the 
frequencies of selecting the variables during all iterations (after burn-in). 

gives truncation parameter p = 5. We train the proposed BVS model using the 

training set based on the transformed cosine basis scores. The model priors are 

set to be uPk = u = 0.1, R = I, V\ = 10 and u0 = 0.001. The weight sequences 

{iffc}^! are determined by m\ = 0.9, m2 = 1 for j = 1 , . . . , J, as suggested in 

Section 3.5. The Markov chain consists of 30000 iterations in total with a burn-in 

period of 10000. Figure 3.2 shows that the estimated marginal posterior probability 

Pr{ri — 1,.... ,TK = 1} as compared with the true r. From Figure 3.2, we see that 

all 24 nonzero components of j3 are corrected found. The marginal posterior estimate 

for r matches perfectly to the true r. These results show that, even with fairly large 

number of functional predictors J = 20, the proposed model is still able to provide 

accurate estimates of r . 

Applying the estimated regression coefficients to the test set for prediction, we 



49 

ROC Curves of Simulated Data —Classifier Comparison 

0.0 0.2 0.4 0.6 0.8 1.0 

1 -Specificity 

Figure 3.3: Simulation 2: the ROC curves of different classification models. BVS: 
the proposed Bayesian variable selection model. Bayes: the Bayesian probit model 
(without variable selection). LDA: Linear Discriminant Analysis. KNN: K-nearest 
neighbor. Note that all classifiers are based on first 5 cosine basis scores 

obtain a 100% sensitivity and 96.6% specificity under the threshold 0.106. The corre

sponding misclassification rate is 2%. We then evaluate in Figure 3.3 the prediction 

performance by comparing the empirical ROC curve of the proposed model with that 

of three other classifiers. All the 4 methods are based on the same function approx

imation method, i.e., the cosine basis expansion with truncation parameter pj = 5. 

Among these methods, the Bayes classifier is a Bayesian probit model with latent 

variables. It has the similar structure as our proposed model but does not perform 

variable selection. The LDA classifier assumes multivariate normal distribution with 

common covariance matrix for both classes, and obtains the discrimination hyper-
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Method 
BVS 

Bayes 
LDA 
KNN 

AUC 
.0.997 
0.983 
0.974 
0.887 

Sens 
100% 
95.1% 
97.5% 
85.2% 

Spec 
96.6% 
95.0% 
85.7% 
79.8% 

Thres 
0.106 
0.329 
0.232 
0.400 

MisR 
2% 
5% 

9.5% 
18% 

Table 3.2: Simulation 2: the prediction results compared with 3 other classifica
tion methods. AUC: Area under the ROC curve; Sens: sensitivity; Spec: specificity; 
Thres: The threshold corresponding the reported sensitivity and specificity; MisR: 
misclassification rate. The BVS, Bayes, LDA and KNN are defined same as in Fig
ure 3.3. 

plane by equalizing the posterior densities of the two classes. Details of LDA can be 

found in Hastie, Tibshirani and Friedman ([30], Page 84-90). The KNN classifier is 

another popular classification method, which assigns category for the points in the 

test set by voting from their k closest points in the training set. The number of 

neighbors k is determined by a 20 block cross-validation using the training set. The 

criterion used in the cross-validation is the sum of sensitivity and specificity. De

tailed prediction results are reported in Table 3.2. Note that the sensitivities and 

specificities listed in Table 3.2 are obtained by maximizing the sums of sensitivities 

and specificities on the ROC curves. Both Figure 3.3 and Table 3.2 show that the 

proposed variable selection model provides better prediction results. 

3.8 Fluorescence Spectroscopy Data Classification 

After evaluated by simulation, the proposed BVS model is applied to the fluorescence 

spectroscopy data introduced in Section 1.2. In this study, we choose part of the 
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clinical data measured by a fixed instrument (called FastEEM2). There are 1013 

EEM measurements in this dataset obtained from 521 patients. These measurements 

are taken from different sites of the patient cervix and there may exist repeated 

measurements at the same site. To reduce possible confounding effects due to the 

tissue type, all normal measurements are from squamous tissue. After necessary pre

processing procedures like background correction, smoothing and registration, the 

EEM measurements are split randomly into a training set with 607 measurements and 

a test set with 406. The proportions of diseased cases within each set are 0.096 and 

0.080, respectively. Both cosine basis and FPC are used to reduce the dimension of 

functional predictors. The truncation parameters are determined using approximation 

criteria suggested in Section 3.5 with C\ = 0.999 in the FPC case and c2 = 0.99 in 

the cosine basis case. The resulting p / s vary from 5 to 3 using the FPC method, 

and from 7 to 4 using cosine basis expansion. To reduce possible bias, the principal 

component scores of the test set is computed based on eigenfunctions estimated from 

the training set. 

The proposed model is applied to the scores obtained from FPC and cosine basis 

expansion. For both types of scores, we set the priors as u?k = 0.2, vx = 100, z/0 = 

0.001, R = I with 40000 MCMC iterations and 10000 burn-in period. The weight 

sequences {wfyk are determined as suggested in Section 3.5 with parameters m\ = 0.9, 

ra2 = 1. Figure 3.4 shows the marginal posterior probabilities of Tj = 1 for all 

components of r in the FPC case. The x-axis represents the FPC scores from a single 
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excitation curve, and the y-axis represents the spectroscopy curves. Figure 3.4 shows 

that, in the total 60 principal component scores, only 4 have posterior probability 

greater than 0.4, and 3 of these scores are the third or higher principal components. 

One can also find the joint posterior distribution of r based on the frequencies of 

the T values visited during MCMC. In this real data study, there are 260 possible 

choices for r in total. It turns out that the frequencies for the visited models are 

all very small. For example, in the total of 30000 iterations (after burn-in), the most 

frequently visited model has a frequency of 5%. Similar to Simulation 2, we compare 

the posterior prediction result of the proposed model to that of three other classifiers 

in Table 3.3. Figure 3.5 shows the corresponding ROC curves obtained from the test 

set prediction. Both Table 3.3 and Figure 3.5 show that the proposed BVS model 

provides a better prediction than the other three classifiers in both cases of function 

approximation. FPC method gives 77% sensitivity and 82% specificity with area 

under ROC curve 0.84, whereas cosine basis expansion gives higher sensitivity but 

lower specificity. 

To assess the convergence of the MCMC algorithm, we run multiple chains starting 

from different initial values of r. The initial values of /? are chosen by randomly sam

pling its components from a normal distribution. Figure 3.6 illustrates the marginal 

posterior probabilities of r obtained from 3 different chains with different initial val

ues. The first chain starts with a r with every component being assigned to be 1 

or 0 randomly with probability 0.5; the second chain starts with a r of all l's; the 
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Heat plot of the posterior probablity of T=1 at each excitation wavelength 

480 I 

The FPCs in Order 

Figure 3.4: Real data application: the posterior probability of r, = 1 for all the 
scores obtained using FPC. 
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Method 
BVS 

Bayes 
KNN 
LDA 

FPCA 
AUC Sens Spec Thres MisR 
0.84 77% 82% 0.13 18% 
0.72 90% 48% 0.02 49% 
0.71 60% 84% 0.10 22% 
0.68 77% 54% 0.03 45% 

Cosine 
AUC Sens Spec Thres MisR 
0.83 87% 72% 0.12 27% 
0.80 90% 67% 0.09 31% 
0.73 57% 88% 0.15 15% 
0.75 93% 54% 0.02 44% 

Table 3.3: A comparison of four classification methods. FPCA: Using the functional 
principal components. Cosine: Using cosine basis. Sens, Spec, MisR and BVS, 
KNN, LDA, SVM are defined same as in Table 3.2 and Figure 3.3 The thresholds are 
determined by maximizing the sum of sensitivities and specificities on the empirical 
ROC curves. 

third chains starts with a r of all 0's. From Figure 3.6, we see similar patterns on 

the marginal posterior probabilities, although there are slight differences at some 

components. 

3.9 Conclusion 

We have proposed a Bayesian variable selection model for binary classification, eval

uated its performance by simulation and applied it to fluorescence spectroscopy data. 

This model uses a probit link to connect the binary responses with the functional 

predictors, and conducts variable selection by introducing a binary sequence to the 

Gaussian process prior of the coefficient function. The posterior inference is per

formed by function approximation using orthonormal basis. Compared with several 

other classifiers, the proposed model shows better prediction results in both simula

tion studies and real data application. 
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Figure 3.5: Real data application: empirical ROC curves for the test set. 
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Figure 3.6: Real data application: marginal posterior of r obtained from different 
chains trained with different initial values. 



Chapter 4 

A Functional Generalized Linear 

Model with Functional Predictor 

Selection 

4.1 Introduction 

This chapter continues the study of binary classification with multiple functional 

predictors, with a particular emphasis on selecting functional predictors. This study 

is motivated by such a fact: when multiple functional predictors are involved in 

classification, some functions usually play more important role while others produce 

mainly redundant information. Selecting a subset of the functions helps to reduce 

the cost of data collection for future observations. For this purpose, we propose a 

57 
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penalized functional generalized linear model, and reduce this model through FPC 

analysis to a multivariate regression with a grouped Lasso penalty. The grouped 

Lasso penalty makes the selection of functional predictors feasible. 

4.2 The Proposed Model 

Following the notation in Chapter 3, we consider n i.i.d. observations, each obser

vation contains J functions. For i = 1 , . . . , n and j = 1 , . . . , J, let Xij(t) be the 

jth function observed from the ith observation. Besides Xij(t), we also assume a 

non-functiOnal vector S; associated with each observation. Let binary variables y^ 

be the responses observed. Our functional generalized linear model is defined as 

Pi = Pr(j/i = l\8i,Xij(t),j = 1 , . . . , J) , and 

Pi = g-^rh), (4-1) 

r)i = ao + sJa + Y" XijtyPjWdt, (4.2) 

where Tj is the domain of Xy (i), «o is a univariate intercept, a is a vector of coefficients 

for the non-functional predictors, and /^(t)'s are the functional regression coefficients. 

Here the link function g(-) is a one-to-one continuous function. The selection of 

functional predictors is based on the following constraint on the functional regression 

coefficients: 

J 

Yl\\0j\\»<™> (4-3) 
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where | | / | | L 2 = (f f2(t)dt)^2, m is a pre-defined constant. Note that (4.3) is a 

combined constraint of L2 norm and I1 norm. This is an extension of the group-wise 

variable selection in multivariate setting proposed by Yuan and Lin [82]. Because of 

the properties of this combined constraint, we expect fy = 0 for some j , depending 

on the shrinkage factor m. 

To solve the regression coefficients from the above proposed model, we apply 

functional approximation using orthonormal basis expansion as done in Chapter 3. 

The functional predictor Xij(t) is expanded by an orthonormal basis {4^k\V=i (which 

can be the estimated eigenfunctions if using FPC analysis) as 

oo 

Xij(t) = YlCiikrt(t)- (4-4) 
fe=i 

We then use a truncated version of (4.4) to approximate Xij(t). Note that if using 

FPC method, the functional predictors Xij(t) should be centered at their sample mean 

to satisfy the zero mean assumption of the FPC analysis, and the functions from the 

test set should be centered using the mean estimated from the training set. The same 

orthonormal basis is used to expand J3j(t): 

oo 

&(*) = £ M i ( * ) (4-5) 
fc=l 

Once the coefficients for orthonormal basis or the FPC scores have been estimated, 

we can approximate equation (4.2) by 

J PJ 

rji^ao + sJa + ^^Cijkbjk, (4.6) 
j=i fe=i 
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where Pj is the truncation parameter for the jth functional predictor, which can be 

determined by approximation criterion stated in Section 3.5. The constraint condition 

(4.3) is then approximated by 

j 

£ l M | 2 - < m (4.7) 
J = I 

where bj = (bj\,... ,bjPj) and || • H2 stands for the Euclidean norm. A regression 

with constraint in form of (4.7) is called "grouped Lasso" by Yuan and line [82]. 

Functional predictor selection can thus be performed through selecting variables in 

(4.6) under this constraint, i.e., if one curve Xj(t) is selected, then the coefficients 

bjk,k = 1 , . . . ,pj, will all be non-zero. 

The grouped Lasso method originates from the Lasso (Least Absolute Shrink

age and Selection Operator), which was first proposed by Tibshirani[72] for model 

selection in linear regression. The basic idea of Lasso is to find a subset of the predic

tors with non-zero coefficients by applying a l\ constraint to the regression coefficients 

based on the ordinary least square estimation. Yuan and Lin [82] extended the regular 

Lasso to the case where the predictors can be grouped, such as multi-factor ANOVA. 

They combine the h and l2 constraints so that the resulting model selects variables 

at the group level and is invariant under group-wise orthogonal transformation. To 

solve our problem based on the approximated model (4.6) and (4.7), we borrow the 

algorithm proposed by Meier et al. [43], where they extended the group-wise lasso re

gression of Yuan and Lin [82] to a logistic regression setup. Suppose the link function 
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in (4.1) is a logit link, i.e., 

log(T-^—) = V* 
1 - Pi 

(4.8) 

the estimate can be obtained by minimizing the convex function 

j 

Qx(0) = -l{0) + \'£fa(pJ)\\bJ\\3l 

3=1 

(4.9) 

where 6 = {a0, a, bj,j = 1 , . . . , J } , and /(•) is the log-likelihood function 

n 

1(0) = £ > ^ - log(l + .expfa))}. (4.10) 

Here s(pj) is a rescaling parameter which adjusts for the penalty according to the 

dimensionality of bj, and is usually set to be v/pJ; A > 0 is a tuning parameter 

controlling the amount of penalty. Note that in the model of Meier et al. [43], only one 

term, the intercept term, is unpenalized. However, in our proposed model, in addition 

to the intercept CXQ, we also allow the coefficients of nonfunctional predictors, a, to 

be unpenalized. Meier et al. stated the attainability of the minimum and provided 

a proof. Actually, the attainability holds only when some conditions are satisfied. 

Here we provide a general sufficient condition under which the minimum of (4.9) is 

attained. 

Proposition 4.2.1. Suppose that 0 < Y^i=\Vi < n,\ > 0,s(pj) > 0,Vj, and the 

design matrix 

( 

X = 

1 T 

i z1 Cm . . . CiiPl c\j\ ... Cupj 
\ 

1 zn c„n . . C, nlpi CnJl ••• CnJpj I 
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is a n by m matrix of rank m, n > m. If the maximum likelihood estimator for the 

logistic regression (with log-likelihood in the form of Equation(4-10) exists, then (4-9) 

has an unique minimizer 6*. 

The proof of Proposition 4.2.1 is in Appendix B. Meier et al. [43] proposed a Block 

Coordinate Gradient Descent algorithm to solve the group lasso logistic regression and 

provided a R package called grplasso. We will use this package to perform functional 

predictor selection based on the approximated model in Equations (4.6) and (4.7). 

The initialization of the algorithm is the same as in grplasso. 

4.3 Simulation Study 

We use simulation to verify the performance of the proposed method in classification 

problems with multiple functional predictors. We generate n = 1000 i.i.d. obser

vations, each contains one non-functional predictor and three functional predictors. 

The non-functional predictor is generated from the Uniform[0,1] distribution, and 

the three functional predictors are constructed through cosine basis expansion using 

the first 4 bases functions (f>o(t) = 1, </>&(£) = \/2cos(A;7r£), k = 1,...,3 on the do

main [0,1]. The cosine basis coefficients of each functional predictor are generated 

independently from a normal distribution with some fixed mean and variance 0.5. 

We set the coefficient functions for the first and the third functional predictors to 

be zero and set the coefficient function for the second to be non-zero. Figure 4.1 

shows the plot of both the non-functional predictor and the functional predictors for 



63 

Simulated Data—Nonfunctional Covarlate Simulated Data—Functional Covarlate- 1 

CM -

,- _ 

O -

T ~ 

<N _ 
I 

• 
• • 

. . • 

. • •• .. 
• • • 

• • • 
1 1 1 1 1 r 

0 10 20 30 40 50 

index 

Simulated Data—Functional Covarlate- 2 

- i 1 1 1 r 

0.0 0.2 0.4 0.6 0.8 1.0 

[0,1] 

Simulated Data—Functional Covarlate- 3 

T i i i i r 

0.0 0.2 0.4 0.6 0.8 1.0 

[0,1] 

T 1 1 1 1 f 

0.0 0.2 0.4 0.6 0.8 1.0 

[0,1] 

Figure 4.1: Data plot of both non-functional predictors and functional predictors for 
the first 50 observations used in simulation. 

the first 50 observations. The binary responses yi are generated by sampling from 

a Bernoulli distribution with success probability Pi = (1 + exp(—rfc))-1, where rji is 

computed from Equation (4.2) using numerical integration. The simulated y^s are 

well balanced, with 57.3% in the 1 class. We then randomly split the data into a 

training set of size 800 and a test set of size 200. 

Now we apply the proposed model to the simulated data for classification. In 

the function approximation step, one can choose an orthonormal basis different from 

the one in data generation. We have tried both functional principal components and 

cosine basis, and obtained very similar curve selection and prediction results. 
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Figure 4.2: Estimated paths of coefficient vector at different A values 

Using function approximation with cosine basis expansion and the approximation 

criterion stated in Section 3.5 with c2 = 0.99, we obtain the truncation parameter 

Pj = 4. The group-wise Lasso regression algorithm of Meier et al.[43] is then applied 

to the reduced scores. Figure 4.2 shows the estimation for the regression coefficients 

as a function of A. Note that for the estimated coefficient function J3j, we plot their L2 

norm, i.e., \\J3j\\ = JfTJ3j(t)2dt, where the function fy are obtained by the inverse 

transformation of the estimated coefficients bj. From Figure 4.2, we see that for a 

wide range of A, 15.7 < A < 115, the model correctly picks out the non-zero coefficient 

function J32- We also plot J32{t) under 6 selected A's in Figure 4.3 to compare with 

the true ^{t). Table 4.1 shows the estimated coefficients (in the form of cosine 
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Figure 4.3: Estimated coefficient function P2(t) at 6 selected A values and the true 
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basis scores bj) compared with the true values under the 6 A's. Prom Table 4.1, 

we see that as the penalty parameter A increases, the estimated coefficients shrink 

toward 0; when A = 0, the estimates are equal to the maximum likelihood estimates, 

in which case all the coefficients are nonzero; when A varies from 22.4 to 89.6, the 

coefficients of the first and the third curve are exactly 0, and the coefficient of the 

second is nonzero. For A > 14.1, almost all the estimates are closer to 0 than their true 

values. We believe that these shrinkage effects are caused by the continuous-shrinkage 

property of Ridge and Lasso penalty (see Tibshirani [72]). As a side note, it has been 

suggested that there may be large bias in the estimators related to the inconsistency 

of the original Lasso under certain conditions, i.e., that the Lasso does not satisfy 

the "oracle properties" (Fan and Li[18], Zhao and Yu [83]). Some modifications have 

been proposed to overcome the drawbacks of Lasso and make the estimators satisfy 

the oracle properties(see Zou [85]). In this study, we only focus on the functional 

predictor selection, more research can to be done on the consistency of the grouped-

Lasso regression under the functional data setup. 

We plug the estimated coefficient function (3j(t),j = 1, 2,3 into the test set using 

(4.2) to perform prediction. For each observation, the estimated success probability 

pi is computed, from which we plot a ROC curve for each A. The optimal classifica

tion point is chosen from each ROC curve to maximizes the sum of sensitivity and 

specificity. Figure 4.4 shows the misclassification rate at the optimal point and the 

corresponding area under the ROC curves at different values of A. From Figure 4.4, 
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Estimated coefficients at different A values 
Coef 
a0 

a 
hi 
bn 
&13 

bu 

&21 

&22 

&23 

&24 

&31 

&32 

&33 

&34 

True Values 
0.5 
1 
0 
0 
0 
0 
1 
2 
-3 
-1 
0 
0 
0 
0 

A=118 
0.3 

0.63 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

A=89.6 
0.3 
0.64 

0 
0 
0 
0 

0.13 
0.31 
-0.42 
-0.18 

0 
0 
0 
0 

A=22.4 
0.39 
0.82 

0 
0 
0 
0 

0.58 
1.43 

-1.92 
-0.84 

0 
0 
0 
0 

A=14.1 
0.42 
0.87 

0 
0 
0 
0 

0.67 
1.67 

-2.24 
-0.99 

0 
0.01 
0.04 
0.01 

A=5.3 
0.46 
0.97 
0.03 
-0.04 
0.04 

0 
0.79 
2.01 
-2.66 
-1.21 
0.02 
0.07 
0.34 
0.09 

A=0 
0.5 
1.06 
0.15 
-0.17 
0.18 
-0.01 
0.9 
2.29 
-3.02 
-1.41 
0.03 
0.13 
0.56 
0.14 

Table 4.1: The estimated coefficient values compared with the true values at different 
A's 

we find the "best" prediction results with sensitivity(93%), specificity(73%) and an 

fairly large area under ROC curve (0.88) when A is around 22.4, and the resulting 

misclassification rate is 16%. 

Since in practice the true basis is unknown, we also use FPC for dimension reduc

tion and compare the results with those from cosine basis. For all the 3 functional 

predictors, the approximation criterion stated in Section 3.5 with cx = 0.99 gives 

Pj = 4. Actually, the first 4 principal components take into account 100% of the 

variability in the training data. Based on the 4 principal components for each curve, 

we obtain the regression coefficient estimates very similar to those in Figure 4.2, ex

cept that the scales of the cofficient norms \\J3j\\ are different. The prediction results 

are also very close to those in Figure 4.4. FPC gives the best 93% sensitivity, 73% 
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Area under the ROC curve v.s.X Missclassification Rate v.s.A. 
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Figure 4.4: Prediction results at different A values. 

specificity and 0.88 area under ROC curve under A = 22.4, with a resulting misclassi-

fication rate of 16%. Therefore, the FPC method produces exactly the same optimal 

prediction for the test set as the method of using cosine basis, although they perform 

dimension reduction in a different way. 

4.4 Real Data Application 

We apply the proposed model to part of the fluorescence data introduced in Sec

tion 1.2, which is measured using a fixed instrument (called FastEEM3) at a fixed 

clinic (British Columbia Cancer Agency, Vancouver, CA). There are 724 EEM mea

surements made on 311 patients in this dataset. Each measurement contains 16 

spectral curves. The measurements are from different sites of the cervix, and there 

may exist repeated measurements for the same site. We split the data into a training 

set of size 399 and a test set of size 325, with the proportions of diseased cases 0.21 



69 

and 0.20, respectively. Two non-functional covariates are considered in this study. 

The first one is the colposcopic tissue type of the measurements which is obtained 

prior to the fluorescence spectroscopy measurements. There are two types of colpo

scopic tissue - squamous and columnar, which makes this covariate a binary variable. 

The second one is the menopausal status of patients, which can be categorized into 

three levels: pre-, peri- and post-menopause. We use FPC to approximate the func

tional predictors with the approximation criterion C\ = 0.998. The resulting p/s vary 

between 2 and 3, with J2jPj = 41. To reduce possible bias, the test set scores (the 

scores of orthonormal basis) are computed based on information from the training set 

only. For example, the eigenfunctions used for computing the FPC scores of the test 

set are estimated from the training set. 

The group lasso logistic regression algorithm is used to estimate the regression 

coefficients as A decreases from 8.5 to 0. Due to the large number of functional 

predictors, the plot of coefficient estimates is hard to visualize. In Figure 4.5, we 

summarize the excitation curves (functional predictors) selected at different A values. 

The x-axis represents the functional predictors indexed by excitation wavelengths. 

The y-axis represents the A values. The black spot indicates that the estimated 

regression coefficient at the given excitation wavelength is non-zero for the given A 

value, therefore the corresponding functional predictor is selected. For example, we 

find in Figure 4.5 that when A = 7.186, the curves at excitation wavelengths 360, 

410 and 420 are selected. When A = 0, there is no penalty, hence all the curves are 
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The selected functional predictlors at different X values, EEM3 Data 
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The functional predictors are denoted by their corresponding excitation wavelengths 

Figure 4.5: The selected functional predictors (fluorescence spectral curves denoted 
by excitation wavelengths) at different A values. 

selected. As A gets larger, this model puts more penalty on the functional regression 

coefficients, therefore selects fewer curves. At each given A value, we can get a set 

of estimated coefficients, which can be used to do prediction on the test set. We 

thus determine A by comparing their prediction performance on the test set. Due 

to the fact that the total proportion of diseased cases is small, the misclassification 

rate is not a good criterion for evaluating the prediction performance (see [84], page 

22 for details). In order to reduce the risk of false negatives, we wish to keep a 

high sensitivity. It turns out that in such rare-disease diagnosis problems, using 

the criterion that the sum of sensitivity and specificity is maximized will help to 

remain a high enough sensitivity. Hence for each fixed A, we pick a point from the 
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Figure 4.6: Prediction results at different A values. 

empirical ROC curve such that the sum of the sensitivity and specificity is maximized. 

Figure 4.6 shows the area under ROC curve and the optimal sum of the sensitivity 

and specificity at different values of A. When A = 2.209, the sum reaches its maximum 

1.43, with sensitivity 86% and specificity 57%. The corresponding area under ROC 

curve is 0.75, and the misclassification rate is 37%. As shown in Figure 4.5, when 

A = 2.209, there are six functional predictors selected at excitations 340, 360, 400, 410, 

420 and 480 nm. These selected excitation wavelengths can be used in the future for 

building more cost-effective devices. In Table 4.2, we compare the prediction results 

using the proposed model at A = 2.209 with the results from 3 other classification 

methods. The corresponding empirical ROC curves are plotted in Figure 4.7. Note 

that the parameter k used in the k-nearest neighbor method is determined by a 15-

fold cross validation based on the training set. Both Table 4.2 and Figure 4.7 show 

that the 4 classification methods provide similar prediction results on the test set, 
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Method 
FGLM(A = 2.209) 

Logistic 
KNN 
LDA 

Auc 
0.75 
0.72 
0.73 
0.74 

MisR 
37% 
43% 
33% 
40% 

Sens 
86% 
88% 
78% 
84% 

Sped 
57% 
50% 
64% 
54% 

Thresh 
0.16 
0.12 
0.23 
0.19 

Sum 
1.43 
1.37 
1.42 
1.38 

Table 4.2: The classification results using 4 different methods. Auc: Area under ROC 
curve. MisR: Misclassification rate. Sens: Sensitivity. Speci: Specificity. Thresh: 
The threshold used for sensitivity and specificity. Sum: The sum of sensitivity and 
specificity. FGLM: The proposed model at A = 2.209. Logistic: logistic regression. 
KNN: k-nearest neighbor. LDA: linear discriminant analysis. 

in the sense that their AUC's are all at the 0.70 level. Comparing with the other 3 

methods, our proposed model (denoted as (FGLM)) does not improve the AUC too 

much. However, since the main purpose of this model is functional predictor selection 

rather than classification, we have gained benefits by doing inferences on functional 

predictor selection without losing classification power. 

4.5 Discussion 

We have proposed a functional logistic regression model to perform classification and 

functional predictor selection. Using the grouped Lasso penalty, the proposed model 

gives information on which functional predictor will be selected if we are willing to 

use a subset of the functional predictors for classification. For example, under penalty 

A = 2.209, the best six functional predictors selected in our real data application are 

curves at excitation wavelengths 340, 360, 400, 410, 420 and 480nm. The selected 

functional predictors can be further used by different classifiers for new measurements. 

In our proposed model, the tuning parameter A is important for prediction. In 
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ROC curves for the test set prediction 

1-Specificity 

Figure 4.7: ROC curves obtained when training using 4 different classifiers and 
predicting on the test set. 
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Meier et al. [43] and in our study in this chapter, a test set is used to choose A with the 

best prediction performance. However, in some cases there are only a small number 

of observations available and splitting out a test set is not possible. In such cases, we 

can adopt some model selection criteria such as AIC, BIC or practical Cp. AIC tends 

to select a model with optimal prediction, whereas BIC tends to identify the true 

sparse model if the true model is included in the candidate set (see Yang[77]). In the 

grouped Lasso linear regression model, Yuan and Lin [82] propose an approximation 

to the degree of freedom and use a Cp criterion to select the tuning parameter A. It 

remains an an open question whether this criterion can be extended to the logistic 

regression case for selecting A. 

There are several aspects need to be studied in the future. First, it is necessary 

to investigate the consistency properties of the estimated coefficient function Pj(t), 

such as the oracle property. Second, in the group Lasso algorithm, Meier et al. [43] 

propose a way to find the range of the tuning parameter A, and A can only vary on this 

pre-specified grids within this range. This method, although fast, makes it difficult 

to find the precise A value that is optimal for prediction purpose. Efficient algorithms 

for searching for A are necessary especially when functional data are involved. 



Chapter 5 

A Bayesian Hierarchical Model for 

Classification with Selection of 

Functional Predictors 

The penalized functional generalized linear model proposed in Chapter 4 provides 

inferences on selecting functional predictors. However, in our real data application, 

there is another issue that is not considered by this model, the random batch effects. 

In order to perform functional predictor selection and take the random batch effects 

into consideration, in this chapter we extend the Bayesian Probit Model in Chapter 3 

to a Bayesian hierarchical model with functional predictor selection (BHFPS). The 

Bayesian hierarchical structure takes into account the random batch effects, and the 

functional predictor selection is implemented through a block-wise variable selection 

75 
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method. Fixed effects or predictors in non-functional form are also included in this 

model. As we have done in previous chapters, the dimension of the functional data 

is reduced through functional principal component analysis or orthonormal basis ex

pansion. We use a hybrid Metropolis-Hastings/Gibbs sampler for posterior sampling 

and apply an Evolutionary Monte Carlo (EMC) algorithm to improve the mixing. 

Simulation and real data application show that the proposed BHFPS model provides 

accurate selection of functional predictors as well as good classification. 

5.1 Motivation 

In practical problems of functional data classification, there are often practical issues 

that are handled by the models proposed in Chapter 3 and Chapter 4. One of them 

is the presence of systematic effects which may be significant enough to bias classi

fication, such as the artificial differences caused by measuring with different devices. 

In Example 5.1.1, we use a toy example to show how the device difference misleads 

the classification in an unbalanced design. A similar issue is addressed in Baggerly et 

al. (2004). 

Example 5.1.1. The following table lists the counts of the objects measured by two 

devices for a binary classification problem. If we use the device difference to do 

prediction, for example, we classify all the objects measured by device one to class 

one, the misclassification rate is (5 + 50)/365 = 15%, which seems quite good but is 

obviously useless since the device difference is purely artificial. Unfortunately, most 
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classification algorithms can hardly recognize the sources of variation and may end up 

with discriminating the objects based on the device difference. We call the variations 

caused by device or other experimental difference as "batch effects". 

True class Device one Device two 
Class one 300 50 
Class two 5 10 

In our application of fluorescence spectroscopy data introduced in Section 1.2, 

several factors that are brought in by the experimental design need to be considered. 

First, the data are obtained using two instruments with four optical probes located 

at three clinics. A preliminary study shows that there exists significant differences 

among the data from different device-clinic combinations, which puts the classifica

tion at risk since the diseased cases are rare and distributed inhomogeneously across 

these combinations, like the example shown in Example 5.1.1. Second, in addition to 

device-clinic differences, it is believed that other factors, such as the tissue type of 

the measurement site and the patients' menopausal status, may confound with the 

fluorescence spectroscopy information in the diagnosis. These factor effects are shown 

by box-plots in Figure 5.1. 

This motivates us to propose a Bayesian hierarchical model with selection of func

tional predictors for complex functional data classification problems, where multiple 

functional predictors are influenced by random batch effects and fixed effects. 
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Figure 5.1: The box-plot of the first functional principle component scores of one 
spectral curve (measured at excitation 340 nm) versus six device-clinic combinations 
(left), two tissue types (middle) and three menopausal states (right). Systematic 
differences across different levels of these factors can be seen obviously. Note that 
here we only used observations from the normal class, which excludes the possibility 
that the differences are caused by unbalanced proportions of diseased cases in each 
level of the factors. 

5.2 Bayesian Hierarchical Model with Selection of 

Functional Predictors 

5.2.1 The Proposed Model 

Suppose that we obtain functional observations from L exchangeable batches, in which 

the Ith batch contains n; observations and each observation contains J functions. For 

I = 1 , . . . , L, % = 1 , . . . , ni and j = 1 , . . . , J, let x[j(t) be the jth function observed 

from the ith observation in batch I, which takes values in L2[Tj], with 7} the compact 

domain of x\^{t). In addition to the functional observations, there are also non

functional observations s[, which is assumed to be a vector of length q. We treat the 
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observations {s\, x\At), j = 1 , . . . , J} as predictors and assume the binary responses 

y\ to be conditionally independent given the predictors. Similarly as in model (3.1) 

in Chapter 3, we introduce univariate latent variables z\ which link the responses y\ 

to the predictors as follows: 

y\ = \ 
1 if z\ < 0, 

0 if z\ > 0. 

4 = {s\)Ta + W ^{t)^{t)dt + ej. (5.1) 

Here we set the first component of s\ to be 1 to include the intercept term. For 

all i and Z, we assume e\ to be i.i.d. with distribution iV(0,1), and assume that 

Plj(t) € L2[Tj] for all j . See Albert and Chib [2] for the use of latent variables in the 

analysis of binary response data. 

In many cases, some functional predictors do not contribute to the the classifica

tion, and selecting a subset of them may actually improve the classification accuracy. 

In our application of fluorescence spectroscopy data, there are also economic reasons 

for using a subset of the J functional predictors. To this end, we introduce a hyper-

parameter r to the priors of /3j(£), where r = ( r i , . . . , TJ) and each component takes 

value either 1 or 0, indicating whether or not the corresponding functional predictor 

is selected. Note that this r parameter is different from the r used in the model of 

Chapter 3 in that each component determines whether the whole functional predictor 

is selected or not, as we will show in the following text. The proposed priors for a 
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and f3lj(t) are: 

a~N(0,allq), 

(3\{t)\(3Q
j{t\Tj,ol~GP{f3lahTj), 

flWlr^GPfroZir,), (5-2) 

Tj | Uj ~ Bernoulli (CUJ), 

a\ | di, d2 ~ Inv-gamma(di, 0̂ 2), 

where of, <7Q, di, c?2, Wj are pre-specified prior parameters. GP(n, 7) represents a 

Gaussian process with mean ^t(t) and covariance function j(s,t). We let 7Tj. depend 

on 7̂  by 
00 

7rj.(S,i)= [^ + ^(1-^)] J ]^( S )^( t ) , (5.3) 

where { f ^ } ^ is a complete orthonormal basis of L2[Tj]. Note that the infinite sum 

in Equation (5.3) is a perfectly general form for a covariance function; it is simply 

the spectral representation of a covariance function (Ash and Gardner [3]). We will 

treat {4>{}'kLi and {wl}^=1 as prior parameters and make specific choices of them. In 

Equation (5.3), we let V\ » vQ > 0 and set v0 to be close to 0. Under this setting, 

both Plj(t) and Pj{t) have covariance functions close to 0 when Tj = 0 (i.e., the jth. 

functional predictor is not selected), and have relatively large variances when TJ = 1 

(i.e., the jth functional predictor is selected). This type of prior is motivated by 

George and McCulloch ([21], [22]) where they use mixture-normal priors for variable 

selection. The w^s in Equation (5.3) are pre-specified positive weight parameters 

subject to Yl'kLi^k < °° f°r a n •7's- We determine w3
k using the way suggested 
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in Section 3.5 in Chapter 3. For simplicity, we assume that the priors of /?](£) are 

independent for all j and I, and priors of Tj are independent for all j . In order to 

do practical posterior inference, we construct finite dimensional approximations to 

the functional predictors and coefficients. This is described in detail in Section 5.2.2 

below. 

5.2.2 The Posterior Inference 

From Equation (5.1) and the standard normal assumption of e-, it is easy to see that 

the conditional distribution of z\ given y\, a and /?](£) is a truncated normal: 

<<0}-f{3/1=1} + Az!>0}A24=0}}> (5 - 4) 

where fiz = (s\)Ta + Ylj=i IT xij(t)0lj(t)dt- Since {(^k}kLi is a complete orthonormal 

basis of L2[Tj], similar to (3.4) in Chapter 3, we can expand x[j(t) and /3j(£) by 

oo oo 

*y(0 = ECU^W> %{t) = EW(<) . (5-5) 
fc=l k=\ 

and use the truncated version of (5.5) to approximate them. If assuming that x\j(t) 

has zero mean and fT E[x[j(t)2]dt < oo, we can estimate eigenfunctions using func

tional principal component analysis and treat them as the orthonormal basis. The 

resulting coefficients {c-jfe}^=1 are the functional principal component (FPC) scores 

of x[j(t). These steps are similar to what we have done in Section 3.4 of Chapter 3. 

Based on the estimated orthonormal basis coefficients or the FPC scores, we can 
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reduce (5.1) by applying the truncated approximations in (5.5), which gives 

*[=(̂ f* + £ E i A + 4 (5-6) 

where pj is the truncation parameter for the j th functional predictor. We propose 

to determine Pj's by setting a function approximation criterion as suggested in Sec

tion 3.5. The notation of Equation (5.6) can be simplified by concatenating coeffi

cients of the J functions to make one vector bl. The simplified form of Equation (5.6) 

is: 

Zt = Sta + CM + Q, (5.7) 

where Zi = (z[,..., zl
ni)

T and e/ = (e^,. . . , el
ni)

T. Here Si is a matrix of size ni x q 

with the ith row equals (s[)T, and Ci is a matrix of size rii x p [p = J2^=iPj) w ^ n 

the ith row equals 

(J J J J J J \T 

% = 1 , . . . , nt. Similarly, bt = {bl
n,..., b[pi,b

l
21,..., bl

2p2,..., tfJV ..., bl
Jpj)

T. Based on 

(5.7), the conditional distribution of the latent variables in (5.4) becomes 

Zi\a, bu Yt ~ TN(Sia + Qbh /„,) n ^ o } 7 ^ ! } + 7{*<>o}70/<=°})' (5-8) 

where 1/ = (t/1;... ,yl
n). The truncated orthonormal basis expansion or FPC anal

ysis also reduces the Gaussian process priors for /?](£) and f3j(t) to the following 

multivariate normal priors 

&,|&o,<76
2,T~JV(60,a6

2ET), 
(5.9) 

6o|r~iV(0,a2ET) , 
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where E r = DTW1^2RW1^2DT. Here R is the prior correlation matrix of bi and b0. 

By the assumption in Section 5.2.1 that /3j-(t)'s are independent for all j ' s , R = Ip, an 

identity matrix. W is also a diagonal matrix of size p, with positive diagonal compo

nents (w\,..., M;^, . . . , w{,..., w^). In other words, the diagonal of W concatenates 

the first pj components of the weight sequence {Wk)T=ii3 = 1, • • • j «/• DT is another 

diagonal matrix with diagonal components 

[Ui,..., u p i , . . . , Ui,..., upj), 

where u\ = vXTj + z/0(l — Tj), for all k = 1 , . . . ,pj, j = 1 , . . . , J . Note that u3
k does 

not depends on k. 

With the conditional distribution (5.8), the priors for a, r and of in (5.2), and 

the reduced multivariate priors for fy and b0 in (5.9), we get the joint conditional 

posterior distribution of a, fy's, b0, o\, r given Z{s and Yj's by 

7r(a, 6 i , . . . , 6L, &O, O|, r |Zj, 1 ,̂ Z = 1 , . . . , L) 

(5.10) 
Ij7r(Z, |a, bh b0, o\, r, Yi)n(bi\b0, a6

2, r) oc 7r(fe0|T)7r(a)7r(r)7r((T6). 

The parameters a, fy's and b0 can all be integrated out sequentially from (5.10), which 

gives the marginal conditional posterior density 

Tx{alT\ZuYhl = l,...,L). (5.11) 

See Appendix A for details of the integration. Based on (5.8), (5.10) and (5.11), 

we design MCMC algorithms to obtain posterior samples of the parameters. The 
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posterior samples of Vs can then be used to estimate /3j(£)'s. For new observations, 

we use the estimated /?j(i)'s and the posterior samples of a for prediction. 

5.3 Markov Chain Monte Carlo 

Based on the model constructed in Section 5.2, we propose two MCMC algorithms for 

posterior sampling. The first one is a hybrid Metropolis-Hastings/Gibbs sampler, and 

the second one is a modified version of algorithm 1 which uses the EMC algorithm to 

improve the mixing when the number of functional predictors is relatively large. 

5.3.1 Algorithm 1 

(A Hybrid Metropolis-Hastings/Gibbs sampler) 

Step 0. Set initial values for bi's, a, r and a\. 

Step 1. For I = 1 , . . . , L, conditional on Yi, and current values of bi and a, update 

Zi from the truncated normal distribution described in Equation (5.8) of Sec

tion 5.2.2. 

Step 2. Update a\ based on ir(a%\T,Zi,Yi,l — 1, . . . ,L). Sample a proposal a\ by 

log of = log of + e, with e ~ N(0,82). 5 is an adjustable step size. Compute 

the ratio 

R _7r(al\r,Zl,Yl,l = l,...,L)a2
b 

° -K{al\r,Zl,Yl,l = l^..,L)al 

and update o\ = o\ with probability min(l, Rc). 
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Step 3. Update r based on ir(T\a%,Zi,Yi,l — 1,... . ,L) . Generate a proposal f by 

"switch/swap", i.e., with probability f, randomly swap one 1 term with one 

0 term; and with probability 1 — £, randomly pick one position and switch it. 

Then let 

7 T ( 7 K , Z t , I = l , . . . , L ) 

UT 7r(r\alZul = l,...,L) 

and update r = f with probability min(l, Rr). 

Step 4. Update a conditional on current values of of, r and Z/ through the conditional 

distribution ct|of,T, Zj ~ N(/j,a, Va), where \xa and Va are defined in Web 

Appendix B. 

Step 5. Conditional on current values of a, of, r, Zi, update b0 by b0\a,al,r,Zi ~ 

N(no, Vo) where //0 and Vo are defined in Web Appendix B. 

Step 6. Conditional on current values of b0, a, of, r and Zi, update fo/, Z = 1 , . . . , L by 

fy|&o, a, of, T, Z\ ~ iV(/i/, V;) where \xi and VJ are defined in Web Appendix B. 

Repeat Step 1 — 6 until convergence. 

In Appendix C, we verify that MCMC algorithm 1 converges to a unique equi

librium distribution, which is our posterior distribution defined in Section 5.2. The 

"switch/swap" proposal used in Step 6 is similar to the methods used in Brown et 

al. ([8], [9]). Our simulation shows that if the number of functional predictors is 

small, this type of proposal can locate the correct value of r within a few iterations. 

However, when the number of functional predictors is large, the size of the searching 
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space for r increases at an exponential rate. The "switch/swap" proposal can hardly 

find successful proposals because of the discrete nature of the large state space, thus 

results in extremely low acceptance rate (e.g., acceptance rate less than 0.1%). 

In order to obtain better mixing for r, we construct a more effective EMC algo

rithm based on algorithm 1. The EMC algorithm is a MCMC scheme that inherits 

the attractive features from both simulated annealing and genetic algorithm. It simu

lates a population of I Markov chains in parallel, each with a different "temperature". 

The temperatures are ordered decreasingly to form a "ladder". For each chain, the 

posterior is transformed according to its temperature. Denote the target posterior 

distribution as TI(8) and the temperature for the zth chain as U, the transformed pos

terior for the ith chain is 7Tj(#) OC ^(O)1^1. Depending on tj, such a transformation 

makes the unnormalized target posterior density more flat or more spiky. The EMC 

algorithm improves the Metropolis-Hastings updates by introducing three operations: 

mutation, crossover and exchange. These operations allow both independent updates 

for each chain and interactions between neighboring chains. We introduce more de

tails of the EMC algorithm in Appendix D. More information about EMC can be 

found in Liang and Wong [39], Liu [40], Goswami and Liu [24], and Bottolo and 

Richardson [7]. 

When using the EMC algorithm, there are several crucial parameters need to be 

determined: the number of chains / , temperature of each chain and the maximum 

temperature. We adopt a simple method suggested by Bottolo and Richardson (2008) 
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to set temperature for each chain, which uses a geometric sequence and adjusts the 

common ratio in a burn-in period so that the acceptance rate for the exchange oper

ation is close to 50%. For the number of chains and the maximum temperature, we 

suggest to choose the number of chains to be around J/2, and choose the maximum 

temperature between 10 and 103 according to experience. The algorithm stated below 

gives details of the EMC algorithm for our proposed model. In this algorithm, we 

borrow the idea of Bottolo and Richardson [7], where they update the main parame

ter of interest (the 7 parameter in their setup) using EMC with multiple chains, and 

update the nuisance parameter (the r parameter in their setup) conditional on the 

main parameter obtained from the chain with temperature 1. 

5.3.2 Algorithm 2 (EMC) 

Step 0. Set initial values for fy's, a, T and o\. And set up an initial temperature 

ladder: t\ > £2 > > ti > 0 with the initial ratio of the geometric sequence 

a = ti+i/ti,i = 1,...,J. We adjust the temperature ladder so that t\ is 

bounded by the maximum temperature and set one temperature to be exactly 

1. Let the step-size for adjusting temperature be 5a = log2(a)/n, where h 

is the ratio of the burn-in period to a block size (usually 100). Set value 

for parameter q, the probability of mutation and crossover, and for £, the 

probability of switch and swap within the mutation step. 

Step 1. Run step 1 — 2 in algorithm 1 based on the chain with temperature equals 1, 
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obtain samples of Z{s, and of. These steps should be identical with those in 

algorithm 1 since temperature value 1 does not modify the posterior density. 

Step 2. Conditional on current values of Zi's and of, update r according to the fol

lowing steps in 2.1 and 2.2. For convenience, here we denote 7r(r|af, Zi, Y/, I = 

1 , . . . , L) as 7r(r|-). 

Step 2.1. (mutation/crossover) With probability q, perform a mutation step inde

pendently for each chain, i.e. "switch" or "swap" with probability £, as 

described in step 3 of algorithm 1. Denote the mutated value as f and 

compute the log ratio logrm = [log7r(f |-) — log7r(r|-)] /t, where t is the 

temperature of the chain. Update r = f with probability min(l,rm). 

With probability 1 — q, perform a crossover step [1/2] times, where [1/2] 

denotes the integer part of 1/2. The crossover is conducted as follows: 

selecting a pair of chains (i,j) according to some selection rules (see Liu 

(2001)), and exchange the right segment of the two r 's from a random 

point. Denote the old values as ( T \ T-7'), and the crossed values as (fl, fj), 

we then compute the log ratio: 

log7r(f*[-)-log7r(T*|-) , log7r(^l-)-log7r(^l-) M _ r((r',^)l(f\F)) 
S C ~ U + t, + gT((fS^)|(rS^)) 

where T{x\y) is the transition probability from y to x. (f^-P) are ac

cepted with probability min(l, rc). 

Step 2.2. (exchange) Exchange r values from two adjacent chains / times, i.e., 
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randomly choose T1 and r J from neighboring chains, and compute the log 

ratio: 

logre = [log7r(rJ'|-) - log^r '!-)] ( \ l) 
LjZj 

exchange rl with r J with probability min(l,re). 

Step 3. Conditional on current values of Zi's, a%, and current sample of r from the 

chain with temperature 1, run Step 4 — 6 of algorithm 1 based on the chain 

with temperature equals 1, obtain samples of a, b0 and b. This step should be 

identical with Step 4 — 6 in algorithm 1. 

Step 4. For every block of iterations within the burn-in period, we adjust the tem

perature ladder according to the acceptance rate of the exchange operations 

within this block. A new geometric ratio a is computed by log2 a = log2 a±5a, 

where the "+" sign is used when we would like to reduce the acceptance rate 

of exchange. The new temperature ladder then is applied to the next block of 

iterations. 

Repeat Step 1 — 4 until convergence. 

The above algorithm is an extension of algorithm 1. We have applied the EMC 

algorithm to the step of updating r, while keeping the update of all other parame

ters the same as in algorithm 1, similar to the algorithm in Bottolo and Richardson 

[7]. As shown in simulation 2 and real data application, this algorithm seems work 

well. However, by now we haven't been able to figure out what the target posterior 
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distribution looks like under this algorithm setup, and we haven't been able to prove 

that the target distribution associated with this algorithm will result in a station

ary distribution for the whole chain. The proof of the convergence remains an open 

problem. 

5.4 Setting Parameters 

In Section 5.2.1 and Section 5.2.2, we suggest to determine the truncation parameters 

Pj and the weights { i t ^ } ^ ! using the method in Section 3.5. Besides pj and {w3
k}'%L1, 

there are several other priors need to be set, including of, OQ, (di,d2), w/s and (vi, 

Among these parameters, o\ and o\ are scaling parameters in the covariance of 

a and /3°(£)'s. We usually set them between 10 and 100. Larger values also work 

but don't have significant influence to the posterior estimation of a and /3°(£)'s. The 

parameter ujj reflects the a priori belief on the probability that the j th functional pre

dictor is selected. If no further information is available on the preference of selecting 

certain functional predictor, we can set Uj to be a constant across all j's, which is the 

proportion of functional predictors we expect to select. d\ and d2 are the parameters 

of the inverse-gamma prior for the scaling parameter o\. To determine these two 

parameters, our suggestion is to set up a mean and variance for the inverse-gamma 

prior and solve for d\ and d2. For example, if one set the inverse-gamma prior for a^ 

with mean 1 and variance 80, the resulting solution is d\ = 2.01, d2 = 0.9. On the 



91 

setting of (vi, v0), since we have scaling parameters a\ and crfi for yTj, we usually fix 

v\ = \ and set u0 close to zero (e.g, v\ — 10 -6). 

Other parameters, such as 5, q, £ and a, also need to be determined in the two 

MCMC algorithms. Parameter 5 affects the acceptance rate of o\. It turns out that an 

empirical value of 5 between 0.5 and 2 yields acceptance rate approximately between 

20% and 60%. Parameter q in algorithm 2 determines the probability of mutation, 

which is usually set to be 0.5. Another parameter £ determines the swapping proba

bility in step 3 of algorithm 1 and in the mutation step in algorithm 2. No significant 

improvement on the acceptance rate of r is found when adjusting the values of £, 

so we usually set it to be 0.5. The geometric ratio a in Algorithm 2 controls the 

temperature ladder, and the initial value of a is usualy set to be 4. 

5.5 Simulation Results 

We conduct two simulation studies to evaluate the performance of the proposed model 

for functional data classification. In both simulations, we generate data with random 

effects and fixed effects. Simulation 1 uses only 4 functional predictors, in which case 

Algorithm 1 is expected to work well. Simulation 2 raises the number of functional 

predictors to 20, and algorithm 1 suffers slow mixing. Algorithm 2 is used, which 

improves the mixing for posterior samples of r. 
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5.5.1 Simulation 1 

We generate n = 1000 i.i.d. observations, using 2 non-functional predictors and 4 

functional predictors. For the non-functional predictors, one of them is generated 

from a uniform distribution on [0,1], the other is a binary variable. The 4 functional 

predictors are generated using the first 10 orthonormal cosine bases on interval [0,1], 

i.e., using 4>o(t) = 1, <fik(t) = V%cos(kirt), k = 1 , . . . , 9 (see Eubank (1999) for details 

of cosine series). The random effect has two levels, which result in two vectors of 

coefficients: fy, I = 1,2. We set the true value of r to be (0,1,0,1), indicating that the 

first and the third function do not contribute to the model, i.e., (3[(t) = (3l
3(t) = 0, V7. 

Other parameters used to generate the data are set as a^ = 10, a\ = 10, o\ = 5, 

and v\ = 1. The weights {w3
k}^=l used for the prior covariance are determined using 

parameters mi = 0.8, ra2 = 3. The binary responses are generated based on (5.1) 

using numerical integration. After data generation, we randomly split the data into 

a training set with 800 observations and a test set with 200 observations. 

The proposed model in Section 2 is applied to the training data. We use FPC 

to construct the orthonormal basis and set the approximation criterion described in 

Section 5.4 to be cx = 0.99, which results in pj = 4 for all j . Based on the FPC 

scores, the model is trained using Algorithm 1 with the following prior parameters: 

al = a\ = 100, di = 2.01, d2 = 0.9, Wj = 0.5, v\ = 1, and v\ = 10~6. The prior 

parameters for the weight matrix W is set by letting mj = 0.9, m2 = 2. Other 

parameters in the MCMC are set as follows: 5 = 0.9, which gives an acceptance 
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rate of a\ around 45%; £ = 0.5, which is the swapping probability in step 3 of al

gorithm 1. After 10000 iterations with a burn in period of 4000, we find that the 

posterior samples of r converge to the true r within 50 iterations. The estimated 

marginal posterior probability P{TJ = l,j = 1,...,4} = (0,1,0,1), indicating that 

our algorithm has successfully selected the second and the fourth functional predictor 

as expected. Figure 5.2 shows the autocorrelation plot of the posterior samples of 

of and the corresponding histogram plot. We check the convergence of a\ using the 

Geweke convergence diagnostic test (Geweke 1992). This test uses the first 10% and 

last 50% of the posterior a\ samples, and yields a Z-score of —0.67, indicating appro

priate convergence. Note that since the orthonormal bases used for estimation and 

data generation are different, the posterior estimates of fy's and &o are not comparable 

with the true values. Figure 5.3 shows the posterior means of the coefficient functions 

and the corresponding simultaneous 95% credibility bands for the non-zero coefficient 

functions, together with the true functions. The simultaneous credibility band is ob

tained by finding a constant M, such that 95% of the simulated posterior functions 

fall into the interval /3j(£) ± Maj(t), Vt, where /3j(t) and <Jlj{t) are the posterior mean 

and standard deviation of the coefficient functions. From Figure 5.3, we see that the 

true coefficient functions lie in the 95% confidence bands. 

After the training step, the estimated coefficient functions are applied to the test 

set to get the posterior predictive probability. Treating yi — 1 as diseased and yi = 0 

as normal, the prediction on the test set gives sensitivity 93% and specificity 99%, 
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Figure 5.2: Result of Simulation 1: The autocorrelation plot for posterior samples 
of a% and the corresponding histogram plot. On the bottom panel, the curve on top 
of the histogram is the prior density of a\. 
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Figure 5.3: The posterior estimation of the non-zero coefficient functions /?j(£) and 
their 95% credibility band, compared with the true coefficient functions used to gen
erate the data. Here j is the the index for mutiple functional predictors, and I is the 
index for batch. /3°(£)'s are the grand means of all batch coefficients. The solid lines 
denote the posterior mean; the dotted lines denote the 95% credibility bands; the 
dashed lines denote the true coefficient functions. We only listed the estimations for 
j = 2,4 since the functional predictors 1 and 3 are unselected and thus the associated 
coefficient estimations are close to zero. 
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with a total misclassification rate 4%. Note that the results reported here are obtained 

by maximizing the sum of sensitivity and specificity on the emprical ROC curve (see 

Zweig and Campbell (1993) for an introduction to ROC Curves). 

As mentioned in Section 5.3, in Algorithm 1 we use a Metropolis-Hastings step 

with a "switch/swap" proposal to update the parameter r . In this simulation, the 

searching space for r only has 24 possible values. The tracing of the posterior sam

ples of T shows that Algorithm 1 starts from a random value, reaches the correct 

value in only 6 iterations and stays there afterwards. However, as the length of r in

creases, the size of the state space increases exponentially, and the samples proposed 

by "switch/swap" can hardly be accepted. Simulations show that when the length 

of r goes beyond 8, Algorithm 1 suffers extremely low acceptance rate for r and the 

MCMC mixes very slowly. Therefore we suggest to use Algorithm 2 when more than 

8 functional predictors are involved. 

5.5.2 Simulation 2 

To evaluate the performance of Algorithm 2 when there are a relatively large number 

of functional predictors, we generate n = 1000 i.i.d. observations using the first 10 

cosine bases but increase the number of functional predictors per observation to 20. 

We set the true r to be a binary vector such that 8 out of the 20 components are l's. 

Other parameters are set to be the same as in simulation 1. Again, we split the data 

into training and test set as in simulation 1. 
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Similarly as in simulation 1, in the dimension reduction step, we set the approxi

mation criterion C\ = 0.99, which results in pj = 4 for all j . Eight parallel chains are 

used in Algorithm 2 with a maximum temperature of 100. To construct the temper

ature ladder, we set the geometric ratio starting at 4. Other prior parameters are set 

similarly as in Simulation 1. We perform 20000 MCMC iterations, in which the first 

5000 iterations are used as a burn-in period to adjust the temperature ladder, and 

another 5000 are treated as a second-stage burn-in period. Therefore the posterior 

inference is based on the last 10000 iterations. Coded in R language, the simulation 

takes about 11 hours when running on one dual-processor (900MHz Intel Itanium 2 

for each) login node (8GB RAM) of a computing cluster. The final temperature lad

der after the burn-in period adjustment is (100,6.79,1,0.031,0.002,1.4 x 10~4,9.8 x 

10_6,6.7 x 10 -7). We obtain several acceptance rates for diagnosis. The acceptance 

rate of of is 31%. The acceptance rates of r for different chains in the mutation 

operation are (0.25,0.02,0.001,9 x 10-4,8 x 10-4,6 x 10-4,5 x 10~4,4 x HT4), in 

the order of the temperature ladder. The acceptance rates for crossover and ex

change operations are 38% and 78%, respectively. We plot the estimated marginal 

posterior probability P{TJ = l,j = 1, . . . ,20} under three selected temperatures in 

Figure 5.4, together with the true value of r. This figure shows that at temperature 

100 the marginal posterior probabilities are non-zero for all components of r . The 

chains with temperature 1 and with the lowest temprature produce similar marginal 

posterior probilities, and they both pick out the correct functional predictors. The 
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Figure 5.4: The marginal posterior probabilities P{TJ = 1, j — 1 , . . . , J} at 3 different 
selected temperatures. The symbol * indicates the true value of each component of 
T. 

estimated regression coefficient functions are obtained and applied to the test set for 

prediction, with a resulting sensitivity of 91%, specificity of 99% and misclassification 

error of 5%. 

5.6 Fluorescence Spectroscopy Data Application 

The proposed model is applied to the fluorescence spectroscopy data introduced in 

Section 1.2. In this dataset, every EEM measurement is an observation with 16 

functional predictors, corresponding to the 16 excitation wavelengths. Our goal is to 

select a subset of the 16 curves in the EEM to reduce the cost of data collection, and 

perform classification based on the selected subset. 
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There are totally 2414 measurements taken from 1006 patients. Each patient has 1 

or more (up to 6) sites measured and some patients may have repeated measurements. 

All the measurements come from 6 device-clinic combinations, which we treat as the 

sources of random effects. We also consider two fixed effects: tissue-types, coded as 

1,2 and menopausal status, coded as 1,2,3, and treat them as non-functional predic

tors in the proposed model. After pre-processing (background correction, smoothing, 

etc), the total 2414 measurements are randomly split into a training set with 1353 

observations and a test set with 1061 observations. This partition is conducted at 

patient level, i.e., measurements from the same patient cannot exist in both training 

set and test set. The proportion of diseased observations in the training and test 

set are 10% and 9%, respectively. We use both cosine basis expansion and FPC to 

approximate functional predictors. To avoid possible bias, the computation of FPC 

scores for the test set is based on the eigenfunctions estimated from the training set. 

We determine the number of basis used for each curve by setting the approximation 

criterion cx = 0.998 for FPC, and c2 = 0.992 for cosine basis expansion. The re

sulting pj's lie between 2 and 4 for each functional predictor. The priors are set as: 

ol = a\ = 100, &x = 2.01, d2 = 0.9, w = 0.5, ux = 1, and u0 = 0.001. Using the way 

described in Section 5.4, the weight matrix W is determined by setting m,\ = 0.8, 

m,2 = 3. For both FPC and cosine basis expansion, we use 9 parallel chains, and set 

the initial geometric ratio a = 4. The maximum temperature is 10 in the FPC case 

and 5 in the cosine expansion case. Other parameters are set as: 8 = 0.9, q = 0.5, 
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Table 5.1: Real Data Application: The acceptance rates for the EMC algorithm 
based on two different function approximation methods. M-H denotes the Metropolis-
Hastings update. The vector values correspond to the acceptance rates of all chains 
at the temperature ladder stated in the text. 

Accept, rate Method using cosine basis Method using FPC's 
M-H for a'i 0457 0439 

Mutation for r (31,18,7,8,8,6,6,6,5) x 10~2 (39,28,18,10, 5,6, 5,4,4) x 10~2 

Crossover for r 0.23 0.20 
Exchange for r 0.44 0.48 

£ = 0.5. Similary as in Simulation 2, we perform 20000 MCMC iterations with 5000 

burn-in iterations for temperature ladder adjustment, and treat an additional 5000 

iterations as a second-stage burn-in period. The acceptance rates in both cases are 

listed in Web Table 1. In Figure 5.5, we plot the estimated marginal posterior prob

abilities P{TJ = l , j = 1 , . . . , 16} for both cases. From Figure 5.5, we see that the 

two basis expansion methods provide similar marginal posterior probabilities for r, 

and both methods show high probability of selecting functions at excitation 340 and 

400nm, followed by functions at excitation 470 and 480nm and others. The marginal 

posterior probabilities suggest the selection order of the functional predictors, higher 

quantities indicating higher priority of being selected. For example, if we would like 

to select 4 functional predictors, both methods of basis expansion suggest to select 

functions at excitation 340, 400, 470 and 480nm. The posterior estimate for o\ is 

0.253 using FPC, and is 0.248 using cosine basis expansion. 

The posterior inference for functional predictor selection can also be based on 



Marginal posterior of x using FPC 

~\—i—i—I—i—i—i—i—i—I—I—i 1—i 1 — r 
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Marginal posterior of x using Cosine basis 

n — i 1—i 1 1—i 1 1—i r 
370 380 390 400 410 420 430 440 450 460 470 480 

Figure 5.5: The marginal posterior probabilities P{TJ = l,j — 1 , . . . , 16} for both 
cases basis expansions. The top panel is based on FPC, the bottom panel is based 
on Cosine basis expansion. 

the joint posterior distribution of r rather than the marginals. In Figure 5.6, we 

plot the most frequently visited models for the two function approximation methods. 

Figure 5.6 shows that both methods select curves at excitation wavelength 340 and 

400nm with high frequency. The curves at excitation wavelength 470 or 480nm are 

also selected frequently but they rarely appear in the same model. 

The estimated regression coefficients are applied to the test set for prediction. 

Table 5.2 lists the prediction results in comparison with 5 other classifiers. Note that 

all the classifiers in Table 5.2 use both non-functional and all 16 functional predictors. 

In particular, the BVS model is the Bayesian variable selection method proposed in 

Chapter 3, which does not consider random effects and functional predictor selection. 
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Table 5.2: The prediction on test set results using the proposed model(BHFPS) com
pared with 5 other methods. Two methods of dimension reduction are used: cosine 
series expansion and functional principal component analysis. AUC: Area under ROC 
curve; MisR: misclassification rate; Sens: sensitivity; Speci: specificity; BHFPS: the 
proposed Bayesian hierarchical functional predictor selection model; BHVS: Bayesian 
hierarchical variable selection model; BVS: regular Bayesian variable selection model; 
KNN: K-nearest neighbor; LDA: linear discriminant analysis; SVM: support vector 
machine. See text for explanation of BVS and BHVS models 

Method 
BHFPS 
BHVS 
BVS 
KNN 
LDA 
SVM 

Using Cosine basis expansion 
AUC 
0.817 
0.819 
0.802 
0.697 
0.796 
0.657 

MisR 
24.2% 
25.6% 
28.1% 
27.7% 
27.3% 
56.6% 

Sens 
74.7% 
76.8% 
76.8% 
62.1% 
74.7% 
85.3% 

Spec 
75.9% 
74.1% 
71.4% 
73.3% 
72.5% 
39.2% 

AUC 
0.822 
0.824 
0.819 
0.718 
0.804 
0.679 

Using FPC 
MisR 
21.2% 
27.2% 
30.5% 
32.1% 
25.0% 
38.4% 

Sens 
72.6% 
77.9% 
84.2% 
71.8% 
75.8% 
68.4% 

Spec 
79.4% 
72.3% 
68.0% 
74.7% 
74.9% 
61.0% 

The Bayesian hierarchical variable selection (BHVS) is an extension of the BVS model 

which considers random effects by a hierarchical setup, but does not perform func

tional predictor selection. From Table 5.2, we see that the proposed method (BHFPS) 

provides comparable prediction results with BHVS. Both BHFPS and BHVS obtain 

slightly higher AUC scores than the BVS model does. Table 5.2 also shows that the 

two orthonormal basis expansion methods are comparable in their prediction ability, 

although the cosine basis expansion method has slightly lower AUC than the FPC 

method. In Figure 5.7, we compare the empirical ROC curves for models listed in 

Table 5.2 based on the FPC method. 

Based on the functional predictors selected by the proposed model, other classi

fication algorithms can be trained independently using the selected curves only. For 



104 

ROC curves for the test set prediction 
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Figure 5.7: ROC curves obtained by test set prediction using the proposed model 
compared with 5 other classifiers, where BHFPS, BHVS,BVS, KNN, LDA, SVM are 
defined in table 5.2. 
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example, trainning the BHVS model on the first 4 functional predictors selected by the 

proposed model (based on the marginal posterior of r) gives sensitivity 77.9% and 

specificity 70.0%, with corresponding AUC 0.819 and misclassification rate 20.7%. 

Compared with those in Table 5.2, we see that these prediction results are as good 

as those based on all the 16 curves. Hence it is possible to achieve a high prediction 

power by using a subset of functional predictors. Using the selected curves, a new 

device can be constructed which reduces cost and saves measurement time. 

5.7 Discussion 

Motivated by practical problems on functional data classification, we have proposed 

a Bayesian hierarchical model to deal with the situations when functional predictors 

are contaminated by random batch effects. Inferences based on this model help to 

select a subset of functional predictors for classification. This model is applied to 

an application problem which uses fluorescence spectroscopy data for pre-cervical 

cancer diagnosis. The results suggest that it is possible to build more cost-effective 

device with less spectral curves. In this section, we discuss some issues related to the 

proposed model. 

The first one is about the prior correlation matrix of /3j(i). When setting priors 

for the coefficient functions in (5.2), we assume that /3j(t) are independent for all j 

and I, which leads to the prior correlation matrix R = Ip in (5.9) after approximation 

by basis expansion. This is just a simplified prior choice. It is possible to allow the 
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priors for /?](£) to be correlated. For example, we may assume that (P[(t),..., (3lj(t)) 

has a multivariate Gaussian process, as done in Morris and Carroll (2006). In such a 

case, it may be difficult to determine the prior correlations and the resulting posterior 

computation may be complex. 

Another issue is about the necessity of using a hierarchical structure to adjust 

for batch effects. As we have pointed out in Section 5.1, for data obtained from an 

unbalanced experimental design, classification can be easily biased by batch effects. 

Algorithms which do not adjust for batch effects may result in classification based 

on batch difference, rather than the disease information. Using a hierarchical model 

is a natural way to model the batch structure. In our real data application, the 

hierarchical models (BHFPS and BHVS) are more preferable as they account for 

possible batch effects, although they may not necessarily improve prediction over 

models like BVS (see Table 5.2 and Figure 5.7). In fact, we should not always expect to 

improve the prediction by accounting for batch effects, since with a bad experimental 

design, a classification algorithm can get prediction as good as 100% sensitivity and 

specificity, by simply using the batch information (Baggerly et al., 2004). 

As a side note, in our simulation and real data applications, we train the proposed 

model using data from all batches, and make predictions based on observations with 

the same batch information. Prediction on observations from new batches is also 

applicable. However, it is natural to expect that the prediction will be worse when 

predicting on new batches, since the random effect of the new batch is unknown when 
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training the model. 

Finally, like many other regression problems, when there exists severe collinearity 

between the functional predictors, a unique solution for the "best" subset may not 

be guaranteed using our proposed model. In this case, exploring functional predictor 

selection from a Bayesian decision theory point of view may provide a solution. 



Chapter 6 

Priors for Covariance Operators in 

Functional Data Analysis 

In this chapter, we discuss the properties of covariance operators of functional data 

and the conditions for formulating appropriate priors for such covariance operators. 

We also propose a prior and prove some of its mathematical properties. 

6.1 Grid Refinement Invariance Principle 

Although functional data ideally live in infinite dimensional space, they can only be 

collected and stored in finite dimensional (multivariate) form. They are typically 

recorded either on some fine grids or in forms of finite linear combinations of basis 

functions. For example, for a random function X(t) defined on a compact domain 

T e l , one can discritize T on a grid of p points, Tp = (t\,..., tp)
T. A realization 
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of X(t), x(t) can thus be stored in a vector form x = (x(ti),... ,x(tp))
T, although 

p can be very large and x(U) can be very close to x(ti+i). A linear interpolation of 

x on the grid Tp provides an approximation of x(t). Statistical methods which treat 

functional data as multivariate fail to make use of the "functional structure" of the 

data. The study in this chapter is motivated by a general priciple of functional data 

analysis stated as follows: 

Grid Refinement Invariance Principle (GRIP) As the order of approxima

tion becomes more exact, i.e., the grids become finer or the upper limit of the basis 

function expansion tends to infinity, the functional data analysis method should ap

proach the appropriate limiting analogue of the true functional (infinite dimensional) 

observations. 

Under GRIP, we would like to look for functional data analysis models that are 

appropriately defined in the infinite dimensional space and project them down to 

finite dimensional space in implementation. This makes it necessary to investigate the 

properties of functional data in infinite dimensional space. We study these properties 

based on the theoretical structure of Gaussian measures. 

6.2 Gaussian Measures 

We follow Prato [56] to define Gaussian measures but use slightly different notations. 

Let H be a separable Hilbert space with inner product (•, •) and norm | • | = ^/(-, •). In 

this chapter, we assume that H is associated with a real scalar field. For convenience, 
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we write a sequence {xkj^i in H as (xk). Let B(H) be the Borel a—field on H. 

We use L(H) to denote the Banach algebra of all continuous linear operators from 

H to H, and L+(H) represents the subset of L(H) which contains all symmetric and 

nonnegative definite operators, i.e., 

L+(H) = {Ae L(H) : (Ax,y) = (x,Ay),V x,y e # ,and (Ax,x) > 0,Vz G H}. 

Furthermore, we denote as L^ the subset of L{H) that are trace class operators, in 

the sense that if A G L(i), then (A*A)1!2 has eigenvalues {Xk}T=i w ^ n Sfeli f̂c < oo. 

The trace of A G L(i) is defined as 

oo 

TrA = J2(A^k,ek), (6.1) 
fc=i 

where {e^^i is an arbitrary complete orthonormal sequence (c.o.n.s.) of if. LtJH) 

represents the set of all operators in L+(H) n L(i)(H). We call operators in LtJH) 

S—operators. 

6 . 2 . 1 Gaussian Measures Defined on Finite-dimensional Hilbert Space 

For a pair of real numbers (m, s) with s > 0, we define the one-dimensional Gaussian 

measure (with mean m and variance s) on (R, #(R)) by 

1 _(*-m)2 

{J>m,s{dx) = rK—e 2s "x-
V27TS 

We also allow s = 0, in which case, for all A G #(R), 

1 if ra e A 
lhn,o(A) = 5m(A) = ' 

' 0 i f ra^A 
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For a d-dimensional Hilbert space H and S G LtJH), we can find the set of eigen

vectors of S, denoted as (e i , . . . , e^), which is orthonormal and satisfies 

Sek = Afcefc, k = 1 , . . . , d, for some A& > 0. 

For any x £ H, if x^ = (rr, e^), k = 1 , . . . , d, H can be identified with Rd through an 

isomorphism 7: 

y.H —• Rd, and 7(3) = (xu ..., xd), Vx G # . 

We then define the Gaussian measure on (Rd,#(Rd)), hence on (H,B(H)) by 

Vm,S = Xfc=i ^mfc.Afc, (6 .2 ) 

which is a product measure formed by d one-dimensional measures. It is easy to show 

the following properties of finite dimensional Gaussian measures: 

Proposition 6.2.1. Let TO G H, S G LtJH). For fim,s defined in (6.2), we have 

\ xixmtS{dx) = TO, 
JH 

j (y,x- TO)(Z,x - m)nmts(dx) = {Sy, z),Vy,zeH. 
JH 

The characteristic function (Fourier transform) of fj,m,s *s 

j^s(h) := f e'^fj^sidx) = e<™.">-§ W > , h e H. 
JH 

TO and S are called the mean and covariance operator of fj,mts- Furthermore, the 

Gaussian measure is uniquely determined by its characteristic function. 
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6 .2 .2 Gaussian Measures Denned on Infinite-dimensional Hilbert Space 

Now assume that H is a infinite dimensional separable Hilbert space. We first define 

the mean and covariance for a measure \i on (H,B(H)). Suppose fH \x\fj,(dx) < oo, 

for any h E H, the linear functional / : H —• R with 

f(h) = / (x,h)fi(dx),h 
JH 

eH, 

is continuous since 

\f(h)\< [ \x\n(dx)\h\,heH. 
JH 

By Riesz representation theorem ([81], page 90), there exists a unique m E H such 

that 

(m,h)= / {x,h)n(dx),h E H. 
JH 

We call m the mean of fi and write m = j H x^(dx). Now suppose fH \x\2/j,(dx) < oo. 

We consider the bilinear map g : H x H —> R such that 

g(h.,k)= / {h,x — m)(k,x — m)/j,(dx),h,k E H. 
JH 

It is easy to see that g is continuous since 

\g{h,k)\< I \x-m\2n(dx)\h\\k\,h,keH. 
JH 

Again, by Riesz theorem, there is a unique linear bounded operator S E L(H) such 

that 

(Sh,k)= / (h,x-m){k,x-m)n(dx),h,k E H. (6.3) 
JH 
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We call S the covariance of /J.. It is easy to show that S is symmetric and nonnegative 

definite. Also, by the definition of trace in (6.1), 

TvS = 2_,(Sek,Ck) = 2_j I (ek,x— m)2iji(dx) = / \x — m\2(j,(dx) 
fc=i fc=i J*1 ^H 

< 00, 

where the last equality is by Parseval identity (and monotone convergence theorem), 

therefore S E L+1} (H). 

Definition 6.2.2. Gaussian Measure Let m G H and S G LtJH). A Gaussian 

measure \i := fj,mis on (H,13(H)) is a measure /J, with mean m, covariance operator 

S and characteristic function 

p^s(h) = exp{i(m, h) - -{Sh, h)},h e H. 

The Gaussian measure fim,s is called non-degenerate if Ker(S) = {x G H : Sx = 

0} = {0}. [56] 

Prato [56] shows the existence and uniqueness of a Gaussian measure through the 

following proposition: 

Proposition 6.2.3. For anym £ H and S G LtdH), there exists a unique Gaussian 

measure fi = fj,mis on (H, 13(H)).[56] 

Proof. We summarize Prato's proof here. First, since if is a infinite dimensional 

separable Hilbert space, we can define a projection mapping Pn : H —• Pn(H) by 

Pn% — X)fe=i(;E>efc)efc)^a' e H- Then we have lim„P„a; = x, Vx G H. This holds for 

any c.o.n.s. (e^) of H. Since S G LtJH), there exists a c.o.n.s. (e&) and a sequence 
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of non-negative numbers (Afc) such that 

Sek = \kek,k <=.N. 

The existence of such (e&) and (A )̂ is shown in Theorem 1.5 (spectral representation) 

by Kuo[34]. A '̂s are called eigenvalues and e^'s are called eigenvectors. For any 

x G H, set Xk = (x,ek). This constructs an isomorphism 7 between H and I2 (The 

space of square summable sequences) defined by 

and 7(2) = (rcfc),Va; e H. Thus we can identify H with I2. Now we construct the 

product measure fi := xk%1fj,mktxk over the product space E°° := x^=1]R. The exis

tence of /j, is guaranteed by the extension theorem stated in Prato's book( [56],Theorem 

1.9). So it remains to show that \x is a Gaussian measure with mean m, covariance 

S. 

For he H,\(x,h)\< \x\\h\ and 

( / \x\ix{dx)f < I \x\2fi(dx) = I f]x2ii(dx) 
JH JH JR°° " 

00 ,. 00 

= Yl / xkVrnk,\k(
dxk) = J ] ( A * + ml) = Tr5 + \m\2 < 00. 

fe=i ^ R fc=i 

Hence by dominated convergence theorem, 

/ {x, h)fi(dx) = lim / {Pnx, h)fi(dx). 
JH

 n
 JH 
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But 

/ (Pnx, h)fi(dx) = y2 xkhkix(dx) 
JH k=1JH 

n „ n 

= ^2hk xknmk,\k(
dxk) = ^hkmk = (Pnm,h) —> (m,h), 

k=i ^ R fe=i 

as n —»• oo. Therefore m is the mean of /i. 

To determine the covariance (operator) of /i, we fix y, z £ if and let 

/ (x — m, y)(x — m, z)fi(dx) = lim / (Pn(x — m),y)(Pn(x — m), z)/j,(dx). 
JH

 n
 JH 

Since 

/ (Pn(x - m), y)(Pn(x - m), z)n(dx) = Y] {xk- mk)
2ykzk(j,(dx) 

JH k=l JH 

U p n 

= YlykZk I (Xfc ~ mk)2Vmk,\k(dxk) = Y^VkZk^k = (PnSy,z) —y (Sy,z), 
fe=i ^ R *=i 

as n —> oo. Therefore S is the covariance of \x. 

Finally, we verify that the characteristic function of /i is that of a Gaussian mea

sure. For h e H, 

f ei^fi(dx)= lim / e^ -^V (dx ) = lim TT f eix"h^mk>Xk(dxk) 
JH n-*°° JH n^°° kJ[ Jm 

n 

= lim TTe"Tlfc'lfc-5Afc'lfc = lim e
i<-p"m'/l>e-\{PnSh,h) 

n—»oo • 
fe=l 

_ ei(m,h)e-\{Sh,h)_ 

So the characteristic function of ^ is that of a Gaussian measure with mean m, covari

ance operator S. Therefore n = nm,s- Since the product measure on (JR00,^!!00)) is 

a unique extension of (R",#(Rn)), jJLm,s is unique. • 
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Proposition 6.2.4. A non-degenerate Gaussian measure on H is fully supported. 

[56] 

Proof. Let B(x, r) e B(H) be an arbitrary ball with center x € H and radius r > 0. 

We just need to show that nm:s(B(x,r)) > 0. Let An = {x e H : Y^l=ix\ ^ %} 

and Bn = {xeH: £ ~ n + 1 a^ < £ } . Then /i(£(0, r)) > MA> f| £«) = / / ( A X ^ n ) 

because An and i?n are independent([56],example 1.22). Clearly fj,(An) > 0. It suffices 

to show that fi(Bn) > 0 for n large enough. Now, by Markov inequality, 

2 °° C 
tx{Bn) = 1 - M^) > 1 - ~2 J2 / xl^d*) 

r k=n+ljH 

2 °° = 1~^ Yl (^k + m2
k)>0, 

k=n+l 

for n large enough. • 

6.3 A Possible Prior for Covariance Operators 

Suppose {Xi}™=1 are i.i.d. random elements taking values in a separable Hilbert space 

H. Let //(•) be a Borel measure defined on (H, 13(H)) such that fH \Xi\n(dXi) < oo 

and JH \Xi\2fj,(dXi) < oo. Let the mean of //(•) be zero and the covariance operator 

of //(•) be Ap. Then, 

{^x,y)= / (x,z)(y,z)fi(dz) 
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and Afj, G LtJH). In order to construct a prior for A^, we propose the following 

expansion 

oo 

A = Y^WjZj^Zj, (6.4) 

where Wj > 0 and £ \ wj < °°- The operation <8> is defined as 

(u®v)x = u{v,x), (6.5) 

for all u, v, x G if. Zj's are a priori assumed to be i.i.d. zero mean Gaussian random 

elements in H with a known covariance operator B e LtJH). We will show that the 

right hand side of (6.4) converges almost surely in L(i), and A is in LtJH). Therefore 

A is a L'tJH) random variable. The distribution of A can be used as a prior for A^. 

To construct a prior for the distribution of (6.4), several conditions need to be 

satisfied, which should be able to gaurantee that the resulting posterior is consistent. 

We say that a posterior distribution is consistent if the posterior measure on an 

arbitrary e-neighborhood (under some metric such as Hellinger metric) of the true 

underlying distribution approaches to a point mass almost surely when the number of 

observed samples approaches infinity. Proofs for posterior consistency under different 

assumptions can be found in some Bayesian nonparametric literature, such as Barron, 

Schervish and Wasserman [4], Ghosal,Ghosh and Van Der Vaart[23], Walker[75], and 

Walker, Lijoi and Priinster[76]. Most proofs for posterior consistency assume that the 

probability measures under study are absolutely continuous with respect to a cr-finite 

dominating measure. It remains an open question how to construct the consistency 

for random functions with infinite-dimensional Gaussian measures. 
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For a prior in the form of (6.4), we conjecture that A must take values from the 

space of LtJH) and the distribution of A must be fully supported on the whole space 

of LtJH). Intuitively, if we want the posterior distribution to be close to the true 

density, the prior distribution must put positive mass over a neighborhood of the true 

density. An supportive example can be found in Schervish's book ([67], page 430, Ex

ample 7.79). We will show in Theorem 6.3.1 and Theorem 6.3.4 that ]C*li wjZj ® Zj 

converges in LtJH) almost surely and its distribution is fully-supported on LtJH). 

Theorem 6.3.1. Let Zj G L2 be i.i.d. zero mean Gaussian random functions taking 

values in H, where H is a separable Hilbert space associated with norm \ • \, then the 

random covariance operator X)j=i wjZj <S> Zj is in LtJH) for every finite n, and 

n 

2_\ wjZj <8> Zj ^ A 

as n —*• oo for some A G LtJH). 

Proof Since the scalar field associated with H is real, {x,ay) = (ax,y) = a{x,y). 

1. First, we show that Zj <g> Zj is a random operator taking values in LtJH). 

Vi,?/ G H, we have 

{Zj (8) ZjX, x) = (Zj(Zj, x),x) = {Zj,x)2 > 0, 

(Zj (8) ZjX,y) = (Zj{Zj,x),y) = (Zj,x)(Zj,y) = (x,Zj <g> Zjy). 

This proves that Zj <2> Zj is positive definite and self-adjoint. To show that it 

is trace class, let (ej) be a c.o.n.s. of H, if we denote || • ||L(i) as the trace class 
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norm, then 

oo oo 

\\Zi ® ^IU(i, = ^2\(zi ® Z^> e*>l = H ^ . e i ) 2 = \ZA2 < °°-
1=1 j = l 

Now, for n fixed and Wj > 0,Vjf < n, and Vx,y G if, we have 

n n 

( ^ WjZj ®'Zjx,x) = ] T Wj(Zj, x)2 > 0, (6.6) 
j=i j=i 

n n n 

(£,*>& ®ZjX,y) = Y,^(Zj^){Zj,y) = (x^Zj ® ZjV), (6.7) 
j = i j = i j = i 

n oo n n 

W^WjZj ® Z,-||i(1) = ̂  K^Wj-Z,- ® ziehei)\ = ^2WJ\ZJ\2 < °°- (6-8) 
j-1 i = l j = l j = l 

This proves that ]CjLi WjZj <8> Zj E LlJH) for every finite n. 

2. Now let An = X)"=i ^ j ^ ® zj a n d -4 = ^ ° ! = 1 WjZj <g> Zj. Note that we will also 

need to show that A exists. The idea is to show that An is a Cauchy sequence 

almost surely. Let m > n, then 

m m 

\\Am - An\\Lm = \\ J2 ^iZ3®zi\\L(x)= Yl W3\Z3?-
j=n+l j=n+l 

Therefore we just need to show that Yl7=n+iwj\Z3\2 —* 0> a s m an(^ n aP~ 

proaches infinity, which is equivalent to show that the series YL°jLi wj\zj\2 c o n " 

verges(since Zj's are independent). This will be shown in the following (i.e., 

(a)-(c)) when we prove that A is trace class. 

Firstly, we have, 

A = lim } WjZj <g) Zj = lim An, 
n—>oo 

3=1 
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and 

(Anx,x) > 0 (by (6.6)) => (UmAnx,x) = lim(Anx,x) > 0, 
n n 

by the continuity of inner-product. Similarly, 

(Anx,y) = (x,Any) (by (6.7)) =>- (limAna;,2/) = (x,limAiJ/>-
n n 

Hence A is positive definite and self-adjoint. To show that A is trace class, we 

just need to show that ||^4||x,(1) < oo. For a c.o.n.s. (e^) of H, since 

OO OO OO 0 0 

PIU(D = II Y,™iZi®Zj\\LW
 = Z)WiZl<ZJ'e*>2 = YlWj\Zj\2> 

3=1 j=l »==1 j = l 

it suffices to show the a.s convergence of the random series E / l i wj\zj\2- We 

use Kolmogrov three series theorem [63] to show this. V c > 0, we have 

(a) E^KI^I2 >c} = E . i W > £] < E , ^ P = « Q > , ) < 

oo, by Markov inequality and Zj € L2. 

(b) £ , ^KI^ | 2 l { w , | z ,P< c } ] < Ej^mZjl2} = E[\ZA*\{Y,iVi) < ~ . by the 

fact that Zj are i.i.d. and Zj G L2). 

(c) We have 

J2 Var{W3\Z3\2l{wj\Z^<c\) 
3 

= ^Elw^Zjfl^zrfKc}} -22,E[wj\Zj\2l{Wj\Zj]2<c}f 
3 3 
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with 

3 3 

<'£cE[wj\Zj\
2}<cE[\Zl\

2}(Y^wj)<oc 
3 3 

and 

}]2 < f^^K|Zj|2l{TOi|Zj.|2<c}]j < oo, 

by E[wj\Zj\2l{WJiZj\2<c}] > OjVj' and results of part (b). Therefore, 

^VariwjlZjW^z^}) < oo a.s. 
3 

Thus \\A\\L(1) = YlT=iw3\zj\2 converges a.s. in L^(H). 

D 

Before stating Theorem 6.3.4, we first give the definition for the support of a 

measure as follows: 

Definition 6.3.2. Let n be a measure defined on a measurable space (Q,B). The 

support of fi (denoted as supp([j,)) is the set of all points u in Q for which every open 

neighborhood Nu of to has positive measure, i.e., 

supp(n) = {u> e tt\u e Q =4- /u(A^) > 0}. 

In some cases, we refer to the support of a random element as the support of the 

induced measure. In Definition 6.3.3, we define the induced probability measure for 

a random element following Resnick ([63], page 75). 
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Definition 6.3.3. Let (Q,B,/J,) be a probability space, and suppose 

X:(n,B).i-^(tf,&) 

is measurable. For A' C ft', let 

[X e A'] := X~l{A') = {u : X(u) G A'}. 

Define the set function fx o X~l on B' by 

HoX-\A') = n(X-\A')). 

Then fi o X~x is a probability on (Q1, B') called the induced probability or distribution 

of X, denoted as Law[X}. 

According to Definition 6.3.3, it is clear that supp(Law[X]) C Q,'. 

Theorem 6.3.4. / / we denote the measure of the random covariance operator A = 

Yl'jLi wjZj®Zj as Law[A], then Law[A] is fully supported on the whole LtJH) space, 

i.e., 

supp(Law[A}) = L^{H). 

Proof. Let A0 be a fixed operator in LtJH), it suffices to show that V e > 0 

P[\\A-A0\\Lm < e ] > 0 , 

where A denotes the random operator above. 
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1. We first show that the above statement holds for A0 being a finite rank op

erator in LtJH) with rank p. Since A0 £ LtJH), there exists orthonormal 

eigenfunctions {ej}^=1 and eigenvalues {bj}^=l such that 

A0ek = bi-ek, 

where bj > 0, Vj. Then we can write A0 = Y7j=\ bjej ® e-j and write 

oo p 

P[\\A- Ao\\Lw <e} = P[\\YJwjZj®Zj -^ej^ejW^ < e] 
J = I i= i 

>poi ^ ^•zJ-®zjiiL(1)<^- n p[\\WjZj®z0\\Lm<—e—- ] 
j=n+\ j=p+l 

e 
•nP[\\wjZj®Zj-bjej®ej\\Lw <—} 

3=1 6P 

Now we show that all the three factors in (6.9) are strictly positive. 

(6.9) 

(a) 

P[\\ J T Wjzs ® z,-||L(I) < i ] = i - P[| | J T WjZj <g> ^||L(1) > e-} 
j=n+l j=n+l 

oo 

.> X — —JE?[|| ] T « ^ ® Z j | | L ( 1 ) ] 

ex) 

I--E[Y, ™m\ 
j=n+l 

Since ^Cjl i^j l^ ' l2 converge a.s., we can take n > p and n large enough 

so that Yl'jLn+iwj\Zj\2 < e/6- Therefore, 

. j=n+\ 

, 3e 1 n > 1 - - - = - > 0 
€0 2 
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(b) For p < j < n, 

P[\\WjZj®Zj\\Lm<^r-^] = P 

= P 

wAZA2 < — r 
J l J l 3 ( n - p ) . 

\7 |2 / C 

1 J l 3Wj(n-p) 
> 0 

by the fact that Zj is fully supported on the whole Hilbert space H (Propo

sition 6.2.4). 

(c) For j < p, we show that the map from {^/wJJbjZj — ej, | • |) to (vjj/bjZj <g> 

Zj — ej ® ej, || • | |L (1 )) is continuous so that Ve/(3p) > 0, there exists 5 > 0 

such that 

I>/Wĵ 7 - V^ e j l < 5 => \\WjZj ® ZJ ~ &j'ej ® ejlU(i) < 3p' 

Let Z = y/v)j/bjZj, and let (e )̂ be the orthonormal basis of H extended 
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from the eigen-basis of B, then 

oo 

\\wjZj <g) Zj - bjej <g> ej | | i ( 1 ) = *^\{WJZJ ® Zj - bjtj <g> e^e,, e )̂ j 
i = l 

oo oo 

= J2 \wj{zi, e*>2 - hAeJi ei?\ = bi J21^'e^2 ~ te' e^2i 
i = l i = l 

= 6j- (|Z - {Z,ej)ej\
2 + \(Z,ej) + ( e^e^K^e , ) - (e,-,ej)|) 

^ ^ • ( i Z - e . f + KZ + e^e^lKZ-e^e,)!) 

< 6 i ( | Z - e i | 2 + ( |Z- e i H- |2e j | ) |Z - e i | J e i |
2 ) 

}j y/bj y/bj/ 

= 262 + 2y/b]8. (note \y/WjZj - y/b~ej\ < S =>• |Z - ê l < -7=) 
VbJ 

Therefore, we can let 5 be small enough so that \\wjZj®Zj—bjej®ej\\i,(1) < 

^-. Hence 

P [ I K ^ ® Z,- - bjej <g> e j | |L(1) < ^ ] > ^ O v ^ ^ - V ^ e i l < <*] > °> 

by the fact that Zj is fully supported on the whole H space. 

In summary, (a)-(c) show that all components in (6.9) are strictly positive. 

Thus the theorem has been proved for AQ being finite rank. 

2. If AQ is not finite rank, the set of finite rank Lts(i7)-operators is dense in 

LtJH), Ve > 0, so the e-neighbor hood of B contains at least one finite rank 

file:////wjZj
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operator, say Ak. Let \\AQ — Ak\\Lm = r, then 

{\\A - Ak\\hl) < T-} C {\\A - AQ\\LW < e}. 

Hence P{\\A-A0\\iw < e} > P{\\A- Ak\\kl) < §} > 0. By 1. and 2 , we have 

shown that the random operator A = Yl'jLi wjZj ® Zj is fully supported on the 

whole space of L'tJH). 

a 

6.4 A Markov Chain Monte Carlo 

In this section, we restrict the separable Hilbert space H to be L2(T) where T = [0,1]. 

A random element X taking values in H is called a stochastic process and is usually 

denoted by X(t). Suppose there are n such random processes {Xj(£)}"=1, which are 

i.i.d. with Gaussian measure //m, s, where m is the mean and E is the covariance 

operator such that Ker{Ti) = {0}. We construct a prior for E using the expansion in 

(6.4). The likelihood and priors are: 

Xi(t) | m , E ~ / V E , (6-10) 

m | E ~ /io, fcE, (6.11) 
oo 

E = c^WjZj^Zj, (6.12) 

Zj(t) ~ /io, a, (6.13) 

c ~ Inv-x2(4,rfb). (6.14) 
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Here k, B, da and <4 are pre-specified prior parameters, and Inv-x2(^, s2) represents 

a scaled inverse chi-square distribution with density function: 

f{X] "'S) = VW^X e X p {-^ } ' (6"15) 

Note that an Inv-x2(^, s2) is equivalent to an Inv-Gamma with (v/2,vs2/2). Here 

da = u,db = s2. We assume that Zj(£)'s are independent Gaussian with zero mean 

and known covariance operator B. The operation Zj <g> Zj is defined as 

{Zj®Zj)h{t) = Zj(t)(Zj(s),h(s)) = Zfr) j^ZjWhWds. (6.16) 

We also assume that the scaling parameter c is independent of Zj(t)'s. 

The posterior inference based on the above likelihood and priors can be conducted 

using finite dimensional projection, which is discussed in detail in the following sec

tion. 

6.4.1 Derivations of the Posterior Distribution 

Based on the likelihood and prior settings from (6.10) to (6.14), we can do poste

rior inference by projecting Xj(i)'s on a finite grid Tp = ( i i , . . . ,tp)
T. Denote the 

discretized version of Xi(t) as Xi = (Xi(ti),..., Xi(tp))
T, X provides an approxima

tion for Xi(t) as p approaches infinity. After discretization, the covariance operator 

E becomes a p by p covariance matrix E, and the likelihood in (6.10) becomes a 

multivariate normal with density 

n(X\m, E) oc \t\~^exp I -]• ^{Xi - mft^iX - ra) I , (6.17) 
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where X = (Xi,... ,Xn)
T and rh is the discretized mean. The expansion in (6.12) 

can be approximated by first projecting Zj(tys on Tp, then truncating the infinite 

sum at a fixed number J. According GRIP in Section 6.1, if we let J —• oo and 

p —• oo, then our posterior should converge to the "functional posterior" obtained 

from (6.10)-(6.14). We write the approximated version of the priors in (6.11)-(6.13) 

as follows: 

m | E~iV(0,£;E), 

j 

S = c^^4fJ, (6.18) 

Zj~N(0,B). 

Here N(-, •) represents multivariate normal distribution. After finite dimensional 

projections of the likelihood and priors, we obtain the posterior in multivariate form 

as follows: 

7r(m, E|X) oc n(X\m, E)7r(m|E)7r(E) 

oc |E | - t exp | - i £ ( * , - rhft-itft - m)\ (6.19) 

• |JfcE|-5 exp l-]-mT{kt)-lrn\ TT(E). 

We now integrate out m from the above joint posterior to obtain the marginal poste

rior of E by 7r(E|X) = f n(m, T\X)dm. Note that we can reformulate the quadratic 

terms in (6.19) to get: 

^ i _ « i , ^ , _ I , ^ s 
7r(m,E|X)oc |£|_?|fcS|-37r(E) 

e x P l 2 mT (nE-1 + (fcE)-1) m - 2mTE~1 (f^^j + E * ^ - 1 ^ 
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Let Kx = nE" 1 + {kt)~l = (n + ^ E " 1 and Mi = E"1 (y%=1xX the multivariate 

normal density in the above expression can be split as: 

7r(m, E|X) oc l ^ f 1 ^ exp | - i (ni - tf^Mi)2, Kx (m - K^Mx) \ 

- l/iCT1!*^!-* |fcfi|-i exp / - • | X^^TS-^-^ H- iAfJ'.KT1-^ I T(^)- (6-20) 

The first two factors can be integrated out w.r.t. rh since they form a multivariate 

normal density. This gives the resulting marginal posterior as 

TT(E|X) OC \K^\t\~^\kt\-\ exp j - ^ ^ E - 1 ^ + l-MjK^Mx 1 TT(E). 

The above form can be further simplified by combining the |E| terms, drop the con

stant terms, and using the simplified terms of 

and 

MlK^Mx = („+ i)"1 {j^x\ E-1 {f^x\ 

The simplified form is 

TT(E|X) OC 

(6.21) 

Note that in (6.21) the prior for E has not been given a particular form yet. If 

we write Z = (Z\, Z2, • •., Zj)T, according to the prior assumption in (6.18), E is a 
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deterministic function of c and Z. Thus E can be replaced by c and Z in the likelihood 

and the conditional prior 7r(m|E). Instead of setting up prior for E, we set up priors 

—* 
for Z as 

TT(Z) = ir(c) ]}*(£,) 
3=1 

OC c ^ 1 e x p { - ^ } exp{-l £ ^ - ^ i ) 
J'=I 

—* —* 

The posterior samples of Z can be used to construct samples for E. To get the joint 

posterior distribution for c and Z, we just need to replace 7r(E) by TT(Z) in (6.21), 

and replace other terms of E by the linear expansion in (6.18), which gives 
n(c,Z\X) oc 

• 

exp < 

c ^ ' " 1 e x p { - ^ } exp J - \ £ Z J B - Z , 
2c 
- l 

J'=I 

-l 

E^ >(6.22) 

The above posterior distribution can be simplified once more by integrating c out. 

Separate all the terms containing c: 

/ Z\ v?x _nP+dB_1 A — B + rfa<^6 
n{c,Z\X) oc c 2 exp{ 2c } 

E™ .̂i 
J=I 

exp {-\±W\ (6.23) 

where 

- l 
A = J2^E^J ** (6.24) 

i=l \ j = l 
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and 

B=(n+iri(i:x)j (f^w^zfj (f:^ (6.25) 

The first two factors in (6.23) indicate that, conditional on Z, c is Inv-x2(fl,v2), 

where vl = np + da and v2 = (A — B + dadt,)/vl. Therefore we can integrate them 

out, which gives: 

n(Z\X) oc 
A-B + dadb 

np + da 

oc (A - B + 4 4 ) 

np+dg 

np+dg 
2 

J^WjZjZ] 

j 

^\-\Y.Z]B-% 

1 
J 

^{-olLZj^Zj} (6.26) 
J'=I 

Based on the above posterior distribution, we describe our MCMC algorithm below. 

In this algorithm, N is a pre-defined maximum number of iterations, i is the iteration 

index and we write 9^ as the posterior sample for parameter 9 in iteration i. 

—> 
Step 0. Set initial values for Zj, j = 1 , . . . J. 

For i = 1 , . . . , N, run Step 1-3. 

Step 1. Conditional on X, update Z = (Zi,..., Zi)T. For j = 1 , . . . , J, sample a 

new observation from the proposal distribution Zj ~ AT(Z- ,51), and 

calculate 

" n i Z ? , . . . , ^ , ^ , ^ , . . . , ^ ^ ) -

Note that the numerator and the denominator can be computed using 

(6.26). Update zf = Z] with probability min(l,r). 
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Step 2. Conditional on Z^> and X, sample c^ from ir(c\Z,X) = inv — x2(vl,v2), 

where vl = np + da and v2 = (A — B + dadb)/vl, where A and B are 

defined in (6.24) and (6.25). 

Step 3. Conditional on Z^\c® and X, sample m^ from N(fi0, V0) distribution, 

where 

and 

V0 = Kr1 = (n+lr1* = (n+lr'c^jZjZj-
. 7 = 1 

This conditional distribution can be easily observed from the joint distri

bution (6.20). 

6.4.2 Notes on Some Computational Tricks 

This section collects some computational tricks which are helpful to improve the 

MCMC algorithm. We focus on the posterior distribution derived in (6.26). Since 

the variables are all in discretized form, for simplicity, we remove the vector symbol 

(the arrow on top of a variable), i.e., X and Z are the same as X and Z defined 

in Section 6.4.1. Note that X is a n x p data matrix with each row a discretized 

functional observation, and Z is a J x p matrix with the j th row being Zj'. 



133 

N O T E 1. Let W = diag(v/^I, 

/ 

WZ = 

wj), 

\ ( 

\ 

ZJ 

zl 

V^)\ZJ) \y/wJ2% J 

wiZj 
\ 

w2Z7 

Therefore Yl^=iwjZjZf = (WZ)T(WZ). In real computation, this is done by per

forming QR decomposition for WZ so that WZ = QR, where Q is a matrix with 

orthonormal columns and R is a upper triangular matrix. Note that such a decom

position always exists, see, for example, Trefethen and Bau [74]. Now the linear 

expansion becomes 

j 

Y^ ujjZjZj = (WZ)'(WZ) = R'Q'QR = R'R. 
j=i 

Hence the covariance expansion in (6.18) becomes E = c £ j = 1 WjZjZJ = cR'R. Note 

that y/cR is the Cholesky decomposition of the covariance matrix E. In each iteration, 

the MCMC algorithm updates the rows of WZ one by one using the built-in functions 

qrdelete and qrinsert of MATLAB (The Math works, Inc., Natick, Mass., U.S.A.) 

N O T E 2. For the factor exp | - | Yfj=\ Z]B~xz\ in (6.26). To compute matrix 

inversion B~l efficiently, we first perform cholesky decomposition for B, i.e. RjR\ — 

B for some upper triangular matrix R\. Then B~l is obtained by 

B-1 = (RJR1)-' = tfrWr1 = ̂ r W ) r 

So ZJB-'Z, = ((R^rZjniRlYZ,). 
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N O T E 3. For the term 

»=i V 3=1 J 

we have seen from N O T E 1 that the Cholesky decomposition of the middle term 

cE /= i WjZjZj is y/ER. Let T = ((^/ZR)-1)TXT, and write T = ( 7 \ , . . . , f n ) , where 

Tj are the columns of T, we have 

Y.XJ [cj^w^Zj] ^ = £ 7 ^ = T r a c e d ) . 

For the same T, 

±x)T (cJ2„A2f) (±x) = (Er,)T(Er<)' 

6.4.3 Simulation Results 

Based on the prior proposed in Section 6.3 and the MCMC algorithm proposed in 

Section 6.4, we conduct a simulation study in this section. Our data come from 

n = 50 Brownian Motion paths on a time grid of [0,1], with the number grid points 

p = 60. Note that the covariance function of the Brownian Motion is K(s,t) = 

min(s,t),s,t G [0,1]. Figure 6.1 shows the plot of the sample paths and Figure 6.2 

shows the corresponding true covariance function. 

The proposed MCMC in Section 6.4 is applied to the simulated data, with 10000 

iterations and a 4000 burn-in period. We set the parameters in the priors and other 

related parameters to be: k = 100, da = 4.01, cfo = 10, 5 = 0.005, J = 150. Initial 
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Brownian Motion Paths, N=50, p=60 

Figure 6.1: Plot of N = 50 sample paths of a Brownian Motion. 

The True Covariance Function of a Brownian Motion 

0 0 

Figure 6.2: The true covariance function of Brownian Motion. 
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Figure 6.3: The plot of prior parameter Wj. 

values of Zj's are generated from normal distribution with zero mean and identity 

covariance. For the weight Wj, we use the following form: 

where a = 100, q = 10 for this simulation study. The values of w/s are plotted in 

Figure 6.3. The prior covariance for Zj is set to be 

B(U, tj) = exp(-0.6145|^ - i, |1 /2). (6.27) 

Figure 6.4 shows the plot of the prior covariance B. We use the posterior Zj samples in 

each iteration to compute the posterior £ samples, and average the posterior samples 

of £ to obtain the final estimate. Figure 6.5 plots the posterior sample average of E. 

The trace plot of the posterior samples of c, together with its histogram, is shown in 

Figure 6.6. Figure 6.7 shows the posterior mean of m and its 95% credible interval. 

The acceptance rates of the Z / s is between 22% and 39%. 
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The Prior Covariance for Z 
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Figure 6.4: The prior covariance function for Zj, j = 1 , . . . , J. 
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The Posterior Mean Estimate of the Covariance Using the Proposed Prior 

0 0 

Figure 6.5: The posterior mean of the covariance function using the proposed prior. 



2000 

139 

Trace Plot of Posterior Samples of c 

0 2000 4000 6000 8000 10000 

Histogram of Posterior Samples of c 

0.016 0.0165 0.017 0.0175 0.018 0.0185 0.019 0.0195 0.02 

Figure 6.6: The trace plot of the posterior samples of c and its histogram. 

To compare the estimated covariance function with the true, we use two metrics 

for measuring the estimation error. One is the averaged squared-error(ASE) defined 

by 

^ * s ) = ̂ E D 4 - * (6.28) 
* 3 

where a^, â - is the (i,j)th component of the estimated and true covariance matrix, 

respectively. The second metric is called the averaged absolute error (AL1E) defined 

by 

AL1E(E,S) = 1 ^ ^ I ^ - 4 I (6.29) 
» 3 

Table 6.1 lists the estimation error coming from the Bayesian estimate using the prior 
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Posterior Average of m and Its 95% Credible Interval 
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Figure 6.7: The posterior mean of the mean function n(t) and its 95% credible interval. 

proposed in Section 6.3, and from the sample estimate, where the sample estimate 

SSampie is obtained by 

n 
(6.30) 

We see from Table 6.1 that, using the suggested MCMC algorithm, the Bayes estimate 

based on the proposed prior gives slightly smaller error than the sample estimate. 

More details of the estimation error are illustrated in Figure 6.8 and Figure 6.9, 

where we plot (afj — afj) at all (i,j) pairs for both estimation methods. 



Method 
Bayes estimate using proposed prior 
Sample estimate 

ASE 
0.0129 
0.0193 

AL1E 
0.0881 
0.1146 

Table 6.1: The Estimation Error Comparison. 

Component-wise Estimation Error for the Covariance Matrix (Bayesian Estimate) 
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• -10.25 
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-0.1 

Figure 6.8: Plot of the Component-wise Estimation Error for the Covariance Matrix 
using the Bayesian Method. 
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Component-wise Estimation Error for the Covariance Matrix (Sample Estimate) 

10.25 

0.2 

0.1E 

0.1 

0 0 

Figure 6.9: Plot of the Component-wise Estimation Error for the Covariance Matrix 
using the Sample Estimation Method. 

6.5 Inverse-Wishart Prior and its limiting Behav

ior 

In order to look for appropriate priors for covariance operators in infinite-dimensional 

setup, we study the limiting behavior of Inverse-Wishart prior as the dimension (i.e., 

the number of grid points) goes to infinity. It is not clear whether there exists an 

infinite-dimensional counterpart of Inverse-Wishart distribution. We start from de

riving the limits of the first two moments of multivariate Inverse-Wishart distribution 

in this section. 
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6.5.1 Definition and Some Facts about Wishart and Inverse 

Wishart distribution 

We first give the definition of Wishart and Inverse Wishart distribution in multivariate 

setup. 

(1) Wishart distribution. Let E be a p by p positive definite and symmetric random 

matrix. We say E is of Wishart distribution with degree of freedom v and scale 

matrix S, and write E ~ Wishart (u, S), if the pdf of E is 

/ ( E | ^ 5 ) = ( 2 ^ / V ( p - 1 ) / 4 n r ( ^ t i _ Z i ) j | 5 r ^ 2 | E | ( ^ - 1 ) / 2 e x p ( - ^ r ( 5 - 1 E ) ) 

where v > p + 1, 5" is positive definite and symmetric. It can be shown that 

E[Ti\ = vS, raode(E) = (u—p—l)S for v > p+1, and the characteristic function 

(j>{U) = E[exp(i • tr(EU))] = \I - 2iUS\~^2, where / and U are matrices of the 

same size of S. 

(2) Inverse-Wishart distribution. Suppose E is a p x p positive definite random 

matrix, E ~ IW(v, S) with d.f. v and scaling matrix S, if 

f(E\u,S) = h ^ A ^ g r t ^ ^ ' ) ) | ( Sr / 2 | E | - ( ^ + 1 ) / 2 exp ( - i i r (5E- 1 ) ) . 

It can be shown that E[Y] = ^^S. (Note that some literature denote E ~ 

IW(u, S~l) for the same density stated above. The form of the density functions 

will be clear if one indicates the form of i£[E]). 
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(3) Relation of Wishart and Inverse Wishart distribution. If A ~ Wishart (f, S), by 

change of variables, we can easily show that A-1 ~ IW(u, S'1) with .E[A_1] = 

1^ziS~1. Note: the Jacobian \ ^ \ = \A\m+1. 

(4) Moments of Inverse-Wishart Matrix. Siskind [69] stated the following results 

about the general second-order moment of an Inverse-Wishart matrix: if t is a 

p x l constant vector, A is a p x p Wishart matrix with v > p + 3 degree of 

freedom and expectation uS (i.e., A ~Wishart(z/, S), by (3), A'1 ~ IW(z/, 51-1) 

with E[A~i] = ^ S - % so 

{u-p)(u-p- S ) ^ - 1 * * 7 ^ - 1 ] = S^t^S'1 + S-\tTS-H)/{v -p- 1), 

i.e., .c/[/i a s\ j — (l/_p)(l/_p_3) -t- (v_p_i)(I/_p)(1/_p_3)-

6.5.2 Conjugate Inverse Wishart Priors for the Covariance 

in Multivariate Normal Model 

Suppose Xi, % = 1 , . . . , n, are i.i.d. normally distributed random vectors with unknown 

mean m and unknown variance matrix E. If we construct a Bayesian model as: 

7r(Xi|m,E) = iV(m,E), 

7r(m|£) = JV(m0,l/£;oE), (6.31) 

7r(E) = IW(i/0,Ao), (6.32) 

the resulting posterior distribution 

7r(S|Xi, . . . ,Xn) = IW(P,A), 
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whereu = u0+n, A = Ao+Sn+^-o(X-m0)(X-m0)
T, Sn = T.ti^-X^Xi-Xf. 

Therefore 

E\L\XU ..., Xn] = l/(u -m- 1)A, (6.33) 

and conditional on E, we have 7r(ra|E, X\,..., Xn) = N(rh, V), where fh = ^-^rX + 

^ m 0 and V = ^ S . 

6,5.3 A Simulation Study using the Bayesian Model with 

Conjugate Inverse-Wishart Prior 

In Section 6.4.3, we conducted a simulation to estimate the covariance of Brownian 

Motions using priors proposed in Section 6.3. In comparison, the simulation is re

peated in this simulation by using the Bayesian model stated in Section 6.5.2. We 

set the scaling matrix Ao in (6.32) to be the prior matrix B used in (6.27), and set 

the other two prior parameters in (6.32) and (6.31) as u0 = 65 and fco = 1/106, re

spectively. The prior m0 is set to be a zero vector. For the same data generated in 

Section 6.4.3, we obtain 3000 posterior samples for E and use their average as the 

final estimate. Alternatively, since the posterior mean has an explicit form (as shown 

in (6.33)), we can also compute the posterior mean directly and use it as the estimate 

of E. In Table 6.2, the estimation errors defined by (6.28) and (6.29) are computed 

for both the sample average and the posterior mean. Comparing with Table 6.1, we 

find that for this simulated data, the estimation error obtained from Inverse-Wishart 

prior is very similar to that from the prior proposed in Section 6.3, and both estima-
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Method 
Bayesian estimate (IW prior, based on 3000 sample) 
Bayesian estimate (IW prior, the posterior mean) 
Sample estimate 

MSE 
0.0126 
0.0123 
0.0193 

ML1E 
0.0929 
0.0917 
0.1146 

Table 6.2: The estimation error of the Bayes model with Inverse-Wishart prior com
pare with that of the sample estimate. 

Posterior mean of the covariance using Inverse Wishart prior 

Figure 6.10: The posterior average of the covariance using the Bayesian model with 
an Inverse-Wishart prior. 

tion methods give slightly smaller estimation error than the sample estimate. The 

posterior mean estimate is plotted in Figure 6.10. 

As the number of grid points increases, the estimation error (defined in 6.28 and 

6.29) using inverse Wishart prior is supposed to increase too. To show this, we 

generate n = 50 Brownian Motion paths on [0,1] but sample them at 3 different grid 

levels with the number of grid points: 11, 101 and 1000. Figure 6.11 plots the first 

Brownian Motion path at all three grid levels. We set the prior parameter vQ = 2p and 
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One Brownian Motion Path Sampled at Three Grid Levels: p=50,100,1000 

0.4 0.6 
te[0.1] 

Figure 6.11: One Brownian Motion path sampled at three grid levels: p=50,100,1000. 

k0 = 1/103. The estimation errors of the sample estimates and the Bayesian estimates 

with inverse-Wishart prior at all grid levels are listed in Table 6.3, which suggests 

that the estimating errors increase as p increases, and the estimating error of Bayes 

estimates (with Inverse-Wishart prior) increases faster than the sample estimates. 

p 

10 
100 
1000 

Bayes Est. (IW prior) 
ASE 

0.0023 
0.0314 
0.1339 

AL1E 
0.0392 
0.1303 
0.2965 

Sample Estimate 
ASE 

0.0048 
0.0057 
0.0058 

AL1E 
0.0581 
0.0647 
0.0655 

Table 6.3: The estimation error comparison (IW prior) when the sampling grid gets 
finer. 
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6.5.4 Limiting Behavior of the First Two Moments of the 

Inverse-Wishart Distribution 

Suppose that the covariance operator E G LtJH) and H = L2[0,1]. We have 

E:L 2 [0 ,1]H—>L 2 [0 ,1] 

and for any / e L2[0,1], 

E/(s) = / k(s,t)f(t)dt, 
Jo 

where k(-, •) is the covariance kernel of E. Denote the discretized version of E on a 

finite grid as Ep, which is a random matrix of size p, where p is the number of grid 

points. Our purpose is to find conditions such that, as p —> oo, the limiting covariance 

operator maps any function on [0,1] to some function with a non-degenerate measure. 

Let Ep ~ IW (up, Bp). We write the discretized version of / as fp = ( / (£i) , . . . , f(tp))
T. 

—* —* -* 

fp can be used to approximate / by linear interpolation over the grid. Let gp = Ep/P , 

we will find the first two moments of gp and investigate their limits as p —> oo. Since 
—* —* 
Ep ~ IW(^P, Bp), we have 

and 

BIW3J = • B'fB> ,. + , ^ 4 Ty (6.35) 
\vp - p){yp - p - 3) \yp-p- i ) K - p ) K - p - 3 ) 

file:///yp-p-
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for all x G Rp, by our previous definition of Inverse Wishart in Section 6.5.1. For the 

first moment of gp, 

E[gp] = E[Epfp] = 
£>pjp 

i/p-p-l 

by (6.34). Suppose that Bp is the discretization of a covariance operator B with 

kernel b(s,t), 

1 P 

(E[9P])i = / _ _ _ -.N z2(Bp)ij(fp)j 
\L/p p I) 

-(>>-j,-i)i:w-wfe) 

Therefore, _E[<7p(s)] —>• Z?/(s) = J0 b(s,t)f(t)dt as p —> oo, provided that ^ _ )̂_1 —> 

1. For the second moment of gp, 

, Bp(fp Bpfp) ((. ofiN 

+ 7 ^ / \? 5T> ( 6 - 3 6 ) 
(i/p - p - l)(i/p - p)(up - p - 3) 

by (6.35). For the first term of (6.36), since 

{Bpjpjp Bpjij —\Bpjp)i\t>pjp)j 

^£&(Mi)/(*0)(X>(*j,*r)/(*r)) 
1 = 1 T=l 

13 

P 

1=1 P 7=1 P 

we have 

A > / P / P A> ^ fl/ 0 B / 

( i / p - p ) ( v p - p - 3 ) 
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2 

as p —» oo, provided that , _ ,? 3) —» 1. Note that we have defined the ® 

operation in (6.5) and (6.16). Here Bf ® Bf is defined in a similar way, i.e., (Bf <g> 

Bf)x = Bf(Bf,x), and (Bf,x) = f* Bf(s)x(s)ds. For the second term of (6.36), 

fjBpfp = J2 /(*i)(E b^ WW 

i= i j = i " 

where £ ? = 1 £ J= i /(*<)&(*i, *i)/(*i)^ — Jo /o /(s) fe(s, *)/(«)*<*« = (/, 5 / ) , as p -

oo. Therefore, for any x € L2[0,1] with a discretized version xp = (x(ti),..., x(tp))
T, 

K - P - i ) K - p)(̂ p - P - 3) (W?B»£) f»)< 

'K - f . 1 ) ( / - r i ( > r f_ i ) (E|; / w t f e ' ' ) j i ' '^ ( t t^'' '^ 
l—1 J — 1 T—1 

^l-(f,Bf)Bx{t{) 

as p —> oo, provided that 7 TTT-̂ —w =r —>• 1. Thus the second term of (6.36) 

satisfies 

BP\fp BPU) ,f Tjf\R 

The above results shows that E[gp] -> Bf and E[gpg£] -> Bf ®Bf + (/, £ / ) £ 

under the condition that -^ > 1. This implies 
Vp-P ^ 

Cov{gp) = E[gpfp]-E[gp\E[gp]
T 

-^Bf®Bf + {f, Bf)B -Bf® Bf, 

hence Cov(gp) —•> (/ , Bf)B as p —• 00. 
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—* —* 

To summarize, we have obtained the limit of the first two moments of gp = Sp /P . 

As the number of grid points p —> oo and -^— —* 1, we have 

E[Zpfp)—*Bf, 

Cov(Epfp)^(f,Bf)B. 



Chapter 7 

Conclusion and Discussion 

In summary, we have proposed three statistical models on the topic of functional data 

classification, and presented a study on the covariance operator of functional data 

analysis. We compare the results from previous chapters and discuss some related 

issues in this chapter. 

The Bayesian variable selection model proposed in Chapter 3 provides good classi

fication performance compared with several other methods without variable selection. 

The functional predictors are approximated using orthonormal basis expansion, and 

variable selection is performed based on the coefficients of the orthonormal basis. 

This model is novel as a functional data classification method, however, it also has 

some drawbacks. First, the variable selection results depend on different choices of 

the orthonormal basis. Second, the variables selected are usually hard to explain 

and visualize in the original function space. Orthonormal basis such as Wavelets can 
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preserve some location information, therefore may improve the model and make it 

easier to explain. 

The functional generalized linear model (FGLM) in Chapter 4 and the Bayesian 

hierarchical model in Chapter 5 both aim to select a subset of functional predictors in 

order to reduce the cost of data collection in the cervical cancer diagnosis application. 

However, the selection results reported in Chapter 4 are not comparable with those in 

Chapter 5 due to the fact that the FGLM model does not consider random effects, and 

the real data managed by FGLM are a subset of the whole dataset that are measured 

by a fixed device (and clinic). To compare FGLM with the Bayesian hierarchical 

model on their predictor selection performance, we re-trained the FGLM model based 

on all data and ignore the random effect. Figure 7.1 plots the predictor selection 

result of FGLM using all data together with the marginal posterior of r obtained 

in Chapter 5. Note that these two results are both based on the FPC method with 

approximation criterion c\ = 0.998. Although Figure 7.1(a) and Figure 7.1(b) have 

different explanation for their own model, they show some similarities on the selection 

of functional predictors, i.e., the curves with excitation wavelengths at around 340-

360, 400-420, 470-480nm have higher possibilities of being selected. 

Finally, for the study of the covariance operator, besides the results obtained in 

Chapter 6, there are more theoretical work that worth further investigation. First, the 

consistency of the posterior needs to be constructed based on the priors introduced 

in Section 6.3. Second, more computationally efficient MCMC algorithms need to 
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The selected functional prediction? at different X values, ALL Data 

12.34 

10.05 

3.42 
1.67 

• • • • • • 
n — i — r -

I • - • • • • 

T — i — i — i — i — r 
0-5 l"l I - - ! 

- i — i — i — i — T — i — r - 1 — i — i — i — i — i — i — i — r 

330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 

(a) FGLM model trained on all data: the selected func

tional predictors at different A using function approxi

mation with FPC. 

Marginal posterior of x using FPC 

1 1 1 r-
420 430 440 4S0 460 470 400 

(b) BHFPS model: the marginal posterior probabilities 

P{TJ = l,j = 1 , . . . , 16} using function approximation 

with FPC. 

Figure 7.1: A comparison of the functional predictor selection results of FGLM and 

BHFPS. 
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be developed to deal with data with large number of grids. It is also of interest to 

look for the infinite-dimensional counterpart for the Inverse-Wishart distribution and 

construct priors from there. Continuation of the covariance operator research will 

certainly enrich the field of functional data analysis. 



Appendix A 

Integrating fy's, 6Q and a Out 

Sequentially from the Conditional 

Posterior (5.10). 

From conditional posteriors in (5.10) and priors in (5.2) and (5.9), we have 

ir(a, &i,..., bL,bo,a%,T\Zi,Yi, I = 1,...,L) 

oc J ] \Krri/2 exp i - \ £ (bfKA - 2bJMl + MjK^M,) j 

• exp J i J ] [M[K-lMl - (Zt - Sla)T(Zl - S,a)] 1 

•exp {-±tf [L^E.)"1 + KX)-1] 60J 

• e x p l - i a ^ ^ - ^ ^ n i ^ r T 7 2 ) ^ ^ ! ^ 2 ^ ^ ! - 1 ^ ^ ) ^ ^ , 
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where Kx = C/
TCi + (a6

2ET)-1 and M{ = C , T ( ^ - ^ a ) + (a6
2ET)-160,1 = 1 , . . . , L. From 

above, we find the conditional distribution bi\a,b0,crl,T,Zi,Yi ~ N(fj,i,Vi), where 

fii = K^Mi and V\ = Kf1, for I = 1 , . . . ,L. The fy's can be integrated out from 

the above conditional posterior since the first 2L factors construct L normal density 

kernels. After integrating out fy's, we can expand MfK^Mi and combine the terms 

with b0, which gives the following: 

7r(a, bo, a2, r\Zu Yu I = 1 , . . . , L) 

oc \Kol\-l/2 exp j - ^ (blKobo - 2bT
QMQ + MfK^Mo) } 

• exp I ^MfK^Mo + \ J^(Zi - S^f^dK^Cf - I)(Zt - Sta) 1 

• expj-^Ca2/)-^} i^-Y^cn^rV^JI^^I-^kSSrl-^^K^), 

where K0 = ( ^ E , ) - 1 + L ^ E , ) " 1 - (a 2 E T ) - x (E ^ X ^ r ) " 1 and 
i 

M0 = (^E,)-1 X) Kf'CKZi ~ S«*) 
i 

. It is easy to see from above that b0\a,a^,r,Zi,Yi ~ N(fj,0-, K))> where /J,0 = KQ1MQ 

and VQ = KQ1. We can further integrate b0 out since the first two factors form a 

normal density kernel. After integrating out b0, we can expand the term MQ KQ1 M0, 

combine terms of a and factor out a normal kernel for a, from where we obtain that 

a\al,T,ZuYu\/l ~ N(/j,a,VQ), where /*a = K~lM, Va = K~\ 

K = Y^ SlSt + (ail)-1 - £ SfQK^CfS, 
i i 
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and 

M = x;5r^-E^a^r1QT^-(E^r1Qr5oTK2sr)-
ix0-i(cr6%)-i(^Kr1c^). 

i i i i 

We finally can integrate out a to obtain the marginal conditional posterior of a\ and 

r, conditional on values of Zis and V/'s, which gives 

Tr(o$,T\ZhYhl = l,...,L) 

oc e x p j i M ^ - i M + ^ £ ^ 1 C f Z i f K 2 E r ) - ^ 0 - 1 ( , 6
2 E T ) - 1 E K r

1 « 

• e x p j i ^ z r c ^ r 1 ^ } ^ri/2i^oi-i/2(ni^r1/2)k%rL/Vo%r1/2 

where K, M, KQ and Ki's are defined in the above derivation. 



Appendix B 

Proof of Proposit ion 4.2.1 

The proof of Proposition 4.2.1 uses a result stated in the following lemma. 

Lemma B.0.1. Let f : W1 i—• R be a strictly convex function with a minimizer x, 

and let g : Rn (->• [0, oo) be a convex function. Then f + g has a unique minimizer 

x* in Rn. Proof: Let h(x) = f{x) + g(x). It is easy to show that h(x) is strictly 

convex from the definition. We claim that the existence of a minimizer x of / implies 

that h is coercive, which means h(x) —> oo as ||x|| —»• oo. The coerciveness and strict 

convexity of h implies the existence of a unique minimizer x*. 

To show that h is coercive, it is sufficient to show that / is coercive (since g > 0). 

The minimizer x of / is the unique minimizer of / by strict convexity. Also, / is 

convex hence is continuous on Rn (see [66],page 82). Thus V r > 0,V x such that 

\\x — x\\ > r, we claim 

f(x) > -\\x-x\\ + f(x) 
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where b = inf{f(x) : ||x — x|| = r} — fix). Note that b exists and b > 0 by continuity 

of / . To show this inequality, let xQ = r(x — x)/(\\x — x\\) + x, so that xo lies on 

the line formed by x and x, with ||xo — x|| = r and ||a; — x0\\ = \\x — x\\ — r. Thus 

f(xo) ~ f(%) ^ b by the definition of b. Now let a = r/\\x — x\\. We see that 

x0 = ax + (1 — a)x. By strict convexity of / , 

f(x0) < af(x) + (1 - a)f(x) 

Thus 

l\\x-x\\ + f(x) < (f(x0) - / (5 ) ) l l£^M + f(x) 

< (af(x) + (1 - a)f(x) - / ( 5 ) ) H ^ U + f{x) 

= m 

Since \\x — x\\ > \\x\\ — \\x\\, \\x\\ —> oo implies \\x—x\\ —> oo, which implies fix) —> oo 

by the above inequality and the facts that b > 0,r > 0, fix) finite. Therefore, / is 

coercive, and so is h. 

Since h is coercive, we have /i(x) —• oo as ||x|| —> oo. Therefore, if we pick an 

arbitrary point x\ £ ]Rn, there exists a constant S > 0 such that h{x) > /i(xi) for all 

\\x — xi\\ > 5. Since the domain \\x — xi\\ < S is compact and /i(x) is strictly convex 

on it, /i(x) has a unique minimizer in \\x — Xi\\ < 5, which we denote as x*. (A strictly 

convex real valued function defined on a compact domain has a unique minimum on 

its domain.) This x* is also the global minimizer since hix) > hixx) > h(x*) on 

\\x — xi\\ > 5. 
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Proof of Proposition 4-2.1: Based on results in Lemma B.0.1, we let / to be —1(9) 

and g to be A ^ = 1 s(<5j)||fy||2 > therefore our objective function in (4.9) is the sum of 

/ and g, where 9 = {a0, a, bj,j = 1 , . . . , J } , and 1(9) = £ " = 1 y^ - log(l + exp^ ) ) 

with r]i = a0 + zja + Y?j=i Efcii cmbjk-

Firstly, we show that —1(9) is strictly convex. It is sufficient to show that its 

Hessian is positive definite. Since the Hessian takes the form 

V2e(-l(9)) = XTDX 

where D = diag{exp(r/j)/(l + exp(r/j))2, % = 1 , . . . , n}. It is positive definite since X 

is of rank m (full rank). Secondly, since the maximum likelihood estimator exists, 

—1(9) has an unique minimizer. The existence of maximum likelihood estimator for 

logistic regression requires some conditions for the design matrix X. Basically, the n 

rows of X can not be completely separated or quasi-completely separated in Rm. See 

[1] for details. In practice, as long as we can find a numerical solution for the MLE 

at A = 0, we would believe that the maximum likelihood estimator exists. Finally, let 

g(b) = A Ylj=\ s(^')ll^'ll25 bT = (bj,..., tij). It is easy to see that g(b) is convex by 

the triangle inequality. Therefore by Lemma B.0.1, Q\(9) has a unique minimizer 9*. 



Appendix C 

Verification for Convergence of the 

M C M C Algorithm 1 in Chapter 5. 

C. l The Verification of Algor i thm 1 

Based Equation (5.8),(5.10) and (5.11) in Section 5.2, Algorithm 1 can be simplified 

as follows: 

Step 0. Set initial values for fy's, a, r and a\. 

Step 1. Zt\a, bh Y{ ~ TNJ = 1 , . . . , L. 

Step 2. a2
b\r,ZhYhl = l,...,L. 

Step 3. T\olZhYhl = l,...,L. 

Step 4. a\al,T,Zx ~ N(fj.a, Va). 
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Step 5. bo\a, of, r, Zx ~ N(/i0, V0). 

Step 6. bi\b0, a, of, r, Z{ ~ N(m, Vt). 

Note that Step 2 and 3 are two Metropolis-Hastings steps within the larger Gibbs 

steps. Step 4-6 are simple Gibbs steps. Let Z = (Zi,..., ZL), Y = (Yi,...,YL) 

and b = (&i,..., 6^). We firstly combine step 2 and 3 by letting E = (a%, r ) . We can 

represent the transition kernel from Step 2—3 as P(E, A) with (conditional) transition 

density f(E\E,Z,Y) = p2(f\r,a2
b,Z,Y)Pl(a

2
b\alr,Z,Y). Therefore, f(E\Z,Y) = 

f f(E\E,Z,Y)f(E\Z,Y)dE in the bigger Gibbs steps in (C.l). Later on we will 

verify that P(E, A) is invariant with respect to the conditional measure f(E\Z,Y). 

First of all, we need to check that the transition kernel formed by the whole 

MCMC steps is invariant. Here we denote the domain of parameter x as V(x). Then 

V(b)V{bo)V(a)V(E)V(Z) (C.l) 

• f(Z\b, bQ, a, W, Y)f{b, b0, a, W, Z\Y) dZ dW da db0 db 

= f f f f f(Mbo,a,E,Z,Y)f(bo\a,E,Z,Y)f(a\E,Z,Y)f(E\Z,Y) 
V{b)V{b0)V{a)V(E) 

• f{Z\b, b0, a, W, Y)f(b, b0, a, W\Y) dW da db0 db 

(Since f f(b, b0, a, W, Z\Y) dZ = f(b, b0, a, W\Y).) 

V{Z) 

= I I I I f^^^2^f^\a,Ej,Y)f(a\E,Z,Y)f(E\Z,Y) 
V(b)V(b0)V(a)V(E) 

• f{Z, b, b0, a, W\Y) dW da db0 db 
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= / / J f(b\b~o,&,E,Z,Y)f(b0\a,E,Z,Y)f(a\E,Z,Y)f(E\Z,Y) 
V(b)V(b0)V(a) 

• f(Z, b, b0, a\Y) da db0 db 

(Since J f(Z, b, b0, a, W\Y) dW = f(Z, b, b0, a\Y).) 

V(E) 

=f(b\b0, a, E, Z, Y)f(bo\a, E, Z, Y)f(a\E, Z, Y)f(E\Z, Y) 

• f J t f(Z,b,b0,a\Y)dadb0db 
T>(b)T>(b0)T>(a) 

=f(b\b0, a, E, Z, Y)f(b0\&, E, Z, Y)f(a\E, Z, Y)f(E\Z, Y)f(Z\Y) 

=f(b,bo,&,E,Z\Y) 

This shows that the transition distribution formed by the larger Gibbs steps from 

step 1-6 is invariant. 

Secondly, we look at step 2 and 3 in detail, we need to show that the transition 

density f(E\E, Z, Y) = P2(T\T, of, Z, Y)px{ol\al,T, Z, Y) is invariant with respect to 

the conditional distribution f(E\Z, Y). For simplicity, we remove the Z, Y from the 

transitional densities since all of them(within steps 2 — 3) are conditional on Z,Y. 

Let qi(al\af) be the proposal density for step 2, with the corresponding acceptance 

rate 

/ ~ 2 i 2 \ • r'n'(^b\T)<li-(ab\^b) i i 

Therefore the transition density for step 2 is 

Pi(°bWb>T) = qiiallaDa^alla^T)!^^^. 
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Then the Metropolis-Hastings routine gives us the following so called reversibility 

condition: 

*(<rb\T)piffiWlr) = 7r(db
2\T)Pl(a

2
b\a

2
b,r). (C.2) 

Similarly, we let the proposal density for step 3 to be q2(f\r). The associated accep

tance rate is 

f~i'~2\ • r 7r( f |g - b
2 )g 2 (r | f ) 

a 2 T r , a ; ) = min{ . ° ... . , 1}. C.3) 

Hence the transition density for step 3 is 

P2(T\T,O%) = q2(f\T)a2(f\T;a2)l{f^T}. 

Again, Metropolis-Hastings routine gives us the following reversibility condition: 

7r(r\a2
b)p2(f\r, ~a2) = 7r(f |cr2)p2(r|f, a

2). (C.4) 

The proofs of Equation (C.2) and (C.4) are general for Metropolis-Hastings and can 

be done by following the theorem in the Section C.2. 
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Based on the above setup, the invariant transition distribution for step 2 and 3 

can thus been shown as follows: 

f f(E\E)n(E) dE 

= 1 1 P2(f\T,al)Pl(al\alT)n(al\T)Tv(r) da\ dr 

V{r)V{cl) 

= / n(T)p2(j\T,al) j n(al\T)px(al\al,T) do, 

V(r) V(al) 

dr 

V(r 

/ 7r(r)p2(r|r,5-6
2) / 7r(<72|T)pi(a2|5-2,T) dat 

3(T) U K 2 ) 

= / ^(r)p2(f\T,al)TT(al\r)dT 

V{r) 

= / 7r(^2)P2(r|r,a2)7r(r|a^)dr 

= / n(o%)p2(T\f, al)ir{f\al)dT (by Equation (C.4)) 

dr (by Equation (C.2)) 

V{r) 

= 7r(a2 ,f) 

= n(E) 

This proved that the Metropolis-Hastings Step in Step 2 — 3 has the right invariant 

density. 

In addition to check invariance, we also need to check irreducibility and aperiodic-

ity. (Note that irreducibility and existence of invariant distribution implies recurrency, 



167 

and thus implies positive recurrency when IT has finite total mass([73],page 1712).) 

Since the algorithm has component-wise transition, it suffices to check that each 

transition kernel (in each step) is irreducible and aperiodic. The irreducibility for 

transitions of Z, of, a, bo and b is straight-forward since the transitions are fully sup

ported on their convex domains. For r, it lies in a domain of finite number of points, 

for each pair of r and r', there is a n such that PU{T'\T) > 0. A simple strategy is let 

r firstly reduce to a vector of all 0's in TTT steps, and let it increase to r' in [T')TT 

steps, then n = TTT + (T')TT, and the transition probability is positive. Aperiodicity 

is trivial to check. Since we can not find a d-cycle for the transition kernel hence it 

is aperiodic. 

To sum up, we have shown that the transition kernel formed by algorithm 1 has 

invariant distribution n(-) and is irreducible and aperiodic, hence by Theorem 1 of 

Tierney([73]), it converges (in total variation) to a unique distribution ir(-), which is 

our posterior density. 

C.2 Reversible Condition of Metropolis-Hastings 

Assume that IT has a density with respect to fj, and let Q be a transition kernel of the 

form 

Q(x,dy) = q(x,y)/i(dy). 

Let E+ = {x : -K(X) > 0} and assume that Q(x, E+) = 1 for x £ E+. Also assume 

that IT is not concentrated on a single point. For a given Xn = x, we propose a 
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candidate value Y = y for the next point Xn+i from the distribution Q(x, •), and 

accept it with probability 

a(x,y) = min{ r, 1}. 
n{x)q(x,y) 

Otherwise, the candidate is rejected and the chain remains at Xn+i = x. 

If we define the off-diagonal density of a Metropolis kernel as 

p{x,y) = q(x,y)a(x,y)l{x^y}, 

and set r(x) = 1 — f p(x, y)dy, then the Metropolis kernel P can be written as 

P{x,dy) = p(x,y)n{dy) + r{x)5x(dy), (C.5) 

where Sx denote point mass at x. The value r(x) is the probability that the algorithm 

remains at a;. 

Proposition For the Metropolis kernel defined above, we have 

ir(x)p(x, y) = Tr(y)p(y, x), (C.6) 

which is called reversibility condition. 

proof. If x = y, then p(x, y) = 0, both sides equal 0. If x ^ y and ir(y)q(y, x) > 

ir(x)q(x,y), we have a(x, y) = 1. Therefore the left hand side(LHS) of Equation C.6 

is 

LHS = 7r(a;)p(a;, y) = Tr(x)q(x, y)a(x, y) = n(x)q(x, y). 

The right hand side(RHS) of Equation C.6 is 

TriXiQiX V) 
RHS = n(y)p(y,x) = n(y)q(y,x)a(y,x) = n(y)q(y,x) . w ' . = n(x)q(x,y). 
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Therefore LHS=RHS, the equality holds. For the case of •K(y)q(y,x) < ir(x)q(x,y), 

we can similarly show that the equality holds. 



Appendix D 

Some Details on EMC Algorithms 

Here we give a more detailed introduction of EMC algorithm based on the work of 

Liang and Wong [39], Liu [40] and Goswami and Liu [24]. The basic goal of EMC 

algorithm is to generate Markov Chain samples from a target distribution n(x), which 

can be a posterior distribution, or a conditional posterior distribution. In Liang and 

Wong [39], Liu [40] and Goswami and Liu [24], they focus on sampling from a target 

distribution with density function 

f{x)xexp{-H(x)/t}, (D.l) 

where H(x) is called an energy function , which is equivalent to — log7r(x) in our 

Bayesian setup. The target function (D.l) is then a transformed version of TT(X) since 

exp{H(x)/t} = exp{-(-log7r(:r))/t} = n{x)l/t. 

The t is called a temperature, which has the effect of making the target density more 

flat or more spiky, as shown in Figure D.l. Liang and Wong [39] assume that there 
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Figure D.l: The plot of irfa)1^ for a two-mode mixture normal distribution. The 
density 7r(x) = l/2(j>(x;0,1.52) + l/20(x; 10, 0.52), where 4>(x; fi, a2) is the normal 
density with mean \x and variance a2. 

are multiple i's, denoted as U,i — 1 , . . . , N, and Vs are ordered from high to low. 

The set {ti,... ,tN} is called a temperature ladder. Assume that x E M.d and here 

we assume each component of x is either 1 or 0. EMC algorithm first expands the 

sample space from M.d to RNd by defining a new target density 

N 

7T(x) OC J I T T ^ ) 1 7 ' * , 

i=l 

where x = (x\,..., XN) is called a population of samples. The Markov Chain samples 

is obtained based on 7r(x) with 3 types of operation: mutation, crossover and ex

change. We summarize the details of the EMC algorithm stated in Liang and Wong 

[39] and Liu [40]. 

An EMC algorithm 

Step 0. Set the temperature ladder {ti,... ,£/v}> the initial values x = (xi,... ,xN) 
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and the mutation rate qm. 

Step 1. With probability qm, run mutation and with probability 1 — gm, run cross over. 

(a) Mutation. Randomly select x^ from (x\,..., Xk, • • •, XN). Propose x'k by 

reversing some randomly selected bits of £fc(Note: it is called l-point/2-

points mutation based on the number of bits selected for switch). Denote 

x' = (xi,... ,x'k,...,XM), the new x' is accepted with min(l,rm), with 

V(x')T(x|x') \ [log7r(4) - log7r(xfe)] T(x|x') 
logrm - log ^ ^ j , ^ j h T ( x , | x ) • 

Here T(x|x') denotes the transition probability of the proposal. Note that 

using 1-point or 2-point mutation will both result in symmetric transition 

probability ([39],Page 322). 

(b) Crossover. First, randomly select a pair (xi,Xj), according to probabil

ity 

P\[Xl, Xj)\X) — N , XzJ^Xj. 

This can be done by firstly selecting xi with probability 

p(xi\x) = n(xiy/t/Yl'"(xi)1/t' 

then choosing Xj independent of £,, but with the same sampling proba

bility. If X{ — Xj j WG discard them and repeat sampling until we obtain 

a distinct pair. ([40], Page 231). Here t is fixed (may not be the same 

with items in the temperature ladder). This selecting procedure is called 
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"roulette wheel" selection ([39], Page 319). After the pair (xi,Xj) is cho

sen, randomly select a location A; as a crossover point, and swap x, with Xj 

starting to the right of the crossover point([39],Page 320). For example, 

if we denote Xi = (a,\,..., ak,... a^), and denote Xj = (bi,..., bk,..., bd). 

Then after crossover at location k, we get 

x'i = (ai,...,ak,bk+i,...bd), 

x'j = (bi,...,bk,ak+1,... ,ad). 

Denote the population of sample after crossover to be 

X = (Xi, • • • , X^, . . . , Xj, . . . , £jvj) 

the Metropolis ratio can be computed by 

7r(x ,)r(x|x') 
logrc = log 

TT(X)T(X' |X) 

logTrfr^-logTrfa) logTrfo^-logTrfo) T(x|x /) 

U tj g T(x ' |x ) 

where T(x'|x) = P{(£i,Xj)|x}P{(x-,Xj)|(:ri,Xj)}. Note that according 

to the selection rule, we have P{(x[,x'j)\(xi,Xj)} = P{{xi,Xj)\(x'^x'j)}, 

therefore the ratio of transition probabilities is reduced to the ratio of 

selection probabilities, i.e., 

T(x|xQ = PUx^x'^x'} 

T(x'|x) Pifaxj)]*} 

The new x' is accepted with probability min(l,rc). 
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Step 2. Selecting a pair (xi,Xj) from the neighboring chains, i.e., |z — j \ = 1. Let 

x\ = Xj and a;'- = Xj, and compute the Metropolis ratio 

, 7r(x')T(x|x') ri . . , . . . .1 1 , , T(x|x') 

Note that the transition probability here is symmetric, since if we let p(xi) be 

the probability of selecting Xi, and let w(xj\xi) be the probability that Xj is 

chosen to be exchanged with x^ then 

T ( x ' | x ) = p(xi)w(xj\xi) +p(Xj)w(Xi\Xj). 

Therefore T(x'|x) = T(x|x'). 

Note that in the EMC algorithm, each step can be run multiple times. For exam

ple, in the mutation step, Liang and Wong's algorithm ([39], Page 324) let each Xk to 

be updated independently using the mutation operation, and let the crossover opera

tion repeat for [N/5] (the integer part of N/5) times, and let the exchange operation 

repeat N times. Goswami and Liu's algorithm ([24], Page 25), however, performs 

mutation updates M times for each Xk, and performs crossover updates [iV/2] times, 

and exchange updates N times. 
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