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ABSTRACT 

Techniques for Design and Implementation of Physically Unclonable Functions 

by 

Mehrdad Majzoobi 

Physically unclonable functions (PUFs) provide a basis for many security, 

and digital rights management protocols. PUFs exploit the unclonable 

and unique manufacturing variability of silicon devices to establish a se­

cret. However, as we will demonstrate in this work, the classic delay-based 

PUF structures have a number of drawbacks including susceptibility to 

prediction, reverse engineering, man-in-the-middle and emulation attacks, 

as well as sensitivity to operational and environmental variations. 

To address these limitations, we have developed a new set of techniques 

for design and implementation of PUF. We design a secure PUF archi­

tecture and show how to predict response errors as well as to compress 

the challenge/responses in database. We further demonstrate applications 

where PUFs on reconfigurable FPGA platforms can be exploited for pri­

vacy protection. The effectiveness of the proposed techniques is validated 

using extensive implementations, simulations, and statistical analysis. 
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CHAPTER 1 

Introduction 

Physically unclonable functions (PUFs) axe physical systems with well-defined and 

stable mapping from a set of inputs (challenges) to a set of outputs (responses). 

Mapping is such that the owner of the system can rapidly obtain the output for any 

specified input but there is small probability of obtaining the output in any reasonable 

time by other parties [1]. PUFs should be also prohibitively hard to copy (clone), 

emulate, simulate, or predict. 

There is a wide consensus that intrinsic manufacturing variability of modern 

and pending deep submicron silicon is an excellent PUF implementation platform 

[2, 3, 4, 5, 6]. Silicon technologies form the basis for almost all computing plat­

forms today, while it is not technologically possible to reproduce the inherent silicon 

variability. Security techniques that employ silicon PUFs have numerous important 

advantages over traditional cryptography-based security techniques including much 

better resiliency against physical attacks (e.g. radiation, reverse engineering) [7, 8], 

the absence of covert channels (e.g. power, delay, electromagnetic measurements), 

and much lower time, speed, and power overheads [2, 3, 9]. PUFs have been used 

for a variety of security applications ranging from ID creation and authentication 

[2, 3, 4, 5] to hardware metering and remote enabling and disabling of integrated 
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circuits [2, 3, 4, 5, 10]. 

Our research has two conceptual sources: (i) natural PUF evolution through vul­

nerability analysis; and (ii) quest to identify and create the best ways to leverage 

reconfigurability to improve PUF's security and operational properties. Unfortu­

nately, recent analysis have demonstrated that many of the current state-of-the-art 

PUF structures are susceptible to a variety of security attacks. Our objective is to 

design and analyze reconfigurable robust PUFs that are resilient against different 

types of attacks. 

Our analysis considers four types of PUF security attacks: (i) reverse engineer­

ing; (ii) emulation and statistical modeling; (iii) replay (man-in-the-middle); and (iv) 

reconfigurability-specific vulnerabilities. Reverse engineering aims at extracting the 

delay parameters of each delay element. The goal of emulation attack is to efficiently 

compress and store the PUF challenge/responses. Statistical attacks predict the value 

of the PUF outputs by exploiting the correlation among them and/or between the 

outputs and inputs. Replay attack looks for repeated challenges. This attack is in 

particular dangerous for PUF-based digital rights management protocols. A related 

attack, to a certain level, is the one where PUFs are fabricated in such a way that 

their replication is easy for a specific level of manufacturing variability. Finally, recon­

figurability attacks aim to leverage the properties of reconfigurable implementation 

platform to compromise the security of the PUF. Our goal is to create reconfigurable 

PUF structures and the accompanying test procedures that ensure resiliency against 

all the stated attacks. 

The starting point for our research is a new, generic, modular and easy to param­

eterize PUF structure. The structure includes modules for combination of individual 

challenge bits, different configuration schemes of delay elements, and combinations of 

a subsets of the outputs using combinational circuitry to defend against the stated 

attacks. We show how reconfigurability can be employed to strengthen each of these 
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defense mechanisms, to enable delay characterization, and to create notions of one­

time PUFs. 

The remainder of the thesis is organized as follows. A brief background on PUFs 

is given in Chapter 2. Chapter 3 presents a survey of related literature. We analyze 
i • -

;• vulnerabilities of PUFs and the potential attacks in Chapter 4. Next in Chapter 5, we 

introduce a set of countermeasures and safeguards to address the exisitng limitations. 

A testing and characterization mechanism is presented for defining the response error 

probability and acheiving robust operation, as well as PUF diagnosis, and compression 

of the challenge-responses. We further in this chapter show the design of special logic 

input/output networks and interconnecting method for higher security and reliability 

of PUFs and demonstrate the effectiveness of the proposed concepts and methods by 

extensive simulations. In Chapter 6, a secure FPGA-based authentication system for 

privacy protection is presented. Chapter 7 presents the measurements and character­

ization results from implemeting the test circuit and delay-based PUFs on Virtex 5 

FPGAs. Finally, we conclude the paper in 8. 



CHAPTER 2 

Preliminaries 

Silicon PUFs exploit manufacturing variability to generate a unique input/output 

mapping for each IC. Delay-based silicon PUFs use the delay variations of CMOS logic 

components to produce unique responses. The responses are generated by comparing 

the analog timing difference between two delay paths that must be equivalent by 

logic-level construction, but are different because of manufacturing variability. The 

delay-based structures use a digital component, arbiter, that translates the analog 

timing difference into a digital value. An arbiter is a sequential component with two 

inputs and one output. The arbiter output is one if a rising edge signal arrives at 

its first input earlier by at least a threshold value compared to the signal arriving at 

the second input. The arbiter's output is zero otherwise. Figure 2.1 (a) shows an 

arbiter implemented using an edge-triggered latch. If the time difference between the 

arriving signals are smaller than the setup and hold times of the latch, the arbiter 

may become metastable and not be able to produce an accurate and deterministic 

output. 

[11] proposed a parallel delay-based PUF circuit shown in Figure 2.2. Generating 

one bit of output requires a signal to travel through two parallel paths with multiple 

segments that are connected by a series of 2-input/2-output switches. As depicted in 
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Figure 2.1 (b), each switch is configured to be either a cross or a straight connector, 

based on its selector bit. The arbiter compares the signal arrival times at the end 

of parallel paths (i.e., at its inputs) to produce the corresponding response. The 
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Figure 2.1: PUF fundamental building blocks. 

path segments are designed to have the same nominal delays, but their actual delays 

differ slightly due to manufacturing variability. The difference between the top and 

bottom path delays on the segment n is denoted by 6n on Figure 2.2. To ensure 

larger variations, one could insert additional delay elements on the path segments. 

The PUF challenges (inputs) are the selector bits of the switches. The output bit of 

the arbiter depends on the challenge bits and is permanent for each IC (for a range of 

operational conditions). Parallel PUF's liability to reverse engineering was previously 
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Figure 2.2: Parallel PUF structure. The feed forward arbiter (shown in the dashed 
line) is used to introduce nonlinearity. 

addressed by introducing nonlinearities, such as feed forward (FF) arbiters, in the 

PUF structure [2]. Figure 2.2 also includes a FF arbiter (dashed line) that controls a 

switch selector. Unfortunately, our preliminary study shows even this structure can 

be reverse engineered using a combination of combinatorial and linear programming 

technique [12]. 



CHAPTER 3 

Related Work 

There is a wide and diverse body literature related to the research presented in this 

manuscript including reconfigurable computing, secure and trustable computing sys­

tems, physically unclonable functions (PUFs), techniques for hardware intellectual 

property protection, manufacturing variability (MV) and computer-aided techniques 

for addressing MV. We restrict our attention only on the most directly related re­

search and development results. There are four major conceptual starting points 

for our research: (i) MV-based unique identifiers (IDs); (ii) security and reconfig-

urability (FPGAs); (iii) hardware security attacks; and (iv) integrated circuits (ICs) 

characterization. 

Inevitable manufacturing variability, mainly due to dopants fluctuations, has been 

recognized as one of fundamental physical and technological CMOS scaling barriers 

in early and mid-seventies [13, 14, 15]. In late nineties, it again received a great deal 

of attention, since the first experimental studies demonstrate the validity of early 

predictions [16]. Inspired by these studies and developments, Lofstrom at SiidTech 

in Portland and his collaborators where first to propose intrinsic silicon MV for ID 

extractions [17]. Soon, several works from other groups followed [18, 19]. Also, MV 

has been used as a basis for creation of high quality random number generators [20]. 
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Extraction of unique gate-level features from the legacy designs for using as IDs was 

proposed in [21]. 

IC IDs are completely static features that provide excellent accounting mecha­

nisms, but essentially have no security features. A great conceptual step forward 

was achieved by [1] who introduced the notion of PUF. Their initial targeted PUF 

platform was an optical coherence system. A significant practical step to enable in­

stantaneous and widespread application of PUF concept was proposal of Devadas et 

al. who leverage silicon MV for this task [2, 22, 23, 11, 9]. In addition, they devel­

oped a set of PUF architectures and a suite of PUF-based security protocols. These 

works motivated several silicon PUFs that use various mechanisms to extract a secret 

[24, 25, 26]. Recently, by exploring the relationships between PUF-based IDs and 

functionality of the pertinent IC, researchers were able to create a comprehensive and 

powerful system of digital rights management protocols, including remote IC enabling 

and disabling and passive hardware metering [10, 27]. Interestingly, the application 

domain of PUFs is much larger; They can be powerful candidates for creation of a 

new generation of security and cryptographical protocols that are intrinsically more 

resilient against physical and side channel attacks [5]. This wide range of PUF ap­

plications has one ramification: significantly more stringent operation and security 

requirements. There are also conceptually sharply different mechanisms, one that use 

small scale reconfigurability, to associate unique IDs to each IC of a specific design 

[28, 29]. 

Unfortunately, the current generation of MV-based PUFs often is subject to sig­

nificant security vulnerabilities. Recently, we have demonstrated surprisingly simple 

ways to reverse engineer and even emulate several PUF classes as well as their suscep­

tibility to other types of attacks including (statistical) guessing and induced instability 

[12]. Our primary research objective in this paper is to demonstrate that reconfigura­

bility may serve as a principal component of techniques for PUF fortification against 
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vulnerabilities. 

Field programmable gate arrays are by far the most popular and practical re-

configurable computing platform [30]. The impact and techniques to address MV in 

FPGA recently attracted a great deal of attention [31, 32, 33, 34, 35, 36, 37]. Sev­

eral class of PUFs for static ID creation including SRAM and Butterfly PUFs were 

introduced and implemented on FPGAs in Philips Research Lab in Europe [37, 36]. 

Important conceptual and positional FPGA security references include [38, 4, 39]. 

An excellent collection of security and intellectual property protection papers can 

be accessed at http://www.cl.cam.ac.uk/ sd410/fpgasec/. Some more recent papers 

include [31, 32, 33, 34, 35]. 

Silicon manufacturing is a widely studied topic in many areas of computer-aided 

design. A recent excellent survey on CMOS MV is [40]. There are two set of tech­

niques for gate level characterization. The first one employs direct wafer microscopic 

measurements [41]. The other set of techniques use nondestructive indirect power 

and delay measurements and sophisticated techniques for solving systems of overcon-

strainted system of linear equation in presence of noisy data [42, 43]. 

Our primary research objective in this paper and our earlier conference manuscript 

[44] is to demonstrate that reconfigurability may serve as a principal component of 

techniques for PUF fortification against vulnerabilities. 

http://www.cl.cam.ac.uk/


CHAPTER 4 

Vulnerabilities 

The PUF vulnerabilities are discussed by presenting attacks. The possible attacks 

are as follows: 

4.1 Reverse engineering 

The reverse engineering attacks aim at estimating component-wise characteristics of 

the system (e.g., gate delays), so that the adversary could either clone the system or 

develop a software counterfeit for the PUF. Since cloning the PUFs is technologically 

infeasible, the attacker's objective is focused on soft-modeling the structure's behav­

ior. In an effective reverse engineering attempt, the adversary models the system of 

N components in polynomial time with respect to N. This is because by linearly 

increasing N, one can easily provide countermeasures against the reverse-engineering 

attacks that have an exponential complexity. 

4.1.1 Linear P U F 

Let us briefly show the reverse engineering attack on the delay based PUF shown in 

Figure 2.2 (ignoring the added FF arbiter). Figure 2.1 (b) shows that each switch 

can be represented by four delays; dy, i,j = 0,1, where i/j denote the switch in-
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put/ output port indices respectively. However, it can be easily deduced that this 

model contains significant redundancy and the only important parameter in defining 

a switch's effect is the delay difference between its following top and bottom path seg­

ments. One can eliminate the redundancy and combine the series switches by lumping 

their delays to abstract thr representation of each switch using only one parameter 

shown as 5s in Figure 2.1 (b). We refer to 5 as the (differential) path segment delay. 

Thus, a linear PUF with N switches can be fully abstracted using N +1 parameters. 

The parallel PUF can be easily reverse engineered using a linear number of CRPs 

and forming a system of linear inequalities. The system can be solved by linear 

programming in order to find the (differential) path segment delays (<5's). For each 

challenge input vector (ci[Z],... ,CN[1]) used in l-th. measurement and the correspond­

ing response bit r[l], one can form an inequality: 

N r[l]=0 

VJ, . y V - i y ^ ^ + w ^ o, (4.i) 
U rW=l 

where pj(.) is the result of the transformation T on challenges as defined in Equation 

4.2. 

pj(ci,...,cjV) = p?(c) = c i e c j + i e . . . 0 C j ) for i<j (4.2) 

The direction of inequality in 4.1 is determined by the PUF response to the l-th 

challenge vector. In presence of measurement errors, an error term e[l] is added to 

the left side of each term in Equation 4.1. We formulate a linear program (LP) where 

the set of inequalities in Equation 4.1 are the constraints and the objective function 

is to minimize a norm of error over L measurements, e.g., minj]) /=1 \e[l]\. 

In order to minimize the absolute values, the objective function optimization can 

be written as a linear system, min^= 1e[Z] with added linear sign constraints (e.g., 

e[l}>0). 
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Figure 4.1: Evaluation of accuracy distributions versus the number of measurements 
obtained for a collection of 50 chips. 

We evaluated our reverse engineering approach using a set of CRPs. The box 

plot in Figure 4.1 shows the modeling accuracy in percentage versus the number of 

measurements (CRPs) for a population of 50 chips. We see that by using only 3000 

CRPs, the adversary can model the PUF with 99% accuracy. The test set in our 

experiment contains 10000 CRPs. 

We also test the susceptibility to reverse engineering in presence of measurement 

or arbiter errors. In the experiment we use 3000 CRPs, and randomly inject errors 

in the response measurements. Figure 4.2 shows the model accuracy versus different 

degrees of measurement error for a population of 50 PUFs. To improve resiliency 

against measurement errors, we used the maximum likelihood approach. For example, 

for a Gaussian delay distribution, the likelihood function would have a quadratic form 

which changes the LP to a convex programming problem. The improved results are 

also shown in Figure 4.2. 
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Figure 4.2: Modeling accuracy distributions versus the measurement errors. Distri­
butions are obtained for a collection of 50 chips. 

4.1.2 Feed-forward P U F 

To prevent reverse engineering, Lee et al. [11] suggest adding nonlinearities to the 

circuit. They insert feed-forward arbiters (FFA) in the path such that the added 

arbiters provide the challenge to a selector as shown in an example in Figure 4.3. The 

A* arbiter's inputs are coming from stage K. The output of A* is fed-forward to the 

K + K'-th. selector challenge bit. 

•K • ^ IC— • ~*-(N-K-K')-» 

JI—I ' . " "" .1 

Rising 

Cl 
T 

5K+ 

CK 

5* K+1 8K+I 

CK+1 • • • CK+K' 

§K+I SN+1 
Response 

bit 

CK+IOH • • • CN 

Figure 4.3: The feed-forward PUF architecture. The arbiter (A*) introduces nonlin-
earity. 

We reverse engineer FFAs in the following way. If we denote the total path delay 

difference incurred by the signal till the K + K' switch with A, then 
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K-\-K K±IC< 

SK+K'+I- (4.3) 
i=K+2 

The delay in the segment between the switch K and switch K +1 is broken down 

into two parts, 5M+i and <^+ 1 and therefore the PUF has one more parameter than 

linear PUF. For the sake of simplicity, the measurement index I (previously defined for 

Equation 4.1) is removed. The feed-forward arbiter's result, CK+K', provides another 

inequality 

K CK+K'=° 

X ) ( - l ) ^ i + fe+i $ 0- (4-4) 
i = l CK+K'=1 

We also use the following identity that can be directly derived from the definition 

ofpj 

K+K' _ nK+K'-l m - nK ffi nK+K' 
Pi — Pi ® CK+K' — Pi tb PK+1 

pfSpZlf-'QcK+K, (4.5) 

Observing that (-l)a®6 = (—l)a(—1)^, Equation 4.3 is further simplified to 

A = ( - l ) ^ ' - 1 | A / i 7 . s t | (4.6) 

+ (-iyK+K> ( ( - 1 ) ^ _ 1 ^ + 1 + Amime) + VK+K'+I-

Where p^\^ l is the parity (XOR results) of the challenges to middle stage. 

Afirst, Amiddie , and Aiast are the first, middle, and last stage differential delays 
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computed respectively as, 

K 

A/irst = J ] ( - l ) ^ + < +̂1, (4.7) 
i= l 

K+K'-l f 

^middle = Y^ i-iy^^Si + SK+K', (4.8) 
i=K+2 

N 

&last= Y, (-^Vi + VN+l. (4.9) 
i=K+K'+l 

The total delay can now be expressed as 

Atotai = A x (-lfK+K'+i + slast. (4.10) 

We complete reverse engineering of FF PUF by using the following observations, 

(i) By fixing the selector bits of the switches in first stage (K first switches), we 

estimate the delays of switch elements in the middle and last stage by solving an 

LP problem similar to the one in Section 4.1.1. However, we need to make two 

assumptions on the FF arbiter output and the LP would have two solutions. The 

solutions obtained by using these two assumptions only differ in sign which can be 

easily resolved later. 

(ii) Knowing the delays of switches in the middle and last stages (with a sign ambiguity 

for the delays of the middle stage) and considering the PUF formulation (Equation 

4.10), we set the challenges to the middle and last segments in a way so that any 

transition of the final arbiter is closely linked to the transitions of the FF arbiter 

output. This can be realized by choosing a challenge configuration that yield a large 

delay difference for the middle stage ( A m j ^ e > > 0), while causing a negligible delay 

difference at the last stage (Ajast « 0). 

(iii) While the challenge bits to the middle and last stages are fixed to the appropriate 
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configuration found in (ii), complementary challenges are applied to the first stage 

switches and transitions of PUF responses (final arbiter response transitions) are 

recorded. Any time the final arbiter response flips, we obtain a constraint for the LP. 

Since we are concerned with transitions rather than absolute output values, we need to 

/address two LP problems by trying two different bit assignments. However, the delay 

values obtained from the incorrect solutions can be easily rejected by cross-validating 

the results on a few new CRPs. 

(iv) Using the estimated delays of the first stage, we can eliminate the ambiguity in 

the sign of the middle-stage delay difference. Therefore the delays of all switches can 

be estimated successfully. 

In our experiment, the PUF has the structure presented in Figure 4.3, where K = 

24, K' = 20 and N = 64. After reverse engineering the PUF, we validate our model 

using 10,000 CRPs and measure the accuracy of the modeled PUF. Figure 4.4 shows 

the model accuracy versus different number of measurements for 20 PUFs. The first 

15,000 CRPs (measurements) are used to estimate the middle and last stage switch 

delays and the rest are used to estimate the first stage switch delays. Also note that 

for step (ii), finding the challenge configuration to the middle and last stages that 

yields the largest and smallest possible delay differences is, in general, an NP-complete 

problem. But we do not need an exact solution and a rough approximation that gives 

a very small (large) delay is sufficient. For example, we can try 1000 challenge bit 

combinations and find the one that gives the minimum delay difference. 

4.2 Emulation 

The goal of this attack is to emulate the PUF by effectively storing the CRPs in a 

memory. If the number of CRPs grows exponentially with respect to the number 

of inputs, the required memory would be very large, making the full CRP storage 
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Figure 4.4: Modeling accuracy versus the number of measurements obtained for a 
collection of 20 FF PUFs. 

infeasible. Instead, the attackers attempt at exploiting the predictability of the CRPs 

(lack of randomness) to achieve high degrees of compressibility and reduce the storage 

demands drastically. For example, if a group of challenges that differ only in their 

first two bits produce the same response, there is no need that the first two bits are 

stored (Figure 4.5). A closely relevant attack would be to guess the responses to a 

given challenge with high probability by performing statistical analysis on the PUF 

responses. The data from the statistical analysis could also be used to efferently 

emulate the PUF. 

Challenge 
10100111 
11100111 
00100111 
01100111 

XX100111 

R 

Figure 4.5: An example of emulation attack. 
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4.3 Man-iii-the-middle 

During the authentication process, CRPs stored in the database on a server are 

compared with those obtained from the PUF. In case there are a limited number of 

CRPs stored for each PUF in the database, the adversary can impersonate the PUF, 

if he can build a copy of the data base content. The man-in-the-middle attack involves 

eavesdropping the communication between the PUF and authentication server and 

recording the responses to the attempted challenges to later impersonate [45]. 

4.4 Reconfiguration 

While FPGA provides a versatile platform for implementing the PUF, the possibility 

of reconfiguring the FPGA by an unauthorized party poses a threat. For instance, if 

an adversary knows how to read the configuration bit stream and configure the FPGA, 

then he can gain full knowledge of the circuit structure. The attacker may reconfigure 

the FPGA to remove the nonlinearities or other added transformation circuitry at the 

input or output to facilitate reverse engineering by modeling the delays of the linear 

parts. 

4.5 Collision of Responses 

Collision of responses happenes when a pair of PUFs generate same responses to 

given challenges. Ideally, if the PUF responses come from uniform distributions, the 

probability of collision will be only a function of the number of response bits. But 

in reality the PUF structure can distort the uniformity of responses and introduce a 

bias. 

We test the PUF to obtain the collision probability for different PUF structures. 

For each given challenge, the PUF responses on various chips must form a uniform dis-
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tribution to yield the minimum collision probability. The nonlinearity introduced by 

the FF arbiter distorts the uniformity of output responses and causes higher collision 

probability, even in presence of completely independent delays and perfect arbiters. 

Depending on the PUF circuit structure and the location of nonlinearity, there is a 

lower bound on collision probability. 

For a parallel PUF that consists of M response bits (M rows), the minimum 

collision probability is ^ . For example, if the PUF has 8 output bits, then the 

collision probability is ^g. Figure 4.6 shows the collision probability for the FF PUF 

normalized to that of the parallel PUF (z-axis) vs. feed-forward arbiter input /output 

locations. The collision probability will be at least 65 times greater than the parallel 

PUF when the FF arbiter is placed at (input = 59, output — 64) location (i.e. close to 

the final arbiter). One way to compensate for this increase in collision probability is to 

increase the number of responses (PUF rows) to lower the overall collision probability. 

Figure 4.6: The increase in the collision probability compared to the parallel PUF vs. 
feed-forward arbiter's input (rc-axis) and output (?/-axis) locations. 



CHAPTER 5 

Countermeasures and Safeguards 

The vulnerabilites and potential attacks presented in Chapter 4 can be alleviated by 

taking a number of safeguards. In Section 5.1 we review the countermeasures proposed 

earlier. In Section 5.2 we introduce new safeguards that are more comprehensive than 

the presently available approaches. 

5.1 State-of-the-art 

To protect PUFs against reverse engineering and emulation two lines of methods were 

mainly used: (i) introduction of non-linearities, and (ii) challenge-response hashing 

[11,3]. The proposed non-linearity based methods are typically of two types: (a) feed 

forwarding and (b) MAX (MIN) operations. 

As we discussed in previous chapters, a feed forward non-linearity is introduced by 

inserting an internal arbiter that compare the signal delays at a certain point in the 

circuit [2]. The internal arbiter then forwards the arbitration results to a switch that 

is located ahead on the delay path. The feed forward arbiter introduces non-linear 

behavior that complicates the reverse engineering process. - However, our studies in 

Chapter 4 reveal that non-linear PUF structures with a small number of feed forward 

arbiters are still prone to reverse engineering attacks [12]. To safeguard against this 
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attack, multiple interleaved feed forward arbiters must be used. A major drawback of 

this protection method is that adding the non-linearities skews the bit probabilities. 

Thus, the resulting non-linear PUF is more vulnerable to statistical modelling and 

emulation attacks. The added internal arbiters also increase the circuit response's 

instability. 

The use of MAX (MIN) functions was first proposed by [11]. MAX (MIN) oper­

ations are carried out on delay values by using AND (OR) logic gates in the PUF 

structure. If two rising edge signals with delays d\ and di arrive at a two-input AND 

(OR) logic, then the delay of the output signal is d0 = MAX(di,d2)- AND (OR) 

logics are inserted in the parallel PUF circuit and are connected to the bottom and 

top paths in between or at the end of the structure. Our studies show addition of 

this type of non-linearity also renders the circuit more prone to emulation attacks. 

As another countermeasure, the use of cryptographic hash function was proposed 

by [3]. Hashing is performed on both challenges and responses of the PUF. To estimate 

the PUF model parameters, the adversary needs direct responses of the PUF arbiters 

for known challenges. However the use of a one-way output hash function inserted 

immediately after the arbiters will make the responses obfuscated and obscure. To 

discover the response, one needs to invert a one-way function which is known to 

be a hard problem. This process should also be repeated until sufficient number of 

responses are collected. An input hash function is attached to the PUF challenges 

to prevent bit-level control of the challenges. Due to the confusion and diffusion 

properties of hash functions, the final system is safe against emulation attacks. 

Table 5.1: Latency and area of common hash functions 
Algorithm 
SHA-256 

SHA1 
MD5 
MD4 

Chip area 
10,868 
8,120 
8,400 
7,350 

Clock cycles 
1,128 
1,274 
612 
456 

A drawback of the hash functions is that they incur significant hardware area 
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and power overheads. Besides, the PUF needs to evaluate multiple clock cycles to 

prepare a standard size input message block to deliver to the hash function (MD5 

can accept variable input message size). The input and output hash evaluations by 

themselves take many clock cycles, imposing a large overall latency on the system. 
I 
fTable 5.1 shows latency (in cycles) and area (in gate equivalents) of commonly used 

hash functions [46]. 

5.2 New safeguarding methods 

In this section, we first present a mechanism to characterize the PUF components for 

a linear structure. We discuss how the characterization can help in achieving a higher 

robustness in presence of variations in operational conditions. In addition, using 

characterization one can exponentially compress the challenge-response database and 

provide a diagnostic tool for calibration and structural modifications. Next, we pro­

pose a secure PUF architecture which adds a set of logic input and output networks 

to the parallel PUF to secure the PUF against various attacks. 

5.2.1 Testing and Characterization 

There are at least three objectives for PUF characterization: (i) The measured delays 

and parameters can be used to achieve a higher robustness against variations in 

operational conditions and environment. This is accomplished by estimating the 

detection error probability for a given challenge, (ii) Switch delay values fully describe 

the PUF behavior and could be stored instead of challenges and responses, (iii) The 

delay values can be used to perform diagnosis, calibration and structural modifications 

for better performance. A similar test circuit to the one used in this paper was 

suggested by [47] as a BIST structure to estimate the delays of any combinatorial 

logic on FGPAs. 
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Figure 5.1: Delay characterization circuitry 

The suggested delay characterization circuit consists of three flip flops: launch, 

sample and capture. A transition is invoked by the launch flip flop at the combinatorial 

circuit under test (CUT) input. The output of the CUT is sampled t seconds later. 

The sampled value is compared to the real value by an XOR logic and the result is 

recorded by the capture flip flop. If t is smaller (larger) than the CUT delay, then 

the sampling occurs before (after) the transition appears at the output, and thus 

the sampled value would be different from (same as) the input test signal. Note 

that the sample FF has certain setup and hold times which make the FF unable to 

sense smaller delay differences. Violation of setup and hold times places the FF into 

a metastable state and causes non-deterministic outputs. If t is swept by varying 

the clock frequency from fi to fu (// < 1/t < fu) with steps of A / , at some point 

the speed of CUT would be almost equal to the clocking speed. By counting the 

number of times the capture flip flop records a sampling error and then by forming a 

histogram, it is possible to accurately find the CUT delay. 

Figure 5.2 depicts the probability that the sample FF outputs " 1" versus the clock 

frequency. The symbol fc marks the frequency at which the sample FF produces 

totally random outputs; l / / c is in fact equal to the CUT delay. In other words the 

clock edge and the signal edge coming from the CUT arrive at FF at the same time. 

The transition slope in Figure 5.2 implies the speed of the sample flip flop. For 

example, flip flop 1 has smaller setup/hold times than FFs 2 and 3. 

The combinational test circuit used here is a PUF. The procedure is repeated N 
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Figure 5.2: Arbiter characteristics. 

times for different challenge configurations. Then, a system of linear equations is 

solved to find each switch delay. To save time and efforts, the range of the scanned 

frequency can be adaptively adjusted in each iteration to scan a smaller window 

around the target frequency. Also instead of linearly sweeping the frequency to spot 

the transition point, a binary search algorithm can be used. If the frequency sweep 

range is partitioned into CF steps, then the binary search would find the transition 

point in log{CF) steps [48]. Most advanced FPGAs, such as Xilinx Virtex family, 

provide Digital Clock Management (DCM) and Phase Locked Loops (PLL) blocks 

which enable building clock synthesizer with on-chip resources. This is useful if a 

stand-alone built-in system needs to be designed. In Chapter 7, we will implement 

the characterization circuit on Xilinx Virtex 5 FPGAs and present the measured 

results. 

After solving Equation 5.1 to find the switch delays ( A = {5\, 52,..., £JV+I} ) and 

measuring the probabilistic characteristic of the sample flip flops g(.) (see Figure 5.2), 

the FPGA is reconfigured so that the test circuitry is removed. One of the sample flip 

flops will be used as the PUF arbiter. Since the arbiter response only depends on the 

input delay differences rather than the absolute values, the flip flop characteristic, 

g(.) is transformed to represent the arbiter characteristic: h(x) = 9{xJt+i)- The 

estimated values for A and h(.) completely characterize the PUF and are stored in a 
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database to be later used for identification and authentication purposes. 

5.2.2 Response Error Prediction 

Small delay differences at the arbiter inputs can cause metastability and inaccuracy 

of the response. Metastable arbiters are extremely sensitive to changes in operational 

conditions such as temperature variations and electromagnetic noise. Error correct­

ing codes with syndrome decoding have been proposed to correct for such errors [3]. 

However, since the syndrome is public information, it can reveal some information 

about the responses and undermine the security of the PUF. In addition, correct­

ing multiple bits requires a complicated decoding circuitry with large latency and 

hardware overheads. 

To determine to what extent the responses are affected by metastability of arbiters, 

we propose a method that assigns a level of confidence to each response using the 

parameters obtained during the characterization step. 

Let us represent the challenge vector by C = {ci,C2, ...,CJV}. We define d as the 

delay difference (the top path delay minus the bottom path delay) in response to C. 

Now, d can be written as 

d= Ei i ( - l ) P i ^ + W = [P 1J.A-1, (5.1) 

where P = { ( - l ) P l , ( - l ) p 2 , - , (-1)PJV} and pi = ci® ci+1 0 ... 0 cN. The goal is to 

estimate the probability of false negative detection error, i.e., Prob(Hi \ H0) for a 

given C where the hypotheses Hi and Ho are defined in Equation 5.2: 

H0:PUF = PUF' (5.2) 

Hx : PUF ^ PUF'. 
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In fact, for a given delay difference d caused by the challenge C, h(d) (or 1 — 

h(d)) is the probability that the arbiter produces a zero (or one) output while the 

delay difference at its inputs is greater (smaller) than zero, and h(.) is the arbiter 

characteristic obtained by the test circuit explained in Section 5.2.1. We define the 

probability of false negative error {Perrar) as the probability that at least one of the 

PUP responses to K challenges has an error, therefore: 

K 

Perrar = Prob^ | H0) = J j N C 1 ~ M * ) ) + 0- ~ <*)*&)] (5-3) 
i = l 

<*i = < 

1, di > 0 
(5.4) 

0, di<0. 

In writing Equation 5.3, we assume that the delays values caused by the K chal­

lenges are independent. Using this method, the delays resulting from a number of 

randomly selected challenges can be calculated by Equation 5.1 (assuming the switch 

delays are available from the characterization step). Then, the probability of false 

negative error is estimated using Equation 5.3. To ensure robustness against ar­

biter metastabilities, the responses with high estimated probability of error must be 

ignored. 

5.2.3 Challenge-response compression 

The characterization scheme allows an effective way to compress the challenge re­

sponse pairs. A PUF with N switches in fact performs a transformation from N 

real numbers to 2^ binary numbers of length N + 1. Therefore, by measuring the 

N parameters (that are in fact the path segment delay differences), one can fully de­

scribe the challenge-response space. In this way a huge reduction in database storage 

requirements can be achieved. Also it enables one-time pad encryption for large N 
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values (e.g., N > 128). The idea of compressing the CRPs by collecting responses 

and performing reverse engineering is suggested in [49]. However in this method, 

arbiter errors can cause large errors in estimating the switch delays [12]. We attempt 

to directly measuring the delays of the PUF before the arbiter. Our method also 

allows for arbiter characterization and stores the characteristic as part of the PUF 

parameters. 

5.2.4 Diagnosis 

The data obtained in the test phase can be used to diagnose and analyze the PUF. 

Small variations in delays, long setup/hold times for arbiters, large bias caused by 

systematic effects, or non-symmetric routing may diminish the PUF's performance. 

Adding extra delay elements or switch to the PUF increases the total delay variation. 

Rerouting the connections and/or relocating the PUF can be utilized to overcome 

the delay bias. Also noisy flip flops or those with large setup/hold times should be 

avoided being uses as arbiters. 

5.2.5 Secure P U F Architecture 

In this section, we introduce a secure and robust PUF structure. The proposed 

PUF as shown in Figure 5.3 consists of the four fundamental building blocks: (i) 

input (logic) network, (ii) output logic network, (iii) wire interconnect network, and 

(iv) parallel PUFs. After testing and characterizing each linear PUF in the parallel 

structure, the FPGA is reconfigured to integrate and attach these blocks to the core 

parallel PUFs. 

5.2.5.1 Input network 

We design the input network attached to the parallel PUF (see the dashed box in 

Figure 5.3) to satisfy Strict Avalanche Criterion (SAC) for a parallel PUF circuit. 
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Output 

— Interconnect Network 

Figure 5.3: The general architecture of the proposed Secure PUF. 

A function is said to satisfy SAC if, whenever a single input bit is complemented, 

each of the output bits changes with a probability of one half. In Section 5.2.5.3 

we will show how to bind multiple rows of the resulting structure to construct an 

N input, Q output PUF structure that satisfies SAC. When introducing the output 

network, we demonstrate that the SAC property is required to achieve the maximum 

security. Before discussing the design steps of the input network, we first discuss the 

input/output characteristics of the parallel PUF. 

As stated earlier, the PUF behavior can be represented by Equation 4.1. Let us 

assume the differential delay values (6) in Equation 4.1 are independent and identically 

distributed. For simplification and without loss of generality, we assume the random 

variables have Gaussian distributions with zero mean, i.e., 8j ~ N (0, a2). Our goal 

is to find the probability that the PUF output flips given that a challenge bit in the 

PUF input is flipped, i.e., Prob{~ 0\ ~ c^}. Any change in the sign of the summation 

relates to a change in the output (response) bit value. Whenever a challenge bit value 

flips, some of the terms in Equation 4.1 change their sign (as a result of a change in 

the corresponding p values). Let us denote the set containing the indices of p's that 

flip (do not flip) as result of a flip in the k-th. challenge bit by T^ (A&). Note that 

T and A partition the index set, Q, = {1,2, ...,iV}, where N is the total number of 
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switches. 

*erfc 

wk = ^ ( - 1 ) P ^ + < W (5.5) 

If the absolute value of the sum of the terms whose indices are in Tk (i.e., | Vk | in 

Equation 5.5) is greater than the absolute value of the sum of terms whose indices 

are in A*, (i.e., | Wk | in Equation 5.5), then the response bit flips whenever ck flips. 

We define a new random variable Xk which has a value one if the output flips and 

zero otherwise, i.e., 

Prob{Xk = 1} = Prob{~ 0\ ~ ck} (5.6) 

then, 

( l , \Vk\>\Wk\ 
Xk=l (5.7) 

10, Otherwise. 

It is desired that E{Xk} = 0.5 for k = 1,2, ...,JV. The expectation is over all 

PUF realizations. Recalling that the sum of Gaussian random variables forms a new 

Gaussian, if Ui ~ N(^j, erf ) and U — Y^Ut, then U ~ DsT(̂ A*i, ^2ai )• Therefore, 

V and W can be viewed as realizations of Gaussian variables given by 

Wk ~ N ( 0 , ( | A f c | + l ) x a 2 ) 

Vk ~ . tt (0, | i y | xa2) . (5.8) 

where |.| denotes the set cardinality. If | Tk \ = | A^ | + 1, then V and W will be 

identical and independent Gaussian random variables. Also | Tk \ + | A^ | = N. 

Therefore, if 
N + 1 

| r * | = ^ , (5.9) 
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then E{Xk} = 0.5. Thus, if ^ ^ (almost half) of p's in Equation 4.1 flip as a result 

of a flip in fc-th challenge bit (c^), then the output of the PUF would flip with a 

probability 0.5. The result is in accordance with our initial intuitive observation. 

We now verify if this property holds in the parallel PUF structure. The p's in 

Equation 4.1 are related to the challenges by the transformation T denned in Equation 

4.2, i.e., P = T(C). It can be seen that a flip in c& causes a flip in pj, where j < k. 

Thus, | Tfc | = k. For example, if a flip in CJV happens, all of the p's flip as a result. 

Hence, Equation 5.9 is not satisfied for the parallel PUF structure. We define a 

transformation G(.) on challenges that combined with T meets the criterion set by 

Equation 5.9. 

Objective: Find G(.) so that P = T(G(C)) satisfies |Tfe | = ^±± for all k. 

Method: (1) Before finding the proper transformation, we make an observation. 

Consider two challenge bits, ĉ  and ck+N±i in the parallel PUF that flip in succession. 

The first flip (c^) causes pj for all j < k to flip, and the second challenge flip (cfc, N+I ) 

causes pj for all j < k + ^~ to flip. The p's that flip twice return to the first value 

and do not flip in effect. Therefore, flipping Ck and cfe+jv±i at the same time causes pj 

for all k < j < k + ^y^ to flip, hence satisfies the criterion set by Equation 5.9. The 

observation implies a constraint on the challenges. Whenever a challenge bit flips, 

another challenge bit at ^~ selectors apart must flip as well to guarantee SAC. Note 

that N must be an odd integer to yield integer challenge indices. However, it is easy 

to prove that it is infeasible to impose the derived constraint on the PUF challenges, 

although high quality approximations can be made. We design an input network that 

transforms the input challenges of the PUF and imposes constraints on the toPUF 

challenges. 

(2) Find a transformation C = G(D), G : {0,1}M -> {0,1}^, so that any bit flip 

in the input causes two output bits at approximately ^ ^ locations apart to flip. We 

use two approximations to realize the proposed concept. One approximation can be 
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implemented using a wire-only network, while the other one can be done using XOR 

logic. 

(i) Wire-only network: for N an even integer and M = y , G performs the following 

transformation: 
N 

G: Ci = ci+K=di, for i = 1,2,...,—. (5.10) 

The wire network connects the challenge bits of the PUF that are located y apart. 

However, the input dimension of the wire network is half of the PUF. Hence, one needs 

to use twice the number of switches to achieve the same number of PUF inputs. 

(ii) XOR network: for an even integer N and M = N, we define the transformation 

G as follows: 

CN+i+i = GL for i = l 
2 

d+i = di®di+i, for i = 1,3,5, ...,N— 1 

CN+J+2 = di®di+i, for i = 2,4,6,..., N-2 (5.11) 

Unlike the wire-only network, the XOR network achieves a one-to-one mapping. How­

ever, an adversary with full knowledge of the circuit structure can apply the inverse 

transformation to make the input network ineffective. We alleviate this issue later by 

introducing a wire interconnecting scheme that physically binds the inputs of multiple 

PUF rows. 

DN DM-! DN .2 D Z D I 

o 
C|M/2 C N C(N-2)/2 C I C(N+4)/2 C(N+2)/2 

Figure 5.4: The input network realization using XOR logic. 

In addition to the expectation of X^ being equal to 0.5, it is desired that the Xk 
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has as small variance as possible. Smaller variation guarantees that a larger number 

of PUFs satisfy the SAC property. The variance of Xk is related to the variances of 

W and V in Equation 5.7, that are themselves related to the number of switches and 

the variance of 5. The variance of S is determined by the technology and the amount 

of process variations. Therefore, one can achieve a smaller variance for Xk by adding 

to the number of switches or incorporating multiple rows of the same structure as 

explained in Section 5.2.5.2. 

5.2.5.2 Output network 

We introduce an XOR-based output network structure (see Figure 5.3) which achieves 

(i) fortification against reverse engineering attacks, and (ii) smaller deviation from the 

SAC on each PUF by combining multiple rows of parallel PUFs with the transformed 

challenges. 

The output network performs a mapping denoted by Z(.) from the PUF arbiter 

responses, R, to the output, O. The mapping is defined as O = Z(R), Z : {0, l}*3 —• 

{0,1}«', Q' < Q, and 

°i = © r(j+s+i) mod Q for j = 1,2,..., Q' (5.12) 
i=l,...,x 

where 0 denotes the parity generator function and s indicates shifting step. The 

transformation calculates the parity value for sets of x adjacent PUF arbiter responses 

where each set starting point is circularly shifted by s bits with respect to each other. 

The transformation can be parameterized by s (the shifting step) and x (the parity 

input size). We will discuss later how these parameters govern a trade-off among 

security, overhead, and randomness properties. 

(i) The proposed transformation can hinder the efforts to reverse engineer the 

PUF in the following way. As stated in Section 4.1.1, to reverse engineer a linear 
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PUF structure and estimate the delays of switches, the adversary needs to collect a 

set of challenge-responses from the PUF and solve a system of inequalities. 

Suppose that the responses of Q parallel PUFs are mapped to a Q'-bit output by 

the transformation Z(.). There are 2Q~Q' possible inputs that map to a given output. 

Therefore, the adversary is faced with solving an ambiguity to discover the real PUF 

response. The number of assumptions grows exponentially, if he/she is not able to 

reject some of them at each step. It can be shown that the problem has exponential 

complexity of order 0(2^Q"Q'^ c) with respect to the number of ambiguities 2^_<3'^ 

and the number of CRPs needed to estimates the PUF switch delays Nc- [12] show 

that to reverse engineer a linear parallel PUF having 64 switches with accuracy of 

over 98%, a minimum number of 2000 CRPs (Nc = 2000) are required. Then for 

Q — Q' — 1, the complexity of reverse engineering the secure PUF would be O(2200°). 

Nevertheless, if the attacker can control (the transition of) the PUF arbiter responses, 

then it would be possible to reduce the number of assumptions by performing a 

differential attack. Let us illustrate the problem using an example. Consider a trivial 

case of Z where Q = 5, Q' = 4, and every four adjacent response bits are XOR-ed to 

produce the output, i.e., s = 1, x = 4 (see Figure 5.6). 

1:10100- ^00100 

X S / O : 0101—•HIO 

l':01101'- *11101 

Figure 5.5: Example: the difficulty of inverting the output network. 

rs r4 r3 r2 n 

WW 
04 03 02 01 

Figure 5.6: An example of output network for Q = 5, Q' =4, x = 4 and s = 1. 

Now imagine a transition in the output occurs from 0101 to 1110. As shown in 
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Figure 5.5, there are four possible transition hypotheses about the Z inputs depicted 

by arrows. If we know only the first bit (or only one bit) of the input has caused 

such transition in the output then we can reject two hypotheses shown in dashed 

arrows. Also by associating probabilities with transitions and ranking assumptions 

I accordingly, one can guess the PUF responses. 

Thus, Z(.) by itself does not guarantee significant resiliency against reverse engi­

neering. To achieve a high level of resiliency, it is required that the PUF response bits 

(or Z inputs) could not be deterministically controllable. The Maximum resiliency 

is obtained if PUF response bits flip with a probability of 0.5 which is equivalent to 

SAC. We will use an interconnect network that connects rows of parallel PUFs, to 

design a Q-output PUF with SAC property. 

(ii) The mixing property of XOR logic or in general the parity generator func­

tion also fortifies the PUF against emulation and statistical guessing attacks even in 

presence of outrageously large PUF switch (element) delays. For larger values of x 

in Equation 5.12, higher number of PUF rows and responses are mixed and smaller 

deviation from the transition probability of 0.5 (i.e., vax(Xk)) is achieved. 

5.2.5.3 Interconnect network 

In Section 5.2.5.1 we designed an input network that satisfied SAC for a single row 

PUF with one bit output. We design a PUF structure that consists of multiple rows 

of parallel PUFs and maps N challenge bits to Q response bits. The PUF is designed 

to satisfy SAC. The PUF is built upon an interconnect network that connects the 

challenge bits of rows of parallel PUFs (See the leftmost solid box in Figure 5.3). 

In order to satisfy the SAC, it is required and sufficient that one challenge bit on 

each row is connected to another challenge bit on a different row. A challenge bit is 

broadcasted to all PUFs, and since each PUF output flips with a probability of 0.5, 



34 

the SAC is met. The interconnection can be expressed formally as follows: 

m _ m+1 foriJeQ,, m = 1,2,...,Q - 1, (5.13) 

where c™ is the i — th challenge bit in the m-th row, Q = {1,2,..., N}, j = gm(i) and 

gm: Cl —> fi is a one-to-one permutation function. In Section 5.2.5.1, we mentioned 

that the XOR input network can be bypassed by applying the inverse transformation. 

If the inputs of PUF rows are connected in parallel (with no permutation), i.e., i = j , 

by applying the inverse transformation (G"1) all of the input networks are bypassed 

and thus, ineffective. By imposing a constraint on gm to be non-identity for all ra's 

the attacker can fully bypass only one input network and the other input networks can 

only be partially bypassed. Figure 5.7 depicts an ra-bit circular shift interconnecting 

scheme, i.e., j = gm(i) = (i + m — 1) mod Q. 
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Figure 5.7: An m-bit circular shift interconnecting scheme that connects Q rows of 
parallel PUFs with transformed challenges. 

We thoroughly examined the secure PUF architecture that uses the proposed 

input/output network and the interconnecting method explained in Section 5.2.5. In 

the following experiments, we model each switch with four delays - two for straight 
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connection and two for cross connection links. We assume that the delay components 

are samples from independent identical Gaussian distributions with /u, = 0.5ns and o 

= Aps. The mean and variance conform with the 65nm technology [50]. 

For a single row parallel PUF circuit with 64 switches, we simulated the probability 

of output transition conditioned on each challenge bit transitions. In this experiment, 

we apply to the PUF 100 random 64-bit challenge vector pairs that differ only in 

the i — th bit, where i = 1,...,64, and record the percentage of times the output 

transitions. We repeat this experiment for 50 PUF circuit realizations and find the 

expectation. Figure 5.8 shows the value of -E[-Xfc] before and after applying the input 

XOR transformation (defined in Equation 5.11) on the PUF challenges. The figure 

shows that the probability of output flip conditioned on the fc-th challenge bit before 

input transformation increases monotonically from less than 0.1 to over 0.9, where k 

= 1,2,...,64. This can be intuitively viewed as the cumulative effect of switch delays in 

the parallel PUF circuit structure. Note that after applying the XOR transformation 

on the PUF challenges, the output flips with a probability close to 0.5 for a flip in 

input bits, which per se satisfies the SAC. A smaller deviation from the transition 
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Figure 5.8: Probability of the response flip given a flip in the k-th challenge bit for 
a single row parallel PUF. The dot (circular) markers show the probability before 
(after) transforming the challenges. 
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probability of 0.5 is desired for each individual PUF circuit realization. There are two 

ways to reduce such deviation: (i) by using more switches in the parallel PUF circuit 

(increasing N); (ii) by mixing the outputs of larger number of parallel PUF circuits 

(increasing x in Equation 5.12). The black solid line in Figure 5.9 indicates how 

the variance (var(Xk)) decreases as the number of switches in a single row parallel 

PUF increases from 8 to 128. For a fixed number of switches in a row, the variance 

rapidly drops as 2, 4, and 8 adjacent outputs of rows of parallel PUFs (x = 2,4,8) 

are mixed (by an x-input parity generator function). Note that the challenges of 

the parallel PUFs arranged in rows are connected by the interconnection network 

presented earlier. 
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Figure 5.9: Deviation of transitional probabilities of individual PUF instances from 
the SAC. 

We now investigate the security of the proposed PUF against emulation attacks. 

We devised an algorithm that randomly selects a challenge vector within which it 

searches for the largest number of bits that can be represented with don't-cares. We 

set an upper-bound on the number of search efforts for each challenge and use the 

knowledge of the statistical PUF characteristics to expedite the search. For example, 

we know that the left most challenges have a lower impact in determining the parallel 

PUF output (same scenario for FF PUF), thus they can be represented with don't-
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cares with higher probability. 

Figure 5.10 shows the amount compression achieved for a single row parallel PUF, 

FF PUF and Secure PUF; (Q,Q',x,s) = (9,8,8,1) and 64 switches in each row (N.= 

64). The feed forward arbiter in the FF PUF compares the delays at switch 20-th and 

feeds the result to the selector of the 40-th switch. The emulation attack is performed 

on 10 PUFs of each type. The ten values are shown in box plots in Figure 5.10. Note 

that compressibility of the challenge response pairs of the secure PUF structure is 

four and five orders of magnitude smaller than a single row parallel and FF PUF 

respectively. The smaller level of compressibility corresponds to lower predictability 

of the responses. 

We also examined PUF sensitivity to very large switch delays. In general, delay 

outliers cause high predictability, high compressibility of CRPs, and facilitate building 

of statistical models. We studied the sensitivity of secure PUF and the single row 

parallel PUF structures to outliers. A fault is injected as an outlying delay of 5ns (10 

times larger than mean delay) into the 20-th switch - of the first row for the secure 

PUF. Figure 5.11 shows the expected probability of output transition for both single 

row parallel PUF and the Secure PUF with the parameters (Q,Q',x,s) = (9,8,8,1). 

The expectation is taken over 50 PUF realizations. For the parallel PUF with one 

row, the transition probability is highly distorted; flipping inputs 1 (42) to 39 (64) 

(does not) flips the output with a probability of 0.8. Such divergence from SAC 

leads to high predictability of PUF responses and facilitates emulation and statistical 

modeling attacks. However, as it can be seen in Figure 5.11, the transition probability 

of output (any of the eight PUF output bits) does not change because of the mixing 

introduced by the output network. In addition, if the PUF responses in some of the 

rows do not show significant changes and variations due to arbiter failure, arbiter 

insensitivity, or large delay biases, the effect would not be transparent at the output. 
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Figure 5.11: Sensitivity of PUF transitional behavior to outlier switch delays. 



CHAPTER 6 

Applications 

There are many possible applications for the introduced secure PUF as pointed out 

in previous research [2, 3, 4, 5, 10]. In this chapter, we present applications that 

leverage reconfigurable platforms to provide system security. 

6.1 Configure-and-erase Method 

We introduce an FPGA-based authentication method for smart cards which limits 

the user's knowledge about the PUF circuit structure and its location on FPGA. In 

this method, the FPGA owner is identified by the unique manufacturer variability 

(MV) on his/her FPGA. The permanent placement of the PUF circuit, as in ASIC 

technology, would give the adversary unlimited access to the PUF inputs/output 

and thus make the PUF vulnerable to reverse engineering and emulation attacks. 

In the proposed method, the user is furnished with a blank FPGA and a Personal 

Identification Number (PIN). Before the FPGA is given to the user, the PUF is 

characterized using the methods described in Section 5.2.1. Thus, the switch delays 

and arbiter parameters are derived and stored. PUFs with different lengths and on 

various locations can be implemented and characterized. Therefore, each database 

entry could consist of multiple fields such as location attributes, circuit structure 
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parameters (length), switch delay values, and arbiter parameters (see Figure 6.1). 

Because of the linear number of components, the space required to store all this data 

is still smaller than saving many challnge/response pairs. 

Path Segment 
Delays (A) 

Arbiter Characteristic 
h(.), ST, HT,... 

Location Parameters 
LUT(X,Y) 

Configuration 
Bitstream 

• t • 

Figure 6.1: An example of a database entry. 

When the user presents the FPGA and his PIN to the authentication system the 

following steps are performed: (i) The system retrieves the database entry associated 

with the provided PIN. (ii) Then, the FPGA is configured according to the database 

entry field values. The PUF will be placed on the location specified in the database 

and the input/output networks will be added to it. The configuration bitstream could 

be stored in each database entry along with other parameters or instead it could be 

generated online according to the circuit parameters and location attributes stored 

in the database. The latter method can drastically reduce the storage requirements, 

although it introduces a latency in generating the bitstream. Note that the number of 

feasible locations for placing the PUF is merely dependent on the size of the FPGA. 

(iii) At the third step, the binary challenges are sent and tried on the configured 

PUF; the responses are retrieved. Meanwhile, the database derives responses from 

the stored PUF parameters for the given challenge. Probability of error for each 

response is also calculated. The derived responses with lower error probabilities are 

compared with the received responses for authentication, (iv) After authentication is 

performed, the FPGA content is erased and the FPGA is returned to the user. 

Blank FPGA R N #: xxx 

Config. FPGA 

LExch. CRPSj 

Erase 
\nwf 

Authentication 
Server 

PIN #: xxx 

Figure 6.2: Configure-and-erase scheme steps 
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The proposed system can be subject to the a number of attacks. First, by tap­

ping the communication link between the FPGA and the authentication server and 

reading the configuration bitstream, the adversary might be able to discover the PUF 

structure and its location on the FPGA and later attempt to configure the FPGA 

and model the PUF. There are two ways to eliminate such threats. One way is to 

physically secure communication link which is not feasible in all applications. The 

other way is to encrypt the bitstream and make the FPGA non-reconfigurable by an 

unauthorized party. A timed authentication method, which is explained next, can 

be also used to hinder the efforts to perform PUF modeling attacks. The use of 

one-time PUFs (where each CRP is tried only once) would protect the PUF against 

man-in-the-middle attacks. 

6.1.1 Timed Authentication 

Swift evaluation of the arbiter-based PUF is a unique feature that can be used to 

safeguard the authentication process. Unlike ring oscillator PUFs, the arbiter-based 

PUFs can produce a response to a given challenge in a single clock cycle. The clock 

frequency is however limited by the delay of PUF structure itself. Attempts to build 

a software counterfeit of the PUF by either emulating the responses or reverse engi­

neering can be encumbered by imposing a tight timing constraint on PUF evaluation. 

The method could be realized by time stamping the responses using either the em­

bedded system clock or the authenticating server clock. The former requires a tamper 

resistant clock since otherwise an adversary with high speed clocking resources at his 

disposal might be able to reduce the system clock frequency and calculate the PUF 

response more quickly. Using the authentication server clock removes concern about 

clock tampering, however it would be limited to applications where the PUF and the 

server can communicate through a high speed channel whose latency is not much 

higher than the PUF evaluation time. 



CHAPTER 7 

Implementation Results 

We present the measurement and characterization results obtained by implementing 

the test circuit described in Section 5.2.1 on Xilinx Virtex 5 FPGAs. Figure 7.1 

shows the details of the implemented circuit structure. The circuit benefits an ex­

ternal clocking source which sweeps the clock frequency continuously from 13 to 15 

MHz. The frequency is swept every 65 milliseconds. The clock generator's output 

is then connected to a PLL inside the FPGA which multiplies the input frequency 

by 7, shifting the frequencies up to the 91-105 MHz interval. The PUF under test 

is triggered by a toggle flip flop which alternately produces a falling and rising edge 

signal. A 9-bit counter driven by the system clock resets the error counter values and 

issues a read signal every 512 clock cycles. The errors are counted by 8 bit counters. 

The linear PUF structure was used for testing and characterization. The PUF 

consists of 8 switches with 6 delay elements in between. The delay elements are 

implemented by a series of 6 NOT gates. Each NOT gate is realized by a separate 

LUT. To balance the path delays, the PUF was manually placed and routed using the 

FPGA Editor in Xilinx ISE design tool. Figure 7.2 shows the PUF after placement 

on the FPGA floor plan. Eight different challenge values with corresponding decimal 

values of 0, 1, 3, 7, 15, 31, 63, 127 are tried at each sweep. With the delays measured 
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by applying the challenges, one can find each path segment delay (S) by solving a 

system of linear equations. The error counter values are read using a Tektronix LA714 

logic analyzer when the READ signal goes high. The circuit was implemented on five 

XC5VLX50 and three XC5VLX110 Xilinx Vertex 5 chips. 

Launch 
Flip Flop 

Sample 
Flip Flops] 

PUF-under-test 

PLL 
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Flip Flops 
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Error 
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Figure 7.1: The detailed structure of the delay characterization test circuit. The clock 
frequency is consciously swept using an external clock generator and the frequency 
range is shifted up by the internal FPGA PLL. 
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Figure 7.2: The PUF circuit on the FPGA floor plan after manual placement. A 
screen shot from FPGA Editor tool in the Xilinx ISE software. 

Figure 7.3 shows the relationship between the clock period and the PUF output 

sampling failure rate. At clock periods above 11.45ns (i.e., Region 1), the PUF 

output is sampled and captured successfully, making Region 1 a fault-free region. As 

the clock period decreases, sampling errors begin to appear (Region 2). The failure 

rates reach a plateau of 0.5 (Region 3). In this region, the sample flip flop always 

fails to properly sample the rising edge transitions but it can capture the falling 

edge transitions successfully. This is due to the fact that the delays for positive 

and negative transitions through the PUF are different. Since half of the transitions 
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are positive and the other half are negative, the failure rate would be 50%. If the 

clock period is further decreased, errors would appear for the falling edge signals too 

(Region 4). Finally in Region 5, all of the sample values would be erroneous. The 

curves in Regions 2 and 4 are in fact the flip flop characteristics. The flip flop setup 

and hold times are indicated by markers in Figure 7.3. The 10% and 90% values for 

the ST and HT times are chosen respectively. The points where the failure rates are 

equal to 0.25 and 0.75 virtually correspond to the cases where the clock period is 

equal to the circuit delay for rising and falling transitions respectively. Also note the 

fineness of delay resolutions at which the measurements are carried out. 
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Figure 7.3: Measured arbiter characteristic. 

We begin with characterizing the arbiter. To efficiently represent the arbiter, 

a parametric model could be fit to the arbiter characteristic and the pertinent pa­

rameters are estimated and stored in the database. The arbiter's non-deterministic 

behavior in presence of small input delay differences is influenced by circuit noise 

and many other surrounding effects. Due to central limit theorem we argue that the 

arbiter output can be represented by Gaussian cumulative function (CDF). We fit 

the Gaussian CDF to the measured arbiter characteristic in least square sense and 

estimate its mean and standard deviation. Figure 7.4 shows a section of the measured 

arbiter characteristic along with the Gaussian fit. The standard deviation (a) of the 
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fit determines the speed of the arbiter and the mean value corresponds to the PUF 

delay. Note that the a (arbiter speed) can be different for rising edge and falling edge 

signals. Therefore, the arbiter can be effectively represented by two parameters, i.e., 

arise and 0/o/j. Setup time and hold times are functions of a. 
a 
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Figure 7.4: Measured arbiter characteristic in region 4 and the corresponding Gaus­
sian fit. 

We used the characterization circuit to measure the top and bottom path delays 

of the PUF. The delays are measured for eight different challenge values. Figures 7.5 

(a) and (b) respectively show the path delays for falling edge and rising edge signals 

propagating through the PUFs implemented on XC5VLX50 chips. Figures 7.5 (c) 

and (d) show the same data but for XC5VLX110 chips. Each plot in these figures 

correspond to one chip. There are two sets of data on each plot distinguished by 

circle and dot markers. The circle marker represents the top path delay while the dot 

marker refers to the bottom path delay. The top and bottom path delays are shown 

for the given challenge values on the x-axis. As the measurements suggest, the path 

delays are in some case correlated among the chips (e.g., see how the delays on the 

second and third plots in Figure 7.5 (d) follow the same trend). 

We next estimated the arise and crfau of the flip flops from the measurement data. 

With two sample flip flops per circuit and a total of 5 circuits on XC5VLX50 chips 
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Figure 7.5: The top and bottom path delays of PUFs on XC5VLX50 chips for (a) 
rising edge transition, and (b) falling edge transition; The top and bottom path 
delays of PUFs on XC5VLX110 chips for (c) rising edge transition, and (d) falling 
edge transition. 
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and 3 circuits on XC5VLX110 chips, there were 16 flip flops to characterize. The 

measurements were repeated 8 times for each flip flop. The box plots in Figures 

7.6 (a) and (b) show the estimated ajau and arise respectively for the flip flops on 

XC5VLX50. Figures 7.6 (c) and (d) shows the same result for the flip flops on three 

XC5VLX110 chips. The adjacent flip flops in the figures (i.e., FF1 and FF2) come 

from the same circuit and are physically close to each other in the circuit. FF1 

and FF2 reflect similar speed characteristics. The flip flops on the third XC5VLX50 

chip is the fastest among the other XC5VLX50 chips. Also the flip flop on the first 

XC5VLX110 chip is the fastest. The narrowness of the boxes confirms the accuracy 

of the measurements and parameter estimations. 

The measurements can also help locate faulty or unstable flip flops. For example, 

the test results on one of the the flip flops as shown in Figure 7.7 demonstrates a 

noisy glitch marked by the black circle. The glitch keeps repeating at every round 

of measurement. Thus, when implementing PUFs, the designer should avoid noisy 

arbiters and those with large setup and hold times. Even if the noisy flip flop (like 

the one shown in Figure 7.7) has to used as an arbiter, then those challenges that 

cause a delay difference coinciding with the glitch must be avoided. 

The amount of delay variability in future FPGA technology follows an upward 

trend. Sedcole et al. in [50] predict that with a slightly rapid increase in stochastic 

variability (2% every three years), stochastic variation will amount to 11.5% in 22nm 

technology node while systematic variations keeps decreasing. Table 7.1 shows the 

amount of variability in the current and pending FPGA technologies [50]. 

Table 7.1: Delay variability in current and future FPGA technologies. 
Production year 

Node 
Stochastic var. (3a) 

2004 
90nm 
3.3% 

2007 
65nm 
5.5% 

2010 
45nm 
7.5% 

2016 
22nm 
11.5% 

We estimated the amount of observed variability on 65nm Virtex 5 FPGA family 
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Figure 7.7: Faulty flip flop behavior. 

from the measurement data. Assuming the additive delay model for the PUF, the 

total path delay (Z) can be written as sum of independent and identically distributed 

random variables (Xi), i.e., Z = X\ + X2 + ... + Xn where n is the total number of 

delay elements in the PUF structure, Xi ~ N([i, a) and Z ~ N(fiz, az). Then 

ez/»z = (l/y/K)x(a/»). (7.1) 

The mean and variance of Z were estimated as fiz = 10.41ns and az = 0.068ns 

using the delay measurements obtained from XC5VLX50 chips. Since the PUF uses 

8 switches and 6 delay elements in between then the total length of the PUF would 

be n = 56. Therefore from Equation 7.1, the variability is derived as (3 x cr)/// ~ 5%. 

The amount of variability conforms with the estimated values shown on Table 7.1. 

The measurement results show that even though variability exists in the structure, 

the amount of variability in presence of the arbiter imperfections and measurement 

biases is not enough to make a robust and yet random response on all of our test 

chips. In what follows, we present a number of interesting observations from our 

implementation experiments. 

Figure 7.8 shows the distribution of the delay differences between the top and 

bottom paths for XC5VLX50 test chips. Figures 7.8 (a) and (b) show the distribution 

for rising and falling edge transition delays. Each distribution contains 40 points; 5 

chips and 8 challenges per chip. The flip flop 3a setup/hold-times are depicted on 

the same figure by vertical lines for the fastest and slowest flip flops on the chips. 
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It can be seen that in Figure 7.8 (a), on our test chips, the delay differences are 

smaller than 3cr setup/hold times of the arbiter, resulting in metastable responses. In 

the falling edge transition case shown in Figure 7.8 (b), 87.5% and 70% of the points 

fall inside the metastable region of the slow and fast flip flops respectively. Figures 

7.8 (c) and (d) show the same results for XC5VLX110 chips. For the falling and 

rising edge transition cases (Figure 7.8 (d) and (c)) 87.5% and 100% of the points 

fall inside the metastable region of both slow and fast flip flops. As it can be seen, 

because of the lack of calibration, the distributions are skewed toward positive and 

negative values. 

Also, it is important to note that a delay difference between the top and bottom 

paths after the last switch and before the arbiter may cause a bias in the responses 

toward zero or one since this is the only path that does not switch. As shown on Figure 

7.2, the sample flip flops (FF1 and FF2) are symmetrically placed on the top and 

bottom paths to minimize the delay difference in the measurements. To implement 

the PUF, the two sample FFs must be replaced by a single FF whose inputs could 

potentially follow asymmetric routes introducing bias in the PUF responses. As the 

measurement results suggest, any delay difference on the path segment between the 

last switch and the arbiter in the order of 100 pico-seconds can be deadly and force 

the responses completely into zero or one by moving the mean of the distribution. 

Thus, careful calibration and compensation of this bias is crucial for obtaining robust 

results. This could be achieved by insertion of extra delay elements or trying different 

routes on either of the top or bottom path 

We have also tried changing the placement strategies and the PUF lengths (64 

switches, 128 switches) on the FPGAs. The small delay variability can partially be 

compensated by including more delay elements. As Equation 7.1 implies oz increases 

as the square root of the number of delay elements (n) assuming that Hz increases 

linearly n. Assuming the amount of variability on 22nm FPGA with same nominal 
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delays, the total delay variation of the PUF (n=56) would be 3az = 160 ps which is 

more than twice the measured 3cr of the slowest arbiter. 

Successful and systematic implementation of PUFs requires a larger variability 

(that is technologically inevitable with the current trends), details of the variability 

^information about the FPGA fabric and switches, as well as development of tools for 

automatic timing-aware PUF placement and routing. 
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Figure 7.8: The distribution of delay difference between the top and bottom paths. 
The distribution is calculated for 8 input challenges, 5 XC5VLX50 chips, and 3 
XC5VLX110 chips. Figures (a) and (b) show the distribution for rising and falling 
transition delays on XC5VLX50 chips. Similarly, Figures (c) and (d) show the dis­
tribution for rising and falling transition delays on XC5VLX110 chips. The vertical 
lines show the 3<r detection edges of slow and fast arbiters (FF). 



CHAPTER 8 

Conclusion 

In this work, we developed new techniques for the design and implementation of PUFs. 

The PUF vulnerabilities to various types of potential attacks were discussed. We 

demonstrated how reconfigurability can be exploited to ensure that PUFs are resilient 

against the potential attacks and are robust to unpredictable operational conditions. 

A PUF testing and characterization mechanism enabled by reconfigurability feature 

provides tools for diagnosis, CRP compression, and determining the level of confidence 

in responses. A unique input/output logic network along with an interconnecting 

approach is introduced to encumber attempts at reverse engineering or modeling the 

PUF. The proposed building blocks are added to the PUF after the characterization 

step. We have shown applications where FPGA-based PUFs can be used for security 

and privacy protection. The effectiveness of all the proposed claims were validated 

using extensive implementations, simulations, and statistical analysis. 
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