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ABSTRACT
Techniques for Design and Implementation of Physically Unclonable Functions
by

Mehrdad Majzoobi

- Physically unclonable functions (PUFs) provide a basis for many security,
and digital rights management protocols. PUFs exploit the unclonable
and -unique manufacturing variability of silicon devices to establish a se-
cret. | However, as Wé will demonstréte in this ‘WOI‘k, the classic delay-based
PUF structures have a number of drawbacks including susceptibility to
prediction, reverse engineering, man—in—the—middle‘and emulation attacks,

as well as sensitivity to operational and environmental variations.

To address these limitations, we have developed a new set of techniques
for design and implementation of PUF. We design a secure PUF archi-
tecture and show how to predict response errors as well as to compress
the challenge/ respbonses in database. We further demonstrate applications
where PUFs on reconfigurable FPGA'bplatforms can be exploited for pri-v
vacy protection. The effectiveness of the proposed techniques is validated

using extensive implementations, simulations, and statistical analysis.
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CHAPTER 1

Introduction

Physically unclonable functions (PUFs) ere physi‘cal systems with well-defined and
stable mapping from a set of inputs (challenges) to a set of outputs (responses).
Mapping is such that the owner of the system can rapidly obtain the output for any
specified rinput but there is small probability of obtaining the output in any reasonable
time by other parties [1]. PUFs should be also prohibitively hard to copy (clone),
emulate, simulate, or predict.

‘There is a wide consensus that intrinsic manufacturing variability of modern
and pending deep ‘submicron silicon is an excellent PUF implementation platform
[2, 3, 4, 5, 6]. Silicon technologies form the basis for almost all computing plat-
ferms today, while it is not technologically possible to reproduce the inherent silicon
nariability. Security techniques that employ silicon PUFs have numerous important
advantages over traditional cryptography-based security techniques including much
better resiliency against physical attacks (e.g. radiation, reverse engineering) [7, §],
the absence of covert channels (e.g. power, delay, electromagnetic measurements), ’
and much lower time, speed‘, and power overheads [2?3’ 9]. PUFs have been used
for a variety of security applications ranging from ID ere.étion and authentication

[2, 3, 4, 5] to hardware metering and remote enabling and disabling of integrated



circuits [2, 3, 4, 5, 10].

Our research has two conceptual sources: (i) natural PUF evoluti(in through vul-
nerability analysis; and (ii) quest to identify and create the best ways to levei‘age
reconfigurability to improve PUF’s security and operational properties. Unfortu-
nately, recent analysis have demonstrated that many of the current state-of-the-art
PUF structures are susceptible to a variety of security attacks. Our objective is to
design and analyze reconfigurable robust PUFs that are resilient against different
types of attacks. |

“Our analysis considers four typés of PUF security attacks:(i) reverse engineer-
ing; 7(ii) emulation and sté,tistical modeling; (iii) replay (man—in—the—middle); and (iv)
reconfigurability-specific vulnerabilities. ‘Reverse engineering aims at extracting the
delay parameters of each delay element. ‘The goa.i of emulation attack is to efficiently
compress and store the PUF challenge/responses. Statistical attacks predict the value
of the PUF outputs by exploiting the correlation among them and/or between the
outputs and inputs. Replay attack looks for repeated challenges. This attack is in
particular dangerous for PUF-based digital rights management protocols. A related |
attack, to a certain level, is the one where PUF's are fabricated in such a way that
their replication is easy for a specific level of manufacturing variability. Finally, recon-
figurability attacks aim to leverage the properties of reconfigurable implementation
platform to compromise the security of the PUF. Our goal is to create reconfigurable
PUF structures and the accompanying test procedures that ensure resiliency against
all the stated attacks.

The starting point for our research is a new, generic, modular and easy to param-
eterize PUF structure. The structure includes modules for combination of individual
challenge bits, different configuration schemes of delay elements, and combinations of
a subsets of the outputs using combinational circuitry to defend against the stated

attacks. We show how reconfigurability can be employed to strengthen each of these



defense mechanisms, to enable delay characterization, and to create notions of one-
time PUFs. |
" The remainder of the thesis is organized as follows. A brief background on PUFs
is given in Chapter 2. Chapter 3 presents a survey of related literature. We analyze
""" vulnerablhtles of PUFs and the potential attacks in Chapter 4. Next in Chapter 5, we
introduce a set of countermeasures and safeguards to address the ex151tng hmltatlons
A testing and characterlzatlon mechanism is presented for defining the response error
probablhty and achelvmgvrobust operatlon, as well as PUF diagnosis, and compression
“of the shallenge-responses. We further in this chapter show the de’sigﬂ of special logic
input /_outpu‘s networks and interconnectihg method for higher security aﬁd reliability
of PUFs and dempnstrate the effectiveness of the proposed concepts and methods by
éxtensive simulations. In Chapter 6, a secure FPGA-based authentication system for
privacy protection is »presénted. Chapter 7 presents the measurements and character-

ization results from implemeting the test circuit and delay—l))ased PUF's on Virtex 5 -

'FPGAs. Finally, we conclude the paper in 8.



CHAPTER 2

Preliminaries

Silicon PUFs exploit manufacturing variability to generate a unique input/output
~mapping for each IC. Delay—based silicon PUF's use the delay variations of CMOS logic
components to produce unique responses.y The responses are generated by comparing
the analog timing difference between two delay paths that must be equivalent by
logic-level construction, but are different because of manufacturing variability. The
delay-based structures use a digital component, arbz't{zr, that translates the analog
timing difference into a digital value. An arbiter is a sequential component with two
inputs and one output. The arbiter output is one if a rising edge signal arrives at
its first input earlier by at least a threshold value compared to the signal arriving at
the second input. The arbiter’s output is zero otherwise. Figure 2.1 (a) shows an
arbiter implemented using an edge-triggered latch. If the time difference between the
arriving signals are smaller than the setup and hold times of the latch, the arbiter
may become metastable and not be able to produce an accufate and deterministic
output.

[11] proposed a parallel delay-based PUF circuit shown in Figure 2.2. Generatihg
oﬁe bit of output requires a signal to travel through two parallel paths with multiple

segments that are connected by a series of 2-input/2-output switches. As depicted in



Figure 2.1 (b), each switch is configured to be either a cross or a straight connector,
based on its selector bit. The arbiter compares the signal arrival times at the end

of parallel paths (i.e., at its inputs) to produce the corresponding response. The
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Figure 2.1: PUF fundamental building blocks.

path segments are designed to have the same nominal delays, but their actual delays
differ SIightly due to manufactUring variability. The difference between the top and
bottom path delays on the segment n is denoted by 4, on Figure 2.2. To ensure
larger variations, one could insert additional delay elements on the path segments.
The PUF challenges.(inputs) are the selector bits of the switches. vThe output bit of
the arbiter depends on the challenge bits and is pérmanent for each IC (for a range of

operational conditions). Parallel PUF’s liability to reverse engineering was previously

Response

SN bit

Figure 2.2: Parallel PUF structure. The feed forward arbiter (shown in the dashed
line) is used to introduce nonlinearity.

addressed by introducing‘ nonlinearities, such as feed forward (FF) arbiters, in the
'PUF structure [2]. Figure 2.2 also includes a FF arbiter (dashed line) that controls a
switch selector. Unfortunately, our preliminary study shows even this structure can
be rex.rerse engineered using a combination ‘of_combinatorial and linear programming

technique [12].



- CHAPTER 3

Related Work

There is a wide and diverse body literature related to the research presented in this
manuscript i'nduding i'econﬁggrable bcom'puting, secure and trustable computing sys-
tems, physically unclonable functions (PUFs),i téchniques for hardware intellectual
property protection, manufacturing variability (MV) and computer-aided techniques
for addressing MV. We restrict our attention only on the most directly related re-
search and development results. There are four major conceptual starting points
for our research: (i) MV-based unique identifiers (IDs); (ii) security and reconfig-
urability (FPGAs); (iii) hardware security attacks; and (iv) integrated circuits (ICs)
characterization. |
Inevitable manufacturing variability, mainly due to dopants fluctuations, has been
recognized as one of fundamental physical and technological CMOS scaling barriers
in early and mid-seventies [13, 14, 15]. In late nineties, it again received a great deal
of attention, since the first experimental studies dembnstrate the validity of early
predictions [16]. Inspired by these studies and developments, Lofstrom af SiidTech
in Portland and his collaborators where first to propose intrinsic silicon MV for ID

extractions [17]. Soon, several works from other groups followed [18, 19]. Also, MV

has been used as a basis for creation of high quality random number generators [20].



Extraction of unique gate-level features from the legacy designs for using as IDs \}vas
proposed in [21].

IC IDs are completely static features that provide excellent accounting mecha-
nisms, but essentially have no security features. A great conceptual step forward
was achieved by [1] who introduced the notion of PUF. Their initial té.rgetéd PUF
platform was an optical coherence system. A significant pfactical step to enable in-
stantaneous and widespread application of PUF concept was proposal of Devadas et
al. who leverage silicdn MV for this task [2, 22, 23, 11, 9]. In addition, they devel-
'op.ed a set of PUF architectures and a suite of PUF-based security protocols. These
works motivated several silicon PUF's that use varioﬁs mechanisms to-extract a secret
[24, 25, 26]. Recently, by exploring the relationships between PUF-based IDs and
functionality of the pertinent IC, researchers were able to create a comprehénsive and
powerful systein of digital rights management protocols, including remote IC enabling
and disabling and passive hardware metering [10, 27]. Interestingly, the application
domain of PUFs is much larger; They can be powerful candidates for creation of a
new generation of security and cryptographical protocols that are intrinsically more
resilient against physical and side channel éttacks (5]. This wide range of PUF ap-
plications has one ramification: signiﬁcantly more stringent operation and security
requirements. There are also conceptually sharply different mechanisms, one that use
“small scale reconfigurability, to associate unique IDs to each IC of a specific design
28, 29].

Unfortunately, the current generation of MV—based PUFs often is subject to sig-
nificant security vulnerabilities. Recently, we have demonstrated surprisingly simple
wdys to reverse engineelf and even emulate several PUF classes as well as their suscep-
tibility to other types of attacks including (statistiéal) ‘guess,i,ng and induced instability
[12]. Our primary research dbjeCtive in this paper is to demonstrate that reconfigura-

bility rhay serve as a principal component of techniques for PUF fortification’ against



vulnerabilities.

Field programmable gate arrays are byvfa,r the most popular and practical re-
configurable computing platform [30]. The impact and techniques to address MV in -
FPGA récently attracted a great deal of attention [31, 32, 33, 34, 35, 36, 37]. Se\f—
eral class of PUFs for statié ID creation including SRAM and Butterfly PUFs were
introduced and implemented on FPGAs in Philips Research Lab in Europe [37, 36].
Important conceptual and positional FPGA security references include [38, 4, 39].
' Aﬁ excellent collection of security and intellectual property protection papers can
be accessed at http: /[www. cl.cam.ac. uk/ sd410/fpgasec/ Some more recent papers
include [31 32 33, 34, 35].

Silicon manufa,cturing is a widely studied topic in many areas of computer-aided ‘
design. A recent, excellent survey on CMOS MYV is [40]. There are two set of tech-
" niqﬁes for gate level characterization. The first one employs direct wafer microscbpic
measurements [41]. The other set of techniques use nondestructive indirect power
and delay measurements and sophisticated techniques for solving systvem’s of overcon-
strainted system pf linear equation in presence of noisy data [42, 43]. |

Our primary research objective in this paper and our earlier conferenée manuscript
[44] is to demonstrate that reconfigurability may serve as a principal component of

techniques for PUF fortification against vulnerabilities.


http://www.cl.cam.ac.uk/

CHAPTER 4

Vulnerabilities

The PUF vulnerabilities are discussed by presenting attacks. vThé possible attacks

are as follows:

4.1 Reverse engineering

. The reverse engineering attacks aim at estimating component-wise characteristics of
the system (e.g., gate delays), so that the adversary could either clone the system or
develop a software counterfeit for the PUF. Since cloning the PUFs is technologically
infeasible, the attacker’s objective is focused on sbft—modeling the structure’s behav-
ior. In an effective reverse engineering attempt, the adversary models the system of
N components in polynomial time with respect to N. This is because by linearly
increasing N, one can easily provide countermeésures against the reverse-engineering

attacks that have an exponential complexity.

4.1.1 Linear PUF

Let us briefly show the reverse engineering attack oh the delay based PUF shown in
Figure 2.2 (ignoring the added FF arbiter). Figure 2.1 (b) shows that each switch

can be represented by four delays; d, ;, ¢,j = 0,1, where 4/j denote the switch in-
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put/ output port indices respectively. However, it can be easily deduced that this
model contains significant redundancy é,nd the only important parameter in defining
a switch’s effect is the delay difference between its following top and bottom path seg-.
ments. One can eliminate t‘he redundancy and combine the series switches by lumping -
their delays to abstract thr representation of each switch using only one parameter
shown as s in Figure 2.1 (b). We refer to § as the (differential) path segment delay.
Thus, a linear PUF with N switches can be fully abstracted using IV + 1 parameters.

The parallel PUF can be easily reverse engineered using a linear number of CRPs
and forming a system of linear inequalities. The system can be Solved by linear
programming in order to find the (differential) path ‘se‘gment delays (&’s). For each
cha,llfinge input vector (c1[l], ..., cn[l]) used in I-th measurement and the correspond-
ing respoﬁse bit r[l], oﬁe éan form.ﬂan ihequa.lity:

[fj=0

N T
VI, > (—1)prOME; + by mg_ 1o, (4.1)

j=1
where p;(.) is the result of the transformation T on challenges as defined in Equation

4.2.

plcr,nen) =P ) =c® i1 ®...0cj, for i<j (4.2)

* The direction of inequality in 4.1 is determined by the PUF response to the I-th
challenge vector. In presence of measurement errors, an error term €[!] is added to
the left side of each term in Equation 4.1. We formulate a linear program (LP) where
the set of inequalities in Equation 4.1 are the constraints and the objective function
is to minimize a norm of error over L measurements, e.g., min Sr lefdl-

In order to minimize the absolute values, the objective function optimization can
be written as a linear system, min 3, €[] wifh added linear sign constraints (e.g.,

ell] > 0).
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Figure 4.1: Evaluation of accuracy distributions versus the number of measurements
obtained for a collection of 50 chips.

- We evaluated our reverse engineering approach using a set of CRPs. The box
piot in Figure 4.1 shows the modeling accuracy in percentage versus the numbef of
measurements (CRPs). for a population of 50 chips. We see that by using only 3000
CRPs,' the adversary can model thé PUF with 99% accuracy. The test set in our
experiment contains 10000 CRPs.

We also test the susceptibility to reverse engineering in presence of measurement
or arbiter errors. In the experiment we use 3000 CRPS, and randomly inject errors
in the response measurements. Figure 4.2 shows the model accuracy versus different
degrees of measurement error for a population of 50 PUFs. To improve resiliency
agaiﬁst measurement errors, we used the maximum likelihood approach. For example,
for a Gaussian delay distribution, the likelihood function would have a quadratic form
§vhich changes the LP to a convex programming problem. The improved results are

also shown in Figure 4.2,
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- Figure 4.2: Modeling accuracy distributions versus the measurement errors. Distri-
butions are obtained for a collection of 50 chips.

4.1.2 Féed—forward PUF |

To prevent reverse engineering, Lee et al. [11] suggest adding nonlinearities to the
circuit. They insert feed-forward arbiters (FFA) in the path such that the added
arbiters provide the challenge to a selector as shown in an example in Figure 4.3. The

A* arbiter’s inputs are coming from stage K. The output of A* is fed-forward to the‘

Response
A I_bit

Figure 4.3: The feed-forward PUF architecture. The arbiter (A*) introduces nonlin-
earity.

K + K'-th selector challenge bit.

We reverse engineer FFAs in the following way. If we denote the total path delay
difference incurred by the signal till the K 4+ K’ switch with A, then
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K+K'

- K pK+KI . ‘
A= SDAT S+ (1A (g + Sie)

i=1 .
K+K' K+K'

- > (1)

61' + 6K+KI+1. : (4.3)
i=K+4+2 :

The delay in the segment between the switch K and switch K + 1 is broken down
into two parts, &4, and 6%, +1 and therefore the PUF has one more parameter than
linear PUF; For the sake of simplicity, the measurement index ! (previously defined for
Equation 4.1) is removed. The feed-forward arbiter’s result, cx kv, provides another

inequality

K » X cK+K’=O : .
Z(*l)p* di+dxky1 s O (4.4)
i—1 Cr =1 :

We also use the following identity that can be directly derived from the definition

of pf

pEtE = pEHE' L g op g0 = pF @ pETE
= pE ® Pt T @ ek - (49)

Observing that (—1)?®® = (—1)?(—1)®, Equation 4.3 is further simplified to

K+K' -1

A= (=1)Pk+ | Afirs] (4.6)

S ‘ ‘ KiK' -1 . ‘
+  (F1)k+rr ((—1)PK+Y Gy s + Amiadte) + Yk +K/41-

Where pﬁi{{'_l is the parity (XOR results) of the challenges to middle stage.

Afgirsty Amiddie , 8nd Ayge are the first, middle, and last stage differential delays
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computed respectively as,

x |
Afirst = Z(—l)p{(&' + 041, ' (4.7)

=1

K+K'—1 KK -1 ’
Amiddle = Z (_1)/7,- (5',, + 6K+K'1 (48)

i=K+42

N |
Aot =" (—1)"y+yns (4.9)
i=K+K'+1

The total delay can now be expres_sed as

Avotar = A X (—1)PK+K41 4 Gy, (4.10)

We complete reverse engineering of FF PUF by using the following observations.‘
(i) By fixing the selector bits of the switches in first stage (K first switches), we
estimate the delays of switch elements in the middle and last stage by solving an
LP problem similar to the 6ne in Section 4.1.1. However, we need to make two
assumptions on the FF a,rbitef output and the LP Would have two solutions. The
solutions obtained by using these two assumptions only differ in sign which can be
easily resolved later.
(ii) Knowing the delays of switches in the middle and last stages (with a sign ambiguity
for the delays of the middle stage) and considering the PUF formulation (Equation
4.10), we set the challenges to the middle and last segments in a way so that any
transition of the final arbiter is closély linked to the transitions of the FF arbiter
output. This can be realized by choosing a challenge configuration that yield a large
delay difference for the middie stage (Amidage >> 0), while causing a negligible delay .
difference at the last stage (A = 0).

(iii) While the challenge bits to the middle and last stages are fixed to the appropriate
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configuration found in (ii), complementary challenges are applied to the first stage
swifches and transitions of PUF responses (final arbiter response transitions) are
recorded. Any time the final arbiter response flips, we obtain a constraint for the LP.
| Since we are concerned with transitions rather than absolute output va,iuevs, we need to
,§'address two LP problems by trying two different bit assignments. However, the delay
values obtained from the incorrect solutions can be easily rejected by cross-validating
the results on a few new CRPs.
(iv) Using the estimated delays of the first stage, we can eliminate the ambiguity in
the sign of the middle-stage delay difference. Therefore the delays of all switches can
be eStimated successfillly. |
In our experiment, the PUF has the structure presented in Figure 4.3, where K =
24, K’ - 20 and N = 64. After reverse engineering the PUF, we validate our model
using 10,000 CRPs and measure the accuracy of the modeled PUF. Figure 4.4 shows
the model accuracy versus different number of measurements for 20 PUFs. The first
15,000 CRPs (measurements) are used to estimate the r'niddle'and"'last stage switch
delays and the rest are used to estimate the first stage switch delays. Also note that
for step (ii), finding the challenge conﬁguratidn to the middle and last stages that
yields the largest and smallest possible delay differences is, in general, an NP-complete
problem. But we do not need an exﬁct solution and a rough approximation that gives
* a very small (large) delay is sufficient. For example, we can try 1000 challenge bit

combinations and find the one that gives the minimum delay difference.

4.2 Emulation

The goal of this attack is to emulate the PUF by effectively storing the CRPs in a
memory. If the number of CRPs grows exponentially with respect to the number

of inputs, the-required memory would be very large, making the full CRP storage
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Figure 4.4: Modeling accuracy versus the number of measurements obtained for a
collection of 20 FF PUFs.

infeasible. Instead, the attackers attempt at explditing the predictability of the CRPs

(lack of randomness) to achieve high degrees of compressibility and reduce the storage = -

demands drastically. For example, if a group of challenges that differ only in their
first two bits produce the same response, there is no need that the first two bits are
stored (Figure 4.5). A closely relevant attack would be to guess the responses to a
given challenge with high probability by performing statistical analysis on the PUF
responses. The data from the statistical analysis could also be used to efferently

emulate the PUF.

Challenge R
14100111

11100111
3100111
31100111
#2100111

L= Y I QS Gy G 3

Figure 4.5: An example of emulation attack.



17

4.3 Man-in—the-middle

During the authentication process, CRPs stored in the database on a server are
' compalfed with those obtained from the PUF. In case there are a limited number of
CRPs stored for each PUF in the database, the adversary can impersonate the PUF,
if he can build a copy of the data base content. The man-in-the-middle attack involves
eavesdropping the communication between the PUF and authentication server and

recording the responses to the attempted challenges to later impersonate [45].

4.4 Reconfiguration

While FPGA provides a versdtile platform for impleménting the PUF, the possibility
of reconfiguring the FPGA by an unauthorized pa,rty:poses a threat. For instance, if
an adversary knows how to read the configuration bit stream and configure the FPGA,
then he can gain full knowledge of the circuit structure. The attacker may reconfigure
the FPGA to remove the nonlinearities or other added transformation circuitry at the '
input or output to facilitate reverse engineering by modeling the delays of the linear

parts.

4.5 Collision of Responses

Collision of responses happenes when a pair of PUFs generate same ‘requnses to
given challenges. Ideally, if the PUF responses come from uniform distributions, the
probability of collision will be only a function of the number of response bits. But
in reality the PUF structure can distort the uniformity of respohses é,nd introduce a
bias. - |

We test the PUF to obtain the collision probability for different PUF stfuctures.

For each given challenge, the PUF responses on various chips must form a uniform dis-
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tribution to yield the minimum collision probability. The nonlinearity introduced by -
the FF arbiter distorts the uniformity of output responses and causes higher collision
probability, even in presence of completely independent delays and perfect arbiters.
Depending on the PUF circuit structure and the location of nonlinearity, there is a
lower bound on collision probability.

For a parallel PUF that consists of M response bits (M rows), the minimum
collision probability is Z—IM For example, if the PUF has 8 output bits, then the
collision probability is —2—51)—6. Figure 4.6 shows the collision probability for the FF PUF
normalized to that of the parallel PUF (2-axis) vs. feed-forward arbiter input/output
locations. The collision probability will be at least 65 times greater t‘hvan the parallel
PUF when the FF arbiter is placed at (input = 59, output = 64) location (i.e. close to

the final arbiter). One way to compensate for this increase in collision probability is to

increase the number of responses (PUF rowé) to lower the overall collision probability.

Increase In Colllslon Probability
8 888 8 3

o

Figure 4.6: The increase in the collision probability compared to the parallel PUF vs.
feed-forward arbiter’s input (z-axis) and output (y-axis) locations.



CHAPTER 5

Countermeasures and Safeguards

The vulnerabilites and potvential attacks presented in Chapter 4 can be alleviated by
- taking a number of safeguards. In Section 5.1 we review the countermeasures proposed
earlier. In Section 5.2 we introduce new safeguards that are more comprehensive than

the presently available approaches.

5.1 State-of-the-art

To protect PUFs against reverse engiheering and emulation two lines of methods were
mainly used: (i) introduction of non-linearities, and (ii) challenge-response hashing
[11, 3]. The proposed non-linearity based methods are typically of two types: (a) feed
forwarding and (b) MAX (MIN) operations.

As we discussed in previous chapters, a feed forward non-linearity is introduced by
inserting an internal arbiter that compare the signal delays at a certain point in the
circuit [2]. The internal arbiter then forwards the arbitration results to a switch that
is located ahead on the delay path. The feed forward arbiter introduces non-linear
behavior that complicates the reverse engineering process.- However, our studies in
Chapter 4 reveal that non-linear PUF structures with a small number of feed forward

arbiters are still prone to reverse engineering attacks [12]. To safeguard against this
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attack, multiple interleaved feed forward arbiters must be used. A major drawback of
this protection method is that adding the non-linearities skews the bit probabilities.
Thus, the resulting non-linear PUF ‘is more vulnerable to statistical modelling and
emulation attacks. The added internal arbiters also increase the circuit response’s
instability.

The use of MAX (MIN) functions was first proposed by [11]. MAX (MIN) oper-
ations are carried out on delay values by using AND (OR) logic gates in the PUF
structure. If two rising edge signals with delays d; and d, arrive atv a two-input AND
(OR) logic, then the delay of the output signal is d, = MAX(d,ds). AND (OR)
logics are/insertéd in the parallel PUF circuit and are connected to the bbttom and
top paths in between or at the end of the structure. Our studies show addition of
this type of non—linéarity also renders the circuit more prone to emulation attacks.

As anofhér countermeasure, thé use of cryptographic hash function was proposed
by [3]. Hashing is performed on both challenges and responses of the PUF. To estimate
the PUF model parameters, the adversary needs direct responses of the PUF arbiters
for known challenges. However the use of a one-way output hash funbtion inserted
immediately after the arbiters ’will make the responses obfuscated and obscure. To
diséover the response, one needs to invert a one-way function which is bknown to |
be a hard problem. This process should also be repeated until sufficient number of
responses are collected. An input hash function is attached to the PUF challenges
to prevent bit-level control of the challenges. Due to the (;ohfusion and diffusion

properties of hash functions, the final system is safe against emulation attacks.

Table 5.1: Latency and. area of common hash functions
Algorithm Chip area Clock cycles

SHA-256 10,868 1,128
SHA1 8,120 1,274
MD5 8,400 612
MD4 7,350 456

A drawback of the hash functions is that they incur significant hardware area -
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and power overheads. Besides, the PUF needs to evaluate multiple clock cycles to
prepare a standard size input message block to deliver to the hash function (MD5
caﬁn accept variable input message size). The input and output hash evaluations by
themselves take many clock cycles, imposing a large overall latency on the system.
3

“Table 5.1 shows latency (in cycles) and area (in gate equivalents) of commonly used

hash functions [46].

5.2 New safeguarding methods

In this section, Wé first present a mechanism to characterize the PUF componeﬁts for
5 linear structure. We discuss how the cha.ra.cterization can help in achieving a higher
robustness in presence of variations in operational conditions. In addition, using
cha,ra,cterizatioﬁ one can exponentially compress the challenge—responsé database and
provide a diagnostic tool for calibration and structural modifications. Next, we pro-
pose a secure PUF a.rchitecturé which adds a set of logic inpﬁt— and output networks

to the parallel PUF to secure the PUF against various attacks.

5.2.1 Testing and Characterization

There are at least three objectives for PUF éharacterization: (i) The measured delays
and parameters can be used to achieve a higher robustness against variations in

| operational conditions and environment. This is accomplished by estimating the
detection error probability for é given challenge. (ii) Switch delay values fully describe
the PUF behavior and could be stored instead of challenges and responses. (iii) The
delay values cén be used ‘t‘o perform diagnosis, calibration and structural modifications
for better performancé. A Msimila,r test circuit to the one used in this paper was
suggested by [47] as a BIST structure to estimate the delays of any combinatori‘al_
logic on FGPASs. o
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Figure 5.1: Delay characterization circuitry

The suggested delay characterization circuit consists of three flip ﬂbps: launch,
sample and capture. A transition is invoked by the launch flip flop at the combinatorial
circuit under test (CUT) input. The outpuf of the CUT is sampled ¢ seconds later.
The sambléd value 1s compa.red fo the real value'by' an XOR logic and the result is
recorded by the ‘capture flip flop. If ¢ is smaller (larger) than the CUT delay, then
the sampling occurs before (after) the transition appears at the output, and thus
the sampled value would be different frdm (same as) the input test signal. Note
that the sample FF has certain setup and hold times which make the FF unable to
sense smaller delay differences. Violation of setup and hold times places the FF into
a metastable state and causes non-deterministic outputs. If ¢ is swept by varying
the clock frequency from f; to f, (fi < 1/t < f,) with steps of Af, at some point
the speed of CUT would be almbst equal to the clocking speed. By counting the
number of times the capture flip flop records a sampling error and then by forming a
histogram? it is possible to accurately find the CUT delay.

Figure 5.2 depicts the probability that the sample FF outputs ”1” versus the clock
frequency. The symbol f, marks the frequency at which the sample FF produces
totally random outputs; 1/f,. is in fact ‘equal to the CUT delay. In other words the
clock edge and the signal edge coming from the CUT arrive at FF at the same time.
The transition slope in Figure 5.2 implies the speed of the sample flip flop. For
example, bﬂip flop 1 has smaller setup/hold times than FFs 2 and 3.

The combinational test circuit used here is a PUF. The procedure is repeated N -
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Figure 5.2: Arbiter characteristics.

times for different challenge configurations. Then, a system of linear equations is
solved to find each switch delay. To save time and efforts, the range of the scanned
frequency can be adaptively adjusted in each iteration to scan a smaller Window
é,round-the target frequency. Also instead of linearly sweeping the frequency to spot
the transition point, avbina,ry search algorithm can be used. If the frequency sweep
range is partitioned into Cr steps, then the binary search would find the transition
point in log(Cr) steps [48]. Most advanced FPGAs, such as Xilinx Virtex family,
provide Digital Clock Management (DCM) and Phase Locked Loops (PLL) blocks
which enable building clock synthesizer with on-chip resources. This is useful if a
stand-alone built-in system needs to be designed. In Chapter 7, we will implement
the characterization circuit on Xilinx Virtex 5 FPGAs and present the measured
results. ‘

After solving Equation 5.1 to find the switch deiays (A ={6,0,...,0n+1} ) and
measuring the probabilistic characteristic of the sa.mple‘ﬁip flops g(.) (see Figure 5.2),
the FPGA is reconfigured so that the test circuitry is removed. One of the sample flip
flops will bé used as the PUF arbiter. Since the arbiter response only depends on the
input delay differences rather than the absolute values, the flip flop characteristic,
g(.) is transformed to represent the arbiter characteristic: h(z) = g(;ﬁ) The -

estimated values for A and h(.) completely chafacterize the PUF and are stored in a
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database to be later used for identification and authentication purposes.

5.2.2 Response Error Prediction

Small delay differences at the arbiter inputs can cause metastability and inaccuracy
of the response. Metastable arbiters are extremely sensitive to chénges in operationa,l
conditions such as temperature variations and electromagnetic noise. Error correct-
ing codes with syndrome decoding have been proposed to correct for such errors [3].
However, since the syndrome is public information, it can reveal some information
about the responses and undermine the security of the PUF. In addition, correct-
ing multible bits reqﬁires a complicat'ed decoding circuitry with large latency and
hardware overheads. » |

To determine to what extent the responses are affected by metastability of arbiters,
we propose a‘ method that assigns é, level of confidence to each response using the
parameters obtained during the characterization step.

Let us represent the challenge vector by C = {cj, ¢z, ...,cn}. We define d as the
delay difference (the top path delay minus the bottom path delay) in response to C.

Now, d can be written as

i=1

d= EN (—1)pi5i +6N+1 = [P 1].A_1, : (51)

~ where P = {(-=1)",(=1)*2,...,(—1)**} and p; = ¢; ® ciy1 ® ... ® cy. The goal is to
estimate the probability of false negati\}e detection error, i.e., Prob(H; | Hp) for a

~given C where the hypotheses H; and H, are defined in Equation 5.2:

Ho: PUF = PUF' | (52)

H,: PUF +# PUF'.
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In fact, for a given delay difference d caused by the challenge C, h(d) (or 1 —
h{(d)) ‘is the probability that the arbiter produces a zero (or dne) output while the
- delay difference at its inputs is greater (smaller) than zero, and h(.) is the arbiter
characteristic obtained by the test circuit explained in Section 5.2.1. We define the
pfobability of false negative error (Peryor) as the probability that at least one of the

- PUF responses to K challehges has an error, therefore:

Perror = Prob(Hy | Ho) = H[az(l — h(d:)) + (1 — a;)h(ds)] (5.3)
’ 1, d;>0 :
0, d;<0 |

In writing Equation 5.3, we assume that the delays values caused by the K chal-
lenges are independent. Using this method, the delays resulting from a number of
randomly selected challenges can Be calculated by Equation 5.1 (assuming the switch
delays are available from the characterization step). Then, the probability of false
negative error is estimated using Equation 5.3; To ensure robustness against ar-
biter fnetastabilities, the responses with high estimated probability of error must be

ignored.

5.2.3 Challenge-response compression

The Characterizatibn scheme allows an effective way to compress the challenge re-
sponse pairs. A PUF with N switches in fact performs a transformation from N
real numbérsv to 2V binary numbers of length N + 1. Therefore, by measuring the
N ; péramétérs '('Ehat are in fact the path segment delay differences), one can fully de;
scribe the challenge-response space. In this way a hugé reduction in database storage

requireménts can be achieved. Also it enables one-time pad encryption for large N
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values (e.g., N > 128). The idea of compressing the CRPs by collecting responses
and performing reverse engineering is suggested in [49]. However in this method,
arbiter errors can cause large errors in estimating the switch delays [12]. We attempt
to directly measuring the délays of the PUF before the arbiter. Our method also
- allows for a,rbiter characterization and stores the characteristic as paft of the PUF

. parameters.

5.2.4 Diagnosis

The data obtained in the test phase can be used to diagnose and analyze the PUF.
‘Small variations in delays, long setuﬁ/hold times for arbiters, large bias caused by
systematic effects, or non-symmetric routing may diminish the PUF’s performance.
Adding extra delay elements or switch to t‘he PUF increases the total delay va,riation.A
Rerouting the connections aﬁd/ or‘ relocating the PUF caﬁ be utilized to overcome
the delay bias. Also noisy flip flops or those with large setup/hold times should be

avoided being uses as arbiters.

5.2.5 Secure PUF Architecture

In this section, we introduce a secure and robust PUF structure. The proposed
PUF as shown in Figure 5.3 consists of the four fundamental building blocks: (i)
input (logic) network, (ii) output logic network, (iii) wire interconnect network,"and
(iv) paralleI PUFs. After testing and characterizing each linear PUF in the parallel
structure, the FPGA is reconfigured to integrate and attach these blocks to the core
parallel PUFs.

5.2.5.1 Input network

We design the input network attached to the parallel PUF (see the dashed box in

Figure 5.3) to satisfy Strict Avalanche Criterion (SAC) for a parallel PUF circuit.
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Figure 5.3: The general architecture of the proposed Secure PUF.

A function is said to satisfy SAC if, whenever a single input bit is complemented,
each of the output bits changes with a probability of one half. In Section 5.2.5.3
we will show how to bind multiple rows of the resulting structure to construct an
N input, @ output PUF structure that satisfies SAC. When introducing the output
network, we demonstrate that the SAC property is required to achieve the maximum
security. Before discussing the design steps of the input network, we first discuss the
input/output characteristics of the parallel PUF.

As stated earlier, the PUF behavior can be represented by Equation 4.1. Let us
assume the differential delay values (§) in Equation 4.1 are independent and identically
distributed. For simplification and without loss of generality, we assume the random
variables have Gaussian distributions with zero mean, i.e., §; ~ N (0,0?). Our goal
is to find the probability that the PUF output flips given that a challenge bit in the
PUF input is flipped, i.e., Prob{~ O| ~ ¢;}. Any change in the sign of the summation
relates to a change in the output (response) bit value. Whenever a challenge bit value
flips, some of the terms in Equation 4.1 change their sign (as a result of a change in
the corresponding p values). Let us denote the set containing the indices of p’s that
flip (do not flip) as result of a flip in the k-th challenge bit by I'x (Ag). Note that

I" and A partition the index set, @ = {1,2,..., N}, where N is the total number of
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switches.

Vi = ) (-1,

i€l
We = Y (—1)%8;+by4a. ~ (5.5)
JEA,
If the absolute value of the sum of the terms whose indices are in Ty, (i.e., | V4 | in
Equation 5.5) is greater than the absolute value of the sum of terms whose indices
are in A (i.e., | Wy | in Equation 5.5), then the response bit flips whenever ¢, flips.
We define a new random variable X}, which has a value one if the output flips and
zero otherwise, i.e.,

Prob{Xy = 1} = Prob{~ O| ~ c;} | (5.6)

then,

15 l V;c |>| Wk |
X, = (5.7)

0, Otherwise.

It is desired that E{X)} = 0.5 for k = 1,2,..., N. The expectation is over all
PUF realizations. Recalling that the sum of Gaussian random variables forms a new
Gaussian, if U; ~ N(w;, 62 Y and U = Y_U;, then U ~ N(3_ wi, 302 ). Therefore,

V and W can be viewed as realizations of Gaussian variables given by

Wi ~ N(0,(] Ax | +1) x 0?)

Vi ~.  N(0,| T | xo?). : (5.8)
where |.| denotes the set cardinality. If | I'y | = | Ax | + 1, then V and W will be
identical and independent Gaussian random variables. Also | I'x | + | Ax | = N.
Therefore, if

N+1
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then E{Xy} = 0.5. Thus, if £ (almost half) of p’s in Equation 4.1 flip as a result
of a flip in k-th challenge bit (cx), then the output of the PUF would flip with a
probability 0.5. The result is in accordance with our initial intuitive observation.

We now verify if this property holds in the parallel PUF structure. The p’s in
Equation 4.1 are related to the challenges by the transformation T defined in Equation
4.2, i.e., P =T(C). It can be seen that a flip in ¢, causes a flip in Pis where j <k.
Thus, | 'y | = k. For example, if a ﬂipvin cn happens, all of the p’s flip as a result.
Hence, Equation 5.9 is not satisfied for the parallel PUF structure. We define a-
transformation G(.) on challenges that combined with 7" meets the criterion set by
Equation 5.9. ‘ | . |

Objective: Find G(.) so that P = T(G(C)) satisfies | T’ | = 2L for all &.

Method: (1) Before finding the proper transformation, we make an observation.
Consider two challenge bits, ¢ and ¢, N1 in the paraliel PUF that flip in succession.
The first flip (cx) causes p; for all j < k to flip, and the second challenge flip (¢, %{-_1)
causes p; for all j < k +'I_V_2-{;1_ to flip. The p’s that flip twice return to the first value
and do not flip in effect. Therefore, flipping cx and Crt NJ2-_1 at the same time causes p;
forallk<j<k+ % to flip, hence satisfies the criterion set by Equation 5.9. The
observation implies a constraint on the challenges. Whenever a challenge bit flips,
another challenge bit at 53*—1 selectors apart must flip as well to guarantee SAC. Note
that N must be an odd integer to yiold integer challen‘ge‘ indices. However, it is easy
to prove that it is infeasible to impose the derived constraint on the PUF challenges,
although high quality approximations can be made. We design an input network that
transforms the ihput challenges of the PUF and imposes constraints on the toPUF

challenges.

- (2) Find a transformation C = G(D), G : {0, 1} — {0,1}¥, so that any bit flip
in the input causes two output bits at approzimately % locations apart to flip. We

use two approximaﬁions to realize the proposed concept. One approximation can be
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implemented using a wire-only network, while the other one can be done using XOR
logic.

(i) Wire-only network: for N an even integer and M = %,

G performs the following
transformation: |

- N
G: c,-=ci+%=d,-, for z=1,2,...,§. (5.10)

The wire network connects the challenge bits of the PUF that are located —12! apart.
However, the‘ input dimension of the wire network is half of the PUF. Hence, one needs
to use twice the number of switches to achieve the same number of PUF inputs.

(ii) XOR network: for an even integer N and M = N, we define the transformation

G as follows:

cyvtinn = d;, for i=1

Cit1 — d, @ di_|_1, fOT' = 1,3, 5, ceey N-1

cyigz = i @dip1, for i=2,4,6,..,N—2 (5.11)

Unlike the wire-only network, the XOR network achieves a one-to-one mapping. How-
‘ever, an adversary with full knowledge of the circuit structure can apply the inverse
transformation to make the input network ineffective. We alleviate this issue later ‘by
introducing a wire interconnecting scheme that physically binds the inputs of multiple

PUF rows.

Dnv Dni1 Dne D, D,

CNIZ CN C(N.z)/z C1 C(N+4)[2 C(N+2)/2

Figure 5.4: The input network realization using XOR logic.

In addition to the expectation of X} being equal to 0.5, it is desired that the Xj
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has as small variance as possible. Smallervvariation guarantees that a larger number
of PUFs satisfy the SAC property. The variance of X, is related to the variances of
W and V in Equation 5.7, that are themselves related to the number of switches and
the variance of 0. The variance of ¢ is determined by the technology and the amount ‘
of process variations. Therefore, one can achieve a smaller variance for Xj by adding
to the number of switches or incorporating multiple rows of the same structure as

explained in Section 5.2.5.2.

5.2.5.2 Output network

We introduce an XOR—baéed oﬁtpﬁt network stfuctufe (see Figure 5.3) which achieves
(i) fortification against reverse engineering attacks, and (ii) smaller deviation from the
SAC on each PUF be combining multiple rows of parallel PUF's with the transformed
challenges. '

The output network performs a mapping denoted by Z(.) from the PUF arbiter
responsés, R, to the output, O. The mapping is defined as O = Z(R), Z : {0,1}? —
{0,1}9, @ < @, and

0j= D rhrerymoiq forj=1,2,..,Q (5.12)

i=1,..,x

where € denotes the pari‘by generator function and s indicates shifting step. The
transformation calculates the parity value for sets of = adjacent PUF arbiter responses
where each set starting point is circularly shifted by s bits with respect to each other.
The transformation can be pa,rameterized by s (the shifting step) and z (the parity
input size). We will discuss later how these parameters govern a trade-off among
security, overhead, and randomnéss prbperties. - |

(i) The proposed transformation can hinder the efforts to reverse engineer the

PUF in the following way. As stated in Section 4.1.1, to reverse engineer a linear
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PUF structure and estimate the delays of switches, the adversary needs to collect a
set of challenge—responsés from the PUF and solve a system of inequalities.

Suppose that the responses of Q parallel PUF's are mapped to a Q’-bit output by
the transformation Z(.). There are 2Q;Q' possible inputs that map to a given output.
Therefore, the adversary is faced with solving an ambiguity to discover the real PUF

response. The number of assumptions grows exponentially, bif he/she is not able to
reject some of them at each step. It can be shown that the problem has expdnential
complexity of order O(2@~2"°) with respect to the number of ambiguities 2(2-9"
and the number of CRPs needed to estimates the PUF switch delays Ng. [12] show
that to reverse engineer a linear parallel PUF having 64 switches with accuracy of
’ overb98%‘, a mininﬁim number of ZOOOACRPS (N¢ = 2000) are required. Then for
Q-Q =1, the complexity of reverse éngineering the secure PUF would be 01(22_000).
Nevertheless, if thé attacker can control (the transition of) the PUF arbiter responses,
then it would be possible to reduce the number of assumptions by performing a
differential attack. Let us illustrate the problem using an example. Consider a trivial
case of Z where Q = 5, Q' = 4, and every fdur adjacent response bits are XOR-ed to

produce the output, i.e., s =1, z = 4 (see Figure 5.6).

1:10100 — ?‘30100
e 7 >0: 0101—>1110

s

1101101 Z— 11101
Figure 5.5: Example: the difficulty of inverting the output network.
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L
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Figure 5.6: An example of output network for Q =5, @' =4, z = 4 and s = 1.

Now imagine a transition in the output occurs from 0101 to 1110. As shown in
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Figure 5.5, there are four possible transition hypotheses about the Z inputs depicted
by arrows. If we know only the first bit (or only one bit) of the input has caused
such transition in the output then we can reject two hypotheses shown in dashed
arrows. Also by associating probabilities Wlth transitions and ranking assumptions
ﬁaccordmgly, one can guess the PUF responses.

Thus, Z(.) by itself does not guarantee significant resiliency against reverse engi-
neering. To achieve a high levél of resiliency, it is required that the PUF response bits
(or Z inputs) could not be deterministically controllable. The Maximum resiliency
is obtained if PUF response bits flip with a probability of 0.5 which is equivalent to
SAC. We will use an interconnect network that connects rows of parallel PUFs, to
design a @-output PUF with SAC property. |

(ii) The mixing property.of XOR lbgic or in general the parity génerator func-
tion also fortifies the PUF against emulation and statistical guessing attacks even in
presence of outrageously large PUF switch (element) delays. For larger values of x

in Equation 5.12, higher number of PUF rows and responses are mixed and smaller

deviation from the transition probability of 0.5 (i.e., var(Xy)) is achieved.

5.2.5.3 Interconnect network

In Section 5.2.5.1 we designed an input network that satisfied SAC for a single row
PUF with one bit output. We design a PUF structure that consists of multiple rows
of paréllel PUF's and maps N challenge bits to () response bits. The PUF is designed
to satisfy SAC. The PUF is built upon an interconnect network that connects the
challenge bits of rows of parallel PUFs (See the leftmost solid box in Figure 5. 3)
In order to satisfy the SAC, it is required and sufficient that one challenge bit on
each row is connected to another challenge bit on a different row. A challenge bit is

broadcasted to all PUFs, and since each PUF output flips with a probability of 0.5,
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the SAC is met. The interconnection can be expressed formally as follows:
=t for 4,j€Q, m=12,..,Q—1, (5.13)

where ¢[* is the ¢ — th challenge bit in the m-th row, Q = {1,2,..., N}, j = gn(¢) and
gm: §2 — (1 is a one-to-one permutation function. In Section 5.2.5.1, we mentioned
that the XOR input network can be bypassed by applying the inverse transformation.
If the inputs of PUF rows are conhected in parallel (with no permutation), i.e., i = 7,
by applying the inverse transformation (G!) all of the input networks are bypassed
“and thus, ineffective. By imposing a constraint on g, to be non-identity for all m’s -
the éttacker can fully bypass only one input network and the other input networks can
only be partially bypassed. Figure 5.7 depicts an m-bit circular shift interconnecting

scheme, i.e., j = gm(i) = (i +m — 1) mod Q. -

*» CN-2 CN-1 CN

Figure 5.7: An m-bit circular shift interconnecting scheme that connects ) rows of
parallel PUFs with transformed challenges.

We thoroughly examined the secure PUF architecture that uses the proposed
input/output network and the interconnecting method explained in Section 5.2.5. In

the following experiments, we model each switch with four delays - two for straight
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connection and two for cross connection links. We assume that the delay components
are samples from independent identical' Gaussian distributions with 4 = 0.5ns and o
= 4ps. The mean and variaﬁce conform with the 65nm technology [50]. |

For a single row parailel PUF circﬁit with 64 switches, we simulated the probability
of output transition conditioned on each challenge bif transitions. In this experiment,
we apply to the PUF 100 random 64-bit challenge vector pairs that differ only in
the i — th bit, where i = 1,...,64, and record the percentage of times the output
transitions. We repeat this experiment for 50 PUF circuit realizations and find the
expectation. Figure 5.8 shows the value of E[X}] before and after applying the input 7
XOR transformation (deﬁnéd in Eqﬁation 5v.11)‘on the PUF challenges. The figure
shows that the probability of output flip conditibned on the k-th challenge bit before
input transformation increases monotonically from less than 0.1 to ovér 0.9, where k
= 1,2,...,64. This can be intuitively viewed as the cumulative effect of switch delays in
the parallel PUF circuit structure. Note that after applying the- XOR transformation
on the PUF challenges, the output flips with a probability close to 0.5 for a flip in

input bits, which per se satisfies the SAC. A smaller deviation from the transition

1

------ Before Applying Input XOR network ;
0.9 .... o After Applying Input XOR network nh

0.8

0.7

0.6

EX]

0.5

0.4

[ 10 20 30 40 . 50 60
Challenge Bit Nubmber (k)

Figure 5.8: Probability of the response flip given a flip in the k-th challenge bit for
a single row parallel PUF. The dot (circular) markers show the probability before
(after) transforming the challenges. ’
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probability of 0.5 is desired for each individual PUF circuit realization. There are two
ways to reduce such deviation: (i) by ﬂsing more switches in the parallel PUF circuit
(increasing N); (ii) by mixing the outputs of larger number of parallel PUF circuits
(increasing z in Equation 5.1‘2). The black solid line in Figure 5.9 indicates how
the variance (var(X})) decreases as the number of switches in a single row parallel
~ PUF increases from 8 to 128. For a fixed number of switches in a row, the variance
répidly drops as 2, 4, and 8 .adja,cent outputs of rows of parallel PUFs (z = 2,4,8)
are mixed (by an z-input parity generator function). Note that the challenges of
the parallel PUFs arranged in rows are connected by the interconnection network

presented earlier.

-—e—— Single Row PUF
~ @ — Q=8, Q'=2, x=2, s=1| |
¥ Q=5, Q'=4, x=4, s=1
—4— Q=9, Q'=8, x=8, s=1

8 16 32 64 128
PUF Length

Figure 5.9: Deviation of transitional probabilities of individual PUF instances from
the SAC.

We now investigate the security of the proposed PUF against emulation attacks.
We devised an algorithm that randomly selects a challenge vector within which it
searches for the largest numbér of bits that can be represented with don’t-ca.r_es. We
set an upper-bound on the number of search efforts for each challenge and use the
knowledge of the statistical PUF characteristics to expedite the search. For example,
we know that the left most challenges have a lower impact in determining the parallel

PUF output (same scenario for FF PUF), thus they can be represented with don’t-
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cares with higher probability.

Figure 5.10 shows the amount compression achieved for a single row parallel PUF,
FF PUF and Secure PUF; (Q,@',x,s) = (9,8,8,1) and 64 switches in each row (N =
64). The feed forward arbiter in the FF PUF compares the delays at switch 20-th and
~ feeds the result td the selector of the 40-th switch. The emulation attack is performed
on 10 PUFs of each type. The ten values are shown in box plots in Figure 5.10. Note
that compressibility of the challenge response pairs of the secure PUF structure is
four and five orders of magnitude smaller than a single row parallel and FF¥ PUF
respectively. The smaller level of compressibility corresponds to lower prédictability
of the respbnses. | |

" We also examined PUF sensitivity to very large switch delays. In genéral, delay
outliers cause high predictability, high compi‘essibility of CRPs, and facilitate‘building
of statistical models. We studied the sensitivity of secure PUF and the single row
parallel PUF structures to butliers. A fault is injected as an outlying delay of 5ns (10
times larger than mean’ delay) into the 20-th switch - of the first row for the secure
PUF. Figure 5.11 shows the expected probability of output transition for both single
row parallel PUF and the Secure PUF with the parameters (Q,Q’,z,s) = (9,8,8,1).
The expectation is taken over 50 PUF realizations. For the parallel PUF with one
row, the transition probability is highly distorted; flipping inputs 1 (42) to 39 (64)
(does not) flips the output with a probability of 0.8. Such divergence from SAC
leads to high prédictability of PUF responses and facilitates emulation and statistical -
modeling attacks. However, as it can be seen in Figure 5.11, the transition probability
of output (any of the eight PUF Qutput bits) does not change because of the miXing
introduced by the output network. In addition, if the PUF responses in some of the
rows do not sﬁow sigrﬁﬁcant changes and va,riétions due to arbiter failure, arbiter

insensitivity, or large delay biases, the effect would not be transparent at the output.
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Figure 5.11: Sensitivity of PUF transitional behavior to outlier switch delays.



CHAPTER 6

Applications

There are many possible applications for the introduced secure PUF as pointed out
in previous research [2, 3, 4, 5, 10]. In this chapter, we present applications that

leverage reconfigurable platforms to provide system security.

6.1 Configure-and-erase Method

We introduce an FPGA-based authentication method for smart cards which limits
the user’s knowledge about the PUF“circuit structure and its location on FPGA. In
this method, the FPGA owner is identified by the unique manufacturer variability

(MV) on his/her FPGA. The permanent placement of the PUF circuit, as in ASIC |
technology, would give the adversary unlimited access to the PUF inputs/output
and thus make the PUF vulnerable td reverse engineering and emulation attacks.
In the proposed method, the user is furnished with a blank FPGA and a Personal
Identification Number (PIN). Before thé FPGA is given to the user, the PUF is
characterized using the methods described in Section 5.2.1. Thus, the switch delays
and -a,’rbiter'parameters are derived and stored. PUFS with different lengths and on
varibus locations can be implemented and ciiaracterized. Therefore, each database

entry could consist of multiple fields such as location attributes, circuit structure
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parameters (length), switch delay values, and arbiter parameters (see Figure 6.1).
Because of the linear number of components, the space required to store all this data

is still smaller than saving many challnge/response pairs. |

Path Segment Arbiter Characteristic Location Parameters Configuration
Delays (A) h(), ST, HT,... LUT(X,Y) Bitstream

Figure 6.1: An example of a database entry.

When the user presents the FPGA and his PIN to the authentication system the
following steps are performed: (i) The system retrieves the database entry associated
with the provided PIN. (ii) Then, the FPGA is configured according to the database -
entry ﬁéld values. The PUF will be placed on the location specified in the database
and the input/output networks will be added to it. The configuration bitstream could
" be stored in each database entry along Wifh oﬁher parameters or instead it could be
. generated online according to the circuit parameters and location attributes stored
in the database. The latter method can drastically reduce the storage requirements,
although it introduces a latency in generating the bitstream. Note that the number of
fedsible locations for placing the PUF is merely dependent on the size of the FPGA.
(iii) At the third step, the binary challenges are sent and tried on the configured |
PUF; the responses are retrieved. Meanwhile, the database derives responses from
the stored PUF parameters for the given challenge. Probability of error for each
response is also calculated. The -derived responses with lower error probabilities are
compared with the received responses for authentication. (1v) After authentication is
performed, the FPGA content is eraséd and the FPGA is returned to the user.

Blank FPGA PIN # xxx

Config. FPGA
4~ | Authentication
~wExch. CRPs Server

PIN# o T~Erase_~

Figure 6.2: Configure-and-erase scheme steps
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The proposed system can be subject. to the a number of attacks. First, by tap-
ping‘ the communication link between the FPGA and the authentication server and
reading the conﬁgilra,tion bitstream, the adversary might be able to discover the PUF
structure and its location on the FPGA and later attempt to configure the FPGA
and model the PUF. There are two ways to eliminate such threats. Onevwa‘y is to
physically secure communication link which is not feasible in all applications. The
other way is to encrypt the bitstream and make the FPGA non-reconfigurable by an
~ unauthorized party. A timed authentication method, which is explained next, can
be also used td hinder the efforts to perform PUF modeling attacks. The use of
one-time PUF's (iavhere each CRP is tried only once) would protect the PUF against

man-in-the-middle attacks.

6.1.1 Timed Authentication

Swift evaluation of the arbiter-based PUF is a unique feature that can be used to
safeguard the authentication process. Unlike ring oscillator PUFS, the arbiter-based
PUF's can produce a response to a given challenge in a single clock cycle. The clock
frequency is however limited by the delay of PUF structure itself. Attempts to build
a software counterfeit of the PUF by either emulating the responses or reverse engi-
neering can be encumbered by imposing a tight timing constraint on PUF evahiation.
The method could be realized by time stamping the responses using either the em-
bedded system clock or the authenticating ser\ier clock. The former requires a tamper
resistant clock since otherwise an adversary with high speed clocking resources at his
disposal might be able to reduce the system clock frequency and calculate the PUF
résponse more quickly. Using the authentication server clock removes concern about
clock tam'p('ering,‘ however it would be limited to applications where the PUF and the
server can communicate through a high speed channel whose latency is not much

higher than the PUF evaluation time.



CHAPTER 7

Implementation Results

We preseht the measurement an‘d; characterizaiﬁ:ionvresults obtained by implementing
the test circuit described in Section 5.2.1 on Xilinx Virtex 5 FPGAs. Figure 7.1
shows the details of the implemented circuit structure. The circuit benefits an ex-
ternal clocking source‘which sweeps the clock frequency continuously from 13 to 15
MHz. The frequency is swept every 65 milliseconds. The clock generator’s output
is then connected to a PLL inside the FPGA which multiplies the input frequency
by 7, shifting the frequencies up to the 91-105 MHz interval. The PUF under test
is triggered by a toggle flip flop which alternately produces a falling and rising edge
signal. A 9-bit counter driven by the system clock resets the error counter values and
issues a read signal every 512 clock cycles. The errors are counted by 8 bit counters.’
The linear PUF structure was used for testing and characterizatiqﬁ. The PUF
consists of 8 switches with 6 delay elements in between. The delay elements are
implemented by a series of 6 NOT' gates. Eaéh NOT gate is realized by a separate
. LUT. To balance the path delays, the PUF was manually placéd and routed using the
FPGA Editor in Xilinx ISE design tool. Figure 7.2 shows the PUF after placement
on the FPGA floor plan. Eight different challenge values with corresponding decimal
values of 0, 1, 3, 7, 15, 31, 63, 127 are tried at each sweep. With.the delays meas-ured
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by applying the challenges, one can find each path segment delay (4) by solving a
system of linear equations. The error counter values are read using a Tektronix LA714
logic analyzer when the READ signal goes high. The circuit was implemented on five

XC5VLX50 and three XC5VLX110 Xilinx Vertex 5 chips.

Sample Capture

Flip FlOPS_I Flip Flops Eror

Counter 1

PUF-under-test

Figure 7.1: The detailed structure of the delay characterization test circuit. The clock
frequency is consciously swept using an external clock generator and the frequency
range is shifted up by the internal FPGA PLL.

Figure 7.2: The PUF circuit on the FPGA floor plan after manual placement. A
screen shot from FPGA Editor tool in the Xilinx ISE software.

Figure 7.3 shows the relationship between the clock period and the PUF output
sampling failure rate. At clock periods above 11.45ns (i.e., Region 1), the PUF
output is sampled and captured successfully, making Region 1 a fault-free region. As
the clock period decreases, sampling errors begin to appear (Region 2). The failure
rates reach a plateau of 0.5 (Region 3). In this region, the sample flip flop always
fails to properly sample the rising edge transitions but 1t can capture the falling
edge transitions successfully. This is due to the fact that the delays for positive

and negative transitions through the PUF are different. Since half of the transitions
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are positive and the other half are negative, the failure rate would be 50%. If the
clock period is further decreased, errors would appear for the falling edge signals too
(Region 4). Finally in Region 5, all of the sample values would be erroneous. The
curves in Regions 2 and 4 are in fact the flip flop characteristics. The flip flop setup
and hold times are indicated by markers in Figure 7.3. The 10% and 90% values for
the ST and HT times are chosen respectively. The pdints where the failure rates are
equal to 0.25 and 0.75 virtually correspond to the cases where the élock beriod is
‘equal to the circuit delay for rising and falling transitions respectively. Also note the

fineness of delay resolutions at which the measurements are carried out.

14 T L Er— T T

=
10 2
12 H

;

Probability ot Error

04r

Figure 7.3: Measured arbiter characteristic.

We beginvwith characterizing the arbiter. To efficiently represent the arbiter,
a parametric model could be fit to the arbiter characteristic and the pertinent pa-
rameters are estimated and stored in the database. The arbiter’s non-deterministic
behavior in presence of small input delay differences. is inﬂuehced by circuit noise
and many other surrounding effects. Due to central limit theorem we argue that the
arbiter output can be represented by Gaussian cumulative functibn (CDF). We fit
the Gaussian CDF to the m‘easure,d arbiter characteristic in least square sense and
estimate its mean and standard deviation. Figure 7.4 shows a section of the measured

- arbiter characteristic along with the Gaussian fit. The standard deviation (o) of the ,
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fit determines the speed of the arbiter and the mean value corresponds to the PUF
delay. Note that the o (arbiter speed) can be different for rising edge and falling edge
signals. Therefore, the arbiter can be effectively represented by two parameters, i.e.,

Orise and Osqy. Setup time and hold times are functions of o.
;}? .

——— Measured Data
0951 | === Gaussian Fit

0.9

085

0.8t

0.75|

0.7F

Probability of Error

0.65|

0.6

0.55F

05

9.39 9.4 9.41 9.42 9.43 9.44 9.45 9.46
Time (ns)

Figure 7.4: Measured arbiter characteristic in region 4 and the corresponding Gaﬁs—
sian fit. ’
We used the characterization circuit to measure the top and boi:tom path delays
of the PUF. The delays are measured for eight different challenge values. Figures 7.5
(a) and (b) respectively show the path delays for falling edge and rising edge signals
propagating through the PUFs implemented on XC5VLX50 chips. Figures 7.5 (c)
and (d) show the same data but for XC5VLX110 chips. Each plot in these figures
correspond to one chip. There are two sets of data on each plot distinguished by
circle and dot markers. The circle marker represents the top path delay while the dot
marker refers to the bottom path delay. The top and bottom path delays are shown
for the given challenge values on the x-axis. As the measurements suggest, the path
| delays are in some case correlated among the chips (e.g., see how the delays on the
secorid and third plots in Figure 7.5 (d) follow thé same trend).
| We next estimated the oy, and o4y of the flip flops from the measurerﬁerit data.

With two sample flip flops per circuit and a total of 5 circuits on XC5VLX50 chips
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Figure 7.5: The top and bottom path delays of PUFs on XC5VLX50 chips for (a)
rising edge transition, and (b) falling edge transition; The top and bottom path
delays of PUFs on XC5VLX110 chips for (c) rising edge transition, and (d) falling

edge transition.
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and 3 circuits on XC5VLX110 chips, there were 16 flip flops to characterize. The
measurements were repeated 8 times for each flip flop. The box plots in Figures
7.6 (a) and (b) show the estimated Ufazz and oy respectively for the flip flops on
XC5VLX50. Figures 7.6 (c) and (d) shows the same result for the flip flops on three.
XCSVLXHO chips. The adjacent flip flops in the figures (i.e., FF1 and FF2) come
from the samé circuit and are physically close to each other in the circuit. FF1
and FF2 reflect similar speed characteristics. The flip ﬂops on the third XC5VLX50
chip is the fastest among the other XC5VLX50 chips. Also the flip flop on the first
XC5VLX110 chip is the fastest. The narrowness of the boxes confirms the accuracy
of the measurements and parameter estimations.

‘The measurements can also help locate faulty or unstable flip flops. For example,
the test results on one of the the flip flops as showr’i' ih Figure» 7.7 demonstrates a
noisy glitch marked by the black circle. The glitch keeps repeating at every round
of measurement. Thus, when implemé‘nting PUFs, the designer should avoid Iioisy
arbiters and those with large setup and hold times. Even if the noisy flip ﬂop (liké
the one shown in Figure 7.7) has to used ds an arbiter, then those challenges that
cause a delay difference coinciding with the glitch mlist be avoided.

The amount of delay variability in future FPGA technology follows an upward
trend. Sedcole et al. in [50] predict that with a slightly rapid increase in stochastic
variability (2% every three years), stochastic variation will amount to 11.5% in 22nm
technology node while systematic variations keeps decreasing. Table 7.1 shows the

amount of variability in the current and pending FPGA technologies [50].

Table 7.1: Delay variability in current and future FPGA technologies.
Production year 2004 2007 2010 2016
, "Node 90nm . 65nm 45nm = 22nm
- Stochastic var. (30) 3.3%  55% 7.5%  11.5%

We estimated the amount of observed variability on 65nm Virtex 5 FPGA family



48

a0} 0 é
19} 1
Chip2
18}
17t
~ Chip5
1 v
17 = =
& Chip1
® = B
1} Cripa
12}
nr . . Chip3
1o} = e
FF1 FF2 FF FF2 FF FF2  FF1 FF2 FF1 FFR2
: Flip Flop
(a)
12}
115} _ ]
Hr g Q - + 1 .
|
I
_ 105} Chip2 | 1
8 L
P =
-]
9.5} ]
Chip3
9.
g5l cnit
-
== E=3
FF1 FFR2 FF1 FF2 FFY FF2
Flip Flop
(c)

4 BB

.(.
20p Chip2

i
)

16} Chip1

_Chips |
= 2

Chip4

Chip3
&

FFt FF2 FF1 FR2

FF1 FF2 FFl FR2 FF1 FFR2
Fiip Flop

(b)
12- é -
15 + +
Chip2
nf y ]
= 105 FE_T_“I ]
& T =
§ 10 Chips 1
-]
95
9..
Chip1
e O
.
FF1 FF2 FF1 FF2 FF1 FF2

Flip Flop

(d)

Figure 7.6: The sample flip flop speed o of PUF circuits on XC5VLX50 chips for
(a) rising edge transition (oys), and (b) falling edge transition (of.); The sample
flip flop speed o of PUF circuits on XC5VLX110 chips for (c) rising edge transition
(Orise), and (d) falling edge transition (o squ).
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Figure 7.7: Faulty flip flop behavior.

from the measurement data. Assuming the additive delay model for the PUF, the
total path delay (Z) can be written as sum of independent. and identicélly distributed
random variables (X;), i.e., Z = X1 + X5+ ... + X, where n is the total number of
delay elements in the PUF structure, X; ~ N(u,0) and Z ~ N(uz,0z). Then |

oz/pz = (1/v/R) x (o/p). | (7.0)

Thé mean and variance of Z’ were estimated as pz = 10.41ns and oz = 0.068ns
using the delay measurements obtained‘from XC5VLX50 chips. Since the PUF uses
8 switches and 6 delay elements in between then the total length of the PUF would
be n = 56. Therefore from Equation 7.1, the variability is derived as (3 x o)/u ~ 5%.
The amount of variability conforms with the estimated values shown on Table 7.1.
The measurement results show that even though variability exists in the structure,
the amount of variability in presence of the arbiter imperfections and measurement
biases is not enough to make a robust and yet random response on all of our test
chips. In what follows, we present a number of interestixig observations from our
implementation experiments.

Figure 7.8 shows the distribution of the delay differences between the top and
bottom paths for XC5VLX50 test chips. Figures 7.8 (a) and (b) show the distribution
for rising and falling edge transition delays. Each distribution contains 40 points; 5
chips and 8 chéllenges pef Chlp The flip flop 30 setup/ hold-times are depicted on’

the same figure by vertical lines for the fastest and slowest flip flops on the chips.
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It can be seen that in Figure 7.8 (a), on our test chips, the delay differences are
smaller than 3o setup/hold times of the arbiter, resulting in metastable responsés. In
the falling edge transition case shown in Figure 7.8 (b), 87.5% and 70% of the points
fall inside the metastable region of the slow and fast flip flops respectively. Figures
7.8 (c) and (d) show the same results for XC5VLX110 chips. For the falling and
rising edge transition cases (Figure 7.8 (d) and (c)) 87.5% and 100% of the points
fall inside the metastable region of both slow and fast flip flops. vAs it can be seen,
because of the lack of calibration, the distributions aie skewed toward positive and
negative values. | a

Also, it is rimportant to note that a delay difference between the top and bottom
paths after vt'hé'lastb switch and before the,‘ arbiter may céuse a bias in the responses
toward zero or one since this is the only path that does not switch. As shown on Figure
7.2, the sample flip flops (FF1 and FF2) are symmetfically placed on the top and
bottom paths to minimize the delay difference in the measurements. To implement
the PUF, the two sample FFs must be replaced by a single FF whose inputs could
potentially follow asymmetric routeé introducing bias in the PUF responses. As the
measurement results suggest, any delay difference on the path segment between the
last switch and the arbiter in the order of 100 pico—secqnds can be deadly and force
the responses completely into zero or one by moving the mean of the distribution.
Thus, careful calibration and comp'ensation of this bias is crucial for obtaining robust
results. This could be achieved by insertion of extra delay elements or trying different
routes on either of the top or bottom path

We have also tried changing the placement strategies and the PUF lengths (64
switches, 128 switches) on the FPGAS. The small delayvvaria,bi-lity cé,n partially Abev
compensated by including more delay elements. As Equation 7.1 implies oz increases
as the square root of the number of delay elements (n) assuming that uz increases

linearly n. Assuming the amount of variability on 22nm FPGA with same nominal
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delays, the total delay variation of the PUF (n=56) would be 30z = 160 ps which is
more than twice the measured 3o of the slowest arbiter.

Successful and systematic implementation of PUFs requires é larger variability
(that is technologically inevitable with the current trends), details of the variability

: ;f}'ﬁ"information about the FPGA fabric and switches, as well as development of tools for

automatic timing-aware PUF placement and routing.
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Figure 7.8: The distribution of delay difference between the top and bottom paths.
The distribution is calculated for 8 input challenges, 5 XC5VLX50 chips, and 3
XC5VLX110 chips. Figures (a) and (b) show the distribution for rising and falling
transition delays on XC5VLX50 chips. Similarly, Figures (c) and (d) show the dis-
tribution for rising and falling transition delays on XC5VLX110 chips. The vertical

lines show the 3¢ detection edges of slow and fast arbiters (FF). '



CHAPTER 8

Conclusion

In this work, we developed new techniques for the design and implementation of PUF's.
The PUF VUlnera.bili_ties to various types of potential attacks were discussed. We
demonstrated how reconfigurability can be exploited to ensure that PUFs are resilient
against the potential attacks and are fobust to unpredictable operational conditions.
A PUF testing and characterization mechanism enabled by feconﬁgurability feature
provides tools for diagnosis, CRP compression, and determining the level of confidence
in responses. A unique input/output logic network along with an interconnecting
- approach is introduced to encumber attempts at reverse engineering or mo_déling the
PUF. The proposed building blocks are added to the PUF after the characterization
step. We havevshown épplications where FPGA-based PUFs can be used for security
and privacy protection. The effectiveness of all the proposed claims were validated

using extensive implementations, simulations, and statistical analysis.
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