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Abstract 

It is well known that the market price of options are inconsistent with option 
pricing models that assume the innovation of the underlying price follows Geometric 
Brownian Motion. What is not clear is why this occurs. 

The testing of option pricing models requires a joint hypothesis to be tested 
that the options pricing models are correct and that the options markets are efficient. 
To test the option pricing models, we will examine the relationship between the 
objective and risk neutral dispersion processes for twelve financial futures markets. 
These markets have been selected so that we can investigate the dynamics of equity, 
fixed income and foreign exchange asset classes. 

Our analysis of the objective dispersion processes allows us to reject the 
hypothesis that the prices of these twelve markets follow Geometric Brownian 
motion. For all twelve markets and for various sub-periods of analysis, we find that 
the optimal models for capturing the dynamics of the objective dispersion process 
include jump diffusion and stochastic volatility. 

For the risk neutral dispersion process, we chose to examine the implied 
volatility surfaces from the closing prices of options (on these same futures markets). 
It appears that both within and between markets similar dynamics determine the 
shapes of the implied volatility surfaces. By employing an Analysis of Covariance 
approach, we found that important consistencies exist within asset classes and 
between markets. The first order strike price effect (skewness) differs widely among 
markets but is fairly consistent within the same asset class. The second order strike 
price effect (kurtosis) is consistent among all markets. The dependency of both strike 
price effects on the time to expiration is also similar across all markets and suggests 
that both jump diffusion and stochastic volatility play a role. 

A comparison of option prices, which are consistent with the objective 
dispersion process, with actual options prices suggests that significant divergences 
exist. The actual smile patterns display greater variation in the amplitude compared to 
those from the objective function. The least degree of discrepancy exists for the 
foreign exchange markets. Both the stock index and fixed income options dispersion 
processes display behaviours that diverge considerably. This divergence is primarily 
due to the existence of negative skews that are not justified by the objective dispersion 
processes. This suggests that other mechanisms are at work for the risk neutral 
dispersion processes for these asset classes. The most likely explanations are the 
existence of risk premia associated with stochastic volatility and non-diversifiable 
jumps or that transaction costs are relevant. 
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INTRODUCTION 

This research is a direct consequence of two events that occurred at almost the 

same moment in time and at the same place. In the spring of 1973 in Chicago, the 

Chicago Board Options Exchange opened an organised market in equity options. For 

the first time in the modern era, option prices (for what had to that point been an 

obscure and relatively unimportant security) were transparent and an empirical record 

of their price dynamics could be recorded with accuracy. Secondly, at the University 

of Chicago, the Journal of Political Economy published the seminal work on option 

pricing by Black and Scholes (1973). 

This seeming coincidence spurred the development of a major branch of 

financial economics: contingent claims analysis. These two simultaneous events 

meant that the analysis of contingent claims could extend along two paths: one 

theoretical and one empirical. There is little doubt that this field experienced rapid 

advances in such a short period of time due to the interaction of both research 

approaches. This was due to the fact that the development of theoretical models could 

then be compared to actual market prices. With this feedback mechanism, both 

theoreticians and practitioners could benefit from iterative refinement in both areas. 

Likewise, in this research, we must choose which path we will take in the 

investigation of option pricing. Our choice is the empirical route. It is clear that the 

actual option prices suggest that the original model by Black and Scholes (and 

subsequent models using similar assumptions) do not capture the dynamics of the 

options markets. One of the most serious violations of these models implies that the 

market prices of options appear to be inconsistent with the assumption that the 

underlying price process follows Geometric Brownian motion. This assumption lies 



at the heart of the Black Scholes model. The clearest indication of this is that the 

standard deviations implied by options prices vary for the same expiry depending 

upon the strike price and also vary across time. These effects have been referred to as 

the strike price effect or the term structure of volatility and have led many to question 

whether the Black Scholes model is correct. As with any feedback process, this had 

led theoreticians to modify the Black Scholes approach to explain the actual market 

dynamics. One reason why options prices were thought to diverge from Black Scholes 

values was that the assumed dispersion process for the underlying asset price was 

incorrect. 

Given the mathematical elegance (and tractability) of the Black Scholes 

approach, much of the early research concentrated on the development of revised 

models which assuming other distributional forms for the underlying price innovation. 

As long as the contingent claim and the underlying asset were perfectly substitutable 

and investors preferred more to less, the pricing of the options would be preference- 

free. However, for many of these approaches, the models [such as the CEV model of 

Cox and Ross (1976)] still failed to explain the actual options prices. Again, one 

possible reason for this failure was that the alternative dispersion processes for the 

underlying asset remained incorrect. 

Thus, our first objective for this research will be to examine the observed (or 

objective) dispersion process for twelve financial futures markets. This will allow us 

to examine how well alternative models describe these dynamics. With these models, 

we can now compare what option prices would be if they were consistent with our 

best fitting models. If we simply change the drift, we can determine some set of 

options prices which could be described by the objective processes. Since the effect of 
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realistic levels of risk premia (for volatility smiles) is likely to be small, it is 

interesting to examine the structure of prices from this procedure. 

Another possible explanation for why option prices may differ from these 

models is that the nature of risk premia are more complicated than we thought. 

Alternatively, transaction costs may have an impact or the markets may be inefficient. 

For example, the assumption of constant variance in the Black Scholes model may be 

incorrect and thus risk premia exists in the option prices. This could suggest that 

perfect substitutability may not exist for the option and the underlying asset and 

option pricing may not be preference-free. To assess if this is the case or not, we will 

examine the empirical record of options prices on these same twelve financial futures 

markets and compare the risk-neutral to the objective dispersion processes. 

Our next objective is to understand the dynamics of the risk-neutral dispersion 

processes implied by options prices. This will entail standardisation of implied 

volatilities and comparison of the implied volatility surface both across time and 

across markets. We will then examine the implied volatility surfaces that are 

consistent with the objective dispersion processes and compare these to the 'actual 

implied volatility surfaces. The motivation for this to examine the degree to which 

options prices diverge from the assumptions of the Black Scholes model and ascertain 

as to why this may occur. Our focus is to compare the objective processes and the 

empirical option prices. Once we have determined what process best describes the 

movements of asset prices, we will examine if these processes describe options prices 

without the need for potentially complicated risk premia or the consideration of 

transaction costs. The answer is that these processes alone do capture most of the 

dynamics of options prices. 
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While it is clear that empirical investigations of options prices have appeared 

in the literature, the research provides a major contribution by extending this work. 

We will examine simultaneously a wider variety of asset classes at the same points in 

time. Secondly, much of the empirical work on options pricing has concentrated on 

the markets in the United States and primarily the stock option market. It is not clear 

if the conclusions of these papers apply equally across other asset classes or for 

options on non-U. S. markets. This research will rectify this by examining stock index, 

fixed income and foreign exchange options and futures markets, where half of the 

markets are not U. S. Dollar based. Given that many of these markets have appeared 

recently, such a cross-sectional examination of the empirical dynamics could only be 

completed at this time when a sufficiently long empirical record had been established. 

It is also important that we have created an unprecedented data resource both for this 

research and for future research. We have obtained and cleaned 33,239 futures prices 

and 1,263,317 options prices for twelve major financial markets. The research that 

follows was only possible by creating this data resource with sufficient observations 

to allow for long-term analysis of the dynamics of these processes. 

The goals for the first five Chapters are threefold. Initially, this research will 

discern the nature of the objective dispersion processes which can be observed for 

return series for futures contracts on three categories of financial assets: fixed income, 

stock indices and foreign exchange. The primary goal is to understand those statistical 

properties of futures returns most relevant for option pricing. 

Secondly, to capture those statistical properties of relevance we will apply an 

existing methodology in a new way. Burghardt and Lane (1990) identified the use of 

volatility cones. Their principal motivation was to assess if options prices were mis- 

priced. We will also use this method. Our motivation is to understand the variability 
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of unconditional (historical) volatilities as a function of the time horizon of 

estimation. This of particular relevance to option pricing, as those who price options 

must make a forecast of the actual volatility that will occur over the life of the option 

and the volatility cone analysis can provide an indication of the degree of forecast 

error. One contribution of this research is to provide a new methodology to correct the 

biases in the volatility cone method introduced by the analysis of overlapping 

observations. 

Thirdly, we will identify five key target conditions that can be used to describe 

the empirical dispersion processes. These target conditions include: 1) the coefficient 

of variation for the volatility at a 20 day time horizon, 2) the rate of decay of the 

volatility of volatility as the lag is increased, 3) the kurtosis of the time series, and 4) 

& 5) two measures of the average autocorrelation of absolute returns for short and 

intermediate lag periods. We will also examine whether these target conditions 

display similar dynamics over different time periods. 

Finally, with these target conditions for each of the twelve markets, we will 

examine alternative models to understand the nature of these dispersion processes. 

The models will include four alternatives. Two models will assume that the variance 

remains constant but that the underlying price series either follow geometric 

Brownian motion or a Student-t distribution. The Student-t distribution will serve as a 

proxy for a jump diffusion model. The remaining models will assume that the 

variance is stochastic and that the underlying, price series either follow geometric 

Brownian motion or a Student-t distribution. The findings will suggest that the 

objective dispersion process for markets are better described by Student-t distributions 

than by geometric Brownian motion. Further explanatory improvement (in almost all 

cases) can be obtained by the selection of an appropriate stochastic volatility model. 
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Finally, if we assume that the variance is stochastic and the underlying price series 

follow a Student-t distribution, almost all the markets under investigation can be 

adequately modelled. This suggests that both jump diffusion and stochastic volatility 

models are both required to understand the objective dispersion processes for markets. 

The goal of the second part of the dissertation is twofold. First, this research 

will discern the nature of the risk neutral dispersion processes implied by options on 

these same twelve futures contracts. The primary goal is to understand how the prices 

of options contracts provide information regarding the expected dispersion processes 

of futures markets. This analysis will examine the volatilities implied from the prices 

of options on these futures. By examining the available universe of options prices 

available, we will examine the volatility smile structures. We will demonstrate a 

methodology for standardising the volatility smiles allowing for direct comparisons of 

the dynamics within and between markets. 

As a result of this standardisation, we will show that the implied volatility 

surfaces display empirical regularities. Individual markets display regularity in their 

strike price effects (both first and second order). There is also consistency between 

markets in the same asset class and consistencies across all markets. To better 

quantify and analyse these consistencies, we will apply an Analysis of Covariance 

approach, which will allow us to carefully examine and compare these effects for all 

markets. 

Second, we examine if the empirical smile structures are related to the 

objective processes of futures prices that underlie these options. It will be shown that 

consistencies do exist between the objective probabilities, associated with futures 

returns, and the risk neutral probabilities associated with options on these futures 

contracts. As with the first portion of this research, we will discern the rationale for 
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the divergence from a lognormal dispersion process and examine the relative 

importance of jump processes and stochastic volatility models. 

Even though we will demonstrate that a link exists between the objective and 

risk neutral processes, we observe divergences. The actual smile patterns display 

greater variation in the amplitude compared to those from the objective function. 

Another divergence is due to the existence of negative skews in the empirical smile 

patterns that are not justified by the objective dispersion processes. This suggests that 

other mechanisms are at work for the risk neutral dispersion processes for these asset 

classes. 
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CHAPTER ONE 
THE ANALYSIS OF OBJECTIVE PROBABILITIES IN FUTURES 
MARKETS: LITERATURE REVIEW AND EMPIRICAL DESIGN 

1.1 INTRODUCTION 

The objective of the first five Chapters is threefold. Initially, this research will 

discern the nature of the objective dispersion processes which can be observed for 

return series for futures contracts on three categories of financial assets: fixed income, 

stock indices and foreign exchange. The primary goal is to understand the statistical 

properties of the volatility of futures returns. 

Secondly, to capture those statistical properties of relevance we will apply an 

existing methodology in a new way. Burghardt and Lane (1990) identified the use of 

volatility cones. Their principal motivation was to assess if options prices were mis- 

priced. We will also use this method. Our motivation is to understand the variability 

of unconditional (historical) volatilities as a function of the time horizon of 

estimation. This of particular relevance to option pricing, as those who price options 

must make a forecast of the actual volatility that will occur over the life of the option 

and the volatility cone analysis can provide an indication of the degree of forecast 

error. One contribution of this research is to provide a new methodology to correct the 

biases in the volatility cone method introduced by the analysis of overlapping 

observations. 

Thirdly, we will concentrate on those aspects of the processes which are most 

relevant to option prices. This requires the identification of five key attributes that can 

be used to describe the empirical volatility series. These attributes include: 1) the 

coefficient of variation for the volatility at a 20 day time horizon, 2) the rate of decay 

of the volatility of volatility as the lag is increased, 3) the kurtosis of the time series, 
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and 4) & 5) two measures of the average autocorrelation of absolute returns for short 

and intermediate lag periods. 

With these attributes for each of the twelve markets, we will examine 

alternative models to understand the nature of these processes. The models will 

include four alternatives. Two models will assume that the variance remains constant 

but that the underlying price series either follow geometric Brownian motion or a 

Student-t distribution. Two models will assume that the variance is stochastic and that 

the underlying price series either follow geometric Brownian motion or a Student-t 

distribution. The findings suggest that all markets are better described by Student-t 

distributions than by geometric Brownian motion. Further explanatory improvement 

(in almost all cases) can be obtained by the selection of an appropriate stochastic 

volatility model. Finally, if we assume that the variance is stochastic and the 

underlying price series follow a Student-t distribution, almost all the markets under 

investigation can be adequately modelled. 

In this first Chapter, we will provide a literature review, present new analysis 

of the sampling properties of volatility cone estimation and discuss the alternative 

models selected for the later analysis of the objective processes. 

1.2 REVIEW OF THE LITERATURE ON VOLATILITY PROCESSES 

The variance of the rate of return for assets is one of the cornerstones of 

modem financial theory. Variance is a key concept for capital asset pricing and for 

portfolio analysis. If we are able to better able to measure financial risk, we can more 

accurately value risky assets. In the form of the standard deviation (or volatility), it 

plays a critical role in the pricing of contingent claims. Because of the importance of 

variance in financial theory and the fact that variance and volatilities exhibit 
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stochastic behaviour over time, much research has been devoted to understanding the 

nature of this behaviour. 

The aim of this research is to further our understanding of this behaviour for a 

wide variety of financial assets. According to Cox and Ross (1976), the option 

valuation problem is really equivalent to the problem of determining the distribution 

of the underlying variable, which is the return series for the underlying asset. They 

established that an option's price equals its expected payoff discounted at the risk-free 

rate where the expectation is taken over the `risk-neutral' (rather than the true) 

distribution of the underlying asset. Much research has examined the characteristics of 

objective distributions, particularly in the equity markets. My research will extend this 

analysis to include equities, fixed income and currencies. I will compare these 

objective processes to those implied from options on these same assets. The goal is to 

assess the relationship between the conditional and risk-neutral distributions for a 

considerable historical period. 

In this first part of this research, we will examine the unconditional (objective) 

volatility of financial futures markets. This will entail examining the historical record 

to assess the objective dynamics of the dispersion processes for twelve markets. Later, 

in the second part of this research, we will examine the volatilities implied from 

option prices on the same twelve financial futures markets. 

Review of Research on Objective Dispersion Processes for Assets 

To date, most of the research on this area has concentrated on the analysis of 

equity variances. Christie (1982) examined the stochastic behaviour of common stock 

variances and Schwert (1989,1990) and Turner and Weigel (1992) have examined the 

stochastic behaviour of stock market indices. Our research extends these results by 
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examining the stochastic behaviour of financial futures for four of the largest equity 

markets, fixed income markets and currency markets. By examining futures contracts, 

we remove many of the difficulties that have been observed when examining the 

underlying assets themselves. 

For equities, problems with volatility estimation occur when discrete 

dividends are paid or when stock splits occur (Cox & Rubinstein 1985, page 260). 

Furthermore, there may be systematic patterns in the returns of equities due to 

corporate reorganisations, mergers and acquisitions or other changes in the nature of 

the firms that the equity represents. One solution would be to only analyse stock 

indices (as a more consistent and broadly based measure of the overall market). 

However, stock indices themselves present problems. 

A major problem for the analysis of the variance of stock indices is the 

assumption that the returns for both the equities (which comprise the stock index) and 

the stock index returns are lognormally distributed. This introduces a paradox because 

such a condition can only exist if the index is a product of the underlying stock prices. 

Such an index is the Value Line Index (which is geometrically weighted stock index). 

Since in our research we are examining simple market capital weighted indices such 

as the S&P 500 index, it is not obvious that the sum of lognormal returns for the 

individual equities will result in a lognormal distribution. This is based upon the well- 

known result that the sum of lognormal distributions will not itself be lognormal. 

However, since we are using -futures on the S&P 500, this asset may follow a 

lognormal distribution even if the underlying stock index does not. Samuelson 

(1965b) pointed out that even if systematic and non-lognormal patterns in spot prices 

(he examined commodities) exist, the futures price will fluctuate randomly and will 

follow a lognormal dispersion process. We will extend this finding directly and 
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without loss of generality to all financial markets. This is our principal rationale for 

examining futures contract variances instead of spot market variances. 

Thus, futures on stock indices represent a more consistent measure of the 

overall equity market that remains standardised through time, should follow a 

distributional form which lends itself to standard analysis and thus simplifies the time 

series analysis of volatilities. The use of stock index futures to model equity market 

variance has been used increasingly in other recent research. For example, Jackwerth 

and Rubinstein (1996) chose for estimation of volatility for stock indices, to use 

futures-based index levels throughout their research. ' 

In the case of bonds, the nature of the bond changes through time as the bond 

approaches maturity. This leads to problems in variance estimation for an asset whose 

stochastic behaviour is time dependent [see Schaefer & Schwartz (1987)]. In the case 

of currencies, the interest rates, inflation rates and purchasing power parity 

relationships all impact the variance of the spot exchange rate [Tucker and Pond 

(1988)]. 

An additional reason for using futures is the availability of transparent prices 

and sufficient data with homogeneous standardised instruments. The fact that the 

instruments do not change over time reduces the problems in examining the longer- 

term behaviour of a time series (where the underlying instrument may change through 

time). Another reason for using futures is that in the second part of this dissertation, I 

will examine the risk neutral distributions based upon option prices. Since most of 

1 The reason they state for the use of this data is related to the interest rate parameter 
that must be used to determine the implied volatilities of options. They concluded that 
the use of S&P 500 futures prices to estimate the implied interest rate was 
significantly less variable that either using T-Bill rates or interest rates implied from 
options on the cash S&P 500. (Page 1617). 
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these markets, the options are based upon the futures, this will allow conclusions from 

the first part of the research to be compared directly to those latter findings. 

Random Walk Processes, Stationary Series and Objective Volatility 

Before we can address the issues involved in the estimation of financial 

futures volatilities, we must define a few terms and review previous work in this field. 

The theory of random walk and security price dynamics began at the start of 

the twentieth century with the work of Bachelier (1900). The fundamental problem 

with Bachelier's work was that he assumed prices to be described by a normal 

distribution. The same question was addressed later by Kruizenga (1956) and 

Samuelson (1965a): they showed that proportional price changes are the metric of 

interest and suggested that a lognormal distribution was more appropriate. Continuing 

along this line were, Kendall (1953), Osborne (1959), Roberts (1959), Alexander 

(1961) and Sprenkle (1961). All investigated the dynamics of asset price behaviour in 

relation to the theory that these prices follow geometric Brownian motion (and 

therefore the Random Walk Hypothesis). An excellent summary of the early work on 

the random walk hypothesis in financial markets appears in Cootner (1964). 

Given that the focus of this research is on understanding options values, the 

papers by Bachelier (1900), Kruizenga (1956), Samuelson (1965a) and Sprenkle 

(1961) are of most interest. Each of these papers examined the relationship between 

security price dynamics and contingent claim prices. Unfortunately, these papers were 

unable to derive satisfactory option pricing models. This is because the resulting 

solutions were either not preference-free or option prices could violate the boundary 

conditions. Most of these approaches assumed that the security price process followed 

Geometric Brownian motion. Nevertheless, these papers established a framework 

within which subsequent research could derive satisfactory option pricing models. 
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Black and Scholes (1973) also assumed that the security price process 

followed Geometric Brownian motion. However, their major contribution was to use 

the principle of no arbitrage to create a risk-free portfolio so that risk-neutral pricing 

could be used. This led to a preference-free solution for the problem of pricing 

European call options that did not violate boundary conditions. Since that time, most 

models of asset price behaviour start with the assumption of a generalised Wiener 

process. Given that the drift and variance of asset returns can be both a function of the 

level of the return and time, an Ito Process is used. Finally, for most examples of the 

pricing of derivative securities, geometric Brownian motion has been used as the most 

plausible Markov stochastic process. Under this process, the proportional rate of 

return in any small interval of time is normally distributed and the returns in any two 

intervals are independent. These are the conditions associated with the Random Walk 

hypothesis. 

A random walk formally states that there is no difference between the 

distribution of returns conditional on a given information set and the objective 

distributions of returns. Random walks are much stronger conditions than fair games 

or martingale processes because they require all the parameters of a distribution to be 

the same with or without an information set. In addition, successive returns drawn 
s 

over time must be both independent and have to be taken from the same distribution. 

Thus, we can define the expected conditional variance as equal to the previously 

realised objective variances. Unless all the factors which influence the underlying 

probability distribution of returns remain unchanged (or stationary) over time, one 

would expect the properties of the probability distributions to change over time. This 

has been examined extensively in the literature and will be re-examined in this 

research. 
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A series is stationary if the mean value of the process is independent of time 

and the autocovariance is dependent only on the lag and is independent of the absolute 

value of time. The process is then said to be stationary. The implication that the 

probability distribution of returns may not be stationary is of critical importance to 

many areas of financial theory. For example, one of the key assumptions in options 

pricing theory is that the probability distribution is stationary. In the seminal Black 

and Scholes paper (1973), one of the ideal conditions for both the price of the 

underlying asset [stock] and for the options was that "The stock price follows a 

random walk in continuous time with a variance rate proportional to the square of the 

stock price. Thus, the distributions of possible stock prices at the end of any finite 

interval is lognormal land] The variance rate of the return on the stock is constant. " 

(Page 640). 

While most research on the dispersion of returns concentrate on the process 

driving returns to be normal. This has inherent problems. According to Copeland and 

Weston (1988) [p. 208], "Obviously, returns on assets cannot be normally distributed 

because the largest negative return possible, given limited liability of the investor, is 

minus 100%". They continue to state that while this assumption might lead to 

negative asset prices (to allow for infinite negative returns), the probability of 

observing returns as low as minus 100% is so low as to be irrelevant from a practical 

standpoint. 

While this may be irrelevant in practice, a more serious problem exists if for 

all returns (and not just those approaching minus 100%), the distributional form does 

not follow Geometric Brownian motion and therefore (prices) fails to evolve in a 

lognormal manner. It is logical that during the early work on the random walk 

hypothesis many of the papers (published at the time) were for the most part empirical 
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[see Mandelbrot (1963a, 1963b), Fama (1963,1965) and Cootner (1964) for a survey 

of the early empirical studies]. These papers cast serious doubt on whether a 

lognormal distribution was an accurate model for security price behaviour. 

According to Merton (1982), 

"It was the standard practice in early studies to assume that the logarithm of 

the ratio of successive prices had a Gaussian distribution with time-homogenous 

independent increments and stationary parameters. However, the sample 

characteristics of the time series were frequently inconsistent with these assumed 

population properties. One of the most important inconsistencies was the empirical 

distributions were often too 'peaked' to be consistent with the Gaussian distributions. 

That is, the frequency of extreme observations is too high to be consistent with 

samples from a normal distribution. " (page 21). 

The papers that Merton refers to are referenced above. Two approaches were 

attempted to resolve these discrepancies. The first was proposed by Mandelbrot 

(1963a, 1963b) and Fama (1963,1965). Finding (from an empirical investigation of 

daily returns on commons shares) that the empirical distribution displays leptokurtic 

behaviour and that the variance is not finite, these authors proposed a more general 

stable Paretian (Levy) distribution but retained the assumptions of independent 

increments and stationarity parameters. As was pointed out by Cootner (1964) the fact 

that the variance was infinite implies that not only will this render most of the 

standard statistical tools useless but also implies that the expected value of the 

arithmetic price change cannot exist. A key question remains: How can variance be 

modelled if the actual distribution of security prices suggests that such a variance is 

not finite? 
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Cootner (1964) suggested an alternative approach: finite-moment processes 

where the distributions are non-stationary. Merton (1982) points out that models 

requiring the underlying process to be a mixture of diffusion (Geometric Brownian 

Motion, for example) and Jump processes (Poisson-directed processes) can 

accommodate a wide range of market dynamics. Examples of these include the 

reflecting barrier model proposed by Cootner (1964) and the Rosenberg (1972) model 

which was a Gaussian model with a changing (but forecastable) variance rate. 

Rosenberg demonstrated that his model could explain the observed leptokurtic 

behaviour in stock market returns. 

Other approaches (using finite-moment processes) to solve for the existence of 

non-normally distributed returns include Blattberg and Gonedes (1974) proposing a 

Student t distribution, Bookstaber and McDonald (1987) suggesting a Wiebull 

distribution and Press (1967) with a Poisson mixture of normals approach. 

An alternative process to explain the high degree of kurtosis in the return data 

could be a GARCH (Generalised Auto-Regressive Conditional Heteroscedasticity) 

process. The empirical success of GARCH models is partly due to their ability to 

generate fat tail distributions, with finite or infinite objective variances. Much 

research has demonstrated that many time series display conditional 

heteroscedasticity. This means that clusters of extreme volatility occur within the time 

series. The first ARCH (Auto-Regressive Conditional Heteroscedasticity) model was 

introduced by Engle (1982) and was later generalised by Bollerslev (1986) with the 

GARCH model. The Bollerslev formulation has been found to be sufficiently 'general' 

to capture most types of conditionally heteroscedastic behaviour. Since this initial 

work, many variations on the basic GARCH model that have been introduced in the 

past 10 years. For excellent reviews on the broad literature on GARCH models in 
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finance, see Bollerslev, Chou and Kroner (1992) and Bollerslev, Engle and Nelson 

(1994). 

Of these alternative approaches, Merton (1982) states that taking the finite- 

moment process approach would be more promising (for modelling the price 

processes in continuous time). We will follow these lines in 'our research by 

examining the time series dynamics of asset returns and will compare our findings to 

assumptions of Geometric Brownian Motion, a Student-t distributional model and a 

range of models that examine finite-moment processes with stochastic volatility 

parameters. 

Regardless of the approach chosen, assumptions must be made whether the 

variance is stationary or not. If stationary, then we should estimate the objective 

variance by using as much data as possible from the past to reduce the statistical 

sampling error. Furthermore, these observations should all be equally weighted distant 

observations being as important as recent ones. If the variance is non-stationary, this 

would imply that this may no longer be appropriate and the objective variance must 

place more emphasis on recent observations. 

Fischer Black (1975) suggests that this might be ill advised to assume that 

variance is stationary when he indicates "But the volatility does change, so more 

weight should be given to recent months and less weight should be given to distant 

months. " Therefore, the question remains how to estimate the volatility of asset 

markets in the presence of non-stationarity. Several possibilities for the estimation of 

asset return volatility exist. The historical standard deviation of returns is an obvious 

one, Black and Scholes (1972) used it. "Although the historical volatility is a 

reasonable estimator when volatility is stationary, it fails to capture instaneous 

changes, and thus a proxy based upon contemporaneous observations should be more 
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appropriate for the study of volatility dynamics "[Merville and Piepta (1989) page 

197] 

When tests were done for stock market volatility by Schwert (1989), he found 

that the estimate of historical volatility (standard deviation of monthly stock returns) 

from the period from 1857 to 1987 varied from two to twenty percent over the period. 

Schwert concluded that "Tests for whether differences this large could be attributable 

to estimation error strongly reject the hypothesis of constant variance. " [Schwert 

(1989) page 1115]. While this may suggest that volatility is not constant over time, it 

is not clear whether this result is due to sampling error or reflects statistically 

significant differences. Schwert argued for the latter. 

There is further evidence that the historical volatility measure is not an 

unbiased estimator. A comparison of the linear (ARIMA) and the non-linear auto- 

regressive conditional heteroscedastic (ARCH) time-series behaviour of historical 

price variance (volatility) yields disturbing results. Barnaud and Dabouineau (1992) 

have found this for the variance and volatility of crude oil prices from 1987 to 1992. 

"Strange autocorrelation and partial autocorrelation phenomena can be found, 

strongly connected to the frequency of data used. However, these disturbances are not 

observed for volatilities extracted from simulated ARIMA data and cannot be reported 

as just resulting from the mathematical aggregation of data. The simple combination 

of actual data and such estimators may therefore be technically misleading rather than 

explanatory. " [Barnaud and Dabouineau, page 109]. I 

Schwert (1989) also examined whether the returns were independent over 

time. He compared daily returns for the Standard and Poor's (S&P) composite 

portfolio from January 1928 through to December 1987 and used daily estimates of 

the returns for the Dow Jones composite portfolio from February 1885 to December 
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1927. Schwert claimed that "Using non-overlapping samples of daily data to estimate 

the monthly variance creates estimation error that is uncorrelated through time. " 

Schwert (1989) page 1117. This result suggests that subsequent monthly variances 

are independent. 

However, other researchers have found that time series behaviour of stock 

market returns is inconsistent with the hypothesis of stationarity. For example, Turner 

and Weigel (1992) examined daily return variability of the S&P 500 and Dow Jones 

indices over the period from 1928 to 1989. They used the close-to-close standard 

deviation of returns and compared this approach to alternative estimators including 

the daily high and low of the index and a robust estimator to measure the volatility of 

stock price returns. Their evidence rejected the hypothesis that stock market volatility 

is stationary some of their specific results are that: "Extreme-return days are preceded 

by significant losses and are intertemporally clustered. There is no evidence of short- 

term market reversals after either positive or negative jumps in stock index returns"( 

page 1586). Other authors have also found that there is evidence of positive serial 

correlation in equity returns. Poterba and Summers (1988) and Lo and MacKinley 

(1988), are only two of many. 

A nagging problem is still whether these results could have been obtained 

simply by chance. The obvious solution to reduce error from small samples is to add 

more observations. However, a paradox (for the estimation of stock index volatility) is 

2. He goes further to identify the expected variance of the volatility estimator as: "If the data are 

normally distributed, the variance of the estimator ßt is 6i / 2Nt, where 6t is the true variance 

(Kendall and Stuart (1969, p. 243). Thus, for monthly observations of Nt = 22, and 6t = 0.04, the 

standard error of 6t is 0.006, which is small relative to the level of ßt .� (page 1117). He goes 
further to state that " Since this is a classic errors-in-variables problem, the autocorrelations of the 

estimates 6t will be smaller than, but will not decay at the same rate as, the autocorrelations of the 

true values, ßt ." (page 1117) 
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that adding more observations appears to make the estimate even worse. Jackwerth 

and Rubinstein (1996) examined the historical volatility over various sub-periods 

from 1980 to 1995. They found that at very small sample sizes (of 25 observations), 

the average kurtosis was almost 0 which is consistent with a lognormal distribution. 

To quote them "Unfortunately, the sample kurtosis systematically rises as a function 

of the sample size so that at sample size 720 [observations]... the average kurtosis... is 

quite different from lognormal"(Page 1612-1613). They concluded that "This kind of 

systematic increase in the average sample kurtosis is, of course, exactly what one 

would predict from a random volatility model, first postulated over two decades ago 

by Barr Rosenberg (1972)" (pp 1613). An additional problem was that "Historically 

measured volatility varies significantly over different time periods" Jackwerth and 

Rubinstein (1996) [Page1613]. 

On the other hand, Stein and Stein (1991) concluded that S&P 500 volatility 

was stationary over time. They drew upon other research by Bookstaber and Mc 

Donald (1987). They quoted their findings thus: "They [Bookstaber and McDonald] 

note that while one- and five- day stock returns have significantly fatter tails than 

lognormals of the same variance, returns over longer horizons (e. g. 250 days) are 

much better described by a lognormal distribution. This observation, taken together 

with our analytical results, would seem to provide indirect support for the hypothesis 

that volatility follows a stationary process. If volatility were nonstationary, then our 

results would lead one to expect long-horizon returns that look substantially fatter- 

tailed than lognormals. " page 742. 

Even if the nature of the objective volatility is fully understood and we are 

able to determine whether it is stationary or not, we will still not be able to ascertain if 

the instaneous volatility is stationary. This is simply because we can never directly 
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observe the instaneous or true volatility. As Ball (1993) states, "The greatest problem 

is the unobservability of volatility. It must be filtered from the observable security 

prices. " (page 20). Thus, this research must also be limited to the examination of the 

objective volatility. 

This research differs (from the previous papers) in that we will use futures 

contracts as surrogates for the actual underlying assets and will assess the relative 

dynamics of the dispersion processes across the different markets. Our particular 

interest is the impact on the realised volatility upon the values of options on these 

markets. Later in this research, we will examine the relationship between the objective 

processes examined in this first portion of the research and compare these results with 

the risk-neutral processes implied by options prices. 

Methods to Determine Objective Volatility 

The measure of the futures price changes used is based upon the continuously 

compounded returns: 

rf = In(P / P_, ) (1.1) 

where Pt and Pt-1 refer to the level of the nearby futures contract at date t and t- 1, 

respectively. In refers to the natural logarithm and rt refers to the return for the futures 

contract on date t. 

The estimation of the standard deviation of the returns is determined using: 

N2 Lr=1 (rý 
-r 

Q= " N-1 
(1.2) 

Alexander (1996, page 235) shows that in the instance where the average 

return F, is equal to zero, the estimation of the historical volatility can be expressed 

as: 
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6 N- (1.3) 

Neuberger (1994) points out that if the drift, r, is close to zero, the sample 

second moment provides a better estimate of the population standard deviation than 

the sample standard deviation. 

We will refer to the standard deviation (from equation 1.2) as the objective (or 

historical) volatility. Furthermore, it is a key input into the familiar stochastic 

differential equation: 

d(InP)=udt+adZ (1.4) 

where Z(t) is a standard Wiener Process and µ and ß are constants, thus return series 

rý, has a normal distribution and 

rr = It + dZt with Z, -. N(0,1). (1.5) 

Furthermore, the Z, 's are independent and identically distributed (i. i. d. ). If 

the r 's are normally distributed, then the objective variance would follow chi- 

squared distribution with mean a2 and variance equal to ((T2)2IN. In the instance 

where rt's are i. i. d. but follow a fat tailed distribution, the objective variance has a 

variance (K-1)"(62)2IN, where K is the kurtosis 'µ4/64. While these equations 

(1.4 and 1.5) assume that the price processes follow Geometric Brownian motion and 

given that much of the empirical evidence suggested above refutes this, it would 

appear to be inconsistent. However, we will use this as our starting point for analysis. 

The simple reason is that many of the option pricing formulae make this assumption. 

One key question in this research is assessing whether the objective processes are 

consistent with GBM. If not, we can then assume that options for these markets are 

also not well explained by a GBM process. 

23 



Equations 1.2 and 1.3, imply that the estimation of the variances will result in 

an average of the individual observations. Often such objective variance is measured 

for a fixed time horizon moving through time. The result is that the measure of (the 

sampled) objective variance always represents the same time period, N. This 

approach is commonly known as a moving average method, and causes a significant 

problem when estimating the objective variance, if the return series is not stationary. 

Suppose an extreme return event occurs. If the time period of estimation, N, is fixed 

and the individual returns, rt, are equally weighted, then a 'ghost' feature can result. 

This means that the extreme event will impact the estimation of the objective 

variance with the same impact for as long as it remains in the estimation window 

(until t= N). The most common method for dealing with the problem of "ghost" 

features is the use of an exponentially weighted moving average (EWMA). 

The EWMA approach reduces the problems of "ghosts" by placing more 

weight on recent observations. This provides the double benefit of reducing the 

impact of extreme events (as the date of the event lengthens from the current date) 

and retaining all the observations to maintain a sufficiently large sample of data to 

allow meaningful estimation of the sample variance. Most of the EWMA approaches, 

which appear most commonly in the literature, weight the previous observations in 

the form: 

EV =a"r, 2+a(1-a)r2 +a(1-a)r2+... (1.6) 

where EV is the exponentially weighted variance, the a is the weight assigned to 

each observation and the rt's correspond to the individual returns. The exponentially 

weighted variance will itself have a sampling variance equal to: 
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(K _1). (a2)2 "a (1.7) 
2-a 

For an equally weighted moving average approach of N equal weighed 

observations, it can be easily shown that both approaches will have the same sampling 

variance when a=2 /(N + 1) . 

Another approach to exponential weighting is to have a moving average of 

past returns (t - N/2) and future observations (t + N/2) for a fixed sample size N. This 

is the approach which will be used in this research to gauge the general level of the 

objective variance series. This weighting scheme can be expressed as: 

EV =a2(K-1)(ß2)Z[1+(1-a)2 +(1-a)4 +... ] (1.8) 

This formula combines equations (1.6) and (1.7). For an equally weighted 

moving average approach of N equal weighed observations, it can be easily shown 

that both approaches will have the same sampling variance when a= 2/ 2(N + 1) . 

This is approximately equal to 1/N. Thus, if a is equal to 0.10, then it is the same 

expected sampling variance as an equally weighted moving average of approximately 

10 returns. If a is equal to 0.01, then it is the same expected sampling variance as an 

equally weighted moving average of approximately 100 returns. 

These simple approaches are by no means the only alternatives for the 

estimation of historical volatility. Other methods discussed in the literature include 

estimators by Parkinson (1980) and Garman and Klass (1980). Both estimators 

incorporate high and low prices, and have been shown to be statistically more 

efficient that the commonly used close-to-close return standard deviation. These 

estimators are: 
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(Parkinson) 

JE1[(H, 
_Lt)2 /4"In(2) 

ßN =N (1.9) 

(Garman and Klass) 

J EN [o. 5o. (H, -Lt)2 -0.39"(Ct -Ct_1)2J 
6N =N (1.1ýý 

where Ht and Lt are the natural logarithms of the high and low price of the futures 

contract during time period t. The terms Ct and Ct_1 correspond to the natural 

logarithms of the closing prices at time periods t and t-1, respectively. 

Marsh and Rosenfeld (1986) have shown these parameters to be 5.2 times 

more efficient (for the Parkinson estimator) and 7.4 times more efficient (for the 

Garman and Klass estimator). While other methods have been proposed in the 

literature, we have chosen to apply the close to close measure as not all the markets 

we had obtained data for had high and low prices available. The reason for estimating 

the variance with extreme prices rather than closing prices is that the extreme values 

contain more information than do the closing prices 

These methods for estimation of historical volatility share the assumption that 

the volatility is itself normally distributed. Evidence in this research refutes this for 

both return series and for the objective volatility. To deal with departures from 

normality that may exist, another approach has been suggested which includes various 

proposed robust estimators that work close to "best" under a variety of distributions. 

One such measure has been proposed by Iglewicz (1983) and is known as the 

interquartile range: 

IQ = (Q3t - Q1t) (1.11) 
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where Q3t is the 75th percentile of asset returns computed from close-to-close price 

changes and Olt is the 25th percentile of the asset returns. It can be shown that for a 

normal distribution, the interquartile range is approximately 4/3s times the standard 

deviation. This robust estimator measures dispersion around the sample median, a 

measure that is less sensitive to outliers than the sample mean. This approach is well 

known in non-parametric statistical tests. 

Furthermore, recent evidence has suggested that using close to close data for 

the estimation of variances is as good a measure of volatility as using the extreme 

methods. Clewlow and Xu (1994) compared the estimation of historical volatilities 

using the alternative approaches that include all the available information with the 

simple close to close approach. While they found that the estimators using the full 

information available have the smallest variation, they are not significantly different 

from the classic estimator (which solely uses close to close data). Therefore, for this 

analysis, we will use daily closing prices for the twelve markets examined. The choice 

of daily observations has been discussed in the literature. According to Fischer Black 

(1976a), "In my view, if you want to study changes in volatility, you have got to use 

daily data" (page 177). 

Problems in the Estimation of the Objective Volatility of Futures 

A problem with futures prices is that when expiration is approached, the 

contract approaching expiration begins to become less actively traded and the next 

contract starts to have more trading volume. Some authors who have examined 

futures data [Merville and Pieptea (1989)] have chosen to switch the analysis from 

the nearby futures contract to the first deferred contract prior to the expiration. For 

Merville and Piepta, "ten trading days prior to expiration the nearby contract is 
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replaced by the next to nearby contract to avoid data contamination related to any 

excess volatility induced by program trading and speculative positions between 

options and futures markets" (p 195-196). 

We chose to take the futures price series to the day prior to expiration and 

switch the series on that day to the next delivery period. With this method, we 

assured that each return series was calculated using the changes in the appropriate 

underlying assets. 

Another problem with the estimation of the objective volatility of futures 

contracts is that (for many of the markets we will examine) the length of the historical 

record is relatively short. Levy and Yoder (1989) examined the problem of estimation 

of historical volatility for a small number of observations. Their rationale was to 

address the problem of using the Black/Scholes model after a sudden and permanent 

change in the volatility of the underlying stock resulting from some shock. This was 

motivated by the volatility of stocks pre and post the 1987 crash. They assumed that 

the conditional volatility was known and they tested the impacts of sampling errors on 

the estimates of this parameter by simulation. The simulation was based upon the well- 

known relationship between the sample and true variance: 

S2 = 
Ni 

1 "x2 (1.12) 

where S2 is distributed as Chi-square with N-1 degrees of freedom. They estimated 

the sample variance for samples from 4 to 30 observations and with this determined 

call option prices using Black/Scholes. They found that errors in the prices of the 

options which were consistently below the price of the options using the conditional 

volatility. They demonstrate that this bias can be almost eliminated by modification of 

the estimated variance by the factor N -1.5 rather than N -1. This is only relevant for 
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estimation periods of the volatility less than 60 days. "If sixty or more observations 

are used to calculate the sample variance, the difference between E(C ) and C is small 

[see Boyle and Ananthanarayanan (1977)]" (p 106). 

Since for our purposes, we will be estimating volatility with at least 1200 

observations, this result may not seem relevant to our situation. Nevertheless, we still 

face a problem when estimating longer-term volatility. For example, if we wish to 

estimate 20-day volatility from 1200 daily observations, we will only have 60 

observations that are independent and non-overlapping. Three solutions exist for this 

problem. The first is the adjustment proposed by Levy and Yoder. However, it is not 

obvious that this will apply to the estimation of variance for observations with a 

significant lag occurring between their occurrence. Secondly, one can add more 

observations. This is not possible, as we have obtained all the observations available 

for our markets. The third solution is to overlap the estimation periods to obtain more 

observations. However, this introduces a potential bias since the samples are no 

longer independent. This problem is one of the major theoretical drawbacks to the 

volatility estimation technique we will now discuss that is commonly referred to as 

the volatility cone approach. 

1.3 VOLATILITY CONES - COMPARING VOLATILITIES OVER TIME 

Determination of Volatility Cones 

The principal reason why volatility estimation is so critical is that the fair 

value of a wide range of contingent claims depends directly upon a correct estimation 

of the volatility. Those who sell options both price and hedge these products based 

upon the expected realised volatility for the asset that underlies the option. What 

Neuberger (1994) demonstrates is that variability in realised volatility has a dramatic 
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impact on the costs of hedging options. He proposes that a solution to this problem 

would be the creation of a derivative contract based upon the natural logarithm of the 

price of the underlying asset. This is because sellers of options are concerned with the 

quadratic variation of the underlying asset price process, which is what we commonly 

refer to as the volatility. Another technique has the potential of providing us 

information about the volatility of volatility. Furthermore, this technique could 

provide an estimate of the likely probability distribution of forecast errors of volatility 

at different time horizons. This is the volatility cone technique. 

Option prices are based upon some estimate of expected actual volatility. 

Tompkins (1997) has demonstrated that the replication error from dynamic hedging of 

options is directly related to the realised volatilities of the underlying asset over the 

life of the option. Therefore, the distribution of the potential hedging error is related to 

the distributions of realised volatility and that is why this approach is so critical to our 

research. 

This approach is based on the assumption that the realised volatilities for 

assets should bear some relationship to previously realised volatilities assuming the 

volatility is a stationary series. If that is the case, it would be reasonable for this 

realised future volatility probably not to exceed the highest actual volatility having 

occurred over acomparable time period in the past or be below the lowest actual 

volatility having ever occurred. Burghardt and Lane (1990) first identified this 

approach. 

To estimate the volatility cones, daily returns for the nearby underlying futures 

contract were determined using the formula: 

In (PtIPt-1) * 4252 (1.13) 
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On the day the nearby futures expired, the return for the next day would reflect 

the difference between the final day of the preceding contract and the first day of the 

next nearby. To remove this bias, on this switch day the return was estimated using 

the change in the logarithms of the price of the next nearby contract from the previous 

day (for this same contract). 

To estimate the empirical behaviour of the actual volatility series of the 

underlying markets, the following steps were taken: 

(1) A variety of sample time horizons were selected over 20 day intervals from 

the expiration of the futures contract and extending out to 500 days until 

expiration. This led to twenty-five volatility series to be compared for each asset 

under consideration. The actual volatilities were estimated (a postiori) on a daily 

basis and a rolling basis for the periods outlined above. In this way, a running 

series of twenty-five historical volatilities were estimated and were updated as 

each business day passed. 

(2) For the purpose of drawing the cones, the maximum, minimum, median and 

the 25th and 75th quartile volatility values were determined for the entire period 

of the analysis. 

As was pointed out by Burghardt and Lane (1990), the narrowing between the 

maximum and minimum levels for the volatility cones as the time horizon is extended 

provides a clue to the nature of the quadratic variation in volatilities. Of particular 

interest in our research is the standard deviation of the volatility estimated at the 

various horizons. As was indicated in the previous section, volatility cones are biased 

due to the fact that overlapping data were used to estimate the volatilities. To 

understand the true nature of volatility correctly, we must correct for the bias in the 

estimated standard deviations of the volatilities. Once this is done, we will understand 
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the true nature of quadratic variation that is so critical to those dealing in option 

contracts. 

Problems with Overlapping and Non-Overlapping Data 

Suppose one wished to estimate the volatility for a financial futures time 

series. The first step would be the determination of daily price relatives for the entire 

period of analysis. For ten years of data the number of daily price relatives will be 

approximately N=2500. These price relatives will be grouped into periods of analysis 

from one day (n=1) to a period which is one half of the number of the observations (n 

= N/2). With these groupings, standard deviations (or the volatility) will be estimated 

for the grouped periods. From this analysis, summary statistics will be produced for 

the volatility estimates. We are interested in the maximum, average and minimum 

observed values. These estimations (apart from when n=1) will entail overlapping 

estimation periods. For the observation period n= N/2, we will obtain N/2 observed 

standard deviations but only two observations will be from non-overlapping (and thus 

independent -periods). The high degree of correlation between such overlapping 

observations will dampen the true variability of the volatility and makes the 

estimation of long-term volatility using this method unreliable. We will address this 

problem by estimation of the standard deviations for observed periods that are both 

overlapping and non-overlapping and compare the empirical bias that occurs from 

estimation with overlapping periods. In addition, a theoretical model has been derived 

which addresses the question of the theoretical relationship between the standard 

deviation of the volatility estimated in overlapping and non-overlapping periods. The 

first part of the research will compare this theoretical bias to the observed bias. It will 

be demonstrated that the theoretical model correctly explains the bias. This is a 
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significant contribution to the problem of long term volatility estimation where the 

limited number of available independent observations is not sufficient to allow a 

statistically meaningful estimate of the volatility parameter to be determined. Thus, it 

will now be possible to estimate the long-term volatility using overlapping data and 

use the theoretical model to derive confidence intervals for the results that will 

quantify the bias. With the bias corrected for, we will now examine the unbiased 

dispersion that occurs for the volatility of these price series. This will allow us to 

correctly assess the true nature of the volatility dispersion and test for mean reversion 

effects that have been identified in the literature. This will identify if the process is 

independent and identically distributed or not. 

Clearly, it would be best to have non-overlapping observations. However, this 

is a significant problem when there are not enough non-overlapping periods to 

determine statistically significant results. Secondly, by restricting the analysis solely 

to non-overlapping samples, we circumvent problems with serial correlation but have 

sacrificed observations in the process. 

One method of addressing the problem of overlapping data in volatility 

estimation is the use of panel regression techniques. This is a common econometric 

technique that corrects for the technical problems that arise when using overlapping 

data in financial time series analysis. Dunis and Keller (1995) used this for the 

examination of currency option volatilities. They pointed out that when data were 

overlapping it led to dependence between the observations. This approach has the 

following economic consequences: "most notably, it results in an under-estimation of 

the calculated variances of the estimators occurs as a result of the strong 

autocorrelation of the residuals"(Dunis & Keller, p 349). They demonstrated that the 

use of the panel regression technique significantly improved the Durbin-Watson 
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statistic that measured the degree of autocorrelation of the residuals. The panel 

regression approach is a much less burdensome alternative to the approach followed 

by Hansen and Hodrick (1980). 

The Hansen and Hodrick approach requires the construction of an appropriate 

variance/covariance matrix. This is achieved by estimating the parameters of interest 

by sampling data at fixed intervals of the data set. This method is known as the 

Generalised Method of Moments estimation (GMM) and was also employed by 

Hansen (1982) and later by Newey and West (1987). 

In the analysis of mean estimates for overlapping and non-overlapping 

periods, Müller (1993) found that for series with limited data points, one would 

increase the precision of the estimate by overlapping the data to the sampling scheme. 

Although he pointed out that "The exact answer of this approach depends on the 

statistical properties of the analysed variable. " Müller (1993, p 1) 

Müller used the simplest case of a Gaussian random walk process assuming a 

i. i. d. random variable with zero mean and a variance of one in his study. With this 

given distribution, he generated a series of data and then analysed the results by 

sampling data from the generated data series and estimating the sample mean and 

variance. He found that the reduction in the variance of the variance estimator could 

be expressed as: 

E{[E,, rlap(yi22)_M]2) 'ml21 ?+ 1forN»m, (1.14) 
E{ [E�a-overiap (yi 33 . M2' 

where y, is the difference series of the standard variable x1 (which has a mean of 

zero and variance of 1.0) and m is the period of the difference between the estimation 

of the differences. While it is clear that this is a simplistic example, Müller found that 

the variance reduction from overlapping the data can be reduced by approximately 
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2/3s by overlapping the data compared to non-overlapping the data for large m. Thus, 

the use of overlapping data does reduce the error of estimation of the variance 

substantially. 

Müller does indicate that this gain in reduction of error variation is only 

applicable to his ideal situation. He goes on to state: "The beneficial effect of 

overlapping is probably lower than in the `ideal' example if there is already 

considerable serial dependence in the underlying x, , e. g. if the time series x; is a 

computed series that already, implicitly used some overlapping in its computation 

formula. If, on the other hand, the x, are known to have negative autocorrelation... we 

expect to gain more by using overlapping data intervals than in the Gaussian case. " 

Another solution to the overlapping data problem which has been addressed in 

the literature is the jack-knife method. Yang and Robinson (1986) present an example 

of this. This method is based on strongly overlapping resamples of the original 

sample. The final method that has appeared in the literature to addressing the 

overlapping data problem is the use of the "bootstrapping" method. 

One popular technique is the ". 632" bootstrap method developed by Efron 

(1983). In this method, a bootstrap sample is generated from the original sample; that 

is, a sample of size n is drawn with replacement. This is compared to the analysis 

from the entire sample by repeated samples. The name ". 632" is taken from the fact 

that in a sample of size n taken with replacement from n items, the probability of any 

given item appearing is 1-(1-1/n)° --ý 1- 6" - 0.632 and n --ý co. 

For the panel data, bootstrapping, jack-knife and indeed the Hansen and 

Hodrick approaches, sampling approaches are employed which address the problem 

of serial correlations by changing how the estimates are drawn such that they are no 

longer linked directly through time. An alternative approach is to examine the actual 
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biases of the estimated variances for overlapping and non-overlapping periods and 

adjust the error of the overlapping estimates by this factor. Müller (1993) has 

examined this for an idealised distribution and we will examine this for actual market 

distributions. 

A New Method for Unbiasing Overlapping Samples 

One of the results of the analysis on autocorrelations (to be presented in 

Chapter 2), is that the absolute difference series are positively correlated. Thus, this 

approach must be rejected for the actual estimation of empirical series of returns and 

differences. This has lead to a more realistic derivation of the impact of the reduction 

in the error variances that have been completed for this research. 

If we have large samples, then the sampling variance of 6= is given as: 

i (K-1) 
(a2)2 (1.15) 

where variance is estimated from r daily returns and K is the measure of kurtosis. For 

smaller and overlapping samples this estimate is biased. However, since we know the 

weights involved, we can estimate new values (to replace 1/i) to take this into 

account. This is the method used for this research and derived specifically for this 

research. 

For this analysis, we wish to understand how we would expect volatility cones 

to behave (because of overlapping observations) if returns were i. i. d. We assume k 

observations to a volatility estimate, and n separate volatility estimates. 
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1 Non-overlapping case 
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What we are interested in solving is: 
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k-1 
Yi"(n-i)2 

i=1 
(1.16) 

It can be shown algebraically that the solution to overlapping weights in this 

summation is: k" (k -1) " (3k 2-k" (8n + 3) + 2n " (3n + 2)) (1.17) 
12 

The summation of all the weights is equal to: 

2, 
k"(k-1)"(3k2-k-(8 +3)+2n"(3n+2)) 

+k"(n-k+1)"(n-k)2 (1.18) 
12 

This result can be simplified to yield: 

-k" 
(3k3 -10k 2n + 3k " (4n2 -1) - 2n . (3n 2 -2)) (1.19) 

6 

By grouping together and simplifying, the final result is: 

WIn _1- 
4n+3k(4n2 -1)-10k2n+3k3 (1.20) 

'j k 6k " n3 

for the case n >_ k+1i. e. T >_ 2k 

x; x; x x 
forn <k+ 1: (T <2k) I 

x; x x; x 

W2ln={l. (n-1)2+2(n-2)2+... (n-1). 12}" 
2 

{(nk)2n} 
(1.21) 

(n2 
-1) 

6. k2. n 

Using these solutions, the estimated ratio of the non-overlapping variance to 

the overlapping variance is simply: 

n2 1 

ka 
(1.22) 

6. k2. n 

If K (the, kurtosis) is assumed to be 3.00 then the numerator of the equation 

becomes: 
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L2) 
a4 k 

(1.23) 

Using this above assumption, we used the following formula to determine the 

adjustment factor to correct for the bias from overlapping. 

k= period of estimation 

i1 = number of data points 

Y= adjustment Factor 

Y=1 
(4(n_k+1)ý3k(4(n_k+1)2 

-1)-10k2(n-k+1)+3k3) 
k 6k(n -k+ l)3 (1.24) 

In the next Chapter, we will test this adjustment factor by comparing the 

theoretical ratio of the variances of non-overlapping to overlapping observations to 

the actual ratio of these two approaches. This analysis will be examined for different 

periods of analysis to assess the consistency of the approach. It will be shown that this 

technique is extremely powerful in explaining the nature of the bias when estimating 

volatility from overlapping data. 

1.4 AUTOCORRELATIONS OF ABSOLUTE RETURNS 

It is well established that stock market returns contain little serial correlation 

[Fama (1970) and Taylor (1986)]. This is consistent with the weak form efficient 

markets hypothesis. However, this empirical fact does not necessarily imply that the 

returns are i. i. d.. Taylor (1986) found that the return process is characterised by 

substantially more correlation between absolute or squared returns than there is 

between the returns themselves. 

A number of papers have found that the stock returns exhibited time-varying 

and predictable volatility [see Ho, Perraudin and Sorensen (1996) who examined a 
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selection of US equities]. We have previously referred to GARCH models that have 

also indicated that volatilities are inter-related through time. Rather than choose one 

particular GARCH model, we have decided to examine autocorrelation dynamics 

directly. One such approach is the use of autocorrelograms previously employed by 

Taylor (1986) and Ding, Granger and Engle (1993). 

The differences in these two approaches is that Ding, Granger and Engle 

(1993) extended the work of Taylor (1986) by examining the autocorrelograms for the 

return, absolute returns and squared returns for the S&P 500 for lags from 1 to 5 

observations and 10,20,40,70 and 100 observations after that. They considered the 

properties of the absolute return of the return series for the S&P 500 stock market 

index from January 3,1928 to August 30,1991. They chose this metric, as it 

appeared to exhibit less noise. For the same reason, we will examine the 

autocorrelations of absolute returns 3 

The benefits of this approach is that if one is interested in assessing if the 

distribution of asset returns were i. i. d., one can use a simple 95% confidence interval 

test assuming the distribution was i. i. d. In their study, Ding, Granger and Engle found 

that S&P 500 was inconsistent with an i. i. d. assumption. They state: "about one 

quarter of the sample autocorrelations with lag 100 are outside the 95% confidence 

interval for a i. i. d. process... [the] stock market return series have a very small positive 

first order autocorrelation. The small positive first order autocorrelation suggests that 

the [returns] do have some memory although it is very short... The second lag 

autocorrelation... is significantly negative which supports the so-called `mean- 

reversion' behaviour of stock market returns. This suggests that the S&P 500 stock 

market return series is not a realisation of an i. i. d. process. " (page 86-87). 
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It is interesting in the Ding, Granger and Engle (1993) paper that if the return 

series is an i. i. d. process any transformation will also be i. i. d. They found that the 

sample autocorrelation of the absolute return series and the squared return series were 

all outside the 95% confidence interval, and that the autocorrelations were all positive 

even over long lags. From this evidence, they concluded: "It is clear that the S&P 500 

stock market return process is not an i. i. d. process. " (page 87). 

Ding, Granger and Engle (1993) also found that the serial correlation of 

absolute returns was greater than the serial correlation of squared returns. Thus, it 

might make sense to estimate averages of absolute returns as an alternative to the 

volatility cone. Ding, Granger and Engle (1993) found in their autocorrelograms that 

the autocorrelations decreased fast in the first month and then very slowly. They 

found that the autocorrelograms displayed consistently positive autocorrelations for 

the S&P 500 stock market returns. 

They needed to measure whether this difference was statistically significant or 

not. For this they used a simple test making no assumptions of normality in the 

underlying volatility series, only that the series was assumed to be i. i. d. and the 

sample autocorrelations were assumed to be distributed normally. The 95% 

confidence interval for estimated sample autocorrelations was ± 1.96/ SIT. Where T 

was the total number of observations in the sample. Ding, et. al. indicated that what 

Bartlett demonstrated in 1946: that if the returns are described by an i. i. d. process then 

the sample autocorrelation pt is approximately N(0,1/T). 

Previous research by Poterba and Summers (1986) examined the S&P 

Composite Stock index for the period from 1928-1984 (note pre crash). They found 

3 Even if the returns are normally distributed, the squared returns would follow a Chi-squared 
distribution, which are extremely skewed. Given that we know that the actual distributions of returns 
have fat-tails, a squared series would have been even worse. 
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results consistent with the conclusions of Ding, Granger and Engle. They stated: "We 

find that shocks to volatility decay rapidly... The results suggest that while volatility is 

serially correlated, changes in current volatility have relatively small effects on 

volatility forecasts over even short horizons... the results again suggest that these 

shocks are only weakly serially correlated. " (page 1142) In terms of magnitude, they 

found that "Estimates based on both actual and ex ante volatilities indicate that these 

volatility shocks have half-lives of less than six months, and in some cases as short as 

one month. " (page 1150). 

Given the power of this approach and its establishment as a methodology in 

the literature for testing autocorrelation effects, we will also employ this technique for 

our twelve markets. 

1.5 MEAN REVERSION IN HISTORICAL VOLATILITY 

It will be shown in the next Chapter that the unbiased standard deviations of 

the volatility are clearly decaying at a much slower pace than for an i. i. d. single 

distribution. One possible reason for this effect is mean reversion. To analyse this 

effect properly, we must digress and examine the literature on mean reversion effects. 

There is solid empirical evidence for the application of a mean reversion 
I 

model to volatility. Merville and Pieptea (1989) examined option prices on twenty- 

five (US) stocks and calls on the S&P 500 stock index futures over a ten year period 

from 1975 to 1985. They found that the ex ante (objective) market volatility follows a 

mixed mean reverting diffusion with noise process. They concluded that strong forces 

pull the volatility back to its long-term value. Likewise, Scott (1987) also found that 

for the S&P 500, the monthly estimates of the historical volatility were not serial 
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independent and the volatilities had a strong tendency to return to an average level. 

Wiggins (1987) and Hull and White (1987b) have reported similar findings. 

Haugen, Talmor and Torous (1991) also found evidence for mean reversion in 

a study of the Dow Jones Industrial Average from 1897 to 1988. They stated: "There 

appears to be a relationship between the level of volatility and volatility changes: 

volatility increases tend to occur when the level of volatility is relatively low, while 

volatility decreases tend to occur when the level of volatility is relatively high. " 

(pages 991-992). Recently, Clewlow and Xu (1994) also concluded that the realised 

volatilities for S&P 500 futures are mean-reverting. They stated: "For most samples 

(contracts), only the first order autocorrelations and partial autocorrelations are 

significant and consequently an AR(1) model is adequate. " (page 8). 

The main focus of mean reversion in financial series has been associated with 

the modelling of the term structure of interest rates. Vasicek (1977) developed a 

simple model which was based upon zero coupon bonds (and spot rates) and assumed 

that all the uncertainty was being driven by a single source of variability, the so-called 

instantaneous ̀ spot rate'. The mean-reverting stochastic process he suggested for all 

interest rates was defined by: 

dr=k(9-r)dt+a"dZ1 (1.25) 
I 

where dr is the change in the interest rate of interest, r; 8 is the long term average the 

interest rate is being drawn to ,k is the positive rate at which the interest rate is being 

pulled back to the long term average, a is the volatility of interest rates and Zl is the 

standard Ito process (assuming geometric Brownian motion) 'for modelling 

uncertainty. One problem with the Vasicek model is the assumption that interest rates 

are normally distributed (although mean reverting). As with Bachelier (1900), this 

implies that interest rates can be negative and thus introduce an arbitrage opportunity. 
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Cox, Ingersoll and Ross (1985) solved this problem when they modified the 

Vasicek model to remove the possibility of negative interest rates. This is a slightly 

different example of a mean-reverting stochastic process. This process can be 

summarised as: 

dr =k (9 - r)dt + o'-Jr- " dZl (1.26) 

The difference is that the second term (the volatility function) has the square 

root of the current interest rate. When (and if) the interest rates approach zero, the 

square root of zero causes the volatility to go to zero and the rate will solely be 

influenced by the drift term (and pulled upwards). This assumed model means that 

interest rates follow a chi-square distribution. 

The Cox, Ingersoll, Ross approach can be applied to model the behaviour of 

volatility [Leong (1991)]. The model would simply substitute volatility for the interest 

rates and the second term in the model would be considered the volatility of the 

volatility. This implies that the volatility itself would be assumed to follow a non- 

central chi-square distribution. This process is also known as a modified Bessel 

function. 

While these models examined the nature of mean reversion for interest rates, 

similar approaches have been applied to the analysis of volatility. These will be 

discussed in the next section. In addition, we will discuss other models that have been 

proposed to explain the anomalies we observe in the objective processes. 

1.6 MODELS TO EXPLAIN THE NATURE OF EMPIRICAL VOLATILITY. 

Given the extensive evidence in the literature that indicates that return series 

are not normally distributed and volatility is not stationary, a number of theories have 

been proposed to explain these results. Broadly speaking there are three possible 
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explanations for the anomalies that have been observed for all asset markets. These 

include a Constant Elasticity of Variance Model, Jump Processes or the existence of 

Stochastic Volatility. At this point, I will provide a brief review of these approaches 

and indicate why this research examined only two of the possible alternatives. 

Constant Elasticity of Variance Model 

Cox and Ross (1976) first proposed the constant elasticity of variance model. 

In this model the stock price has a volatility of aS-' for some a where 0: 5 a: 5 1. 

Thus, the level of volatility decreases as the stock price increases. This model would 

also address the divergence from a lognormal process that occurs for stock index 

futures and individual equities. 

The rationale for this model is often referred to as the leverage effect. The 

logic is that all firms have fixed costs that have to be met regardless of the firm's 

operating performance. When the stock price declines, it is obvious that the equity 

value of the firm has fallen while the costs have remained fixed. Given that the 

variability of the equity price can be seen as a function of the variability of earnings 

and it is assumed that the variability of earning is constant, a lower equity value for 

the same earnings volatility will cause the volatility of the equity to rise. 

Given that significant skewness effects are observed for the stock index 

futures markets, this model should be considered. Unfortunately, while this model 

may explain the skewness effect observed for the stock index futures we examined, it 

will not address the fat-tailed nature of these or the other markets. This severe 

limitation has led many market participants to ignore it. 
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Pricing Models which Incorporate Jumps in the Underlying Asset Price 

While the CEV models assume that the underlying asset price can change 

continuously, another class of models has been developed with the underlying asset 

price following a jump process. Robert Merton proposed such a model in 1976. In his 

model the underlying asset price has jumps that are superimposed upon a geometric 

Brownian motion process. This approach is referred to as a jump diffusion process. 

An alternative jump model was first suggested by Cox and Ross and elaborated on in 

the seminal paper by Cox, Ross and Rubinstein (1979) outlining the binomial process 

for option pricing. For each small and discrete interval of time, e t, the stock price has 

the probability ?t of moving from S to Us and a probability of I-Xt of moving 

from S to Se-. Most of the time, the stock price declines at rate (o. However, 

occasionally it exhibits jumps equal to u-1 times the current asset price. In the limit 

as e t-, 0, jumps occur according to a Poisson process at rate X. The terminal stock 

price distribution is log-Poisson and the price of a call is determined in the same way 

as was discussed in the previous references. 

An interesting conclusion of this approach is that the inclusion of jump 

processes into the pricing models causes the distributions to display fatter tails than 

for continuous lognormal processes. In Merton's model, jumps can be either positive 

or negative. An interesting result is that the longer the maturity of the option the more 

the impact of the jump process is neutralised. This is consistent with the empirical 

evidence from market data. In the equity markets, Jarrow and Rosenfeld (1984) and 

Ball and Torous (1985) found significant jump components in the return series. 

Bodurtha and Courtadon (1987) suggested that the excess kurtosis they observed in 

foreign exchange returns could be explained by the presence of jumps. This result has 

also suggested by Jorion (1988) and Vlaar and Palm (1993). Thus, jump processes 
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may be a better approach for adjusting the lognormal dispersion process to yield 

theoretical results that are consistent with empirical objective returns. 

Merton states in his 1976 paper that, "Indeed, since empirical studies of stock 

price series tend to show far too many outliers for a simple, constant-variance log- 

normal distribution, there is a `prima facie' case for the existence of such jumps. " (p 

127). He offers an explanation for this in the footnote 4 of his 1976 paper, where he 

says: "There have been a variety of alternative explanations for these observations 

[too many outliers in stock price series]. Among them non-Stationarity in Cootner 

(1964); finite variance, subordinated processes in Clark (1973); non-local jump 

processes in Press (1967); non-stationary variance in Rosenberg (1972); stable 

Paretian, infinite variance processes in Mandelbrot (1963) and Fama (1965). The 

latter stable Paretian hypothesis is not, in my opinion, a reasonable description of 

security returns because it allow for negative prices as does the corresponding finite- 

variance, Gaussian hypothesis. Of course, limited liability can be imposed by 

specifying that the logarithmic returns are stable Paretian, and therefore, the 

distribution of stock prices would be log-stable Paretian (the analogue to log-normal 

for the Gaussian case). However, under this specification, the expected (arithmetic) 

return on such securities would be infinite, and it is not clear in this case that the 

equilibrium interest rate would be finite. " (page 127). 

Regarding our problem of fitting non-normal return series, the jump models do 

have promise. Beckers (1981) shows that the Merton (1976) Jump Diffusion model 

will yield a leptokurtic distribution and "therefore might better describe the actual 

price return behaviour than the pure lognormal model". (page 128). Recently, Scott 

(1994) stated that "On occasions, there are large rapid movements resembling jumps, 

and the volatility of stock returns changes randomly over time. Both of these features 
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serve to explain the leptokurtosis". (page 1) Later papers by Jarrow and Rosenfeld 

(1984) and Ball and Torous (1985) have also modelled this feature by including 

leptokurtic jump components. Jorion (1988) found evidence that both ARCH effects 

and jumps exist in financial data and are required to describe the empirical behaviour 

of the return series. 

The problem with the jump process model proposed by Merton is that it 

requires both a risk premium for jumps and the expected returns for options to solve. 

Merton himself states in his 1976 paper, "Moreover the power and beauty of the 

original Black-Scholes derivation stems from not having to know a [jump risk 

premium] or g(S, ti) [the expected return on the option] to compute the option's value, 

and both are required to solve [equation for the jump model] (12). " page 133. 

Given that no securities yet exist to allow hedging of this risk premium 

component, it might seem that these models are of limited practical use. Nevertheless, 

Bates (1991) and Naik and Lee (1990) examined options on securities with 

nondiversifiable jump risk. Since our goal is to understand the nature of the objective 

processes, such limitations (risk premia or nondiversifiable risks) may not be as 

restrictive as feared for our purposes. We can still understand the dynamics of the 

markets without the markets necessarily being complete. 
I 

Models which Incorporate Stochastic Volatility 

Given that the empirical evidence rejects the hypothesis that volatility is 

constant, another pricing approach allows the underlying asset price volatility to be 

stochastic as well. Stochastic volatility models bear an intimate relationship to the 

ARCH approaches to modelling the objective volatility. This is because a diffusion 

model with normally distributed innovations and an instantaneous volatility that 
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depends upon a mean reverting Ornstein-Uhlenbeck process can potentially yield 

conditional heteroscedasticity. Nelson (1990) has shown that the continuous-time 

limit of standard ARCH and GARCH models is a stochastic volatility model with 

increments to volatility that are independent to those of the asset price. Thus, this 

approach provides links between two well established branches of the literature, 

contingent claims analysis and empirical modelling. 

Hull and White (1987a) were the first to consider this approach. They 

demonstrate that when the volatility is uncorrelated with the stock price, the option's 

price would be the Black and Scholes price if the integration was done over the 

distribution of the average variance rate during the life of the option. Simulations of 

their approach show that a constant volatility (Black-Scholes) model overprices 

options that are at-the-money or close to the money, and underprices options that are 

deep in or deep out of the money. Thus, once again we can explain the existence of 

leptokurtosis in the markets. 

In the case where the stock price and volatility are instantaneously correlated, 

Hull and White show how either Monte Carlo simulation or a series expansion can be 

used to obtain option prices. When the correlation is negative, the situation would 

predict an implied distribution that is consistent with equity markets. The rationale is 

that when the stock price decreases, volatility tends to increase. This means that very 

low stock prices are more likely than under geometric Brownian motion. 

While the effects of stochastic volatility have been examined by a number of 

authors, [Bailey and Stulz (1989), Johnson and Shanno (1987), Scott (1987,1991) and 

Wiggins (1987), Chesney and Scott (1989) and more recently by Stein and Stein 

(1991) and Heston (1993)] Taylor (1994) probably provides the best survey of this 

work. 
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Taylor defines a stochastic volatility process as an extension of the standard 

stochastic differential equation presented earlier. 

rr = /u+a, U, with Z, - N(0,1). (1.27) 

In this model, the constant volatility term a is replaced with a positive random 

variable, o. Quoting from Taylor (1994): "Whenever the returns process [ rl ] can be 

represented by this equation. I will call 0, the stochastic volatility for period t. A 

normal distribution for (r, - t)/ar is an essential component of the definition of 

stochastic volatility adopted here. The stochastic process [ at ] will generate realised 

volatilities [a], which are in general not observable. For any realisation 6`t, 

ri I Qr = ast O'tr - N(I-ý, Q. r2 ). (1.28) 

A mixture of these conditional normal distributions defines the objective 

distribution of rr, which has excess kurtosis wherever a has positive variance and is 

independent of U,. " (page 185). 

A number of options pricing models have been published which allow both the 

asset price and the volatility to each follow a diffusion process. At least four processes 

for the volatility have been proposed. 

(1) The Hull & White approach (1987a) assumes that the variance follows a 

lognormal diffusion process and the square root of this process will provide the 

volatility parameter. This process can be written as: 

da =ka(9 -6)dt+4a "dZ, (1.29) 

When Hull and White actually modelled the stochastic process for the 

volatility, they chose to transform it into a variance process. 

dQ2 =ka2(O-ß)dt+j62 "dZ, (1.30) 

They state generate variances according to the formula (on page 290): 
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V, =Vt-i -e[k(e-Q)-fZi2]dt+g"dz, (1.31) 

The volatility estimate, ß, is simply IV;. For the estimation the stochastic 

volatility both are required but for testing purposes, we will only examine the 'V;, 

which is the estimated volatility, ß. Again, time is expressed as the percentage that 

one day represents in a trading year (of 252 days). 

(2) Alternatively, the Stein and Stein (1991) approach assumes that the 

volatility (absolute level) follows the Ornstein-Uhlenbeck (0-U) process. This model 

can be seen as the equivalent for volatilities that the Vasicek model is for interest 

rates. This process can be written as: 

da = -k(6 - 6)dt +4" dZ, (1.32) 

In our case, r, -r0 is equal to 1/252 (which is the percentage that one day 

represents in our assumed trading year). This time increment was chosen because it is 

the same time increment used for the empirical estimation of the volatility cones 

presented previously. 

(3) Scott (1987,1991), Wiggins (1987) and Chesney and Scott (1989) suppose 

that the logarithm of the volatility follows the Ornstein-Uhlenbeck (0-U) process. 

This process can be written as: 

d(Ina) =k'(6'-InQ)dt+4 "dZ, (1.33) 

This model can be expressed in terms of volatility as: 

du= (k0,6'+ 
2ý2- tc'In Q)6 " dt +4Q " dZ, 4 (1.34) 

In this model, x', 9' and 4 are unknown parameters which must be estimated. It 

should be noted that the two parameters with primes (x' and 0') are so indicated 

because these will not be of the same scale as the parameters for the other models. 
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While this approach seems to be different from the previous models, this model is in 

fact a variation of the Hull & White (1987a) model. This makes sense given that Hull 

& White assumed a log normal dispersion process for volatilities as does this class of 

models. 

For the same random series of draws from a normal distribution, Z1, an almost 

exact series of volatilities will be produced if the following adjustments are made to 

the parameter values of the Hull & White model. 

The long term volatility term, 0, in the Hull & White model becomes: 

01 =1n(9)- 12.42K, (1.35) 

and the rate of reversion for Hull & White, x, becomes: 

K'= K"0 (1.36) 

Due to the fact that the log model will produce almost identical results as the 

Hull & White approach, once the parameters have been adjusted, this class of models 

is redundant. 

(4) Heston (1993) proposes another stochastic volatility model that states that 

the variance follows the following process: 

due =k(6-er 2)dt+4a"dZl (1.37) 

which Taylor (1994) described in terms of the volatility process (page 186) as: 

da =1 (9 -ka2)dt+4. dZ1 (1.38) 

Other authors who have tried this approach include: Bates and Pennacchi 

(1990), Gennotte and Marsh (1991) and Ball and Roma (1993). This model is the 

volatility equivalent of the Cox, Ingersoll and Ross (1985) model for interest rates. 

{ The proof of this can be seen in the appendix to this Chapter. 
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The problem with simulating this model to generate a series of volatilities (in 

discrete steps) is that the process assumes a non-central Chi-square (or Bessel 

process) distribution. While this is more difficult to model than the lognormal 

dispersion process used by Hull & White, it can be estimated. To simulate volatilities, 

one can use the method Cox, Ingersoll and Roll (1985) used in their paper. On pages 

391 and 392 of their paper, they indicate how to model this process. For this 

exposition, I will replicate their formula and use their symbols (which are almost 

identical to ours but I will clarify when differences exist). From CIR, we start with the 

following stochastic process for interest rates: 

dr = k(9 - r)dt + o'fr- " dZ1 (1.39) 

The Heston (1993) process for volatility can be expressed (using our notation) 

as: 

da 2 =k(9-a2)dt+ýa. dZ1 (1.40) 

In this formula, we are working with variances so the 62 replaces the `r' in 

the CIR model. Instead of the ' in the CIR model, we input the square root of the 

variance which is the volatility. Finally, instead of representing the stochastic nature 

of the process by a (which for CIR is the volatility of interest rates), we use ý which 

is the volatility of the variance. CIR indicate in equation (18) of their paper what the 

process is that describes their model: 

2) (1.41) } (r(s), s; r(t), t) =c"e u_v v"1 (2(uv) 
Y2 

U9 

where: 

C 
2K (1.41a) 

cr - e-K(s-r)) 

u-c"r(t)"e-"(s-`), (1.41b) 
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v-c"r(s), (1.41c) 

q= 
2K 

-1, (1.41d) 

and Iq () is the modified Bessel function of the first kind of order q. The distribution 

function is the noncentral chi-square, X2[2cr(s); 2q+2,2u], with 2q+2 degrees of 

freedom and parameter of noncentrality 2u proportional to the current spot rate. 

(pages 391-392). 

For the modelling of volatility, (s-t) was equal to 1 (or one day); this was in 

turn expressed in terms of a trading year (divided by 252), r(t) was replaced by the 

variance from the previous day (62 t-1). The terms x and 0 are the same as CIR. 

However, one must replace ß and a2 by the volatility (or variance) of the volatility, 4 

or t2. 

While other models have been proposed by a number of authors [Johnson & 

Shanno (1987), Hull and White (1987b, 1988) and Melino and Turnbull (1990)], we 

will choose to ignore them given that they may not incorporate a mean reversion 

feature and the literature has shown that mean reversion does exist. Alternatively, it 

can be shown that these models are equivalent to those we have already selected. 

Bailey and Stulz (1989) and Scott (1992) have examined the choice of 

volatility models and found that they have non-trivial differences and economic 

implications for the determination of contingent claims. Given the considerable 

interest in these models, it is interesting to note that there have been very few studies 

that examine how well these models fit the empirical behaviour of asset returns. The 

two most important papers, which examined the effectiveness of the various 

stochastic volatility models on fitting empirical return series are Longstaff (1989) and 

Ho, Perraudin and Sorensen (1996). Longstaff estimated a continuous-time capital 
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asset-pricing model using a generalised method of moments (GMM) on time 

aggregated returns. The Ho, Perraudin and Sorensen paper examined a multifactor 

continuous-time arbitrage pricing model that included both stochastic volatility and 

jumps. Their research was restricted to the examination of equity returns in the United 

States. Perraudin and Sorensen (1997) later applied a similar approach to the foreign 

exchange market. They refined their approach by examining a model with included 

jumps, stochastic volatility and correlations between interest and exchange rates. All 

of these papers suggest that combinations of models may be required to understand 

the return series of assets. Ho, Perraudin and Sorensen (1996) conclude their paper 

with suggestions for further research thus: 

"Another important area for further research is the development and adaptation 

to this type of model of estimation methods that may be more efficient that our 

present method, which is based on information from the objective moments of the 

[underlying asset] returns" (page 40). 

For this research, we will extend this analysis by examining a wider range of 

financial assets (represented by financial futures) and incorporate the objective 

moments of the underlying assets returns to assess the efficacy of the various 

approaches to understanding the dispersion processes of financial assets. Therefore, 

an important element in this research is to examine how well these models explain the 

actual empirical behaviour of the standard deviations of the volatility estimates at 

different time horizons. Furthermore, we will determine the optimal parameters for 

these models which explains the dynamics of these markets. This will be examined in 

Chapters 4 and 5. 
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1.7 CONCLUSION 

In this Chapter, we have provided a review of the literature that examined the 

stochastic process for assets. We will examine the nature of this process in the next 

four chapters. With this assumption of the process driving the asset prices, we will 

concentrate on understanding the nature of the volatility parameter into these 

processes. Also from this research review, we have gained insights into the key 

elements that must be understood to fully explain the nature of the objective 

dispersion process. The methodology will entail examining the time-series behaviour 

of asset returns and assessing how they are empirically distributed and the nature of 

autocorrelations of absolute returns. It is clear that features such as fat-tailed 

tendencies of the actual dispersion processes will impact options. Therefore, we must 

capture this effect. We must also capture the autocorrelations in the objective process. 

Finally, the volatility cones will provide us an indication of the possible forecast 

errors in the realised volatility, which is critical to those pricing options. Once, we 

have found statistics that will capture these key factors, we will use these to 

understand the dynamics of the volatility process. By capturing these dynamics, we 

can then test a variety of processes to assess which best describe the empirical record. 

With this achieved, we can then examine whether these asset processes have the 

correct properties for understanding option values. 
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Appendix 1.1 Conversion of the log volatility process to a simple volatility 
process 

d (In v) _ ic(O - In v)dt + ýdZ (1) 

where v is the volatility, x is the rate of mean reversion, 0 is the long term log of the 
volatility and is the volatility of the volatility. 

Let a In v .. v= e° , with this substitution to the above equation, becomes 

da = x(9 - a)dt + ýdZ (2) 

va = e' = v, and v,,, = e°a =v (3) 

From Ito: v- v(a), therefore: 

dv=vQda+Ivaa(da)2, or (4) 

dv = vda +2 v(da)2, thus (5) 

dvly=d6+2(da)2 (6) 

from above (2), we can substitute, to yield: 

dv/v=x(9-a)dt+4dZ+ l42dt (7) 

this can be simplified and written as: 

dv/v = (x9 + 21 
42- Ka)dt +ýdZ (8) 

then substituting In v for ß, we obtain: 

dv/v=(rc9+242-xlnv)dt+ýdZ (9) 

or expressed in terms of dv, 

dv = (x9 +2- is In v)vdt + 4vdZ (10) 
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CHAPTER TWO 
DATA, DESCRIPTIVE STATISTICS AND DERIVED 

STATISTICS 

2.1 INTRODUCTION 

In the previous Chapter, we identified a clear path to follow. We will examine 

the historical return series for a series of twelve financial futures. Previous research 

has suggested that we must examine the statistical moments of these return series and 

has led us to expect that non-normality will be observed. We expect that the absolute 

returns will display autocorrelations over time. This will also be examined. Given the 

problems we face with relatively short time series of returns, we will extensively use 

the Volatility Cone approach discussed in the previous Chapter. This will allow us to 

gain a clearer insight into how the unconditional forecasts of volatility behave as a 

function of the time horizon of prediction. We will then integrate these various facets 

of the processes into five key summary statistics, that we will later use as attributes. 

These attributes capture the essence of the objective dynamics relevant to option 

prices. By doing this, we will determine a concrete metric for the comparison of 

various security price process models and to assess which would be best for pricing 

options. There is also some evidence that the dynamics of the objective process are not 

stationary. To assess this, we will split our return series into two sub-samples (of 

roughly equal size) and examine this by comparing the statistical properties in 

different time periods. 

2.2 DATA SOURCES 

The first portion of the results will examine the return series for a variety of 

underlying assets over various time horizons. These assets will include four fixed 

income futures contracts: US Treasury Bond Futures, UK Gilt Futures, German 
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Bundesanleihen Futures, and Italian Government Bond Futures (BTPs), four equity 

index futures: S&P 500 Futures, FTSE 100 Futures, DAX Index Futures, and Nikkei 

225 Futures, and four currency futures: US Dollar/Deutsche Mark, US Dollar/British 

Pound, US Dollar/ Japanese Yen and US Dollar/Swiss Franc. For all of these assets, 

the analysis period extends back in time to either the start of these contracts or to 

include all the available data that was in the public domain. For most of the 

instruments data was available for more than 10 years, apart from the DAX Index 

Futures which had daily data only from January 1,1992 and the BTP futures which 

only had data available from December 1991. 

For the following underlying assets, the following time periods of analysis 

were completed with the associated number of daily prices. These can be seen in 

Table 2.1. 

Underlying Asset Time Period of Analysis Number of Observations 

S&P 500 Futures 
FTSE Futures 
Nikkei 225 Futures 
DAX Futures 

Bund Futures 
BTP Futures 
Gilt Futures 
US T -Bond Futures 

Deutsche Mark /US Dollar 
British Pound / US Dollar 
Japanese Yen / US Dollar 
Swiss Franc / US Dollar 

3/1/1985 - 20/12/1996 
4/5/1984 - 20/12/1996 
16/9/1990 - 13/12/1996 
3/1/1992 - 20/12/1996 

30/9/1988 - 5/12/1996 
9/9/1991 - 4/12/1996 
19/11/1982 - 27/12/1996 
23/8/1977 -31/12/1996 

3/1/1985 -16/1211996 
3/1/1985 - 16/12/1996 
3/1/1985 - 16/12/1996 
24/1/1984-16/12/1996 

3031 
3198 
1576 
1254 

2073 
1325 
3568 
4885 

3027 
3028 
3022 
3265 

Table 2.1, Markets Included in Research, Time Period of Data, Number of Observations 

For the analysis of the futures and options contacts that trade on the London 

International Financial Futures Exchange (LIEFE) this includes: BTPs (Italian 

Government Bonds), Bunds (German Government Bonds), Gilts (British Government 

Bonds) and the Financial Times 100 Stock Index (FTSE), data was obtained directly 
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from the LIEFE. This data includes closing prices of the futures contracts and other 

information including volume, open interest, opening, high and low prices. 

For the futures and options contracts traded at the Chicago Board of Trade (US 

T-Bond Futures), the data was obtained directly from the CBT on floppy disks. This 

data included only the closing prices. For the futures and options contracts traded at 

the Chicago Mercantile Exchange and this includes the data on S&P 500, Nikkei 225, 

Deutsche Mark, British Pound, Swiss Franc and Japanese Yen (all versus US Dollar) 

Futures. The data was obtained directly from the CME. This data included only the 

closing prices of the futures. For the futures and options contracts traded at the 

Deutsche Terminbörse (i. e. the DAX futures and options) this data was obtained 

directly from the exchange. It included all tick by tick prices during the day. 

Cleaning the Data Series 

Given that this research is empirical, a major effort was made to assure the 

validity of the data used in the analysis and that the analytic methods employed were 

correct. This was achieved in a number of ways. Firstly, we compared the futures 

price series with the options price series for the same days to identify obvious errors 

in recording either price series. This comparison was achieved by comparing the put- 

call parity values of the options with the underlying futures prices for every single 

date in our database (and for all twelve markets). A screening procedure was imposed 

such that if futures or options prices diverged by more than the normal bid/offer 

spread (of one tick), the observations were flagged. Once this was done, each price 

was compared with the original daily price sheets to confirm if a 'keypunch' error had 

occurred. We discovered that only 1-2% of the data had such errors. Nevertheless, 

these errors were of a sufficient magnitude that they did influence the results and 

therefore required correction. 
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For the currency futures, we also constructed a time series of theoretical 

futures prices. This was done by obtaining a series of spot exchange rates for the four 

currency pairs examined from Knight-Ridder for the same period as the futures in our 

sample (see Table 2.1). Then we obtained time series of one week, one month and 

three-month Euro-currency interest rates for the entire period from The Bank of 

England statistics department for each of the countries represented in the currency 

pairs (five countries including the US Dollar). Given that we knew the exact data that 

each futures contract expired, we could use the spot rate and the two interest rates for 

each country (assuming the Interest Rate Parity Theorem) determine a theoretical 

forward price. The interest rates used in the estimation were linear interpolations of 

the interest rate time series obtained from the Bank of England. While differences do 

exist between futures and forward prices [see French (1983)], for the currency 

markets, Cornell (1977) demonstrated that the Interest Rate Parity Theorem will lead 

to an unbiased estimate of the future spot exchange rate. The purpose of this analysis 

was to assess if the futures prices obtained from the exchanges were significantly 

different from theoretical forward prices. If the divergence exceeded the arbitrage 

range suggested by French (1983), these observations were also flagged and we 

returned to original sources to verify the data points. This procedure only revealed 

four errors in the futures prices. However, these errors had a substantial impact on the 

analyses. For example, the British Pound futures prices had an recording error (one 

day a price of 131, the next data 113 and the final day 131) which caused the return 

series to display extreme excess kurtosis. This was spotted using the theoretical 

forward price and corrected. This also occurred for other currency futures from the 

CME and for the FTSE 100 futures. 
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k; 

The most arduous of the data cleaning process was the ongoing 

examination of the data as results of the analysis were obtained. This is another 

important reason why this research examined twelve markets simultaneously and four 

markets in each of the three asset classes. Our prior assumption was that similar 

dynamics might be found for futures in the same asset class. While we expected these 

to vary somewhat, if results were dramatically different, we re-examined the data 

series for this anomalous result and also verified the computer programmes we had 

written to complete the analysis. This feedback mechanism allowed us to spot 

potential errors (either in data or in programming). Throughout this research process, 

we were required to re-run the analysis as many as five times to assure all errors had 

been corrected. At each stage, we devised additional tests to confirm our results. Only 

after each result was verified by re-running all the analysis from first principles did 

we move on. This assured that the data series employed in this research was as 

accurate as is humanly possible. 

In this section, we have discussed the steps involved in cleaning the futures 

price series. We also used a number of methods to clean the options data. How this 

data was cleaned will be discussed in Chapter 7 when we discuss the options data 

used in this research. 

2.3 UNCONDITIONAL RETURN DISTRIBUTIONS FOR VARIOUS 

HORIZONS 

For all the markets, we examined the return statistics for daily, weekly and 

monthly returns. These returns were calculated using non-overlapping data. For the 

weekly and monthly series, the return was determined by the logarithm of the price 

relatives at time T=i and T=i+5 for the weekly series and T=i and T=i+20 for the 
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monthly series. For this first stage of analysis, all the available data was used. The 

results of these analyses were summarised and can be seen in Table 2.2. 

Underlying Asset 

S&P 500 Futures 
Daily Returns 
Weekly Returns 
Monthly Returns 

FTSE Futures 
Daily Returns 
Weekly Returns 
Monthly Returns 

Nikkei 225 Futures 
Daily Returns 
Weekly Returns 
Monthly Returns 

DAX Futures 
Daily Returns 
Weekly Returns 
Monthly Returns 

Bund Futures 
Daily Returns 
Weekly Returns 
Monthly Returns 

BTP Futures 
Daily Returns 
Weekly Returns 
Monthly Returns 

Gilt Futures 
Daily Returns 
Weekly Returns 
Monthly Returns 

US T-Bond Futures 
Daily Returns . 
Weekly Returns 
Monthly Returns 

Deutsche Mark /US Dollar 
Daily Returns 
Weekly Returns 
Monthly Returns 

British Pound / US Dollar 
Daily Returns 
Weekly Returns 
Monthly Returns 

Japanese Yen / US Dollar 
Daily Returns 
Weekly Returns 
Monthly Returns 

Uncond. 
Mean Std Dev Skew Kurtosis Range Observations 

. 000389 . 012034 -7.1699 254.5062 . 53262 3030 

. 001894 . 021015 -1.6373 17.72106 . 26380 606 

. 007348 . 042618 -0.91634 7.92878 . 35209 151 

. 000243 . 010438 -1.66561 29.47038 . 24814 3197 

. 001156 . 023284 -1.51148 14.95273 . 27467 639 

. 004526 . 050165 -2.90344 25.47266 . 52044 159 

-. 00025 . 014895 0.148381 4.7400 0.12068 1575 
-. 00121 

. 030316 2.093259 5.0933 0.23367 315 

-. 00420 . 067262 0.150368 4.3889 0.40259 78 

. 000251 . 009551 -0.28886 5.7004 0.10657 1253 

. 001227 . 020923 -0.10233 4.3205 0.14927 250 

. 005578 . 041813 -0.55121 3.0734 0.18659 62 

. 000067 . 003476 -0.13334 6.87162 0.042452 2072 

. 000368 . 007816 -1.00293 7.65522 0.073231 414 

. 001358 . 016227 -0.90301 6.66585 0.113173 103 

. 000235 . 005874 -0.32498 5.05899 0.055337 1324 

. 001119 . 014089 -0.67822 4.95154 0.102704 264 

. 004333 . 030907 -0.51087 3.36595 0.148770 66 

. 000080 
. 005638 0.018851 5.75804 0.063795 3567 

. 000390 . 012163 0.028687 3.91758 0.091405 713 

. 001380 . 026667 0.383716 3.66232 0.150335 178 

. 000104 . 007701 0.024003 5.36237 0.075696 4884 

. 000510 . 017804 0.316367 5.55104 0.183041 975 

. 002074 . 037440 0.186522 4.67991 0.282151 243 

. 000210 . 007443 0.123807 5.44599 0.081446_ 3026 

. 001104 . 016605 0.135496 4.21552 0.136368 605 

. 004444 . 032521 0.05563 2.92998 0.161141 151 

. 000232 . 007481 0.096509 6.53195 0.090289 3026 

. 
001217 

. 017207 -0.18558 7.46481 0.194957 605 

. 004789 . 035838 -0.19297 4.99446 0.273316 151 

. 000176 . 007063 0.386986 7.78965 0.095401 3021 

. 000907 . 015405 0.292853 4.77537 0.125520 605 

. 003585 . 032930 0.612899 3.49379 0.180435 151 
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Uncond. 
Underlying Asset Mean Std Dev Skew Kurtosis Range Observations 

Swiss Franc / US Dollar 
Daily Returns . 000081 . 00819 0.155202 5.045 0.089553 3264 
Weekly Returns . 000487 . 017942 -0.00905 3.85769 0.131532 652 
Monthly Returns . 001934 . 037694 0.077388 3.08828 0.209201 163 

Table 2.2, Statistics of the Daily, Weekly and Monthly Returns for Twelve 
Financial Futures for the Whole Period of Available Observations 

For almost all the series, the dispersion of returns is not well described by a 

normal distribution. For almost all series (and for almost all horizon periods), the 

kurtosis measure indicates significant leptokurtosis exists. The kurtosis measure has a 

critical level above 3.0 for rejection as mesokurtic. The most extreme violations from 

the assumption of normality are for the equity index futures, especially the S&P 500 

and the FTSE 100. The DAX and Nikkei do not display the most extreme negative 

skewness or the high level of kurtosis. This is most probably due to the lack of data 

for these series that does not include the crash of 1987 or the mini-crash of 1989. 

One of the problems we encountered in the estimation of historical volatility 

particularly for the stock index futures contracts was that the inclusion or exclusion of 

the return data surrounding the 1987 crash (and the 1989 mini crash) had significant 

impacts on the measurements of the objective processes. 

While it is tempting to drop the 1987 crash from the analysis, it has been 

argued that this. is a valid observation (although extreme). In a recent paper by 

Jackwerth and Rubinstein (1996), they state: "What is virtually certain is that the 

crash should not be omitted as an outlier. " Jackwerth and Rubinstein continue, "Apart 

from the special problems created by the stock market crash, many other difficulties 

are encountered sampling from an inherently nonstationary time series such as stock 

market prices. " 

For the other asset classes, while the skewness is not significant, all the daily 

returns display fat-tailed behaviour. For most of the fixed income markets, the longer 
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the estimation period of the returns is the lower the measure of kurtosis. However, for 

almost all the bond futures markets, significant kurtosis remains at the monthly 

estimation period. For the currency markets, while the daily kurtosis is significantly 

different than mesokurtic, as the observation periods are extended to monthly, most 

markets approach a normal distribution. 

These findings are by no means unique. The consensus in the literature is that 

the distributions display excessive leptokurtosis and can be skewed depending on the 

asset class examined. One possible reason for these results is that the time period of 

analysis is atypical. It could be that the return series is not stationary and that analysis 

for different periods would yield different results. To examine this, we split the 

analysis horizon into two parts. This was achieved by simply dividing the overall 

observation period in half. Whenever possible, the number of data points in the first 

and second period were the same and no data overlapped in the two periods. The time 

periods of the analysis and the number of observations can be seen in Table 2.3. 

Underlyine Asset 1st Time Period Number of 2nd Time Period Number of 
Of Analysis Observations Of Analysis Observations 

S&P 500 Futures 3/1/1985 - 27/12/1990 1515 28/12/1990 - 20/12/1996 1517 
FTSE Futures 4/5/1984 - 29/8/1990 1599 30/8/1990 - 20/12/1996 1600 
Nikkei 225 Futures 26/9/1990 - 3/11/1993 788 4/11/1993 - 13/12/1996 789 
DAX Futures 3/1/1992 -1/7/1994 628 4/7/1994 - 20/12/1996 628 

Bund Futures 30/9/1988 - 3/11/1992 1037 4/11/1992 - 5/12/1996 1037 
BTP Futures 9/9/1991 - 26/4/1994 663 27/4/1994 - 4/12/1996 663 
Gilt Futures 19/11/1982- 6/12/1989 1784 7/12/1989 - 27/12/1996 1785 
US T -Bond Futures 23/8/1977 -28/4/1987 2444 29/4/1987 - 31/12/1996 2445 

Deutsche Mark 3/111985 - 26112/1990 1515 27/12/1990 - 16/12/1996 1514 
British Pound 3/1/1985 - 26/12/1990 1515 27/12/1990 - 16/12/1996 1514 
Japanese Yen 3/1/1985 - 28/12/1990 1511 31/12/1990 -16/12/1996 1512 
Swiss Franc 24/1/1984 - 6/7/1990 1632 9/7/1990 -16/12/1996 1634 

Table 2.3, Periods & Observations for Markets Under Analysis, Broken into Two Sub-Periods 

For each portion, the return series summary statistics were determined. The 

results of these analyses for the first half and the second half of the available data 

were summarised and can be seen in Tables 2.4 and 2.5. 
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(First Period) Uncond. 
Underivine Asset Mean Std Dev Skew Kurtosis 

_ 
Range Observations 

S&P 500 Futures 
Daily Returns . 00031 . 01549 -6.7117 185.34 . 5326 1514 
Weekly Returns . 00147 . 02561 -1.8674 15.62 . 2638 302 
Monthly Returns . 00582 . 05428 -0.9195 5.88 . 3521 75 

FTSE Futures 
Daily Returns . 00020 

. 01168 -2.391 35.9850 
. 24814 1598 

Weekly Returns . 00095 . 02687 -2.1209 15.7083 . 27168 319 
Monthly Returns 

. 00486 
. 06155 -3.2018 23.2482 

. 52044 79 

Nikkei 225 Futures 
Daily Returns -. 0004 . 01634 0.1527 3.9912 0.1207 787 
Weekly Returns -. 0023 . 03291 0.6757 5.0661 0.2337 157 
Monthly Returns -. 008 

. 07705 0.4655 4.4768 0.3842 39 

DAX Futures 
Daily Returns . 00010 . 01037 -0.3181 6.1734 0.1066 627 
Weekly Returns . 00053 . 02256 -0.1895 4.1130 0.1330 125 
Monthly Returns . 00187 . 04936 -0.5243 2.5569 0.1866 31 

Bund Futures 
Daily Returns -. 00004 . 00340 0.00865 9.5135 0.04245 1036 
Weekly Returns -. 00016 . 00763 -1.1493 11.393 0.07323 207 
Monthly Returns -. 00073 

. 01854 -0.9872 6.9802 0.11317 51 

BTP Futures 
Daily Returns . 00014 

. 00538 -0.2544 6.8939 0.05534 662 
Weekly Returns . 00073 . 01315 -1.0325 7.3166 0.09364 132 
Monthly Returns 

. 00292 
. 02606 0.1666 2.3185 0.09825 33 

Gilt Futures 
Daily Returns 

. 000013 
. 00587 -0.1026 5.3372 0.05534 1783 

Weekly Returns . 00003 . 01270 0.1254 4.0554 0.0914 356 
Monthly Returns . 00016 . 02827 0.5992 3.9202 0.1503 89 

US T -Bond Futures 
Daily Returns . 000029 

. 00894 0.01534 4.5418 0.0757 2443 
Weekly Returns . 000065 

. 02104 0.33825 4.8295 0.183 488 
Monthly Returns . 000168 

. 04409 0.22475 4.1408 0.282 122 

Deutsche Mark /US Dollar 
Daily Returns 

. 00035 
. 00759 0.2566 5.3573 0.08096 1513 

Weekly Returns . 00195 . 01714 0.2894 4.6190 0.13637 302 
Monthly Returns . 00809 

. 03349 0.0079 2.6955 0.1428 75 

British Pound / US Dollar 
Daily Returns . 00045 

. 00791 0.29876 6.18583 0.07451 1513 
Weekly Returns . 00236 

. 01842 0.43812 6.22321 0.15732 302 
Monthly Returns . 00970 

. 03769 0.39467 3.81009 0.21654 75 

Japanese Yen / US Dollar 
Daily Returns . 00031 

. 00718 0.3368 7.1017 0.09516 1510 
Weekly Returns . 00157 . 01656 0.4540 4.2001 0.1121 302 
Monthly Returns 

. 00644 
. 03615 0.5695 3.1028 0.174 75 

Swiss Franc / US Dollar 
Daily Returns . 00012 . 00828 0.22729 5.0305 0.08659 1631 
Weekly Returns . 00073 . 01806 0.17394 3.4223 0.12147 326 
Monthly Returns . 00284 

. 03686 0.46234 2.7030 0.15468 81 

Table 2.4, Statistics of the Daily, Weekly and Monthly Returns for Twelve 
Financial Futures for the First Half of the Observation Period 
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(Second Period) Uncond. 
Underlying Asset Mean Std Dev Skew Kurtosis Ranee Observations 

S&P 500 Futures 
Daily Returns . 00047 . 00705 -0.0502 5.8823 . 08195 1516 
Weekly Returns . 00229 . 01503 0.00902 3.6838 . 0973 327 
Monthly Returns . 00941 . 02633 0.88922 4.5881 . 14134 82 

FTSE Futures 
Daily Returns . 00028 

. 00903 0.0361 4.5168 . 09532 1599 
Weekly Returns . 00126 . 01936 0.355 3.8616 . 12566 319 
Monthly Returns . 00523 . 0346 0.0356 3.1165 

. 17052 79 

Nikkei 225 Futures 
Daily Returns -. 000037 . 01330 0.15845 5.8671 0.11801 788 
Weekly Returns -. 000082 . 02726 0.53047 4.9355 0.18699 157 
Monthly Returns -. 000108 . 05439 0.36817 3.7983 0.26146 39 

DAX Futures 
Daily Returns . 000399 

. 00867 -0.2080 4.2104 0.07232 626 
Weekly Returns . 001917 . 01815 -0.601 3.1927 0.08586 125 
Monthly Returns . 008113 . 03029 -0.7951 3.3508 0.12507 31 

Bund Futures 
Daily Returns . 000175 . 00354 -0.2669 4.6621 0.0302 1036 
Weekly Returns . 000826 

. 00778 -0.7939 4.0912 0.0449 207 
Monthly Returns . 003084 

. 01347 -0.7993 3.2145 0.0579 51 

BTP Futures 
Daily Returns . 00033 . 00633 -0.3766 3.9391 0.04234 662 
Weekly Returns . 00167 . 01492 -0.4943 3.5725 0.08056 132 
Monthly Returns . 00629 . 03208 -0.7296 3.2166 0.12919 33 

Gilt Futures 
Daily Returns . 000147 . 00539 0.1821 6.2497 0.05846 1784 
Weekly Returns . 000691 . 01188 0.0032 4.6908 0.09894 356 
Monthly Returns . 002652 . 02394 -0.0116 3.1823 0.12192 89 

US T-Bond Futures 
Daily Returns . 00018 . 00621 0.00834 5.8301 0.06929 2444 
Weekly Returns . 00091 . 01406 0.68975 8.946 0.15615 488 
Monthly Returns . 00372 

. 02926 0.46439 5.1053 0.19616 122 

Deutsche Mark /US Dollar 
Daily Returns . 000067 . 00729 -0.0301 5.5237 0.06914 1513 
Weekly Returns . 000366 . 01659 -0.1611 4.4694 0.12176 302 
Monthly Returns . 00143 . 03248 -0.2363 3.069 0.17051 75 

British Pound / US Dollar 
Daily Returns . 000015 

. 007026 -0.2167 6.8068 0.07951 1512 
Weekly Returns . 000117 

. 016241 -1.3800 9.7949 0.14067 302 
Monthly Returns . 000507 

. 032503 -1.4532 7.5824 0.21059 75 

Japanese Yen / US Dollar 
Daily Returns . 000043 . 00695 0.43888 8.5897 0.08961 1511 
Weekly Returns . 000211 . 01381 0.37715 3.8694 0.09165 302 
Monthly Returns . 000889 . 02875 -0.0869 4.1441 0.17557 75 

Swiss Franc / US Dollar 
Daily Returns . 000045 . 00810 0.07762 5.0630 0.07915 1633 
Weekly Returns . 000259 . 01851 0.00663 3.9843 0.12344 326 
Monthly Returns . 001196 . 03615 -0.1304, 2.783 0.18457 81 

Table 2.5, Statistics of the Daily, Weekly and Monthly Returns for Twelve 
Financial Futures for the Second Half of the Observation Period 

67 



When comparing the observation period split into two parts, we find that the 

series display significantly different behaviours. For the stock index futures, the first 

period includes the 1987 and 1989 crashes for the S&P 500 and the FTSE 100'. For 

the DAX and Nikkei, the first period was a period of relative stability. We observe 

extremely high kurtosis for the S&P 500 and the FTSE 100 and significantly negative 

skewness. For the DAX and Nikkei, the kurtosis is moderately high and the skewness 

measures are insignificantly different than zero. In the second period, the S&P 500 

and FTSE 100 now have much smaller levels of kurtosis and the skewness has been 

reduced to either a small negative level (or even positive for the weekly and monthly 

observations for the FTSE). For the DAX and Nikkei, the latter period was also 

different from the first period. In this instance, there was greater kurtosis in the later 

period for both markets. For the DAX there appears to be slightly negative skewness 

for daily returns, while the Nikkei has a slightly positive skew. 

From this comparison, it is clear that the empirical reason for the existence of 

extreme kurtosis and skewness in equity markets is due to a few extreme events. 

Therefore, the statistical behaviour of the equity markets is not stationary over time 

depending on whether these extreme events are included or not. In the next Chapter, 

we will model the behaviour of the twelve markets using a variety of different 

theoretical approaches. All tests will be completed for the entire period of analysis 

and for the two sub periods. In addition, we will examine the impact solely of the 

1987 crash on the modelling of the S&P 500, where the impact was the most 

significant. 

For the fixed income markets, while some differences exist between the first 

and second period, it appears that the kurtosis and skewness behaviours are more 

1 These results are similar to those reported by Gemmill (1991) for the FTSE 100 (see Appendix 2, 

68 



stationary. The only important difference is that for the Bund and BTP, the kurtosis is 

higher in the second period relative to the first. The Gilt and US T-Bond markets 

display somewhat lower kurtosis in the first period relative to the second period. For 

none of the fixed income markets does skewness play a significant role. Depending on 

the period of analysis, the skewness is either slightly negative or positive and this 

could be due simply to sampling variability. 

For the foreign exchange markets, most of the currencies display similar 

behaviour in the first and second period. The only exceptions are for the Japanese Yen 

and the British pound, which has a slightly higher kurtosis in the second period 

relative to the first period. This is due to turbulence in the markets during the early 

1990s. As will be demonstrated later, for the British Pound the ERM crisis in 1992 is 

responsible for the greater kurtosis in the second period. Likewise, for the Japanese 

Yen, extreme turbulence occurred during 1994/1995 as the U. S. Dollar went to post- 

World War II lows. 

The historical record demonstrates that the stationarity of the objective process 

for the twelve financial futures markets under investigation is not constant. For the 

foreign exchange and fixed income markets, it would appear that the dispersion 

processes tend to display more stationary behaviour. For the stock index futures 

markets, the dispersion processes appear to be less stable over different time periods. 

Key questions to be answered include: Why do these series all deviate from normality 

and what causes this deviation to change over time? 

period 28/7/85 to 30/7/90). The slight differences that are observed are due to the fact that our first 
period of analysis includes approximately one more year of data. 
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Review of Other Work on the Determination of Objective Processes 

As was discussed in the last Chapter, an alternative process to explain the high 

degree of kurtosis in the return data could be a GARCH process. However, even 

though the GARCH approach has won a loyal following among econometricians, it 

may be inadequate for our purposes of understanding the high degree of excess 

kurtosis we have observed in the twelve markets. If GARCH-normal processes could 

adequately account for all the observed leptokurtosis, then one would expect the 

evidence against normality to be eliminated (once the GARCH effects are taken into 

account). Nevertheless, Bidarkota and McCulloch (1996) tested this and found 

GARCH did not explain the high degree of excess kurtosis we observe empirically. 

They concluded: "There is strong evidence that, even after accounting for the seasonal 

scales and GARCH-like behaviour, real returns are still significantly non-normal. " (p 

11). Therefore, we must look elsewhere to understand the excess kurtosis we observe 

in financial markets. 

One explanation for the degree of leptokurtosis we observe in the return series 

is that the conditional returns follow a distributional form, which is not normal. A 

variety of distributions have been proposed to account for the thick tails, primary 

among these being the stable distributions, Student-t distributions, mixtures or 

normals and the Weibull distribution. The general conclusion is that stationary stable 

distributions with infinite variance do not fit the data as well as mixtures of normals 

with different variances (i. e. subordinated processes). However, this is only one 

possible approach to explain these results. Alternative approaches will be examined in 

this research, when we test for the mixture of normals (stochastic volatility) and for 

alternative dispersion processes such as the Student -t distribution. 
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Another problem is that even if we can understand the high degree of excess 

kurtosis in a subset of the data series, it is by no means obvious that such behaviour 

will exist in other periods. This was demonstrated by examination of the statistical 

moments of the twelve markets in the two sub-periods. According to Bidarkota and 

McCulloch (1996), "If stock returns are truly i. i. d. stable stochastic processes, then 

one expects to find identical estimates of the characteristic exponent for the returns 

data sampled at daily, weekly and monthly frequencies. Failure to obtain such 

matching estimates has been cited as evidence against stability [Akgiray and Booth 

(1988)]" (p. 4). Therefore, an important element in our analysis must be the 

comparison of the statistics for the return series measured at different time horizons 

(to assess if any models we uncover are stable over time). 

Similar research has been done for equity indices (including the S&P 500 that 

is included in our study). What we expect to find would be results consistent with 

these studies. For example, Ding, Granger and Engle (1993) considered the properties 

of the absolute return of the return series for the S&P 500 stock market index from 

January 3,1928 to August 30,1991. They found that the kurtosis measure was 

significantly higher than for a normal distribution. The application of a Jarque-Bera 

test for normality indicated that the returns were far from a normal distribution. From 

using the absolute returns they also found that these confirmed the findings of 

Mandelbrot (1963) and Fama (1965) that large absolute returns are more likely than 

small absolute returns to be followed by large absolute returns. 

For the currency markets, Malz (1996) completed similar research. He 

concluded that "For currency exchange rates, most investigations find the log price 

relatives or nominal returns to be stationary and serially uncorrelated. The hypothesis 

that the log price relatives are nominal i. i. d. has been in doubt since the advent of 
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floating'exchange rates in the 1970s. The distribution of S1 - S, 
_1 violates normality in 

three crucial respects. First, it is leptokurtic.... Second, the distribution appears to be 

skewed.... Finally, the variance of the price relatives appears to be time varying. " 

(page 131) 

When Malz examined the degree of autocorrelation in the returns, he found 

that "the lack of correlation in Sl - S, 
_1 

indicates that its variance rather than its mean 

varies. Thus, nominal returns are not both i. i. d. and normally distributed, suggesting 

two approaches to characterising nominal exchange rate returns: nonnormal 

distributions and time-varying distribution parameters. " (page 131). 

Such nonnormal distributions could include jump diffusion processes or 

perhaps stochastic volatility models that are a mixture of normals. While time-varying 

parameter approaches could possibly be represented by autoregressive conditional 

heteroscedasticity models such as ARCH, it is possible that both of these models 

could account both for kurtosis as well as for the time variation of volatility. 

However, we will not follow this path, for the reason that Malz finds that "There is 

strong evidence that flexible exchange rate returns follow jump diffusions, that is, a 

sum of i. i. d. normal and Poisson-distributed jump components, which can account 

both for the kurtosis and the skew in nominal returns. " (page 131). Given that this 

same evidence has been presented by Akgiray and Booth (1988), Tucker and Pond 

(1988) and Jorion (1988), we will restrict our further analysis to the tests of these 

models. Furthermore, we have demonstrated that the key factor, which causes the 

dispersion processes to diverge from normality, is the excess kurtosis and not the 

skewness. Therefore, our primary objective is to understand the leptokurtic behaviour 

that is found in all twelve markets. Thus, we will not concentrate on skewness 

directly. However, we will examine the impacts of jumps that would be associated 
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with fat-tailed distributions and the occurrence of non-symmetrical jumps could lead 

to skewness in the objective process. This will be examined later when we examine 

the risk-neutral dispersion processes implied by options prices. 

2.4 THE UNCONDITIONAL VOLATILITY SERIES FOR TWELVE MARKETS 

Using the two-sided EWMA approach, which was described in the first 

Chapter, we determined the unconditional volatility for each of the markets under 

examination. For this analysis we used three separate weights. We chose a=0.1, a= 

0.05, and a=0.02. As was discussed in that section, this corresponds to a normal 

moving average with N=10, N=20 and N=50. 

These weights were applied to the individual returns and from these time series 

a volatility estimate was made. The resulting time series of EWMA volatilities can be 

seen in Figure 2.1a for the four stock index futures, Figure 2.1b for the four fixed 

income futures and Figure 2.1 c for the four currency futures. 

For the stock index futures, one can clearly see the impact of the 1987 crash for 

both the S&P 500 and the FTSE 100. This is evident from the single spike that occurs 

in October 1987 in all three volatility time series. The Nikkei 225 and the DAX futures 

range between roughly 10% to 40% and it appears that the variability of the volatility 

series is similar across time. 

For the fixed income markets, the Bund and BTP futures display similar 

volatility time series (for the period where they share data). For the Bund, there was 

extreme volatility at two points: in late 1989 and in 1994 (when the Federal Reserve 

raised short-term interest rates). The BTP experienced fairly low volatility in 1991 but 

had a shock in 1992 when an EMU crisis was precipitated by the Danish rejection of 

the Maastricht treaty. Thereafter, extreme events occurred also in 1994 (Federal 
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Reserve rate hike) and in 1995 when internal Italian politics led to instability. The odd 

market out is the US-T Bond futures. From 1977 to 1979, the volatility time series was 

at the lowest level in the history of this instrument. A dramatic change in Federal 

Reserve policy in Autumn of 1979 (shifting from targeting interest rates to managing 

money supply) led to a dramatic increase in volatility that remained until 1987. 

Thereafter, the volatility time series remained in range between 5% and 15% with 

what appears to be more stability. 

The four currency markets, they appear to display similar volatility 

characteristics over the analysis period. The exception is the British Pound that has 

extreme events in 1985/1986 and in the third quarter of 1992 (ERM crisis). Thereafter, 

the Pound displayed similar behaviour to the other currency markets. The volatilities 

for the four markets ranged between 10% and 25% for the period. This result is 

consistent with the analysis of the returns presented previously. 

2.5 AUTO CORRELATION TESTS FOR TWELVE MARKETS 

As was outlined in the first Chapter of this dissertation, substantial evidence 

has been published indicating that absolute return series are autocorrelated. While a 

number of techniques can be used to identify this effect, we have chosen to use the 

autocorrelogram to understand this behaviour for the twelve markets under study. 

When Merville and Pieptea (1989) completed an autocorrelation analysis for a 

set of US common shares and the S&P 500 Futures, they found that the 

autocorrelation coefficient is a decreasing function of the lag in all cases. Therefore, it 

is not possible to accept the hypothesis that the volatilities at different points are 

unrelated. Furthermore, they found that the shorter the time lag, the higher- the 

correlation and thus the greater the dependence. They conclude that since the 
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autocorrelation increases significantly as the lag becomes smaller which suggests that 

volatility paths have a continuous character. 

When Merville and Pieptea examined the autocorrelation of changes in the 

volatility they found significantly lower autocorrelation coefficients. As the lag 

increased beyond one period (they examined weekly changes), the coefficients 

approached 0.0. They concluded that the changes in volatility are more independent 

than the volatility itself and that the relatively low autocorrelations of volatility 

changes supported the contention that volatility has a diffusion component. 

Merville and Pieptea concluded: "The stock volatility is subject to a diffusion 

process (with a continuous path) on which noise is superimposed. For short periods 

the general level of the process changes little, with most variations form the average 

being due to noise. Over long periods, however, the general level of the stock 

volatility changes, the noisy variations from a moving average becomes smaller in 

relations to the deviations from the long-term average, which renders discontinuities 

less significant, and thus a higher autocorrelation is observed. Discontinuities are 

enlarged by analysis of a detailed portion of the sample path. Although shortening the 

sample period can decrease the diffusion-related variance, the noise-related variance 

remains constant. By shortening the period under analysis enough, we should see only 

discontinuities. Trend becomes less important and noise takes over. " (page 201) 

All the autocorrelograms for the twelve markets can be seen in Figures 2.2a, 

2.2b and 2.2c. For the four stock index futures, we observed similar patterns. For the 

S&P 500 Futures, we observe an initial positive correlation for out to lag 100. 

However, this pattern is not significantly different at the 95% level past 60 lags. The 

number of observations we had was 2771 and therefore would have yielded a 95 % 

confidence interval around zero of ± 0.0372. Thereafter, when we extended the 
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analysis for absolute returns past 60 days, almost all the autocorrelations fell within 

the 95% confidence interval. Thus, in this range, it would appear that the 

autocorrelations of the absolute returns are not statistically different than what would 

be expected from a series following an i. i. d. distribution. The overall pattern for the 

S&P 500 futures resembles the pattern produced by Ding, Granger and Engle (1993) 

in their paper. However, they found statistically significant positive autocorrelations 

out to a lag of 2500. This could be due to the fact that they had significantly more 

observations in their study (N=17054) which would have reduced the 95% confidence 

interval to such a tight range that even small positive autocorrelations would be 

significant. Nevertheless, even if we imposed their tight confidence interval, we 

would still reject the hypotheses that the series was not i. i. d. after about 200 

observations. To verify, we had completed the analysis correctly, we compared our 

results to a similar autocorrelogram produced by the Financial Options Research 

Centre at the University of Warwick (Figure 2.2d) and found that even though FORC 

used less data than was used in our analysis, the patterns were practically identical. 

For the other stock index futures, we obtained slightly different results. For the 

FTSE 100 futures, a positive autocorrelation existed out to 140 lags. However, the 

autocorrelations fell within the 95% confidence interval from about 60 observations 

until the 500th lag. It is interesting to note that after about the 120th lag most of the 

time the autocorrelations were negative (although insignificant). The 95% confidence 

interval was determined using 3197 observations and yielded a confidence interval of 

± 0.0347. 

For the Nikkei Dow futures, the pattern displayed a similar pattern to the other 

stock index futures. Initially, a positive autocorrelation was recorded to lag 100. 

However, this failed to be significant after the 60th lag. From lags 100 to 290, the 
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autocorrelation was negative and between lags 200 to 250, was significantly so. From 

290 to 500, the autocorrelations became positive again and many were significant at a 

95% confidence interval from the lags 310 to 480. The 95% confidence interval was 

determined using 1378 observations and yielded a confidence interval of ± 0.0528. 

For the DAX futures, the autocorrelogram pattern was the most dissimilar to 

the other equity markets. The positive autocorrelation fell dramatically becoming 

insignificant after the 30th lag. Thereafter, the patterns display extreme variability, 

reaching both positive and negative values. However, most of the time, the 

autocorrelations are not significant. One possible reason for the divergence of the 

DAX futures from the other equity index futures is that the period of analysis for this 

instrument is only for 5 years. It is not possible to examine the longer-term 

autocorrelation behaviour of the DAX futures as data is not available. To gain a better 

view of the true longer-term dynamics of the autocorrelation process, we examined 

the DAX cash index. This was initially done for the cash index for the same time 

period as the futures. This can be seen in the graph titled Figure 2.2e. The cash series 

is identified as DAX2 and the futures series for the same time period is identified as 

DAX. As one can see, the pattern is similar to that of the futures contract. Thereafter, 

we examined the cash index from 1970 to 1996. This can be seen in the graph titled 

"DAXIND". For this series, we observe a pattern similar to that observed by Ding, 

Granger and Engle when they examined the long-term autocorrelation behaviour of 

the S&P 500 cash index. 

Nevertheless, the focus of our research is on the autocorrelation behaviour of 

the equity futures markets. It may very well be that the nature of autocorrelations in 

the data differs for the periods of the 1980s and 1990s compared with the longer-term 

dynamics. 
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In the case of the Fixed Income futures, all the four markets display a 

generally similar pattern of initially being positively autocorrelated and then decaying 

to insignificant levels of autocorrelation, the patterns for each market however 

displays certain idiosyncratic behaviour. 

The Bund futures has the most divergent of the autocorrelogram patterns. It 

displays a positive autocorrelation of the absolute returns out to 130 lags and then for 

a period from 130 to 280 lags is insignificantly different than an i. i. d. distribution. 

After the 280th lag, the autocorrelations are negative most of the time and most of 

these are statistically significant. The 95% confidence interval was determined using 

2072 observations and yielded a confidence interval of ± 0.0430. 

For the Italian Government Bond (BTP) futures, the autocorrelation is also 

significantly positive out to about 90 days. From 90 days to 360, the autocorrelations 

are insignificantly different than an i. i. d. distribution. After 360, the autocorrelations 

turn positive again and many of these observations are significant. The 95% 

confidence interval was determined using 1324 observations and yielded a confidence 

interval of ± 0.0539. 

For the UK Gilt futures, the autocorrelation graph is significantly positive out 

to about 80 days and then hovers within the 95% confidence interval. Thereafter, the 

autocorrelations are generally within the confidence interval. It is interesting that the 

autocorrelations tend to be negative after 150 days and at a number of points are 

significantly negative. The 95% confidence interval was determined using 3567 

observations and yielded a confidence interval oft 0.0328. 

For the US T-Bond futures, the autocorrelations remain positive for almost the 

entire analysis period. This is the first result that most resembles the results for the 

S&P 500 presented by Ding, Granger and Engle (1993) which indicated consistent 
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positive autocorrelations of the absolute returns. What is different from the Ding, et 

al. results is that the pattern of autocorrelation decay appears to be almost linear, 

while Ding, Granger and Engle (1993) found that the rate of decay was a complicated 

polynomially decreasing function. However, for the period out to 500 observations, 

the pattern is similar apart from the lack of an extremely positive autocorrelation for 

very short-term lags. [see Figure 3.8 of Ding, Granger and Engle (1993)]. Only after 

the 460th lag does the autocorrelation become statistically insignificant. The 95% 

confidence interval was determined using 4690 observations and yielded a confidence 

interval off 0.0286. 

This is most probably due to the unusual behaviour of the volatility series for 

the US T-Bond (see Figure 2. lb). For all the fixed income markets, no other market 

had such a shift in the levels of volatility and the variability of the volatility as the US 

T-Bonds (from 1977 to 1979 - very low and 1979-1987 - very high). We will later 

examine if this is the case by splitting the time series of the data into two periods and 

examining the dynamics separately. The first period will include the turbulent period 

from 1977 to 1987 which we will then compare with the autocorrelograms from the 

period from 1987 to 1996. 

For the Currency futures analysed, the autocorrelograms for the four examined 

currency pairs displayed similar patterns to those observed for the stock index futures. 

Even so, it is clear that among the individual currencies slightly different patterns 

exist. 

For $IDM, the autocorrelations were positive only until lag 60 and of these 

only the lags out to 30 days were statistically significant. After that the 

autocorrelations oscillated between positive and negative values out to the 500th 

lagged observation. However, for most of the observations beyond 30 days, the 
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autocorrelations are within the 95% confidence interval and not significantly different 

than the assumption of an i. i. d. distribution for the absolute returns. The 95% 

confidence interval was determined using 2773 observations and yielded a confidence 

interval of ± 0.0372. 

For $/£, the positive autocorrelations decay at the slowest rate of the four 

currencies. The autocorrelations are positive until the 90th lag. From that point 

onwards, the autocorrelations are not significantly different from an i. i. d. assumed 

distribution. The 95% confidence interval was determined using 2774 observations 

and yielded a confidence interval of ± 0.0372. 

For the $/Yen, the positive autocorrelations also steeply drop off and are no 

longer significant after about 20 lags. Thereafter, the autocorrelations display much 

greater variability compared to the other currencies becoming at certain points 

significantly negative and positive. The 95% confidence interval was determined 

using 2768 observations and yielded a confidence interval of ± 0.0373. 

For $/Swiss Franc, the autocorrelations were positive until lag 290. These 

positive autocorrelations, were significant only out to the 190th lag. After this point, 

the autocorrelations hovered within the 95% confidence interval until the 500th lag. 

Although, the autocorrelations become negative after 460 lags, these were not 

significant. The 95% confidence interval was determined using 3011 observations and 

yielded a confidence interval of ± 0.0357. 

For all twelve markets, certain patterns are consistent. For all the markets, the 

autocorrelations are initially positive but the rate of decay differs between the 

markets. For many of the markets the rate of decay is much faster than the result 

found by Ding, Granger and Engle (1993) for the S&P 500 stock market index. In 
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addition, for a number of the markets, the autocorrelations become significantly 

negative. 

One possible reason for this result is that the relatively low number of 

observations allows the 95% confidence interval to be sufficiently large to exclude 

significance. For those markets with the greatest number of observations (US T Bond 

and $/SwF), the observations display a much slower rate of autocorrelation decay and 

a longer period of significantly different positive autocorrelations. Another possible 

explanation is that autocorrelations in markets are not stationary and have changed in 

the past 5 to 10 years compared with the period from 1928 to 1991. A third 

explanation is that the futures prices react more quickly than the stock index itself and 

shocks die out more quickly. 

To examine the possibility that patterns of autocorrelations may be non 

stationary, we also split the time period of analysis in half and examined the patterns 

in each period. These can be seen in Figures 2.3a, 2.3b and 2.3c for the first half of the 

period and in Figures 2.4a, 2.4b and 2.4c for the second half of the period. 

From the comparisons of the autocorrelograms for the whole period to the two 

subperiods, we find that the behaviours do diverge. For the equity index futures, the 

relatively high autocorrelations are a function of the first period rather than the second 

period. This is hardly surprising since the 1987 and 1989 crashes are causing this 

effect for the S&P 500 and the FTSE 100. Thus, the autocorrelograms for the entire 

period are most similar to the period with these extreme events. For the second period 

(which does not include the crashes), the autocorrelations between the stock index 

futures is now much lower. In fact, for the DAX, it appears that the autocorrelations 

are not significantly different than zero in the second period. One interesting result is 
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that for the Nikkei (for all periods of analysis), the autocorrelations become 

significantly negative after a lag of approximately 150 to 200 days. 

For the fixed income and foreign exchange markets, the autocorrelograms 

seem to be relatively stable when broken into the two subperiods. When these figures 

are compared to the entire period, there does not seem to be the same degree of 

divergence that we observed in the stock index futures markets. One exception is the 

US T-Bond market, where the autocorrelogram converges at a faster rate to an 

insignificant level in the second period compared with the first period (or for the 

overall period). Thus, it would appear that the unusual patterns of the 

autocorrelograms are due to the volatility shock that occurred in the autumn of 1979, 

which fundamentally changed the degree of uncertainty in this market. 

Regardless of the reason for the differences between these results and those 

presented by Ding, Granger and Engle. Our findings suggest that the absolute returns 

are not i. i. d. in the short term. However, the impact of autocorrelations for most 

markets dies out after between 30 and 60 lags. The fact that many series subsequently 

have negative autocorrelations could indicate a strong tendency for mean reversion. 

2.6 COMPOSITE MEASURES OF AUTO CORRELATION 

For the purposes of this research, we wanted to determine some composite 

measures of the autocorrelations be determined for the markets. Given the relatively 

rapid decay of the autocorrelations, we chose to calculate the average autocorrelation 

from lag 1 to 20 and the average correlation from lag 51 to 70. These two measures 

then represent the short term autocorrelation and the longer term average provides an 

indication of how quickly the autocorrelations die out. For the twelve markets, these 

average autocorrelations for the two sets of lags appear in the following Table. In 
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addition to the average autocorrelations, the standard error of the autocorrelations 

appears to the immediate right of all results and appear in italics. This was determined 

by estimating the variance of the autocorrelations, dividing this result by 20 and then 

taking the square root. 

Underlying Asset Average Autocorrelation Average Autocorrelation 
From Lass I to 20 From Lass 51 to 70 

S&P 500 Futures 0.1387 (0.0167) 0.0549 (0.0069) 
FTSE Futures 0.1428 (0.0118) 0.0398 (0.0041) 
Nikkei 225 Futures 0.1557 (0.0077) 0.0629 (0.0053) 
DAX Futures 0.0782 (0.0049) 0.0207 (0.0057) 

Bund Futures 0.1661 (0.0063) 0.1009 (0.0041) 
BTP Futures 0.1638 (0.0063) 0.0826 (0.0040) 
Gilt Futures 0.1116 (0.0051) 0.0663 (0.0027) 
US T -Bond Futures 0.2080 (0.0196) 0.1643 (0.0131) 

Deutsche Mark /US Dollar 0.0804 (0.0047) 0.0139 (0.0047) 
British Pound / US Dollar 0.1140 (0.0041) 0.0655 (0.0036) 
Japanese Yen / US Dollar 0.0577 (0.0054) 0.0087 (0.0046) 
Swiss Franc / US Dollar 0.0660 (0.0032) 0.0158 (0.0030) 

Table 2.6, Average Autocorrelations of Absolute Returns for the Lags 1-20 and 51-70 for 
Twelve Markets for the Entire Period of Analysis. 

The results of the average correlations are consistent with autocorrelograms. 

The autocorrelations for most markets decay quite rapidly and approach zero by 

between 50 and 70 days. The main exception is the US T-Bond futures that 

experienced a slow rate of decay in the autocorrelations for the period. The standard 

errors of the variances also indicate that the choice of the averaging period (1-20 and 

51-70) does not display an inordinate amount of variation among the autocorrelations 

being averaged. Thus the averaging process seems to provide a reasonable estimate of 

the autocorrelation behaviour of the twelve markets and captures the general patterns 

of decay in the autocorrelations. 

To assess if these results are period specific, the same analysis was completed 

for the entire data series broken into two equally sized (non-overlapping) halves. The 

results of this analysis appears in the following two Tables, Table 2.7 And 2.8. 
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Underlying Asset Average Autocorrelation Average Autocorrelation 
(First Period) From Laes 1 to 20 From Lags 51 to 70 

S&P 500 Futures 0.1247 (0.0190) 0.0304 (0.0081) 
FTSE Futures 0.1615 (0.0162) 0.0321 (0.0064) 
Nikkei 225 Futures 0.1458 (0.0115) 0.0456 (0.0060) 
DAX Futures 0.0883 (0.0081) 0.0153 (0.0077) 

Bund Futures 0.1890 (0.0085) 0.1103 (0.0055) 
BTP Futures 0.1971 (0.0076) 0.0843 (0.0069) 
Gilt Futures 0.1228 (0.0066) 0.0784 (0.0046) 
US T -Bond Futures 0.2349 (0.0053) 0.1845 (0.0043) 

Deutsche Mark /US Dollar 0.0711 (0.0064) -0.0139 (0.0057) 
British Pound / US Dollar 0.0917 (0.0053) 0.0335 (0.0050) 
Japanese Yen / US Dollar 0.0495 (0.0078) 0.0005 (0.0050) 
Swiss Franc / US Dollar 0.0665 (0.0059) 0.0024 (0.0057) 

Table 2.7, Average Autocorrelations of Absolute Returns for the Lags 1-20 and 51-70 for 
Twelve Markets for the First Half Period of Analysis. 

A comparison of Tables 2.6 and 2.7 suggests that (for the most part) the levels 

of the averaged autocorrelations are similar for the first half of the observations 

compared to the entire period. The average autocorrelation for the stock index futures 

for the short-term lag (1-20) are similar for both periods. For the longer-term average 

autocorrelation (lags 51-70), the average autocorrelation is somewhat less positive for 

the first period. For the fixed income futures, the short-term and the longer-term 

average autocorrelations are slightly higher in the first period compared to the entire 

period. For the currency futures, the average autocorrelations are both less positive in 

the first period compared with the overall period. It is of interest that the longer-term 

autocorrelation measures are insignificantly different from zero in both the first period 

and overall. To assess if these autocorrelation patterns remain consistent across time, 

we also examined the average autocorrelations for the short and long-term lags for the 

second half of the available observations. These results can be seen in Table 2.8. 
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Underlying Asset Average Autocorrelation Average Autocorrelation 
(Second Period) From Lags I to 20 From Laus 51 to 70 

S&P 500 Futures 0.0596 (0.0066) 0.0224 (0.0041) 
FTSE Futures 0.0888 (0.0074) 0.0430 (0.0054) 
Nikkei 225 Futures 0.1383 (0.0082) 0.0704 (0.0089) 
DAX Futures 0.0481 (0.0109) 0.0161 (0.0085) 

Bund Futures 0.1329 (0.0079) 0.0805 (0.0057) 
BTP Futures 0.1014 (0.0090) 0.0109 (0.0081) 
Gilt Futures 0.0950 (0.0063) 0.0504 (0.0043) 
US T -Bond Futures 0.0641 (0.0054) 0.0348 (0.0039) 

Deutsche Mark /US Dollar 0.0884 (0.0057) 0.0379 (0.0075) 
British Pound / US Dollar 0.1309 (0.0055) 0.0940 (0.0058) 
Japanese Yen / US Dollar 0.0657 (0.0057) 0.0110 (0.0060) 
Swiss Franc / US Dollar 0.0655 (0.0068) 0.0318 (0.0073) 

Table 2.8, Average Autocorrelations of Absolute Returns for the Lags 1-20 and 51-70 for 
Twelve Markets for the Second Half Period of Analysis. 

A comparison of Table 2.6,2.7 and 2.8 now indicates a significant shift in the 

autocorrelation dynamics for the twelve markets has occurred. For example, three of 

the four stock index futures have a significantly lower average correlation for both the 

short and long-term measures in the second period. The exception is the Nikkei 225, 

which is lower in the second period (compared to the first) but the drop is not as 

significant. For all the fixed income futures, significant reductions have occurred for 

both the short and long-term measures. The most significant reduction occurred for 

the US T-Bond futures. This can be cross-checked by examination of the 

autocorrelation graphs, Figure 2.3b and 2.4b. Comparing the figures, it becomes clear 

that the period from 1987 to 1996 is fundamentally different from the period 1977 to 

1987 for the US T-Bond market. The reason for this result has already been discussed. 

The average autocorrelations for the four currencies are essentially unchanged in the 

second period compared with the first period, except for the British Pound. Again the 

impact of the 1992 ERM crisis led to a much higher average autocorrelation measures 

for the British pound. This is most probably due to the fact that the disruptive price 

behaviour during this period took a fairly long time to dissipate. 
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2.7 DETERMINATION OF VOLATILITY CONES 

In Figures 2.5a, 2.5b and 2.5c, all the cones are displayed for the twelve 

markets examined for the entire period of available data. These have not been 

corrected for the overlapping bias. This will be done in the following sections. For 

each of these figures, the minimum, median and maximum levels of the volatility for 

that time horizon are presented, as well as the 2nd and 3rd quartiles. All the markets 

analysed displayed the usual cone shape of the original Burghardt and Lane article in 

Journal of Portfolio Management (1990). The dispersion between the maximum and 

minimum levels becomes more compact the further one goes out in time. The widest 

margin for error in the historical volatility for the one-month sample horizon where 

the range has the greatest spread. 

The most ambitious of the research on volatility cones has suggested that mean 

reversion plays a major role in the variability of volatility [see Leong (1991)]. 

However, one portion of this research will suggest that the narrowing of the cone as 

the time period of volatility estimation is lengthened is simply due to the Central 

Limit Theorem. It is well established result that a sample statistic (in this case 

volatility) approaches a normal distribution as the sample size increases and the 

standard error of the estimate falls as a function of the number of observations (c I'J 

2n). Even if the true distribution of volatilities is not normally distributed, the Central 

Limit Theorem would still explain this effect for nonparametric statistical tests. 

An important question is whether the volatilities are normally distributed or 

not. In the tables preceeding the volatility cone graphs, one will find the summary 

statistics for all the maturity sectors of the volatility series. These series are based 

upon the volatility estimate for the relevant period and are annualised. The statistics 

for these twelve volatility cones appear in Tables 2.5a, 2.5b and 2.5c. 
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One can glance across the kurtosis and skewness rows to see that for most of 

the markets, the kurtosis measure is well above 3.0 (indicating that volatility is 

leptokurtic). Furthermore, most of the skewness measures are significantly positive. 

This effect is most pronounced for the shortest time horizon (which is 20 days). As 

the time horizon is extended to 500 days, the kurtosis and skewness measures tend to 

fall. However, in two instances (S&P 500, British Pound) they remain significantly 

different from the normal distribution hypothesis. Thus, it appears that for short time 

horizons, the distribution of volatility is non-normal. Yet, as the time horizon is 

lengthened, the volatility dynamics approach normality. Again, this could simply be 

due to the Central Limit Theorem. However important these results may be for 

understanding the dynamics of the volatility process, our objective is to discern some 

measure of the overall variability of the volatility. 

In these tables, the statistics of particular interest are the average and standard 

deviation measures. While recognising that the distributional form of volatility may 

not be normal, we chose to concentrate on the shortest time horizon (that was 20 days) 

and to compare this to the standard deviation of the volatility at 20 days to the average 

level of volatility at this time horizon. The resulting coefficient of variation provides a 

relative comparison of how variable the volatility of the volatility is. The results 

solely for the 20 day time horizon are presented in Table 2.9. 

87 



The 20-day Coefficient of Variation as a Measure of the Variability of Volatility 

Markets 20 Day Average 20 Day SD Coefficient of Variation 

S&P 500 Futures 14.3148% 12.9482% 0.9045 
FTSE Futures 14.7577% 7.3546% 0.4984 
DAX Futures 14.4124% 4.8873% 0.3391 
Nikkei Dow Futures 21.8033% 8.7890% 0.4031 

Bund Futures 5.0278% 2.2721% 0.4519 
BTP Futures 8.5045% 3.6296% 0.4268 
Gilt Futures 8.3592% 3.1009% 0.3710 
US T -Bond Futures 11.0792% 5.1377% 0.4637 

Deutsche Mark /US Dollar 11.1990% 3.8243% 0.3415 
British Pound / US Dollar 11.0049% 4.4720% 0.4064 
Japanese Yen / US Dollar 10.5328% 3.7818% 0.3590 
Swiss Franc / US Dollar 12.4243% 3.8648% 0.3111 

Table 2.9, Statistics of the 20 Day Volatility for Twelve Financial Futures 

To determine the stability of the volatility cones, the analysis period was 

divided into two with the same number of observations. The cones and the 

accompanying tables of statistics for each period appear in Figures 2.6a, 2.6b and 2.6c 

for the first half of the time period and in Tables 2.6a, 2.6b and 2.6c. The analysis for 

the second time period appear in Figures 2.7a, 2.7b and 2.7c for the first half of the 

time period and in Tables 2.7a, 2.7b and 2.7c. 

Given the importance of the 20 day volatility behaviour as a primary condition 

in explaining one element in the dynamics of the volatility, we have also provided the 

tables which describe these results for each of the sub-periods. The results for the 20 

day time horizon using the first half of the available data are presented in Table 2.10. 
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Markets 
(First Period) 

20 Day Average 20 Day SD Coefficient of Variation 

S&P 500 Futures 18.0299% 17.2744% 0.9581 
FTSE Futures 15.7199% 9.3741% 0.5963 
DAX Futures 15.4274% 5.5725% 0.3612 
Nikkei 225 Futures 24.2710% 8.4771% 0.3493 

Bund Futures 4.7991% 2.4834% 0.5175 
BTP Futures 7.2859% 3.7839% 0.5193 
Gilt Futures 8.6368% 3.3022% 0.3823 
US T -Bond Futures 12.7198% 6.1861% 0.4863 

Deutsche Mark /US Dollar 11.4364% 3.7839% 0.3309 
British Pound / US Dollar 11.7722% 4.3800% 0.3721 
Japanese Yen / US Dollar 10.7438% 3.6349% 0.3383 
Swiss Franc / US Dollar 12.5805% 3.8775% 0.3082 

Table 2.10, Statistics of the 20 Day Volatility for Twelve Financial Futures for the first half of 
the observation period. 

These results for the 20 day time horizon for the latter half of the available 

data are presented in Table 2.11. 

Markets 20 Day Average 20 Day SD Coefficient of Variation 
(Second Period) 

S&P 500 Futures 10.5877% 3.3799% 0.3192 
FTSE Futures 13.7056% 4.2751% 0.3119 
DAX Futures 13.2396% 3.7388% 0.2824 
Nikkei 225 Futures 19.3100% 8.4599% 0.4381 

Bund Futures 5.2894% 2.0193% 0.3818 
BTP Futures 9.6321% 3.0596% 0.3176 
Gilt Futures 8.1012% 2.8730% 0.3546 
US T-Bond Futures 9.3757% 2.9374% 0.3113 

Deutsche Mark /US Dollar 10.9019% 3.8319% 0.3515 
British Pound / US Dollar 10.1976% 4.4399% 0.4354 
Japanese Yen / US Dollar 10.2762% 3.8983% 0.3793 
Swiss Franc / US Dollar 12.2809% 3.8659% 0.3148 

Table 2.11, Statistics of the 20 Day Volatility for Twelve Financial Futures for the second half 

of the observation period 

For all the markets, the variability of the volatility (as measured by the COV) 

has been significantly reduced in the second period compared to the first period. As 

with the reduction in the autocorrelations that also occurred for the second period 

(compared with the first period), this could be due to the increased efficiency with 

which volatility shocks are absorbed into price behaviour. Furthermore, many of the 
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extreme events which caused excessive volatility such as the 1987 and 1989 mini- 

crashes and turbulence in the currency markets in the 1980s, are represented in the 

first period of analysis and not the second. Regardless of the reasons, it appears that 

volatility is becoming a more benign time series through time. 

2.8 BIAS CORRECTION OF THE VOLATILITY CONE ANALYSIS 

It has been pointed out in Chapter one, that there is an issue of bias inherent in 

the use of overlapping data to estimate the volatility cone. As this bias is potentially 

serious, it must be corrected. Leong (1991) states: "There are, admittedly, some flaws 

in this research design [the volatility cone approach]. First, the sampling design is 

unbalanced - there are 24 data points for the one-month bucket but only 13 for the 

one-year bucket. Second, and more important, the samples are not totally independent 

of each other. For example, in the sampling of one-year volatilities, the adjacent 

samples are almost [totally] overlapping, except for one month. This means that they 

are sampling essentially from largely the same information pool. " (pag 45). Leong 

goes on to state: `Both flaws then to inflate the uncertainty in short-term volatility 

relative to that of long-term volatility. If such biases are eliminated, there should still 

be a volatility term structure. However, the volatility cone should be narrower at the 

shorter time buckets. " (pag 45). 

Thus, we applied the new adjustment factor to assess the true behaviour of the 

standard deviations of the volatilities. This produces a series of unbiased standard 

deviations of the volatility for each estimation horizon period. To test the 

effectiveness of the bias correction factor, we examine the true relationship between 

the variances of the overlapping and non-overlapping estimation techniques. Then we 

assess how well the biasing factor predicts the actual biasing from overlapping. 
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This simple test involved comparing the variance of the overlapping 

volatilities from the cone to the variance of volatilities estimated solely with non- 

overlapping observations. Given the bias inherent in overlapping, we would expect 

the variance of the overlapping analysis to be lower. We estimated the ratio between 

the non-overlapping variances of the volatilities to the overlapping variances of the 

volatility and this was graphed against the predicted bias from the new formula (1.24). 

All these graphs can be seen in Figures 2.8a, 2.8b and 2.8c. 

These graphs indicate that the predicted bias fits extremely well out to at least 

the 200th estimation horizon. Thereafter, significant divergences occur. However, this 

is most extreme for those series (DAX and Nikkei) which have the smallest number of 

observations. For the S&P 500 and the FTSE, the theoretical ratio somewhat 

overstates the increase in the ratio of the non-overlapping to overlapping variances 

(compared to the actual ratio). However, given that the general trend in the ratio is 

predicted well out to the 200th estimation horizon, we remain comfortable that we 

have correctly determined this relationship. 

For the fixed income futures markets, the model seems to work even better 

than for the stock index futures. For the time horizons out to the 300th estimation 

horizon, the theoretical ratio seems to provide the best quadratic fit. For the fixed 

income market where we had the most data (and would then have the most accurate 

measure of the true ratio of the non-overlapping variances), the US T-Bond futures, 

the theoretical ratio provides an almost perfect fit even out to the 500th estimation 

horizon. 

For the currency futures, there is much greater variability at the longer time 

horizons. However, for the shorter time horizons (out to the 200th estimation period), 

the results are good. Any deviations between the theoretical and actual variance ratios 
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seem to be random and the theoretical ratio provides (what appears) to be an adequate 

quadratic fit. As with the stock index futures, for longer time periods, more 

discrepancies occur between the theoretical ratio and the actual ratio of variances. 

However (and apart from the British Pound), these deviations seem to be behaving 

randomly. 

Thus, we conclude that beyond the 200-day estimation period, we do not have 

sufficient non-overlapping observations to draw reasonable conclusions for all our 

markets. Nevertheless, for those markets where we do have more observations, the fit 

is extremely good. Thus, we will conclude that out to the 200th day estimation period, 

the model effectively describes the effects of the biases introduced by overlapping 

data when estimating volatilities in the volatility cone. With the assumption that the 

bias correction model fits the empirical data well, the unbiased standard deviations of 

the volatility out to the 200th estimation period will be used for the remainder of the 

analysis. 

To further test the effectiveness of the method to correct biases when using 

overlapping observations, we repeated the simple test (between the theoretical and 

actual ratio of the variances) for the two sub-periods of the available data. As before, 

the data was split evenly into two and we investigated the relationship in both periods. 

These results can be seen in Figures 2.9a, 2.9b and 2.9c. for the first half of the 

observation period and in Figures 2.10a, 2.10b and 2.10c for the second half of the 

observation period. 

An obvious problem with extending this analysis to the two sub-periods is that 

we have reduced the number of observations in half. This means that our estimates of 

the actual ratios of the non-overlapping variance to the overlapping variance will now 

display even greater variability. Furthermore, for certain markets, we fail to have 
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sufficient data to even estimate the variance on a non-overlapping basis for the longer 

time horizons. Nevertheless, the results for the two sub-periods suggest that the 

theoretical model does fit the actual ratio of the variances well for time horizons less 

that 200 days. It is interesting to notice that even for those markets which had the least 

amount of data (DAX, Nikkei and BTP), the model displays an extremely good fit out 

to the 200th horizon point. 

Comparison of the Unbiased Standard Deviations of Volatility to the Standard 

Deviations of Volatility Consistent with an i. i. d. dispersion process. 

Having justified our confidence in the unbiasing methodology, it is now 

possible to accurately measure how the standard deviations of the volatility are related 

to an increase in the time horizon of estimation. As was stated previously, one 

possible reason for the reduction in the standard deviation of the volatilities (and the 

narrowing of the volatility cone) as the time horizon was extended was the biasing 

effects of overlapping the data. This has been corrected for. Another reason for the 

reduction in the standard deviations of the volatility could be the increase in the 

sample size of the estimation horizon that would be expected from the Central Limit 

Theorem. To test this effect, we took the (square root) of the unbiasing factor for the 

variances to estimate unbiased standard deviations of the volatility at different 

estimation horizons. These series were then plotted against the time of the estimation 

horizon. These series were compared to the biased standard deviations (unadjusted for 

the overlapping problems) and to a hypothetical series that would be drawn from a 

single (i. i. d. ) distribution one would expect this process to be a function of the number 

of observations (or more correctly 1142-n ). This last series would produce the result 

we would expect if solely the Central Limit Theorem (and sampling theory) were at 
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work. Specifically, since we are starting at the 20th observation, this process is 

estimated using: 

X20 
FN 

(2.1) 

where 620 is the standard deviation of the volatility at the 20th observation and N is 

the number of observations in the time horizon. 

For all the series, we started with an intercept at a20 and examined the 

behaviour of the standard deviations out to the 200th time horizon. These results can 

be seen in Figures 2.11a, 2.11b and 2.11c. 

For all these graphs, we find that both the biased and unbiased standard 

deviations of the volatilities diverge sharply from the assumption of a single (i. i. d. ) 

dispersion process. The unbiased standard deviations decay through time at a much 

slower rate than either the biased standard deviations or the case of the single i. i. d. 

distribution process. However, the effect of the unbiasing adjustment is fairly slight 

(apart from the longer-term time horizons). These results suggest that the standard 

deviation of the volatility remains at a fairly high level not decaying as one would 

expect from sampling theory. Thus, the narrowing of the volatility cones would be 

more extreme if the dynamics of volatility followed a single i. i. d. distributional form. 

The effects of the unbiasing factor would have a minimal impact on widening the 

cone at longer-term estimation horizons. 

For the stock index futures, this effect is most extreme for the S&P 500 and 
r 

the FTSE. However, even for the DAX and Nikkei, the unbiased standard deviations 

of the volatility decay at a slower rate than for an i. i. d. dispersion process. The fixed 

income futures resemble the dynamics of the stock index futures, for the most part. 

Where a divergence occurs it is for the currency futures. For all the currencies except 
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the British Pound, the unbiased standard deviations of the volatility decay in a pattern 

that is approaching an i. i. d. dispersion process. This is especially true for the longer- 

term time horizons. 

It is clear from these figures that the dynamics of volatility are multi-faceted. It 

appears that one factor, the Central Limit Theorem, is relatively more important for 

some markets than others. For those markets, where the standard deviations of 

volatility fail to decay at a sufficiently rapid rate, another factor is causing the 

variability of volatility to remain high as the time horizon is extended. It is not clear 

what this mechanism is. The most likely possibility is that the volatility itself is 

stochastic. It remains to determine for each market the relative impact of these two 

factors in describing the volatility dynamics through time. This will be a central focus 

of this research and will be examined in the next three Chapters. Three classes of 

stochastic volatility models will be examined in this research with a wide variety of 

parameter inputs. This will compare the effectiveness of alternative models in 

capturing the dynamics of the unconditional standard deviation of the volatility and 

assess the impacts of mean reversion. But before we can model these factors, we must 

ask what the assumption of an i. i. d. dispersion process would imply for the behaviour 

of the underlying prices series. 

One interpretation for the single distribution hypothesis is that this could be 

consistent with the possibility that jumps occur in the price of the underlying asset. 

Another possibility is that i. i. d. distribution follows geometric Brownian motion. 

Later in this research, we will test this directly and assess which distribution would be 

the best candidate for the single distributional form describing the markets if a single 

i. i. d. distribution were chosen. Evidence will be presented in the next Chapter that this 

form follows a Student-t distribution, which would be consistent with a jump process. 
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Finally, this research will combine both a stochastic volatility and jump 

process to assess which model best describes the observed probabilities from the 

volatility cones. As has been pointed out by Bates (1996), there may be both jumps 

and stochastic volatility intermixed in the actual dispersion process of volatility. 

However, the relative importance of each element in describing the actual empirical 

volatility processes is not clear. This approach will allow us to determine both the 

relative importance of the two elements and to calibrate the stochastic volatility model 

for simulations. The key result is that we must build a model including both jump 

diffusion processes and stochastic volatility in such a way that we are able to explain 

the empirical standard deviation patterns of the volatility. 

In order to assess if this result is period specific, we examined the relationship 

between the decay in the standard deviation of the volatility (and compared these to 

the assumption of an i. i. d. distribution) for the first half and second half of the 

available observations. This can be seen in Figures 2.12a, 2.12b and 2.12c for the first 

half and in Figures 2.13a, 2.13b and 2.13c for the second half of the observation 

period. 

In these figures, we find similar dynamics for the two sub-periods compared to 

the entire period. The only exceptions are for the Nikkei in the second period that has 

a time decay in the standard deviation which is somewhat unusual (likewise for the 

DAX and the BTP). The most probable explanation is that these series have the least 

amount of data for analysis and we are experiencing a problem with insufficient 

observations. For the currencies, the trend towards an i. i. d. dispersional form is even 

stronger than for the entire period (especially in the first period). Even with these 

slight variations, the patterns of the standard deviation decay seem fairly stable. 
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With this analysis, we now have a clearer understanding of the relationship 

between the dynamics of volatility and the time horizon of estimation. However, we 

are missing some composite measure of how the standard deviations of the volatility 

decay as a function of time. This measure will be determined in the next section by 

determining the functional form best fitting the empirical decay in the standard 

deviation of the volatility. 

2.9 A SIMPLE MODEL FOR THE STANDARD DEVIATION OF 

VOLATILITY AS A FUNCTION OF THE TIME HORIZON 

With the variance of the volatility series across time unbiased for the 

overlapping and non-overlapping observations, we can now examine how deviations 

in volatility decrease as a function of time. The approach was to assess the functional 

form of the decay of the empirical standard deviations of the unbiased volatility 

estimates from the cone analysis. We examined the standard deviations from the 20- 

day horizon to the 200-day horizon. From the previously presented results, the decay 

of the standard deviation was downward sloping. However, this decay was not as 

extreme as would be predicted from the functional form se20*420/N. 

It is important to decide which sort of functional form would be appropriate 

for our purposes. It would appear that either exponential or power forms would be the 

only approaches for this problem yielding the same shape regardless of the time 

measure. Furthermore, the shape of the unbiased standard deviation of the volatility 

suggests that of the two approaches the power function may work better. Therefore, 

given that the standard deviation from the single distribution should display behaviour 

of the form I2T, we instead tried to find the power form of Tf that would best fit the 
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observed data. Here T replaces what was previously referred to as N for the sake of 

the formula. 

This was achieved by solving the following equation for each of the standard 

deviation curves: 

200 
min 7, (seT - se20 * Tf) 2 (2.2) 

T=20 

For this equation, we are solving for f, which is the attribute of how the 

standard deviations decay through time. Since we are starting at the standard deviation 

estimated at a 20-day horizon, this is defined to be the starting point for the weighting 

attribute. 

Another approach was used for the estimation of the decay attribute, f, which 

used the following linear regression equation: 

ln(&T) = a+ ß(ln(T)) (2.3) 

From this regression equation, we then estimated the optimal decay attribute, f, 

and then estimated the actual standard deviations of the volatility using the formula: 

ea+p(ln(7)) (2.4) 

It should be noted that for the single i. i. d. distribution, we would expect f to 

be 0.5. To test this, we ran a simulation of asset prices that assumed geometric 

Brownian motion with constant volatility. This is the assumption of the Black and 

Scholes (1973) model. The results of the analysis of the slope of the unbiased standard 

deviation of the volatility do indicate that (as expected) the rate of decay is 

approximately equal to the square root of time (-0.5000). For the naive fitted time 

decay coefficient, the value was -0.4714. For the regression of the logged volatilities 

and logged time, the slope coefficient was -0.4886. Given that all the empirical series 

decay at a much slower rate, the decay attributes, f, must be less than 0.5. 
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The results of these two analysis techniques are presented in Figures 2.14a, 

2.14b and 2.14c and the attributes are presented in the following Table 2.12 for all 

twelve markets. 

Markets Time Factor Regression Estimation 
Alpha Beta 

S&P 500 Futures -0.0498 2.6943 -0.0448 
FTSE Futures -0.0899 2.2961 -0.0956 
DAX Futures -0.1740 2.1967 -0.1905 
Nikkei Dow Futures -0.1681 2.7802 -0.1886 

Bund Futures -0.0814 1.0961 -0.0863 
BTP Futures -0.1665 2.0046 -0.2124 
Gilt Futures -0.1775 1.6889 -0.1820 
US T-Bond Futures -0.0572 1.8123 -0.0573 

Deutsche Mark /US Dollar -0.2432 2.1663 -0.2637 
British Pound / US Dollar -0.1613 2.0614 -0.1780 
Japanese Yen / US Dollar -0.2792 2.2765 -0.3029 
Swiss Franc / US Dollar -0.2458 2.1531 -0.2592 

Table 2.12, Time Decay Factors for the Standard Deviation of Volatilityfor Twelve Financial 
Futures Markets. 

It can be seen from the figures, that the fitting approach is extremely close to 

the empirical decay function. In most instances, the fit is almost perfect and the errors 

between the predicted function and the empirical function are less than 0.1 % at all the 

time horizons. 

As expected, the decay factors are significantly below what would be expected 

from a geometric Brownian motion model with constant variance. The slowest rate of 

time decay occurs for the S&P 500, FTSE, Bund and US-T Bond futures. The DAX, 

Nikkei, BTP and Gilt futures all share similar time decay parameters. For the 

currencies, most of the currencies (apart from the British Pound) share similar time 

decay parameters. It is interesting to note that (for the most part) those markets which 

have the highest kurtosis for the period also have the lowest time decay factors. An 

interesting comparison is between the decay factors determined in the two alternative 

methods. The first approach can be seen as a curvilinear regression method (on the 
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absolute levels) and the second a linear regression method (on the logarithm of the 

levels versus the logarithm of time). Both approaches produce similar results, which 

suggests that either approach could be used. For the purposes of this research, the first 

method will be chosen due primarily to its simplicity and the fact that we are not 

required to perform an exponential transformation to produce our results. Finally, the 

second approach requires the inclusion of an alpha parameter, which can cause the 

estimated time decay series to diverge from the starting standard deviation of the 

volatility at the 20th day horizon. 

To test the stability of these time decay factors, we reran the analysis splitting 

the time period into two halves. The results of these two analysis techniques are 

presented in Figures 2.15a, 2.15b and 2.15c for the first half of the observations and in 

Figures 2.16a, 2.16b and 2.16c for the first half of the observations. The time decay 

factors are also presented in the following Tables 2.13 and 2.14 for both periods. 

Markets Time Factor Regression Estimation 
(First Period) Alpha Beta 

S&P 500 Futures -0.0498 2.9548 -0.0352 
FTSE Futures -0.0569 2.4089 -0.0542 
DAX Futures -0.1740 2.4996 -0.2259 
Nikkei Dow Futures -0.1783 2.6543 -0.1686 

Bund Futures -0.0065 0.8906 0.0065 
BTP Futures -0.1500 1.9753 -0.1886 
Gilt Futures -0.1535 1.6139 -0.1419 
US T-Bond Futures -0.0399 1.9583 -0.0418 

Deutsche Mark /US Dollar -0.3000 2.3674 -0.3273 
British Pound / US Dollar -0.1900 2.2052 -0.2226 
Japanese Yen / US Dollar -0.4014 2.7312 -0.4537 
Swiss Franc / US Dollar -0.2748 2.2619 -0.2912 

Table 2.13, Time Decay Factors for the Standard Deviation of Volatility for Twelve Financial 
Futures Markets For the First Half of the Available Observations 
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Markets Time Factor Regression Estimation 
(Second Period) Alpha Beta 

S&P 500 Futures -0.2535 1.9811 -0.2513 
FTSE Futures -0.1856 1.9375 -0.1667 
DAX Futures -0.1274 1.6034 -0.0983 
Nikkei Dow Futures -0.1056 2.4835 -0.1069 

Bund Futures -0.1004 1.0291 -0.1018 
BTP Futures -0.2600 2.2730 -0.3340 
Gilt Futures -0.1602 1.6020 -0.1727 
US T-Bond Futures -0.1906 1.6864 -0.1974 

Deutsche Mark /US Dollar -0.1570 1.8445 -0.1610 
British Pound / US Dollar -0.0846 1.6886 -0.0693 
Japanese Yen / US Dollar -0.1876 1.9531 -0.1915 
Swiss Franc / US Dollar -0.1745 1.8562 -0.1675 

Table 2.14, Time Decay Factors for the Standard Deviation of Volatilityfor Twelve Financial 
Futures Markets for the Second Half of the Available Observations. 

For almost all the markets in both periods, the line fitting function provides an 

extremely close fit to the observed dynamics. The exception is the Bund futures in 

the first period, where at first glance a significant deviation seems to occur. However, 

one should realise that the scaling for this graph is extremely small. Thus, the 

maximum deviation between the (first methods) fitted line and the empirical decay 

dynamics is only off by a maximum of 0.06. 

It is more interesting that the levels of the time decay factors vary 

considerably for many of the markets for the diverse periods. For the stock index and 

fixed income futures, the time decay factors are much higher in the second period. As 

with the case with the summary statistics, coefficients of variation (of the 20th day 

volatility) and the average autocorrelation measures for both periods, it appears that 

these series are displaying less abnormal behaviour in the second period compared to 

the first. The currencies have a lower time decay factor in the second period 

compared to the first period. This is especially pronounced for the British Pound for 

the second period. While this result may seem inconsistent with the previous 

conclusion that the currencies tend to be better described by a single i. i. d. dispersion 

process, it is important to remember that this time decay fitting is restricted to the 
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200th time horizon. For the earlier comparisons, we found that by the 500th time 

horizon point, the currencies were approaching the time decay expected from an i. i. d. 

dispersion process. 

With this final analysis, we have identified the key factors that describe the 

dynamics of empirical volatility for financial futures markets. At this point, we will 

summarise what elements of the volatility process they describe and how these 

factors will be used to model the empirical dynamics. 

2.10 ATTRIBUTES THAT CAPTURE EMPIRICAL VOLATILITY 

DYNAMICS 

With this last analysis complete, we now have sufficient attributes to describe 

the multi-faceted nature of empirical volatility that has been discussed in the 

literature. At this point, one could argue that a similar analysis could be completed by 

a maximum likelihood approach or by a simple generalised methods of moments. It is 

true that we would be able to fit the objective processes using these approaches. We 

have chosen to examine each of the five attributes separately because it is important to 

understand which aspects the models are able to capture. Furthermore, since each of 

these conditions has an economic interpretation, we gain insights by separately 

examining how the models address each condition. 

The first element is the general level of the volatility of the volatility. This 

factor will provide an insight to the stochastic nature of volatility itself and provide an 

overall measure for how variable volatility is. This will be measured by the coefficient 

of variation of the volatility estimated at the 20-day increment. This attribute can be 

taken from the volatility cone analysis and by dividing by the average level of the 
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volatility at that point in time will serve to eliminate the problem of scaling. This 

coefficient of variation will be defined as: 

COVE = 
620 

u20 
(2.5) 

Where COV20 is the coefficient of variation, 620 is the standard deviation of 

the volatility measured at a 20 day time horizon and #20 is the mean volatility 

measured at a 20 day time horizon. 

The coefficient of variation value at 20 days should be the standard deviation 

of the volatility divided by the expected average volatility. In the case of an i. i. d 

normal. dispersion process, this should be equal to 0.16222. This can be determined by 

simply dividing the formula for the standard deviation of the volatility by the formula 

for volatility. The standard deviation of the volatility is equal to the usual volatility 

formula divided by the square root of twice the number of observations. The formulae 

for this relationship appear below with the X's indicating the daily returns: 

20 
(xi - X)Z 

[' 
(xj _ 

X)2 

'-' 
19 +- 2.19 

JL 
+ T-' 

19 
(2.6) 

It should be noted that this relationship assumes that the price series follows a 

normal i. i. d. dispersion process because the expected kurtosis is equal to three (3). 

Suppose that the daily returns are i. i. d., then it is a simple matter to determine the 

average volatility for the time horizon. We are particularly interested in the sampling 

distribution of the volatility estimate. While the above does provide our expected 

value from an i. i. d. normal dispersion process, if the results are not equal to this, we 

are not able to tell whether this result is due to the process not being i. i. d. or non- 

2 This functional form is because this is a Chi-squared distribution. 
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normal. From Figures 2.11a, b & c, 2.12a, b &c and 2.13a, b &c (comparing the decay 

of the volatility relative to an i. i. d. process), we can see that it is clearly not i. i. d. From 

the initial examinations of the return series in Tables 2.1,2.2 & 2.3, we can see that 

the returns are non-normal (displaying leptokurtic dynamics for daily returns). 

It is clear that additional attributes must be included that address both of these 

elements. The kurtosis is related to the variance of the variance and must be 

considered. The evidence above suggests that even if we think we know what the true 

volatility is (the average), this may not help given that the existence of excess kurtosis 

will indicate the degree of quadratic variation. Therefore, the second criterion is the 

natural logarithm of the kurtosis measure for daily observations. The logarithm (rather 

than the absolute level) of kurtosis was used because of the extremely wide range of 

kurtosis measures for these twelve markets. Taking the natural logarithm of the 

kurtosis serves to reduce the scaling problem. For the sake of presentation, the actual 

kurtosis appears in the all the tables in this research instead of the logarithm of the 

kurtosis. However, all the analysis was done using the logarithm. 

The third criterion for describing the empirical nature of the markets is the 

time decay function which best fits the empirical unbiased standard deviations of the 

volatility. We chose the simple line fit rather than the regression estimate. This was 

examined in the previous section. This will address one aspect of non-i. i. d. dynamics 

of the volatility series. In addition, this attribute will indicated how difficult it is to 

forecast volatility for different time horizons. As was suggested previously, this is one 

of the key issues for those pricing options. 

Another possible reason for the non-i. i. d. nature of the price series is the 

existence of autocorrelations in the absolute returns. To include this element in 

describing the dynamics, the fourth and fifth attributes incorporated the 
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autocorrelations for the twelve markets. To obtain a meaningful estimate of both 

shorter term and longer-term autocorrelations, we took the averages of the 

autocorrelations from the first lag to the 20`h lag (0-20) and the averages of the 

autocorrelations from the 50th lag to the 70`h lag. These values were estimated from 

the results previously presented in Tables 2.6,2.7 and 2.8. 

One important issue to address is whether or not the omission of a measure of 

the skewness of returns is a gross omission, which will limit the ability to capture all 

the dynamics of the dispersion processes, for the twelve markets. A skewness factor 

would capture the fact that the volatility process is not independent of the underlying 

price innovations. There has been considerable research (presented in the last 

Chapter) that suggests that stock volatility is dependent upon the level of the stock 

price. However, this is not the case for other asset classes such as foreign exchange. 

Perraudin and Sorensen (1997) indicate that in the foreign exchange markets there is 

no evidence that price and volatility changes are negatively correlated. 

Furthermore, in Tables 2.2,2.4 and 2.5 where the summary statistics are 

presented for the returns of the twelve markets, only for two stock index futures (S&P 

500 and FTSE 100) is the skewness statistically significantly negative. In addition, 

this is due to extreme events that occurred in the period from 1984(5) to 1990. It is 

obvious that this includes the 1987 stock market crash and the 1989 mini-crash. 

Gemmill (1991) also concluded that significantly negative skewness in the 

unconditional distribution of returns in the FTSE 100 is not observed in the normal 

course of events. When such skewness is observed it is generally associated with 

singular extreme events. In Appendix 2 of his paper, he reports skewness measures for 

the distributions of returns for the FTSE 100 for the periods from 28/7/85 to 30/7/90. 

In this analysis, he compared the statistics for the daily returns over various periods 

105 



and examined the statistics for period before and (one month) after the 1987 crash. 

When the crash was excluded, he found that the skewness statistic was similar in 

magnitude and slightly negative. Thus, it makes little sense to include as a key factor 

in describing the objective process of all markets one that is based solely upon a 

single event. 

Furthermore, for almost all the other markets, the skewness factor is 

insignificant and by no means consistently negative. Thus, we would argue that 

including skewness as a attribute is unnecessary. Inclusion of this factor may allow us 

to capture the dynamics of the 1987 crash for two of our markets but at the expense of 

being irrelevant for all other markets and for the time period where the 1987 crash is 

not represented. 

The five attributes are summarised below for the empirical volatilities 

determined for the twelve markets and appear in Table 2.15. 

Markets Coefficient Time Unconditional Autocorr Autocorr 
Of Variation Factor Kurtosis (0-20) (50-70) 

S&P 500 Futures 0.9045 -0.0498 254.50 0.1387 0.0549 
FTSE Futures 0.4984 -0.0899 29.46 0.1428 0.0398 
DAX Futures 0.3391 -0.1740 5.70 0.0782 0.0207 
Nikkei 225 Futures 0.4031 -0.1681 4.74 0.1557 0.0629 

Bund Futures 0.4519 -0.0814 6.87 0.1661 0.1009 
BTP Futures 0.4268 -0.1665 5.06 0.1638 0.0826 
Gilt Futures 0.3710 -0.1775 5.76 0.1116 0.0663 
US T-Bond Futures 0.4637 -0.0572 5.37 0.2080 0.1643 

D Mark /US $ 0.3415 -0.2432 5.44 0.0804 0.0139 
Pound / US $ 0.4064 -0.1613 6.53 0.1140 0.0655 
Yen / US $ 0.3590 -0.2792 7.79 0.0577 0.0087 
S-Franc / US $ 0.3111 -0.2458 5.05 0.0660 0.0158 

Average of 0.4397 -0.1578 28.52 0.1236 0.0580 
Parameter Values 

Standard Deviation 0.1568 0.0756 71.49 0.0467 0.0445 
Of Attribute Values 

Table 2.15, Attributes That Describe the Empirical Dynamics of Twelve Financial Futures 
Dispersion Processes 
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In these tables, we also present the standard deviations of the attribute values 

across the markets. As one can see, these values are fairly large reflecting the wide 

range of values observed for the different markets. These are most extreme for the 

standard deviations of the coefficient of variation and the kurtosis. Most markets seem 

to share similar dynamics for the average autocorrelations. 

Finally, to examine the stability of these attributes, we examined the 

conditions for the first and second halves of the available data series. These can be 

seen in Tables 2.16 and 2.17. 

These five attributes are summarised below for the empirical volatilities 

determined for the twelve markets using only the first half of the available 

observations and these appear in Table 2.16. 

Markets Coefficient Time Unconditional Autocorr Autocorr 
(First Period) Of Variation Factor Kurtosis (0-20) (50-70) 

S&P 500 Futures 0.9581 -0.0438 185.34 0.1247 0.0304 
FTSE Futures 0.5963 -0.0569 35.99 0.1615 0.0321 
DAX Futures 0.3612 -0.1740 6.17 0.0883 0.0153 
Nikkei 225 Futures 0.3493 -0.1783 3.99 0.1458 0.0456 

Bund Futures 0.5175 -0.0065 9.51 0.1890 0.1103 
BTP Futures 0.5193 -0.1500 6.89 0.1971 0.0833 
Gilt Futures 0.3823 -0.1535 5.34 0.1228 0.0784 
US T-Bond Futures 0.4863 -0.0399 4.54 0.2349 0.1845 

D Mark /US $ 0.3309 -0.3000 5.36 0.0711 -0.0114 
Pound / US $ 0.3721 -0.1900 6.18 0.0917 0.0335 
Yen / US $ 0.3383 -0.4014 7.10 0.0495 0.0005 
S-Franc / US $ 0.3082 -0.2748 5.03 0.0665 0.0024 

Average of 0.4599 -0.1641 23.45 0.1286 0.0504 
Parameter Values 

Standard Deviation 0.1820 0.1185 51.72 0.0584 0.0559 
Of Attribute Values 

Table 2.16, Attributes That Describe the Empirical Dynamics of Twelve Financial Futures 
Dispersion Processes for the First Half of the Available Observations. 
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These five attributes are summarised below for the empirical volatilities 

determined for the twelve markets for the second half of the available observations 

and these appear in Table 2.17. 

Markets Coefficient Time Unconditional Autocorr Autocorr 
(Second Period) Of Variation Factor Kurtosis (0-20) (50-70) 

S&P 500 Futures 0.3192 -0.2535 5.88 0.0596 0.0224 
FTSE Futures 0.3119 -0.1856 4.52 0.0888 0.0430 
DAX Futures 0.2824 -0.1274 4.21 0.0481 0.0161 
Nikkei Dow Futures 0.4381 -0.1056 5.87 0.1383 0.0704 

Bund Futures 0.3818 -0.1004 4.66 0.1329 0.0805 
BTP Futures 0.3176 -0.2600 3.94 0.1014 0.0109 
Gilt Futures 0.3546 -0.1602 6.25 0.0950 0.0504 
US T-Bond Futures 0.3133 -0.1906 5.83 0.0641 0.0348 

D Mark /US $ 0.3515 -0.1570 5.52 0.0884 0.0379 
Pound / US $ 0.4354 -0.0846 6.81 0.1309 0.0940 
Yen/ US $ 0.3794 -0.1876 8.59 0.0657 0.0110 
S-Franc / US $ 0.3148 -0.1745 5.06 0.0655 0.0318 

Average of 0.3500 -0.1656 5.60 0.0899 0.0419 
Parameter Values 

Standard Deviation 0.0500 0.05576 1.28 0.0310 0.0273 
Of Attribute Values 

Table 2.17, Attributes That Describe the Empirical Dynamics of Twelve Financial Futures 
Dispersion Processes for the Second Half of the Available Observations. 

An important result is that the dynamics of the twelve financial futures 

markets (as measured by the attributes) are dissimilar when the period of analysis is 

split into the two segments. For almost all the stock index futures and bond futures 

markets the degree of excess kurtosis drops significantly in the second half of the 

analysis period. Thus, it would appear that markets displayed a much greater tendency 

to being fat-tailed during the latter half of the 1980s when compared to the first half of 

the 1990s. This conclusion is somewhat difficult to generalise since a number of the 

markets under investigation (DAX, Nikkei, BTP and Bund) did not have observations 

in the 1980s. Nevertheless, it appears to be the general pattern that as we approach 

1996, the levels of excess kurtosis have for the most part fallen. The exception to this 
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result was the Nikkei 225 that both displayed more excess kurtosis in the latter period 

of analysis. In addition, all the stock index futures and bond futures markets had much 

lower autocorrelations in the absolute returns. 

For the currencies, the volatility dynamics appear more stable between the 

period of the latter half of the 1980s and the first half of the 1990s. The levels of 

excess kurtosis, autocorrelation behaviours and the coefficients of variations are 

almost identical for the Deutsche Mark and the Swiss Franc for the two periods. The 

only divergence is with the slope of the time decay of unbiased standard deviation of 

the volatility. In both cases, the slope is much lower in the latter period. The British 

Pound and the Japanese Yen do display somewhat more variability in their dynamics 

for the two periods. For the British Pound, the degree of excess kurtosis has fallen 

dramatically, as has the coefficient of variation of 20-day volatility. The 

autocorrelations in absolute returns have increased and the line fit has decreased. For 

the Japanese Yen, the coefficient of variation is slightly higher in the second period 

and is only the second financial market under study that had a higher excess kurtosis 

for the latter period (along with the Nikkei 225). In addition, the autocorrelations are 

also more positive in the second period (although remain close to zero). 

The fact that the volatility dynamics of the twelve markets change over time 

suggests that either the results are due to sampling variations for the true dynamics of 

the markets or that the behaviour of volatility is not stationary. One possible 

explanation is that the two markets which displayed more leptokurtic behaviour and 

higher autocorrelations in the second period were both associated with the Japanese 

economy. Tompkins (1983) first showed that volatility for financial assets is related to 

the business cycle. Tompkins demonstrated that for the last five business cycles in the 

United States, stock market volatility (as measured by the S&P 500) is significantly 
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higher during periods of recession and lower in periods of expansion. While this 

research only examined the absolute levels of volatility, it is possible that in periods of 

recession, unusual patterns of volatility behaviour exist. Therefore, it is relevant to 

note that during the mid 1990s, the Japanese economy was in recession while the 

countries represented by the other financial markets in this study were expanding. 

Furthermore, in the first period of the analysis, the Japanese economy was expanding 

while other countries were experiencing contracting economies. This may suggest that 

both the absolute levels of volatility and the dynamics of the volatility behaviour vary 

over time and this could be related to the current state of the overall economy. 

Another explanation for the divergent behaviour of the volatility dynamics in 

the latter period of analysis is that the latter period does not include the stock market 

crashes of 1987 and 1989. The elimination of these extreme events could solely 

explain the dynamics for the S&P and FTSE. However, this would fail to address why 

the Bond markets and British Pound display a much less extreme degree of leptokurtic 

behaviour in the second period. 

Regardless of the reasons for these divergences, it is important to examine the 

overall dynamics of volatility for both long periods and for shorter periods. This will 

provide us with a clearer picture of the stability of volatility dynamics and allow us to 

model why volatility dynamics may differ over time. Although at first sight, this 

evolution displays a disturbing lack of stability, we will find that they still have 

sufficient power to discriminate between different models. 

This research will use these attributes using a modified method of moments 

approach to test the ability of alternative models to describe the empirical dynamics of 

objective dispersion processes. It is critical that the choice of the attributes captures 
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the relevant elements of empirical non-normality. These factors should be 

independent, lend themselves to economic interpretation and be measurable. 

The first issue we examine are whether or not they are independent. If this 

were not the case, it could imply that one or more attributes are redundant. To 

examine this, we estimated the correlations between the attribute values for the 12 

financial markets for all three periods of analysis. This can be seen below in Table 

2.18. 

COV KURTOSIS CORR 
(0-20) 

CORR 
(50-70) 

LINE FIT 

COV 1.0 
KURTOSIS 0.8811 1.0 
CORR (0-20) 0.4837 0.1189 1.0 
CORR (50-70) 0.2617 -0.0403 0.8615 1.0 
LINE FIT 0.6171 0.3639 0.7248 0.6883 1.0 

Table 2.18, Correlation Matrix of Attributes for the 12 Financial Futures Markets for the 
Three Periods of Analysis 

In this table, it appears that a number of the attributes are measuring similar 

dynamics. For example, the coefficient of variation (COV) is extremely highly 

correlated to the level of kurtosis. The COV also is relatively highly correlated to the 

Line Fit (of the decay of the standard deviation of volatility over time). Furthermore, 

there exists a positive correlation between the COV condition with the 

autocorrelations of absolute returns. However, if the COV and kurtosis of daily 

returns are redundant, one would expect a similar relationship between these 

conditions and the other conditions. For the autocorrelation conditions, the kurtosis 

condition is uncorrelated. Thus, the COV could be measuring the interaction between 

autocorrelations and the kurtosis that might be not be captured by the correlation 

measure. The Line fit condition is also highly related to the autocorrelation 

conditions. This is not surprising considering that the decay in the standard deviation 
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of volatility should be related to the degree of autocorrelations of absolute returns. 

Nevertheless, the correlations are sufficiently less than one to suggest different 

dynamics are being measured. Therefore, it would appear that these conditions 

capture two primary factors that have been identified as causing the volatility 

behaviour to diverge from stationarity: excess kurtosis and positive autocorrelations in 

absolute returns. We argue that even though many of these attributes are highly 

correlated, they are not redundant. It is likely that they measure both the overall 

factors identified in the empirical literature and more complex interactions that can 

only be captured by inclusion of all the attributes. 

2.11 CONCLUSION 

In this Chapter, we have examined the dynamics of the objective processes for 

twelve financial futures markets. The statistics of the return series suggest the twelve 

markets deviate from the assumption of lognormality. Our attributes are providing 

insights into how. Examinations of the autocorrelations of the absolute returns suggest 

that significant relationships exist between the time series of returns. However, we 

find that these autocorrelations tend to decay fairly rapidly to insignificance after the 

20th lag. From this Chapter, we have set the stage for what will follow. Our research 

aim is to understand the appropriate security price process that is consistent with the 

historical record. To compare the alternative approaches, we must have some metrics 

for testing. In this Chapter, we have identified five attributes that capture the non- 

normal dynamics of the objective process. With these, we will test a variety of models 

to assess which captures these dynamics. The next three Chapters will demonstrate 

that a considerable amount of information about the dynamics of the process can be 
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discerned from the volatility cone approach (once the overlapping bias problem has 

been corrected). 
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CHAPTER THREE 
THE ANALYSIS OF OBJECTIVE PROBABILITIES IN FUTURES 
MARKETS: EXPLAINING THE EMPIRICAL DYNAMICS WITH 

MODELS ASSUMING CONSTANT VARIANCE 

3.1 INTRODUCTION 

In the last Chapter, we identified five attributes that capture the key dynamics 

of the volatility process. With these conditions we can now compare the empirical 

dynamics of the twelve financial futures markets to simulated dynamics for a variety 

of models. Given that these attributes provide a broad and fairly complete picture of 

the multi-faceted nature of volatility dynamics, this approach promises to provide a 

powerful tool for the comparison of models. First of all, we will examine the 

simplest possible model, which is geometric Brownian motion with constant 

variance. Thereafter, we will examine progressively more complex models that 

include fat-tailed distributions (as a proxy for jump diffusion processes), stochastic 

volatility models, and finally combinations of models. In this Chapter, we will 

examine only those models that assume the variance is constant. Specifically, we will 

compare models that assume the underlying asset follows either geometric Brownian 

motion or a Student-t distribution. 

3.2 TESTING A GEOMETRIC BROWNIAN MOTION MODEL 

The first test will simulate a series of asset prices using a constant level of 

volatility and comparing the results to empirical attributes of the twelve markets. The 

volatility chosen was approximately equal to the long-term volatility for each market 

and the prices were determined from the standard asset pricing model of the following 

form: 

dS = Su. dt+Sä. dZ1 (3.1) 
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In this formula, we assumed an interest rate of 0.0. Therefore, the µ term is 

solely equal to &2 /2. This is possible since we have used futures prices rather than 

spot prices. As was discussed by Bates (1991), the cost of carry (drift term) for the 

futures can be assumed to be zero. 

This is the standard Geometric Brownian motion formula that generates asset 

price changes, thus, the series of asset prices were generated using the formula: 

St = St-t ' eµ'dt+ä, -''dZ' (3.2) 

This is the simple Euler approach. The term &, reflects the volatilities 

estimated from the various models tested and the previous day's volatility estimate is 

used to estimate today's new asset price. Given that the volatilities are assumed to be 

constant, this does not change. 

With a series of 2000 prices determined, these prices were imported into the 

same programmes used to describe the empirical dynamics of the twelve financial 

futures markets. These programmes included the determination of the kurtosis of each 

series, the volatility cone analysis and the estimation of the autocorrelograms. The 

results were compared to each futures market using a method that minimises the sum 

of squared errors for each of the attributes compared to those conditions for each of 

the twelve markets. To aid the interpretation, the squared errors were divided by the 

standard deviation of the attributes across the markets. By standardising the test 

statistic, we are removing the impacts of scaling for the different attributes. This test 

statistic can be written as: 

2 

min'F( 
Mi - Xl 

at 
(3.3) 

where M; is the attribute for the financial futures, X, is the attribute of the price 

series generated by the model and ai is the standard deviation of the attributes across 

115 



all the financial futures for the relevant period of analysis. The division by the 

standard deviation means that all the statistics have been standardised and the 

summation of the deviations can be compared directly without the requirement for 

any weighting scheme. These standard deviations can be seen at the bottom of Table 

2.15 for the entire period of analysis, Table 2.16 for the first half of the available 

observations and Table 2.17 for the second half of the available observations. (See the 

previous Chapter). 

In spirit, this method bears some resemblance to the Generalised Method of 

Moments (GMM) technique where a single model is assumed and the determination 

of the summation of the squared errors are for the individual moments for that model. 

This is based upon modelling the sample properties of the moments within the 

model. ' This approach is similar to the technique used by Longstaff (1989) when he 

examined stochastic volatility models and to Ho, Perraudin and Sorensen (1996) when 

they modelled stock returns with stochastic volatility and jumps. We will refer to this 

test as MSSE (for the minimised sum of the squared errors) in the following three 

Chapters. 

This test will achieve two goals. It will allow us to examine which elements of 

geometric Brownian motion are consistent with the dynamics of the futures markets 

and will also provide an overall measure of the goodness of fit for the comparison of 

different models. Clearly, the dynamics of a simulated GBM process will depend 

upon the random numbers selected. It is possible that our results could be biased from 

an unrepresentative selection of random variables. Fortunately, we can determine 

what theoretical values should be obtained for a geometric Brownian motion process. 

t In the approach used in this research, the test metric is across models which aims to obtain a single 
best fit. As we are not modelling from the standard errors of the moments, this approach is not a 
traditional GMM technique. As GMM is in reality an extension of OLS on sample moments. 
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In the previous Chapter, we showed that if the dispersion process of the price 

series is i. i. d., then the expected coefficient of variation would be 1/4(2* 19) or 

approximately 0.1622. The kurtosis result should be equal to 3.00, while the line slope 

should be equal to -0.5000 and both the autocorrelation should be zero. 

To test whether our simulations conform to these expected results, we 

generated 100 series of 2000 random prices that were consistent with GBM and 

constant variance (from equation 3.2). Using a Box-Muller technique we 

approximated each draw from the normal distribution. We also determined the 

standard deviation for each of the attributes for the 100 simulations. Finally, we tested 

the null hypothesis that the average results were significantly different than the 

theoretical values. These results can be seen in Table 3.1 

Coefficient of Time Uncond. Autocorr Autocorr 
Variation Factor Kurtosis (0-20) (50-70) 

Average 
Random 0.1618 -0.5056 2.996 -0.00107 -0.00024 
Result 

Standard 
Deviation 0.0104 0.07351 1.0446 0.004905 0.005732 

Theoretical 
Value 0.1622 -0.5000 3.000 0.000000 0.000000 

t-test 15.59 13.13 261.15 4.58 23.88 

Table 3.1, Estimated Values of the Attributes for a GBM price series 
with Constant Variance. 

For all the attributes, we can reject at above a 99% level that the average 

results differ from the expected theoretical values. 2 These results confirm both our 

theoretical hypotheses about the expected values for these attributes and suggest that 

the process we are using for generating random numbers will be on average consistent 

with GBM. Another benefit is that because of relatively small standard deviations, 

2 Strictly speaking, we cannot really use a t-test given that this test is generally used for testing 
differences in sample moments from two samples. What we have is a sample result for a simulation 
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these attributes are relatively insensitive to the selection of the random numbers. This 

suggests that the simulations are being correctly estimated. 

In the last Chapter, we examined whether the attributes from the twelve 

markets that measure different aspects of volatility dynamics might be redundant. One 

possible reason for the patterns observed in Table 2.18 is that the results are due 

simply to sampling error. To examine this, we estimated the correlations between the 

attribute values for the 100 simulations of a GBM process. This can be seen below in 

Table 3.2. 

COV KURTOSIS CORR 
(0-20) 

CORR 
(50-70) 

LINE FIT 

COV 1.0 
KURTOSIS 0.361 1.0 
CORR (0-20) 0.601 0.003 1.0 
CORR (50-70) -0.053 -0.055 -0.016 1.0 
LINE FIT 0.216 0.0715 0.375 0.323 1.0 

Table 3.2, Correlation Matrix of Attributes for the 100 simulations of a GBM price series with 
Constant variance. 

While some interesting points can be discerned by comparing the two tables, 

we must recognise that we are not comparing like with like. The previous table, 

(Table 2.18) is a cross sectional analysis, while this table is only examining the effects 

of sampling. In this table, most of the attributes appear to be measuring different 

aspects of volatility behaviour. The highest correlation is between the coefficient of 

variation and the average autocorrelation from 0 to 20 days. This is not surprising 

since a relatively high (or low) coefficient of variation would suggest a 

correspondingly high (or low) short-term autocorrelation. The line fit is somewhat 

positively correlated with the autocorrelation measures. Again this is not surprising 

compared to the theoretical values we expect (and this is not a sample). However, the use of this test 
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since the decay in the standard deviation of the volatilities should have some impact 

on the measures of autocorrelations. Nevertheless, these correlations are of a small 

enough magnitude to indicate they are measuring different elements. The remaining 

factors seem to be independent of one another. 

In the previous table (Table 2.18), which examined the actual correlation 

behaviour of the twelve markets, significant divergences arise from the GBM case. 

For the twelve markets, the COV condition has a much higher correlation with the 

kurtosis. In fact most of the conditions are much more correlated than compared to the 

GBM case. The only exception is that the kurtosis remains relatively uncorrelated 

with the autocorrelation conditions. Thus, the results we have obtained from the 

twelve markets diverge significantly from the assumption that the twelve markets 

I 
follow GBM. Nevertheless, it appears that the chosen conditions are capturing 

different elements in the volatility process both in an assumed GBM framework and 

from the empirical dynamics. 

For all such methods of moments testing, key elements in the choice of the 

conditions are that they are independent, have an economic interpretation and can be 

measured accurately. The correlation matrices presented suggest that these five 

attributes meet these criteria. Therefore, our conclusion is that we are measuring 

different aspects of dynamics of volatility and which can serve as criteria for testing 

models of volatility behaviour. 

While the average result provides some degree of comfort that the GBM 

simulation process is correct, it cannot be used for testing purposes. This is due to the 

fact that an average of the 100 draws would also not provide a single series of 2000 

prices that would have the appropriate dynamics. Therefore, for testing purposes, we 

allows us insights into the natures of the simulated data. 
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choice to identify a representative draw of the 100 sample draws that was closest to 

the theoretical dynamics. This series was chosen using the same minimisation of the 

sum of squared errors (for the five attributes) that will be used extensively in the first 

part of this research (see equation 3.3). The dynamics of this representative series 

(and the comparison of this series to the average series and the expected theoretical 

results) appear below in Table 3.3. 

Coefficient of Time Uncond. Autocorr Autocorr 
Variation Factor Kurtosis (0-20) (50-70) 

Average 
Random 0.1618 -0.5056 2.996 -0.00107 -0.00024 
Result 

Selected 
Result 0.1612 -0.5331 2.989 -0.00124 +0.0031 

Theoretical 
Value 0.1622 -0.5000 3.000 0.000000 0.000000 

Table 3.3, Comparison of the Attributes for the Average of 100 GBM price series with 
Constant Variance to a Selected GBM price series with Constant variance. 

As would be expected, the closest series of simulated GBM prices diverges 

somewhat from both the average random result and the expected theoretical results. 

While the coefficient of variation is only slightly different, the rate of time decay (at - 

0.5331) is somewhat more extreme. However, these results are not statistically 

different than the expected results if we apply the same t-test used in Table 3.2. Even 

so, it is possible that this choice of random variables could impact the results. This 

point is taken. However, we counter this by interpreting the small size of the standard 

deviations of the attributes for the 100 simulations (in Table 3.2) as indicating the 

choice of the price series will not be that critica13. 

3 This representative normal distribution was used for all subsequent analysis that relied upon a GBM 
innovation for the underlying price process. The only important impacts of the choice of a single (but 
representative) random series of prices is that we have sum of squared deviations that are not coloured 
by the choice of the random series but reflects how the empirical attributes differ from the attributes 
from the model. Secondly, the choice of a representative normal distribution allows for meaningful 
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Clearly, the choice of a 'representative' series of random numbers could be 

seen as problematic. It could be argued that our results may be due to the selection of 

the appropriate random number series and not to the theoretical models we aim to 

examine. The alternatives open to us included drawing more random numbers and 

using Monte Carlo methods to reduce sampling variation. This is the approach used 

by Hull & White (1987a, 1988) to test their models. However, we wished to analyse a 

series (of 2000 sample prices) that was close to the number of actual futures prices we 

were examining. Therefore, a Monte Carlo approach was not feasible. This was due 

to computer limitations and the fact that our analysis relied on the use of EXCEL 

(version 97). The other alternative was to draw a number of samples of random 

numbers and examine the sampling properties of these draws. Once we could confirm 

that the average of these results corresponded to the expected theoretical results, we 

could have confidence that the procedure for drawing random variables was consistent 

with GBM. However, it still remained necessary to select a single draw to run our 

simulations and this raises the issue that the results are due simply to our selection of 

random numbers. 

To examine this potentiality, we drew one series of 2000 numbers at random. 

Due to the choice of the random variables from the Box-Muller method, we obtained 

a series that diverged somewhat from our expected results (although these results for 

the attributes were within the range of sample variation). The actual results for this 

sample were: 

parameter values for the stochastic volatility models in the next Chapter. This will allow our optimal 
parameter values to be comparable to those presented in the literature (see Guo (1996)) that used 
alternative and more powerful methods to determine a GBM process. It is important that the relative 
performance of the models was not affected and our conclusions would have been identical. The 
difference is that our results are less effected by the sampling error from drawing from a single normal 
distribution that turned out to be less variable that is expected. 
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Coefficient of Time Uncond. Autocorr Autocorr 
Variation Factor Kurtosis (0-20) (50-70) 

Sample 
Random 0.0824 -0.6100 1.380 -0.0009 -0.0010 
Result 

With this selected series, we completed all the analysis for the first portion of the 

research. As the reader can see, this series has an extremely low kurtosis measure, a 

time factor for the decay of volatilities that is too high and a low coefficient of 

variation. In essence, we have drawn a somewhat platykurtic distribution. 

With this series of random prices, we re-ran all the analysis for the next three 

chapters. Given that our sample of normal prices was platykurtic, this altered the 

selection of the optimal parameters for the stochastic volatility models in the next 

Chapter and lead to somewhat higher sums of the squared errors. However, it was 

comforting to find that the overall conclusions of this research were not altered (see 

conclusions to Chapter 5), however, it was no longer possible to compare our results 

to elsewhere in the literature that used alternative methods to determine a more 

representative normal distribution. 

GBM Test Results for Entire Period of Analysis 

With this particular series of random prices, we examined the ability of 

geometric Brownian motion to explain the dynamics of the twelve financial futures 

markets. Specifically, once the series of 2000 prices was chosen, these prices were 

imported into the programmes used to describe the empirical dynamics of the twelve 

4 In the previous footnote, we comment on the fact that our results using the representative normal 
distribution were extremely similar to those found for the Heston model by Guo (1996) for the 
Deutsche Mark / US Dollar for a similar period of analysis. Thus, the choice of the representative 
normal distribution appears to provide results which are similar to those obtained using alternative 
approaches. By testing the results using another draw of the normal distribution, we are confident that 
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financial futures markets. These programmes included the determination of the 

kurtosis of each series, the volatility 'cone analysis and the estimation of the 

autocorrelograms. When all the conditions for the 'best' GBM price series were 

estimated, the sum of the squared errors were determined comparing this series with 

each of the twelve markets' conditions. The results of these tests appear in Table 3.4 

and the analysis period includes all the available observations. 

Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(GBM Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.9045 -0.0498 254.50 0.1387 0.0549 
GBM 0.1612 -0.5331 2.989 . 0.00124 0.0031 70.9208 

FTSE 0.4984 -0.0899 29.461 0.1428 0.0398 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 60.0982 

DAX 0.3391 -0.1740 5.7004 0.0782 0.0207 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 22.6601 

Nikkei 0.4031 -0.1681 4.74 0.1557 0.0629 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 45.0403 

Bund 0.4519 -0.0814 6.8716 0.1661 0.1009 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 65.9331 

BTP 0.4268 -0.1665 5.0590 0.1638 0.0826 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 48.1248 

Gilt 0.3710 -0.1775 5.7580 0.1116 0.0663 
GBM 0.1612 -0.5331 2.989 . 0.00124 0.0031 37.0817 

US T-Bond 0.4637 -0.0572 5.3650 0.2080 0.1643 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 88.0371 

D-mark 0.3415 -0.2432 5.4460 0.0804 0.0139 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 223236 

Pound 0.4064 -0.1613 6.53 0.1140 0.0655 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 35.5084 

Yen 0.3590 -0.2792 7.7897 0.0577 0.0087 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 17.2707 

S-Franc 0.3111 -0.2458 5.0450 0.0660 0.0158 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 36.2483 

Table 3.4, Comparisons of the Empirical Dynamics of Twelve Financial Futures Dispersion 
Processes with the Dynamics of a GBM Price Series with Constant Varia nce for the Entire 
Period of Available Observations. 

the results obtained are due to correct testing of the models and not to the selection of the random 
variables for the simulations. 
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These results clearly demonstrate that all the financial futures markets fail the 

test of a lognormal dispersion process (GBM) with constant variance. The coefficient 

of variation is much too low, the rate of decay in the volatility of the volatility is 

much too high and the kurtosis is much smaller than what we observe in the financial 

futures markets. Finally, the GBM series displays autocorrelations in the absolute 

daily returns which are insignificantly different than zero. For all the twelve markets, 

most the average autocorrelations are significantly positive. 

GBM Test Results for SubPeriods of Anal 

To examine whether these results are consistent over time and are not period 

specific, we reran the analysis for two sub-periods. The results for this analysis in the 

first half can be seen in Table 3.5. 

Markets 
(GBM Model) 

S&P 500 
GBM 

FTSE 
GBM 

DAX 
GBM 

Nikkei 
GBM 

Bund 
GBM 

BTP 
GBM 

Gilt 
GBM 

US T-Bond 
GBM 

Coefficient Time 
of Variation Factor 

0.9581 -0.0438 
0.1612 -0.5331 

0.5963 
0.1612 

0.3612 
0.1612 

0.3493 
0.1612 

0.5175 
0.1612 

0.5193 
0.1612 

0.3823 
0.1612 

0.4863 
0.1612 

-0.0569 
-0.5331 

-0.1740 
-0.5331 

-0.1783 
-0.5331 

-0.0065 
-0.5331 

-0.1500 
-0.5331 

-0.1535 
-0.5331 

-0.0399 
-0.5331 

Uncond. 
Kurtosis 

185.344 
2.989 

35.9850 
2.989 

6.1734 
2.989 

3.9912 
2.989 

9.5135 
2.989 

6.8939 
2.989 

5.3372 
2.989 

4.5418 
2.989 

Autocorr 
(0-20) 

0.1247 

-0.00124 

0.1615 

-0.00124 

0.0883 

-0.00124 

0.1458 

-0.00124 

0.1890 

-0.00124 

0.1971 

-0.00124 

0.1228 

-0.00124 

0.2349 
-0.00124 

Autocorr Sum of Squared 
(50-70) Deviations 

0.0304 
0.0031 49.8419 

0.0321 
0.0031 32.7907 

0.0153 
0.0031 12.8280 

0.0456 
0.0031 16.4677 

0.1103 
0.0031 37.5815 

0.0833 
0.0031 27.2153 

0.0784 
0.0031 17.7907 

0.1845 
0.0031 45.9846 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(GBM Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

D-mark 0.3309 -0.3000 5.3573 0.0711 -0.0114 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 6.3656 

Pound 0.3721 -0.1900 6.18 0.0917 0.0335 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 12.8628 

Yen 0.3383 -0.4014 7.1017 0.0495 0.0005 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 3.2769 

S-Franc 0.3082 -0.2748 5.0305 0.0665 0.0024 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 6.7588 

Table 3.5, Comparisons of the Empirical Dynamics of Twelve Financial Futures Dispersion 
Processes with the Dynamics of a CBM Price Series for the First Half of the Available 
Observations 

Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(GBM Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.3192 -0.2535 5.8823 0.0596 0.0224 
GBM 0.1612 -0.5331 2.989 . 0.00124 0.0031 49.0282 

FTSE 0.3119 -0.1856 4.5168 0.0888 0.0430 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 62.0476 

DAX 0.2824 -0.1274 4.2104 0.0481 0.0161 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 64.0125 

Nikkei 0.4381 -0.1056 5.8671 0.1383 0.0704 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 125.2491 

Bund 0.3818 -0.1004 4.6621 0.1329 0.0805 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 110.5935 

BTP 0.3176 -0.2600 3.9391 0.1014 0.0109 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 46.4193 

Gilt 0.3546 -0.1602 6.2497 0.0950 0.0504 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 83.6713 

UST-Bond 0.3133 -0.1906 5.8301 0.0641 0.0348 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 61.9444 

D-mark 6.3515 -0.1570 5.5237 0.0884 0.0379 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 77.8149 

Pound 0.4354 -0.0846 6.8103 0.1308 0.0937 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 138.0695 

Yen 0.3794 -0.1876 8.5897 0.0657 0.0110 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 85.3851 

S-Franc 0.3148 -0.1745 5.0631 0.0655 0.0318 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 62.3183 

Table 3.6, Comparisons of the Empirical Dynamics of Twelve Financial Futures Dispersion 
Processes with the Dynamics of a GBM Price Series for the Second Half of the Available 
Observations. 
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For both of the sub-periods, the results are similar to those obtained for the 

entire period. The sum of the squared errors is very large and suggests that none of the 

markets in any of the three periods is well explained by an assumption of geometric 

Brownian motion. It is interesting to note that the latter period (which roughly 

corresponds to the first half of the 1990s) is much worse than the earlier period (which 

roughly corresponds to the last half of the 1980s). 

Given that we can reject the usual assumptions that all three categories of 

financial futures are lognormally distributed with constant variance, our task is now 

to understand what processes do describe the dynamics of these markets. 

3.3 ALTERNATIVE MODELS TO EXPLAIN VOLATILITY DYNAMICS 

At this point, it makes sense to state explicitly the objectives of this part of the 

research. The key objectives are: (1) to fit the observed empirical volatility cones, (2) 

to fit the observed distributions of returns and (3) to explain the autocorrelations of 

the absolute returns. The choice of the five attributes identified above will serve as the 

criteria for meeting these objectives. 

At this point, we have found that the (unbiased) standard deviation of the 

r 

volatility is much higher than we would expect as the time horizon is lengthened. 

Thus, we must distinguish between the three possible hypotheses for this result: (1) 

we could have a single distribution with a sampling problem as the only effect, (2) we 

could have diverse distributions due to the variability of volatility and, finally, (3) we 

have a mixture of diverse distributions of variable volatility. 

Furthermore, the empirical examination of the twelve markets clearly indicates 

that for all the series significant excess leptokurtosis exists. In addition, many of the 

other attributes that describe the nature of volatility for these markets diverge 
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significantly from geometric Brownian motion. Much research has concentrated on 

explaining the fat-tailed nature of financial asset returns. The key question remains; 

what is causing these divergences? Broadly speaking there are three possible 

explanations for the anomalies that have been observed for all asset markets. These 

include a Constant Elasticity of Variance Model, Jump Processes or the existence of 

Stochastic Volatility. In the first Chapter, we examined these three models. For this 

research, we are concerned primarily with the quadratic variation in volatility. 

Therefore, we have chosen to examine solely Jump processes and Stochastic 

Volatility models to explain this phenomenon. 

3.4 TESTING A FAT-TAILED DISTRIBUTION MODEL 

As was discussed in Chapter one, numerous papers have indicated that asset 

price series display excess kurtosis. One proposed explanation is that the dispersion 

process for the underlying asset prices is not lognormal. Another explanation is that 

perhaps other factors such as jump processes might be explaining the behaviour of the 

price series. To test both these possibilities, we will introduce a fat-tailed distribution 

for the generation of the price series and assume a constant volatility over time. 

Our approach will follow the lines of Blattberg and Gonedes (1974) and use a 

Student-t distribution instead of a normal dispersion process. While it is possible to 

include other dispersion processes that also produce excess kurtosis, the Student-t 

distribution was chosen because of the simplicity of the approach and the ease with 

which that such a price series could be simulated. This approach has also been applied 

by Bollerslev (1987) who formulated an ARCH-type model with heavy-tailed 

innovations based on a Student-t distribution. For this simulation, all the previous 

steps remain the same with the one alteration that instead of drawing from a normal 
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dispersion process in determining the price of the asset, we used a Student- t 

distribution. 

This t distribution was approximated using the following approach. To obtain 

a fat-tailed distribution, we simulated a t-distribution with 5 degrees of freedom. This 

was achieved by taking 5 draws from a normal distribution that used the Box-Muller 

technique. The draws were squared and summed. This result was divided by five (5) 

and then the square root was taken. Finally, another standard draw from a normal 

distribution was taken and this was divided by this scaling factor. This final 

simulation resulted in a symmetrical distribution that had a mean insignificantly 

different from zero, somewhat higher than unit variance and the fat tails we are 

looking for. Theoretically, the expected kurtosis should be equal to nine (9). However, 

this will depend on the draw of random variables used to estimate the series. We drew 

eight series of random variables that yielded different kurtosis results. The first series 

had a kurtosis of 6.10 and will be referred to as Ti. The second draw was 

approximately equal to the expected kurtosis of 9.16 and will be referred to as T2. The 

third draw yielded a kurtosis of 12.23 (which will be referred to as T3) and the final 

draw yielded a price series with a kurtosis of 15.26 (that will be referred to as T4). 

One concern is that as with the selection of the normal distributions, the results 

may be subject to the choice of the random variables that are generating the Student-t 

distributions. Thus, we selected four additional Student-t distributions that all had 

similar levels of kurtosis. This are referred to as T5, T6, T7 and T8. For the purposes 

of comparison, all the eight Student-t distribution statistical moments are summarised 

in the following table, Table 3.7. 

128 



Moments TI T2 T3 14 T5 T6 fl T8 

Mean -0.04 -0.003 0.04 0.03 0.03 0.08 0.009 -0.02 
Std. Dev. 1.280 1.297 1.317 1.303 1.264 1.223 1.296 1.224 
Skewness 0.067 0.075 0.791 0.959 0.134 0.133 -0.079 -0.134 Kurtosis 6.10 9.15 12.23 15.26 4.79 4.54 4.89 4.58 

Table 3.7, Sample Moments of Eight Student-t Distributions. 

From the simulated distribution series, the means are all close to zero and the 

standard deviation is between 1.20 and 1.30 (as opposed to a standardised normal 

distribution with a standard deviation of 1.00). The skewness statistic is for the most 

part positive and increasingly so the greater the level of kurtosis. The kurtosis 

measure increases for the series Ti to T4 and is roughly the same for the series T5 to 

T8. 

Student-t Test Results for Entire Period of Analysis 

With these fat-tailed price series thus obtained, we now tested the hypothesis 

that financial futures are better described by a Student-t distribution with constant 

variance. As was indicated in Chapter one, this will also test the hypothesis that jump 

processes (which would be associated with such fat-tailed distributions) are crucial in 

explaining the dynamics of financial futures volatility. To test these joint hypotheses, 

we ran another series of simulations where the volatility was assumed to be constant 

but the price series follows a Student-t distribution. Thus, for each market and for 

each of the eight possible Student-t distributions, we reran the analysis and completed 

the minimised SSE comparisons. This can be seen in Tables 3.8a, 3.8b and 3.8c for 

the three categories of financial assets (and utilised the entire period of available 

observations for each market). For the sake of comparison, the GBM results for each 

market are also presented (in Italics). 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(T-dist. ) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.9045 -0.0498 254.51 0.1387 0.0549 
GBM 0.1612 -0.5331 2.989 . 0.00124 0.0031 70.9208 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 54.8337 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 66.7552 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 29.7040 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 41.7646 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 58.2730 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 96.6956 
Ti 0.2064 -0.4241 4.89 -0.0026 -0.0031 62.6669 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 72.8226 

FTSE 0.4984 -0.0899 29.46 0.1428 0.0398 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 60.0982 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 29.0038 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 41.2433 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 12.5310 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 21.4832 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 30.9975 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 65.6446 
17 0.2064 -0.4241 4.89 -0.0026 -0.0031 34.7264 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 43.2353 

DAX 0.3391 -0.1740 5.70 0.0782 0.0207 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 22.6601 
TI 0.2400 -0.3925 6.10 0.0045 0.0023 11.1503 
Ti 0.2601 -0.4889 9.16 -0.0067 -0.0047 20.8941 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 8.0903 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 7.8243 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 11.8606 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 39.4521 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 14.5965 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 20.7017 

Nikkei 0.4031 -0.1681 4.74 0.1557 0.0629 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 45.0403 
TI 0.2400 -0.3925 6.10 0.0045 0.0023 21.8178 
Ti 0.2601 -0.4889 9.16 -0.0067 -0.0047 32.8385 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 17.8154 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 18.8386 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 23.2944 

T6 0.1986 -0.6300 4.54 -0.0041 0.0062 51.1647 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 26.1680 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 32.8182 

Table 3.8a, Results for Student-t Distribution Models for Four Stock Index Futures 
Assuming Price Series the Variance is Constant. 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(T-dist. ) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

Bund 0.4519 -0.0814 6.87 0.1661 0.1009 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 65.9331 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 34.9203 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 48.9112 
T3 0.2891 0.0000 12.23. 0.0085 -0.0026 18.9436 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 29.7329 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 36.6975 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 71.5223 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 40.7052 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 49.0282 

BTP 0.4268 -0.1665 5.06 0.1638 0.0826 
GBM 0.1612 -0.5331 2.989 . 0.00124 0.0031 27.2153 
TI 0.2400 -0.3925 6.10 0.0045 0.0023 24.7704 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 35.9979 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 20.4784 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 21.7445 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 26.4198 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 54.3309 
Ti 0.2064 -0.4241 4.89 -0.0026 -0.0031 29.3752 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 36.0666 

Gilt 0.3710 -0.1775 5.76 0.1116 0.0663 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 37.0817 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 15.7906 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 26.0301 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 13.1780 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 12.8546 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 16.9322 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 43.9928 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 19.7461 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 25.8520 

US T-Bond 0.4637 -0.0572 5.37 0.2080 0.1643 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 88.0371 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 53.0587 
72 0.2601 -0.4889 9.16 -0.0067 -0.0047 68.8317 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 34.1694 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 48.2561 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 55.2315 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 91.6486 
Ti 0.2064 -0.4241 4.89 -0.0026 -0.0031 59.6832 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 68.4477 

Table 3.8b, Results for Student-t Distribution Models for Four Fixed Income Futures 
Assuming Price Series the Variance is Constant. 
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Markets Coefficient Time Uncond. Autocorr Autocorr 
(T-dist. ) of Variation Factor Kurtosis (0-20) (50-70) 

Sum of Squared 
Deviations 

D Mark 03415 -0.2432 5.45 0.0804 0.0139 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 22.3236 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 6.8676 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 14.3251 
T3 '0.2891 0.0000 12.23 0.0085 -0.0026 13.0748 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 5.0201 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 7.6299 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 29.5886 
77 0.2064 -0.4241 4.89 -0.0026 -0.0031 9.5371 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 14.3649 

Pound 0.4064 -0.1613 6.53 0.1140 0.0655 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 35.5084 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 17.7874 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 28.7720 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 13.2803 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 14.8546 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 18.8594 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 47.2573 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 21.8852 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 28.3522 

Yen 0.3590 -0.2792 7.79 0.0577 0.0087 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 17.2707 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 4.0627 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 9.8614 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 14.7800 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 2.3600 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 4.8110 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 23.8944 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 6.3119 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 10.3854 

S-Franc 0.3111 -0.2458 5.05 0.0660 0.0158 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 36.2483 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 5.6883 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 13.0135 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 12.4847 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 4.1261 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 6.2605 
T6 0.1986 -0.6300 4.54 --0.0041 0.0062 27.9575 
77 0.2064 -0.4241 4.89 -0.0026 -0.0031 8.1502 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 12.7547 

Table 3.8c, Results for Student-t Distribution Models for Four Foreign Exchange Futures 
Assuming Price Series the Variance is Constant. 

The general conclusion is that the inclusion of the fat-tailed distributions has 

led to an improvement relative to the previous GBM model (except t-distribution T6). 

Table 3.9 compares the GBM case to the best of the t-distributions. 

Coefficient 
of Variation 

Time 
Factor 

Uncond. 
Kurtosis 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.9045 -0.0498 254.50 0.1387 0.0549 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 70.9208 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 29.7040 

FTSE 0.4984 -0.0899 29.461 0.1428 0.0398 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 60.0982 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 12.5310 

DAX 0.3391 -0.1740 5.7004 0.0782 0.0207 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 22.6601 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 7.8243 

Nikkei 0.4031 -0.1681 4.74 0.1557 0.0629 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 45.0403 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 17.8154 

Bund 0.4519 -0.0814 6.8716 0.1661 0.1009 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 65.9331 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 18.9436 

BTP 0.4268 -0.1665 5.0590 0.1638 0.0826 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 48.1248 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 20.4784 

Gilt 0.3710 -0.1775 5.7580 0.1116 0.0663 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 37.0817 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 12.8546 

US T-Bond 0.4637 -0.0572 5.3650 0.2080 0.1643 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 88.0371 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 34.1694 

D-mark 0.3415 -0.2432 5.4460 0.0804 0.0139 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 22.3236 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 5.0201 

Pound 0.4064 -0.1613 6.53 0.1140 0.0655 
GBM 0.1612 -0.5331 2.989 --0.00124 0.0031 35.5084 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 13.2803 

Yen 0.3590 -0.2792 7.7897 0.0577 0.0087 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 17.2707 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 2.3600 

S-Franc 0.3111 -0.2458 5.0450 0.0660 0.0158 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 36.2483 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 4.1261 

Table 3.9, Comparisons of the Empirical Dynamics of Twelve Financial Futures Dispersion 
Processes with the Dynamics of a GBM Price Series with Constant Variance and the Best 
Student-t distribution with Constant Variance. 

For all twelve markets, either Student-t distributions T3 or T4 were the 

optimal distributions. It is interesting to note that these two distributions have the 

highest kurtosis statistics of any of the series. 
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These results are hardly surprising. Bates (1991) and Naik and Lee (1990) 

indicate that the 1987 stock market crash was clearly an indication of a jump and both 

papers go on to develop models for pricing options on securities with nondiversifiable 

jump risks. In the currency markets, Bates (1996) could not reject the absence of 

jumps in data for the currency markets during the 1980s and Jorion (1988) found 

jumps in the US Dollar versus Deutsche Mark exchange rate in the 1970s. 

Student-t Test Results for SubPeriods of Analysis 

An important issue is whether these results are period specific. Therefore, to 

test this hypothesis, the analysis was rerun for the observation period split into two 

portions. The analysis of the first half of the available observations can be seen in 

Tables 3.1Oa, 3.1Ob and 3.1Ob. 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(T-dist. ) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.9581 -0.0438 185.34 0.1247 0.0304 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 49.8419 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 34.3921 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 38.2731 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 21.1225 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 25.6531 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 37.0813 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 53.6804 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 38.9655 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 44.0655 

FTSE 0.5963 -0.0569 35.99 0.1615 0.0321 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 32.7907 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 20.5465 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 25.7418 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 10.3718 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 15.4610 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 22.3723 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 38.1241 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 24.0825 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 28.5711 

DAX 0.3612 -0.1740 6.17 0.0883 0.0153 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 12.8280 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 5.7743 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 10.0271 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 4.4459 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 4.5614 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 6.3753 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 17.9018 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 7.5079 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 10.3277 

Nikkei 03493 -0.1783 3.99 0.1458 0.0456 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 16.4677 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 9.7863 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 14.7138 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 9.0880 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 9.4645 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 10.5498 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 21.7733 
77 0.2064 -0.4241 4.89 -0.0026 -0.0031 11.6829 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 14.5607 

Table 3.10a, Results for Student-t Distribution Models for Four Stock Index Futures 
Assuming Price Series the Variance is Constant for the First Half of the Available 
Observations. 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(T-dist. ) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

Bund 0.5175 -0.0065 9.5135 0.1890 0.1103 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 37.5815 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 24.8480 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 33.0390 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 14.4586 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 22.6986 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 27.3637 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 44.3793 
Ti 0.2064 -0.4241 4.89 -0.0026 -0.0031 29.4599 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 34.0004 

BTP 0.5193 -0.1500 6.89 0.1971 0.0833 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 27.2153 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 18.5938 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 23.9204 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 15.3758 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 16.9749 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 20.0642 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 32.2760 
Ti 0.2064 -0.4241 4.89 -0.0026 -0.0031 21.4138 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 24.9040 

Gilt 0.3823 -0.1535 5.34 0.1228 0.0784 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 17.7907 
TI 0.2400 -0.3925 6.10 0.0045 0.0023 10.2935 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 15.3748 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 8.0175 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 9.3950 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 11.1236 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 23.1141 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 12.4660 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 15.4176 

US T-Bond 0.4863 -0.0399 4.54 0.2349 0.1845 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 45.9846 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 35.6233 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 43.3963 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 26.9706 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 34.2772 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 37.1946 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 52.7146 
17 0.2064 -0.4241 4.89 -0.0026 -0.0031 39.2502 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 43.0655 

Table 3.10b, Results for Student-t Distribution Models for Four Fixed Income Futures 
Assuming Price Series the Variance is Constant for the First Half of the Available 
Observations. 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(T-dist. ) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

D Mark 0.3309 -03000 5.36 0.0711 -0.0114 GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 6.3656 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 2.1262 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 4.5387 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 7.9757 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 2.1549 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 2.5647 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 9.8710 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 3.0408 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 4.8131 

Pound 0.3721 -0.1900 6.18 0.0917 0.0335 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 12.8628 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 6.0568 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 10.5300 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 6.2353 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 5.8328 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 6.5149 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 17.3894 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 7.6246 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 10.2354 

Yen 0.3383 -0.4014 7.10 0.0495 0.0005 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 3.2769 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 0.8417 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 1.6302 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 12.1470 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 1.4303 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 1.3284 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 5.1646 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 1.3514 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 2.2251 

S-Franc 0.3082 -0.2748 5.03 0.0665 0.0024 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 6.7588 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 2.1932 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 5.0413 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 6.8104 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 2.2300 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 2.5668 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 10.6567 
Ti 0.2064 -0.4241 4.89 -0.0026 -0.0031 3.1903 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 5.0640 

Table 3.10c, Results for Student-t Distribution Models for Four Foreign Exchange Futures 
Assuming Price Series the Variance is Constant for the First Half of the Available 
Observations. 

For the most part, the inclusion of the fat-tailed distributions has improved the 

fit of the model to the five attributes relative to the case of geometric Brownian 

motion. Table 3.11 compares the GBM case to the best of the t-distributions. 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.9581 -0.0438 185.34 0.1247 0.0304 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 49.8419 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 21.1225 

FTSE 0.5963 -0.0569 35.99 0.1615 0.0321 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 32.7907 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 10.3718 

DAX 0.3612 -0.1740 6.1734 0.0883 0.0153 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 12.8280 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 4.4459 

Nikkei 0.3493 -0.1783 3.9912 0.1458 0.0456 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 16.4677 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 9.0880 

Bund 0.5175 -0.0065 9.5135 0.1890 0.1103 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 37.5815 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 14.4586 

BTP 0.5193 -0.1500 6.8939 0.1971 0.0833 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 27.2153 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 15.3758 

Gilt 0.3823 -0.1535 5.3372 0.1228 0.0784 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 17.7907 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 8.0175 

US T-Bond 0.4863 -0.0399 4.5418 0.2349 0.1845 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 45.9846 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 26.9706 

D-mark 0.3309 -0.3000 5.3573 0.0711 -0.0114 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 6.3656 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 2.1262 

Pound 0.3721 -0.1900 6.18 0.0917 0.0335 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 12.8628 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 5.8328 

Yen 0.3383 -0.4014 7.1017 0.0495 0.0005 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 3.2769 
TI 0.2400 -0.3925 6.10 0.0045 0.0023 0.8417 

S-Franc 0.3082 -0.2748 5.0305 0.0665 0.0024 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 6.7588 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 2.1932 

Table 3.11, Comparisons of the Empirical Dynamics of Twelve Financial Futures Dispersion 
Processes with the Dynamics of a GBM Price Series with Constant Variance and the Best t- 
distribution with Constant Variance, fo r the First Half of the Available Observations. 

For the first period, the best Student-t distribution for most of the markets 

remained the T3 distribution (kurtosis of 12.23). For the currencies, three of the four 

markets were best fit by the Ti distribution (kurtosis of 6.10). The analysis for the 

second half of the observations can be seen in Tables 3.12a, 3.12b and 3.12c. 
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Markets Coefficient Time Uncond. Autocorr Autocorr 
(T-dist. ) of Variation Factor Kurtosis (0-20) (50-70) 

Sum of Squared 
Deviations 

S&P 500 0.3192 -0.2535 5.88 0.0596 0.0224 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 49.0282 
TI 0.2400 -0.3925 6.10 0.0045 0.0023 12.4521 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 28.8889 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 35.7603 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 25.5149 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 16.2858 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 57.3784 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 20.0671 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 31.2111 

FESE 03119 -0.1856 4.52 0.0888 0.0430 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 62.0476 
TI 0.2400 -0.3925 6.10 0.0045 0.0023 27.3332 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 53.6580 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 41.4783 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 48.8945 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 28.8973 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 79.4517 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 34.4323 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 47.3464 

DAX 0.2824 -0.1274 4.21 0.0481 0.0161 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 64.0125 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 28.4112 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 58.5486 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 31.0492 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 51.1586 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 27.6476 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 87.1313 
Ti 0.2064 -0.4241 4.89 -0.0026 -0.0031 34.2595 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 48.1721 

Nikkei 0.4381 -0.1056 5.87 0.1383 0.0704 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 125.2491 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 67.0493 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 93.5484 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 48.3928 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 68.6718 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 74.8994 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 139.3796 
17 0.2064 -0.4241 4.89 -0.0026 -0.0031 82.7041 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 102.2892 

Table 3.12a, Results for Student-t Distribution Models for Four Stock Index Futures 
Assuming Price Series the Variance is Constant for the Second Half of the Available 
Observations. 

Coefficient 
of Variation 

Time 
Factor 

Uncond. 
Kurtosis 
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Markets Coefficient Time Uncond. Autocorr Autocorr 
(T-dist. ) of Variation Factor Kurtosis (0-20) (50-70) 

Sum of Squared 
Deviations 

Bund 03818 -0.1004 4.66 0.1329 0.0805 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 110.5935 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 62.3857 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 94.0839 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 51.4817 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 76.2243 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 66.6627 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 130.6208 
77 0.2064 -0.4241 4.89 -0.0026 -0.0031 74.5850 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 92.3330 

BTP 03176 -0.2600 3.94 0.1014 0.0109 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 46.4193 
Tl 0.2400 -0.3925 6.10 0.0045 0.0023 21.9242 
72 0.2601 -0.4889 9.16 -0.0067 -0.0047 45.5553 
T3 0.2891 0.0000 12.23 

_ 
0.0085 -0.0026 58.0725 

T4 0.3165 -0.3294 15.26 0.0006 -0.0062 50.7561 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 22.4005 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 61.7353 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 26.1278 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 36.7198 

Gilt 0.3546 -0.1602 6.25 0.0950 0.0504 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 83.6713 
TI 0.2400 -0.3925 6.10 0.0045 0.0023 34.2612 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 56.2471 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 30.9329 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 39.9800 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 40.1223 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 95.7030 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 46.2131 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 61.8273 

US T-Bond 0.3133 -0.1906 5.8301 0.0641 0.0348 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 61.9444 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 20.4269 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 41.4303 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 28.6058 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 32.1379 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 24.0482 
T6 0.1986 -0.6300 4.54 --0.0041 0.0062 74.5533 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 29.2832 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 42.4454 

Table 3.12b, Results for Student-t Distribution Models for Four Fixed Income Futures 
Assuming Price Series the Variance is Constant for the Second Half of the Available 
Observations. 

Coefficient 
of Variation 

Time 
Factor 

Uncond. 
Kurtosis 
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Markets Coefficient Time Uncond. Autocorr Autocorr 
(T-dist. ) of Variation Factor Kurtosis (0-20) (50-70) 

Sum of Squared 
Deviations 

D Mark 03515 -0.1570 5.5237 0.0884 0.0379 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 77.8149 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 32.0372 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 55.9770 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 31.5012 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 42.2019 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 36.3953 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 92.3542 
77 0.2064 -0.4241 4.89 -0.0026 -0.0031 42.5531 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 57.9384 

Pound 0.4354 -0.0846 6.8103 0.1308 0.0937 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 138.0695 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 73.8484 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 99.4308 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 46.0396 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 69.5594 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 83.1021 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 150.7592 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 91.4571 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 111.7285 

Yen 0.3794 -0.1876 8.5897 0.0657 0.0110 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 85.3851 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 27.7165 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 40.7714 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 20.8299 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 19.7352 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 36.5883 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 89.5831 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 41.6962 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 57.7572 

S-Franc 0.3148 -0.1745 5.0631 0.0655 0.0318 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 62.3183 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 23.2820 
T2 0.2601 -0.4889 9.16 -0.0067 -0.0047 47.5528 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 31.2467 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 39.4081 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 25.5508 
T6 0.1986 -0.6300 4.54 -0.0041 0.0062 78.2949 
T7 0.2064 -0.4241 4.89 -0.0026 -0.0031 31.2269 
T8 0.1801 -0.4802 4.58 -0.0102 0.0018 44.6914 

Table 3.12c, Results for Student-t Distribution Models for Four Foreign Exchange Futures 
Assuming Price Series the Variance is Constant for the Second Half of the Available 
Observations. 

Coefficient 
of Variation 

Again, the inclusion of the fat-tailed distributions has improved the fit of the 

model to the five attributes relative to the case of geometric Brownian motion. Table 

3.13 compares the GBM case to the best of the t-distributions for the latter period. 

Time 
Factor 

Uncond. 
Kurtosis 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 03192 -0.2535 5.8823 0.0596 0.0224 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 49.0282 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 12.4521 

FTSE 0.3119 -0.1856 4.5168 0.0888 0.0430 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 62.0476 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 27.3332 

DAX 0.2824 -0.1274 4.2104 0.0481 0.0161 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 64.0125 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 27.6476 

Nikkei 0.4381 -0.1056 5.8671 0.1383 0.0704 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 125.2491 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 48.3928 

Bund 0.3818 -0.1004 4.6621 0.1329 0.0805 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 110.5935 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 51.4817 

BTP 0.3176 -0.2600 3.9391 0.1014 0.0109 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 46.4193 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 21.9242 

Gilt 0.3546 -0.1602 6.2497 0.0950 0.0504 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 83.6713 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 30.9329 

US T-Bond 0.3133 -0.1906 5.8301 0.0641 0.0348 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 61.9444 
TI 0.2400 -0.3925 6.10 0.0045 0.0023 20.4269 

D-mark 0.3515 -0.1570 5.5237 0.0884 0.0379 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 77.8149 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 31.5012 

Pound 0.4354 -0.0846 6.8103 0.1308 0.0937 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 138.0695 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 46.0396 

Yen 0.3794 -0.1876 8.5897 0.0657 0.0110 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 85.3851 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 19.7352 

S-Franc 0.3148 -0.1745 5.0631 0.0655 0.0318 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 62.3183 
TI 0.2400 -0.3925 6.10 0.0045 0.0023 23.2820 

Table 3.13, Comparisons of the Empirical Dynamics of Twelve Financial Futures Dispersion 
Processes with the Dynam ics of a GBM Price Series with Constant Variance and the Best t- 
distribution with Constant Variance for the Second Half of the Available Observations. 

In the second period, the optimal Student-t distribution now varies somewhat 

from either the first period or the overall period. Once again the Ti and T3 

distributions are the most common distributions which best explain the twelve 

markets. Two stock index futures are now better fit by the Ti distribution, as is the 
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BTP, US T-Bond and Swiss Franc. The T3 distribution is the best for another five 

financial futures. Thus, it would appear that since the same asset class will require 

different Student-t distributions at different times, we can conclude that the kurtosis of 

markets is consistently leptokurtic but the degree of excess kurtosis varies over time. 

In the latter period and for each of the twelve markets, the inclusion of an 

appropriate fat-tailed distribution will reduce the sum of the squared errors 

substantially relative to the case of the GBM model. In fact, of the 36 comparisons 

being made (the entire period, first and second sub periods for the 12 markets), in 

every case, the inclusion of a fat-tailed distribution improves the fit. The principal 

reasons for the improvement in the fit is due to the increased coefficient of variation 

(COV) condition and the increased kurtosis. A review of Tables 3.9,3.11 and 3.13 

indicates that the fat-tailed model does not address the autocorrelation conditions or 

the time (decay) factor of the unbiased standard deviations of the volatility. 

3.5 CONCLUSION 

In this Chapter, we have examined whether the time series of returns for 

twelve financial futures markets can be understood by security price process models 

that assume constant variance. Rather than accepting or rejecting these models based 

upon a single factor (such as excess kurtosis or autocorrelations in the absolute 

returns), we have examined a number of factors that address most of the divergences 

from normality pointed out in the literature. As a result of this analysis, we can 

identify exactly what aspects of non-normality exist for the empirical return series and 

which of these factors the models may address. 

Based on our analysis, we reject the hypothesis that the twelve financial 

futures markets return series follow Geometric Brownian motion. For each of the 
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attributes, the actual return series show behaviours that do not conform to the 

dynamics of a simulated time series of returns that conforms to Geometric Brownian 

motion. This has important implications for the understanding of options values. 

Given that many of the popular option pricing models [such as Black and 

Scholes (1973)] assume the asset return series conforms to GBM, this would suggest 

that these models do not conform to the empirical record. This result has profound 

implications for those who price options. Consider option market makers that 

assumed that the conditional dispersion process for the underlying asset price 

followed GBM for this period by using the Black Scholes formula. Then, over the life 

of the option, the actual dispersion processes of these markets did not conform to this 

assumption. This would imply that the prices for these options would have been ex 

ante incorrect. Therefore, options prices (for these twelve markets) would not be well 

understood by a Geometric Brownian Motion model (for this period of analysis). 

An alternative model for security price processes assumes that returns follow a 

Student-t distribution. This approach would be consistent with the jump-process 

model proposed by Merton (1976). When we compared the dynamics of the objective 

process for the twelve markets to eight series of simulated prices that were generated 

with such a distributional form, we observed that this model also failed to address 

many of the dynamics of the unconditional return series. It was shown that these 

models could explain two of the attributes (coefficient of variation of 20-day return 

volatility and the excess kurtosis) but failed to address the other three attributes 

(autocorrelations of absolute returns and the time decay factor of the volatility of 

volatility). Thus, it would appear that the jump-process model for option pricing also 

fail to conform to the empirical return series. Simply said, if this model cannot capture 
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the dynamics of the securities returns, we cannot expect it to capture the dynamics of 

contingent claims based upon these same securities. 

While it is clear that progress has been made in addressing the kurtosis and 

COV conditions, it is clear that we must evaluate models that can also address the 

other attributes that capture the dynamics of the objective process. We must examine 

models that explain the existence of positive autocorrelations in the absolute returns 

and allow us to capture the slow rate of decay of the volatility of volatility that is 

observed empirically. Such a family of models (which should address these 

conditions) are the stochastic volatility models outlined in Chapter one. These will be 

examined in the next two Chapters. 
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CHAPTER FOUR 
THE ANALYSIS OF OBJECTIVE PROBABILITIES IN FUTURES 
MARKETS: EXPLAINING THE EMPIRICAL DYNAMICS WITH 

MODELS ASSUMING STOCHASTIC VARIANCE 

4.1 INTRODUCTION 

In the previous Chapter, we have developed a methodology to test how well 

models with constant volatility explain the dynamics of empirical volatility for twelve 

financial futures markets. This process required the selection of attributes that were 

measurable, meaningful and independent gauges of volatility dynamics. Then, we 

minimised the sum of the standardised squared errors for the attributes generated by 

the model compared to the empirical attributes. 

The conclusions are that none of the twelve financial futures markets is well 

described by a geometric Brownian motion model. A better fit could be obtained by 

the inclusion of a Student-t distribution. However, the fat-tailed distribution failed to 

explain three of the attributes; the time decay of the standard deviation of the 

volatility and the average autocorrelations of the absolute returns. 

In this Chapter, we will examine an alternative family of security price process 

models that could potentially explain all the five attributes (and thus the dynamics of 

empirical volatility). These are the stochastic volatility models. We will continue the 

analysis completed for the previous Chapter. This will entail generating simulated 

price series that are consistent with the potential stochastic volatility models we will 

examine. In this Chapter, a significant difference is that we will employ an 

optimisation technique for the selection of the optimal parameters for each of the 

selected stochastic volatility models. 
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4.2 STOCHASTIC VOLATILITY MODELS USED IN THE ANALYSIS 

As was discussed in Chapter One, we have restricted our analysis to three 

models. These include: 

(1) The Hull & White approach (1987a) assumes that the variance follows a 

lognormal diffusion process and the square root of this process will provide the 

volatility parameter. This process can be written as: 

da = k(9 - a)dt + 4a " dZl (4.1) 

It should be noted that all the variables are defined in Chapter One and remain 

the same in this Chapter. While it is possible to model the stochastic volatility using 

the variance transformation suggested by Hull & White (1987a): 

V. = V; 
-i " e[k(e-a)-42n]dr+g. dz, (4.2) 

Then, to determine the volatility estimate, a, one could simply estimate 1V;. To 

confirm the accuracy of our computer code, we compared the results to a simple Euler 

approach with the same random variables and input parameters. 

Qr+t = at + da (4.3) 

There, the volatility tomorrow is equal to the discrete change in the volatility 

from today with the addition of the volatility change projected by equation (4.1). 

In this simulation, time is expressed as the percentage that one day represents 

in a trading year (of 252 days). The results of a comparison of two series of volatilities 

generated using formulae 4.2 and 4.3 were almost identical (out to the fourth decimal 

place and using the same series of draws from the normal distribution function). This 

test confirmed the accuracy of the computer code for both simulations and given the 

ease and accuracy of the Euler approach, this approach was used for the analysis. To 

save space, all simulations of this model will be referred to as "H&W". 
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(2) Alternatively, the Stein and Stein (1991) approach assumes that the 

volatility (absolute level) follows the Ornstein-Uhlenbeck (0-U) process. This model 

has the same functional form (seen as an equivalent) for volatilities as the Vasicek 

(1977) model has for interest rates. This process can be written as: 

dß = -k(6 - 6)dt +4" dZ, (4.4) 

A problem exists when simulating the O-U process. At first glance, the O-U 

process should be straightforward to simulate given that at any given point in time it is 

similar to a normal distribution. The difference for the O-U process is that time is 

measured as an exponential factor. For both a unit normal distribution [N(0,1)] and an 

O-U process, if we assume geometric Brownian motion, the initial estimation of the 

instaneous change will be identical. However, in the next unit of time, the O-U 

process no longer is distributed as a unit normal distribution. Therefore, to simulate 

the process correctly, we must substitute the expected mean and variance of the O-U 

process. The expected mean can be expressed as: 

ETO [6T I= µT = 6To " C-(T -TO) + e[1- e(-K(T -To)) ] (4.5) 

and the expected variance can be expressed as: 

VarTo [6T ]=2/ 21c " [1- e-c2"(T, -To) ] (4.6) 

In our case, T, -To is equal to 1/252 (which is the percentage that one day 

represents in our assumed trading year). This time increment was chosen because it is 

the same time increment used for the empirical estimation of the volatility cones 

presented previously. With the modified mean and variance, we have all the elements 

required to simulate the O-U process. The mean of the process as well as the standard 

deviation can be estimated from the above formula. To generate the simulated 

volatility series, we simply apply the following formula: 
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6T = µT +I 6T-12 - N(0,1)] (4.7) 

Once we have estimated the mean using the previous simulated volatility 

estimate, we then determine the standard deviation of the volatility process and 

multiply this by a standard unit normal distribution function that used a Box-Muller 

approach. 

As with the Vasicek model, where a possibility exists of negative interest 

rates, there is a possibility of negative volatilities. To correct for this problem, we 

used the principle of reflection about the origin to assure if any resulting volatility was 

negative, the absolute value was taken. Another approach to correct for possible 

negative results is to take the square of the Ornstein-Uhlenbeck process and hence is 

reflected at zero. Perraudin and Sorensen (1997) point out that for some parameter 

values, this approach is exactly the same as the Heston (1993) approach in which the 

instantaneous variance is a square-root process. ' Thus, to provide some differentiation 

between the two models, we chose to reflect the estimated volatility at the origin 

rather than square the volatility and thus be redundant with the Heston model. 

To make sure the model was correctly coded we then estimated the volatility 

series for the same series of random variables and the same parameters using a simple 

Euler approach. The results were almost identical (out to four decimal places) which 

confirms the accuracy of the computer coding. As with the Hull & White (1987a) 

model, for ease of estimation, we chose to use the Euler approach rather than use the 

O-U approach. As before, this approach used: 

at+, = at +da (4.8) 

1 If one applies Ito's lemma, it can be shown for some parameter values that squaring an Ornstein- 
Uhlenbeck process yields a square-root process. 

149 



There, the volatility tomorrow is equal to the discrete change in the volatility 

from today with the addition of the volatility change projected by equation (4.4). Tests 

of this model will be referred to as the "S&S" model. 

(3) Heston (1993) proposes another stochastic volatility model that states that 

the variance follows the following process: 

d62 =k(9-a2)dt+ýa. dZ1 (4.9) 

Taylor (1994) described this in terms of the volatility process (page 186) as: 

da =1 (0 - kc 2 )dt +4" dZ, (4.10) 
or 

When these simulations were run, we then applied a simple Euler method to 

estimate the volatility series. We found that the results were identical out to the third 

decimal place compared to the Bessel approach suggested by Cox, Ingersoll and Ross 

(1985). Thus, for all of our simulations, we applied the Euler approach to estimate the 

volatility series generated by this model. Again, this model applied the following 

formula: 

6, +, =0 +da (4.11) 

There, the volatility tomorrow is equal to the discrete change in the volatility 

from today with the addition of the volatility change projected by equation (4.10). 

Tests of this model will be referred to at the "HES" model. 

For all of these models, x indicates the degree of mean reversion, a is the 

observed unconditional volatility, 0 is the long-term conditional (instaneous) volatility 

and 4 is the volatility of the volatility. These variables are the same as the ones used in 

Chapter One. 

As previously discussed, we have identified what we consider to be the key 

attributes that describe the empirical distribution of the financial futures markets. 
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With these observed attributes, we can now test the three alternative stochastic 

volatility models and find those models (and appropriate parameters) that minimise 

the difference for all these attributes between the models and the markets. For these 

models we have three unknown parameters: x, the degree of mean reversion, 0, the 

long-term conditional volatility and 4, the volatility of the volatility. The 

unconditional volatility, ß, was set equal to the long-term volatility at the initial of the 

simulation. 

As with the test performed for normality, we will continue to use the method 

of minimising the sum of squared differences between the attributes generated by the 

models and the attributes associated with the markets. In addition, these tests will 

provide useful feedback as to which attributes the models are able to explain and 

exactly why they fail. 

This approach is similar in spirit to research on models of the short-term 

interest rate completed by Chan, Karolyi, Longstaff and Sanders (1992). In their 

research, they examined all eight alternative models that had been proposed for 

modelling short-term interest rates. By using a similar Generalised Method of 

Moments estimation technique, they were able to find the models that most 

successfully capture the dynamics of the short-term interest rate. This also is 

consistent with the approach used by Ho, Perraudin and Sorensen (1996) where they 

formulated and tested a pricing model for equities that included both random jumps 

and stochastic volatility. This research will include both elements of these papers. We 

will also test for models that include stochastic volatility alone and later incorporate 

jumps in a similar spirit to the latter paper. We differ from that paper, in that we will 

also assess which stochastic volatility models are more consistent with the dynamics 

of volatility (both alone and combined with jumps). Thus, using all the relevant 
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categories of stochastic volatility models, we will simulate volatility processes. Then 

we will compare these simulated processes with the empirical results. This will also 

allow us to demonstrate which models and which parameters are best in describing the 

dynamics of the volatility process. 

4.3 CALIBRATION OF STOCHASTIC VOLATILITY MODELS 

A key problem in the use of the stochastic volatility model is the calibration of 

the input parameters into the model. Specifically, we are interested in determining 

both the rate of mean reversion for the volatility process and the variance of the 

volatility itself. Scott (1994) estimates the latter by choosing parameters such that the 

selected moments from the model are close to the sample moments computed from 

empirical asset price changes. We will employ a similar approach. The difference is 

that we will run simulations of the models and then optimise the simulations to fit the 

observed empirical moments. 

To test the degree that these models fit the empirical cone data and the 

unbiased standard deviations of the volatility we were able to determine, the three 

models were simulated to generate a series of 2000 random daily volatilities. These 

volatilities were then used as input into a standard asset pricing model of the usual 

form: 

dS = Sµ " dt + Sä " dZl (4.12) 

As with the previous test for assessing if the financial futures prices follow a 

lognormal dispersion process with constant variance, we will assume the interest rates 

are zero. Again, this is reasonable since we are assuming the price series are futures 

prices and can adjust the usual drift terms. 
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The same formula (as equation (3.2)) was used for the generation of the price 

series when testing whether the twelve financial futures markets followed the 

assumption of GBM with constant variance. For these simulations, two alternations 

were made. The first is that the term a, reflects the volatilities estimated from the 

various models tested and the previous day's volatility estimate is used to estimate 

today's new asset price. The second modification was for all of these simulations, one 

series of random normal distributions were used. This series was the one selected 

previously as being the closest to the average results (and theoretical expectations) for 

100 simulations of random prices. This was to allow for direct comparison of the 

models without having the water muddied due to the random nature of the normal 

distribution generation function. 2 

With the series of 2000 prices determined these prices were imported into the 

programmes used to describe the empirical dynamics of the twelve financial futures 

markets. These programmes included the determination of the kurtosis of each series, 

the volatility cone analysis and the estimation of the autocorrelograms. For each of the 

three stochastic volatility models, 200 simulations were run with a variety of different 

parameter inputs. These results were run through the MSSE technique to select the 

best performing models. Thereafter, an optimisation technique was utilised to find the 

mix of parameters that minimised the sum of the standardised squared differences. 

Optimisation was achieved by comparing the best performing model to models 

that varied each of the three parameters. Given that we allowed the parameters to vary 

up and down by small increments, there were eight possible candidates. We found that 

2 This may introduce biases. To test for this a trial run was completed for one of the 
simulations with another set of randomly chosen normal distributions and the results 
were within the range of variation that would be expected from the sampling error of 
the 100 simulations run previously. 
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the key factors were the rate of reversion, x, and the volatility of the volatility, ý. The 

long-term volatility, 0, had almost no effect. Thus, our analysis only varied x and 4. 

This meant that we were searching for the better fitting model from a neighbouring 

square. For each simulation, we varied the two parameters and if one of the corners of 

the neighbouring square (four alternative models) was a better fit, this would replace 

the initial best fitting model. The search routine continued looking at the neighbouring 

square (a new set of four alternative models) until none of the new four models 

yielded a better result. The search first used fairly high increments in the search (for 

example 1.0 for x and 0.1 for 4) and then we progressively reduced the increments to 

find the optimal solution (for example, as low as 0.01 for x and 0.0001 for 4). 

For the Hull & White (1987a) model, we had to input four parameters, namely 

the current volatility, a, the long-term volatility, 0, the rate of reversion, x and the 

volatility of the volatility, 4. For the H&W simulations, the initial seed parameter 

values were taken from Hull & White (1987a). Using their values, it became clear that 

their choice of parameter values could lead to difficulties. For a number of 

simulations, it became impossible to arrive at a reasonable result. The reason was that 

the simulated volatility series would fall to zero and remain at this level for the 

remainder of the simulation. This was due to the volatility of the volatility parameter 

being too large. Hull and White (1987a) indicate this problem with their model (when 

they were pricing options) and they indicate that if the volatility of the volatility 

parameter is too large, the series will not converge properly. We found that an upper 

limit of the volatility of volatility parameter exists, beyond which the model ceases to 

work properly. From the Hull & White formula, we can determine the critical level by 

setting the first term of the equation equal to the second term. When this is done, it is 

trivial to show that: 
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ý <_ Z0 (4.13) 

This states that the maximum allowable volatility of volatility must be equal to 

the square root of two times the mean reversion factor times the long-term volatility. 

With this result, we were able to restrict our selection of parameters to provide 

meaningful results. After 200 simulations were completed, we selected the best 8 

models using the MS SE criteria. These input parameters are presented in Tables 4.1. 

Simulation Run Q N A 
H&W 1 0.20 0.20 16 0.63 
H&W2 0.20 0.20 16 0.32 
H&W3 0.20 0.20 8 0.45 
H&W4 0.15 0.15 16 0.55 
H&W5 0.15 0.15 16 0.27 
H&W6 0.15 0.15 8 0.39 
H&W7 0.15 0.15 2 0.39 
H&W8 0.10 0.10 16 0.45 

Table 4.1, Initial Parameter Values for Hull & White Simulations 

In the spirit of the Stein and Stein (1991) paper [pages 736-737] various seed 

values were input which would characterise different asset classes. While Stein and 

Stein ran simulations for stock indices and individual stocks, we only drew upon the 

parameters for the stock index futures we were examining. Once again 200 

simulations were run and the eight best are presented in Table 4.2. 

Simulation Run g 0 t 
S&S 1 0.20 0.20 4 0.15 
S&S2 0.20 0.20 8 0.15 
S&S3 0.20 0.20 16 0.30 -- 
S&S4 0.15 0.15 4 0.1150 
S&S5 0.15 0.15 4 0.1125 
S&S6 0.05 0.05 4 0.025 
S&S7 0.05 0.05 4 0.0375 
S&S8 0.20 0.20 2 0.15 

Table 4.2, Initial Parameter Values for Stein & Stein Simulations 

The final approach to modelling the stochastic volatility was the use of the 

Heston model. The parameter values were similar to those used by Hull & White 
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(1988) and Heston (1993). As with the previous approaches 200 simulations were run 

and the best eight models are presented in Table 4.3. These parameters were: 

Simulation Run g 0 x 9 
HES 1 0.20 0.20 4 0.30 
HES2 0.20 0.20 8 0.30 
HES3 0.20 0.20 8 0.60 
HES4 0.15 0.15 4 0.225 
HES5 0.15 0.15 8 0.45 
HES6 0.15 0.15 4 0.1125 
HES7 0.10 0.10 4 0.15 
HES8 0.05 0.05 2 0.0375 

Table 4.3, Initial Parameter Values for Heston Simulations 

4.4 ANALYSIS OF STOCHASTIC VOLATILITY MODELS (ENTIRE PERIOD) 

Optimal Parameters for the Three Stochastic Volatility Models (Entire Period) 

This yielded 24 potential candidates to explain the empirical dynamics for the 

twelve financial futures markets. After applying the optimisation search method 

outlined above, we selected the best models for each of the twelve financial futures. In 

the following Table, we present the input parameters for the best fitting models. 

Market / Model g 0 x 
S&P 500 

H&W 0.20 0.20 18.97 1.530 
S&S 0.15 0.15 5.01 0.853 
HES 0.20 0.20 3.00 0.56 

FTSE 
H&W 0.15 0.15 16.7 1.04 
S&S 0.20 0.20 2.96 0.25 
HES 0.20 0.20 2.40 0.482 

DAX 
H&W 0.20 0.20 19.6 0.865 
S&S 0.15 0.15 5.72 0.1805 
HES 0.15 0.15 7.55 0.422 

Nikkei 225 
H&W 0.20 0.20 15.82 1.124 
S&S 0.15 0.15 3.81 0.2155 
HES 0.20 0.20 3.41 0.461 
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Market / Model g 0 x 9 
Bund 

H&W 0.10 0.10 15.02 0.949 
S&S 0.20 0.20 1.62 0.220 
HES 0.10 0.10 2.79 0.311 

BTP 
H&W 0.20 0.20 15.28 1.161 
S&S 0.05 0.05 3.63 0.0745 
HES 0.20 0.20 2.43 0.463 

Gilt 
H&W 0.20 0.20 15.54 0.937 
S&S 0.15 0.15 3.55 0.1675 
HES 0.05 0.05 2.33 0.0805 

US T-Bond 
H&W 0.15 0.15 1.48 0.878 
S&S 0.20 0.20 0.84 0.236 
HES 0.20 0.20 1.01 0.381 

D Mark 
H&W 0.20 0.20 19.58 0.736 
S&S 0.05 0.05 4.15 0.041 
HES 0.05 0.05 7.43 0.125 

Pound 
H&W 0.20 0.20 16 0.980 
S&S 0.20 0.20 2.93 0.211 
HES 0.20 0.20 2.86 0.374 

Yen 
H&W 0.20 0.20 16.29 0.484 
S&S 0.20 0.20 8.17 0.249 
HES 0.20 0.20 10.6 0.594 

S-Franc 
H&W 0.20 0.20 19.53 0.670 
S&S 0.15 0.15 4.41 0.1175 
HES 0.15 0.15 5.72 0.277 

Table 4.4, Parameter values for the Best of the Three Stochastic Volatility 
Models for the Twelve Financial Futures Markets. 

For all the models, most of the parameter values are similar across the 

different markets. The exception is for the US T-Bond that has an extremely low 

mean reversion parameter. Furthermore, the S&S and HES parameters seem to be 

related. One will- observe that the volatility of volatility parameter of the HES model 

approximately twice the S&S parameter for the same market. This is to be expected 

[see Perraudin and Sorensen (1997) referred to previously]. 

Results for the Three Stochastic Volatility Models (Entire Period) 

The results of the optimisation appear in Tables 4.5a, 4.5b and 4.5c. For the 

sake of comparisons, the GBM model appears in Italics. 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Best Model) Of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.9045 -0.0498 254.50 0.1387 0.0549 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 70.9208 
H&W 0.4399 -0.1198 4.91 0.2242 0.0692 21.5903 
S&S 0.4711 -0.2143 5.05 0.2203 0.0293 20.3151 
HES 0.4606 -0.1316 4.62 0.2579 0.1128 22.9015 

FTSE 0.4984 -0.0899 29.461 0.1428 0.0398 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 60.0982 
H&W 0.3477 -0.1097 3.935 0.1611 0.0692 3.9898 
S&S 0.3370 -0.1380 3.63 0.1562 0.0704 4.6166 
HES 0.3911 -0.1250 4.03 0.2044 0.0875 5.8586 

DAX 0.3391 -0.1740 5.7004 0.0782 0.0207 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 22.6601 
H&W 0.2532 -0.1865 3.13 0.0907 0.0342 0.6909 
S&S 0.2849 -0.2203 3.25 0.1138 0.0303 1.1510 
HES 0.2858 -0.2579 3.27 0.1130 0.0184 2.0412 

Nikkei 0.4031 -0.1681 4.74 0.1557 0.0629 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 45.0403 
H&W 0.3427 -0.1279 3.86 0.1580 0.0591 0.4476 
S&S 0.3448 -0.1608 3.66 0.1619 0.0599 0.2007 
HES 0.3962 -0.1189 4.15 0.1985 0.0897 0.2358 

Table 4.5a, Best Fitting Models for Four Stock Index Futures Assuming Price Series are 
Lognormally Distributed and the Variance is Stochastic. 

Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Best Model) Of Variation Factor Kurtosis (0-20) (50-70) Deviations 

Bund 0.4519 -0.0814 6.8716 0.1661 0.1009 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 65.9331 
H&W 0.3800 -0.0734 4.41 0.1792 0.0958 0.4187 
S&S 0.3621 -0.0879 3.88 0.1729 0.1049 0.5426 
HES 0.4397 -0.1289 4.48 0.2376 0.0924 2.8489 

BTP 0.4268 -0.1665 5.0590 0.1638 0.0826 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 48.1248 
H&W 0.3586 -0.1208 4.01 0.1696 0.0641 0.7532 
S&S 0.3577 -0.1553 3.74 0.1734 0.0658 0.4432 
HES 0.3907 -0.1140 4.12 0.1944 0.0877 0.9210 

Gilt 0.3710 -0.1775 5.7580 0.1116 0.0663 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 37.0817 
H&W 0: 2922 -0.1450 3.43 0.1201 0.0484 0.7741 
S&S 0.2938 -0.1654 3.33 0.1225 0.0509 0.6061 
HES 0.2918 -0.1308 3.39 0.1176 0.0620 0.7973 

US T-Bond 0.4637 -0.0572 5.3650 0.2080 0.1643 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 88.0371 
H&W 0.4589 -0.0449 5.84 0.2164 0.1494 0.1753 
S&S 0.4233 -0.0499 4.37 0.2173 0.1591 0.1489 
HES 0.5308 -0.0937 5.84 0.2612 0.1288 0.3342 

Table 4.5b, Best Fitting Models for Four Fixed Income Futures Assuming Price Series are 
Lognormally Distributed and the Variance is Stochastic. 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Best Model) Of Variation Factor Kurtosis (0-20) (50-70) Deviations 

D Mark 03415 -0.2432 5.4460 0.0804 0.0139 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 22.3236 
H&W 0.2262 -0.2102 2.96 0.0707 0.0297 1.0850 
S&S 0.2290 -0.2169 2.95 0.0730 0.0316 1.0752 
HES 0.2678 -0.2609 3.17 0.0988 0.0191 0.6015 

Pound 0.4064 -0.1613 6.53 0.1140 0.0655 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 35.5084 
H&W 0.3033 -0.1425 4.256 0.1286 0.0500 0.6766 
S&S 0.2992 -0.1461 4.219 0.1264 0.0595 0.5611 
HES 0.3078 -0.1427 4.246 0.1315 0.0606 0.5749 

Yen 0.3590 -0.2792 7.7897 0.0577 0.0087 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 17.2707 
H&W 0.1888 -0.2574 2.76 0.0436 0.0251 2.0723 
S&S 0.2490 -0.2836 3.01 0.0804 0.0166 1.3337 
HES 0.2606 -0.3162 3.16 0.0887 0.0098 1.5363 

S-Franc 0.3111 -0.2458 5.0450 0.0660 0.0158 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 36.2483 
H&W 0.2140 -0.2245 2.89 0.0618 0.0276 0.7027 
S&S 0.2442 -0.2062 3.03 0.0842 0.0343 0.6185 
HES 0.2512 -0.2142 3.08 0.0889 0.0316 0.4771 

Table 4.5c, Best Fitting Models for Four Foreign Exchange Futures Assuming Price Series 

are Lognormally Distributed and the Variance is Stochastic. 

At this stage, we will compare the three models discussed so far: the GBM, the 

best of the Student-t distributions and the best of the stochastic volatility models that 

assume the underlying asset follows GBM. This can be seen in Table 4.6. 

Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Model) Of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.9045 -0.0498 254.50 0.1387 0.0549 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 70.9208 
1'3 0.2891 0.0000 12.23 0.0085 -0.0026 29.7040 
S&S 0.4711 -0.2143 5.05 0.2203 0.0293 20.3151 

FTSE 0.4984 -0.0899 29.461 0.1428 0.0398 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 60.0982 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 12.5310 
H&W 0.3477 -0.1097 3.935 0.1611 0.0692 3.9898 

DAX 0.3391 -0.1740 5.7004 0.0782 0.0207 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 22.6601 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 7.8243 
H&W 0.2532 -0.1865 3.13 0.0907 0.0342 0.6909 

Nikkei 0.4031 -0.1681 4.74 0.1557 0.0629 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 45.0403 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 17.8154 
S&S 0.3448 -0.1608 3.66 0.1619 0.0599 0.2007 
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Markets Coefficient Time Uncond. Autocour Autocorr Sum of Squared 
(Model) Of Variation Factor Kurtosis (0-20) (50-70) Deviations 

Bund 0.4519 -0.0814 6.8716 0.1661 0.1009 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 65.9331 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 18.9436 
H&W 0.3800 -0.0734 4.41 0.1792 0.0958 0.4187 

BTP 0.4268 -0.1665 5.0590 0.1638 0.0826 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 48.1248 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 20.4784 
S&S 0.3577 -0.1553 3.74 0.1734 0.0658 0.4432 

Gilt 0.3710 -0.1775 5.7580 0.1116 0.0663 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 37.0817 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 12.8546 
S&S 0.2938 -0.1654 3.33 0.1225 0.0509 0.6061 

US T-Bond 0.4637 -0.0572 5.3650 0.2080 0.1643 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 88.0371 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 34.1694 
S&S 0.4233 -0.0499 4.37 0.2173 0.1591 0.1489 

D-Mark 0.3415 -0.2432 5.4460 0.0804 0.0139 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 22.3236 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 5.0201 
HES 0.2678 -0.2609 3.17 0.0988 0.0191 0.6015 

Pound 0.4064 -0.1613 6.53 0.1140 0.0655 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 35.5084 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 13.2803 
S&S 0.2992 -0.1461 4.219 0.1264 0.0595 0.5611 

Yen 0.3590 -0.2792 7.7897 0.0577 0.0087 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 17.2707 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 2.3600 
S&S 0.2490 -0.2836 3.01 0.0804 0.0166 1.3337 

S-Franc 0.3111 -0.2458 5.0450 0.0660 0.0158 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 36.2483 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 4.1261 
HES 0.2512 -0.2142 3.08 0.0889 0.0316 0.4771 

Table 4.6, Comparisons of the Empirical Dynamics of Twelve Financial Futures Dispersion 
Processes with the Dynamics of a GBM Price Series with Constant Variance versus the Best 
t-distribution with Constant Variance and the Best Stochastic Volatility Model that assumes 
the Underlying Price Series is Lognormal. 

From this table, we can see that the best of the stochastic volatility models 

have much greater success (compared to the previous models with constant variance) 

in explaining the dynamics of the twelve financial futures markets. All the models 

seem to explain well the time attribute and the autocorrelation attributes but fail to 

address the COV conditions and do not explain the high kurtosis we observe in the 

markets. Of the twelve markets, the S&P 500 and the FTSE 100 have the worst fits, 
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while the Nikkei and the US T-Bond have the closest fits. Even so, most of the other 

markets have SSEs that are below 1.0. 

Regarding which stochastic volatility model is best, it appears that that all the 

models are equally effective in explaining the dynamics of the twelve markets. On the 

margin, it does appear that the Stein & Stein model is slightly better than the Hull & 

White model, which is in turn slightly better than the Heston model. Therefore, we 

conclude that the choice of the stochastic volatility model does not appear to be 

critical. Nevertheless, all the models still fail to address the relatively high kurtosis 

(and COV) conditions that we observe empirically. 

4.5 ANALYSIS OF STOCHASTIC VOLATILITY MODELS (FIRST PERIOD) 

Optimal Parameters for the Three Stochastic Volatility Models (First Period) 

To test whether these results are period specific the observation period was 

split into halves and the analysis rerun for each sub-period. The optimised parameter 

values appear for the first period in Table 4.7. 

Market / Model 

S&P 500 
H&W 
S&S 
HES 

FESE 
H&W 
S&S 
HES 

DAX 
H&W 
S&S 
HES 

Nikkei 225 
H&W 
S&S 
HES 

g 0 x 9 

0.20 0.20 20.7 1.7 
0.15 0.15 3.2 0.2325 
0.20 0.20 3.1 0.41 

0.15 0.15 27.5 1.51 
0.20 0.20 3.00 0.27 
0.20 0.20 3.00' 0.50 

0.20 0.20 21.9 0.99 
0.15 0.15 4 0.1525 
0.15 0.15 4.8 0.305 

0.20 0.20 24.2 1.31 
0.15 0.15 4.4 0.2125 
0.20 0.20 4.4 0.5 
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Market / Model a 0 x 9 

Bund 
H&W 0.10 0.10 12.2 0.83 
S&S 0.20 '0.20 1.1 0.220 
HES 0.10 0.10 2.9 0.28 

BTP 
H&W 0.20 0.20 15.3 1.36 
S&S 0.05 0.05 2.90 0.0875 
HES 0.20 0.20 2.4 0.46 

Gilt 
H&W 0.20 0.20 12.4 0.93 
S&S 0.15 0.15 3.20 0.1725 
HES 0.05 0.05 1.8 0.0775 

US T-Bond 
H&W 0.15 0.15 2.4 0.97 
S&S 0.20 0.20 0.70 0.28 
HES 0.20 0.20 0.5 0.37 

D Mark 
H&W 0.20 0.20 39.3 1.13 
S&S 0.05 0.05 4.00 0.025 
HES 0.05 0.05 4.1 0.06 

Pound 
H&W 0.15 0.15 22 0.85 
S&S 0.20 0.20 3.1 0.18 
HES 0.20 0.20 4.2 0.39 

Yen 
H&W 0.20 0.20 19.2 0.33 
S&S 0.20 0.20 9.00 0.15 
HES 0.20 0.20 17.7 0.71 

S-Franc 
H&W 0.20 0.20 40.6 1.16 
S&S 0.15 0.15 4.3 0.1025 
HES 0.15 0.15 7.7 0.335 

Table 4.7, Parameter values for the Best of the Three Stochastic Volatility Models for the 
Twelve Financial Futures Markets for the First Half of the Available Observations. 

For the most part, the optimised parameter values for the first half of the 

available observations are similar to those of the entire period. For example, for the 

fixed income markets, the parameters are almost unchanged. The only important 

differences are for the Gilt, where the Hull & White ic increased slightly and the x 

parameters also changed for the US T-Bond, falling for the Hull & White model and 

rising for the other two models. The biggest change in the parameter values occurred 

for the stock index futures and currency futures. 

For the S&P 500, the volatility of the volatility parameter (4), rose for the S&S 

and HES models. However, the rate of mean reversion remained relatively stable. For 

the H&W models, both factors fell. For the FTSE, the S&S model is essentially 
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unchanged, while the x parameter fell for HES and rose for H&W. The DAX was 

almost the same for the H&W model but both 4 and x rose for the other two models. 

For the Nikkei, the S&S and HES are similar in both periods, although the x is lower 

for the HES model and the H&W model. 

For the currency futures, significant differences in the parameter values are 

observed. The British Pound had an increase in the ic, but a reduction in the 4 

parameters (except for the Heston model). The D-Mark and the S-Franc both display 

different changes relative to the British Pound but similar to each other. For the H&W 

models, the x and the 4 parameters drop significantly. The S&S models are basically 

the same and the HES. models see an increase in both parameters for the Deutsche 

Mark3 and a reduction in the parameters for the Swiss Franc. For the Japanese Yen, all 

the model parameters are significantly different for the first period relative to the 

overall period. The x parameters have fallen for all three models and the 4 parameters 

have risen for the H&W and S&S models, while falling for the HES model. 

Considering the stability of the parameter values is important from a 

theoretical as well as practical point of view. First of all, the parameter x, indicates the 

rate of mean reversion and thus indicates how quickly volatility shocks are dissipated. 

3 While our approach uses the objective return series to obtain the optimal parameters, other approaches 
have appeared in the literature. Guo (1996) also examined the US Dollar/Deutsche Mark for a period 
similar to our first period. The first difference is that he looked at the currency options that are based on 
the spot currency and are traded at the Philadelphia Stock Exchange. The second difference is that he 
calibrated his Heston model using a non-linear least square estimator which was applied to the risk- 
neutral stochastic variance process (that is option prices). He decided to follow the Whaley (1982) and 
Bates (1996) equally-weighted non-linear least square approaches they suggested. The parameters were 
chosen to minimise the distance between the observed option prices and the predicted option prices 
from the Heston model. The parameter values he obtained were almost exactly twice those we 
obtained. From subsequent simulations, we were able to determine that the parameters for these 
stochastic volatility models have a homogeneity property, where if all the parameter values are 
multiplied by a constant the results are not substantially changed. Thus, when we doubled the 
parameter values for the Heston model reported in Table 4.7 and reran the simulation, the results were 
only slightly different. In Table 4.8c, we obtained a sum of the squared errors of 2.1342 for our 
parameters and a sum of squared errors of 3.5212 for the parameter values of Guo. While these are not 
exactly the same, it must be remembered that we are looking at different markets and for not exactly 
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The higher the value, the faster this dissipation occurs. Secondly, the volatility of 

volatility parameter, ý, indicates how unstable the volatility is. Clearly, by examining 

how these parameters change overtime, we can gain theoretical insights into changes 

in the behaviour of market volatility. From a practical standpoint, it is relevant if the 

parameter values differ widely over different time horizons, which would suggest that 

the fitting of these models is period specific. This would imply that out of sample 

applications of these models would be greatly reduced. While variability does exist in 

the parameters, they are for the most part similar in both periods, especially for the 

fixed income futures markets. 

Given that the rate of mean reversion factor, x, is lower in the first period 

(overall) relative to the entire period, this might suggest that volatility shocks were 

slower to dissipate in the early period. This could lead to the conclusion that overall, 

the dissipation is occurring at a faster rate. To examine this properly, we will examine 

the parameter values of the best fitting stochastic volatility models for the second half 

of the observations to see if the rate of mean reversion has continued to increase. 

Results for the Three Stochastic Volatility Models (First Period) 

With these parameters and assuming the underlying price series follows GBM, 

the attributes were estimated. These were then compared to the attributes of the 

twelve markets and the sum of the squared deviations were determined. This can be 

seen in Tables 4.8a, 4.8b and 4.8c for the three asset classes. 

the same time period. Nevertheless, it is comforting that our results are similar to those presented 
elsewhere. 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Best Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.9581 -0.0438 185.34 0.1247 0.0304 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 49.8419 
H&W 0.4903 -0.1139 5.59 0.2543 0.0756 19.0367 
S&S 0.3826 -0.1397 3.94 0.1926 0.0797 26.5192 
HES 0.3245 -0.1457 3.58 0.1449 0.0622 27.2188 

FTSE 0.5963 -0.0569 35.99 0.1615 0.0321 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 32.7907 
H&W 0.4237 -0.1269 4.72 0.2134 0.0634 4.8381 
S&S 0.3551 -0.1364 3.75 0.1703 0.0751 7.4042 
HES 0.3797 -0.1388 3.92 0.1966 0.0759 6.8844 

DAX 0.3612 -0.1740 6.17 0.0883 0.0153 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 12.8280 
H&W 0.2714 -0.1843 3.25 0.1042 0.0343 0.6725 
S&S 0.2512 -0.2386 3.06 0.0885 0.0252 1.0775 
HES 0.2832 -0.2004 3.27 0.1130 0.0360 1.0318 

Nikkei 0.3493 -0.1783 3.99 0.1458 0.0456 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 16.4677 
H&W 0.3337 -0.1682 3.77 0.1491 0.0388 0.0336 
S&S 0.3304 -0.1734 3.55 0.1504 0.0517 0.0356 
HES 0.3382 -0.1803 3.63 0.1570 0.0469 0.0344 

Table 4.8a, Best Fitting Models for Four Stock Index Futures Assuming Price Series are 
Lognormally Distributed & the Variance is Stochastic (First Half of Available Observations). 

Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Best Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

Bund 0.5175 -0.0065 9.51 0.1890 0.1103 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 37.5815 
H&W 0.3572 -0.0690 4.21 0.1602 0.0940 1.4893 
S&S 0.4148 -0.0614 4.31 0.2110 0.1441 1.8641 
HES 0.4181 -0.1268 4.42 0.2121 0.0799 3.9158 

BTP 0.5193 -0.1500 6.89 0.1971 0.0833 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 27.2153 
H&W 0.4257 -0.1053 4.75 0.2163 0.0795 0.5697 
S&S 0.4371 -0.1431 4.42 0.2320 0.0830 0.7728 
HES 0.3959 -0.1185 4.15 0.1982 0.0899 0.9253 

Gilt 0.3823 -0.1535 5.34 0.1228 0.0784 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 17.7907 
H&W 6.3142 

-0.1197 3.63 0.1358 0.0606 0.4499 
S&S 0.3098 -0.1510 3.44 0.1350 0.0592 0.5707 
HES 0.3088 -0.1081 3.54 0.1281 0.0746 0.6801 

US T-Bond 0.4863 -0.0399 4.54 0.2349 0.1845 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 45.9846 
H&W 0.5052 -0.0451 6.61 0.2441 0.1636 0.2528 
S&S 0.4644 -0.0341 4.55 0.2521 0.2024 0.0606 
HES 0.5008 -0.0489 5.41 0.2420 0.1674 0.2113 

Table 4.8b, Best Fitting Models for Four Fixed Income Futures Assuming Price Series are 
Lognormally Distributed & the Variance is Stochastic (First Half of Available Observations). 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Best Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

D Mark 0.3309 -03000 5.36 0.0711 -0.0114 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 6.3656 
H&W 0.2441 -0.2662 3.07 0.0810 0.0152 0.7117 
S&S 0.1818 -0.2905 2.72 0.0392 0.0230 2.1950 
HES 0.2023 -0.2456 2.82 0.0531 0.0268 2.1342 

Pound 0.3721 -0.1900 6.18 0.0917 0.0335 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 12.8628 
H&W 0.2660 -0.1620 4.17 0.1004 0.0415 0.3928 
S&S 0.2638 -0.1655 4.15 0.0989 0.0473 0.4352 
HES 0.2739 -0.1901 4.17 0.1062 0.0392 0.3290 

Yen 0.3383 -0.4014 7.10 0.0495 0.0005 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 3.2769 
H&W 0.1612 -0.3782 2.63 0.0256 0.0186 1.7893 
S&S 0.1825 -0.3677 2.70 0.0395 0.0148 1.7989 
HES 0.2404 -0.4009 3.13 0.0673 0.0042 0.9272 

S-Franc 0.3082 -0.2748 5.03 0.0665 0.0024 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 6.7588 
H&W 0.2436 -0.2694 3.07 0.0804 0.0146 0.3706 
S&S 0.2077 -0.2404 2.84 0.0573 0.0277 1.0692 
HES 0.2428 -0.2763 3.02 0.0808 0.0180 0.5255 

Table 4.8c, Best Fitting Models for Four Foreign Exchange Futures Assuming Price Series 
Lognormally Distributed & the Variance is Stochastic (First Half of Available Observations). 

As before, we will summarise the relative goodness of fit for the three models 

discussed so far just for the period that has the first half of the available data. 

Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.9581 -0.0438 185.34 0.1247 0.0304 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 49.8419 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 21.1225 
H&W 0.4903 -0.1139 5.59 0.2543 0.0756 19.0367 

FTSE 0.5963 -0.0569 35.99 0.1615 0.0321 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 32.7907 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 10.3718 
H&W 0.4237 -0.1269 4.72 0.2134 0.0634 4.8381 

DAX 0.3612 -0.1740 6.1734 0.0883 0.0153 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 12.8280 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 4.4459 
H&W 0.2714 -0.1843 3.25 0.1042 0.0343 0.6725 

Nikkei 0.3493 -0.1783 3.9912 0.1458 0.0456 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 16.4677 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 9.0880 
H&W 0.3337 -0.1682 3.77 0.1491 0.0388 0.0336 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

Bund 0.5175 -0.0065 9.5135 0.1890 0.1103 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 37.5815 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 14.4586 
H&W 0.3572 -0.0690 4.21 0.1602 0.0940 1.4893 

BTP 0.5193 -0.1500 6.8939 0.1971 0.0833 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 27.2153 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 15.3758 
H&W 0.4257 -0.1053 4.75 0.2163 0.0795 0.5697 

Gilt 03823 -0.1535 53372 0.1228 0.0784 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 17.7907 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 8.0175 
H&W 0.3142 -0.1197 3.63 0.1358 0.0606 0.4499 

US T-Bond 0.4863 -0.0399 4.5418 0.2349 0.1845 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 45.9846 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 26.9706 
S&S 0.4644 -0.0341 4.55 0.2521 0.2024 0.0606 

D-Mark 03309 -03000 5.3573 0.0711 -0.0114 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 6.3656 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 2.1262 
H&W 0.2441 -0.2662 3.07 0.0810 0.0152 0.7117 

Pound 0.3721 -0.1900 6.18 0.0917 0.0335 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 12.8628 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 5.8328 
HES 0.2739 -0.1901 4.17 0.1062 0.0392 0.3290 

Yen 03383 -0.4014 7.1017 0.0495 0.0005 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 3.2769 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 0.8417 
HES 0.2404 -0.4009 3.13 0.0673 0.0042 0.9272 

S-Franc 03082 -0.2748 5.0305 0.0665 0.0024 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 6.7588 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 2.1932 
H&W 0.2436 -0.2694 3.07 0.0804 0.0146 0.3706 

Table 4.9, Comparisons of the Empirical Dynamics of Twelve Financial Futures Dispersion 
Processes with the Dynamics of a GBM Price Series with Con stant Variance versus the Best 
t-distribution with Constant Variance and the Best Stochastic Volatility Model that assumes 
the Underlying Price Series is Lognormal (Analysis Period included the First Half of the 
Available Observations). 

As with the entire period, the inclusion of the stochastic volatility model 

significantly improves the explanatory power compared to the assumption that 

volatility is constant and the underlying price series follows GBM. However, for one 

market, the Japanese Yen, the best of the t-distributions (assuming constant volatility) 

is slightly better at explaining this market's dynamics than the best stochastic volatility 

model. The stochastic volatility models almost perfectly explain the behaviour of the 
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US T-Bond and Nikkei 225 futures for this period. While the stochastic volatility 

models for the other markets are better than the models assuming constant volatility, 

there is still a substantial error for the S&P 500 and FTSE 100. The remaining error is 

primarily due to the inability of the models to explain the high excess kurtosis in these 

markets and address the relatively high COV conditions. 

Nevertheless, the results are similar to those observed for the entire period. 

The conclusion is that stochastic volatility models are superior to models which 

assume constant volatility for the entire period from the mid 1980s to the mid 1990s 

and in the period of the late 1980s. Now, we will examine how well these models 

perform in the first half of the 1990s. 

4.6 ANALYSIS OF STOCHASTIC VOLATILITY MODELS (SECOND PERIOD) 

Optimal Parameters for the Three Stochastic Volatility Models (Second Period) 

As before, the previous best fitting models for the entire period were examined 

and the optimisation was run to achieve the best fit for each of the twelve markets. 

The accompanying parameter values of these best fitting models appear below in 

Table 4.10. 

Market / Model g 0 

S&P 500 
H&W 0.20 0.20 36.1 1.34 
S&S 0.15 0.15 5.475 0.1825 
HES 0.20 0.20 7.32 0.544 

FESE 
H&W 0.15 0.15 20.1 1.03 
S&S 0.20 0.20 3.95 0.225 
HES 0.20 0.20 4.02 0.404 

DAX 
H&W 0.20 0.20 19.6 0.86 
S&S 0.15 0.15 3.1 0.12 
HES 0.15 0.15 1.56 0.157 

Nikkei 225 
H&W 0.20 0.20 17.0 1.31 
S&S 0.15 0.15 2.925 0.2225 
HES 0.20 0.20 2.99 0.499 
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Market / Model g 9 K 9 

Bund 
H&W 0.10 0.10 12.6 0.83 
S&S 0.20 0.20 2.15 0.225 
HES 0.10 0.10 2.4 0.204 

BTP 
H&W 0.20 0.20 23.4 1.06 
S&S 0.05 0.05 5.9 0.07 
HES 0.20 0.20 6.6 0.526 

Gilt 
H&W 0.20 0.20 14.1 1.00 
S&S 0.15 0.15 3.9 0.195 
HES 0.05 0.05 2.04 0.0815 

US T-Bond 
H&W 0.15 0.15 21.8 1.04 
S&S 0.20 0.20 4.575 0.2325 
HES 0.20 0.20 4.27 0.401 

D Mark 
H&W 0.20 0.20 15.8 1.02 
S&S 0.05 0.05 6.325 0.0825 
HES 0.05 0.05 3.68 0.104 

Pound 
H&W 0.15 0.15 8.4 0.91 
S&S 0.20 0.20 1.525 0.2225 
HES 0.20 0.20 1.31 0.359 

Yen 
H&W 0.20 0.20 35.5 1.37 
S&S 0.20 0.20 7.375 0.4025 
HES 0.20 0.20 5.78 0.2947 

S-Franc 
H&W 0.20 0.20 20.7 0.999 
S&S 0.15 0.15 4.3 0.165 
HES 0.15 0.15 3.73 0.274 

Table 4.10, Parameter values for the Best of the Three Stochastic Volatility Models for the 
Twelve Financial Futures Markets for the Second Half of the Available Observations. 

As with the comparison of the first half of the observations to the entire 

period, the optimised parameter values for the second half of the available 

observations are similar to those of the other period. For example, for the fixed 

income markets, the 4 parameters are almost unchanged. However, the rate of mean 

reversion has risen substantially for all the fixed income futures markets. The most 

dramatic increase in the x parameter is for the US T-Bond. This result is consistent 

with the different pattern of the autocorrelogram observed for US T-Bond in the 

second period. This was presented in the second Chapter. For the other asset classes, 

we find that the volatility of volatility parameter has remained essentially the same 

and the only significant differences were in the mean reversion parameter. For the 
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S&P 500, FTSE (S&S & HES), Deutsche Mark (S&S) and Japanese Yen (H&W), the 

x parameter has risen. For the DAX, Nikkei, British Pound and Swiss Franc, the x 

parameter has fallen. 

Again, it is important to consider the stability of the parameter values. It 

appears that the volatility of volatility parameter is fairly stable over time. What does 

differ significantly over time is the rate of the mean reversion factor, x. It appears that 

in the first half of the 1990s, this parameter value is higher suggesting that most of the 

markets under investigation are absorbing volatility shocks at a faster rate. This 

implies that mean reversion is becoming relatively more important in the dynamics of 

financial futures volatility. 

Results for the Three Stochastic Volatility Models (Second Period) 

With these optimised parameter values, we reran the analysis for the second 

period. This analysis appears in Tables 4.1 la, 4.1 lb and 4.11c. 

Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Best Model) Of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.3192 -0.2535 5.88 0.0596 0.0224 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 49.0282 
H&W 0.2905 -0.2276 3.41 0.1137 0.0187 9.7687 
S&S 0.2718 -0.2189 3.18 0.1043 0.0308 11.3546 
HES 0.2849 -0.2514 3.29 0.1107 0.0205 10.2973 

FTSE 0.3119 -0.1856 4.52 0.0888 0.0430 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 62.0476 
H&W 0.2897 -0.1669 3.39 0.1181 0.0400 2.9198 
S&S 0.2868 -0.1771 3.28 0.1167 0.0457 3.2152 
HES 0.2877 -0.1797 3.32 0.1167 0.0436 3.0586 

DAX 0.2824 -0.1274 4.21 0.0481 0.0161 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 64.0125 
H&W 0.2520 -0.1874 3.12 0.0898 0.0340 5.6524 
S&S 0.2509 -0.1731 3.09 0.0890 0.0437 5.7853 
HES 0.2380 -0.1373 3.10 0.0731 0.0489 4.9376 

Nikkei 0.4381 -0.1056 5.87 0.1383 0.0704 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 125.2491 
H&W 0.3885 -0.1218 4.32 0.1907 0.0655 5.9381 
S&S 0.3800 -0.1331 3.92 0.1905 0.0833 8.0306 
HES 0.3845 -0.1324 4.06 0.1910 0.0740 7.1501 

Table 4. lla, Best Fitting Models for Four Stock Index Futures Assuming Price Series are 
Lognormally Distributed & the Variance is Stochastic (Second Half of Available Observations). 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Best Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

Bund 03818 -0.1004 4.66 0.1329 0.0805 
GBM 0.1612 -0.5331 2.989 . 0.00124 0.0031 110.5935 
H&W 0.3523 -0.0720 4.14 0.1572 0.0910 1.6543 
S&S 0.3476 -0.1098 3.74 0.1634 0.0879 2.5147 
HES 0.3508 -0.1239 3.78 0.1675 0.0798 2.7445 

BTP 0.3176 -0.2600 3.94 0.1014 0.0109 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 46.4193 
H&W 0.2846 -0.1837 3.35 0.1136 0.0340 3.6506 
S&S 0.2920 -0.2207 3.29 0.1192 0.0301 2.1956 
HES 0.2902 -0.2357 3.32 0.1158 0.0246 1.5724 

Gilt 0.3546 -0.1602 6.25 0.0950 0.0504 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 83.6713 
H&W 0.3238 -0.1231 3.70 0.1436 0.0600 9.0557 
S&S 0.3239 -0.1669 3.52 0.1457 0.0540 9.9379 
HES 0.3102 -0.1153 3.53 0.1305 0.0721 10.1372 

US T-Bond 0.3133 -0.1906 5.83 0.0641 0.0348 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 61.9444 
H&W 0.2832 -0.1775 3.41 0.1137 0.0187 9.2693 
S&S 0.2797 -0.1952 3.23 0.1110 0.0387 9.9182 
HES 0.2790 -0.1891 3.25 0.1100 0.0397 9.6783 

Table 4.11b, Best Fitting Models for Four Fixed Income Futures Assuming Price Series are 
Lognormally Distributed & the Variance is Stochastic (Second Half of Available Observations). 

Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Best Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

D Mark 03515 -0.1570 5.52 0.0884 0.0379 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 77.8149 
H&W 0.3206 -0.1800 3.66 0.1415 0.0566 7.2055 
S&S 0.3271 -0.2252 3.54 0.1440 0.0274 9.0777 
HES 0.3063 -0.1652 3.46 0.1314 0.0510 7.6615 

Pound 0.4354 -0.0846 6.81 0.1308 0.0937 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 138.0695 
H&W 0.3927 -0.0637 4.62 0.1859 0.1056 7.3074 
S&S 0.3703 -0.0830 3.95 0.1789 0.1108 10.7054 
HES 0.3820 -0.0831 4.10 0.1826 0.1105 9.6288 

Yen 0.3794 -0.1876 8.59 0.0657 0.0110 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 85.3851 
H&W 0.3360 -0.1758 3.79 0.1498 0.0351 22.7850 
S&S 0.3363 -0.2477 3.62 0.1462 0.0175 24.2428 
HES 0.2947 -0.2222 3.32 0.1239 0.0308 25.2071 

S-Franc 0.3148 -0.1745 5.06 0.0655 0.0318 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 62.3183 
H&W 0.2787 -0.1755 3.31 0.1097 0.0370 6.3877 
S&S 0.2737 -0.1922 3.20 0.1066 0.0394 7.0211 
HES 0.2740 -0.1778 3.22 0.1062 0.0432 6.7714 

Table 4.11c, Best Fitting Models for Four Foreign Exchange Futures Assuming Price Series 
Lognormally Distributed & the Variance is Stochastic (Second Half of Available Observations). 
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While for each of the markets some improvement in the fit is achieved with 

the addition of the optimal stochastic volatility models (and parameters), it is 

interesting to note that the sum of the squared errors is much higher than in the two 

other periods. This is primarily due to the fact that the stochastic volatility models fail 

to address the excess kurtosis in the markets. 

As with the two previous analyses, we will compare the GBM model, the best 

of the Student-t distributions and the best of the stochastic volatility models. This can 

be seen in Table 4.12. 

Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.3192 -0.2535 5.8823 0.0596 0.0224 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 49.0282 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 12.4521 
H&W 0.2905 -0.2276 3.41 0.1137 0.0187 9.7687 

FTSE 0.3119 -0.1856 4.5168 0.0888 0.0430 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 62.0476 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 27.3332 
H&W 0.2897 -0.1669 3.39 0.1181 0.0400 2.9198 

DAX 0.2824 -0.1274 4.2104 0.0481 0.0161 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 64.0125 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 27.6476 
HES 0.2380 -0.1373 3.10 0.0731 0.0489 4.9376 

Nikkei 0.4381 -0.1056 5.8671 0.1383 0.0704 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 125.2491 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 48.3928 
H&W 0.3885 -0.1218 4.32 0.1907 0.0655 5.9381 

Bund 0.3818 -0.1004 4.6621 0.1329 0.0805 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 110.5935 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 51.4817 
H&W 0.3523 -0.0720 4.14 0.1572 0.0910 1.6543 

BTP 0.3176 -0.2600 3.9391 0.1014 0.0109 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 46.4193 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 21.9242 
HES 0.2930 -0.2318 3.30 0.1217 0.0275 1.6896 

Gilt 0.3546 -0.1602 6.2497 0.0950 0.0504 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 83.6713 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 30.9329 
H&W 0.3238 -0.1231 3.70 0.1436 0.0600 9.0557 

US T-Bond 0.3133 -0.1906 5.8301 0.0641 0.0348 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 61.9444 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 20.4269 
H&W 0.2832 -0.1775 3.41 0.1137 0.0187 9.2693 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

D-Mark 03515 -0.1570 5.5237 0.0884 0.0379 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 77.8149 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 31.5012 
H&W 0.3206 -0.1800 3.66 0.1415 0.0566 7.2055 

Pound 0.4354 -0.0846 6.8103 0.1308 0.0937 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 138.0695 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 46.0396 
H&W 0.3927 -0.0637 4.62 0.1859 0.1056 7.3074 

Yen 0.3794 -0.1876 8.5897 0.0657 0.0110 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 85.3851 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 19.7352 
H&W 0.3360 -0.1758 3.79 0.1498 0.0351 22.7850 

S-Franc 0.3148 -0.1745 5.0631 0.0655 0.0318 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 62.3183 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 23.2820 
H&W 0.2787 -0.1755 3.31 0.1097 0.0370 6.3877 

Table 4.12, Comparisons of the Empirical Dynamics of Twelve Financial Futures Dispersion 
Processes with the Dynamics of a GBM Price Series with Con stant Variance versus the Best 
t-distribution with Constant Variance a nd the Best Stochastic Volatility Model that assumes 
the Underlying Price Series is Lognormal (Analysis Period included the Second Half of the 
Available Observations). 

As with the two previous analyses, the inclusion of the stochastic volatility 

model significantly improves the explanatory power compared to the assumption that 

volatility is constant and the underlying price series follows GBM. However, it is 

interesting to note that for one market, the Japanese Yen, the best of the t-distributions 

(assuming constant volatility) is better at explaining these market's dynamics than the 

best stochastic volatility model. When compared to the same analysis for the second 

period, the stochastic volatility models are much less effective in explaining the 

behaviour of the twelve markets. Not a single market has a SSE less than 1.0. 

4.7 CONCLUSION 

In this Chapter, we have examined whether the dynamics of the objective 

processes for twelve financial futures markets can be understood by security price 

process models that assume returns following GBM but allow the volatility to be 
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stochastic. As with the previous Chapter, we have examined a number of factors that 

address most of the divergences from normality pointed out in the literature and tested 

which of these factors the three stochastic volatility models may address. 

Having previously rejected Geometric Brownian motion as a solution for 

capturing the dynamics of the objective process, we have found that the inclusion of a 

stochastic volatility to the GBM assumption does capture significantly more of the 

dynamics of the returns series for the twelve financial futures markets. We conclude 

that stochastic volatility models are superior to models that assume constant volatility 

for all three periods. However, the models are less effective in the mid-1990s than 

either for the late 1980s or for the overall period. Furthermore, we found that there 

was not a significant difference in the three stochastic volatility models tested once 

the optimal parameters for each model had been selected. 

We found that the (best) stochastic volatility model was able to explain the 

three attributes that were not addressed by the Student-t distribution model examined 

in the previous Chapter. Specifically, this class of models was able to capture the 

dynamics of the time (decay) factor of the volatility of the volatility and the two 

autocorrelation factors. Unfortunately, these models were not able to capture the 

coefficient of variation (of the unconditional volatility at 20 days) or the excess 

kurtosis of the return series. Thus, it would appear that a security price process model 

that assumes GBM and stochastic volatility would not be adequate to understand the 

objective processes for the twelve financial futures under investigation, either. As 

before, if these models fail to capture all the dynamics of the underlying asset 

dispersion process, we cannot expect to understand the dynamics of contingent claims 

on these same assets. 
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At this point, we have demonstrated that in all cases, the inclusion of a fat- 

tailed distribution provides a better fit for observed financial futures markets 

volatilities than an assumption of GBM. Furthermore, in 33 of the 36 cases, we were 

able to determine that some (optimised) stochastic volatility model would fit the 

observed empirical behaviours better than a fat-tailed distribution with constant 

volatility. However, these two approaches were able to capture different aspects 

(attributes) of the unconditional process. Given this, it is not unreasonable to expect 

that by combining both approaches, the resulting models might be able to capture all 

the dynamics of the objective processes. Bates (1996) and Ho, Perraudin and 

Sorensen (1996) have previously suggested this in the literature. Both papers 

suggested that both jump process and stochastic volatility are required together to 

explain the dynamics of objective processes. Therefore, we will turn our attention in 

the next Chapter to this class of models that combine both approaches. 
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CHAPTER FIVE 
THE ANALYSIS OF OBJECTIVE PROBABILITIES IN FUTURES 
MARKETS: EXPLAINING THE EMPIRICAL DYNAMICS WITH 

MODELS ASSUMING STOCHASTIC VARIANCE AND THE 
UNDERLYING ASSET PRICES FOLLOW A STUDENT-T 

DISTRIBUTION 

5.1 INTRODUCTION 

For this final Chapter of the first part of the dissertation, we will combine both 

approaches discussed in the previous two Chapters combining fat-tailed distributions 

and stochastic volatility models. As before, we will optimise the results to achieve the 

best fitting model. Unfortunately, we must now optimise over four parameters. As 

before, we must examine three parameters for the stochastic volatility models: x, the 

degree of mean reversion, 0, the long term conditional volatility and 4, the volatility 

of the volatility. For this simulation, we must also simulate across different possible 

Student-t distributions that have different levels of excess kurtosis. We will 

demonstrate that this approach lead to significant improvement in understanding the 

dynamics of the objective processes. 

5.2 ANALYSIS OF COMBINATION MODELS FOR THE ENTIRE PERIOD 

The procedures followed these steps. First, we selected the same eight 

simulated t-distributions (that were used in Chapter 3) and the simulated volatility 

series generated by the three stochastic volatility models (examined in the last 

Chapter). Then we simulated new price series that assumed the price innovation 

followed (each of) the Student-t distributions and the volatility dynamics were 

captured by (each of) the stochastic volatility models. Thereafter, the best model (and 

t-distribution) was used as the seed for an optimisation routine to minimise the SSE. 
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The best fitting parameter values for each stochastic volatility model and the optimal 

Student-t distribution are summarised in Tables 5.1a, 5.1b and 5.1c. 

Parameter Estimation for Combination Models for the Entire Period 

Markets Initial Long Term Mean Volatility of 
(Best Model) Volatility Volatility Reversion Volatility t- id at 

S&P 500 
H&W 0.20 0.20 21.7 2.111 72 (k=9.16) 
S&S 0.20 0.20 1.52 1.11 T2 (k=9.16) 
HES 0.20 0.20 1.61 0.701 72 (k=9.16) 

FTSE 
H&W 0.20 0.20 12.1 1.375 T2 (k=9.16) 
S&S 0.20 0.20 1.79 0.371 T2 (k=9.16) 
HES 0.20 0.20 1.91 0.589 T2 (k=9.16) 

DAX 
H&W 0.15 0.15 3.82 0.652 T4 (k=15.26) 
S&S 0.20 0.20 1.095 0.1625 TI (k=6.10) 
HES 0.20 0.20 0.9 0.25 TI (k=6.10) 

Nikkei 
H&W 0.10 0.10 3.78 0.856 T4 (k=15.26) 
S&S 0.20 0.20 1.69 0.298 T3 (k=12.23) 
HES 0.20 0.20 1.3 0.44 T3 (k=12.23) 

Table 5. la, Parameters for the Best Fitting Models for Four Stock Index Futures Assuming Price 
Series follow a Student-t Distribution and the Variance is Stochastic. 

Markets Initial Long Term Mean Volatility of 
(Best Model) Volatility Volatility Reversion Volatility disc 

Bund 
H&W 0.10 0.10 3.37 0.853 T3 (k=12.23) 
S&S 0.20 0.20 0.68 0.252 73 (k=12.23) 
HES 0.20 0.20 1.7 0.62 T3 (k=12.23) 

BTP 
H&W " 0.10 0.10 3.71 0.901 T4 (k=15.26) 
S&S 0.20 0.20 1.37 0.338 T3 (k=12.23) 
HES 0.20 0.20 1.91 0.525 T3 (k=12.23) 

Gilt 
H&W 0.15 0.15 1.87 0.735 T4 (k=15.26) 
S&S 0.20 0.20 1.57 0.23 T3 (k=12.23) 
HES 0.05 0.05 2.1 0.12 TI (k=6.10) 

US T-Bond 
H&W 0.10 0.10 3.75 1.023 T3 (k=12.23) 
S&S 0.20 0.20 0.08 0.322 T3 (k=12.23) 
HES 0.15 0.15 0.19 0.67 T3 (k=12.23) 

Table 5.1 b, Parameters for the Best Fitting Models for Four Fixed Income Futures Assuming 
Price Series follow a Student-t Distribution and the Variance is Stochastic. 
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Markets Initial Long Term Mean Volatility of 
(Best Model) Volatility Volatility Reversion Volatili L Bist 

D-Mark 
H&W 0.15 0.15 9.35 0.725 T4 (k=15.26) 
S&S 0.20 0.20 2.46 0.212 TI (k=6.10) 
HES 0.20 0.20 2.44 0.36 Ti (k=6.10) 

Pound 
H&W 0.20 0.20 2.2 0.770 T4 (k=15.26) 
S&S 0.20 0.20 1.21 0.216 T4 (k=15.26) 
HES 0.20 0.20 1.25 0.435 T3 (k=12.23) 

Yen 
H&W 0.15 0.15 7.77 0.599 T4 (k=15.26) 
S&S 0.20 0.20 2.71 0.174 T4 (k=15.26) 
HES 0.20 0.20 3.11 0.355 TI (k=6.10) 

S-Franc 
H&W 0.15 0.15 9.4 0.685 T4 (k=15.26) 
S&S 0.20 0.20 2.53 0.195 T3 (k=12.23) 
HES 0.20 0.20 1.82 0.372 Ti (k=6.10) 

Table 5.1 c, Parameters for the Best Fitting Models for Four Foreign Exchange Futures 
Assuming Price Series follow a Student-t Distribution and the Variance is Stochastic. 

It is interesting to note that the parameter values for the mean reversion and 

the volatility of volatility have changed dramatically compared with the parameters 

for the stochastic volatility models with the GBM assumption. It is clear why this is 

the case. The parameter values are now interacting with the inclusion of the fat-tailed 

distribution. Given that different fat-tailed distributions are appropriate to different 

markets, it is not possible to interpret the changes in the parameter values in any 

meaningful manner. It will suffice to say that the stochastic volatility parameters have 

fallen for the most part due to the fact that the inclusion of the fat-tailed distribution is 

addressing some of the elements these models had previously addressed. Given this 

difficulty in the interpretation of changes in parameter values for the stochastic 

volatility models, we will not attempt to lend economic rationale to changing 

parameter values from this point forward. 
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Results for Combination Models for the Entire Period 

Nevertheless, the inclusion of the fat-tailed distribution to the stochastic volatility 

models has a dramatic effect in explaining the dynamics of empirical volatility. This can be 

seen in Tables 5.2a, 5.2b and 5.2c. 

Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Best Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.9045 -0.0498 254.50 0.1387 0.0549 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 70.9208 
H&W 0.7508 -0.1285 39.04 0.1809 0.0509 4.3262 
S&S 0.6668 -0.1334 35.05 0.1602 0.0756 6.1777 
HES 0.6194 -0.1488 36.00 0.1359 0.0463 5.6107 

FTSE 0.4984 -0.0899 29.46 0.1428 0.0398 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 60.0982 
H&W 0.5929 0.0000 27.90 0.1302 0.0572 0.8267 
S&S 0.5693 -0.1452 26.16 0.1243 0.0638 1.1632 
HES 0.5857 -0.1366 27.73 0.1283 0.0600 0.9613 

DAX 0.3391 -0.1740 5.70 0.0782 0.0207 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 22.6601 
H&W 0.3783 -0.2062 8.08 0.0790 0.0396 0.4914 
S&S 0.3752 -0.1923 7.79 0.0669 0.0399 0.4109 
HES 0.3873 -0.1791 7.98 0.0753 0.0451 0.3895 

Nikkei 0.4031 -0.1681 4.74 0.1557 0.0629 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 45.0403 
H&W 0.4707 -0.1515 9.38 0.1362 0.0720 0.7212 
S&S 0.4576 -0.1649 8.74 0.1348 0.0697 0.5657 
HES 0.4989 -0.1446 9.67 0.1569 0.0858 0.4800 

Table 5.2a, Results for the Best Fitting Models fo r Four Stock Index Futures Assuming Price 
Series follow a Student-t Distribution and the Va riance is Stochastic. 

Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Best Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

Bund 0.4519 -0.0814 6.87 0.1661 0.1009 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 65.9331 
H&W 0.4920 -0.0793 10.69 0.1605 0.1086 0.2100 
S&S 0.4836 -0.0837 7.87 0.1590 0.1256 0.2575 
HES 0.5462 -0.1355 11.40 0.1775 0.0874 1.1437 

BTP 0.4268 -0.1665 5.06 0.1638 0.0826 
GBM 61612 -0.5331 2.989 -0.00124 0.0031 48.1248 
H&W 0.5046 -0.1459 10.03 0.1549 0.0809 0.6114 
S&S 0.4781 -0.1518 9.04 0.1472 0.0811 0.4695 
HES 0.4958 -0.1614 10.08 0.1524 0.0692 0.6276 

Gilt 03710 -0.1775 5.76 0.1116 0.0663 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 37.0817 
H&W 0.4196 -0.1721 8.61 0.1060 0.0573 0.2493 
S&S 0.4108 -0.1701 7.89 0.1076 0.0587 0.1670 
HES 0.4965 -0.2054 9.39 0.1250 0.0406 1.0665 

US T"Bond 0.4637 -0.0572 5.37 0.2080 0.1643 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 88.0371 
H&W 0.5705 -0.0673 13.10 0.2054 0.1349 1.3832 
S&S 0.5225 -0.0457 7.43 0.1865 0.1691 0.4379 
HES 0.5867 -0.0757 9.23 0.2164 0.1418 1.0986 

Table 5.2b, Results for the Best Fitting Models for Four Fixed Income Futures Assuming Price 
Series follow a Student-t Distribution and the Variance is Stochastic. 
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Markets 
(Best Model) 

D-Mark 
CBM 
H&W 
S&S 
HES 

Pound 
GBM 
H&W 
S&S 
HES 

Yen 
GBM 
H&W 
S&S 
HES 

S-Franc 
GBM 
H&W 
S&S 
HES 

Coefficient Time Uncond. 
of Variation Factor Kurtosis 

03415 
0.1612 
0.3725 
0.3866 
0.3862 

0.4064 
0.1612 
0.4291 
0.4215 
0.4533 

-0.2432 
-0.5331 
-0.2379 
-0.2508 
-0.2504 

-0.1613 
-0.5331 
-0.1654 
-0.1605 
-0.1556 

5.44 
2.989 
8.21 
7.85 
7.89 

6.53 
2.989 
5.166 
5.122 
5.103 

0.3590 
0.1612 
0.3445 
0.3473 
0.3679 

0.3111 
0.1612 
0.3657 
0.3668 
0.4217 

-0.2792 
-0.5331 
-0.2727 
-0.2792 
-0.2757 

. 0.2458 

-0.5331 
-0.2477 
-0.2465 
-0.2100 

7.79 
2.989 
7.92 
7.58 
7.61 

Autocon 
(0-20) 

0.0804 

-0.00124 
0.0695 
0.0696 
0.0700 

0.1140 

-0.00124 
0.1117 
0.1060 
0.1365 

0.0577 

-0.00124 
0.0524 
0.0546 
0.0602 

Autocorr 
(50-70) 

0.0139 
0.0031 
0.0246 
0.0227 
0.0218 

0.0655 
0.0031 
0.0591 
0.0568 
0.0689 

0.0087 
0.0031 
0.0187 
0.0114 
0.0149 

Sum of Squared 
Deviations 

22.3236 
0.2515 
0.2602 
0.2500 

35.5084 
0.5518 
0.5336 
0.7597 

17.2707 
0.0728 
0.0141 
0.0152 

5.05 0.0660 0.0158 
2.989 -0.00124 0.0031 36.2483 
8.14 0.0650 0.0221 0.2640 
8.71 0.0744 0.0265 0.3165 
8.38 0.0896 0.0388 0.8836 

Table 5.2c, Results for the Best Fitting Models for Four Foreign Exchange Futures Assuming 
Price Series follow a Student-t Distribution and the Variance is Stochastic. 

The inclusion of both the optimised stochastic volatility model and Student-t 

distribution had led to a dramatic improvement in the explanatory power of the model. 

For almost all markets, at least one model exists which has a sum of the squared errors 

less than one. The only exception is the S&P 500. Even so, the SSE for the S&P 500 

has dropped significantly. Furthermore, all the stochastic volatility models appear to 

perform relatively well in describing the dynamics of the empirical volatility once the 

fat-tailed distributions have been included. 

At this point, we will compare all the proposed models and assess which best 

explains the dynamics of the twelve financial futures markets for the entire period of 

the analysis period. This can be seen in the following Table 5.3. 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.9045 -0.0498 254.50 0.1387 0.0549 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 70.9208 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 29.7040 
S&S 0.4711 -0.2143 5.05 0.2203 0.0293 20.3151 
H&W (t) 0.7508 -0.1285 39.04 0.1809 0.0509 4.3262 

FTSE 0.4984 -0.0899 29.46 0.1428 0.0398 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 60.0982 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 12.5310 
H&W 0.3477 -0.1097 3.935 0.1611 0.0692 3.9898 
H&W (t) 0.5929 0.0000 27.90 0.1302 0.0572 0.8267 

DAX 03391 -0.1740 5.70 0.0782 0.0207 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 22.6601 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 7.8243 
H&W 0.2532 -0.1865 3.13 0.0907 0.0342 0.6909 
HES (t) 0.3873 -0.1791 7.98 0.0753 0.0451 0.3895 

Nikkei 0.4031 -0.1681 4.74 0.1557 0.0629 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 45.0403 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 17.8154 
S&S 0.3448 -0.1608 3.66 0.1619 0.0599 0.2007 
HES (t) 0.4989 -0.1446 9.67 0.1569 0.0858 0.4800 

Bund 0.4519 . 0.0814 6.87 0.1661 0.1009 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 65.9331 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 18.9436 
H&W 0.3800 -0.0734 4.41 0.1792 0.0958 0.4187 
H&W (t) 0.4920 -0.0793 10.69 0.1605 0.1086 0.2100 

BTP 0.4268 -0.1665 5.06 0.1638 0.0826 

GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 48.1248 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 20.4784 
S&S 0.3577 -0.1553 3.74 0.1734 0.0658 0.4432 
S&S (t) 0.4781 -0.1518 9.04 0.1472 0.0811 0.4695 

Gilt 0.3710 -0.1775 5.76 0.1116 0.0663 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 37.0817 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 12.8546 
S&S 0.2938 -0.1654 3.33 0.1225 0.0509 0.6061 
S&S (t) 0.4108 -0.1701 7.89 0.1076 0.0587 0.1670 

US T-Bond 0.4637 -0.0572 537 0.2080 0.1643 
GBM 0.1612 -0.5331 2.989 -0.00124 ' 0.0031 88.0371 

T3 0.2891 0.0000 12.23 0.0085 -0.0026 34.1694 
S&S 0.4233 -0.0499 4.37 0.2173 0.1591 0.1489 
S&S (t) 0.5225 -0.0457 7.43 0.1865 0.1691 0.4379 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

D-Mark 03415 -0.2432 5.45 0.0804 0.0139 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 22.3236 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 5.0201 
HES 0.2678 -0.2609 3.17 0.0988 0.0191 0.6015 
HES (t) 0.3862 -0.2504 7.89 0.0700 0.0218 0.2500 

Pound 0.4064 -0.1613 6.53 0.1140 0.0655 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 35.5084 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 12.9998 
S&S 0.2992 -0.1461 4.219 0.1264 0.0595 0.5611 
S&S (t) 0.4215 -0.1605 5.122 0.1060 0.0568 0.5336 

Yen 0.3590 -0.2792 7.79 0.0577 0.0087 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 17.2707 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 2.3600 
S&S 0.2490 -0.2836 3.01 0.0804 0.0166 1.3337 
S&S (t) 0.3473 -0.2792 7.58 0.0546 0.0114 0.0141 

S-Franc 0.3111 -0.2458 5.05 0.0660 0.0158 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 36.2483 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 4.1261 
HES 0.2512 -0.2142 3.08 0.0889 0.0316 0.4771 
H&W (t) 0.3657 -0.2477 8.14 0.0650 0.0221 0.2640 

Table 5.3, Comparisons of the Empirical Dynamics of Twelve Financial Futures Dispersion 
Processes with the Dynamics of a GBM Price Series with Con stant Variance versus the Best 
t-distribution with Constant Variance, the Best Stochastic Volatility Model that assume the 
Underlying Price Series is Lognormal and the Best Stochastic Volatility Model that assumes 
the Underlying Price Series follows a Student-t-distribution. 

As one can see from these tables, the inclusion of both fat-tailed distributions 

for the price series and the stochastic volatility models dramatically improve the fit of 

the models. In nine of the twelve markets, the addition of the fat-tailed distribution 

has led to improvements in the stochastic volatility models. The exceptions are the 

Nikkei and the BTP, where the addition of the fat-tailed distributions causes a small, 

marginal increase in the sum of squared errors. The US T-Bond is also somewhat 

worse by inclusion of the fat-tailed distribution. The optimal stochastic volatility 

model, which assumed GBM, had a sum of the squared errors of only 0.1489. The 

best fat-tailed stochastic volatility model has a sum of squared errors of 0.4379. 

However, these results should be put in perspective. If we compare the original errors 

from the GBM with constant volatility models (or even the fat-tailed distribution with 

constant volatility), it is clear that both versions of the stochastic volatility models are 
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a vast improvement. However, the greatest absolute improvement to explaining the 

dynamics of financial futures volatility is due to the choice of the appropriate 

stochastic volatility model. The choice of the dispersion process of the underlying 

asset price is secondary. However, it is clear that both elements contribute to 

explaining the dynamics of empirical volatility. The stochastic volatility models cover 

the autocorrelation and line fit conditions, while the fat-tailed distributions address the 

COV and kurtosis conditions. 

For the stock index futures, the DAX has the best fit, while both the FTSE and 

the Nikkei have SSE measures below one. The S&P 500 is the only market where the 

SSE measure still remains unacceptably high. Nevertheless, it has been reduced five- 

fold by the inclusion of the fat-tailed distribution relative to the simulation assuming 

normality (S&S). The failure to model the S&P 500 perfectly is due to the extremely 

high kurtosis and the high coefficient of variation condition values that are 

anomalous. This is due to the impact of the 1987 stock market crash that affected the 

S&P 500 more than any other of the assets under examination. To assess if this 

hypothesis is correct, we reran the analysis for the S&P 500 excluding the 

observations from the 15th to the 25th of October, 1987. Specifically, these ten days 

were assigned returns of zero and the analysis proceeded as before. 

Results of the Combination Models - S&P 500 (including/excluding the 1987 Crash) 

The exclusion of these ten days from the analysis has a dramatic impact on the 

dynamics of the S&P 500 return series. In Table 5.4, we compare the key attributes 

for the S&P 500 with and without the crash included. 
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S&P 500 Coefficient Time Uncond. Autocour Autocorr 
(Crash or Not) of Variation Factor Kurtosis (0-20) (50-70) 

With Crash 0.9045 -0.0498 254.50 0.1387 0.0549 

Without Crash 0.4404 -0.1076 11.53 0.1069 0.0706 

Table 5.4, Comparison of the S&P 500 Futures Dynamics including/excluding 1987 crash. 

Clearly, the exclusion of the 10 days surrounding the 1987 crash has a 

dramatic impact on the dynamics of the time series. The kurtosis drops by a factor of 

twenty. In addition, the coefficient of variation attribute has been reduced by one half. 

The time factor has now doubled when the crash is omitted. It is interesting that the 

autocorrelation attributes do not change as dramatically. 

With the crash excluded, we reran the simulations with the stochastic volatility 

models and the range of Student-t distributions to assess if it would now be possible 

to fit the S&P 500. The results of this analysis can be seen in Table 5.5. 

S&P 500 Initial Long Term Mean Volatility of 
(Best Model) Volatility Volatility Reversion Volatility ULM- 

Excluding 1987 Crash 

S&P 500 (Parameter Values) 
H&W 0.20 0.20 3.8 0.84 T2 (k=9.16) 
S&S 0.20 0.20 0.8 0.22 T4 (k=15.26) 
HES 0.20 0.20 0.91 0.32 T3 (k=12.23) 

Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Best Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 9.4404 -0.1076 11.53 0.1069 0.0706 
H&W 0.4845 -0.1250 15.60 0.1015 0.0697 0.4696 
S&S 0.4459 -0.1283 8.53 0.1246 0.0793 0.3576 
HES 0.4239 -0.1440 7.77 0.1183 0.0728 0.4694 

Table 5.5, Best Fitting Models for S&P 500 Futures excluding the 1987 crash. 

When the 1987 crash is excluded, each model performs well given that the 

sum of squared deviations from the SSE technique is close to zero. It is an important 

result that almost all the simulations require the Student-t distribution assumption (for 

the price series) to adequately fit the data. Although, a stochastic volatility model 
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performs fairly well (with the assumption of GBM for the underlying price series) and 

the a Student-t model with constant variance also performs fairly well. 

It is interesting to note that when we compare the parameter values across the 

twelve markets, they differ widely. This means both among the best fitting models for 

a particular asset and among different assets. In addition, no one model is the best for 

all the markets but there is a fair amount of consistency in the performance of all the 

models. This is not surprising as they bear an intimate theoretical relationship. 

Overall, it appears that all the models can fit the empirical results equally well if the 

appropriate parameter values and the fat-tailed distribution are carefully chosen. 

Given the divergences in parameter values for the models among the markets, it 

appears that the stochastic nature of volatility is not consistent across all financial 

futures markets. 

5.3 ANALYSIS OF COMBINATION MODELS FOR THE FIRST PERIOD 

Finally, we examined the fitting ability in the two subperiods of the 

observations to test the robustness of the combined model. As before, the data was 

split evenly in two and the optimisation was rerun. 

Parameter Estimation for Combination Models for the First Period 

The optimised parameter values can be found in Tables 5.6a, 5.6b and 5.6c for 

the first half of the available observations and the results of these optimised models 

appear in Tables 5.7a, 5.7b and 5.7c. 
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Markets Initial Long Term Mean Volatility of 
(Best Model) Volatility Volatility Reversion Volatility t- list 

S&P 500 
H&W 0.20 0.20 31.1 2.61 T2 (k=9.16) 
S&S 0.15 0.15 1.65 1.155 72 (k=9.16) 
HES 0.15 0.15 3.1 0.51 T2 (k=9.16) 

FTSE 
H&W 0.20 0.20 16 1.68 72 (k=9.16) 
S&S 0.05 0.05 1.99 0.31 T2 (k=9.16) 
HES 0.10 0.10 2.9 0.32 T3 (k=12.23) 

DAX 
H&W 0.15 0.15 4.2 0.67 T4 (k=15.26) 
S&S 0.15 0.15 3.2 0.20 Ti (k=6.10) 
HES 0.20 0.20 3.1 0.5 Ti (k=6.10) 

Nikkei 
H&W 0.20 0.20 15.5 1.37 T5 (k=4.79) 
S&S 0.15 0.15 2.65 0.275 T3 (k=12.23) 
HES 0.20 0.20 3.4 0.60 T3 (k=12.23) 

Table 5.6a, Parameters for the Best Fitting Models for Four Stock Index Futures Assuming 
Price Series follow a Student-t Distribution and the Variance is Stochastic for the First Half 

of the Available Observations. 

Markets Initial Long Term Mean Volatility of 
(Best Model) Volatility Volatility Reversion Volatility - dis 

Bund 
H&W 0.10 0.10 4.1 0.96 T3 (k=12.23) 
S&S 0.20 0.20 0.3 0.32 T3 (k=12.23) 
HES 0.20 0.20 0.67 0.371 T3 (k=12.23) 

BTP 
H&W 0.10 0.10 4.7 1.02 T4 (k=15.26) 
S&S 0.05 0.05 1.3 0.315 T3 (k=12.23) 
HES 0.10 0.10 2.6 0.33 T6 (k=4.54) 

Gilt 
H&W 0.15 0.15 2.7 0.80 T4 (k=15.26) 
S&S 0.15 0.15 1.41 0.175 T3 (k=12.23) 
HES 0.05 0.05 1.5 0.1075 Ti (k=6.10) 

US T-Bond 
H&W , 

0.10 0.10 6.1 1.11 T6 (k=4.54) 
S&S 0.20 0.20 0.01 0.41 73 (k=12.23) 
HES 0.05 0.05 0.16 0.406 T8 (k=4.58) 

Table 5.6b, Parameters for the Best Fitting Models for Four Fixed Incom e Futures Assuming 
Price Series follow a Student-t Distribution and the Variance is Stochastic for the First Half 

of the Available Observations. 
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Markets Initial Long Term Mean Volatility of 
(Best Model) Volatility Volatility Reversion Volatility t- disc 

D-Mark 
H&W 0.15 0.15 5.3 0.52 T4 (k=15.26) 
S&S 0.20 0.20 4.3 0.24 T3 (k=12.23) 
HES 0.05 0.05 3.7 0.10 Ti (k=6.10) 

Pound 
H&W 0.20 0.20 15.9 1.17 T5 (k=4.79) 
S&S 0.20 0.20 3.05 0.26 T6 (k=4.54) 
HES 0.20 0.20 3.8 0.51 T8 (k=4.58) 

Yen 
H&W 0.15 0.15 4.8 0.37 T4 (k=15.26) 
S&S 0.20 0.20 2.9 0.105 T4 (k=15.26) 
HES 0.20 0.20 17.5 0.73 TI (k=6.10) 

S-Franc 
H&W 0.15 0.15 3.8 0.51 T4 (k=15.26) 
S&S 0.15 0.15 2.9 0.15 73 (k=12.23) 
HES 0.15 0.15 6.2 0.385 T6 (k=4.54) 

Table 5.6c, Parameters for the Best Fitting Models for Four Foreign Exchange Futures 
Assuming Price Series follow a Student-t Distribution and the Variance is Stochastic for the 
First Half of the Available Observations. 

The only point of note in these tables is that different fat-tailed distributions 

are required to explain the market dynamics. While this may suggest that the results 

may be due solely to the choice of the Student-t distribution, cross-checking the 

results with alternative Student-t distributions also lead to improvements in the SSE. 

The results presented are only for the best of the Student-t distributions. 

Results for Combination Models for the First Period 

Now we will examine the effectiveness of the combined model in explaining 

the dynamics of the twelve markets volatility for the first period. This can be seen in 

Tables 5.7a, 5.7b and 5.7c. 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Best Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.9581 . 0.0438 185.34 0.1247 0.0304 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 49.8419 
H&W 0.8359 -0.1352 44.75 0.1995 0.0387 3.3567 
S&S 0.6734 -0.1299 35.70 0.1626 0.0776 7.6953 
HES 0.5735 -0.1783 29.08 0.1167 0.0293 8.1910 

FTSE 0.5963 -0.0569 35.99 0.1615 0.0321 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 32.7907 
H&W 0.6564 -0.1283 32.61 0.1522 0.0560 0.6578 
S&S 0.6568 -0.1514 33.88 0.1542 0.0574 2.0109 
HES 0.4934 -0.1271 12.35 0.1405 0.0427 1.9140 

DAX 0.3612 -0.1740 6.17 0.0883 0.0153 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 12.8280 
H&W 0.3848 -0.1995 8.15 0.0832 0.0420 0.3303 
S&S 0.3780 -0.2153 6.24 0.0990 0.0471 0.7815 
HES 0.4364 -0.2244 11.25 0.1101 0.0288 0.9815 

Nikkei 0.3493 -0.1783 3.99 0.1458 0.0456 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 16.4677 
H&W 0.4642 -0.1520 7.90 0.1227 0.0454 0.8435 
S&S 0.4369 -0.1909 7.04 0.1349 0.0641 0.7063 
HES 0.4675 -0.2020 11.72 0.1279 0.0402 1.4995 

Table 5.7a, Results for the Best Fitting Models for Four Stock Index Futures Assuming Price 
Series follow a Student-t Distribution and the Variance is Stochastic (First Half) 

Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Best Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

Bund 0.5175 . 0.0065 9.51 0.1890 0.1103 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 37.5815 
H&W 0.5356 -0.0708 12.04 0.1857 0.1238 0.3857 
S&S 0.5161 -0.0489 7.39 0.1826 0.1643 1.4466 
HES 0.5281 -0.0967 9.45 0.1773 0.1227 1.5160 

BTP 0.5193 -0.1500 6.89 0.1971 0.0833 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 27.2153 
H&W 0.5836 -0.1381 11.92 0.1958 0.0994 0.2919 
S&S 0.5741 -0.1373 12.54 0.1884 0.0947 0.4623 
HES 0.4810 -0.1470 7.90 0.1605 0.0799 0.6778 

Gilt 0.3823 -0.1535 534 0.1228 0.0784 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 17.7907 
H&W 0.4618 -0.1529 9.24 0.1311 0.0693 0.3431 
S&S 0.4439 -0.1511 8.28 0.1280 0.0741 0.2345 
HES 0.4661 -0.1887 8.95 0.1123 0.0521 1.0414 

US T-Bond 0.4863 -0.0399 4.54 0.2349 0.1845 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 45.9846 
H&W 0.5918 -0.0505 13.27 0.2352 0.1699 1.0560 
SO 0.5615 -0.0342 7.86 0.2090 0.1946 0.7597 
HES 0.5629 -0.0768 7.39 0.2119 0.1534 0.9066 

Table 5.7b, Results for the Best Fitting Models for Four Fixed Income Fu tures Assuming Price 
Series follow a Student-t Distribution a nd the Variance is Stochastic (First Half). 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Best Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

D-Mark 03309 -0.3000 536 0.0711 -0.0114 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 6.3656 
H&W 0.3333 -0.2811 7.81 0.0474 0.0198 0.5628 
S&S 0.3896 -0.3100 7.68 0.0698 0.0091 0.3847 
HES 0.3789 -0.2900 7.67 0.0652 0.0127 0.4377 

Pound 0.3721 -0.1900 6.18 0.0917 0.0335 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 12.8628 
H&W 0.3895 -0.1797 4.907 0.0826 0.0304 0.4040 
S&S 0.3576 -0.2181 4.798 0.0866 0.0437 0.3663 
HES 0.3630 -0.1944 4.712 0.0905 0.0418 0.2236 

Yen 0.3383 -0.4014 7.10 0.0495 0.0005 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 3.2769 
H&W 0.3033 -0.3687 8.09 0.0248 0.0074 0.2951 
S&S 0.3037 -0.3904 7.83 0.0220 -0.0015 0.4676 
HES 0.3386 -0.4287 6.93 0.0397 -0.0041 0.1815 

S-Franc 0.3082 -0.2748 5.03 0.0665 0.0024 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 6.7588 
H&W 0.3357 -0.2659 7.77 0.0510 0.0244 0.3533 
S&S 0.3725 -0.2476 8.83 0.0777 0.0264 0.4064 
HES 0.3130 -0.3215 5.63 0.0525 0.0163 0.5676 

Table 5.7c, Results for the Best Fitting Models for Four Foreign Exchange Futures Assuming 
Price Series follow a Student-t Distribution and the Variance is Stochastic (First Half). 

As with the entire period, the inclusion of both the optimal stochastic volatility 

model and the appropriate fat-tailed distribution leads to a significant improvement in 

the explanatory power of the models. Of the twelve markets, eleven have a SSE that is 

less than 1.0. The only exception is the S&P 500. This is most probably due to the 

1987 crash. The excess kurtosis associated with this event is so anomalous that even 

the inclusions of extremely leptokurtic student-t distributions are not sufficient to 

capture this event. 

As before, we will summarise the relative goodness of fit for the three models 

discussed so far just for the period that has the first half of the available data. This will 

allow us to compare directly the effectiveness of the four models and demonstrate 

how far we have come in explaining the dynamics of volatility behaviour. This can be 

seen in Table 5.8. 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.9581 -0.0438 18534 0.1247 0.0304 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 49.8419 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 21.1225 
H&W 0.4903 -0.1139 5.59 0.2543 0.0756 19.0367 
H&W (t) 0.8359 -0.1352 44.75 0.1995 0.0387 3.3567 

FTSE 0.5963 -0.0569 35.99 0.1615 0.0321 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 32.7907 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 10.3718 
H&W 0.4237 -0.1269 4.72 0.2134 0.0634 4.8381 
H&W (t) 0.6564 -0.1283 32.61 0.1522 0.0560 0.6578 

DAX 03612 -0.1740 6.17 0.0883 0.0153 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 12.8280 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 4.4459 
H&W 0.2714 -0.1843 3.25 0.1042 0.0343 0.6725 
H&W (t) 0.3848 -0.1995 8.15 0.0832 0.0420 0.3303 

Nikkei 0.3493 -0.1783 3.99 0.1458 0.0456 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 16.4677 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 9.0880 
H&W 0.3337 -0.1682 3.77 0.1491 0.0388 0.0336 
S&S (t) 0.4369 -0.1909 7.04 0.1349 0.0641 0.7063 

Bund 0.5175 -0.0065 9.51 0.1890 0.1103 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 37.5815 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 14.4586 
H&W 0.3572 -0.0690 4.21 0.1602 0.0940 1.4893 
H&W (t) 0.5356 -0.0708 12.04 0.1857 0.1238 0.3857 

BTP 0.5193 -0.1500 6.89 0.1971 0.0833 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 27.2153 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 15.3758 
H&W 0.4257 -0.1053 4.75 0.2163 0.0795 0.5697 
H&W (t) 0.5836 -0.1381 11.92 0.1958 0.0994 0.2919 

Gilt 03823 -0.1535 534 0.1228 0.0784 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 17.7907 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 8.0175 
H&W 0.3142 -0.1197 3.63 0.1358 0.0606 0.4499 
S&S (t) 0.4439 -0.1511 8.28 0.1280 0.0741 0.2345 

US T-Bond 0.4863 -0.0399 4.54 0.2349 0.1845 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 45.9846 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 26.9706 
S&S 0.4644 -0.0341 4.55 0.2521 0.2024 0.0606 
S&S (0 0.5615 -0.0342 7.86 0.2090 0.1946 0.7597 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

D-Mark 0.3309 -0.3000 536 0.0711 -0.0114 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 6.3656 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 2.1262 
H&W 0.2441 -0.2662 3.07 0.0810 0.0152 0.7117 
S&S (t) 0.3896 -0.3100 7.68 0.0698 0.0091 0.3847 

Pound 0.3721 -0.1900 6.18 0.0917 0.0335 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 12.8628 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 5.8328 
HES 0.2739 -0.1901 4.17 0.1062 0.0392 0.3290 
HES (t) 0.3630 -0.1944 4.712 0.0905 0.0418 0.2236 

Yen 03383 -0.4014 7.10 0.0495 0.0005 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 3.2769 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 0.8417 
HES 0.2404 -0.4009 3.13 0.0673 0.0042 0.9272 
HES (t) 0.3386 -0.4287 6.93 0.0397 -0.0041 0.1815 

S-Franc 0.3082 -0.2748 5.03 0.0665 0.0024 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 6.7588 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 2.1932 
H&W 0.2436 -0.2694 3.07 0.0804 0.0146 0.3706 
H&W (t) 0.3357 -0.2659 7.77 0.0510 0.0244 0.3533 

Table 5.8, Comparisons of the Empirical Dynamics of Twelve Financial Futures Dispersion 
Processes with the Dynamics of a CBM Price Series with Con stant Varian ce versus the Best 
t-distribution with Constant Variance, the Best Stochastic Volatility Models that assumes the 
Underlying Price Series is Lognormal or follows a Student-t distribution (First Half). 

As with the analysis of the entire period, the addition of the fat-tailed 

distribution leads to a significant improvement in the explanatory performance of the 

stochastic volatility models. This is most pronounced for those markets that had the 

highest level of kurtosis in the period (S&P 500 and FTSE 100). For two markets, the 

addition of the fat-tailed distribution led to worse results. As before (for the entire 

period), this included the Nikkei 225 and the US T-Bond. In both cases, they were 

almost perfectly described by the optimal stochastic volatility model that assumed 

GBM. Nevertheless, the fat-tailed stochastic volatility models for both markets did 

produce SSEs that were well below 1.0. Overall, ten of the twelve markets were better 

explained by the inclusion of the fat-tailed distribution to the stochastic volatility 

model in the first period. So far, of twenty-four models that included stochastic 
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volatility, nineteen were improved by including a fat-tailed distribution for the 

evolution of the underlying asset. 

Previously, when we compared the stochastic volatility models in the first 

period, we found that for one market the best fat-tailed distribution had a lower SSE. 

This was for the Japanese Yen. With the inclusion of the optimal fat-tailed 

distribution in the stochastic volatility model, we find that this is a substantial 

improvement over the fat-tailed distribution model with constant variance. Thus, the 

combined model is superior to the fat-tailed model (constant variance) in all twenty- 

four cases examined so far. 

5.4 ANALYSIS OF COMBINATION MODELS FOR THE SECOND PERIOD 

The final analysis was to evaluate the combined model for the second half of 

the available observations. The optimised parameter values can be found in Tables 

5.9a, 5.9b and 5.9c for the second half of the available observations. 

Parameter Estimation for Combination Models for the Second Period 

Markets Initial Long Term Mean Volatility of 
(Best Model) Volatility Volatility Reversion Volatility Lid is 

S&P 500 
I{&W 0.20 0.20 20.28 1.104 T6 (k=4.54) 
S&S 0.15 0.15 3.5 0.1625 T6 (k=4.54) 
IDES 0.20 0.20 3.7 0.41 T6 (k=4.54) 

FESE 
H&W 0.15 0.15 14.8 0.866 T6 (k=4.54) 
S&S 0.20 0.20 3.4 0.25 T8 (k=4.58) 
HES 0.20 0.20 2.95 0.41 T8 (k=4.58) 

DAX 
}n&W 0.20 0.20 8.1 0.64 T8 (k=4.58) 
S&S 0.15 0.15 1.41 0.0965 T8 (k=4.58) 
HES 0.20 0.20 2.1 0.27 T8 (k=4.58) 

Nikkei 
H&W 0.20 0.20 8.33 1.063 T4 (k=15.26) 
S&S 0.15 0.15 2.3 0.2825 T8 (k=4.58) 
HES 0.20 0.20 1.79 0.449 T8 (k=4.58) 

Table 5.9a, Parameters for the Best Fitting Models for Four Stock Index Futures Assuming Price 
Series follow a Student-t Distribution and the Variance is Stochastic (Second Half). 
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Markets Initial Long Term Mean Volatility of 
(Best Model) Volatility Volatility Reversion Volatility L1, al 

Bund 
H&W 0.10 0.10 11.87 0.919 T8 (k=4.58) 
S&S 0.15 0.15 1.77 0.1935 T8 (k=4.58) 
HES 0.20 0.20 1.9 0.44 T8 (k=4.58) 

BTP 
H&W 0.20 0.20 18.6 1.00 77 (k=4.89) 
S&S 0.20 0.20 5.96 0.325 T8 (k=4.58) 
HES 0.20 0.20 5.89 0.581 T8 (k=4.58) 

Gilt 
H&W 0.20 0.20 12.38 1.062 T6 (k=4.54) 
S&S 0.20 0.20 1.5 0.1425 T6 (k=4.54) 
HES 0.05 0.05 26 0.43 T8 (k=4.58) 

US T-Bond 
H&W 0.15 0.15 13.29 0.793 T6 (k=4.54) 
S&S 0.20 0.20 2.2 0.19 T6 (k=4.54) 
HES 0.15 0.15 1.9 0.30 T6 (k=4.54) 

Table 5.9b, Parameters for the Best Fitting Models for Four Fixed Income Futures Assuming 
Price Series follow a Student-t Distribution and the Variance is Stochastic (Second Half). 

Markets Initial Long Term Mean Volatility of 
(Best Model) Volatility Volatility Reversion Volatility ILSE S 

D-Mark 
H&W 0.20 0.20 14.09 1.089 T6 (k=4.54) 
S&S 0.05 0.05 3.9 0.075 T8 (k=4.58) 
HES 0.20 0.20 3.0 0.44 T8 (k=4.58) 

Pound 
H&W 0.15 0.15 7.74 1.014 T8 (k=4.58) 
S&S 0.20 0.20 1.1 0.26 T8 (k=4.58) 
HES 0.20 0.20 1.74 0.458 T8 (k=4.58) 

Yen 
H&W 0.15 0.15 16.79 0.921 T4 (k=15.26) 
S&S 0.15 0.15 2.42 0.158 T4 (k=15.26) 
HES 0.20 0.20 1.79 0.449 TI (k=6.10) 

S-Franc 
H&W 

, 
0.20 0.20 11.7 0.86 T6 (k=4.54) 

S&S 0.15 0.15 3.61 0.1725 T8 (k=4.58) 
HES 0.15 0.15 2.6 0.26 T8 (k=4.58) 

Table 5.9c, Parameters for the Best Fitting Models for Four Foreign Exchange Futures 
Assuming Price Series follow a Student-t Distribution and the Variance is Stochastic 
(Second Ha f). 

It is interesting to note that the choice of Student-t distributions is completely 

different from the first half of the analysis (or indeed for the entire period). The 

optimal Student-t distributions had a fairly low level of excess kurtosis. The exception 
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was for the Nikkei and the Japanese Yen, which both had relatively high kurtosis in 

the second period. 

Results for Combination Models for the Second Period 

Our final evaluation is for the combined model in the second period. As with 

the two previous analyses, the inclusion of the fat-tailed distributions has led to a 

significant improvement (overall) in explaining the market dynamics. This can be 

seen in Tables 5.1Oa, 5.1Ob and 5.1Oc. 

As with the two previous periods, the inclusion of both the optimal stochastic 

volatility model and the appropriate fat-tailed distribution has led to improvement in 

the explanatory power of the models. Compared with the previous analysis, the 

improvement is not as consistent. In this period only seven of the twelve markets have 

SSE measures that are less than 1.0. Nevertheless, the models are all better than the 

best stochastic volatility model that assumed GBM. This can be seen in Table 5.11, 

where all the models for the second period are summarised. 

Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Best Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.3192 -0.2535 5.88 0.0596 0.0224 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 49.0282 
H&W 0.3188 -0.2548 5.66 0.0617 0.0259 0.0523 
S&S 0.3533 -0.2360 5.97 0.0826 0.0380 0.1843 
HES 0.3264 -0.2453 5.72 0.0672 0.0330 0.1278 

FTSE 0.3119 -0.1856 432 0.0888 0.0430 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 62.0476 
H&W 0.3208 -0.1894 5.89 0.0669 0.0418 2.0115 
S&S 0.3458 -0.1685 5.50 0.0799 0.0483 1.1389 
HES 0.3355 -0.1730 5.39 0.0762 0.0500 1.0938 

DAX 0.2824 -0.1274 4.21 0.0481 0.0161 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 64.0125 
H&W 0.2829 -0.1513 5.16 0.0442 0.0370 1.5989 
S&S 0.2746 -0.1530 5.16 0.0380 0.0368 1.7733 
HES 0.2909 -0.1627 5.20 0.0486 0.0384 1.9218 

Nikkei 0.4381 -0.1056 5.87 0.1383 0.0704 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 125.2491 
H&W 0.4418 -0.1070 7.36 0.1313 0.0696 1.0508 
S&S 0.4560 -0.1491 6.37 0.1460 0.0798 0.7172 
HES 0.4183 -0.1199 6.11 0.1278 0.0808 0.4387 

Table 5.10a, Results for the Best Fitting Models for Four Stock Index Futures Assuming Price 
Series follow a Student-t Distribution and the Variance is Stochastic (Second Half). 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Best Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

Bund 0.3818 -0.1004 4.66 0.1329 0.0805 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 110.5935 
H&W 0.3912 -0.0917 6.27 0.1092 0.0769 2.4900 
S&S 0.4010 -0.1169 6.02 0.1146 0.0803 1.9355 
HES 0.4008 -0.1319 5.88 0.1178 0.0726 1.9164 

BTP 0.3176 -0.2600 3.94 0.1014 0.0109 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 46.4193 
H&W 0.3204 -0.2251 5.67 0.0566 0.0174 3.2982 
S&S 0.3346 -0.2531 5.46 0.0674 0.0234 3.7670 
HES 0.3343 -0.2530 5.40 0.0687 0.0226 3.447 

Gilt 0.3546 -0.1602 6.25 0.0950 0.0504 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 83.6713 
II&W 0.3615 -0.1686 6.42 0.0919 0.0515 0.0682 
S&S 0.3484 -0.1542 6.14 0.0849 0.0616 0.3116 
LIES 0.3768 -0.1507 5.72 0.1020 0.0601 0.3093 

US T-Bond 0.3133 -0.1906 5.83 0.0641 0.0348 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 61.9444 
H&W 0.3114 -0.1894 5.81 0.0614 0.0410 0.0395 
S&S 0.3354 -0.1773 5.95 0.0759 0.0521 0.1848 
HES 0.3305 -0.1831 5.91 0.0730 0.0493 0.1198 

Table 5.10b, Results for the Best Fitting Models for Four Fixed Income Futures Assuming ! 'rice 
Series follow a Student-t Distribution and the Variance is Stochastic (Second llalf). 

Markets Coefficient Time Uncond. Autocour Autocorr Sum of Squared 
(Best Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

D-Mark 0.3515 -0.1570 5.52 0.0884 0.0379 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 77.8149 
H&W 0.3532 -0.1865 6.22 0.0859 0.0450 0.6503 
S&S 0.3717 -0.1813 5.66 0.0945 0.0490 0.5283 
HES 0.3617 -0.1641 5.58 0.0918 0.0522 0.2143 

Pound 0.4354 -0.0846 6.81 0.1308 0.0937 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 138.0695 
H&W 0.4329 -0.0822 6.87 0.1346 0.0911 0.0293 
S&S 0.4546 -0.0988 6.63 0.1481 0.0988 0.2243 
HES 0.4454 -0.1105 6.35 0.1445 0.0924 0.5197 

Yen 0.3794 -0.1876 8.59 0.0657 0.0110 
CBM 0.1612 -0.5331 2.989 -0.00124 0.0031 85.3851 
H&W 0.3944 -0.2403 8.77 0.0784 0.0177 1.2193 
S&S 0.3872 -0.2294 8.06 0.0782 0.0239 1.0456 
HES 0.3916 -0.2143 8.02 0.0745 0.0332 1.0691 

S-Franc 0.3148 -0.1745 5.06 0.0655 0.0318 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 62,3183 
H&W 0.3191 -0.1959 5.85 0.0656 0.0400 0.6566 
S&S 0.3106 -0.1973 5.23 0.0583 0.0347 0.2610 
HES 0.3202 -0.1571 5.37 0.0663 0.0457 0.2193 

Table 5.10c, Results for the Best Fitting Models for Four Foreign Exchange Futures 
Assuming Price Series fo llow a Student-t Distribution and the Variance is Stochastic 
(Second Ha f). 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

S&P 500 0.3192 -0.2535 5.88 0.0596 0.0224 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 49.0282 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 12.4521 
H&W 0.2905 -0.2276 3.41 0.1137 0.0187 9.7687 
H&W (t) 0.3188 -0.2548 5.66 0.0617 0.0259 0.0523 

FTSE 0.3119 -0.1856 4.52 0.0888 0.0430 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 62.0476 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 27.3332 
H&W 0.2897 -0.1669 3.39 0.1181 0.0400 2.9198 
HES (t) 0.3355 -0.1730 5.39 0.0762 0.0500 1.0938 

DAX 0.2824 -0.1274 4.21 0.0481 0.0161 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 64.0125 
T5 0.2128 -0.3900 4.79 -0.0041 0.0002 27.6476 
HES 0.2380 -0.1373 3.10 0.0731 0.0489 4.9376 
H&W (t) 0.2829 -0.1513 5.16 0.0442 0.0370 1.5989 

Nikkei 0.4381 -0.1056 5.87 0.1383 0.0704 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 125.2491 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 48.3928 
H&W 0.3885 -0.1218 4.32 0.1907 0.0655 5.9381 
HES (t) 0.4183 -0.1199 6.11 0.1278 0.0808 0.4387 

Bund 0.3818 -0.1004 4.66 0.1329 0.0805 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 110.5935 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 51.4817 
H&W 0.3523 -0.0720 4.14 0.1572 0.0910 1.6543 
HES (t) 0.4008 -0.1319 5.88 0.1178 0.0726 1.9164 

BTP 0.3176 -0.2600 3.94 0.1014 0.0109 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 46.4193 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 21.9242 
HES 0.2902 -0.2357 3.32 0.1158 0.0246 1.5724 
HES (t) 0.3343 -0.2530 5.40 0.0687 0.0226 3.4997 

Gilt 0.3546 -0.1602 6.25 0.0950 0.0504 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 83.6713 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 30.9329 
H&W 0.3238 -0.1231 3.70 0.1436 0.0600 9.0557 
H&W (t) 0.3615 -0.1686 6.42 0.0919 0.0515 0.0682 

US T-Bond 0.3133 -0.1906 5.83 0.0641 0.0348 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 61.9444 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 20.4269 
H&W 0.2832 -0.1775 3.41 0.1137 0.0187 9.2693 
H&W (t) 0.3114 -0.1894 5.81 0.0614 0.0410 0.0595 
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Markets Coefficient Time Uncond. Autocorr Autocorr Sum of Squared 
(Model) of Variation Factor Kurtosis (0-20) (50-70) Deviations 

D-Mark 03515 -0.1570 5.52 0.0884 0.0379 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 77.8149 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 31.5012 
H&W 0.3206 -0.1800 3.66 0.1415 0.0566 7.2055 
HES (t) 0.3617 -0.1641 5.58 0.0918 0.0522 0.2143 

Pound 0.4354 -0.0846 6.81 0.1308 0.0937 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 138.0695 
T3 0.2891 0.0000 12.23 0.0085 -0.0026 46.0396 
H&W 0.3927 -0.0637 4.62 0.1859 0.1056 7.3074 
H&W (t) 0.4329 -0.0822 6.87 0.1346 0.0911 0.0293 

Yen 0.3794 -0.1876 8.59 0.0657 0.0110 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 85.3851 
T4 0.3165 -0.3294 15.26 0.0006 -0.0062 19.7352 
H&W 0.3360 -0.1758 3.79 0.1498 0.0351 22.7850 
S&S (t) 0.3872 -0.2294 8.06 0.0782 0.0239 1.0456 

S-Franc 0.3148 -0.1745 5.06 0.0655 0.0318 
GBM 0.1612 -0.5331 2.989 -0.00124 0.0031 62.3183 
Ti 0.2400 -0.3925 6.10 0.0045 0.0023 23.2820 
H&W 0.2787 -0.1755 3.31 0.1097 0.0370 6.3877 
HES (t) 0.3202 -0.1571 5.37 0.0663 0.0457 0.2193 

Table 5.11, Comparisons of the Empirical Dynamics of Twelve Financial Futures Dispersion 
Processes with the Dynamics of a GBM Price Series with Constant Variance versus the Best 
t-distribution with Constant Variance, the Best Stochastic Volatility Models that assume the 
Underlying Price Series is Lognormal or follows a t-distribution (Second Hai. 

As with the analysis of the entire period, the addition of the fat-tailed 

distribution leads to a significant improvement in the explanatory performance of the 

stochastic volatility models. This is most pronounced for those markets that had the 

highest level of kurtosis in the period (Gilt, Japanese Yen and the British Pound). For 

two markets, the addition of the fat-tailed distribution led to worse results. In this 

case, this included the BTP and the Bund futures. In both cases, the SSEs were well 

above 1.0 and the GBM assumption led to the better fit. Nevertheless, the fat-tailed 

stochastic volatility models for both markets did produce SSEs that were well below 

those models that assumed constant volatility. 

Overall, ten of the twelve markets were better explained by the inclusion of 

the fat-tailed distribution to the stochastic volatility model. 'This compares with 

nineteen markets of the twenty-four examined that showed improvement (for the first 
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and the entire periods). Overall, of thirty-six comparisons made, twenty-nine were 

improved by including a fat-tailed distribution to the stochastic volatility models. 

An interesting pattern emerges when we examine which markets are better 

explained by stochastic volatility models that assume GBM. In five of the seven cases, 

the asset class that performed better was a fixed income futures contract. The BTP and 

US T-Bond were both better explained with the GBM-stochastic volatility model in 

two of the three analysis periods. However, the Bund was the only fixed income 

futures better explained in the latter period. For the stock index futures, the Nikkei 

was the only market that was better explained by the GBM-stochastic volatility 

model. In all cases and for all periods, the best model for currencies was the 

combination model. Furthermore, when we compared the combination model to the 

fat-tailed model with constant variance, we found that in all cases, the combination 

models were superior. 

5.5 CONCLUSION 

We examined the dynamics of twelve financial futures markets from a period 

extending over a period from the middle of the 1980s until the end of 1996. Initially, 

we examined the statistical moments of the return series and found they diverged 

significantly from geometric Brownian motion. Our analysis then concentrated on the 

evaluation of the volatility of these return series. As a result of this analysis, we 

identified five key attributes that addressed the dynamics of empirical volatility and 

explained the divergences from an i. i. d. normal dispersion process. With these 

attributes, we were able to test a number of modelling approaches to explain these 

dynamics. To further the rigour of the tests, we examined the dynamics for the entire 

period and for two sub-periods where the observations were evenly split. 
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We rejected the assumption that the twelve financial futures prices follow 

geometric Brownian motion with constant variance for any of the time periods. We 

were able to show that a class of models that assumes the underlying prices follows a 

Student-t distribution with constant variance was a significant improvement in 

explaining the dynamics of these twelve futures markets. For each market and for 

every period, this Student-t distribution model was superior to the GBM model. 

When stochastic volatility models were examined (which assumed GBM for 

the underlying price movement), thirty-four of the thirty-six cases showed 

improvement over the fat-tailed model (with constant variance). 

Finally, when we combined the stochastic volatility models with fat-tailed 

distributions, we found that in all cases this combination model was superior to the 

fat-tailed model with constant variance. In addition, the combination model was 

superior to the GBM-stochastic volatility models in twenty-nine of the thirty-six 

cases. For currencies, the combination model was always the best model. For the 

stock index futures, only the Nikkei 225 futures was better explained by the GBM- 

stochastic volatility model. In almost all the instances where the GBM-stochastic 

volatility model was superior, the market analysed was a Fixed Income futures. This 

may suggest that their prices are more likely to follow geometric Brownian motion 

but that their volatility is stochastic. 

It should not be surprising that different models, parameters and fat-tailed 

distributions are required to understand the dynamics of different markets. Given that 

each market has different volatilities and indeed different dispersion characteristics, it 

is not surprising that it will require different models to understand how these 

dispersion processes vary. Nevertheless, it is a significant contribution to demonstrate 

that across almost all financial assets examined in this research a combination of 
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stochastic volatility models with fat-tailed distributions can serve to explain their 

behaviour almost perfectly. 

We surmise that by uncovering those models that best capture the dynamics of 

the objective processes for these twelve markets, we would also be able to understand 

the values of contingent claims on these same assets better. However, to assess if this 

is the case or not, we will now shift the emphasis of this research to examine options 

prices directly. In the next four Chapters, we will model the dispersion processes 

implied in options prices. Our objective is to capture these dynamics as well as 

compare them to the dynamics we have uncovered for the objective processes for 

these twelve markets. 
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CHAPTER SIX 
THE ANALYSIS OF RISK NEUTRAL PROBABILITIES IN 

OPTIONS ON FUTURES: LITERATURE REVIEW AND 
EMPIRICAL DESIGN 

6.1 INTRODUCTION 

The objective of the second part of the dissertation is threefold. Firstly, this 

research will discern the nature of the risk neutral dispersion processes which can be 

observed for options on futures contracts on three categories of financial assets: fixed 

income, stock indices and foreign exchange. The primary goal is to understand how 

the prices of options contracts provide clues as to the expected dispersion processes of 

futures markets. This analysis will examine the volatilities implied from the prices of 

options on these futures. By examining the available universe of options prices 

available, we will examine the volatility smile structures. We will demonstrate a 

methodology for standardising the volatility smiles allowing for direct comparisons of 

the dynamics within and between markets. 

This investigation will allow us to compare the expectations of market 

participants to the findings in the first portion of this research, that the volatility of 

futures returns is neither stationary nor lognormal. The implied dispersion processes 

drawn from option prices will also indicate significant degrees of skewness and 

kurtosis. We will demonstrate that the most extreme divergences from an expected 

GBM dispersion process occurs as the time period until the expiration of the option 

becomes shorter. Furthermore, we will demonstrate that certain characteristics of 

smile structures are consistent through time after they have been standardised relative 

to the price of the underlying asset and the time to expiration of the option. 
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Secondly, we will compare the implied levels of skewness and kurtosis to 

those measures observed for the time series of futures prices that underlie these 

options. It will be shown that consistencies exist between the objective probabilities, 

associated with futures returns, and the risk neutral probabilities associated with 

options on these futures contracts. As with the first portion of this research, we will 

discern the rationale for the divergence from a lognormal dispersion process and 

examine the relative importance of jump processes and stochastic volatility models. 

Thirdly, recent research has pointed to the use of implied dispersion processes 

from options to price and hedge options. We will extend this analysis via Monte Carlo 

hedging simulations to examine the impact of hedging both simple and complex 

contingent claims. This will allow us to examine the true values of European call 

options and a wide variety of European exotic options given the objective probability 

dispersion process (estimated in the first portion of this research) is known. We will 

compare the costs of hedging assuming the risk manager follows the models that 

assume GBM with constant variance, but the actual dispersion process has stochastic 

variance. In addition, we will examine the relative impacts of transactions costs in the 

true cost of hedging this contingent claims. 

6.2 REVIEW OF THE LITERATURE ON RISK NEUTRAL EVALUATION 

With the introduction of option contracts on stock index futures, probability 

density functions can be determined directly from the prices of the options. Given that 

the prices of the options could be determined theoretically in a variety of ways, a 

comparison of market prices of options with their theoretical prices would provide 

insights into how market participants evaluate the dispersion processes of the 
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underlying markets. This dispersion process is known as the Risk Neutral Density 

Function. 

The logic for this approach is drawn from the most general result in modern 

option pricing theory. Under certain conditions, a contingent claim that depends on the 

terminal stock price (a European option for example) can be priced by describing the 

contract as a bundle of state-contingent claims, which are in turn multiplied in each 

state by the corresponding "Arrow-Debreu" state price and summed across states. 

Thus, given N different states, the time t price of a contingent claim expiring at 

time T would be calculated by the equation: 

N 

C(t) = lV(s)p(s) 
S=l 

(6.1) 

where V(s) describes the payout at time T and p(s) is the Arrow-Debreu price of state 

s. If we assume that the risk-free rate, r, is constant, then the sum of all the state prices 

must be multiplied by a continuous discounted factor, e-r(r-`) . The previous equation 

(6.1) can now be rewritten as: 

N r-r) P(s) C(t) _ e-( V (s) 
-. (r-t> 

(6.2) 

: _ý e 

N 
Ye-'ý'-týV(s)n(sý (6.3) 

In the second formula (6.3), the n(s) sum to 1 and the set of these terms has the 

essential properties of a probability density function. 

In the instance that the market participants were risk neutral, then for each 

state, these n(s) terms would be the same as the objective probability of that state. 

Said in another way, the set of state-contingent prices divided by the discount factor 

would be the underlying probability density function. 
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When the state space is continuous, the price of any contingent claim is 

derived by simply integrating the payoff over the risk-neutral density of the underlying 

asset and then discounted at the risk-free interest rate. This can be expressed as: 

C(t) _ e. 
r(T-t) ("V(s)f (s)ds (6.4) 

where f(s) is the risk-neutral density. For the simplest of contingent claims, European 

call and put options, V(s) represents the terminal payoff function. For the B-S-M 

approach, a constant-variance assumption on the underlying asset price is imposed and 

the resulting density functionf(s) is used to price the options. 

The Use of Risk Neutrality in Pricing Contingent Claims 

Cox and Ross (1976) established that an option's price equals its expected 

payoff discounted at the risk-free rate where the expectation is taken over the 'risk- 

neutral', rather than the true, distribution of the underlying asset. As Grundy (1991) 

points out: "Linking the risk-neutral distribution implicit in option prices to the true 

distribution remains a comparative mystery. A necessary condition for the risk-neutral 

pricing methodology to be applicable is that the true and the risk-neutral distribution 

share a common support. The only information about the true distribution that can be 

obtained from observed option prices alone is information about that support. " (page 

1045). 

According to Bates (1991), "Fundamental to the pricing of European and 

American options is the derivation of the actual distribution of the asset price of an 

equivalent "risk neutral" distribution that summarises the prices of relevant Arrow- 

Debreu state-contingent claims. Options are then priced at the discounted expected 

value of their future payoffs, using this risk-neutral distribution. For processes such as 
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geometric Brownian motion and constant elasticity of variance for which options are 

redundant assets that can be replicated by a dynamic trading strategy in the underlying 

asset and a riskless bond, the equivalent risk-neutral distribution can be derived via 

no-arbitrage conditions. For more complicated processes such as stochastic volatility 

and jump-diffusion processes, such replication is not feasible. Deriving the 

appropriate risk-neutral probability measure in those cases requires pricing volatility 

risk or jump risk, which typically requires additional restrictions on distributions 

and/or preferences. The two standard approaches are: 1) assume the additional risk is 

non-systematic and therefore has price zero; or 2) assume the representative investor 

has time-separable power utility, and preferably log utility, so that Cox, Ingersoll and 

Ross (1985) separability results can be invoked to price the additional risk. " 

Examples of the assumption that the additional risk is non-systematic include: 

Hull and White (1987a), Johnson and Shanno (1987), and Scott (1987) for pricing 

options under stochastic volatility and Merton (1976) for pricing options under jump- 

diffusions. Examples of the use of the time-separable power utility include Wiggins 

(1987), Melino and Turnbull (1990) for stochastic volatility and Bates (1988), Naik 

and Lee (1990) and Bates (1991). 

Merton (1976) summarises the complication arising when the dispersion of the 

underlying asset prices depends on both a normal change in prices (that is driven by a 

geometric Brownian motion) and an abnormal change (that occurs when sudden 

important new information for an underlying asset market arrives). Such an abnormal 

change is modelled as a jump process. 
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6.3 REVIEW OF IMPLIED VOLATILITY 

Of the theoretical option models available, the Black-Scholes-Merton (1973) 

option pricing model has proven to be the most popular tool for the pricing of options 

and for the management of hedged positions in derivative markets. A major reason for 

the success of the model is its simplicity, which in turn relies on simplistic 

assumptions regarding the dispersion of the underlying asset price movements. Option 

pricing formulae, such as the Black-Scholes-Merton model (1973), relate the price of 

options to five parameters: the underlying price, the strike price, maturity of the 

option, the risk free interest rate and the volatility of the underlying asset. 

All the parameters are known apart from the volatility that must be estimated. 

In the first portion of this research, we examined the volatility estimate from the 

historical dispersion process for the underlying assets. This follows in the spirit of 

Black-Scholes (1972). We were able to demonstrate that the historical dispersion 

processes may not be stationary and certainly do not conform to the assumption of an 

i. i. d. dispersion process. 

An alternative approach to determining the volatility input is to take the 

market prices of options and invert the option pricing formula to determine the 

volatility implied. in the price of the option. Under the strict assumptions of the B-S-M 

models, the implied volatility is interpreted as the market's estimate of the constant 

volatility parameter. Even if the underlying asset's volatility is allowed to vary 

deterministically over time, the implied volatility can be interpreted as the market's 

assessment of the average volatility over the remaining life of the option. Hull and 

White (1987a) have shown that even when the volatility is allowed to vary according 

to some stochastic process, the average volatility for the term of the option's life will 

provide the correct price of the option. 
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Probably the greatest advantage of implied volatility is that it is forward 

looking, while the historical (objective) volatility estimates only examine past 

dynamics. Even so, some systematic and economically significant divergences have 

been reported between the options prices predicted by the Black-Scholes-Merton 

formula and the actual options prices that are observed in the market. The B-S-M 

formula tends to overprice at-the-money options and underprice out-of-the money 

options. By inverting the B-S-M formula to solve for the only unknown parameter (the 

volatility), this means that the volatilities differ across the strike prices. This effect is 

referred to as the volatility smile. 

Therefore, we face a theoretical dilemma: the fact that a multiplicity of 

volatilities exist is inherently contradictory with the assumptions of most pricing 

models, which assume volatility is constant and that the dispersion of the underlying 

asset follows a geometric Brownian motion leading to a lognormal distribution for 

asset prices. Furthermore, under the assumption of constant volatility that underlies 

diffusion option pricing, this is theoretically impossible. Nevertheless, there is an 

abundance of evidence that demonstrates that the objective volatility of assets does 

not remain constant. Not only was this demonstrated in the first portion of this 

research, but has. also be presented by a number of studies [see Taylor (1994)]. It is of 

relevance to this portion of the research that there is evidence in the time series 

behaviour of the implied volatilities that they are not constant over time either [see 

Shastri and Wethyavivorin (1987)]. 

Initially, much of the research on implied volatilities concentrated on the 

ability of implied volatility to predict the future realised volatility (for the time 

horizon of the option's life). The initial research interest examined common stock 

options [Latane and Rendleman (1976), Trippi (1977), Chiras and Manaster (1978) 
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and Beckers (1981a)]. Later, more emphasis was placed on stock index options and 

options on futures. Examples of such research include Fung and Hsieh (1991), Canina 

and Figlewski (1993) and Fleming (1993). Day and Lewis (1988,1990), Lamoureux 

and LaStrapes (1991) and Harvey and Whaley (1992) have examined the behaviour of 

implied volatilities as predictors of future volatility on the S&P 100 stock index. 

Feinstein (1989) and Park and Sears (1985) examined options on the S&P 500 index 

futures. They presented evidence that implied volatilities from stock index futures 

options contain a significant amount of information about futures volatility. However, 

their interest was in the predictive ability of implied volatility and not to examine how 

the divergences of implied volatilities across strike prices (and time) provided insights 

into the risk-neutral dispersion process. 

For the currency futures markets, Jorion (1995) examined the predictive ability 

of implied volatilities on the currency options traded at the Chicago Mercantile 

Exchange for predicting the actual volatility of the currency futures. Jorion examined 

three of the currencies that were also examined in this research (Japanese Yen, 

Deutsche Mark and Swiss Franc). Scott and Tucker (1989) examined the implied 

volatilities for the options on the spot currencies traded at the Philadelphia Stock 

Exchange (PHLX). For options on fixed income futures, there have been a number of 

papers that have examined the empirical behaviours of US T-Bond futures options. 

The earliest of these papers were by Belongia and Gregory (1984), Latane and 

Rendelman (1976) and Merville and Overdahl (1986). 

Another area of research on implied volatilities popular in the literature is the 

examination of the implied volatility estimates from multiple options on the same 

underlying asset. Examples of such research on stock options include Brenner and 
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Galai (1984), Emanuel and MacBeth (1982), Rubinstein (1985) and Whaley (1982). 

This is the area of the literature that this research aims to enhance. 

It is of interest to us (in this research) to compare the analysis of implied 

volatilities across a wider range of financial assets. In the first portion of this research, 

where we chose to use futures contracts on stock indices, fixed income markets and 

currencies as surrogates for these asset classes. In this portion of the research, we will 

examine options on these same futures contracts. This analysis follows in the steps of 

similar research on implied volatilities for these same asset classes completed by Fung 

and Hsieh (1991). They restricted their analysis to the option on the S&P 500 futures, 

the option on the US T-Bond futures and the option on the US Dollar/Deutsche Mark 

futures only. It should be noted that these are also contained within our analysis. The 

time period of analysis for their research was for option prices for the S&P 500 and 

US T -Bond futures from March 1,1983 to July 31,1989 and for the options on the 

Deutsche Mark futures from February 26,1985 to July 31,1989. 

Our analysis differs significantly from Fung and Hsieh (1991) in that they 

concentrated on understanding the empirical behaviour of at-the-money implied 

volatilities. Their goal was to assess how effective ATM implied volatility is as a 

predictor of the. actual conditional volatility for the underlying assets. While they 

acknowledged the existence of the volatility smile (they referred to it as the strike 

price bias), they chose to ignore out-of-the-money options due to the fact that the 

inclusion of these would have introduced further errors into their analysis. This makes 

sense considering that their objective was to understand the informational content of 

implied volatilities (for prediction of the conditional volatility). Here, we are 

interested in the informational content of the volatility smile and will not examine the 

ability of implied volatilities to forecast the actual volatilities. 
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Determination of Implied Volatility 

Most option pricing formulas cannot be inverted analytically, so implied 

volatility must be calculated numerically. For a good review of the procedures, see 

Manaster and Koehler (1982). In general, this calculation is accomplished by 

minimising the absolute difference of the fair value to the market price, JC(a) - CM 1, 

where C(6) is the volatility input into the pricing formula and C. is the market price 

of the option. This is minimised using some root-finding program. The most common 

approaches are the Newton-Raphson algorithm or the method of bisection. ' The 

Newton-Raphson algorithm is highly efficient and accurate in the context of 

estimating implied volatilities of European call options. The method of bisection is 

somewhat simpler and guaranteed to work for all classes of derivative securities. In 

our research, we used both techniques. For all European style options, we used the 

Newton-Raphson algorithm and for American options, we used the method of 

bisection to obtain the implied volatilities. Applying the little known fact that the time 

value of an option is an approximate linear function of the volatility can enhance this 

process. 

Brenner and Subrahmanyam (1994) and Feinstein (1988) used this fact to 

demonstrate that it is relatively simple to estimate the implied volatility directly. For 

most users of the Black-Scholes model, the implied volatility is computed by a 

cumbersome numerical procedure. They show that when the price of the underlying of 

an option is equal to the present value of the strike price, the implied volatility is 

approximately equal to: 

1 From Financial Options, page 97-99, Figlewski, et al. 
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IV=d=T"(C/S)=T"(P/S) (6.5) 

where: S=K" e-' , which implies that F=S" e" =K. This means that the forward 

price is equal to the strike price. The time term, t, indicates the time to expiration of 

the option as a percentage of one year and C (P) is the price of the call (put). While in 

this paper they restricted the use of the technique to the at-the-money option, Brenner 

and Subrahmanyam (1988) demonstrated that the formula works quite well even for 

options that may be as much as 10% on either side of the at-the-money forward. 

Chance (1993) also examined this approach and made suggestions that enhanced the 

estimation of the implied volatilities for further out-of-the-money options. Using these 

approaches, we were able to determine a good starting value for estimating the 

implied volatility numerically and converge to the correct value rapidly. 

Regardless of the method used for the determination of the implied volatility, 

problems exist with the interpretation of the results. Since in the B-S-M model, the 

volatility is the only free parameter, in theory, the result should provide us the 

market's estimate of the average instaneous variance for the remaining period of the 

options life. However, this is only true if all the other (perfect market) assumptions of 

the model hold. In fact the procedure inherently incorporates into the volatility 

estimate all sources of mispricing, including data errors, effects of the bid-ask spread 

and temporary imbalances in supply and demand. Additional factors could include the 

assumption of constant interest rates and the existence of dealing costs (apart from the 

bid-ask spread). 

The problem of data errors is simply that the price data for the underlying 

markets and the options may not be simultaneous. Many studies have attempted to 

solve this problem by using only closing prices for both securities. This is the 
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approach we used in this research. Even so, it has been pointed out that that problems 

remain even when the estimation of implied volatilities uses closing prices. Galai 

(1977) considers this problem. He examined the price behaviour of stock options at 

the Chicago Board Options Exchange (CBOE) during the first 7 months of its 

existence. He tested three hypotheses jointly: the mathematical structure of the Black- 

Scholes formula, the methodology for measurement of its inputs (particularly 

volatility), and the efficiency of the options market in pricing options. 

Regarding the simultaneity of option and underlying stock prices, Cox and 

Rubinstein (1985) state: "Galai's principal caveat - the questionable accuracy of daily 

closing prices - is critical. In contrast to stock, where empirical research often makes 

do with monthly - or, at best weekly - prices, use of even daily prices for options 

poses several significant difficulties. First, since an option's value depends on the 

contemporaneous price of its underlying stock, it is very important to know the stock 

price at the time of the options close. However, as we have already emphasised, since 

the stock and option often close at different times, the stock close, in many cases, is an 

inadequate approximation of the stock price at the time of the option close. Second, 

knowing only the option close, we cannot tell whether the close is at the bid, at the 

ask, or in between, so we. cannot actually know at what price options could have been 

bought or sold. There remains a band of uncertainty around the close equal to twice 

the spread, and the magnitude of the spread- though usually one-fourth - is also 

uncertain. In contrast to stock, this is particularly important for options, since the 

spread is apt to be a relatively large percentage of the option price. Third, with only 

closing prices, we have no information about the depth of the market at that price - 

how many contracts could have been bought or sold at that price. Fourth, for certain 

other reasons relating to Market Maker behaviour, closing prices may not be 
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representative of the actual trades that could have been made near the end of the day. 

Fifth, because the underlying conditions that determine an option's value change over 

time, efficient statistical procedures necessitate use of a large sample of data over 

small periods of time. For many purposes, daily data do not occur with sufficient 

frequency. " (p 341). 

Galai realised that these problems could exist with daily data. To address these 

problems, Galai used a small sample of CBOE transactions to test for the occurrences 

of riskless arbitrage opportunities. He did find some instances during the trading day 

when boundary conditions were breached and appeared to be of sufficient magnitude 

to provide opportunities for riskless arbitrage. However, it is not clear whether these 

occurred due to the immaturity of the CBOE market at that time or because it was 

unclear if transactions could have happened at the prices recorded for the stocks and 

options could have actually been transacted. 

Later research pointed to the same problem. Mayhew (1995) points out that 

"Even if market participants were to price options according to Black-Scholes7 price 

discreteness, transactions costs, and nonsynchronous trading would cause implied 

volatilities to differ across options. " (page 9). Day and Lewis (1988) also suggest that 

differences in implied volatilities for different strike prices are due to structural 

inefficiencies that they refer to as noise. They state: "Two significant sources of noise 

are the inability to determine whether [closing] option and stock prices reflect bid or 

ask levels and the failure to observe the option price and the price of the underlying 

security simultaneously. " (page 104). 

In the analysis completed for this research, the underlying assets were futures 

prices that closed at the, same point in time as the options contracts. In addition, the 

only option maturities considered corresponded exactly to the same expiration date for 
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the underlying futures contract. This assures that a simultaneity bias was eliminated. 

To further address the potential problem of non-simultaneity in data, we restricted our 

analysis of implied volatilities solely to out-of-the-money options. Thus, if the strike 

price were below the underlying futures price, we examined put options and if the 

strike price were above the underlying futures price, we examined call options. If 

prices are not simultaneous, this will have a direct impact on the intrinsic value of 

options but a reduced impact on the time value of the options. For in-the-money 

options, Bates (1991) and Gemmill (1991) have shown that much greater deviations 

occur in the implied volatilities relative to the out-of-the-money options. They claim 

that the most possible reason for this is the fact that these options are hardly traded 

and therefore the prices of the options and the underlying may not be simultaneous. 

Another problem in the estimation of implied volatilities is the choice of the 

appropriate time measure. Belongia and Gregory (1984) estimated the time to 

expiration on the option contract in terms of trading days instead of calendar days. 

According to Merville and Overdahl (1986) this is incorrect. This is in error because 

the time input for the B-S-M model assumes calendar time and not trading time. 

While French (1984) puts forth an argument that trading time should be used (instead 

of calendar time), Messerschmidt (1984) demonstrated the error in (the Belongia and 

Gregory approach of) determining implied volatilities by using trading days. For our 

analysis, we will use calendar days for the estimation of the empirical implied 

volatilities. Later, when we test the smile behaviour that would be consistent with the 

models that best describe the unconditional (objective) dispersion processes for the 

underlying futures markets (see Chapters 3,4 and 5), we will use trading time. This is 

done to be consistent with the manner with which these models were estimated. 

However, we will present the results in calendar time. In addition, the impact of the 
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time parameter in the B-S-M models is related to the percentage in one year that the 

time remaining represents. We will simulate the trading day objective models with 

exactly the same percentage time factor as corresponds to the estimation of the 

volatility smiles from option markets. 

Weighting Implied Volatilities 

A problem with the estimation of the implied volatility as a true estimate of the 

instaneous variance is that the Black-Scholes model prices some options more 

accurately than others. Brown (1990) points out that since that value of certain 

options is more sensitive to the choice of the correct measure of volatility than others, 

it makes sense to weight those options more heavily than others. Schmalensee and 

Trippi (1978) and Trippi (1977) dealt with is potential problem by simply throwing 

out the implied volatilities for options that were near to expiration or that had strike 

prices which were far from the current price of the underlying asset. This assumed that 

the Black-Scholes model is more effective in pricing at-the-money options with 

neither too long or too short a period to expiration. 

This approach has its limitations as the number of observations is restricted 

and this leads to a potential sampling issue. Another approach is to include all the 

available implied volatilities, but provide some weighting scheme to arrive at the 

estimate. Essentially, we are attempting to determine a point estimate of the 

instaneous volatility. The idea behind this approach is straightforward: if the model is 

correct, then deviations from the predicted prices represent noise, and noise can be 

minimised by using more observations. Brown (1990) suggests a number of weighting 

schemes. The simplest approach is to use equal weights. This approach was suggested 

by Trippi (1977) and by Schmalensee and Trippi (1978). 
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Another approach was to compute the sensitivity of the options price to the 

implied volatility (commonly referred to as vega) and use this to weight each observed 

implied volatility. This approach was suggested by Latane and Rendleman (1976). 

This approach has the advantage of weighting the volatilities according to their 

sensitivities to the correct level of volatility. The logic is that those options that are 

most sensitive to a mis-specification in the volatility parameter will lead traders to 

more carefully price these securities and assure the best estimate of the volatility. The 

problem with this approach is that the weighting scheme does not sum to 1 and thus 

the weighted average must be divided by the sum of the weights. Another approach 

was suggested by Chiras and Manaster (1978) that suggested weighting not by the 

vegas but by the volatility elasticities. 

Alternatively, a method suggested by Brown minimises the sum of squares of 

the differences between all observed market prices for options with theoretical option 

prices estimated with a single volatility input. This approach was suggested both by 

Beckers (1981 a) and Whaley (1982). 

A key question is: Which of these approaches is best? The early literature 

addressed this question by examining which approach provided the most accurate 

estimate of the actual future volatility that occurred over the life of the options. 

Beckers (1981a) addressed this question empirically using daily prices of equity 

options from 1975 to 1976. Of the three approaches (equal weighting, vega weighting 

and minimised least square errors), he found that the squared-error-minimising 

technique led to better forecasts than the simple equal weighting scheme. He also 

found that simply using the implied volatility of the option with the highest vega, 

performed better than any of the other methods. 
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Similar research by Whaley (1982) found that the squared-error-minimising 

technique also appeared to work better than the other approaches for US stock options 

from 1975 to 1978. Gemmill (1986) examined equity options on the London Traded 

Option Market and found similar results to Beckers. Scott and Tucker (1989), Fung, 

Lie and Moreno (1990), Edey and Eliot (1992) examined various weighting schemes 

for currency option's implied volatilities. They found that all the weighting schemes 

provided approximately the same predictive power. 

The most promising use of weighted-average implied volatilities has been for 

the construction of volatility indices, which have been suggested as a means to hedge 

changes in volatility. Gastineau (1977) and Whaley (1993) have suggested such 

indices. 

The key premise underlying these weighting approaches is that the existence of 

different implied volatilities at different strike prices (for the same underlying asset) is 

a sampling or noise problem. One would expect such problems would become less 

pronounced as the options markets became more mature. The empirical findings were 

exactly the reverse. Not only did such patterns continue to exist in certain markets, but 

became even more extreme for certain markets. Thus, in the literature, a new tact was 

taken for the analysis of implied volatilities. Rather than denigrate the divergences in 

implied volatilities across strike prices (as sampling errors or noise), these divergences 

were examined in detail as providing clues to expected market dynamics. This 

approach is commonly referred to as the volatility smile and is the thrust of this 

portion of the research. 
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6.4 DIVERGENCES OF IMPLIED VOLATILITIES ACROSS STRIKE 

PRICES: THE VOLATILITY SMILE 

The starting point for the estimation of implied volatility is the assumption that 

the Black-Scholes-Merton model accurately describes conditions in actual options 

markets. The major assumptions are that the prices of underlying assets evolve 

through time lognormally with a constant volatility a at any time and market level. 

The fact that the implied volatilities differ across strike prices for the same maturity 

and across diverse expiration periods has led many to question the efficacy of the 

traditional Black-Scholes-Merton methodology and all those pricing models based 

upon similar assumptions. 

If market participants accept the assumptions of the B-S-M model, then the 

volatilities should be identical across the strike prices. The fact that the volatilities 

differ systematically across the strike prices has been well documented and has been 

referred to in the academic literature as the strike price bias and among practitioners as 

the volatility smile, smirk or skew. This result and subsequent examination of these 

patterns leads to a paradox. It is fundamentally inconsistent with the theory used to 

derive the models (that we in turn use to estimate the implied volatilities) to even 

consider these patterns. The implied volatilities are estimated from a model that 

assumes a constant volatility. This assumption is critical to the derivation of the model 

in the first place. The existence of different implied volatilities means that the Black- 

Scholes - Merton model must be rejected. Thus, the implied volatilities from the B-S- 

M model are in a real sense meaningless and can no longer be interpreted as the 

market's assessment of the underlying market's volatility. 

For our purposes, the volatility smile will represent aU shaped function that is 

symmetrical (and horizontally tangent) about the at-the-money implied volatility. The 
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smirk or skew is a shape (that may also be convex) that is higher on one side of the 

strike price ranges (away from the at-the-money implied volatility) compared to the 

other (tangent to some non-horizontal line). For many of the markets examined (stock 

index futures and to a lesser extent fixed income futures), the implied volatilities 

increase monotonically as the option exercise price falls relative to the underlying 

price level. Dumas, Fleming and Whaley (1996) have noted this effect and coined this 

phenomenon the 'smirk'. They also demonstrated that the smirk shape is time 

dependent; becoming more extreme for options as the time to expiration comes closer. 

We will also examine this time effect and will report similar results. 

For the purpose of this research, we shall refer to all patterns of implied 

volatilities relative to their strike prices as the smile. Other authors have referred to 

these patterns in a number of other ways. As was discussed above, some researchers 

have referred to this pattern as the smirk. Other authors have referred to it as the 

volatility skew. In some ways, the inconsistent manner in which the divergences of 

implied volatilities across strike prices are referred to in the literature is unfortunate. 

When these patterns are referred to as 'skews' that suggests a formal statistical concept 

of skewness. However, these patterns also display curvature, which is why they are 

sometimes referred to as smiles or smirks. These patterns suggest that the curvature is 

convex relative to some linear function. 

In this research, we will choose our terms carefully, because we will show that 

when the patterns of implied volatilities are examined, both skewness and curvature 

exist. It is critical is to separate both elements in the patterns and understand the 

statistical implications of these results. Specifically, these risk neutral dispersion 

processes may help us to understand how market participants expect the actual 

dispersion process to vary from GBM. Given that from a statistical perspective we 
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require additional moments to model a non-normal distribution completely, the 

separation of the implied volatility patterns will allow a proxy for measuring the pure 

skewness and kurtosis imbedded in the risk neutral distributions implied by option 

prices. Therefore, we will only refer to the patterns of implied volatilities as the smile. 

Later, when we investigate the multifaceted dynamics of these patterns, we will 

distinguish between the skew and the curvature at the appropriate points. 

Furthermore, for this research, we will refine our definition of the volatility 

smile. In this research, the volatility smile is defined as the graph of the (relative) 

implied volatilities determined by the appropriate model, plotted against a 

standardised strike price of the option. Given that the overall levels of the implied 

volatilities differ widely both for single markets and across markets, scaling 

adjustments are required for both cross-sectional and time series comparisons. 

While a number of approaches have been proposed to standardise the implied 

volatilities, the simplest approach is to create an index where the implied volatilities at 

each strike price are expressed as the ratio to the implied volatility of the option 

closest to the at-the-money level. Fung and Hsieh (1991), Tompkins (1994) and 

Natenberg (1994) have all used this approach. All these approaches take the simple 

ratio between the implied volatility at each strike price divided by the ATM implied 

volatility and multiply the result by 100 (or express the result in percentages). This 

transformation is required because the levels of volatility are not constant. The logic 

behind this approach is that the relative relationships between the volatilities and not 

the absolute levels are of interest. 

The strike prices must also be standardised to allow comparisons to be drawn. 

A simple approach suggested by Tompkins (1994) was to take the ratio of the strike 

price to the underlying price. Jackwerth and Rubinstein (1996) used the same 
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approach. A similar approach was used by Fung and Hsieh (1991), the difference 

being that they inverted this ratio. While this has practical advantages for market 

participants (namely it is simple to reverse the equation to obtain actual strike prices), 

the approach is inconsistent with the assumptions of the B-S-M option pricing models. 

Natenberg (1994) has proposed a more consistent approach. Specifically, strike price 

is expressed as the ratio of the strike price X of the option relative to the underlying 

futures price F, standardised for both the time remaining until the expiration of the 

option and the level of the strike prices and underlying prices. This will be expressed 

as: 

ln(XT /F, ) 

ß z/365 
(6.6) 

where X is the strike price of the option, F is the underlying futures price and the 

square root of time factor reflects the percentage in a year of the remaining time until 

the expiration of the option. The sigma (ß) is the at-the-money volatility. For this 

analysis, we will assume that the relevant time is calendar days and will express time 

as the percentage of calendar days remaining in the options life to the total trading 

time in a year (which we assume is 365 days). 

This transformation is consistent with the assumptions of the B-S-M model, 

where the movement in the underlying asset is measured on a logarithmic scale. From 

the first term in the Black-Scholes model [N(dl)], the relationship between the 

exercise price of an option and the current underlying price is expressed as the 

logarithm of the exercise price divided by the underlying price. At the same time, 

GBM assumes that movement over time is governed by a square root relationship, so 

that in the Black-Scholes model, the relative amount of movement (for the underlying 

asset) to reach a strike price is fully expressed by the above formula 6.6. Finally, the 
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inclusion of the at-the-money volatility will allow us to express the strike prices in 

standard deviation terms. This will allow us to compare the smile relationships 

between and within markets more directly. 

By adjusting the strike prices of the options using this formula, we are 

removing the impacts of the B-S-M models, which would obscure the true 

relationships between the implied volatilities. We have removed the impacts of non- 

constant levels of volatility and the impacts of time on the patterns of volatilities 

across strikes. 

Review of the Literature on Volatility Smiles 

When implied volatility patterns across strike prices have been examined in 

the literature, authors have identified both the existence of skewed and curved shapes. 

Many have offered explanations for their findings. 

Fischer Black was the first person to comment on the existence of implied 

volatility patterns. He proposed that a negative correlation between stock price 

changes and volatility changes should result in a negatively skewed relationship. He 

came to this conclusion from his examination of the objective processes for equities. 

He pointed out in Black (1975): "A stock that drops sharply in price is likely to show 

a higher volatility in the future (in percentage terms) than a stock that rises sharply in 

price" (page 7). It is interesting that when he examined the actual implied volatility 

patterns for option on equities, the empirical results were exactly opposite to his 

hypothesis. He found that the skew was positive. That is, the lower strike price options 

(in-the-money calls) had lower volatilities and higher strike price options (out-of-the- 

money calls) had higher volatilities. While this is an interesting result, it could be due 
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to the inefficiency of the options markets in the early to mid 1970s. Most of 

subsequent research on equity volatilities displays the opposite pattern. 

MacBeth and Merville (1979) next re-examined the biases of the B-S-M 

implied volatilities across strike prices. They reported that the B-S-M model 

systematically undervalues in-the-money calls (strike prices lower than the current 

market price) and overvalues out-of-the-money calls (strike prices higher than the 

current market price). In terms of implied volatilities, this means that the implied 

volatilities of lower strike price calls are higher than the at-the-money implied 

volatility and the implied volatilities of higher strike price calls are lower than that at- 

the-money implied volatility. This effect is the "volatility skew" we discussed 

previously. Subsequent research found the contrary result and in certain instances the 

skew was reversed. These results are summarised in Galai (1983,1987). 

Black (1975) also identified for the first time the existence of smiles. He states 

"Options that are way out of the money tend to be overpriced, and options that are 

way into the money tend to be underpriced". Black suggested that this result could be 

due to the assumption of constant variance in his model. Black (1976a) states: "... if 

the volatility of a stock changes over time, the option formulae that assume a constant 

volatility are wrong. " (page 177). 

Probably the most complete of the early studies which examined implied 

volatility discrepancies was that of Rubinstein (1985). He completed nonparametric 

tests of implied volatilities of options and compared them to the assumption of a 

constant volatility. Rubinstein found that the implied volatilities of call options with 

higher strike prices (out-of-the-money) are systematically higher for options with 

shorter times to expiration. His other results were contradictory and led to the 

conclusion that while systematic deviations from the B-S-M model appear to exist, the 
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pattern of the divergences varies over time. A similar study was completed by 

Culumovic and Welch (1994) for more recent data and also confirmed that the 

patterns diverge over time. 

Many other authors have found evidence for volatility smiles (in a wide variety 

of markets). These include Shastri and Tandon (1986), Kemna (1989), Xu and Taylor 

(1993) and Heynen, Kemna and Vorst (1994). One general result from all of these is 

that ever since the stock market crash of 1987, the market evidently does not price all 

options according to the Black-Scholes formula. The general consensus is that the 

model works well for at-the-money options with between 30 and 60 days to 

expiration. However, for options with strike prices far from the current level of the 

underlying market price and with either a long or short time to expiry for the option, 

consistent and systematic biases occur. Since the Black-Scholes model describes 

certain options well and others poorly, it makes sense for different options to have 

different B-S-M implied volatilities. 

Rubinstein (1994) examined options on the S&P 500 index and found that 

prior to the 1987 stock market crash the implied volatilities failed to display any 

skewed relationship. Dumas, Fleming and Whaley (1996) confirm this finding. They 

report that prior, to the crash, the implied volatilities formed a symmetrical smile 

pattern. However, after the 1987 crash, Rubinstein observed that the implied 

volatilities of options with strike prices below the current underlying price were higher 

than options with strike prices that were above the current underlying price. He states: 

"One is tempted to hypothesise that the stock market crash of October 1987 changed 

the way market participants viewed index options. Out-of-the-money puts (and hence 

in-the-money calls perforce by put-call parity) became valued much more highly". 

Dumas, Fleming and Whaley (1996) also report this result. 
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Other authors who have examined the behaviour of implied volatility patterns 

for stock index futures pre- and post- stock market crash include Clewlow and Xu 

(1994). They report from their analysis of options on the S&P 500 futures (for the 

years 1987 to 1989) that: "The implied volatilities exhibit substantial skews in 

addition to the smiles. This indicates that changes in volatility are negatively 

correlated with the returns as we demonstrate with the properties of the Hull & White 

(1988) model. " (page 14). They go on to note that "The most striking facet is the 

persistent negative skew (that is the slope is negative with respect to increasing strike 

price) in the 1989 data which is not present to the same degree in 1987. " (page 9). 

A later paper by Jackwerth and Rubinstein (1996) confirms these same results. 

They state: "We find that the implied probability distributions in the pre-crash period 

are some-what left-skewed and platykurtic.... After the crash in the fourth quarter of 

1987, we find a period of adjustment where the distributions become more left- 

skewed and change from platykurtic to leptokurtic. This adjustment is completed by 

mid-1988. Thereafter, we observe very consistent levels for both skewness and 

kurtosis. " (page 1629). 

As was mentioned earlier, Dumas, Fleming and Whaley (1996) indicated that 

the natures of the divergences in the implied volatility patterns are time dependent. It 

is well established that the closer the option is to its expiration, the more extreme the 

divergences are. According to Barnaud and Dabouineau (1992), "Volatility smile 

curves are intended to overcome the presence of excessive skewness and/or excess 

kurtosis. Different strike prices would imply different volatilities for the same 

maturity, in spite of the Black-Scholes constant volatility hypothesis. Moreover, the 

basic U-shape around the money is not stable and its depth seems to be technically 

correlated to time-to-maturity and liquidity, as measured by trading volume and open 
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interest. The smile curve effects flatten out when considering options on the same 

asset with different maturities. The term structure of implied volatility incorporates 

smoothing properties in longer-term price return stochastic processes. " (Page 110). 

Thus, there is ample evidence in the literature that implied volatility varies 

across time as well as the strike price. Generally speaking, the pattern of implied 

volatilities, which are observed across time, is referred to as the "term structure of 

volatility". When market participants combine the term structure and the volatility 

smiles, they determine a "volatility matrix" which displays both patterns across strike 

prices and time. This will be discussed in some detail later in this Chapter. The 

volatility matrix is the most common (and practical) approach for dealing with 

discrepancies in the implied volatilities from the B-S-M assumptions. In the next 

Chapter, we will describe exactly how such a volatility matrix is estimated using 

historical volatility smiles. 

While there is little doubt that such patterns exist, most of the literature has 

concentrated either on explaining why implied volatilities diverge from the 

assumption of constant variance or methods to correct for the biases in the B-S-M 

models. 

Theoretical Reasons for the Existence of Volatility Smiles 

The possible reasons for the, existence of the volatility smiles and term 

structure of volatility is that either: 1) market imperfections exist that systematically 

prevent option prices from taking their true B-S-M values or 2) the underlying asset 

price process differs from the lognormal diffusion process assumed by the B-S-M 

model. 
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Considering market imperfections that could explain the existence of the 

smile, researchers have chosen to examine problems with the liquidity for out-of-the- 

money options. An additional impact of discrepancies in the supply and demand for 

leverage that these out-of-the-money options offer to speculators could be combined 

with this factor. On the other hand, the sellers of options would be devastated when 

the out-of-the-money options became in-the-money and would only sell them if they 

received a minimum amount for their trouble. There is an old adage in the options 

market never to sell an option for less than 2 ticks. If this is the case, then the actual 

options prices and their associated implied volatilities might be much higher than the 

fair price and "fair" volatility of the option. Cochrane and Sad-Requejo (1996) suggest 

that the reason for the existence of smiles is that "Out-of-the-money options are harder 

to hedge with the underlying asset, suggesting that the Black-Scholes formula is more 

sensitive to infrequent trading for such options" (page 23). 

What this line of argument really suggests is that transaction costs may cause 

the volatility smiles. Figlewski (1989) examined the effects of transaction costs on the 

boundary values for options by simulating a large number of price paths and found 

that the arbitrage boundaries were 'disturbingly wide'. These costs can be only one of 

many factors that is impounded in the implied volatility. As Figlewski points out: 

"[the] implied volatility serves as a free parameter. It impounds expected volatility and 

everything else that affects option supply and demand but is not in the model. " (page 

13). Clearly, the Black-Scholes model does not include transaction costs and they 

could be a major element in the divergences of volatilities across strike prices. 

Nevertheless, Constantinides (1996) who also examined the impact of transaction 

costs on the behaviour of implied volatilities across strike prices arrived at a different 

conclusion. He examined the boundaries of option prices derived in the presence of 
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proportional transaction costs. He found that the bounds are sufficiently tight to rcjcct 

the hypothesis that transaction costs can account for the volatility smile in an 

otherwise Black-Scholes-Merton market environment. Thus, we must look elsewhere 

for the reasons. 

Another explanation is that out-of-the-money options are quoted in discrete 

prices and are often subject to some minimum level. This could imply that simply 

bridging the bid/offer spread could result in a disproportionally large impact on the 

estimation of the implied volatility. Consider a deep out of the money option that had 

a theoretical value of 0.02 and the bid price was 0.01 offered at 0.03. If the evaluation 

of the implied volatility was made at the offered price of 0.03, this would lead to a 

much higher implied volatility for that option than at its fair price. Because the 

theoretical options pricing models cannot incorporate transaction costs or the bid/offer 

spread this exaggerates the impact of the implied volatility result from inverting the 

options pricing model. Cox and Rubinstein (1985) state their belief that one true 

volatility does exist but differences "will be due primarily to [the lack of simultaneity 

in quoted stock and option prices and] the inherent coarseness of prices that are 

quoted in units of 12.5 cents (or 6.7 cents) rather than one cent" (page 278). 

Another factor that could easily impact the volatility smiles is that option 

prices (in the traded markets we are examining) are subject to some minimum level. 

For example, in the FTSE 100 options, the price can never fall below 0.5 (which 

represents £5). In this case, when a range of strike prices are far enough from the 

underlying market price, they approach a theoretical value of 0. However, if this is not 

allowed, then as option strike prices become further and further out-of-the-money and 

the option price remains locked at the minimum level, the Black-Scholes model will 

assign higher implied volatilities for the further out-of-the-money options. Merton 
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(1973) demonstrated that the further away from the underlying price a strike price is, 

the lower the option price must become. The establishment of a minimum option price 

would by definition suggest that an (butterfly) arbitrage exists and would cause the 

extremely out-of-the-money options to have progressively higher implied volatilities. 

Most empirical research that examines the strike price biases, associated with option 

prices have chosen to ignore these options [see Jackwerth and Rubinstein (1996)], as 

will we. Nevertheless, this suggests that discrete nature of the option prices may have 

a profound influence on the determination of implied volatilities that assume 

continuous prices. 

According to Cox and Rubinstein (1985), another possible reason for different 

volatilities in the smile is the early exercise potential of American options. They also 

explain the existence of different volatilities at different maturities as a direct result of 

stochastic volatility. They state: "In principle, different options on the same 

underlying stock may have different implied volatilities. If the volatility is changing 

over time, then options with different expiration dates would not be expected to have 

the same implicit volatility. Even for options with the same expiration date, some 

difference should arise because the possibility of early exercise means that the actual 

lifetime of the options may not be the same. " (page 278). Geske and Roll (1984) also 

suggested that the empirical biases were a result of mispricing due to the 

phenomenological formula for the pricing of American options proposed by Black 

(1975). 

Dumas, Fleming and Whaley (1996) suggest that the behaviour of market 

participants may be the reason. They state: "... the "smile" [skew] problem may not be 

a deficiency of the Black/Scholes model. After the October 1987 crash, portfolio 

insurers began buying exchange-traded index options to replace dynamic portfolio 
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insurance schemes. Buying out-of-the-money index puts surely drives Black/Scholes 

implied volatilities higher if no one is actively arbitraging according to the 

Black/Scholes model. With institutional buying pressures for out-of-the-money puts 

and no naturally offsetting selling pressure, index put prices rise to a level where 

market makers are eventually willing to step in and accept the bet that the index level 

will not fall below the exercise price before the option's expiration (i. e. they sell naked 

puts). So, even if the Black/Scholes model is correct, trading costs combined with 

option series clienteles may induce patterns in implied volatilities, with these patterns 

implying little in terms of the distributional properties of the underlying index. " (page 

21). 

Figlewski (1989a) also suggests that the reason for the existence of volatility 

smiles is due to the demands of option users. He suggests that the higher prices (and 

resulting higher implied volatility) associated with out-of-the-money options exists 

because people simply like the combination of a large potential payoff and limited 

risk. He likens out-of-the-money options to lottery tickets with prices such that they 

embody an expected loss. Nevertheless, this does not dissuade some from purchasing 

them. 

Another possible reason for the existence of smiles is that the volatility of the 

underlying asset could be correlated to the level of interest rates. Scott (1994) tested 

this using data for the S&P 500 and 3 month T-bills. He found that the correlations 

between monthly changes in stock return volatility and changes in T-bill rates is -0.08 

for the period 1970-1990. If the stock market crash of 1987 is omitted, this 

correlation is only +0.06. Thus, we can conclude that there is practically no 

relationship between changes in interest rates and changes in stock market volatility. 
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For equity markets, some have argued that the existence of the skew is due to a 

simple economic mechanism; the fact that there is an inverse relationship between the 

levels of stock prices and the variance of return. One of the earliest explanations is 

that as the firm's stock price falls, the market value of its equity tends to fall more 

rapidly than the market value of its debt, causing the debt-to-equity ratio to rise. Thus, 

the riskiness of the stock increases. A similar effect can be observed even if a firm has 

almost no debt, since every firm faces fixed costs, which have to be met regardless of 

income. If a decrease in income occurs, the value of the firm will decrease and at the 

same time the riskiness will increase. These operating and financial leverage effects 

have been one possible reason for the skewed relationship in volatilities. They were 

pointed out by Black (1975) and Schmalensee and Trippi (1978). 

Apart from these possible reasons for the existence of smiles, most research 

suggests as the most plausible explanation that the market does not believe the 

dispersion of the underlying asset to follow a lognormal distribution. There are a wide 

variety of possible distributions that could be explain the existence of smiles. The 

choice of these distributions depends on whether one is attempting to explain the skew 

or the kurtosis effects we observed. 

Most of this research follows a parallel path to the models that attempt to 

capture the dynamics of the objective processes. As with the literature review in 

Chapter one, the same models have been suggested as candidates for underlying the 

dynamics of the risk-neutral distributions. 

Generally speaking two dispersion processes have been proposed to explain 

the existence of excess kurtosis implied from the volatility smiles: stochastic volatility 

models and jump processes. Johnson and Shanno (1987) state: "It is possible that 

exercise price biases can be explained in a variety of ways, e. g. with a jump process, 
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with the displaced diffusion model of Rubinstein (1983), or with stochastic interest 

rates; however, only a model with stochastic changing variance appears capable of 

explaining both the stock return data and the options data. " (page 144). 

Their conclusion comes from the extreme rich literature on the derivation and 

empirical testing of stochastic volatility models. Apart from Johnson and Shanno 

(1987), the effects of stochastic volatility upon options prices have been examined by 

Hull & White (1987b), Scott (1987), Wiggins (1987), Stein & Stein (1991) and 

Heston (1993). All these papers show that predicted European option prices from 

these models tend to produce options prices that are lower than the Black-Scholes 

option prices for at the money options and greater for out of the money options. For 

deep out of the money options, the results are sensitive to the parameters of the 

stochastic process describing changes in volatility and the correlation between 

changes in volatility and the price of the underlying asset. 

Hull and White (1987b) discuss what they term the time-to-maturity effect 

This effect was assessed by running simulations of options prices using their model 

and comparing the implied volatilities of these prices using the Black-Scholes 

formula. When this is done, it appears that the longer the maturity of the option, the 

lower the implied volatility of the at-the-money option and the higher the implied 

volatility of out-of-the-money options. Thus, the Hull and White stochastic volatility 

model would predict smiles to become more extreme in shape the longer the maturity 

of options. 

Stein & Stein (1991) also examined the impacts of stochastic volatility on 

option prices by running simulations with a variety of parameter values for the initial 

volatility level, ßo , the long term volatility 0, the rate of mean reversion, 8 and the 
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volatility of the volatility, ic. Apart from determining options prices for a variety of 

maturities, they also determined the implied volatility of these prices from a Black- 

Scholes formula. They concluded: "Several observations emerge from the table. First, 

stochastic volatility exerts an upward influence on all options prices. Whenever Qo = 

0, the new price exceeds the Black-Scholes price for the same 0. Second, stochastic 

volatility is "more important' 'for away-from-the-money options than for at-the-money 

options, in the sense that the implied volatilities corresponding to the new prices 

exhibit a U-shape as the strike price is varied. Implied volatility is lowest at-the- 

money and rises as the strike price moves in either direction. " (page 738). 

Subsequent research by Sheikh (1991) and Heynen (1993) used the Rubinstein 

nonparametric tests to examine implied volatility patterns in index options. Sheikh 

found smile effects for the US index options market (S&P 100) and concluded that the 

existence of the smile constitutes evidence against the B-S-M model and in favour of 

a stochastic volatility model. On the other hand, Heynen examining European index 

option implied volatilities also found systematic smile effects. However, when he 

reviewed the predictions of various stochastic volatility models, he found the observed 

smile pattern to be inconsistent with them. He suggested that market imperfections 

were the most likely explanation for the existence of volatility smiles. 

Ball (1993) notes that there is evidence that stochastic volatility models do 

explain the smile effect in option pricing. Hull and White (1987b) make the most 

significant contributions in this analysis. According to Ball, "Using their expectation 

paradigm, and noting that the Black-Scholes pricing formula is everywhere concave in 

variance only for at the money options, we may invoke Jensen's inequality. 

Consequently, we have that the stochastic volatility option price is lower than its 
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constant volatility counterpart for at the money options. This result breaks down for 

out of the money options and simulations by H&W indicate the extent of the smile 

effect under these conditions. " (page 16). 

Hilliard and Schwartz (1996) also addressed the question: "Why does the 

smile exist? " by postulating a stochastic volatility model. Similar to research 

presented in the first portion of this research, they found that most sensitive parameter 

for the determination of the degree of leptokurtosis was the volatility of the volatility 

input. They were able to create simulated smiles that appear to be similar to shapes 

observed in the market by increasing the volatility of the volatility parameter to an 

extremely high level. They fail to report any of the other statistics of the underlying 

price series dynamics that would have been associated with this approach. Given other 

research on simulating stochastic volatility models, it would be expected that the 

longer the term to expiration, the greater the impact of the model on the prices of the 

options. Therefore, we would expect that the smiles would become more extreme the 

further out in time one goes. 

Thus, we observe in all the tests of stochastic volatility models that the longer 

the time period to expiration for the option, the greater the impact of the stochastic 

volatility on the prices of options. However, the predicted results of these models are 

inconsistent with the empirical evidence. Bookstaber and McDonald (1987) found that 

longer term options are better described by a lognormal distribution. They state, "If 

volatility were nonstationary, then our results would lead one to expect long-horizon 

returns that look substantially fatter-tailed than lognormals. " (page 742). This would 

cause the volatility smiles to flatten out as the time to expiration is extended. This is 

exactly the opposite of what would be predicted by this class of models. 
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Apart from the fact that the stochastic volatility models fail to produce smile 

behaviour that is consistent with actual smiles, there is a more fundamental problem 

with these models. Neuberger and Hodges (1996) examined the impacts on options 

prices when the market is incomplete due to the lack of a traded asset that is volatility 

sensitive. When they introduced such a volatility-sensitive asset into their economy, 

they report the gains from introducing such an asset is relatively minor. Scott (1992) 

examined the impact of options prices in a market in which volatility and interest rates 

change randomly and options are priced correctly. He concludes that: "The empirical 

results suggest that there is an economically significant negative risk premium 

associated with volatility" (page 3). The lack of a volatility traded asset and the 

problem of estimating risk premiums for heterogeneous market participants is a 

serious limitation for this model. 

A new tact in the literature is to examine stochastic volatility models that are 

consistent with the implied volatility smile and use this information to provide 

insights into the assumed dispersion process. Dupire (1992) also examined the 

possibility that the existence of smile structures is caused by stochastic volatility. The 

presence of stochastic volatility implies that, since volatility itself is not a traded asset, 

it is not possible, to create a riskless hedge. To price options, equilibrium arguments 

must be used and a risk premium for volatility must be specified. Dupire's 

contribution is to treat the prices of standard options as exogenous inputs and use 

these to derive the nature of the stochastic process driving both the underlying asset 

price and the volatility which allows no arbitrage opportunities. This approach is 

similar in spirit to the modelling of interest rates by Ho and Lee (1986) and Heath, 

Jarrow and Morton (1989). 
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Dupire's aim is not to explain the standard option prices observed in the 

market but rather to assume that since they are traded assets they are fairly priced 

otherwise arbitrage would exist. Assuming such equilibrium exists, we can use the 

prices of these assets to assess the appropriate dispersion process, which is consistent 

with these prices. This approach will be examined in detail later in this Chapter. 

Another problem with the stochastic volatility models is that they fail to 

explain the high degree of skewness that is observed in the volatility smiles of many 

markets. Most of the literature has concentrated on the analysis of skews for equities 

and stock index options. However, Merville and Overdahl (1986) identified that a 

negative skew also exists for options on US T-Bond futures. Significantly, they 

suggest that the skew had remained essentially unchanged over the period from 1982 

to 1985. In later research (on financial futures), Fung and Hsieh (1991) pointed out 

that the observed patterns of volatility smiles for options on financial futures could be 

a combination of the effects of stochastic volatility and a possible correlation existing 

between volatility and price levels. This would cause the standard option pricing 

models to imply volatilities of the same underlying asset to vary across strike prices 

and in the patterns observed in the market. 

With this. approach in mind, Heston (1993) examined a stochastic volatility 

model that incorporated correlations between the levels of the asset price and 

volatility. He states: "An important insight from the analysis is the distinction between 

the effects of stochastic volatility per se and the effects of correlation of volatility with 

the spot return. If the volatility is uncorrelated with the spot return, then increasing the 

volatility of volatility ((; ) increases the kurtosis of spot returns, not the skewness. In 

this case, random volatility is associated with increases in the prices of far-from-the- 

money options relative to near-the-money options. In contrast, the correlation of 
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volatility with the spot return produces skewness. And positive skewness is associated 

with increases in the prices of out-of-the-money options relative to in-the-money 

options. Therefore, it is essential to choose properly the correlation of volatility with 

spot returns as well as the volatility of volatility. " (page 339). 

However, significant problems arise from the use of stochastic volatility 

models to price options. Under constant volatility, the absence of arbitrage implies 

that the option prices must satisfy a fundamental partial differential equation in 

security price and time. The terminal payoffs of the option determine the current 

option's price as a unique solution to this partial differential equation. As Ball (1993) 

points out: "With stochastic volatility, a second factor is introduced requiring the 

option to satisfy a bivariate fundamental p. d. e. Furthermore, since the second factor, 

volatility, is not spanned by assets in the economy, we can no longer price options by 

no arbitrage techniques and the explicit exogenous market price of volatility risk must 

be introduced. " (page 3). The solutions to this bivariate equation can be complex and a 

number of solutions have been proposed. Furthermore, researchers have tackled the 

problem of volatility not being a traded asset by examining either a risk premium for 

volatility or proposing new assets that allow the direct trading of the volatility. Such 

solutions to the bivariate p. d. e. include numerical approaches [see Wiggins(1987)] or 

the analytic approaches examined earlier in this research and summarised by Taylor 

(1994). 

Furthermore, Hilliard and Schwartz (1996) point out that stochastic volatility 

models cannot even be used when there is non-zero correlation between stochastic 

volatility and price. Hull & White (1987a) acknowledge this problem and provide 

some sensitivity analysis to measure the effects of correlation using a Monte Carlo 

simulation approach to solving the fundamental pde. 
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Even if one were able to model such a correlation sensitive stochastic volatility 

model, problems will occur if the correlation between volatility and price levels vary. 

Recent research has pointed out that the existence of skewed distributions for equity 

indices could be a function of instabilities in the correlations between the equities 

which comprise the index. Kelly (1994) in a RISK magazine article, pointed out that 

the steep volatility skew that is found for equity index options is not as extreme for 

options on the individual stocks which comprise the index. He proposes that the 

relatively extreme skew pattern for equity indices is due to an expected increase in the 

correlations between stock when the underlying equity markets fall. 2 

One of the earliest models to address the skewness observed in the implied 

volatility smiles was the Constant Elasticity of Variance Option pricing model 

proposed by Cox and Ross (1976). Cox (1996) states that one result of this model 

would be to explain the skewness observed in the volatility smiles for stock indices. 

This is achieved by making the volatility proportional to a power of the stock price. 

According to Cox (1996), "The market's current smile is of course a complex 

phenomenon, but most would now agree that the negative correlation between stock 

price changes and volatility changes is a primary ingredient. Indeed, this inverse 

relationship is the foundation for a number of recent articles on the volatility smile, 

including Derman and Kani (1994), Dupire (1994) and Rubinstein (1994). " (page 16) 

These studies are similar in spirit to the constant elasticity of variance model, but they 

determine the precise relationship between stock price and volatility endogenously 

from market data rather than specifying it in advance. These will all be discussed in 

the later section on the determination of implied distributions from the volatility 

smiles. 

2 Kelly, Michael. "Stock Answer, " Risk Magazine, August 1994 Volume 7, Number 8, pp. 40-43. 
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Another possible approach which would explain why the distributions of 

equity indices might be skewed is the compound option model of Geske (1979). 

However, this approach requires modelling the options on equities as compound 

options on the assets of a firm. While this may make inherent sense for individual 

equity options, it may not be as valid for stock indices, which are a composite measure 

of all equities. 

As with the first portion of this research on the objective dispersion processes, 

another hypothesis that could explain the existence of smiles are that jumps exist. The 

Merton (1976) model, which assumes that the underlying asset prices are driven by a 

jump process, will generate certain smile behaviours. Pappalardo (1996) summarises 

the impacts of such a jump model on the smile dynamics thus: "an option on a stock 

whose price is driven by a process with jumps is more valuable than a stock whose 

price is driven by a geometric Brownian motion. Moreover, the formula (for pricing 

options with a jump process), which assumes that the jumps have a lognormal 

distribution, explains (at least qualitatively) many discrepancies between the Black 

and Scholes formula and the option prices observed in the market, such as the fact that 

either deep in the money and deep out of the money options are underestimated by the 

Black and Scholes model. " (page 13). Pappalardo (1997) later examined the local 

volatility function that would be associated with a lognormal jump process. He was 

able to demonstrate the existence of volatility smiles and that the smiles become more 

extreme as the time period to expiration is approached. Furthermore, for options with 

maturities of greater than six months, there appears to be almost no strike price effect. 

This appears to be closer to what we observe in the empirical implied volatility smiles. 

Beckers (1981b) suggests that jumps are responsible for the existence of 

smiles. He states: "it can be proven that this distribution (jump diffusion model) is 
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leptokurtic and therefore might better describe the actual stock price return behaviour 

than the pure lognormal model. " (page 128). Cox and Rubinstein (1985) examined the 

impact of a Diffusion-Jump Process for the pricing of options. They found that as the 

jump component becomes more significant, this will increase the value of out-of-the- 

money options and decrease the value of at-the-money options. They also found that 

the increase of the jump component leads to the greatest impact for options that are 

close to expiration. (page 371). 

Recent research by Masson and Perrakis (1996) finds that the smile behaviour 

of the S&P 500 stock index options are not explained by models based on 

systematically-varying volatility of the underlying asset, or by transactions costs. But 

they state: "it is fully consistent with the existence of jumps in the price of the 

underlying asset. " (page 2). Other research by Shastri and Tandon (1986) and 

Bodurtha and Courtadon (1987) suggest that currencies do also follow jump 

processes. Significantly, Taylor and Xu (1993) predicted that the smile shapes will 

become more pronounced as the options contracts approach maturity if this approach 

is used. As was stated earlier, that is exactly what we observe. 

Another approach to solving for the biases observed in the implied volatility 

patterns is to derive an analytic option pricing model which assumes the underlying 

price series follows a different evolutionary process than Geometric Brownian motion. 

One such attempt to derive an approximate analytic model was done by Jarrow and 

Rudd (1982). They were able to derive an option price as the sum of a Black-Scholes 

price plus adjustment terms which depended on the second and higher moments of the 

underlying security stochastic process. This allowed the option price to also depend 

upon the skewness and kurtosis of the underlying asset's distribution. They used a 

generalised Edgeworth series expansion to determine the higher moments. Recently, 
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Corrado and Su (1996,1997) have extended the Black-Scholes model to include 

skewness and kurtosis in the options-implied distributions. From this methodology, 

they can estimate the options-implied coefficients of skewness and kurtosis. Their 

analysis covered both stock options [Corrado and Su (1997)] and options on stock 

indices [Corrado and Su (1996)]. 

A final possible explanation for the existence of the kurtosis dynamics is that 

both jumps and stochastic volatility are responsible in some complex interaction. Scott 

(1994) suggests that the extreme kurtosis (which describes the existence of smiles) 

could be caused either by jumps or stochastic volatility. He states: "On occasions, 

there are large, rapid price movements resembling jumps, and the volatility of stock 

returns changes randomly over time. Both of these features serve to explain the 

kurtosis. " (page 1). 

As with the first portion of this research, the aim of this portion will be to 

examine these alternative models and assess -which best describes the empirical 

dynamics of the risk-neutral dispersion processes. A potentially important comparison 

is between the models that have been determined which explain the objective 

dispersion processes for our twelve financial futures markets and how well these 

models explain the dynamics of the risk-neutral dispersion process implied by options 

on these same twelve financial futures. 

6.5 APPROACHES FOR DEALING WITH VOLATILITY SMILES 

Wisse (1995) points out that there are essentially three approaches for 

adjusting option pricing methods to correct for the existence of volatility smiles. The 

first (and simplest) approach is to take the implied volatilities from existing option 

prices and apply Black-Scholes pricing using these volatilities. While this certainly 
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addresses some of the problems with the constant volatility assumption, it is not clear 

whether these implied volatilities will retain the same volatility patterns at future 

estimation dates. One solution that was discussed previously is to examine the 

historical record of smile patterns, standardise them and assess if these patterns are 

consistent across time. This is the basis for the construction of volatility matrices and 

will be discussed extensively in the next Chapter, where such comparisons will be 

examined for the twelve markets under investigation. 

An important area of research is to examine how effective the Black-Scholes 

model performs in market pricing terms if such volatility matrices are used to price 

options at some future date. Assuming a consistency exists in the relative patterns of 

smiles at given points in time, this could provide a computationally inexpensive and 

effective method of pricing options for risk management purposes. This is precisely 

the aim of the next Chapter. 

The second approach that Wisse (1995) suggests is to assume that the 

volatility parameter follows some stochastic process. Specifically, this entails 

modelling stochastic volatility, which we addressed in the first portion of this research 

for the objective dispersion processes of the twelve futures markets. Wisse points out 

that this approach has been shown to be successful for pricing currency options and 

does partly address the smile effect. However, he goes on to point out that "A major 

difficulty lies in estimating the parameters of the underlying random walk [process]" 

(page 3). We have addressed this issue using the minimised sum of squared 

methodology used in Chapter 4. From this analysis, we will examine what would be 

the sorts of volatility smiles that would be generated from the optimised stochastic 

volatility models and will compare these to the actual smile patterns for each of our 

twelve markets. 
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The third approach suggested by Wisse (1995) is to consider the market prices 

of options as an "exact reflection of the option's value, assuming markets are 

efficient. " (ibid. ). Under this assumption, it is possible to find the stochastic process 

followed by the price of the underlying asset that is consistent with all the available 

option prices. This will be examined later in this Chapter when we examine the 

dispersion processed implied by option prices. 

Determination of Risk Neutral Probabilities Empirically 

As was stated above, a major new area of the literature has been to examine 

probability functions for volatilities implied from options prices. Since the 

determination of these probabilities depends upon the utilisation of risk neutral 

assumptions (by using option pricing models to assess the volatilities implied in these 

options prices), the probabilities will themselves be risk neutral estimates. This will 

depend upon the observed biases of implied volatility across different strike prices for 

options that share the same time to expiration. 

One of the first papers that examined the distributions implied by option prices 

was Bates (1991). His goal was to answer the question whether the 1987 stock market 

crash was predicted by the prices of options on the S&P 500. He states (page 1010) 

that "the instantaneous set of call and put option prices across all exercise prices gives 

a very direct indication of market participants' aggregate subjective distributions. " 

While Bates assumed a model with jumps and determined a means to parameterise his 

model using a Least Squares Method, his major contribution was to start others along 

a similar path. Gemmill (1991) examined whether prices of options on the FTSE 100 

predicted the 1987 crash and found similar results to Bates. 
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The new approach suggested in recent research by Rubinstein (1994) among 

others [Derman and Kani (1994) and Dupire (1994)] is to start with the market prices 

of options and find the density function that is consistent with those prices. The 

variance of this market-implied distribution may then be used as a measure of future 

volatility over the remaining life of the option. It is important to remember that this 

market-implied distribution is not the variance of the true probability distribution but 

rather of the distribution in a risk-neutral world. The theoretical relationship between 

the two depends on the equilibrium price process in the economy, which in turn 

depends on investor preferences. 

Potentially, this implied risk-neutral distribution contains even richer 

information about the market's expectations for future movements in the underlying 

asset price. This distribution can then be used to calibrate a binomial or trinomial tree 

that is consistent with the observed prices of all options. Methods for this 

implementation have been suggested by Rubinstein (1994). 

These methods find a process such that the model is consistent with the 

implied volatility of the market and thus the model is complete. Given that the price of 

a series of European options, C; (K,, T1) can be made a function of the strike price i 

and maturity j, Dupire (1992) suggests a way to find a process for the stock returns 

which follows this form of diffusion: 

dSt = r(t)S, dt + a(S,, t)S, dZ (6.7) 

where r(t) is the interest rate for the period, St is the asset price at the current time, the 

volatility, ß is a complex function of the level of the asset price and time and dZ is a 

standard Brownian motion. Pappalardo (1996) states that the determination of the 

smile surface associated with C, (K,, T j) can lead to ambiguities. He states "In 
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general, the diffusion contains more information than the conditional law it generates 

at a fixed time, i. e. different diffusions can give the same conditional law... This 

ambiguity can be removed if we restrict ourselves to observe the process under the 

risk neutral probability measure. " This is exactly what is done by Dupire (1992). 

Differentiating the above equation twice with respect to the strike prices, K,, 

will provide the relationship between the risk neutral probability density and the smile 

surface: 

(PT(K)=a2äx2'T) (6.8) 

All that is required given the conditional probability density function, q, is to 

search for a risk neutral diffusion process that generates it. 

Rubinstein (1994) discusses three methods for estimating the risk-neutral 

density function implied by option prices. Jackwerth and Rubinstein (1996) point out 

that given that observed option prices are only available at discretely spaced striking 

price levels, it can be problematic to determine a continuous risk-neutral density 

function that requires a continuous range of strike prices. The first method (suggested 

by Rubinstein) is the Longstaff (1993) approach which simply derives a step-function 

approximation to the risk-neutral density function, where the step function is a coarse 

as the interval between successive strike prices of traded options. However, 

Rubinstein shows that for some parameter values, this approach does not work. 

The second method, which is attributed to Shimko (1991,1993), relies on the 

fact that the risk-neutral density function is equal to the second derivative of the 

option price relative to the strike price. Breeden and Litzenberger (1978) were the first 

to demonstrated this. This approach does rely upon a continuum of observable option 

prices. Since these do not exist, Shimko suggests interpolating the prices of market- 
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traded options and then deriving the risk-neutral density function from these 

interpolated values. While many methods exist for such an interpolation, Shimko 

(1993) suggests the use of a least squares method to fit a quadratic function to the 

volatility smile. This approach can be expressed as: 

d(X, z) =a(z)+ß, (z)X +ß2(z)X2 +E (6.9) 

where X is the (unadjusted) strike price, ti is point in time at which the implied 

volatility smile is estimated, and the coefficients of the regression measure the 

intercept of the regression, the first and second order effects of the strike price biases. 

This formula will be used extensively in this research both to produce a continuous 

implied volatility function and to capture the two elements of the volatility smile that 

capture the higher moments of the distributional function (Q, for the skewness and 

ß2 for the kurtosis). 

Rubinstein suggests a third method, which is to choose the distribution that is 

closest (in the least squares sense) to some "prior" distribution. Given the estimation 

of the objective density functions completed in the first portion of this Chapter, this 

would serve as a good starting point or "prior" distribution to calibrate the implied 

density function. 

Jackwerth and Rubinstein (1996) also derive the underlying asset risk-neutral 

probability distributions implied by European option prices on the S&P 500 index. 

They used non-parametric methods to choose probabilities that minimise some 

objective function subject to requiring that the probabilities are consistent with 

observed option and underlying prices. Their contribution is that they demonstrate a 

new and faster optimisation technique for determining the implied probability 

distributions by maximising the smoothness of the resulting distribution. 
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6.6 RATIONALE FOR EXAMINATION OF IMPLIED VOLATILITY SMILES 

RATHER THAN IMPLIED DISTRIBUTIONS 

Given that the current emphasis in the literature is on the examination of 

implied distributions rather than the smile surfaces, we could choose to examine the 

risk neutral dispersion approach by modelling implied distributions. We have chosen 

not to do this but to concentrate on the implied volatility surfaces. There are a number 

of reasons for this. Firstly, it is not clear which of the available approaches suggested 

in the previous section are most appropriate. As Jackwerth and Rubinstein (1996) 

demonstrate significant problems exist from both fitting a continuous diffusion 

process with discretely observed options and adjustments must be made to the tails of 

the implied distribution to assure the sum of the probabilities equal 1.0. They are 

required to interpolate implied volatilities between discrete observations and employ a 

'clamping' technique to assure that the probabilities equal 1.0 (see page 1627). 

We did attempt to determine implied distributions using the simple approach 

of Shimko (1991,1993). However, we found significant difficulties in arriving at 

reasonable results. Firstly, the interpolation process for implied volatilities between 

strike prices was found to introduce significant errors3. Therefore, it appeared that 

almost any approach to smooth the jagged implied volatility patterns would introduce 

errors. The nature of these errors is somewhat difficult to understand and we felt that 

this would introduce further noise into our analysis. Finally, we had to make 

assumptions about the nature of the distribution beyond observable option prices (that 

3 In the next Chapter, we found that estimation of at-the-money implied volatility using a quadratic 
approach led to considerable errors The best estimate was a simple linear interpolation of the implied 
volatilities of the strike price closest to and below the underlying futures price (using OTM puts) and 
the strike price closest to and above the underlying futures price (using OTM calls). 
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is in the tails). As was indicated above Jackwerth and Rubinstein (1996) were able to 

'clamp' the distribution to achieve non-negative probabilities and a sum of 

probabilities equal to, 1.0. However, to arrive at this result certain assumptions were 

made regarding a "prior" distribution [see Rubinstein (1994)]. We were not 

sufficiently comfortable in the choice of this prior distribution. 

Thus, the estimation of implied distributions required us to interpolate options 

implied volatilities, where we often had too few observations (or fairly wide strike 

price intervals) to have any confidence in the final result. We also found that a 

quadratic approach led to considerable errors in the estimation of the at-the-money 

implied volatility. Finally, we must extrapolate the distribution beyond the range of 

available options prices. We simply do not know what the true prices of options 

would be at these extreme strike prices. This would require us to fill in options values 

and we prefer to work with the options available rather than estimate options. We 

were uncomfortable estimating these deep out-of-the-money options. Given that the 

implied distributions are estimated in a number of steps removed from the actual 

option prices (and require unverifiable assumptions), we chose instead to examine the 

actual implied volatility surfaces. It was felt that minimal assumptions were made in ` 

the determination of these surfaces that would introduce errors. A potential problem is 

that this approach could limit the ability to compare risk neutral and objective 

dispersion processes. One benefit of the implied distribution process is that we can 

then identify the summary statistics of this process and compare these directly to the 

summary statistics of the objective processes. 

In our research, we will compare the risk neutral and objective dispersion 

processes by comparing options prices for both. It is clear that for the risk neutral 

dispersion processes, we have options prices and implied volatilities and minimal 
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assumptions must be made to examine these. For the objective dispersion process, we 

will determine option prices at discrete strike price intervals using a Monte Carlo 

technique that assumes the distributional form of the underlying asset follows the 

objective dispersion processes identified previously. This will be done in Chapter 9. 

In this way, we assure that comparisons between the risk neutral and objective 

processes are done using a metric (the implied volatility) surface that has less potential 

estimation problems compared with the implied distribution approach. 

6.7 CONCLUSION 

Options prices provide a rich resource for determination of the risk-neutral 

dispersion processes of assets returns. Through the estimation of the free parameter in 

the B-S-M option pricing models, one can determine the volatility implied in option 

prices. We have discussed how this measure is somewhat difficult to interpret and 

explained why there is need for standardisation for hypothesis testing. We also 

established the goal of this portion of the research. Our objective is to understand the 

nature of the risk-neutral dispersion processes that can be determined by volatility 

smiles. We seek to understand the time series nature of volatility smiles for a wide 

variety of financial assets, compare the smile behaviours both for single underlying 

assets and across asset classes and determine the relationship with the objective 

dispersion processes for these markets uncovered in the first portion of the research. 
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CHAPTER SEVEN 
THE ANALYSIS OF RISK NEUTRAL PROBABILITIES IN 

OPTIONS ON FUTURES: STANDARDISATION OF IMPLIED 
VOLATILITY SMILES 

7.1 INTRODUCTION 

In the last Chapter, we indicated that the empirical analysis of implied 

volatilities has examined a wide range of theoretical issues. Such research has 

investigated the methods of estimating the implied standard deviation, the time series 

behaviour of the at-the-money implied volatilities and weighting implied volatilities at 

different strike prices and time to maturity to arrive at a composite estimate. Much of 

the work on the implied volatilities was to examine the informational content of this 

parameter and the motivation was to assess if the implied volatility is an unbiased 

estimation of the realised volatility. 

A recent trend in the empirical investigation of implied volatilities has been to 

concentrate on understanding the behaviour of implied volatilities across strike prices 

and time to expiration. This line of research assumes implicitly that these divergences 

are not solely due to sampling problems or errors in measurement, but provide 

information about the dynamics of the options markets. Specifically, a number of 

recent papers have suggested that the divergences of implied volatilities across strike 

prices may be providing information about the expected dispersion process for 

underlying asset prices. 

In these papers, the emphasis has been on examining the current implied 

volatility surface given current options prices and using this information to determine 

the implied dispersion process. One line of research that has not yet been examined is 

whether these implied volatility surfaces display any consistencies either within the 

same market or if consistencies exist across markets. This research will deal with 
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time (in some cases more than 10 years) to conduct meaningful analysis. ' What is 

critical for our research is that most of the option data series exist for a period similar 

to the period for the underlying futures contracts. This will allow comparison between 

the risk-neutral dispersion processes (from the options markets) and the unconditional 

objective dispersion processes (from the futures markets). 

For the following underlying assets, the following time periods of analysis 

were examined: 

Underlying Asset 

Stock Index Options 
S&P 500 Futures 
FTSE Futures 
Nikkei Dow Futures 
DAX Futures 

Fixed Income Options 
Bund Futures 
BTP Futures 
Gilt Futures 
US T-Bond Futures 

Currency Options 
Deutsche Mark /US Dollar 
British Pound / US Dollar 
Japanese Yen / US Dollar 
Swiss Franc / US Dollar 

Time Period of Analysis 

25/03/1986 - 24/12/1996 
02/01/1985 - 20/12/1996 
25/09/1990 - 16/12/1996 
02/01/1992 - 20/12/1996 

20/04/1989 - 21/11/1996 
11/10/1991 - 21/11/1996 
13/03/1986 - 22/11/1996 
02/01/1985 - 15/11/1996 

03/01/1985 - 09/12/1996 
25/02/1985 - 09/12/1996 
05/03/1986 - 09/12/1996 
25/02/1985 - 09/12/1996 

For the analysis of the options contracts that trade on the London International 

Financial Futures Exchange (LIFFE) [this includes the BTPs, Bunds, Gilts and the 

FTSE 100], data was obtained directly from the LIFFE. This data includes closing 

prices of the options contracts, the implied volatility using the BLACK 1976 model 

and other information including volume, open interest, opening, high and low prices 

of the futures and options. For the FTSE 100, options data was only available from 

' In total, the number of option prices examined for all twelve markets was 1,263.317. Given that we 
also had the underlying futures prices for the same dates (and at the same time) as the options, we were 
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1992 from the LIEFE and only for the European options. To extend the analysis, we 

obtained additional data from Professor Gordon Gemmill, of City University Business 

School, who had compiled data for American options on the FTSE 100 (from the 

financial press) from 1985 to 1992. For our analysis we merged both data series. One 

problem was that only five option strike prices are reported in the financial press 

(Financial Times) and the limited number of option strike prices made it somewhat 

difficult to estimate the entire range of smile behaviours. For the data from the LIFFE, 

all the available options are reported, thus, we were able to gain more data points for 

estimation. Nevertheless, the addition of the seven years of options data will allow 

examination of smile behaviour before and after the 1987 stock market crash. For the 

estimation of implied volatilities, we required the closing futures prices for the same 

dates. These were drawn from the same data set as was used in the first portion of this 

research (see Chapter 2 for the description of this data). 

For the futures and options contracts traded at the Chicago Board of Trade (US 

T-Bond Futures and Options), the data was obtained directly from the CBOT on 

floppy disks. This data included closing prices of the futures and options contracts. 

For the futures and options contracts traded at the Chicago Mercantile 

Exchange [S&P 500, Nikkei Dow, Deutsche Mark, British Pound, Swiss Franc and 

Japanese Yen (all versus US Dollar) Futures and Options], the data was obtained 

directly from the CME on floppy disks. This data included closing prices of the 

futures and options contracts. From the original data files obtained, there were 

significant gaps in the price series for the S&P 500, the British Pound and Japanese 

Yen. Data was missing for entire years during the late 1980s. To fill in the missing 

able to assure that both time series were consistent to each other. From this analysis, we were able to 
clean both series and assure our analysis was minimally impacted by errors in data. 
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data, we obtained copies of the daily price sheets from the CME and we entered by 

hand all the futures and options prices that were missing. 

For the futures and options contracts traded at the Deutsche Terminbörse (i. e. 

the DAX futures and options) this data was obtained directly from the exchange. It 

included all the tick by tick prices of the futures and options contracts during each 

trading day. Given that the rest of the analysis was done on closing prices, we sorted 

the data by time of trade and chose the options and futures prices within one hour of 

the close. For this, we would only select options for analysis if a futures trade 

occurred within 3 minutes of the option trade, otherwise, we ignored the option. In 

most instances, the options selected were within the last 30 minutes of the close and 

the accompanying underlying futures contract traded within 1 minute of the option. 

Eight of the options under examination in this research were American style 

options on Futures. These included the FTSE 100 (prior to 1992), S&P 500 and 

Nikkei 225, the US T-Bond, and all the currency options. These options are paid for 

up-front and are American style. To estimate the implied volatilities correctly, we 

chose to use the Barone-Adesi and Whaley (1987) model. According to Clewlow and 

Xu (1994), this model has been shown to be very accurate for option maturities 

shorter than twelve months. For this model, an interest rate parameter must be 

included in order to estimate the implied volatilities. While Clewlow and Xu (1994) 

used London euro-currency interest rates to approximate the riskless rate in their 

option pricing models, for our analysis, we chose to use for all US Dollar based 

options, the US Treasury Bill interest rate for that day whose maturity fell most 

closely to the actual expiration date of the options. This data was obtained directly 

from the Federal Reserve Bank in Washington D. C. These contracts that required the 
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US Dollar interest rates included all the currencies, the US T-Bond, the S&P 500 and 

the Nikkei 225 contracts. 

It should be noted that some researchers have determined the implied 

volatilities of American options on futures using a European pricing model [Black 

(1976a)]. Jorion (1995) determined the implied volatilities of currency options on 

futures traded at the Chicago Mercantile Exchange using the Black (1976a) model. He 

justified this by demonstrating that the use of the European model introduced a 

upward bias in the estimated volatility that was small enough to be within the normal 

bid/offer spread for at the money options. However, it was shown by Whaley (1986) 

that this bias will depend not only on the level of the interest rate but also the absolute 

level of the volatility, the time to expiration and the degree to which the option strike 

price is away from the ATM level. For short dated options, there is little difference for 

ATM options, however, for out-of-the-money options, the biases become more 

severe. Given these potential problems and our objective to model the behaviours of 

out-of-the-money options we decided to use the Barone-Adesi Whaley model for all 

American options on futures under investigation (except for the LIFFE fixed income 

options). 

The FTSE 100 option (after 1992) was a European style option which also had 

stock type settlement (this means the premium was paid up-front). The options expire 

on the same date as the FTSE 100 futures contract and LIFFE determined the implied 

volatilities using the Black (1976a) model. At first, we were tempted to use these 

volatilities directly. However, when we obtained the additional (and earlier) data from 

Professor Gemmill, we were obliged to re-estimate the implied volatilities. Given that 

some of the options were American style and some were European style, we used the 

Barone-Adesi Whaley model for all the American options (pre 1992) and the Black 
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(1976b) model for all the European options (post 1992). To determine the interest rate 

parameter, we obtained weekly average Sterling interest rates from the Bank of 

England. When we compared our results to the implied volatilities produced by 

LIFFE, we found significant differences. After investigation with exchange staff and 

comparing exactly the same options, we learned that the implied volatilities provided 

are not accurate. LIFFE staff informed us that these are solely for indication purposes 

and are subjectively altered from the Black (1976b) implied volatilities before being 

released. This being the case, we estimated all the implied volatilities again using the 

appropriate models, made no adjustments to these results and used these numbers in 

the analysis. 

Most of the remaining options under examination in this research were 

American style options on Futures. All these options are traded at the LIFFE. These 

include the Bund, BTP and Gilt options. For these options the mechanics of 

margining of both the underlying futures and options removed the possibility of early 

exercise. For these options, it is possible to estimate the implied volatilities using the 

Black (1976b) model and interest rates can be ignored. 

These approaches addressed all the markets under examination except the 

DAX index options. For this contract, the option was based upon the cash index. This 

was selected because the option on the DAX futures is extremely illiquid and the date 

of settlement is exactly the same as the expiration of the futures. Thus, this contract is 

de facto an option on the futures. This option contract is European style and has stock 

type settlement. This means that the appropriate model is the Black and Scholes 

(1973) model with an interest rate input. No dividend yield is required because the 

DAX index is a total return index where the dividends are assumed to be 
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automatically reinvested in the index. The interest rate input was the average weekly 

3-month LIBOR for Deutsche Marks obtained from The Bank of England. 

Finally, given that this research is empirical in nature it was of utmost 

importance that the data we examined was carefully screened to remove errors. This 

was achieved in a number of ways. Firstly, we compared the futures price series with 

the options price series for the same days to identify obvious errors in recording either 

price series. This comparison was achieved by comparing the put-call parity values of 

the options with the underlying futures prices for every single date in our database 

(and for all twelve markets). A screening procedure was imposed such that if futures 

or options prices diverged by more than the normal bid/offer spread (of one tick), the 

observations were flagged. Once this was done, each price was compared with the 

original daily price sheets to confirm if a 'keypunch' error had occurred. We 

discovered that only 1-2% of the data had such errors. Nevertheless, these errors were 

of a sufficient magnitude that they did influence the results and therefore required 

correction. 

One of the most important methods of data cleaning was comparing the results 

among markets in the same asset classes. At each stage of the analysis, we found 

anomalous results. For example, after the indexing the at-the-money implied volatility 

to 100, we expected the levels, of the at-the-money implied volatility to be equal to 

100. We found unusual results. For the US T-Bond, the values were much lower. This 

was due to the fact that the initial approach we used for estimating the at-the-money 

implied volatility was biased [a quadratic approach suggested by Shimko 

(1991,1993)]. In addition, for a number of the other markets (S&P 500 and FTSE 

100), the final day of options prices provided by the exchanges did not correspond to 

the expiration date. This meant that our estimate of the implied volatility was using 
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the wrong period of time. Once this was corrected, the results corresponded to our 

expectations. Thus, by comparing the expected results to the actual results, it was 

possible to check for errors in a number of alternative ways. Finally, it should be 

mentioned that we had 1,263,317 options prices and all the analysis was standardised, 

this allowed us to check for any unusual results. From this we were able to screen all 

results for anomalies and in most cases this was due to errors in the data. By 

combining these varied approaches (both pre and post analysis), we assured that the 

options prices examined were as free of data as is humanly possible. 

7.3 HISTORICAL RECORD OF IMPLIED VOLATILTIES 

In the last Chapter, it was noted that a substantial literature exists examining 

the time series behaviour of at-the-money implied volatilities. In this research, we 

have chosen not to cover the same ground. 

Our objective is to examine the behaviours of implied volatilities, given that 

we have identified the objective processes that drive the assets underlying these 

options markets. Previous research has linked the objective and risk-neutral dispersion 

processes by testing option market efficiency (of the risk neutral dispersion processes 

relative to the objective processes). Guo (1996) examining this and most of the 

research on the information content of the risk-neutral processes addressed similar 

issues. We will not take this approach in this research. Instead, we are interested in 

answering a more general question: can the dynamics of the risk neutral process be 

better understood in light of the processes explaining the dynamics of the objective 

processes? 

An important starting point for this investigation is to state what behaviours of 

implied volatilities we are interested in understanding. Given that we will not examine 

the informational content of the implied volatilities, we have a number of areas we 
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could investigate. One such area of investigation could be the time series behaviour of 

the implied volatilities. As was discussed in the last Chapter, this area of research has 

primarily examined the dynamics of either the at-the-money implied volatility or 

some weighted average of all implied volatilities. 

As was stated in the last Chapter, the latter approach assumes that the only 

substantive difference in the volatilities between strike prices is due to sampling errors 

in their estimation. As was pointed out at that time, the process of weighting 

eliminates these differences and if this effect is not due to sampling but is some 

systematic behaviour, these patterns will be lost. Subsequently, research [Jackwerth 

and Rubinstein (1996), for example] has suggested that these differences in the 

implied volatilities are indeed systematic and provide information about the risk 

neutral dispersion processes implied by market participants. Therefore, we will 

choose to examine the time series dynamics of implied volatilities by concentrating on 

the implied volatilities of those options that are at-the-money. 

Once again, we must decide which time series dynamics we are interested in 

understanding. The area of time series analysis is indeed so rich that it offers fertile 

ground for potentially important research. Even so, many time series models have 

previously been examined in the literature and will not be the focus of this research. 

This research will concentrate on understanding the implied volatility surface. 

To set the stage for the analysis that follows, our first task will be to examine 

the dynamics of the implied volatility processes for the twelve markets under 

investigation. For this analysis, we will restrict ourselves to the behaviour of the at- 

the-money volatility for the twelve markets in our study. Figure 7.1a displays the at- 

the-money volatility for the four stock index options under investigation. Figures 7.1b 
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and 7.1c display similar charts for the four fixed income and four foreign exchange 

options. 

A general conclusion is that the levels of the implied volatilities vary 

considerably over time. For the stock index options (Figure 7.1 a) one can see the 

extreme spike that occurred at the time of the 1987 stock market crash. However, for 

the other asset classes of fixed income and foreign exchange options similar spikes 

occur from time to time. To understand the process we are dealing with better, 

summary statistics have been estimated for all the at-the-money implied volatilities 

for a number of time horizons. We have examined the implied volatility on a daily 

basis and compared the implied volatilities in 5-day increments from 5 days to 90 

days to expiration The summary statistics for the four stock index options ATM 

implied volatilities can be found in Table 7.1a. Likewise, the summary statistics for 

the ATM implied volatilities for the four fixed income options appear in Table 7.1b 

and for the four foreign exchange options in Table 7.1c. 

Examining the figures as well as the tables, it becomes clear that the at-the- 

money implied volatilities data series are highly non-normal. Considering the stock 

index option (daily) implied volatilities, all four markets display significantly positive 

skewness. For the two markets (S&P and FTSE) that include the 1987 crashes, there 

is also significant excess kurtosis in the implied volatility series. This is due to the fact 

that the implied volatilities experienced jumps of 160% for the S&P and 92.93% for 

the FTSE as of the 19th of October 1987. Of particular interest to our research is the 

relationship between the implied volatilities statistical moments as a function of the 

time to expiration. By including the implied volatilities measured at fixed time periods 

to expiration, we can assess how the distributional dynamics vary as the time to 

expiration varies. It is clear that the dynamics are not constant. Consider the 
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variability of the volatility. The standard deviation of the implied volatilities at 

different times to expiration does display variability. While the variability may be a 

purely a sampling problem (we can only have as many of these observations as we 

have contracts), it would appear that the closer we are to expiration, the more variable 

the volatility is (as measured by the standard deviation). 

For the fixed income options markets, similar patterns exist. Three of the four 

fixed income options experience significant positive skewness with the BTP market 

the exception. Again, three of the four markets also have significant excess kurtosis 

(statistics above 3.00) for the series of daily implied volatilities. Again, it appears that 

when the implied volatilities are measured at fixed points to expiration, the closer we 

are to expiration, the greater the observed standard deviations of the implied 

volatilities. In all cases, the standard deviations of the implied volatilities at five 

(calendar) days to expiration are significantly greater than for the standard deviations 

of the daily implied volatility series. 

Finally, for the four foreign exchange options markets, we again observe 

similar dynamics. All four markets display positive skewness for the daily implied 

volatility series and three of the four have significant excess kurtosis. As with the 

fixed income options, the closer the time to expiration for the option, the greater the 

standard deviation of the implied volatilities measured at that point. Once again, these 

standard deviations are significantly greater than for the daily at-the-money implied 

volatility series. 

Any interpretation of this result is difficult to draw since each of these implied 

volatilities measured at fixed points until expiration represents observations which are 

approximately three months apart. Nevertheless, the appropriate comparison would be 

between estimates all with three months lags but with progressively less time to 
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expiration. Thus, on a relative basis, it would appear that the variance of the implied 

volatility is inversely related to the time to expiration of the option. 

While this impact is somewhat puzzling and certainly warrants further 

investigation, we have chosen to limit our research to understanding the second order 

impact of the implied volatility smile. 

7.4 RESULTS OF THE IMPLIED VOLATILITY ANALYSIS 

To gain an overview of the smile estimation process and the implications for 

this research, we examined the implied volatility patterns as of the 2nd of November 

1996 for each of the twelve markets under investigation. 

The general viewpoint regarding volatility estimation assumes that the Black- 

Scholes-Merton model accurately describes conditions in actual options markets. The 

major assumptions are that the prices of underlying assets evolve through time log- 

normally with a constant volatility a at any time and market level. If this were correct, 

then the volatilities implied from the actual option prices in the market would be the 

same regardless of the strike price of the option or its maturity. To examine whether 

this is true or not, we examined the options for our twelve markets as of May 7,1996. 

The implied volatilities were determined using the appropriate option pricing model, 

interest rate parameter-and the closing price of the option and the futures. This was 

done for all the reported options and the results for the twelve markets are listed in 

Appendix 7.1. For one of these markets, the FTSE 100, the options prices and the 

implied volatilities (as of this date) appear in Table 7.2. 

One obvious result is that more options are available for the contract that is 

nearest to maturity (June 1996) compared with 'the deferred maturities (September 

1996 and December 1996). This is most probably due to the fact that most trading 
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activity in exchange traded options is concentrated in the nearest maturity options. For 

this reason, we will restrict our analysis to only those exchange traded options that are 

the closest to maturity. Secondly, for the June 1996 FTSE options, many of the series 

fail to have implied volatilities. In all instances these missing values occur for deep in- 

the-money call or put options (that are of critical interest to our research). The failure 

to determine an implied volatility is due to the fact that these options are trading at 

their intrinsic value alone. Given that no time (or extrinsic) value exists, it is not 

possible to invert the option pricing model to determine an implied volatility. This 

problem is mirrored for those options with the same strike price but deep out-of-the- 

money. For example, the deep out-of-the-money calls and puts, are all quoted at the 

minimum allowable price of 1.0. The prices for the put options from a strike price of 

3125 to 2625, are all equal to one. According to option pricing theory, the options 

prices should be monotonically decreasing as they become further out-of-the-money. 

Given that this is not possible due to the minimum price imposed by the LIFFE, the 

resulting implied volatilities compensate for this artificial minimum price level by 

increasing monotonically as the strike prices decrease. This effect would cause the 

convex curvature we observe (and is referred to as the smile). Whenever, such 

discrete price increments exist with minimum price levels, a volatility smile would 

result. This effect can also be observed for the out-of-the-money calls. 

Clearly, this effect is structural and cannot provide us with reliable 

information about the risk-neutral dispersion processes. The obvious solution is to 

remove these options from the analysis. Jackwerth and Rubinstein (1996) removed 

these options in their analysis of the implied volatilities of the S&P 500 by examining 

the butterfly arbitrage condition. This states that it is not possible to sell two options at 

. one strike price and use the proceeds to purchase two options at adjacent strike prices 
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(one above and one below) for no cost (or a premium inflow). This is due the curved 

relationship between option prices and the underlying which omits such arbitrage [see 

Merton (1973) for a proof of this]. We have also chosen to impose this condition that 

will eliminate the consideration of these deep out-of-the-money options in our 

analysis. 

One will further notice that this problem does not appear to exist for those 

options with longer time periods to analysis. While it would be tempting only to 

consider these options in our analysis, these options often have extremely poor 

liquidity and one must accept a trade-off between actively traded options and options 

with prices that are sufficiently small to approach the minimum levels. We chose to 

select those actively traded options and eliminate options that allowed arbitrage. 

Nevertheless, we are interested in the behaviours of implied volatilities as a 

function of time. While this requires a time series analysis of these options, it is also 

possible to examine the effects of the time to maturity for the implied volatilities of 

options by examining on a single date the implied volatilities for different maturities. 

For this analysis, one simply examines all the available maturities for the options (and 

their associated futures contracts). Finally, one can plot the raw (and unadjusted) 

implied volatilities versus the strike prices of the options. These graphs can be seen in 

Figure 7.2a (for the four stock index options), Figure 7.2b (for the four fixed income 

options) and Figure 7.2c (for the four currency options). 

For the same reason discussed previously regarding the potential problem of 

nonsynchronous prices for the options and underlying futures, only those implied 

volatilities from the available out-of-the-money option contracts (not admitting 

arbitrage) were examined. These were then plotted versus each option's strike price 

and options were grouped by their expiration date. Finally, to assess if any consistent 
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patterns exist, a line is drawn connecting the implied volatilities for each maturity. For 

these graphs, the implied volatility smiles were estimated using a simple linear 

interpolation between the adjacent point estimates. 

It is clear that the implied volatilities differ across strike prices for the same 

maturity and across diverse expiration periods for these twelve instruments. This is by 

no means an unusual result. This has been identified across underlying asset classes: 

the implied volatilities deviate from the constant and uniform level predicted by a 

lognormal dispersion assumption. However, the pattern of divergence does differ 

between different asset classes. 

For the options on the stock index futures (in Figure 7.2a), the implied 

volatility patterns generally display a convex shape and are skewed to the left. This 

implies that the market prices of options with lower strike prices are higher than the 

theoretical prices obtained from the option-pricing model using the at-the-money 

volatility. In addition, the market prices of options with higher strike prices are lower 

than what would be predicted based on the assumptions of the option-pricing model. 

This result has been identified extensively in the literature [see references in Chapter 

6]. 

While for the S&P 500, FTSE 100 and DAX options the smile relationships 

are skewed to the lower strike prices, the Nikkei displays a more symmetrical shape 

for the September 1996 maturity. Thus, all the stock index options display the skew 

behaviour previously identified in the literature. Regarding the curvature of the 

implied volatility patterns, it appears that the closer we come to expiration (and 

excluding the minimum price effect), a more extreme curvature is observed. If one 

could restrict the evaluation of the patterns solely to the curvature effect, it is now 

clear why this pattern has been referred to as a'smile'. 
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For the options on the fixed income futures (in Figure 7.2b), we also observe 

both skewness and curvature effects. Unfortunately, we did not have multiple option 

maturities to examine the effects of time on the implied volatilities. The only market 

that allows us some comparison is the Gilt with two available maturities. This is due 

to the fact that there is an even greater concentration of trading activity on the options 

that are closest to maturity. Nevertheless, it appears from the Gilt options that a 

similar pattern exists for those observed for the stock index options. The curvature of 

the implied volatility patterns becomes more extreme the closer we are to expiration 

of the option. 

For the options on the foreign exchange futures (in Figure 7.2c) we fortunately 

have more option maturities to examine. This will allow us to gain some insights in 

the effects of time on the implied volatility patterns. For all four markets, there does 

not appear to be a systematic skewed relationship between strike prices and implied 

volatilities. However, one can clearly see that as the options are closer to maturity, 

there is much greater curvature. Furthermore, the levels of the implied volatilities 

differ significantly across maturities. 
1* 

While it is clear that these patterns are not consistent with the assumptions of 

the option pricing models, many questions remain. The first is whether the 

divergences are due to the mis-specification of the option pricing models or are due to 

inefficiencies in the markets. Regardless of the reason for the divergences, the 

question is whether these patterns are random or systematic. If they are a function of 

time, or either the level of the underlying futures or the level of the volatility, it may 

be possible to discern some deterministic function that governs the behaviour of these 

volatility smiles. Dumas, Fleming and Whaley (1996) have already attempted to test a 

deterministic volatility function (DVF) option valuation model that is based solely 
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upon the strike price and time [also postulated by Rubinstein (1994), Dupire (1994) 

and Derman and Kani (1994)]. We will extend this analysis by enriching their model 

with additional factors. Our primary objective is to understand the dynamics of the 

implied volatility surface. Through this research we will examine how well the 

deterministic approaches suggested by existing research capture the dynamics of 

implied volatilities both cross-sectionally and across time. This will be done in the 

next Chapter. However, before we can complete this analysis, we must carefully 

prepare the data for analysis. Since our objective is to compare implied volatility 

functions between markets and within markets, we will require some standardisation 

to allow this to occur. To achieve this, we will examine such standardisation 

techniques for individual markets, as are used for the construction of historical 

implied volatility relationships. f 

Therefore, our objective for the rest of this Chapter will be to examine the 

patterns of volatility smiles through time and across strike prices for individual 

markets. To do this we will first introduce Volatility Matrices and demonstrate how 

they can be constructed for a single equity index option market: the FTSE 100. Then, 

we will concentrate on the patterns of implied volatilities for the same maturity that 

has been called the "Smile". In this section, we will demonstrate how practitioners 

standardise these patterns to allow comparison both across time and among different 

markets. Finally, we will demonstrate how to split out the effects of skewness and 

kurtosis that will allow these to examined separately. When the overall methodology 

has been presented, the final steps in the analysis will be done for all twelve markets 

under investigation. 

2 To consider the nature of the strike price biases, we have chosen to examine only one market, the 
FTSE 100. This is done to address the general issues involved in the volatility smile without what 
would become repetition of repeating the step by step analysis for each market. However, once the 
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7.5 DETERMINATION OF VOLATILITY MATRICES 

Given that the implied volatilities display variability across strike prices and 

maturities, there may exist complex interactions between price and time. Dumas, 

Fleming and Whaley (1996) identified this in the development of their DVF. One 

method of achieving a similar result is the construction of a volatility matrix that 

displays the implied volatilities in two dimensions: across strike prices and across 

time. Wisse (1995) indicates that this is the simplest way to correct for the existence 

of volatility smiles (and the term structure) and this approach has become one of the 

most important tools in the repertoire of option traders and analysts. Essentially, 

historical patterns of implied volatilities are examined both across strike prices and 

time and some assumption is made that these patterns are stationary. This historical 

analysis is then projected at future points in time to estimate what the implied 

volatilities should be at that point. Such a volatility matrix is presented in Table 7.3 

for options on the Financial Times 100 Stock Index Futures (FTSE) and for Over the 

Counter (OTC) options on the FTSE with expirations out to five years in duration. 

-30% -20% -10% -5% ATM 5% 10% 20% 30% 

1 Month 25.75 22.00 19.00 17.75 16.50 16.00 15.50 14.75 14.00 

3 Months' 24.75 21.25 18.75 17.75 16.75 16.25 15.75 15.00 14.25 

1 Year 22.50 20.25 18.50 17.75 17.25 16.75 16.25 15.50 14.75 

2 Years 21.75 19.75 18.25 17.75 17.25 17.00 16.75 16.25 15.75 

3 Years 21.5 20 19 18.5 17.75 17.5 17.25 17 16.75 

4 Years 21 20.25 19.5 19 18.5 18 17.75 17.5 17 

5 Years 21 20.75 20 19.25 18.75 18.25 18 17.75 17.25 

Table 7.3, Volatility Matrix for Options on the FTSE Index. 

methodology has been detailed for the FTSE 100 options, the final steps will be presented for all 
markets. This is done both to save paper and not try the patience of those reading this research. 
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The data for this matrix was compiled on 9 August 1994 and used by BZW, 

London3 to make prices for options on the FTSE Index. Specifically, the hank used 

the standard option pricing model for European options on Futures [Black (1976h)] 

but instead of assuming a constant volatility parameter, would override the model by 

inputting different volatilities depending on the strike price and maturity of the option 

required. In this table, it is clear to see that different implied volatilities are utilised 

across the range of standardised strike price range and maturities. The implied 

volatility for the option series that has a strike price closest to the current forward 

price level was deemed to be the at-the-money (or ATM) option. This can he seen in 

the middle of the top line of the matrix. Thereafter, option strike prices are 

represented in 10% increments. These are analysed up to 30% above and below the 

current level of the underlying FTSE forward price. To aid our analysis, the results of' 

the volatility matrix are graphed to show the patterns that exist both across strike 

26.00 
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18.0( 
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Strike Price NýC 
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Figure 7.3, Volatility Smiles of Options on the FTSE Index. 

'Many thanks to Niran de Silva and Leigh Baxendale of BZW, London for kindly providing this information. 
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prices and time. This has been produced in Figure 7.3. As a result, almost all the 

implied volatilities are different. For the same maturity, the further away from the 

ATM level the more divergent the implied volatilities. 

The graph shows that the shape of the pattern is curved upwards the lower the 

strike price. When the strike price is higher then the ATM level the implied volatility 

falls; reaching the lowest level with the strike price 30% above the current market 

(forward) price. These results are similar to the volatility smiles reproduced in Figure 

7.2a for the FTSE 100 as of May 7,1996. Given that these shapes bear some 

resemblance, one could hypothesise that perhaps some consistency occurs over time. 

More precisely, some deterministic function may exist that will allow us to model 

these relationships and test whether they are consistent across markets and over time 

or not. 

These findings suggest that the volatility input necessary for the pricing 

formula is no longer a constant parameter but a function of the price of the underlying 

asset and time. As was indicated previously, many market participants have chosen to 

continue to use the option pricing models that assume GBM but include a volatility 

overlay to correct for the biases. A key question is: How do practitioners determine 

such a volatility overlay? 

Constructing a Volatility Matrix for FTSE Index Options 

In all of these examples, the volatility matrices have been constructed at a 

particular point in time to allow a comparison of the relative levels of the implied 

volatilities and the smile structures. The problem is that this matrix can only be used 

on that one day, for the next day the entire structure may change. An example can be 

found in Figure 7.4 that displays a time varying three-dimensional graph. This graph 
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displays the smile structure for the nearby options on the FTSE 100 during 1996 

determined at five-day intervals. One thing that can be discerned from the graph is 

that the smile structures do vary through time. However, some sort of consistent 

cyclical dynamics seem to be occurring. This is because the level of the underlying 

FTSE futures as well as the levels of the implied volatilities was fairly stable over this 

period. Tompkins (1994) demonstrated that these patterns will appear to be much 

more random when the levels of the underlying and implied volatilities vary 

considerably over the time period of analysis. 

Apart from this obvious conclusion, these kinds of charts can be extremely 

difficult to interpret. This is because the scale at the front lists a fixed range of strike 

prices. It is not clear where the underlying futures contract was on that day and which 

strike price was at-the-money. Secondly, the overall level of the implied volatilities 

could be rising or falling and that could cause the curvature of the smile to appear 

more or less pronounced than the figure demonstrates. Finally, and this is a major 

concern, the graph provides little information about the stability of smile patterns. 

Thus, the goal of estimating the smile structure must be to construct a 

consistent and predictable method for both pricing the options and identifying whether 

enough consistency in the patterns of implied volatility exists to be used to project the 

implied volatility surface at future points in time. This can only be achieved if some 

consistency exists both over the strike price ranges and time and if this relationship 

can be understood. 

To accomplish this, we will employ the standardisation techniques for the 

volatility smiles outlined in the last chapter. Specifically, we will convert the levels of 

the implied volatilities into index form. The denominator (in the ratio) is the at-the- 

4 Tompkins (1994) examined the BTP options for the period of 1993-1994 and observed extreme 
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money volatility. Given that it is unlikely that the underlying futures will be exactly 

equal to one of the discrete strike prices available, we must estimate the level of the 

at-the-money volatility. We used two methods. The first was to determine the 

quadratic functional form that fits the volatility smile. This used formula 6.9 from the 

last Chapter [see Shimko (1991,1993)]. This equation will allow us (in theory) to 

estimate the implied volatility that would exist for a strike price that would be exactly 

equal to the underlying futures price. In essence, this is equal to the a of equation 6.9. 

We found two major problems with this approach. The first is that for many days, we 

had barely enough degrees of freedom (options prices) to determine the quadratic 

form. This led to significant errors in the estimation of the at-the-money volatility. 

We observed implied volatilities that were significantly different from the volatilities 

of adjacent strike prices. Secondly, it became apparent that there were problems with 

this quadratic functional form. Many of our markets (the US T-Bond market in 

particular) were not well described by a quadratic function. It appears that higher 

moments are required and given that we have a limited number of degrees of freedom, 

this approach was not tenable. The second approach was to take a simple linear 

interpolation for the two implied volatilities of the strike prices that bracketed the 

underlying asset price (one below and one above). By reducing the grid to these two 

closest observations, many of the problems encountered with the quadratic approach 

disappeared. 

Finally, with an estimated at-the-money volatility, we could standardise each 

observed implied volatility by indexing each to this level. As was discussed in the last 

Chapter, this standardisation is necessary due to the non-constant levels of the implied 

variability of the implied volatility smiles for this period. The patterns failed to display any cyclical 
behaviour due to wide swings occurring in the underlying market during that period. 
3 There was a slight modification to formula 6.9. The strike price was expressed as the natural 
logarithm of the ratio of the strike price to the underlying futures price. 
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that are observed over time. This variability in the implied volatility makes it difficult 

to compare the relative levels of implied volatilities to the level of the ATM volatility. 

Furthermore, this standardisation will allow us to compare implied volatility patterns 

cross-sectionally (as the effects of scaling are removed). 

The second standardisation was to index the strike prices to the level of the 

underlying futures price. This standardisation was achieved using formula (6.6) from 

the last Chapter. As a review, this is expressed as: 

ln(XT /F, ) 
(7.1) 

ß z/365 
Where Xt is the strike price of the option at time to expiration ti, F, is the underlying 

futures price at time to expiration ti, and the square root of time factor reflects the 

percentage in a (calendar) year of the remaining time until the expiration of the 

option. Finally, the sigma term (a) represents the at-money-volatility. 

Again this adjustment is required because the underlying asset price was 

constantly changing throughout the period. If one were to draw each smile relative to 

the same fixed strike prices, this is misleading. This is because the strike associated 

with the ATM option will be a function of the price of the underlying asset price. 

Since our objective is to assess a deterministic volatility function, such standardisation 

will allow for us not only to estimate such a function but also test the stability of this 

function. It is acknowledged that whenever some method of standardisation is 

employed, a loss of information (detail) results. However, given our objective is to 

compare smile behaviours both cross-sectionally and across time, we believe the loss 

of information by standardising is more that made up by the ability to compare smile 

dynamics within and between markets more directly. 

A key question for our research was the selection of the term to maturity of the 

options in this analysis. Essentially, how far back in time should we estimate our 
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standardised smiles? We observed from the collection of the option and futures prices 

that the liquidity for both assets is not uniform over time. While options and futures 

could be offered with up to nine months to expiration, these contracts rarely traded 

until they became the nearest contracts to expiration. Furthermore, for the options 

markets, we must have a wide range of strike prices to be able to determine a 

meaningful quadratic function to ascertain the shapes. The problems suggested in the 

previous chapter of illiquidity and nonsynchronous were significant until the futures 

and options contracts became the nearest contracts to expiration. Therefore, for our 

analysis, we restricted our smile evaluations only to those options and futures that 

were the nearest contracts to expiration. Furthermore, we restricted our analysis to the 

quarterly expiration schedule of March, June, September and December maturities. 

This restriction might seem to reduce the information about the smile patterns 

that could be obtained. For a number of the options markets (such as the currency 

options offered at the CME and the options offered at the LIFFE) serial delivery 

contracts were introduced in the mid-1990s. These options were based upon the 

quarterly futures delivery cycle but had monthly expirations. As an example, the 

options on the Bunds traded at the LIFFE would be based on the June 1996 Bund 

futures but would expire in March, April and May. We ignored the March and April 

expirations and only examined the options that expired as close to the expiration of 

the futures as possible. Our rationale for this exclusion was twofold. First, since these 

serial options were not available for the entire period of our data analysis, we are 

unable to examine whether some consistency existed over time, due either to the 

nature of these serial options or whether some sort of month of the year effect exists. 

Secondly, these contracts have tended to be illiquid. The most actively traded options 

have remained the options that are based on the same quarterly trading cycle as the 
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underlying futures. Thus, to minimise errors in our analysis that could be introduced 

by inclusion of options with poor liquidity, we chose to exclude these serial options. 

It is clear that at some point these effects should be examined for serial 

options. However, we have chosen to leave to later research to ascertain, when and if 

these contracts become more mature and a longer time series of data is available for 

analysis. 

By restricting our analysis solely to the nearby options and only on the same 

quarterly trading cycle as the underlying futures, the options we examined tended to 

have a maximum maturity of approximately 90 days to expiration. As an example, we 

would track the options as soon as the quarterly cycle for the previous option had 

expired. For example, on March 15th, 1996, the March option on the FTSE expired 

(and this coincided with the expiration of the futures). From that point, we would 

examine the June 1996 FTSE options until they expired on the 21st of June 1996. 

Thereafter, we would then examine the September 1996 FTSE options until they 

expired and so forth and so on. 

Thus, for each of the twelve markets, we determined the expiration date of 

each option and then worked backwards in time to the previous expiration date. From 

this, we determined a series of nearby contracts that were distinct and independent. 

For each of these contracts, we examined the implied volatility patterns separately 

using the appropriate underlying futures contracts that the options were based upon. 

This meant that our analysis would have standardised implied volatility smiles 

for maturities from (approximately) 90 days until the expiration day. These would be 

estimated 4 times per year and if we had 12 years of options data, we would have 48 

separate contracts that would have been analysed. These 48 contracts could be seen as 

distinct observations of the relationship between implied volatilities, standardised 
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strike prices and time. Our objective was to compare the smile behaviours at different 

times to expiration for these 48 contracts to assess if patterns could be discerned both 

within the contracts and between the contracts. To reduce the data required for this 

analysis, we restricted our analysis of the smiles to eighteen time points from (the date 

nearest to) 90 calendar days to expiration to (the date nearest) 5 calendar days to 

expiration in 5-day increments. 

Thus, for every contract, we had standardised strike prices, the standardised 

implied volatility index, the level of the underlying futures, the interest rate level, and 

the level of the absolute ATM volatility for eighteen observations. 

In the determination of the implied volatilities, we placed certain restrictions 

on the observations. Along the lines of Jackwerth and Rubinstein (1996), we tested for 

the absence of arbitrage opportunities. Firstly, we examined the options prices at 

adjacent strike prices and determined whether a butterfly arbitrage was possible. If 

this was the case, these options were excluded. Examples of such exclusions can be 

seen in Table 7.2. This was discussed previously in some detail. Furthermore, we 

eliminated any options that were quoted at a price of zero. Finally, given the 

standardisation of the strike prices implied that they were expressed in percentage 

terms, we had to choose a reasonable range including the available options. From 

casual observation, we found that the options we examined would not be excluded 

from the analysis over a range that was 4.5 standard deviations away from the 

underlying asset price. Given that our standardisation of the strike price was expressed 

in standard deviation terms, we had eliminated the problem of scaling that would 

occur from a simple ratio of the strike price to the underlying price [Tompkins (1994) 

or from the approach suggested by Natenberg (1994)]. 
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The steps in the construction of this VSI are as follows. For every day that the 

smile structure is estimated, the actual strike prices are replaced by a relative strike 

price index. As a review, this is constructed by taking the ratio of the strike price to 

the current price of the underlying asset and dividing this result by the square root of 

time and the at-the-money volatility (see equation 7.1). This technique standardises all 

strike prices in the smiles so that they can be compared to the same relative distance 

from the current market price. The at-the-money (ATM) was determined by a linear 

interpolation of the implied volatilities for the two strike prices that bracketed the 

underlying asset price. Then all the implied volatilities were indexed to this level and 

stored in two arrays, which contain the standardised volatilities, and their 

accompanying standardised strike prices.. 

For the purposes of presentation, we have restricted the reported range of the 

standardised strike prices to ± 4.5 standard deviations away from the current 

underlying price. These results are presented in Figure 7.5. This figure can be 

compared to that presented in Figure 7.4, for the unadjusted raw implied volatilities 

and strike prices for the FTSE 100., 

Again, it should be noted that these figures represent four separate expiration 

cycles., Even when these have been standardised, it is obvious that they change 

through time. Moreover, a systematic pattern seems to be emerging for the smiles. 

Each of the option cycles represents a different underlying asset. The patterns differ 

because at each point of estimation the options have different remaining time to 

expiration. However, if the standardised smile structures are compared with the same 

time to expiration a consistent and regular pattern seems to emerge. 

In Figure 7.6 the smile structures are compared across different underlying FTSE 

100 futures contracts but in this instance with the same time to expiration. It now appears 
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that there is a certain degree of consistency if the time to expiration is held constant across 

the four underlying contracts. While it is clear that the patterns display some degree of 

random behaviour, for all the option cycles, the smile starts out with 90 days to expiration 

as a relatively linear function (although skewed for certain markets). As the option 

approaches expiration, the skew remains but the curvature becomes more extreme as 

expiration approaches. Since this curvature represents the kurtosis of the smile, we can 

hypothesise that both skewness and kurtosis factors determine the shape. However, the 

impacts of these two are not consistent. The skewness factor does seem to be relatively 

stable but the kurtosis is a function of the time to expiration. However, it appears that the 

evolution of the dynamics of the smile structure suggests that some deterministic volatility 

function may exist which is a function of time remaining to expiration and the levels of the 

strike prices. 

Splitting the First Order and Second Order Strike Price Effects 

While this analysis seems to suggest that consistencies exist for the shapes of 

the smiles when standardisation has occurred, it would be useful to understand the 

dynamics of the pattern better. As we outlined above, smiles contain both measures of 

skewness and excess kurtosis compared to a GBM process. To split this effect, we 

determined the skewness of the standardised smiles by taking the first term in the 

quadratic regression of the following form. This followed the form: 

VSI=a+ß,, 
ln(XT/FT)ln(XT/F, ) 2+8 

(7.2) 
a z/ 665 La z/365 

It is noticeable that this equation bears some resemblance to equation (6.9), 

which is the approach suggested by Shimko (1991,1993). The sole differences are that 

in this analysis the strike price is standardised in formula (7.2) and is unstandardised 
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in formula (6.9). In this regression equation, Xt is the strike price of the option at time 

to expiration r and FT is the underlying futures price (at time to expiration 'r) that 

underlies the option. The procedure used the ordinary least squares (OLS) regression 

approach. From this regression, we obtained a slope coefficient, 01. At this point, we 

must be careful of how we interpret this result. We could interpret this in two ways, 

firstly as an indication of a degree of 'moneyness' where the implied volatility is 

minimised and secondly as a surrogate for skewness. Since the coefficient of this 

independent variable measures the slope of the implied volatility curve at the money, 

it is clear that this must provide some information about the skewness of the implied 

distribution. Therefore, we will choose to interpret this as the latter. 

The other slope coefficient, (32, can be interpreted loosely as the measure of 

kurtosis. It is clear that such a quadratic curve will yield a bowl shape, which is 

similar to the curvature we observe in implied volatility patterns. For the period of 

1996, the results of the regression for the FTSE 100 options can be found in Table 7.4 

for each maturity from 90 days to 5 days to expiration. 

There are a number of interesting results in this analysis. First of all, the R 

squared of the quadratic regression decreases as we approach the expiration of the 

options. Nevertheless, they are sufficiently high to suggest that we have explained 

most of the variance in the implied volatility patterns. We also find that the intercept 

is approximately equal to the expected value of 100. However, there is a tendency for 

the intercept to be below 100 (although not statistically significant). The first Beta 

intercept (measuring the first order strike price effect) suggests that the degree of 

negative skewness decreases as we approach expiration. The second Beta intercept 

(measuring the second order strike price effect) suggests that as the time to expiration 

is approached, the degree of curvature is becoming more extreme. Later in this 
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research, we will examine these effects for all twelve markets and for different 

periods of analysis. It will be demonstrated that certain general strike price effects are 

indeed consistent over time. Before this, we will plot the standardised implied 

volatility patterns as a function of time to expiration. 

Maturity Intercept Standardised Standardised R Squared 
Strike Strike2 

a Ri R2 
90 days 100.67 -10.452 2.22198 0.96591 
85 days 98.634 -9.2783 2.35433 0.95754 
80 days 100.27 -9.2852 2.42936 0.97052 
75 days 99.344 -9.3741 2.62722 0.96767 
70 days 100.96 -8.8053 2.76079 0.95430 
65 days 101.00 -8.2035 2.75210 0.94295 
60 days 99.898 -7.7579 2.91665 0.94879 
55 days 98.760 -10.033 2.43167 0.96638 
50 days 100.76 -8.8040 2.44500 0.95441 
45 days 100.79 -7.7993 2.78914 0.92242 
40 days 99.599 -6.3950 3.47758 0.95191 
35 days 99.126 -7.0287 3.52888 0.94002 
30 days 98.760 -5.9621 3.95725 0.92618 
25 days 99.125 -4.6260 4.56055 0.91257 
20 days 98.783 -3.2520 5.10602 0.88571 
15 days 98.502 -2.9058 5.20245 0.91936 
10 days 99.305 -3.0363 5.51127 0.91898 
5 days 99.628 -2.4739 5.41991 0.92142 

Table 7.4, Quadratic Regression Results for Standardised Implied Volatility (VSI) as a 
function of the Standardised Strike Price and Standardised Strike Price2. 

Using the results from this quadratic analysis, we can represent the results of 

this regression graphically. The first graph (Figure 7.7) displays the results of the 

overall quadratic regression. This can be compared to the earlier Figure 7.6, with the 

lines smoothed as a result of the regression technique. It is clear from this figure that 

we have both first order and second order strike price effects. To examine these 

separately, we determined the fitted line for the first slope coefficient and then 

determined the fitted line using only the second slope coefficient. 

To identify the pure impact of the first order effect (for the regression), we 

estimated the standardised implied volatility (VSI) using the following equation: 

VSIs,, 
w =a+/31 

In(XT /F, ) 
(7.3) 

6 z/365 
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From this equation, we will estimate the linear function that can be interpreted 

as the skew effect of the strike price bias. The resulting VSI estimates were 

determined for the time increments from 90 days to 5 days to expiration and a plot of 

these values can be seen in Figure 7.8a for the FTSE 100 option. Again, all the time 

periods to expiration are grouped together so that we can compare the estimates for 

each period to expiration. 

From this graph, one can see that the skewness does change through time; 

appearing to be related to how close each option is (in its cycle) to expiration. For all 

the periods, the skewness is negatively sloped. The slope is remarkably similar for all 

the option cycles from 90 days to 30 days to expiration. Thereafter, the skewness 

flattens consistently as expiration is approached, becoming flat as we are between 5 

and 10 days to expiration. To see this effect better, we have constructed a simple two- 

dimensional graph that displays the relationship between the first Beta of the 

quadratic regression (which captures the first order strike price effect) relative to the 

time to expiration. This can be seen in Figure 7.8b. As with the previous graph, it is 

clear that the closer to the expiration of the option, the less the degree of the negative 

skew. 

To capture the kurtosis, we interpret the second coefficient of the regression as 

a surrogate measure. From this regression, we then plotted the results of the line fit 

using solely the second slope coefficient. This provides us with a clearer picture of 

pure effect of the excess kurtosis of the series, using the following equation: 

VSI�1osis =a+ ß2 ' 
ln(X /F, ) 2a 

Tr / 365 
(7.4) 
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Again, the resulting VSI estimates were determined for the time increments 

from 90 days to 5 days to expiration and a plot of these values are presented for the 

FTSE 100 in Figure 7.9a. 

The shapes of the patterns indicate a clear pattern of leptokurtic dynamics and 

this seems to be displaying a cyclical behaviour. The closer we come to expiration of 

each option, the more extreme the kurtosis becomes. This behaviour is consistent 

across all the contract cycles. At 90 days to expiration, the curvature is the least 

extreme and becomes progressively more extreme as expiration is approached. Given 

that we have corrected for the time to expiration (by dividing these results by the 

square root of time), the results clearly indicate a divergence from GBM. To see this 

relationship between the second order strike price effect and time better, we have 

produced a simple two-dimensional graph of the second Beta coefficient of the 

quadratic regression relative to time. This can be seen in Figure 7.9b. This graph 

clearly demonstrates that the curvature of the implied volatility pattern becomes more 

extreme as we approach expiration. 

7.6 IMPLICATIONS OF NONSTATIC IMPLIED VOLATILITY SURFACES 

FOR DETERMINISTIC IMPLIED VOLATILITY MODELS 

Another implication of this analysis is that the shape of the implied volatility 

smile appears not to be static. Not only does the pattern evolve in a similar manner 

over time, but it also appears that the implied volatility pattern remains centred at the 

current underlying forward price. Suppose we consider two classes of alternative 

pricing models to Black and Scholes. If the volatility evolution is captured by a 

stochastic volatility model (perhaps with a correlation between the evolution of the 

volatility and the underlying) or follows a jump diffusion process, we expect the 
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implied volatility pattern to be centred at the current forward price. However, the 

research presented by Dupire (1992,1994), Derman and Kani (1994) and Rubinstein 

(1994) and discussed in the last Chapter, suggests that the dynamics of implied 

volatility patterns follow a deterministic form. This form can be determined by 

assuming the current implied volatility pattern associated with European options does 

not allow arbitrage. Therefore, as for Ho and Lee (1986) with interest rates, the 

implied volatility pattern is assumed to be an exogenous input and the solution for the 

implied dispersion processes is derived assuming no arbitrage. This would suggest 

that the implied volatility surface is fixed at the current point in time and will provide 

an expectation for the evolution of implied volatilities at future points in time and for 

different levels of the underlying asset. 

The implications that the implied volatility patterns may be centred at the 

current forward price would suggest that these approaches may be mis-specified. To 

examine this issue, we return to equation 7.2. An equivalent form of this equation is: 

ln(Xt / F) 1 ß, 1ß VSI = ßz "i +-"- +a--"-'2 +E (7.2a) 
Q x/365 2 ß2 4 ß2 

If we determine the minimum of the VSI, this is achieved where: 

1n(X, / FT) 
__1. 

ß, 
(7.2b) 

Q z/365 2 ß2 

By applying algebra and solving for In (X) and subsequently for X, we obtain: 

ln(XT)=-2o z/365. 
ß 

fls+ln(FT), and (7.2c) 

-ta s/36S" 
Xs= F, _e( 2 ý'J (7.2d) 

With the minimum of X. thus determined, we conducted a number of tests to 

understand the relationship between the point of the minimum of the implied volatility 
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pattern and the underlying futures price, F= . The first test was to construct a 

scatterplot of the relationship between the strike price where the VSI was minimised 

relative to the underlying futures price. This was done using all the implied volatility 

patterns for the FTSE for 1996. This plot can be seen in Figure 7.10a. In this 

representation, all the point estimates are connected with a line to indicate their 

evolution over time. According to our theory, if the shape of the implied volatility 

surface remains centred at the futures price, the evolution of the scatterplot would be 

at a 45 degree angle. This plot does shows that there is a positive relationship between 

the minimum of the VSI and the underlying futures price. However, it is not clear that 

this relationship is one to one. The shapes for the individual contracts suggest some 

complex time dynamic may be occurring which is to be expected given that we have 

already demonstrated the FTSE implied volatility smile during 1996 had a consistent 

negatively skewed slope. Given that this skew exists, the minimum strike price (from 

equation 7.4b) should be higher than the current futures price. If this skewed 

relationship remained constant, it might very well be that the minimum strike price 

would-have a more consistent relationship to the underlying futures. However, in 

Table 7.4, we demonstrated that the skewness effect was not constant across time. In 

that table, it was shown that if we used a quadratic regression to capture the first two 

moments of the strike price effect, the first order strike price effect (skewness) was 

reduced as the time to expiration was approached. 

To examine whether the shapes of the implied volatility smiles followed the 

underlying futures price, we had to control for this fact that the skewness was 

decreasing as we approached expiration. This test entailed comparison of the 

difference between the underlying futures price and the minimum strike price at the 

same points in time to expiration. Given that at each point, we had different futures 
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prices and minimum strike prices, we could gain a clearer insight into whether the 

shapes were consistent over time. This plot appears in Table 7.10b. If the implied 

volatility shape remained fixed relative to the underlying futures price, we would 

expect the percentage difference between the futures price and the minimum strike 

price to be the same at all points in time to expiration. In the plot we observe that for 

the period from 40 days to 5 days to expiration, this was indeed the case. Thus, it 

would appear that during this period the shapes of the implied volatility smile 

remained fixed relative to the level of the underlying futures. From 90 days to 40 

days, three of the four contracts (all except December) had a similar relationship. This 

could be due to the fact that the levels of the underlying futures seemed to remain in a 

range between 3650 and 3900 (see Figure 7.10a). In December, the level of the 

futures was much higher (between 3900 and 4100). This led to a greater percentage 

difference between the futures price level and the achieved minimum strike price. 

Again this was probably due to an increase in the skew relationship in the volatility 

smile during this period. Nevertheless, even for the December contract the impact of 

the higher futures price level did not cause the percentage difference to be divergent 

relative to the other three contracts from 40 days to 5 days to expiration. Thus, it 

would appear from this preliminary analysis that the implied volatility smiles seem to 

move in a consistent manner remaining tied to the level of the underlying futures for 

the period from 40 days to 5 days to expiration. From 90 days to 40 days, three of the 

four contracts displayed a similar and consistent relationship. 

While this analysis does suggest that the Dupire (1992,1994), Derman and 

Kani (1994) and Rubinstein (1994) models may be mis-specified (particularly as the 

options approach expiration), it remains for further research to identify a better 

approach to test this hypothesis. As we have indicated, the existence of a first order 
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strike price effect related to the time to expiration requires careful thought as to how 

to remove this effect. 

Even so, we have demonstrated that for the period from 40 days to 5 days to 

expiration, these results are somewhat anomalous to the work of Dupire (1992,1994), 

Derman and Kani (1994) and Rubinstein (1994) as they suggest there may exist 

arbitrage opportunities. Given that all three approaches depend upon a no-arbitrage 

constraint to assess the risk-neutral dispersion process. The implications of his 

findings are that the current implied volatility smile pattern will be an unbiased 

estimate of the actual implied volatility observed if the underlying price moved such 

that it were equal to the strike prices of the option. These results suggest that the 

implied volatility patterns retain the same shape and generally follow the prevailing 

underlying price. Thus, because smile patterns appear to remain centred at the 

underlying asset price something similar to arbitrage appears to be possible. 

For example, assuming the Dupire model with a symmetrical smile shape, and 

the underlying market price at 100, the 110 call option would have a higher implied 

volatility than the 100 call option. If the underlying market price were to rise to 110, 

the Dupire model would expect the shape of the implied volatilities to be static. Thus, 

a higher implied volatility would be realised for the 110 call and a lower implied 

volatility would exist for the 100 call option. However, if the smile follows the 

underlying price, the 110 call would have a lower implied volatility than the 100 call 

option. To benefit from this effect one could sell the 110 call and buy the 100 call. 

The trader would immunise the exposure to the underlying asset price by -dynamic 

(delta) hedging in the standard manner and unwind the transaction for a profit when 

the price of the underlying rose to 110. 
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While this appears to be an arbitrage, in practice it is not. The exposures of 

each option to implied volatility (JC/aa) are not identical and would require 

different number of options to remain neutral to changes in implied volatility. In 

addition, these exposures would be constantly changing requiring extensive revisions 

both to the dynamic hedge of the underlying and to the levels of the implied volatility. 

Finally, while the overall position might be continually rebalanced to remain neutral 

to the changes in implied volatility, in practice this would require some hedge for the 

overall level of implied volatility. While Neuberger (1994) and Whaley (1993) have 

suggested instruments to achieve this goal, they are not currently available. 

Furthermore, the trade would involve extensive transaction costs and it is not clear 

that such a trade would provide a net profit. 

Finally, it may be that the volatility smile dynamics are determined by 

additional factors apart from time and strike price. Suppose a fixed smile exists that 

remains tied at the level of the underlying asset price. This may still omit an arbitrage 

because we have more variables than states, so that the volatility pattern must evolve 

through time to disallow arbitrage. However, this is probably a second order effect. 

For this empirical research, our objective is to understand the regularities of market 

development. Therefore, the algebraic interpretations of our model should not be 

taken literally. We will provide subsequent evidence that the magnitude of the 

residuals would remove any existence of practicable arbitrage. 

7.7 STANDARDISED IMPLIED VOLATILITY SMILES FOR ALL TWELVE 

MARKETS 

Given the relative stability of the volatility smile graphs both for the overall 

levels, the skewness measures and the kurtosis measures (when compared at the same 
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point in time), an index of the volatility smile patterns can now be constructed for all 

the markets under investigation. Fitting the above regression (equation 7.2) achieves 

this goal and will allow us to compare the patterns across markets. This analysis has 

been done for all the twelve options markets and appears for the overall VSI levels in 

Figures 7.11 a for the four stock index options, 7.11 b for the four fixed income options 

and 7.11c for the four foreign exchange options. This analysis was completed using 

all options data from 1996. 

In Figure 7.11a, one can see that some consistent relationships seem to exist 

among the four stock index options markets. The S&P 500 and the DAX options 

display almost identical patterns with similar dynamics over time. Both markets start 

with 90 days to expiration with a relatively linear left skewed shape. This shape 

flattens somewhat as expiration is approached and the patterns display progressively 

greater curvature. One can see that the FTSE and the Nikkei also display similar 

dynamics. The implied volatility patterns are more convex at 90 days compared to the 

other stock index options and this pattern becomes more convex as expiration is 

approached. 

In Figure 7.1 lb, there are also consistencies among the four fixed income 

options markets. The Bund, BTP and Gilt options display similar patterns over time. 

In some ways, these shapes are reminiscent of those observed for the FTSE and 

Nikkei smiles. All markets start with 90 days to expiration with a relatively linear left 

skewed shape with a convex shape. As expiration is approached, the skew flattens and 

the convexity increases. The odd market out is the US T-Bond, where there is little 

evidence of a skew but the convexity can clearly be seen as increasing as expiration 

approaches. 
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In Figure 7.11c, there appears to be even greater consistency among the four 

foreign exchange options markets. All four markets display almost identical patterns 

with similar dynamics over time. In many ways, there appears to be a constant shape 

across time for all the four markets. The only time dependent variation that seems to 

occur is that the convexity is becoming more extreme as the time to expiration is 

reduced. 

From all these graphs, it is difficult to assess the time varying characteristics 

of the skewness and convexity. This is due to the smile patterns containing both 

elements. Therefore, to assess the pure effect of the skewness we applied the 

regression method to the indexed volatility smile patterns to determine the first slope 

coefficient. In this instance, the estimated VSI results are based upon results from the 

first term of the quadratic regression for each time period to expiration. These results 

can be seen in two sets of graphs. In Figures 7.12a (for the four stock index options), 

7.12b (for the four fixed income options) and 7.12c (for the four foreign exchange 

options), three-dimensional graphs are displayed that demonstrated the time varying 

behaviour of the first order strike price effect. For the sake of clearer presentation, we 

have also produced the simpler two-dimensional graph of the first order strike price 

effect relative to time. These can be seen in Figures 7.13a (for the four stock index 

options), 7.13b (for the four fixed income options) and 7.13c (for the four foreign 

exchange options). In these graphs, the solid line represents the actual slope 

coefficient from the simple quadratic regression. In these figures a dotted line also 

appears. This series is based upon a more complete model that will be developed in 

the next Chapter. At that time, we will return to these figures for the comparison of 

the two approaches. 
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In Figures 7.12a and 7.13a, we can confirm the conclusions suggested from 

Figure 7.11a regarding the time dynamics of the skew. For all four markets, the 

degree of the negative skew is most extreme as the time to maturity is greatest. As 

expiration is approached, the skewness flattens considerably. Nevertheless, the degree 

to which this flattening occurs is idiosyncratic to each market. For the S&P 500, the 

skewness remains fairly consistent for the option cycle until the last 5 days of the 

options life. The FTSE 100 options display a more consistent flattening from 

approximately 30 days until expiration. The Nikkei-225 displays a slightly different 

behaviour. For this market, the least amount of skew is observed. Nevertheless, it also 

flattens as expiration is approached. Finally, the DAX option bears a remarkable 

resemblance to the one observed for the S&P 500 (although the S&P displays more 

skewness, note the different scales on the graphs). 

In Figures 7.12b and 7.13b, once again we can observe that the three fixed 

income markets on the LIFFE (Gilt, BTP and Bund) display similar time dependent 

dynamics. As with the stock index options, the degree of the skew is directly related 

to the time to expiration of the option. As expiration is approached (especially in the 

last 5 days), the skew flattens considerably. As before (Figure 7.1Ob), the US T-Bond 

displays a different pattern. Essentially, there is no skewed relationship and the 

implied volatilities (from the pure first order strike price effect) are falling as 

expiration is approached. Thus, there must be a relatively greater second order effect 

for this market. 

In Figures 7.12c and 7.13c, for all four foreign exchange markets, there is 

essentially no consistent skewed relationship in the smiles. This confirms the 

conclusions drawn from Figure 7.11c. Thus, the entire strike dependent effects for 

these markets must be related to the second order effect. 
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By examining the second slope coefficient of the regression, we can now 

obtain a measure of the pure kurtosis of the volatility smile patterns for the twelve 

markets. As with the previous graphs, these plots consider the results from the 

quadratic regression for the same time period to expiration. The three-dimensional 

graphs are presented in Figure 7.14a for the four stock index options, Figure 7.14b for 

the four fixed income options and Figure 7.14c for the four foreign exchange options. 

As with the first order strike price effects, we have also chosen to present the two- 

dimensional graphs that describe the second order strike price relationship relative to 

time. This can be seen in Figure 7.15a for the four stock index options, Figure 7.15b 

for the four fixed income options and Figure 7.15c for the four foreign exchange 

options. As with the previous figures, the solid line represents the second beta 

coefficient from the simple quadratic regression. The dotted line represents an 

alternative way to estimate this effect. The method of estimation will be discussed in 

the next Chapter. 

It is interesting in the comparison of these three figures how remarkably 

similar the shapes are for all twelve markets. In Figures 7.14a and 7.15a, the 

evolution of the kurtosis for the DAX and the FFSE 100 display almost the same 

patterns. For both markets, an excess kurtosis is implied but becomes more extreme 

the closer we are to the expiration of the option. While the S&P 500 options display a 

similar pattern, the major difference is that it is more extreme. We observe almost a 

flat line when the option is at 90 days to expiration and the change in the curvature is 

thus much more extreme as expiration is approached. For the Nikkei, we seem to 

observe more curvature for the longer maturity options. Some flattening occurs in the 

maturities from 60 to 20 days and increases again as expiration is approached. 
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In Figures 7.14b and 7.15b (for the four fixed income option markets), we 

observe consistency in the kurtosis effects for the Gilt, BTP and Bund markets. As 

was suggested in Figure 7.10b, the US T-Bond displays a much more consistent 

degree of curvature throughout the option cycle (although the curvature does become 

slightly more extreme as expiration is approached). Finally. in Figures 7.14c and 

7.15c, the four foreign exchange options display almost an identical time varying 

pattern to the kurtosis. As was indicated in the analysis of Figure 7.11c, there appears 

to be an almost consistent implied kurtosis through the life cycle of the options. If any 

divergence occurs it is clear that the convexity increases slightly as expiration is 

approached. However, across all twelve markets, if appears that the kurtosis effect is a 

function of the time to expiration and the closer we are to expiration, the more 

extreme the kurtosis becomes. 

These graphical presentations suggest that smile patterns both for individual 

markets, within asset classes and indeed among all markets display some similar 

behaviours. If this is indeed the case, it has profound implications on the modelling of 

implied volatility patterns. 

Consistency in smile structures though time and across markets could suggest 

that some systematic dynamics might be driving all markets. This could mean that it 

might be possible to discern some consistent (and possibly deterministic) volatility 

functional form that will allow us to understand the dynamics of the volatility smiles 

better. 

Examination of Standardised Smile Structures for the Twelve Markets in Sub-Periods 

Finally, to allow later comparisons to be drawn, we estimated the quadratic 

regressions for all the options examined (and for all twelve markets) for three separate 
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time periods. The first period covered the entire period for each market (where data 

was available). The other two periods correspond (roughly) to the same split for the 

underlying futures date that occurred in Chapter 2 (see Table 2.3). The exact 

breakdown of the option prices (in terms of the time periods) appears in Table 7.5. 

Underlying Asset 1st Time Period 
Of Analysis 

2nd Time Period 
Of Analysis 

S&P 500 Options 25/03/1986 - 27/12/1990 
FTSE Options 02/01/1985 - 29/08/1990 
Nikkei 225 Options 25/09/1990 - 03/11/1993 
DAX Options 03/01/1992 - 01/07/1994 

Bund Options 20/04/1989 - 03/11/1992 
BT? Options 11/10/1991 - 26/04/1994 
Gilt Option 13/03/1986 - 06/12/1989 
US T-Bond Options 02/01/1985 - 28/04/1987 

D Mark Options 03/01/1985 - 26/12/1990 
Pound Options 25/02/1985 - 26/12/1990 
Yen Options 05/03/1986 - 28/12/1990 
S-Franc Options 25/02/1985 - 06/07/1990 

28/12/1990 - 20/12/1996 
30/08/1990 - 20/12/1996 
04/11/1993-13/12/1996 
04/07/1994-20/12/1996 

04/11/1992 - 05/12/1996 
27/04/1994 - 04/12/1996 
07/12/1989 - 27/12/1996 
29/04/1987 - 31/12/1996 

27/12/1990 - 16/12/1996 
27/12/1990-16/12/1996 
31/12/1990 - 16/12/1996 
09/07/1990 - 16/12/1996 

Table 7.5, Periods & Observations for Markets Under Analysis, Broken into Two Sub-Periods 

Thus, the average VSI values and the accompanying smile shapes for the 

entire period can be seen in Figures 7.16a, 7.16b and 7.16c. For the earlier portion of 

the analysis period, these results appear in Figures 7.17a, 7.17b and 7.17c. Finally for 

the latter portion of the analysis period, these results appear in Figures 7.18a, 7.18b 

and 7.18c. 

7.8 CONCLUSION 

From a comparison of all the figures, it appears that a great deal of consistency 

exists for the same markets over all three periods of analysis. For example, the stock 

index options all display a similar first order and second order strike price effect. 

While these patterns seem relatively stable, it appears that for some markets (S&P 

500, for example) a greater first-order negative skew effect is apparent in the second 
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period. For all the fixed income options, the shapes are almost identical across all 

periods. This also appears to be the case for the currency options. If such consistency 

exists, this has profound implications for understanding the dynamics of the implied 

volatility patterns. 

While this type of graphical presentation does provide insights into the behaviour 

of smiles and suggests that some consistencies may exist in the nature of the implied 

volatility surface, it is not possible to draw definitive conclusions simply by comparing 

graphs over different periods. While there is little doubt that such graphs may provide 

clues to understand the general consistency of patterns, (in any case) rigorous 

statistical testing is required to assess if the dynamics of these implied volatility 

surfaces are similar or not. Thus, the primary benefit from the graphs developed in 

this Chapter is to provide insights into what the form that the statistical analysis and 

what questions should be examined. 

In the next chapter, we will examine whether some functional form for the implied 

volatility surface can be determined statistically. From this analysis, we will be able to 

answer a multitude of questions, which have been raised in the literature. Namely, we will 

assess whether the smiles are stationary for the same underlying. Secondly, we will 

ascertain if the smiles at the same time to expiration are similar for the same markets 

(but for different"contracts). We will also examine the stability of the moments of the 

smiles estimated by the quadratic regression. This will allow us to draw conclusions 

about the stability of the skewness and kurtosis relationships. Given the evidence that 

suggests that the markets were not skewed prior to the 1987 stock market crash, we 

will examine whether this is the case or not and how the patterns behave over time. 

Thirdly, we will compare smiles at the same time to expiration across different 

instruments. This will allow us to assess if consistencies exist in smile dynamics 
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across all markets. In addition, we will extend this analysis within the three asset 

classes. This will allow us to determine whether smiles within an asset class display 

consistent (or related) behaviours or not. 
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CHAPTER EIGHT 
THE ANALYSIS OF RISK NEUTRAL PROBABILITIES IN 

OPTIONS ON FUTURES. COMPARISON OF IMPLIED 
VOLATILITY SMILES WITHIN AND BETWEEN MARKETS: 
ANALYSIS USING MULTIPLE REGRESSION /ANALYSIS OF 

VARIANCE 

8.1 INTRODUCTION 

The objective of this Chapter is to assess the extent to which the implied 

volatility structures for the twelve markets under investigation share characteristics 

and to compare differences. From the last Chapter, it appears that some sort of 

consistency may exist for the shapes of implied volatility patterns across strike prices. 

It is somewhat surprising that apart from the implied distributions proposed by 

Rubinstein (1994), Derman and Kani (1994), Dupire (1994) and Jackwerth and 

Rubinstein (1996), there are been few attempts to ascertain if consistencies in the 

implied volatility functions exist over time. 

Recently, Corrado and Su (1996,1997) have extended the J3lack-Scholes 

model to include skewness and kurtosis in the options-implied distributions. Based on 

this methodology, they estimated the options-implied coefficients of skewness and 

kurtosis. Their analysis covered both stock options [Corrado and Su (1997)] and 

options on stock-indices [Corrado and Su (1996)]. While this approach does seem to 

capture significant elements in the strike price effect, it remains to be seen whether 

these effects are consistent over time and whether the inclusion of other factors may 

improve our understanding of the implied volatility surface. 

In this Chapter, we will fill a gap in the literature. We will examine the 

consistency of implied volatility patterns across time and between markets. This will 

allow us to assess the dynamics that drive the implied volatility surface. When similar 

research had been done the emphasis was on assessing a deterministic implied 
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volatility function. This is not our objective. We will instead examine a more general 

functional form of the implied volatility process. However, we will build upon the 

work completed on the estimation of deterministic implied volatility models. 

8.2 DETERMINISTIC IMPLIED VOLATILITY MODELS 

Our approach is related to the work by Dumas, Fleming and Whaley (1996), 

who attempted to assess a deterministic volatility function using implied volatilities. 

We will not follow the same ground for the simple reason that we have already 

rejected the existence of a deterministic implied volatility function when we found 

that the implied volatility pattern remained centred at the level of the underlying asset 

price. Therefore, we are asking a different question: What factors are required to 

capture the dynamics of the implied volatility surface. It will be demonstrated that 

certain elements of the Dumas, Fleming and Whaley work will be necessary for our 

task. So, even though we will not aim to assess a deterministic implied volatility 

function, it will be our starting point. 

Dumas, Fleming and Whaley (1996) indicated that they had no prior 

assumptions of what the function of a(X, T) might be, so they tested a number of 

arbitrary models. Using their notation, the four models they examined were: 

Model 0: a= as 
4 

(8.1a) 

Model 1: a= ao +a, X +a2X 2 (8.1b) 

Model 2: a= as +a, X +a2X 2 +a3T+a5XT (8.1c) 

Model 3: a= ao +a, X +a2X2 +a3T+a4T2 +a5XT (8.1d) 

For their models, the implied volatility (a) is the 'raw' implied volatility 

determined by the Black-Scholes model. The strike price is also unadjusted and is 
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referred to as X. Finally, the term T is simply the time to expiration. One can see 

immediately, that they are testing with model 0 the assumption of constant volatility. 

Model 1 is the first approach used by this research [and Shimko (1991,1993)] to 

determine a quadratic fit for the implied volatilities at a single point in time. Models 2 

and 3 are determined by means of a Taylor series expansion to degree two. Model 2 

only included the first expansion relative to time and the interaction term between 

time and the strike price, while Model 3 includes both second order terms. 

In a sense, the selection of these models [as Dumas, Fleming and Whaley 

(1996) point out] is arbitrary. This is somewhat unfortunate since there is extensive 

evidence of other factors that may influence the behaviour of implied volatilities in 

the literature. 

8.3 MODELLING THE IMPLIED VOLATILITY SURFACE 

In this research, we will extend the analysis of Dumas, Fleming and Whaley 

(1996) to include additional factors, which may influence the behaviours of volatility 

smiles. These include the evidence suggested by Rubinstein (1994) that the behaviour 

of volatility smiles changed after the 1987 stock market crash. If this is the case for 

stock index futures, it may very well be that volatility smile behaviour might have 

changed after shocks that are specific to other individual markets. We have already 

shown that by using raw implied volatilities, some of the smile effect could be due to 

the manner with which the Black-Scholes model assumes price movement over time. 

Thus, by correcting for this impact, we will gain a clearer picture of the true behaviour 

of the implied volatilities that is not due to the nature of the Black-Scholes model. 

Finally, as we demonstrated in the previous Chapter, there seems to be consistency in 

the behaviour of the smiles for the same underlying market, for the same standardised 
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strike prices and at the same time to expiration. What we require is a quantitative 

approach to test whether these casual observations suggested from the figures in the 

last Chapter are justified. 

To achieve our objective of understanding the implied volatility processes 

more generally, we decided to analyse the standardised implied volatilities (VSI) by 

running an analysis of covariance (ANCOVA). [See Scheffe (1959) and Lindman 

(1974)]. The research design employed follows the lead of Davies (1954) for such 

experiments. Essentially, our analysis involved establishing a multiple regression with 

dummy variables (this is the definition of ANCOVA). For this analysis, we will 

examine all the relevant interactions between terms by careful review of the residuals. 

The computer programme used for the analysis was STATISTICA for Windows 

(version 5.0). [See STATISTICA (1995)]. 

Thus, our analysis will include a number of other variables and extend the 

analysis of Dumas, Fleming and Whaley (1996) to include higher order terms for both 

the strike price and the time factors. In addition, we will include all the interaction 

terms for these factors. This will lead to a fairly complex model with a substantial 

number of variables. Dumas, Fleming and Whaley (1996) suggested that the more 

complicated the model to capture implied volatility dynamics, the more the model 

could be accused of overfitting in sample (and be potentially exposed to data mining). 

Given that our models at first glance appear to be fairly complex, we will diverge 

briefly to describe our model and the rationale for the inclusion of our variables to 

address the issue of overfitting. 
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Variables Used in the Analysis 

Our objective is to understand the general dynamics of the implied volatility 

process. In the last Chapter we have identified that the first and second order strike 

price effects depend on the time to expiration. Therefore, we constructed variables 

that would allow us to examine these effects. We will start with Model 3 of Dumas, 

Fleming and Whaley (1996) and found in this Chapter as equation 8.1d. As was 

mentioned previously, they took a Taylor's series expansion to degree two. Consider a 

Taylor's series expansion to degree three. 

Expanding the function a=f (x, t) with Taylor's expansion series 

Q= xtti (8.1e) 

;; _a(iAr, Y axIatj 
and stopping the expansion at the third degree (i +j <_ 3 ), we obtain 

CF = 
aß 

x+ 
aß 

t+ 
1 azß 

x2+1 
a2ß 

t2+1 
a2a 

--- -- xt+ 
ax at 2! axe 2! ate 2! axat ýs lfý 

1 a36 
31 

a36 
31 

a36 
21 

a3 72 
+- x +- t +--x t+- xt 3! ax3 3! at3 3! ax2at 3! axat2 

Given that we have nine derivatives in the expansion, we have constructed 

nine variables to capture these effects. 

However, we are aware of findings in the literature that the strike price effects 

have not remained the same over time. This was discussed extensively by Rubinstein 

(1994), where he claimed that the skewness effect was a result of the 1987 stock 

market crash. Thus, our model must examine this by inclusion of a variable that 

allows us to compare strike price effects prior and post 1987 crash. The most 

reasonable variables to capture this effect would be a dummy variable, which assumes 

a value of 0 prior to the crash and I thereafter. To assess the impacts on the strike 
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price effect, this dummy variable will be multiplied by the first and second order 

strike price variables from equation 8.1f. It is not unreasonable to surmise that if the 

shock associated with the 1987 stock market crash affected the strike price effect for 

the S&P 500 futures, other shocks may change the strike price effect for other 

markets. Specifically, idiosyncratic shocks may affect the strike price effects for 

individual markets. Thus, another two series of dummy variables were constructed 

that were similar to the dummy variable estimated for the 1987 stock market crash. 

The difference is that these shock variables related to each of the twelve markets. 

Once again composite strike price variables were estimated (similar to the composite 

strike price variables relative to the 1987 crash) to examine the effects of shocks on 

the strike price effects. 

Finally, market practitioners have claimed that the strike price bias is a 

function of the level of the implied volatility. While this has not been investigated 

extensively in the literature, we will rectify this here. This will be done by including 

the level of the at-the-money implied volatility in the model. Once again, since our 

objective is to understand the strike price effects, combination variables will be 

estimated which are the products of the first and second order strike price effects in 

equation 8.1f with the level of the at-the-money implied volatility. 

This will lead to a fairly complex model with a large number of variables. 

While some may claim that this model may amount to data-mining, it is important to 

realise that the choice of this model has been done on an a priori basis and the 

rationale for the choice of all the variables in the model come either from a Taylor's 

series expansion or have been identified in the literature as being relevant. 

An additional consideration is that normally when evaluates an equation with 

so many independent variables, there are too many parameters to identify 
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Column Factor 
1 VSI (dependent variable) 
2-4 CLASS (3 Dummy Variables) 
5-16 MARKET (12 Dummy Variables) 
17-64 CONTRACT (48 Dummy Variables) 
65 TIME (% of a Calendar Year) 
66 TIME2 (% of a Calendar Year) 
67 TIME3 (% of a Calendar Year) 
68 STRIKE PRICE (Standardised) 
69 STRIKE PRICE2 (Standardised) 
70 STRIKE PRICE3 (Standardised) 
71 INTERACTION 1 (STRIKE PRICE * TIME) 
72 INTERACTION2 (STRIKE PRICE * TIME2) 
73 INTERACTION3 (STRIKE PRICE2 * TIME) 
73 INTERACTION4 (STRIKE PRICE2 * TIME2) 
74 87CRASH (Dummy Variable for 1987 Crash) 
75 CRASH&S (87CRASH*STRIKE PRICE) 
76 CRASH&S2 (87CRASH * STRIKE PRICE2) 
77 SHOCKI (ist Major Shock to Unconditional Returns) 
78 SHOCKI&S (SHOCKI*STRIKE PRICE) 
79 SHOCKI&S2 (SHOCKI * STRIKE PRICE2) 
80 SHOCK2 (2nd Major Shock to Unconditional Returns) 
81 SHOCK2&S (SHOCK1*STRIKE PRICE) 
82 SHOCK2&S2 (SHOCKI * STRIKE PRICE2) 
83 ATMVOL (Unadjusted ATM Implied Volatility) 
84 ATMVOL&S (ATMVOL*STRIKE PRICE) 
85 ATMVOL&S2 (ATMVOL * STRIKE PRICE2) 

The STRIKE price variables will capture the pure effects of the first order 

relationship between the strike price and implied volatility (STRIKE! ), the second 

order effect (STRIKE2), and STRIKE3 was added to assess if further and higher 

moments are required. From these variables, we will determine the statistical 

relationships for the skewness and kurtosis (plus another higher moment) which was 

suggested by the graphical presentations in the last Chapter. 

The TIME variables will examine the relationship between implied volatilities 

and time. Given that these effects may be complex, a number of combined variables 

were examined to assess the interactions between time and other variables. The four 

interaction terms capture two elements of the strike price effect. As with the analysis 

of Dumas, Fleming and Whaley (1996), we wish to understand the time varying 
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dynamics of the volatility skew and implied kurtosis. INTERACTION1 and 

INTERACTION2 examine the first order and second order impact of time on the 

skew of the implied volatility pattern. In a similar manner, INTERACTION3 and 

INTERACTION4 examine the first order and second order impact of time on the 

kurtosis of the implied volatility pattern. 

Inclusion of Variables to Capture Shocks 

We will clarify some of the new factors. First, the factors, SHOCKI and 

SHOCK2 require clarification. While it is clear that the 87CRASH variable reflects a 

dummy variable with 0 value prior to October 19th, 1987, these variables achieve a 

similar goal for the other markets. To determine when such a shock had occurred, we 

returned to Figures 2.1a, 2.1b and 2.1c. In these figures, we displayed the (forward 

and backward) exponentially weighted unconditional volatility time series for the 

twelve markets of interest. From these figures, we can determine extreme spikes in the 

unconditional volatility that occurred over the period of analysis. 

Underlying Asset First Shock Second Shock 

Stock Index Options 
S&P 500 Futures 19/10/1987 13/10/1989 
FTSE Futures 19/10/1987 16/10/1989 
Nikkei Dow Futures 21/08/1992 07/07/1995 
DAX Futures 05/10/1992 02/03/1994 

Fixed Income Options 
Bund Futures 21/02/1990 13/06/1994 
BTP Futures 05/10/1992 16/06/1994 
Gilt Futures 30/09/1986 02/06/1994 
US T-Bond Futures 09/06/1986 28/04/1994 

Currency Options 
Deutsche Mark /US Dollar 23/09/1985 21/08/1991 
British Pound / US Dollar 23/09/1985 16/09/1992 
Japanese Yen / US Dollar 23/09/1985 05/01/1988 
Swiss Franc / US Dollar 23/09/1985 05/01/1988 

Table 8.1, Dates on Which Two Major Shocks in Variance Occurred for the Twelve Markets 
Under Examination. 
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Specifically, we determined the day at which the first and second major spike 

occurred (that fell within the period of which we had implied volatility estimates). 

These are summarised in Table 8.1 

On all of these dates, major economic events caused extreme levels of 

unconditional volatility. For the S&P 500 and FTSE 100 futures, these two events are 

the 1987 stock market crash and the 1989 mini-stock market crash. For the DAX and 

Nikkei (where we only had options data post these events), the shocks to the 

unconditional returns were country specific. 

For the DAX, the October 1992 shock was due to the aftermath of the EMS 

crisis, when a number of major German trading partners (Britain and Italy) were 

ejected from the exchange rate mechanism. This was considered to hurt the 

competitiveness of the German economy and thus impact future corporate profits. At 

the same time, the Bundesbank attempted to ameliorate the situation by lowering 

short-term interest rates. This seemed to have the opposite effect; indicating the 

gravity of the lower expected corporate profits. The March 1994 shock was also 

associated with a Bundesbank change in interest rate policy. In response to a 

burgeoning M3 money supply surge, the Bundesbank decided not to reduce interest 

rates further. According to the Wall Street Journal on March 3,1994 [Roth and 

Whitney (1994)], the failure to reduce interest rates in line with market expectations 

of such a decrease caused "waves of selling". This caused the DAX to drop by 2.3% 

in one day and increased the uncertainty of future interest rate policy. 

The 1992 shock to the Nikkei, was due to increased uncertainty regarding 

corporate profits due to dismal government economic statistics reporting in July 1992 

that the economy had slowed down to a then record low of 0.2% (which was down 0.7 

percentage points from the previous month). This led to the Nikkei index to fall to 
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under 15000. The August 1995 shock was again due to a collapse of the Nikkei index 

to below the 15,000 level for the first time in 34 months. This was associated with the 

all-time strengthening of the Yen relative to the US Dollar (to below V80) which was 

seen to have serious implications for the export oriented Japanese economy. 

For the fixed income markets, the first shocks tended to be country specific. 

For example the first shock in the Bund market reflected uncertainty after the re- 

unification of West and East Germany and the expectation that the issuance of 

massive quantities of the special Government bonds [Treuhand Anleihen] would be 

required for financing the re-unification. 

The first shock for the BTP occurred in the Summer of 1992, when the Danish 

people rejected the Maastricht treaty in a referendum. This cast the entire monetary 

union issue into question, which was particularly relevant to the Italian market, with a 

relatively weak economy and an overvalued currency (in the fall of that year the ERM 

crisis resulted in the expulsion of the Lire from the exchange rate mechanism). 

For the Gilt, the first major shock to the unconditional returns occurred in 

September 1986. This was due to the delay in an expected interest rate cut by the 

Bank of England. However, the Bank had concerns about monetary and credit growth 

and together with the weakening of the exchange rate (largely oil-related), caused 

sentiments to reverse. At the September meeting of the Bank of England no change in 

interest rate policy was announced. Subsequently, on the 14th of October of that same 

year, interest rates were raised by I%. This change in policy lead to a substantial sell- 

off in all UK Government stock. 

For the US T-Bond market, it is clear from Figure 2.1b that significant shocks 

came in the period from the late 1970s to the late 1980s. Unfortunately, we only have 

options data for the US T-Bond from 1985. Over this period, the first major shock 
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occurred in June 1986. This shock seems to an aftermath of the Economic Summit 

meeting in Tokyo of the G-7 members during early May. Due to a swelling trade 

deficit between the US and Japan, the US contingent had pressed the Japanese to cut 

interest rates to ease pressure on a depreciated US Dollar. The Japanese, having 

refused this suggestion, forced the US to reconsider their own interest rate policy. To 

that point, the bond markets had been expected a co-ordinated cut in interest rates. As 

the US Dollar continued to weaken in early June, it became apparent that the 

anticipated boost to US exports and growth was not being sustained and expectations 

of another downward adjustment in US interest rates were revived. Finally, after an 

increase in US unemployment was reported (confirming other Government statistics 

that the economy was weakening), the markets began to believe that a further easing 

of U. S. Monetary policy was imminent. This lead to further downward pressure on 

the US Dollar, as foreign holders of US Government Bonds began dumping their 

holdings. 

It is interesting that for all the fixed income markets, the second shock is 

shared. This shock occurred in spring 1994 as the US Federal Reserve surprised the 

bond markets by raising the Discount Rate to stem what they felt was inflationary 

pressures. This lead to a world-wide rise of interest rates, fall in bond prices and an 

increase in bond market volatilities. However, the impact for the other world-wide 

bond markets was delayed somewhat. The full impact was felt approximately one 

month after the shock hit the US markets. 

For the currency markets, the first shock was shared for all the four currencies 

examined. This shock occurred in 1985 as the US Dollar has risen to an extremely 

over-valued level (versus all major currencies). The shock occurred when a weekend 

meeting of the Group of Seven (G7) resulted in a concerted effort by all the central 
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banks to sell Dollars to return the economic systems to what was perceived as a 

sustainable equilibrium. The second shock was shared by two of the four currencies, 

the Swiss Franc and Japanese Yen. This occurred in January 1988. For the Swiss 

Franc, as a consequence of the 1987 Stock Market Crash, Swiss investors had been 

reducing their holdings of US investments. The Swiss Franc had by that time become 

one of the strongest currencies versus the US Dollar and there was concern as the 

Swiss National Bank indicated that the strengthening of the currency could have 

adverse long-term impacts on the economy. For the Japanese Yen, a similar reason 

exists for the shock. The spot rate of the Yen had risen to the highest level since the 

Second World War (V120) but thereafter dropped sharply. This occurred as 

confidence in international economic policy co-ordination began to take hold after a 

G-7 meeting, which occurred in January. The first major shock for the British Pound 

also occurred in 1985, when the over-valued US Dollar collapsed after the G-7 

meeting. The second shock came on September 16th, 1992 when the British Pound 

was ejected from the European Monetary System by speculative pressures. Even 

though this crisis was related primarily between the British Pound and the Deutsche 

Mark, the volatility spilled over to the US Dollar/British Pound Exchange rate. The 

second shock for the Deutsche Mark was deemed to have occurred in August, 1991. 

Again this was due to market uncertainty regarding the success of the re-unification of 

West and East Germany. The specific event which caused the shock was the 

Bundesbank raising the discount interest rate from 6.5% to 7.5% (on the 16th of 

August) in response to the overheating of the economy. 

A number of points should be made about the inclusion of these shock dummy 

variables. Firstly, for the S&P and the FTSE, the 1987 stock market crash was the first 

major shock. Thus, it would be redundant to include both 87CRASH and SHOCKI in 
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the analysis. Therefore, we ignored SHOCKI for these markets. Secondly, the 

inclusion of the 1987 stock market crash may seem irrelevant for the non-equity asset 

classes. However, the economic rationale is that the occurrence of the 1987 stock 

market crash may have changed the way that market participants addressed the risk 

management of options more generally. Finally, the economic rationale for the 

inclusion of the other shocks is to extend to each market what Rubinstein (1994) and 

others have claimed occurred for the S&P 500. Specifically, the question is: do market 

participants change the way they evaluate options after the occurrence of extreme 

events? 

For each of these shock variables, we have included interactions with the 

STRIKE and STRIKE2 variables. These will allow us to examine whether the 

behaviours of the skew (STRIKE) and the implied kurtosis (STRIKE2) changed after 

these events. This will allow a direct test of the Rubinstein hypothesis. In addition, 

since we are including the CRASH interaction for all markets, we can assess the 

global effect of the 1987 stock market crash on the risk characteristics of contingent 

claims in non-equity related markets. 

Inclusion of Additional Variables 

Given that almost all the other factors are self-evident as to their meaning, we 

would like to clarify the factor ATMVOL. This is determined by taking a linear 

interpolation of the implied volatilities of the two (out-of-the-money) strike prices that 

bracketed the underlying futures price. This variable is included to assess the errors 

we may have introduced into our analysis by our way of estimating the at-the-money 

implied volatility. 
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The inclusions of the interaction variables that include ATMVOL have 

another purpose. The variable ATMVOL&S will indicate whether the degree to which 

the skew is manifested in our twelve markets is related to the level of the at-the- 

money volatility. In a similar manner, ATMVOL&S2 will indicate whether the 

curvature (implied excess kurtosis) from the implied volatility patterns is also related 

to the level of the at-the-money implied volatility. If these factors do turn out to be 

significant, we will have a clearer understanding of how absolute levels of expected 

variance affects market participants implied dispersion processes. 

Final clarification must be given for the CONTRACT dummy variables. Our 

data set included the earliest observation, in January 1985. These observations were 

for the March 1985 contract. Since we are looking at quarterly contracts until the end 

of 1996, this means we have 48 contracts in total. It should be noted that not all 

markets have observations for all these contracts. However, since all the markets 

examined are examined for the same quarterly cycle, we will be able to test for 

contemporaneous volatility effects that may have occurred during the period of 

analysis. 

Finally (and on a technical note) we sorted the data to understand the time 

series behaviour better. This is because this analysis bears some resemblance to a 

panel analysis. This sorting was done first by CONTRACT so that all the volatilities 

in our analysis were grouped from 1 to 48. Then, these were sorted by the actual strike 

price. This allowed the same option contract to be examined. Finally, we sorted by 

time to expiration. In this way, we obtained a series of options with the same strike 

price and contract expiration date and could analyse these through time. Unfortunately 

when an individual option would expire, another option would immediately follow in 

the data array (but with the next highest strike price) with the longest time period to 
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expiration. Of course, this will lead to unusual time series characteristics in the 

residuals. However, this approach will allow us (in a limited manner) to examine the 

residuals for effects of serial correlation (as we would expect would exist when one 

option expires and the next one replaces it in the analysis, these panel sets would be 

uncorrelated at that point). 

8.4 INTERPRETATION OF THE MODEL 

Before we present the results of our analysis, we should pause to examine the 

overall research design and how this will address our research objectives. To begin, 

we are interested in understanding the nature of the implied volatility processes 

associated with smiles. Therefore, our first objective is to understand the higher order 

moments of the distribution, namely the skewness and kurtosis. Given that the 

skewness is captured by the STRIKE variable and the kurtosis is captured by the 

STRIKE2 variable, we can group all these together to yield the following equation: 

VSI =a+ STRIKE " (A+ ß2 " TIME + p3 " TIME' + ß4 " CRASH + ß, " SHOCK' + ß6 " SHOCK2 +p, " ATMVOL) 

+ STRIKE2 " (%38 + /39 " TIME + /3,0 " TIME2 + Al " CRASH + ß12 " SHOCK! + /313 " SHOCK2 + /314 " ATMVOL) 

+ As " STRIKE3 + /316 " CRASH + ß,, " SHOCK' + 318 " SHOCK2 +A, " ATMVOL+ ßp " TIME + /321 " TIME2 

+ /322 " TIME3+E 

(8.2) 

From this equation, we can examine the multi-faceted nature of the implied 

dispersion processes. For example, we can examine whether the implied volatilities 

are constant (equation 8.1a) or not. Simply said, this assumption of constant volatility 

can be rejected if any of the independent variables are found to be significant. Our 

second objective is to understand the first order strike price effects (skewness). This 

can be understood better by examining the Beta coefficients from ßl to ßi. If a skew 

effect does exist, we would expect that if it were not time varying, only the first Beta 

would be significant. If it is time varying, then 132 and (33 should be significant. If any 
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of the shocks caused a change in the nature of the skew, then (34, (35 and (36 will capture 

these effects. This should allow us to assess differences in the differences in the first 

order strike price effect before and after shocks. Finally, 07 will allow us to examine 

the interaction between the expected level of future variance and the first order strike 

price effect. 

For the examination of the second order effect, we should gain insights by 

examining the Beta coefficients from ßg to 014. Similar to the analysis of the first 

order strike price effects, if kurtosis effects do exist and they are not time varying, 

only ß8 would be significant. If these effects are time varying, then ß9 and 13wo would 

indicate this. If any of the shocks caused a change in the nature of the implied 

kurtosis, then this will be captured by 011, (312 and 113. This should allow us to 

examine whether differences in the levels of implied kurtosis occur before and after 

shocks. Finally, 014 will allow us to examine the interaction between the expected 

level of future variance and the expected kurtosis. 

The remaining variables exist for two primary purposes. The first is that the 

previous variables will provide insights into the average slope relationships that exist 

for the strike price effects. These variables will allow us to understand the dynamics 

of the process. The second reason is that for a number of these variables we have a 

prior expectation that they should not be significant in the regression. These would 

include the dummy variables that identify the occurrence of the 1987 stock market 

crash and the individual market shocks. We would also expect that the level of the at- 

the-money implied volatility would not be significant. These expected results are due 

to the fact that we have standardised our implied volatilities (indexing them to 100). 

Therefore, we should not observe significant results in these variables. If these 
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variables are significant, this may serve as a diagnostic for potential errors in 

variables. 

It may very well be that further moments are required to understand the 

implied dispersion process beyond skewness and kurtosis. For this reason, 015 will 

show us if this is the case or not (STRIKE3). The inclusion of the CRASH, SHOCK1 

and SHOCK2 variables will allow to examine if the manner in which we have 

estimated the standardised implied volatilities (or the other independent variables) is 

inconsistent over time. This would be measured again by statistically significant 

coefficients for 016, (3» and 1318. The ATMVOL variable is included to measure 

whether the method we have used to standardise the smile patterns may be biased. We 

would expect that some errors might exist from the way we have estimated the at-the- 

money volatility. What we would hope is that this does not lead to systematic biases 

across all the analysis. Finally, the time variables will examine whether the implied 

volatilities are systematically varying over time. Significant results for 020, (321 and ß22 

would suggest that the overall levels of implied volatilities rise or fall as time to 

expiration is approached. However, this would not be expected to be significant given 

that we have indexed the implied volatilities to the at-the-money implied volatility. 

8.5 ORDINARY LEAST SQUARES REGRESSION RESULTS 

With the dependent variable, the standardised implied volatility (VSI), and all 

the factors determined for each option in the observation period, the OLS regression 

with dummy variables (ANCOVA) was run. The first approach was to run an ordinary 

least squares regression with all the variables indicated above except: CLASS, 

MARKET and CONTRACT. This was done for all twelve markets for the entire 

period of the available data. The results of these statistical procedures can be seen in 
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Table 8.2a, 8.2b and 8.2c for the three asset classes, stock indices, fixed income 

instruments and foreign exchange. 

In these tables, the coefficients of the regression are presented along with the 

standard error of the estimates and the t-statistic. The t-statistics for all the 

independent variables indicate whether the coefficient is statistically significantly 

different than zero. For the intercept, the t-statistic indicates whether the coefficient 

(alpha) is statistically significantly different than 100. This is the appropriate test level 

given that our standardisation technique has indexed all the volatilities to this level. 

Therefore, we would expect that the intercept of this regression would equal this level. 

For all variables that have a significant t-statistic (at a 95% level), the results are 

presented in bold. For all results that are in normal text, these were not significantly 

different from zero for the independent variables or 100 for the intercept. Finally, the 

ordinary least squares regression technique used employed a forward stepwise 

approach. This was done because the covariance matrix was in some instances non- 

singular. This is to be expected as a number of the variables are highly correlated by 

design. For example, all the TIME, STRIKE and INTERACTION variables are 

products of other included variables and will thereby be highly correlated. However, 

the forward stepwise approach will select in descending order those variables that 

provide the highest explanatory power given all previous variables that have been 

included in the regression at that point. As will be discussed later, this technique 

allowed us to ameliorate the effects of multi-collinearity that may be associated with 

our research design. In the instance that the variable was not selected in the forward 

stepwise regression, this is represented by "-. --". 
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We have also included the number of observations included in the analysis, the 

adjusted R-squared statistic and the Durbin-Watson statistic to measure possible 

problems with serial correlations in the residuals. 

In Table 8.2a, we find that almost all of the included independent variables are 

statistically significant for the four stock index options. Exceptions include the 

variables that include SHOCKI for the S&P and FTSE and variables that include 

CRASH for the DAX and Nikkei. This is hardly surprising since these variables were 

not appropriate for these markets. The reader may recall that for the S&P and FTSE, 

the CRASH and SHOCKI were identical. Thus, we did not include SHOCKI for 

these markets. In addition, for the DAX and Nikkei, the available observations 

occurred after the CRASH and thus, it made no sense to include a variable with no 

variance in the analysis. In addition, for most of the markets, the dummy variables 

SHOCKI and SHOCK2 were not statistically significant. For almost all the other 

variables, they provided significant explanatory power to the model. 

The extremely high explanatory power of each of the models is somewhat 

surprising. The adjusted R-squared statistic is between 0.9084 (for the Nikkei) to 

0.9573 (for the S&P). These results (at first glance) seem to indicate that we are 

explaining almost all the variance in the implied volatility processes. Nevertheless, we 

must be careful with interpreting these results since the regressions might be biased 

and therefore the statistics could be misleading. For example, the Durbin-Watson 

statistics suggest that (for three of the four markets) some of the variance explained by 

the regressions is due to serial correlations in the residuals. Given that this indicates 

the OLS assumption of 1113 residuals is violated, this could also mean that the 

coefficients of the regression are biased and that we are reporting standard errors that 

are much too low. At this point, we cannot distinguish between the true variance our 
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model is explaining and the extent these results may be due to errors in our research 

design. Correcting these errors could potentially change our results dramatically as 

once the violations in the regression assumptions are corrected for, these variables 

may no longer be significant and the amount of true variation we are explaining may 

be reduced. 

Given that this methodology is at the heart of this portion of the research and 

that our understanding of the implied volatility process depends entirely upon the 

interpretation of unbiased results, we will examine each possible violation of the OLS 

assumptions. This will be achieved by modifying the manner of the regression 

analysis to address every violation of the OLS assumptions. It is of prime interest to 

assess how divergence the coefficients, standard errors and R-squared are once the 

factors introducing biases are corrected for. We will present results that suggest the 

regressions are remarkably robust and that even after revisions have been made to the 

regression models (to correct each of the potential violations of the OLS regression 

assumptions), there is not a significant difference in our results. Given that this is the 

case, we shall interpret the regression results in Tables 8.2a, 8.2b and 8.2c knowing 

that later approaches correcting the regression models will not substantially alter our 

conclusions. 

Modelling the First Order Strike Price Effect (SKEWNESS) 

From a casual review of these three tables, we observe that the coefficients 

vary significantly from each other for the same independent variables. However, we 

find that certain consistencies exist within the asset classes. For example, for many of 

the markets (in the same asset class) the coefficients are of the same sign (for the most 

part) and this suggests that similar dynamics may be affecting each asset class. To see 
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In Figure 7.13a, we estimated the first order strike price effect using the above 

regression methodology. ' This was done so that we could gain a better insight of the 

overall skewness effect captured by the above model. For this estimate, we only 

included the strike and time related variables. The dotted line in this Figure represents 

this estimated relationship. As one would expect, the initial approach to capturing the 

skewness effect relied simply on a quadratic regression and was plotting as the first 

Beta of this regression (see equation 7.2). The dotted line is the best fitting quadratic 

function for this skewness effect. This relies on a richer model, which includes the 

time effects to degree two. In some ways, this approach is a quadratic model that 

minimises the squared error for the skewness effect. Therefore, it is hardly surprising 

that the dotted lines are a smoothed function that best fits the observed skewness 

parameters for 1996. From this graph, we can see that the overall impacts of the 

skewness estimated by the OLS model. These figures demonstrate that for all four 

markets (during 1996), a negative skew existed and this degree of skew is reduced as 

the expiration date of the option is approached. 

The third coefficient (measuring STRIKE and TIME2), ß3, is also consistent 

and positive for all four markets. This variable is somewhat difficult to interpret. This 

is due to two reasons. Firstly, the variable considers a higher power of time. Secondly, 

the overall impact of time is affecting both this variable and the previous variable 

(that considers the first order time impact). Thus, this variable appears to be acting 

with the previous variable and it would appear to be reducing the overall impact of the 

first variable. This overall effect is captured by the dotted line in Figure 7.13a. 

1 The results of the regression in Table 8.3a were not used for this analysis. This is due to the fact that 
this analysis was for the entire period of analysis. In Figure 7.12a, this represents the first order strike 
price effect solely for 1996. Therefore, we had to re-run the model only using data for 1996 to allow a 
comparison to be drawn. The results of these regression are available from the Author upon request. 
However, there was not a substantial difference between the results presented above for the entire 
period with the results for 1996. 
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The fourth, fifth and sixth coefficients allows us examine whether the nature 

of the volatility skew changed after shocks, including the 1987 stock market crash. 

We find that for the S&P and the FTSE, this result is significantly negative. Thus, it 

would confirm the Rubinstein (1994) contention that the nature of the skew differed 

after the 1987 crash. For the other markets, that only had observations past the crash, 

we find that the skew was slightly (but significantly) positive. However, after the 

second shock for three of the four markets, this increased the negative degree of the 

skew. Only for the Nikkei was the skew more positive after the second shock. Thus, 

for the DAX and Nikkei the first coefficient, 01, appears to already include the 

negative bias in the skew that resulted from the 1987 stock market crash. 

The final interaction variable provides an interesting result. It appears that the 

level of the expected volatility has a significant impact on the degree of the skew. For 

the S&P and Nikkei, the coefficient of (37 is significantly negative. This suggests that 

the higher the expected variance, the greater the degree of the skew. For the DAX and 

the FTSE, the effect is the opposite. The greater the implied volatility, the flatter the 

skew. This effect could reflect the expectation imbedded in the implied volatility of 

jumps occurring. The negative coefficients can be interpreted as incorporating a 

negative jump, while the positive coefficients could reflect the expectation of positive 

jumps. 

Now, let us examine the results for the independent variables describing the 

nature of the first order strike price effect for the four fixed income options under 

investigation. These results appear in Table 8.3b for each of the four fixed income 

option markets. 
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Variables STRIKE TIME TIMEZ 

Coefficient ßi 02 R3 

Bund 5.534 -26.088 85.086 

BTP -0.044 -32.213 113.758 

Gilt 2.895 -9.662 25352 

US T -Bond -0.969 -4.085 0.947 

CRASH SHOCKI SHOCK2 ATMVOL 
P4 P5 P6 ß7 

. 1.679 -2.496 -96.526 

-2.994 . 44.109 

-1.585 -0.657 -4.156 -22.411 

0.781 -2.490 0.452 -7.141 

Table 8.3b, Regression Results for the First Order Effect of the Strike Price for Four Fixed 
Income Options. 

For the first regression coefficient, ßl, we find that the pure effect of the strike 

price is positive for three of the four markets. This indicates that in the absence of the 

interaction terms, the normal skew effect is positive. For all the four markets, the 

second coefficient (measuring the interaction of STRIKE and TIME), P2, is of the 

same negative sign. It is interesting to note that the Bund and BTP (both continental 

European bond markets) have coefficients that are almost identical. This suggests that 

as time falls, the degree of the skewness decreases. This is consistent with Figures 

7.12b and 7.13b, which suggested that the degree of skewness flattens as we approach 

the expiration of the option. The dotted line in these graphs represents the skewness 

effect from the above regression (solely for 1996). 

The third coefficient (measuring STRIKE and TIME2), (33, is also consistent 

and positive for all four markets. As with the first order strike price effect for the 

stock index options, this variable has similar problems in interpretation. All that can 

be said is that both time variables are working together to describe the time sensitive 

behaviour of the first order strike price effect. The overall effect can be seen in Figure 

7.13b. This best fitting line suggests that three of the four markets display a 

curvilinear shape indicating a reduction in the skewness effect as the expiration of the 

option is approached. The odd market out is the US T-Bond that seems to display a 

more consistent skewness effect over time. 
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Now, we will examine the dynamics of the first order strike price effects for 

the third asset class: foreign exchange. The results for those independent variables 

associated with the STRIKE appear in Table 8.3c for each of the four foreign 

exchange option markets. 

Variables STRIKE TIME TIME2 CRASH SHOCKI SHOCK2 ATMVOL 

Coefficient 51 P2 03 N R5 06 07 

D-Mark 3.933 1.045 . 0.595 -1.929 0.522 -15.234 

Pound . 1.002 1.929 -0.741 0.333 4.471 

Yen 1.247 -3.428 10.701 -1.052 1.809 1.830 -6.647 

S-Franc 2.850 2.177 -4.231 -2.126 . 7.234 

Table 8.3c, Regression Results for the First Order Effect of the Strike Price for Four Foreign 
Currency Options. 

For the first regression coefficient, ßl, we find that the pure effect of the strike 

price is significant for all four markets. It is interesting that three of the four are 

significantly positive (D-Mark, Yen and S-Franc). Only for the British Pound, the 

relationship is a negative one. For three of the four markets, the second coefficient 

(measuring the interaction of STRIKE and TIME), P2, is of the same positive sign. 

This suggests that as time falls, the skew becomes slightly more positive. This is not 

consistent with Figures 7.12c and 7.13c, which suggested that the degree of skewness 

was independent of the time to expiration of the option. However, this Figure only 

represents the smile behaviour for 1996. The analysis presented in Table 8.3c, 

includes all the observations from 1985 until 1996. As was pointed out earlier (see 

footnote 1), the plotted line that indicates the skew effect from the above regression 

approach was also determined using only the data from 1996. In Figure 7.13c, we see 

that either the dotted lines are flat (for the D-Mark) or display some slight curvilinear 

pattern. However, these patterns are not consistently positive or negative and for the 

Swiss Franc, vary between positive and negative values. Thus, for this period, it 
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would appear that any skewness effect is negligible or fairly insensitive to the time to 

expiration of the option. 

The third coefficient (measuring STRIKE and TIME2), ß3, is statistically 

insignificant for the four markets. 

The fourth, fifth and sixth coefficients allow us to assess whether the nature of 

the volatility skew for foreign exchange options changed after shocks, including the 

1987 stock market crash. Here we find that no systematic patterns emerge. It is clear 

that shocks occur related to specific dynamics of the particular market, being either 

positive or negative. As these occur, the strike price effects adjust to reflect new 

market expectations. For the 1987 stock market crash, there was a negative impact on 

the strike price effect for the D-Mark and Yen, however, the impact was positive for 

the Swiss-Franc. 

The final interaction variable provides consistency with the results obtained 

both for stock and bond options. It again appears that the level of the expected 

volatility generally has negative impact on the degree of the skew. For three of the 

four foreign exchange options markets, the higher the expected variance, the greater 

the degree of the skew. The interpretation of this result is that when market 

participants are concerned about jumps, they tend to fear negative ones. This is then 

incorporated into a higher level of expected variance to compensate for the risk 

premium required for such events. 

From this initial analysis we can draw some preliminary conclusions. Both 

stock index and fixed income options display statistically significantly negative first 

order strike price effects. These skew effects are time dependent in a similar way and 

are more extreme after shocks occur. For the foreign exchange options, the first order 

strike price effect seems to be either flat or slightly positive. This positively skewed 
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relationship is also time-dependent in a similar manner to the stock index and fixed 

income option markets. In all markets, the skewed relationship becomes more positive 

(or less negative) as the time to expiration decreases. The impact of shocks for foreign 

exchange options can yield either more positive or more negative skewed 

relationships. However, the effect is not consistent. For all three asset classes, there 

appears to be a significant impact on the first order strike price effect from the level of 

the expected future variance. In most cases (8 of 12 markets), as the expected variance 

increases, the degree of the skew becomes more negative. The only notable exception 

is for the Nikkei and this could be due to the fact that during most of the time period 

of analysis for this market, the index was in a downward trend and a significant 

rebound in the market would have been unusual. 

Modelling the Second Order Strike Price Effect (KURTOSIS) 

At this point, we will now examine the second order strike price effect for 

three asset classes. As before, we can separate these effects from equation 8.2 as 

follows: 

STRIKE 2" (ß8 + ß9 " TIME + ß, o. TIME2 + ß� " CRASH + ß12 " SHOCK I+ ß� " SHOCK2 + ß� " ATMVOL) 

(8.4) 

From Table 8.2a, we have selected only the slope coefficients outlined in 

equation 8.4 and these appear in Table 8.4a for each of the four stock index options 

markets. 

For the first regression coefficient, (38, we find that the pure effect of the strike 

price squared is positive for all four markets and is similar in size. This indicates the 

pure kurtosis effect. For all the four markets, the second coefficient (measuring the 

interaction of STRIKE2 and TIME), 19, is of the same negative sign and again of 
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the same degree. This suggests that as time falls, the degree of the kurtosis 

;. This is consistent with Figures 7.14a and 7.15a, which suggested that the 

e of the implied volatility pattern becomes more extreme as we approach the 

in of the option. 

STRIKE2 TIME TIME2 CRASH SHOCKI SHOCK2 ATMVOL 

R8 R9 
I3io 

Pu P12 P13 P14 

5.899 -12.295 15.557 0.681 -0.717 -4.200 

8.963 -6.491 -1.359 -1.317 -9.147 

7.222 -13.868 17.144 -1.310 -11.392 

4.031 -12.205 29.648 -. 1.170 - -4.172 

fa, Regression Results for the Second Order Effect of the Strike Price for Four Stock 
Wons. 

:n Figure 7.15a, the dotted line represents the kurtosis effect as measured 

is OLS approach for 1996. One can see that for three of the four stock index 

the kurtosis effect is monotonically increasing as we approach expiration. 

ly divergence from this pattern is for the Nikkei that has relatively high 

with 90 days to expiration and then drops at 50 days and increases again as 

roach expiration. One possible reason for this could be that this option is not as 

traded (with longer times to expiration) as the other options in the analysis 

true kurtosis behaviour is only captured as these contracts become more liquid 

me to expiration is approached. 

the third coefficient (measuring STRIKE2 and TIME2), (310, is also positive 

e of the four markets (although this is not statistically significant for the 

.s was stated earlier for the second order time impact for the first order strike 

ect, it is somewhat difficult to provide an economic interpretation for. This 

aid is that both time factors interact in a complex manner impacting the 

'rder strike price effect. It would appear that the second order time factor is 
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in the level of all implied volatilities. Secondly, as the implied volatility surface is 

indexed to the at-the-money implied volatility, if the at-the-money implied volatility 

rises then this alone would serve to dampen the degree of the implied curvature. 

Now, we will examine the second order strike price effects for the fixed 

income options markets. From Table 8.2b, we have selected only the slope 

coefficients outlined in equation 8.4 and these appear in Table 8.4b for each of the 

four fixed income option markets. 

Variables STRIKEZ TIME TIME2 CRASH SHOCKI SHOCK2 ATMVOL 

Coefficient ßs ß9 Pio pit P12 ß13 ß14 

Bund 4.547 -20.470 46.894 1.538 -1325 

BTP 5.082 1.847 -52.302 0.870 0.167 -17.698 

Gilt 4.411 -17.584 32372 1.499 1.226 -0.757 -22.729 

US T-Bond 5.652 -8.763 15.837 0.350 -0.505 -0.318 -5.578 

Table 8.4b, Regression Results for the Second Order Effect of the Strike Price for Four Fixed 
Income Options. 

For the first regression coefficient, ßg, we find that the pure effect of the strike 

price squared is positive for all four markets and is similar in size. This again 

indicates the pure kurtosis effect and is similar to the results presented for the four 

stock index options. For three of the four markets, the second coefficient (measuring 

the interaction of STRIKE2 and TIME), 09, is of the same negative sign and again of 

roughly the same degree. This suggests that as time falls, the degree of the kurtosis 

increases. This is again consistent with Figures 7.14b and 7.15b, which suggested that 

the curvature of the implied volatility pattern becomes more extreme as we approach 

the expiration of the option. The odd market out is the BTP market that has a positive 

(but insignificant) coefficient. This would suggest that the kurtosis becomes more 

extreme the further the time to expiration. However, in Figure 7.14b it does appear 

that the curvature for the BTP is relatively more stable over the option cycle. 

Nevertheless, we would expect some increased curvature to exist for this market and 
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this can be found in the third variable (measuring STRIKE2 and TIME2) and it's 

coefficient, (ilo. For the BTP, this coefficient is large and negative. Overall, it would 

appear that the combination of these two factors would lead to an overall increase in 

curvature as we approach expiration. For the other three markets, the coefficient is 

also consistently positive and roughly of the same magnitude. These three markets 

bear very similar results to those observed for the four stock index options. 

In Figure 7.15b, we have displayed the estimated kurtosis effect for these four 

markets over the period 1996 that come from the OLS model. We can now see that for 

all four markets the level of the kurtosis rises as we approach expiration. Thus, for the 

BTP, the combined effect of these two time dependent variables does cause an overall 

increase in the kurtosis as was suggested above. 

The fourth, fifth and sixth coefficients allow us to examines if the curvature of 

the implied volatility patterns changed after shocks, including the 1987 stock market 

crash. We find that both for the 1987 stock market crash and the first shock to each 

bond market, the expected excess kurtosis increases in almost all instances (the 

exception is the US T-Bond after the first shock, but the magnitude of the negative 

coefficient is small). The second shock has the universal effect of lowering the 

expected kurtosis for three of the four markets. Perhaps, market participants had 

anticipated the extreme movements associated with the second shock already in the 

expected excess kurtosis prior to the event. After this event was realised, the expected 

excess kurtosis fell as a result. 

The final interaction variable also provides a result that is consistent with the 

findings for the four stock index options. It appears once again that the level of the 

expected volatility has a significantly negative impact on the degree of the expected 
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kurtosis. As with the stock index options, this suggests that the higher the expected 

variance, the lower the degree of the expected kurtosis. 

Finally, we extended the same analysis for the third asset class, foreign 

exchange, by selecting from Table 8.2c only those slope coefficients (outlined in 

equation 8.4) that relate to the second order strike price effect. These appear in Table 

8.4c for each of the four foreign exchange options markets. 

Variables STRIKEZ TIME TIME2 CRASH SHOCKI SHOCK2 ATMVOL 
Coefficient Ra R9 ßto Ril P12 ß13 014 

D-Mark 7.838 -16.273 36.311 0.156 -1.087 -0.127 -17.166 

Pound 9.154 -14.431 31.282 -1.254 -1.176 0.391 -20.620 

Yen 6.340 -12.943 24.408 -0.750 0.576 0.266 -12.820 

S-Franc 8.367 -19.269 53.228 0.159 -1.876 0.342 -19.014 

Table 8.4c, Regression Results for the Second Order Effect of the Strike Price for Four 
Foreign Exchange Options. 

For the first regression coefficient, (38, we find that the pure effect of the strike 

price squared is positive for all four markets and almost identical in magnitude. This 

indicates the pure kurtosis effect. For all the four markets, the second coefficient 

(measuring the interaction of STRIKE2 and TIME), 09, is of the same negative sign 

and again of roughly the same degree (apart from the Japanese Yen). This suggests 

that as the expiration of the option is approached the degree of the kurtosis increases. 

This is consistent with Figures 7.14c and 7.15c, which suggested that the curvature of 

the implied volatility pattern becomes more extreme as we approach the expiration of 

the option. From examination of the dotted line in Figure 7.15c, we observe the 

overall kurtosis effect predicted from the OLS regression (for 1996). These graphs do 

indicate that the overall kurtosis is increasing as the expiration is approached. 

However, the degree to which this occurs is much less extreme than we observed for 

the other asset classes. Thus, there appears to be a more consistent level of kurtosis 
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overtime for foreign exchange options relative to stock index or fixed income options. 

Nevertheless, the kurtosis effect does increase as the time to expiration falls. 

The third coefficient (measuring STRIKE2 and TIME2), ßto, is also 

consistently positive for three of the four markets. For the Japanese Yen, this variable 

had a significantly negative impact. This is due to the previous slope coefficient (ß9) 

being somewhat smaller in magnitude relative to the other currencies. 

The fourth, fifth and sixth coefficients allow us to examine the impact of 

shocks on the nature of the curvature of the implied volatility patterns for foreign 

exchange options. We find that the effect is not consistent (including the 1987 stock 

market crash). For many of the markets, there is no effect from such shocks and when 

such an impact is significant, the magnitude of the effect is small. Thus, it would 

appear that the curvature we observe in foreign exchange options is endemic and not 

that sensitive to the occurrence of shocks. 

The final interaction variable is remarkably consistent, both among the four 

foreign exchange markets and with the two previous analyses for the stock and bond 

markets. It once again appears that the level of the expected volatility has a 

significantly negative impact on the degree of the expected kurtosis. Once again, we 

can conclude that the greater the implied volatility, the flatter the shape of the implied 

volatility pattern. It is truly remarkable that the magnitudes of the coefficients are 

extremely close and in some instances not statistically significantly different (for 

example, S-Franc and Pound and D-Mark and Yen). 

From this initial analysis, we will also draw some preliminary conclusions. 

For almost all the markets we have examined, consistencies exist in the sign (and in 

many instances the magnitude) of the independent variables. This could suggest that 

similar dynamics are at work across all markets. For example, all twelve markets have 
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similar slope coefficients to the pure kurtosis effect (ß8). Furthermore, for 11 of the 12 

markets, the interaction between time and the squared strike price is negative. Of 

these 11 markets, 10 display a similar magnitude in the coefficients. Of the two 

markets which are divergent, BTP and Yen, the interaction is taken by the second 

order interaction term (STRIKE2 and TIME2). Thus, it would appear that a similar 

dynamic process is explaining the time dependent behaviour of the second order 

impact of the strike price. The fact that the inclusion of shocks has a minimal impact 

on the change in the second order strike price effect suggests that these behaviours 

existed throughout the time period for all twelve markets and are not event sensitive. 

Thus, we can confirm the Rubinstein (1994) conjecture that the curvature of the smile 

existed before and after the 1987 stock market crash and what changed was the 

skewness (see analysis above). For all three asset classes, there appears to be a 

significant impact on the second order strike price effect from the level of the 

expected future variance. In all cases, as the expected variance increases, the degree 

of the expected kurtosis lessens. For most markets, the magnitude of the impact is 

extremely similar. The only notable exception is for the DAX, where the coefficient is 

much greater than for any other market. 

Now that we have examined the first and second order impacts of the strike 

prices on the dynamics of the implied volatility patterns, we will now examine the 

other variables included in the analysis. 

The Impacts of Other Variables on Implied Volatility Surfaces 

From equation 8.2, we can separate the remaining variables to assess their 

impacts on explaining the dynamics of the implied volatility process. These remaining 

variables have been split out and appear in equation 8.5. As was discussed previously, 
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the earlier analysis examined the average slopes of the strike price effects and these 

variables provide both an indication of the dynamics of the strike price effects and act 

as a diagnostic for errors in variables. 

VSI =a+ß, s"STRIKE3+ß16"CRASH +ß�"SHOCK1+ß1e"SHOCK2+J19"ATMVOL+ß, TIME+ß21"TIME2 

+ßu"TIME 3+e 

(8.5) 

The results for these additional independent variables appear in Table 8.5a for 

each of the four stock index options markets. 

Variables Intercept STRIKE3 CRASH SHOCKI SHOCK2 ATMVOL TIME TIMEZ TIME3 
Coefficient a P15 P16 P17 

Fels 
019 1320 P21 1322 

S&P 97.163 0.801 1.465 0.441 -1.835 54.822 -554.37 1538.4 

F1'SE 98.027 0.388 2.921 -0.886 -291.48 1306.9 

DAX 98.280 0.329 4.093 1.755 

Nikkei 98.115 0.316 48.428 -275.02 436.43 

Table 8.5a, Regression Results for the Remaining Independent Variables for Four Stock Index 
Options. 

We would expect from the procedure of implied volatility standardisation that 

the intercept, a, would be approximately equal to 100. We observe that it is somewhat 

lower (and this difference is statistically significant), which could be due to a number. 

of factors. One possible explanation is that errors may have been introduced from the 

method of estimating the at-the-money volatility. We chose to use a simple linear 

interpolation of adjacent strike price implied volatilities. This was used because when 

using other methods to estimate the at-the-money implied volatilities (such as a 

quadratic regression approach), the coefficients were substantially (and significantly) 

different than 100. When we re-estimated the at-the-money volatility using the 

simpler technique, the intercepts increased and were all in the range between 97 and 

99. Thus, while we recognise that a coefficient lower than 100 suggests that some 

other errors in the standardisation of the implied volatilities may have been 
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introduced, the impact appears to be consistent across the stock index options. 

However, for the sake of comparison, the effects of the independent variables should 

still be comparable 

The fact that the higher order strike variable (STRIKE) appears as a 

significant factor in the regression suggests that for all four stock index options, the 

strike price effect extends beyond a second order impact. For all four stock index 

options, 015 is positive and of similar magnitude. While the implications of the 

inclusion of this variable are somewhat difficult to interpret (due to the fact that this 

implied statistical moments above kurtosis), we can understand why this variable is 

significant if we return to Figure 7.11a. For all the stock index options, the smile 

shapes resemble an inverted 'J' shape. Thus, some sort of interaction is occurring 

between the skewness and kurtosis, which is being captured by the STRIKE3 variable. 

It remains for further research to assess whether further higher order effects exist 

(beyond the cubic) exist and what possible economic rationale would explain it. 

The impacts of the pure shock dummy variables are mixed. We would expect 

that these would not be significant. Indeed for most of the markets, the coefficients for 

CRASH and SHOCKI and SHOCK2 are not significant. When the effect is 

significant, the impact is slight and appears to bring the overall intercept level back to 

the 100 level we expected. 

We would expect that all the impacts of at-the-money volatility would have 

been captured by previously included independent variables. If this were not the case, 

the coefficients for the ATMVOL variable would be statistically significant. As was 

mentioned previously, this variable provides some indication of whether problems 

may exist in how we are estimating the at-the-money volatility. When using the 

quadratic regression approach, three of the four markets registered significant results. 
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However, using the simpler linear extrapolation method, none of the four markets had 

a significant result. Therefore, the reason why our intercepts are less than 100 has to 

be caused by the other dummy variables or by some impact of time. 

Time is most likely the culprit (explaining our intercept term less than 100). 

For the S&P and FTSE, which had the lowest intercepts, most of the TIME variables 

had a statistically significant contribution to the regression equation. However, the 

TIME impacts were not as significant for the DAX or the Nikkei. When the 

coefficients for the first order TIME variable were significant, the coefficients were 

all positive. Likewise for the second order time effect, TIME2, all significant results 

were negative and for the third order effect, TIME3, were positive again. There are at 

least two explanations for this result. The first is that we have not correctly measured 

the time to expiration of the options. We have measured time as the calendar time to 

expiration and have used full days to measure time. It may be possible that as 

expiration is approached and the options expire during the final trading day, this 

difference in the exact time to expiration (i. e. hours) may be significant. 

The second explanation may be that we are capturing a more subtle effect of 

time decay on the implied volatilities of options. The relative magnitudes of the 

coefficients suggest that we are capturing what may be a negative exponential of time 

function. For market practitioners, this effect is known as the premium erosion effect. 

The inclusion of the TIME variables to degree three should capture these effects. 

Suppose that the functional form of time is of the form: e-T. This can be approximated 

by an expansion of the form: 

x2 X3 T" [(1- X) +++ higher " order " terms] (8.6) 
2! 3! 

T is fairly small (as it is in our case). Thus, we would expect to capture most 

of the dynamics of the negative exponential form by the time we had expanded to the 

334 



third moment. It would (therefore) be consistent for the regression results to be in line 

with what would be expected from such a dynamic. Essentially, these results suggest 

that as time decreases, the implied volatility also tends to decrease. The inclusion of 

the two higher order time variables suggests that this has a negative exponential form. 

Even so, (a quick glance at) Table 8.2a indicates that these variables have t-statistics 

that are (for the most part) not very significant. Nevertheless, it appears that the 

overall level of implied volatilities decays as the expiration of an option approaches. 

The results for the additional independent variable for the four fixed income 

option markets appear in Table 8.5b. 

Variables Intercept STRIKE3 CRASH SHOCKI SHOCK2 ATMVOL TIME TIME2 TIME3 
Coefficient a pis Rib 017 Riß ßl9 Rio 021 ß22 

Bund 98.144 0.134 -0.401 9.895 16.737 . 185.08 

BTP 98.471 0.342 -0.772 -0.703 16.471 70.187 

Gilt 97.224 0.151 0.819 -0.278 12.233 -11.485 240.89 -700.84 

T-Bond 93.853 0.214 2.134 -2.552 10.087 46.468 -321.26 789.73 

Table 8.5b, Regression Results for the Remaining Independent Variables for Four Fixed 
Income Options. 

As with the stock index options, there is concern is that the intercept, a, is 

statistically significantly lower that the result of 100 that we expected. In this case, the 

most likely explanation is our method for determining the at-the-money volatility. For 

all four markets, the ATMVOL variable has a significantly positive beta coefficient. 

This would suggest that the simple linear interpolation method is underestimating the 

at-the-money volatility. However, when we applied the Shimko quadratic approach, 

the results were even worse. This suggests that further research may be warranted to 

determine a better estimate of at-the-money volatility when the observed strike prices 

are discrete. Another possible reason for this result could be that critical variables 

have been omitted, causing the intercept (especially for the US T-Bond) to differ from 
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100. Later, we will examine this issue and demonstrate that this is the likely 

explanation for the US T-Bond option market. Nevertheless, the error we observe for 

the intercepts seems to be similar across the four markets and given that we want to 

understand the relative contributions of the other independent variables in the 

regression, we will demonstrate latter that this problem is of little significance. 

As was observed for the four stock index options, the P15 is positive and of 

similar magnitude for all four bond options. As with the stock index options, this 

variable suggests that the smile shapes resemble an inverted 'J' shape (see Figure 

7.1 lb). Therefore, some sort of interaction is also occurring between the skewness and 

kurtosis, which is being captured by the STRIKE3 variable. Again, this may suggest 

that further higher order strike price effects may be occurring. 

The impacts of the pure shock dummy variables are mixed. There appears to 

be little effect of the 1987 crash on the volatility of fixed income options. The only 

significant impact was for the GILT options. The impacts of the market specific 

shocks are not consistent. Overall, they tend to reduce the overall level of the 

standardised implied volatilities. Once again, this could be due to the realisation of an 

expected shock reducing future expectations of variance. Nevertheless, this impact is 

not consistent. 

As was stated above, we find that for all four markets the ATMVOL variable 

is positive and statistically significant. As we discussed this does cause some concern 

that this variable has been mis-estimated. Even so, when other methods were used to 

estimate the at-the-money volatility, even more significant results were obtained. 

Therefore, we must accept that some errors in estimation exist. However, it would 

appear that the effects are similar for all four markets. As before, since our aim is to 

understand the relative effects across the variables, we maintain that our 
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that for the Japanese Yen the intercept has the highest statistically significantly 

divergence from 100. Once again, there are a number of possible explanations for this 

problem. However, we now have a clearer idea as to why the intercepts are 

statistically different from 100. If one examines the coefficient for the ATMVOL 

variable, this coefficient is negative for the first time and of a substantial magnitude. 

As was discussed previously, this may suggest that our method of estimating the level 

of the at-the-money volatility is introducing errors. In this instance, it appears that 

have over-estimated the implied volatility and this has led to both a negative 

coefficient for 019 and for the first time to intercepts above 100. In all the previous 

results, the relationship was reversed. Therefore, it appears that the problem in our 

analysis may be caused by our method of estimating the at-the-money volatility. 

Variables Intercept STRIKE3 CRASH SHOCKI SHOCK2 ATMVOL TIME TIME2 TIME3 
Coefficient a P15 016 P17 1318 1319 020 021 P22 

D-Mark 101.67 -0.089 0.522 0.532 -0.714 -13.729 

Pound 100.21 0.032 0.517 -0.283 -10.127 19.445 -223.22 651.22 

Yen 103.29 -0.169 3.956 -4.215 1.664 -19.256 -3.350 

S-Franc 102.40 -0.068 1.878 -0.599 -2.566 -25.721 48.242 . 285.33 

Table 8.5c, Regression Results for the Remaining Independent Variables for Four Foreign 
Exchange Options. 

Nevertheless, this will only be a problem if it affects the overall results (apart 

from the intercept and the (319 coefficient for the ATMVOL variable). We will 

demonstrate that this error does not substantially impact the coefficients for the other 

variables in the analysis or the explanatory power of the model. Therefore it is 

sufficient to acknowledge problems exist with our method of estimating the at-the- 

money volatility and continue our line of investigation. In the next three sections we 

show how robust our regression models are once the possible errors have been 

corrected for. 
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Regarding the higher order strike price variable, STRIKE3, the regression 

results diverge compare to those obtained from either the stock index or bond 

markets. The regression coefficient for this variable, ß15, is positive for only one 

market, British Pound and of a minuscule magnitude. For the other three foreign 

exchange options, the coefficient is negative and also of a relatively small magnitude. 

Therefore, the interaction that is occurring between the skewness and kurtosis takes an 

inverse form to what we observed for the other asset classes. 

The impacts of the pure shock dummy variables are mixed. There appears to 

be some consistent effect from the 1987 crash on the volatility of foreign exchange 

options. The positive coefficients are somewhat difficult to interpret as we are 

modelling with a standardised volatility index and the strike price effects have been 

captured with previously included variables. We would expect these variables to be 

insignificant in our model unless these shocks had a more subtle impact on implied 

volatilities beyond the strike price effects. This possibly served to increase the overall 

levels of implied volatilities. As with the fixed income options, the impacts of the 

market specific shocks add little to the explanatory power of the model. Only two of 

the first period shocks (SHOCK! ) has an impact on volatility: they reduce it. Once 

again, this could be due to the realisation of an expected shock reducing future 

expectations of variance. Nevertheless, this impact is not consistent for all markets or 

for both shocks, nor would one expect the impacts to be of the same sign or 

magnitude as each shock was market specific. 

Finally, the analysis of the coefficients for the ATMVOL variable was 

discussed above. For the foreign exchange options, this effect has a significantly 

negative impact for all four markets. As we suggested this is the most probable reason 
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for the intercept having a level statistically different from 100. We will examine the 

impacts of this potential error in the next three sections. 

Finally, the impacts of the three TIME variables are substantially different 

compared to the analysis for the two previous asset classes. The first TIME variable is 

only significant for three of the four markets and positive only for the British Pound 

and the Swiss Franc. Again, this might suggest that some premium erosion effect 

could be occurring or that some errors in the expiration date are occurring. However, 

this is unlikely since all four markets have exactly the same expiration date. If some 

negative exponential of time effect is occurring, it is not clear why this result is not 

found for all four markets. For the stock index options some negative exponential of 

time was clearly suggested, while for the foreign exchange options such a pattern is 

only observed for the British Pound and the Swiss Franc. In addition, only these two 

markets have the second order time variable, TIME2, that is statistically significant 

and negative. Finally, only one of the foreign exchange options (British Pound) has a 

significant result for the third time variable, TIME3. Again, this is of the correct sign 

(positive) and magnitude which is consistent with the findings for the four stock index 

options and the US T-Bond option. 

From this initial analysis, we can draw some preliminary conclusions. The fact 

that the intercepts are statistically significantly different from 100 and that the ß 

coefficient of the ATMVOL is non-zero may indicate we have problems with our 

regressions. Furthermore, from Tables 8.2a, 8.2b and 8.2c, the Durbin-Watson 

statistics indicated that problems with serial correlations in the residuals exist. 
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8.6 TESTING THE ROBUSTNESS OF THE REGRESSION MODELS 

The results presented seem to achieve our primary objective of understanding 

the dynamics of the implied volatility process for all twelve markets. We still have to 

examine however, how robust these models are. 

Classical regression theory states that, a number of conditions can bias a 

regression model: 

1) Omission of Critical Variables 

2) The use of a prediction from a confidence interval based on 

the assumption that the conditional distributions of the 

independent variables are normal and have equal variances. 

This is known as a homoscedasticity condition. 

3) The residuals of the regression are IID with an N(0,1) distribution. 

and the residuals are not correlated across time. 

4) Independent variables are highly correlated and therefore 

redundant to the model. If this is the case, the true effect 

of each variable on the regression model will not be clear. 

This is the classic problem of Multi-collinearity. 

Each of these conditions could lead to biased regression results. This would 

imply that the coefficients for our models could be incorrect and that the standard 

errors much higher than is reported. Both results could mean that our analysis can not 

be used unless we can correct for these problems and in doing so find that our results 

are not substantially altered. 
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Testing for An Exclusion of Critical Variables Problem 

Of these problems, probably the most difficult to deal with is the exclusion of 

critical variables. It is extremely difficult to know what variables have been excluded. 

One obvious variable for inclusion could be the level of the underlying futures price. 

In our research, we did include the futures price as an independent variable. When this 

was done, we found that it did fit into our models but with a barely significant slope 

coefficient. Furthermore, the actual coefficients were not consistent. They tended to 

be negative for the stock index options but varied for the other markets. By 

introducing this variable, we also experienced problems in modelling the time varying 

nature of the residuals. 

This is due to the fact that we are (essentially) running a panel regression 

through time. The panel is the individual (standardised) implied volatilities across 

strike prices at single points in time. Due to the nature of the data, we do not either 

have the same number of observations for each date nor will the same options be 

available in the subsequent period. Furthermore, by sorting the option data (described 

previously) in order to examine the time series behaviour of a particular option 

contract (with the same strike price), we are splitting the panel into individual option 

contracts. Each one will have the same series of futures prices as the following option 

contract (with the next highest strike price). This means that the same series of futures 

prices will appear for each option contract. The time series analysis of the residuals 

including this repeating futures price series will greatly complicate our analysis of the 

serial correlations. For this reason, we excluded the futures price series. 

Likewise, we examined whether the inclusion of interest rates was relevant for 

modelling the implied volatility dynamics. We found that the contribution was 

marginal and only relevant for the fixed income markets and foreign exchange. For 
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the stock index option markets, we found no significant contribution. This is 

consistent with the findings of Scott (1994) that there is no significant correlation 

between interest rates and the unconditional volatility of the S&P 500 futures. 

Therefore, for the same reasons are valid as for the exclusion of the futures prices, and 

we chose to omit interest rates from our model. 

However, it is not obvious which other variables could be included. It is 

apparent that shocks do play a role in the dynamics of implied volatility processes. 

However, it is not clear that we have chosen only the relevant events. Perhaps, we 

missed period specific events. We have chosen to address these events (and perhaps 

other omitted variables) by rerunning our ordinary least squares regression including 

all the individual contracts from 1985 to 1996 as dummy variables. If any period 

specific effect exists (from whatever source), this would now appear in our regression. 

These regressions were run for all three asset classes (and all twelve markets) 

and appear in Table 8.6a for the stock index options, Table 8.6b for the fixed income 

options and in Table 8.6c for the foreign exchange options. 

In these tables, we have only included the coefficients for the variables 

examined previously (and excluded the coefficients for each of the 48 dummy 

variables). The rationale for this is three-fold: firstly including the coefficients for all 

the included (contract) variables would dramatically increase the space required to 

present the results. Secondly, we found that hardly any of the contract dummy 

variables added significant explanatory power to the models. Finally, our principle 

interest is to assess the impacts from the possible exclusion of critical variables on the 

previously included independent variables. If the inclusion of these variables does not 

substantively alter our previous results, we can conclude that even while biases may 

exist in our initial regression, they will not alter our general conclusions. 
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Comparisons between Tables 8.6a, 8.6b and 8.6c to Tables 8.2a, 8.2b and 8.2c 

show that there has been no appreciable difference in the initial results. In all cases 

this had led to an improvement in the adjusted R-squared statistics for the models, 

however, this improvement is minuscule and given the penalty imposed by the 

inclusion of so many new variables, this addition has questionable merit. Other 

changes in the regression results include different intercept values and changes in the 

size and sign of the ATMVOL coefficient and of the impact of the market shock 

dummy variables. As was stated previously, the intercept and ATMVOL coefficient 

were most probably due to the method in which we estimated the at-the-money 

implied volatility. It is interesting to note that for the stock index options (where we 

were most concerned), the sign of the ATMVOL coefficient has now turned 

significantly negative (where before it was insignificant). Furthermore, the t-statistics 

of this variable has for the most part become much smaller in magnitude. Also the 

CRASH coefficient has now become much larger for the S&P and the FTSE. For the 

FTSE, the intercept is now not statistically different from 100 and the Nikkei has an 

intercept that is above 100. The inclusion of the additional contract variables has 

reduced the intercept results for the S&P and DAX. 

Apart from these changes, almost none of the coefficients for the other 

variables in the model have changed appreciably. All the strike price dependent 

variables that we are examining in this research retain essentially the same coefficient 

values and standard errors. 

A similar result is found for the fixed income options markets. In Table 8.6b, 

the only significant changes in the regression results are for the intercept value and the 

coefficients for the non-strike price dependent variables. It is interesting to note that 

the relatively low intercept value of the US T-Bond has now risen to 99.076 from the 
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previous 93.853 and is no longer statistically different from 100. Furthermore, the 

ATMVOL coefficient has now become extremely negative. Thus, it would appear that 

if some exclusion of critical variables has occurred, the sole impact is on variables 

which are not of primary interest to understanding the dynamics of the strike price 

effect. As with the stock index options, the coefficient values for all the strike price 

dependent variables are essentially unchanged. Furthermore, the addition of all these 

new variables has once again had a minimal effect on improving the adjusted R- 

squared of the model. While we have not reported the Durbin-Watson statistics for 

these regressions, they were almost identical to those found in the initial OLS 

analysis. 

In Table 8.6c, we find similar results for the foreign exchange options. The 

only significant changes that have occurred by including the CONTRACT dummy 

variables are a general reduction in the intercept of the regression and changes in 

those variables that are not strike price dependent. The only exceptions are for the 

Deutsche Mark and the British Pound, which now have higher intercept coefficients. 

The CRASH variable is now relatively more significant for three of the four 

currencies and some of the market specific shock variables now have a different 

(although small) impact. However, as with the previous asset classes, this inclusion of 

variables has failed to change the coefficients or standard errors of the strike related 

variables in a substantial manner. 

Given that the inclusion of the CONTRACT variables has not appreciably 

affected the coefficients of the strike-related variables in our analysis, we are 

confident that our model is fairly robust to the exclusion of critical variables problem. 

Furthermore, we are less concerned about the potential bias of our method of 

estimating the at-the-money volatility. The inclusion of the new variables only served 
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to modify the intercept and ATMVOL coefficients (and the other non-strike 

dependent variables). Since the coefficient of the ATMVOL experienced dramatic 

changes (often assuming an opposite sign), while leaving the coefficients for all the 

strike dependent variables essentially unchanged, we conclude that the errors in this 

variable may indeed be random and are in any case, inconsequential to our 

conclusions. 

Correction for Heteroscedasticity in the Regressions 

Still, we may face problems if the residuals for the regression display 

heteroscedasticity. To examine this, we plotted the residuals of the simple OLS 

regression as a function of the standardised strike price. We observed a systematic 

'dumb-bell' shape to the errors. Thus, the further we went away from the at-the-money 

level, the more extreme the variation of the errors became. To address this problem, 

we applied a weighted least squares regression approach to all twelve markets. This 

approach followed the lines of Neter, Wasserman & Kutner (1985) and Kvalseth 

(1985). 

The steps taken in this analysis were as follows. First we saved all the 

residuals from the original OLS regressions. Then, we merged the original data file 

with the absolute value of these residuals. A second OLS regression was run of the 

form: 

AR =a+ STRIKE " (ß, + ß2 " TIME + P3. TIME2 +A" CRASH + ß, " SHOCKI + ß6 " SHOCK2 + ß, " ATMVOL) 

+ STRIKE2 " (ß8 + ßy " TIME + ß, 
o " TIME2 + ß� " CRASH + ß12 " SHOCKI + ß, 

j " SHOCK2 + ß� " ATMVOL) 

+ ßs " STRIKE; + ß16 " CRASH +A7 " SHOCKI +ß1e " SHOCK2 + ß1g " ATMVOL+ ßm " TIME + ß21 " TIME2 

+ß22 "TIME3+e 

(8.7) 

This is essentially the same regression model as appeared in equation 8.2. The 

only difference is that the standardised volatility (VSI) has been replaced by the 
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absolute value of the residual from that first regression (AR). When this regression 

was run, the predicted value of the regression was saved. A weight was constructed 

using the following form: 

WEIGHT =1 / MAX (1, PREDICTED) (8.8) 

This standard weighting scheme was chosen to reduce the problem of the 

heteroscedasticity observed in the residuals. The rationale using the maximum of 1 

and the predicted value was to avoid weights that would assume enormous values 

when the predicted value was close to zero and to avoid any potential problems with 

negative weights. This approach is common in the literature on weighted least squares 

regression techniques (see previous references). 

With the weights determined for each of the twelve markets, the weighted 

least squares analysis was run using STATISTICA for Windows (version 5.0). [See 

STATISTICA (1995)]. The results for the twelve markets are again grouped by asset 

class and can be seen in Table 8.7a for the four stock index options markets, Table 

8.7b for the four fixed income options markets and Table 8.7c for the four foreign 

exchange options markets. 

As expected, the weighted least squares results did diverge from those 

obtained from the OLS approach. One would expect that the weighted least squares to 

experience a significant decrease in the explanatory power of the model. However, we 

find that the weighted least squares approach has only marginally reduced the 

adjusted R-squared of the models. If we compare Table 8.7a with Table 8.2a, we find 

that the weighted least squares regression has led to an increase in the magnitude of 

the regression coefficients for almost all the strike related variables of interest. 

Furthermore, in many cases, the results are even more statistically significant (greater 

absolute t-statistics). At the very least, we can say that the effects we have identified 
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remain in our model even after corrections have been made for heteroscedasticity. In 

fact, they become even more pronounced and significant when such a correction has 

been made. 

Similar conclusions can be drawn for the fixed income options markets (by 

comparisons of Table 8.7b to Table 8.2b) and for the foreign exchange options 

markets (by comparisons of Table 8.7c to Table 8.7c). While for the fixed income 

options markets we do not observe the increase in the significance of the coefficients 

for the independent variables in the regression, we can see that in most cases there is 

no significant difference in the obtained coefficient values (significant in the sense of 

a t-test for the differences in the coefficient values). This result can also be found for 

the four foreign exchange options. 

Thus, we conclude that the original OLS regression does experience problems 

of heteroscedasticity. However, once this problem has been corrected, we find no 

appreciable difference in the nature of our regression model. In fact, the model has 

been enhanced for many markets. 

Corrections for Serial Correlations in the Residuals of the Regressions 

There is a third major problem which could bias our regression results and 

lead to inappropriate conclusions. The Durbin-Watson statistics for the original OLS 

regressions indicate that we have significant levels of serial correlations in the 

residuals of most of our models (the DAX model did not experience these problems). 

To address this problem, we selected one market from each of the asset 

classes, which displayed the most extreme problem with serial correlations in the 

residuals. These selected markets were Nikkei for the stock index options, Bund for 

the fixed income options, and the Japanese Yen for the foreign exchange options. The 
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approach chosen to solve the problem of serial correlations in the residuals is the 

Generalised Differences approach to Generalised Least Squares (GLS). 

To run this analysis, we determined new dependent and independent variables 

by applying a transformation of the following form: 

VSIG =VSIt -p "VSI, _, 
(8.9a) 

(for the dependent variable and) 

X G, = Xi. r - P, X i. r-t (8.9b) 

(for N dependent variables) 

In this equation, the term p refers to the autocorrelation coefficient of the 

previous OLS regression residual terms. For the Nikkei, the serial correlation in the 

residuals was 0.617015. For the Bund, the serial correlation in the residuals was 

0.555563 and for the Japanese Yen, the serial correlation in the residuals was 

0.331315. With these inputs, we applied the above equations 8.9a and 8.9b to 

transform all the variables in the analysis. Once this was completed, we reran the OLS 

regression. The results for these three markets can be seen in Table 8.8. 

It is not surprising that the intercept has significantly dropped as we are now 

dealing with generalised differences. This implies that nothing can be gained by 

comparisons of these coefficients to those obtained in Tables 8.2a, 8.2b and 8.2c for 

the relevant markets. It is of interest to us how much we have lost in explanatory 

power for our models and whether the coefficients (and standard errors) of the 

independent variables in our models have substantively changed. For the Nikkei, the 

adjusted R-squared has certainly been reduced. However, the drop is only from 

0.9319 in the OLS result to 0.8490 for the GLS result. Furthermore, the reported 

Durbin-Watson statistic in Table 8.8 for the GLS regression indicates that the problem 
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of serial correlations has been corrected (at 1.80624). Finally, it is apparent that some 

changes in the coefficients of the independent variables have occurred. Nevertheless, 

for most of the strike-related variables this is not a statistically significant difference 

(from a t-test for differences in the coefficient results). For the differences that are 

significant, we find that for the first order strike price effect, the impacts of the first 

shock on the strike (STRIKE*SHOCKI) has a reduced impact. In addition, the 

interaction between the skewness and the at-the-money implied volatility has been 

reduced (STRIKE*ATMVOL). For the second order strike price effects, there were 

more significant changes. Notably, the pure second order strike price effect 

(STRIKE2) has increased and is more significant. The time interactions (both first and 

second order) are now more pronounced. As with the first order strike price effect, the 

first shock now has a somewhat lessened impact. Finally, there appears to be a more 

important impact of the at-the-money volatility level on the degree of curvature in the 

smile (STRIKE2*ATMVOL). Even though these changes are significant, what we are 

interested in is to capture the general dynamics of the model. For almost all the strike 

related variables in our model, the signs and relative magnitudes of the impacts are 

similar once the potential biases from the serial correlations in the residuals have been 

corrected for. This is a satisfactory result. 

For the Bund GLS regression, we obtain similar results. The adjusted R- 

squared statistic has fallen from the OLS result of 0.8098 to 0.7509. However, the 

Durbin-Watson statistic indicates the problem of serial correlation has been corrected 

(with a value of 1.844168). As with the Nikkei, there are some changes in the 

coefficients of the strike-related variables and in some instances these changes are 

significant. However, the signs and the relative magnitudes of the coefficients remain 

at similar levels. The most notable change in the strike-related variable coefficients 
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can be observed for the STRIKE2*ATMVOL and the STRIKE*ATMVOL variables, 

which are now more statistically significant (negative). It is interesting to note that the 

second order strike price effect (relative to the at-the-money volatility) was not even 

significant for the OLS model. Otherwise, the two models yield similar results. The 

only substantial changes have occurred for the non-strike price related variables, 

which (a priori) we would have expected to be insignificant. 

Finally, for the Japanese Yen, the GLS regression also suggests that our model 

is extremely robust. The adjusted R-squared statistic has only dropped from 0.8634 

for the OLS model to 0.8263 for the GLS model (with a now healthy Durbin-Watson 

statistic of 1.950257). As with the two previous examples, while some changes have 

occurred in the coefficients (and standard errors) of the independent variables, the 

sign and magnitude of the results are even more similar for both approaches. Some 

notable changes can be observed for the STRIKE2*TIME and STRIKE2*TIME2 

variables which have reduced effects. For all the second order strike price interactions 

with shocks, the impacts are more pronounced. The impact of the at-the-money 

implied volatility has a reduced strike price effect and is now more significant on its 

own. As with the two previous markets, once we have corrected for the serial 

correlation problem in the residuals, we find some differences between the GLS and 

OLS models. Even so, the critical independent variables have a similar sign and 

magnitude of impact on the estimation of the standardised implied volatilities. 

Assessing Multi-Collinearity Problems in the Regressions 

Earlier, we indicated that four conditions exist that can bias a regression 

model. At this point, we have dealt with the first three (omission of critical variables, 

heteroscedasticity and serial correlation in the residuals). Now we will examine 
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potential problems of multi-collinearity. It is clear from our research design, that 

many of the variables in the regression are highly correlated. According to Wonnacott 

and Wonnacott (1977) this can be a tricky problem. They state: 

"To keep multicollinearity to a minimum, we should design an experiment or 

collect data that has as little relation as possible among the regressors. In other words, 

we try to get our regressors as unrelated as possible; but having done this, we then 

must live with them. Multicollinearity should not make us simply omit a regressor 

that we believe to be important, since this omission would introduce bias. " (page 382). 

This potential problem of multicollinearity was partially addressed by the 

choice of a step-wise selection of variables in our OLS to minimise this problem. This 

approach would select variables in the order of their explanatory contribution to the 

model. If variables are highly correlated, then this approach will minimise the 

problem of multicollinearity by only including new variables in the model if they can 

explain variance not explained by previously included variables. Given the 

significance of many of the included variables and the fact that they allow us to draw 

useful (and consistent) economic interpretations, we feel that the danger of risking 

multicollinearity is more than outweighed by the danger of losing information by 

omitting important variables. 

One potential approach that could be taken at this point would be to combine 

all the approaches to correct simultaneously for the omission of variables problem 

(including contract dummy variables), heteroscedasticity, serial correlations and 

multicollinearity. This was not possible due to the constraints imposed by the size of 

the data sets we were working with. Simply said, our computers did not have 

sufficient capacity to run such an analysis. However, given that for each and every 

test of the simple analysis no substantive changes were found for the independent 
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variables of interest, we surmise that even if such an all encompassing model were run 

our results would not be significantly different. 

At this point and after rigorous testing of the regression models under 

investigation, we can conclude that the results we are obtaining will remain 

substantively the same even when biases in the regression models are corrected for. 

We conclude that we have demonstrated that these models are extremely robust in 

measuring the true relationships between the implied volatility process and the 

independent variables in our model. Given the models are so robust, it will make little 

difference which approach we use to present our further results. Therefore, to keep 

things simple (and given constraints imposed by the size of our database and the 

capacity of our statistical programme), we will use the results from the OLS 

regression for the next two sections of this Chapter. We recognise that the coefficients 

and standard errors of the estimates will be biased, however, the general tendencies 

will not change as these biases are corrected for. 

Testing the Regression Models for Different Time Periods 

One reason for running the regressions with all contracts included as dummy 

variables (results in Tables 8.6a, 8.6b and 8.6c) was to assess if the regression results 

would hold across time. If the strike price effects were significantly different over 

time, this effect should be indicated by significant coefficients for the contract dummy 

variables and important changes in the coefficients of the key variables in our 

regressions. What we observed was that few of the contract dummy variables were 

statistically significant and there appeared to be minor impacts on changes in the 

coefficients of the key variables of interest to this research. Nevertheless, it is 
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important to assess if the overall conclusions we have drawn from the regression 

results would hold if the regressions were run for sub-periods of the data set. 

To test the stability of the regression equations, the observations for each of 

the twelve markets was split into two sub-periods. These periods correspond to the 

data divisions used in Chapter Seven for the analysis of the implied volatility surfaces 

and can be found in Table 7.5. 

With these divided sets of observations, we re-ran the OLS regression using 

equation 8.2. The only difference in these sets of regressions is that the inclusion of 

the Crash and Shock related variables would depend on whether this event occurred 

within the period of the data sample. If the data sample included this event, it was 

included in the regression and was ignored if the event occurred either before or after 

the period of analysis. 

The results for the regressions estimated solely using the first portion of the 

available observations can be seen in Table 8.9a for the four Stock Index options, 

Table 8.9b for the four Fixed Income options and finally, Table 8.9c for the four 

Foreign Exchange options. The results for the second period can be seen in Tables 

8.10a, 8.10b and 8.10c. 

All of these tables should be compared to one another (for the same underlying 

markets) and to Tables 8.2a, 8.2b and 8.2c. First, let us examine the three regression 

results for the Stock Index options. In the regressions for the split periods, we find that 

the problem of, the intercept being significantly different from 100 has now been 

corrected for more than half of the regression equations. This implies that the errors in 

variables (primarily the manner the at-the-money implied volatility was estimated) is 

no longer relevant. This is particularly evident in the second period for the S&P 500. 

One will also observe that a number of the shock and crash variables are no longer 
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significant in Tables 8.9a and 8.1Oa. This is because these events were not contained 

within both of the periods and were therefore excluded from the analysis. 

The importance of this analysis is to assess if one had run the regression solely 

for the first period of analysis how comparable would the regression results be relative 

to the entire period of analysis. Consider first the S&P 500. In the first period 

regression (Table 8.9a), the coefficients are remarkably similar to those observed for 

the entire period (Table 8.2a). For most of the first and second order strike price 

variables, the signs and magnitudes of the regression coefficients are similar. In most 

cases, these are not statistically different (using a T-test). There are some differences 

in the relationship between the first order strike price effect and the level of the at-the- 

money implied volatility, and the second order impact of time on the kurtosis 

(STRIKE 2*TIME 2), both of which are more extreme in the first period compared to 

the overall period. It also appears that errors in the estimation of the at-the-money 

implied volatilities are important for the first period but not overall. While it is clear 

that we have lost some explanatory power in the first period, we still have an 

acceptable R squared statistic of 0.8942. 

While it is comforting that the regression would be similar for both the first 

period and overall (for the S&P 500), the true acid test is to compare the regression 

results for the first period of analysis to the second period (outside of sample). As was 

indicated throughout this Chapter, we are interested in understanding the strike price 

effects. Therefore, of relevance, is a comparison of the first and second strike price 

effects from the regression model from the first period with the actual coefficients for 

the strike price effects in the second period. At first glance, there appears to be 

significant differences between the coefficient for the first order strike price effect in 

the first period and in the second period. In the first period, the coefficient for the first 
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order strike price effect (STRIKE) was +4.444 and for the second period, the 

coefficient was -10.2432 (from Tables 8.9a and 8.10a). However, this is an incorrect 

interpretation. As was indicated previously, the overall first-order strike price effect 

includes a number of variables. A truer comparison is if one includes both the pure 

strike price effects and the coefficients for the dummy variables for shocks (and the 

1987 stock market crash). If the reader reviews equation 8.3 and includes the pure 

strike effect and the effect from the 1987 crash (for the first period), the estimate for 

the first order strike price effect is -8.8030. This is much closer to the actual slope 

coefficient of -10.2432 observed in the second period. Likewise, the other first-order 

strike price effects relative to time are fairly similar. While there may be some 

differences in the coefficients observed, the relative signs and magnitudes are similar. 

The comparisons of the overall first order strike price effect for the first period with 

the second period for all twelve markets appears in Table 8.11. 

OLS Regression First Period OLS Regression Second Period 
Underlying Asset First Order Strike Price Effect First Order Strike Price Effect 

(Overall Effect: ßl+04+05+06) (Actual Effect ßl) 

S&P 500 Futures -8.8030 -10.2432 
FTSE Futures -6.8200 -7.7698 
Nikkei 225 Futures -2.7584 -4.7400 
DAX Futures +1.1748 -10.4075 

Bund Futures +3.9193 +4.8400 
BTP Futures -3.1144 -2.3450 
Gilt Futures -1.2300 +0.5950 
US T-Bond Futures -2.4910 -2.6050 

Deutsche Mark /US Dollar +1.7420 +0.5693 
British Pound / US Dollar -1.9280 -1.4330 
Japanese Yen / US Dollar +0.8820 +2.5850 
Swiss Franc / US Dollar +0.4590 +0.5448 

Table 8.11, Comparisons of the First Order Strike Price Effect for the First Period 
and the Actual First Order Strike Price Effect for the Second Period. 
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We observe that in most cases, the predicted first order strike price effect in 

the second period is of the same sign and relative magnitude as the results obtained 

for the first period. Significant differences exist for the DAX and Gilt options. This 

seeming aberration is explained by a change in the relationship between the at-the- 

money implied volatility and the first order strike price (STRIKE*ATMVOL). For 

both these markets, a change in the level of expected variance had a significant effect 

on the first order strike price effect in the second period. Nevertheless, the absolute 

impact on the Gilt is slight. For the DAX, this change can be considered more 

important. However, the first period of analysis only had 928 observations. It is 

probable that with a longer period of analysis, a better result would be obtained. 

Nevertheless, in ten of the twelve markets, the first order strike price effect estimated 

in the first period would have provided a reasonable estimate of the first order strike 

price effect in the second period. 

For the second order strike price effect (for the S&P 500), at first glance it 

appears that less stability exists in the two periods. However, it appears that most of 

the coefficients of the variables have the same sign and relatively similar magnitudes. 

Two exceptions are for the pure second order strike variable (STRIKE2) and the 

interaction for this variable with the at-the-money implied volatility. In the first period 

there is both a reduced second order strike price effect and ATM implied volatility 

interaction effect. The larger coefficients in the second period (but of the same sign) 

could be offsetting each other to some degree. Again, we will compare the second 

order strike price effect estimated using the first portion of the observations to the 

actual second order strike price effect observed in the latter period. This can be seen 

in Table 8.12. Again, the estimated second order strike price effect from the first 
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period uses the pure independent variable (STRIKE2) and all the dummy variables 

with the second order strike price effect relative to shocks. The latter period second 

order strike price effect is simply the pure independent variable. 

OLS Regression First Period OLS Regression Second Period 
Underlying Asset Second Order Strike Price Effect Second Order Strike Price Effect 

(Overall Effect: ß8+(311+(312+(313) (Actual Effect (38) 

S&P 500 Futures +4.6300 +7.6897 
FTSE Futures +10.4200 +6.2181 
Nikkei 225 Futures +4.3874 +4.5970 
DAX Futures +6.9221 +5.9285 

Bund Futures +5.2010 +7.5620 
BTP Futures +5.7600 +5.9090 
Gilt Futures +8.8670 +6.6030 
US T-Bond Futures +5.9690 +5.1710 

Deutsche Mark /US Dollar +6.7790 +7.0862 
British Pound / US Dollar +6.8850 +6.4710 
Japanese Yen / US Dollar +6.2270 +6.0860 
Swiss Franc / US Dollar +5.8710 +7.6436 

Table 8.12, Comparisons of the Second Order Strike Price Effect for the First Period 
and the Actual Second Order Strike Price Effect for the Second Period. 

In this instance, we find much greater stability between the estimated second 

order strike price effect from the first period and the realised second order strike price 

effect observed in the latter period. In many instances, the predicted and realised 

results are not statistically difference (using a T-test for coefficients). Nevertheless 

for all twelve markets, we find that the sign and relative order of magnitude is stable 

over both periods. Where differences in magnitude are found (for the S&P, the Swiss 

Franc and Bund), this divergence appears to be related to a change in the relationship 

between the second order strike price effect and the at-the-money implied volatility 

(STRIKE 2*ATMVOL). In all instances, a more negative relationship was observed in 

the second period. Nevertheless, for nine of the twelve markets, the prediction in the 
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predict strike price effects well in a latter period. From this analysis, we conclude that 

the regression results display stability over time. By comparison of OLS results for 

three time periods and finding similar coefficients for the variables in the regressions, 

we conclude the factors influencing the implied volatility surfaces appear to be stable 

since the 1987 stock market crash. Furthermore, given that the regression results 

appear to be similar in the first and second period, it is not unreasonable to expect that 

using the regression equation obtained in the first period to predict the implied 

volatility surface in the second period would be effective. This is an important result 

and provides the clearest evidence that the results indicate regularities in the dynamics 

of the implied volatility surfaces and are not simply over-fitting our data set within 

sample. 

Now that we have successfully modelled each of the twelve individual markets 

under analysis, tested the results for biases in the regressions and demonstrated that 

the models display consistent regularities over time, we now turn our attention to 

whether consistencies exist in the dynamics of the implied volatility process for the 

same asset class. For example, we will assess if the implied volatility patterns for each 

stock index option market have similar dynamics compared with all stock index 

options markets (and for fixed income and foreign exchange options markets as well). 

Finally, we will examine whether consistencies exist across all options markets. 

8.7 COMPARISONS OF IMPLIED VOLATILTY MODELS WITHIN ASSET 

CLASSES 

At this point we have gained important insights into the dynamics of the 

implied volatility process for twelve individual markets. For this analysis, (for each 

asset class) we merged the four individual options markets data files into one. This 
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yielded three new files we will refer to as ALLSTOCKS, ALLBONDS and ALLFX. 

With these new files, we ran another regression of the form: 

VSI =a+ STRIKE " (ß, + ß2 " TIME + ß3 " TIME2 +P4. CRASH + +ß ," SHOCKI + ß6 SHOCK2 + ß, " ATMVOL) 

+ STRIKE2 " (ß8 + ß9 " TIME + ß, o -TIME' +P,, " CRASH + P, 2 " SHOCKI + ß13 " SHOCK2 +A4 " ATMVOL) 

+ AS STRIKE' + ß16 " CRASH + A7 " SHOCKI + ß1e " SHOCK2 + A9 " ATMVOL+ ßm TIME + 1321 " TIME2 
+ ßu TIME3 + ß23 " MARKET! + ß, " MARKETI * STRIKE + ßu " MARKET! * STRIKE2 + ß16 " MARKET2 + 
ß27 " MARKET 2* STRIKE + 028 " MARKET 2* STRIKE2 + ß, " MARKET3 + ß, 

o " MARKET3 * STRIKE + 
P3, " MARKET3 * STRIKE2 + 1332 " MARKET4 + ß� " MARKET4 * STRIKE + ß� " MARKET4 * STRIKE2+r 

(8.10) 

This is essentially the same regression model that appeared in equation 8.2 for 

each of the individual markets. The difference for this model is that we have included 

dummy variables for each of the four individual markets contained within this asset 

class. These dummy variables (MARKETI, MARKET2, MARKET3 and 

MARKET4) correspond to S&P, FTSE, Nikkei and DAX for the stock index options, 

US T-Bond, Gilt, BTP and Bund for the fixed income options and British Pound, 

Japanese Yen, Swiss Franc and Deutsche Mark for the foreign exchange options. For 

each of these market specific variables, we have also constructed first and second 

order strike price variables to examine how the strike price effects differ across the 

markets. 

With these additional variables, the OLS regression was rerun for all three 

asset classes and the results can be seen in Table 8.9a for the stock index options, 

Table 8.9b for the fixed income options and in Table 8.9c for the foreign exchange 

options. For the sake of comparisons, the OLS regression results (from Tables 8.2a, 

8.2b and 8.2c) have been included in these tables. 

Comparisons of Models For Stock Index Options 

In the case of the stock index options, we are interested in the general 

tendencies that are consistent across all stock index options markets. In Table 8.9a, it 
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is clear that the coefficients for the overall stock index options market data file 

(ALLSTOCKS) and each individual stock index option market do vary. However, 

given that we are interested in general relationships, we will concentrate on those 

results where the sign of the coefficients (and the relative magnitude) for each 

independent variable are either similar or dissimilar. 

For example, for the first order strike price effects, we find that most of the 

STRIKE-related variables are consistently of the same sign and relative magnitude. 

However, the pure strike price effect varies between the four markets. For the S&P 

and all stocks, the coefficient is positive. This suggests that controlling for all the 

other variables, the skew for these markets is positive. However, it is clear that the 

negative sign and magnitude of the combination of the first order strike price effect 

with the crash is causing an overall negative skew for both these markets. For the 

FTSE, DAX and Nikkei, the pure first order strike price effect is negative. For the 

DAX and Nikkei, this is hardly surprising given that both of these markets only had 

observations after the 1987 and 1989 stock market crashes. This suggests that the 

crashes had impacts for all stock index options markets. For the options markets 

observed both before and after these events the effect is found in the 

STRIKE*CRASH variable and in the STRIKE variable for those markets only 

observed after the crash. 

Caution has to be exercised because as with the previous analysis for the 

single markets, the overall strike price effects are the aggregate of what is now a 

number of variables. To gauge the overall first order strike price effect, one must 

compare the STRIKE related variables for all markets and include the STRIKE 

related variables associated with the dummy variables for each market. 
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Apart from this difference, the interaction variables that combine STRIKE and 

TIME are similar both between and within all stock index options (both first order and 

second order effect). The interpretation of these variables is that as the expiration of 

the option is approached the negative skew begins to flatten. In some ways, it is 

difficult to interpret the coefficients of these two variables between the markets. This 

is because they are a combined effect. Nevertheless, the signs and magnitudes of the 

effects are of a similar dimension. 

Regarding the second order strike price effect, again many of the coefficients 

for the stock index options (and the aggregated file) share the same sign and similar 

magnitudes. For all the markets, the pure kurtosis effect (STRIKE2) is positive and of 

a similar magnitude. The first order impact of STRIKE2 with TIME is negative for all 

the models. Again, this suggests that the curvature of the smiles becomes more 

extreme as expiration is approached. When considering the second order time effect 

ont he curvature, the impacts were not consistent across all the markets. Even so, the 

effect tends to be a positive one (for those markets where the impact was significant). 

One interesting result is the relationship between the expected kurtosis implied 

in the implied volatility patterns and the expected level of variance. We find that a 

significantly negative coefficient for this variable (STRIKE2*ATMVOL) exists. This 

suggests that the higher the level of the expected variance, the flatter the curve of the 

implied volatility pattern. 

Another significant result is that for all four stock index options and for the 

overall aggregate of all stock index options, there are significant third order strike 

price effects. The STRIKE3 variable is positive for all five models and roughly of the 

same order of magnitude. Thus, it would appear that this variable can be seen as the 

interaction' of the first and second order strike price effects (by definition, STRIKE3 
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=STRIKE* STRIKE2). We must now consider higher order terms to model the 

dynamics of stock index options implied volatility patterns correctly. Furthermore, 

even though the magnitude of these coefficients is small, the t-statistics are among the 

highest in the models (and can thus be interpreted as being among the most significant 

effects). This result suggests that we must be careful when applying a quadratic form 

to fit the implied volatility surface. As was mentioned previously, the quadratic 

approach that was suggested by Shimko (1991,1993) did not allow us to correctly 

assess the level of the at-the-money volatility. We found that a simple linear 

interpolation between the implied volatilities at adjacent strike prices was better. 

Furthermore, the implied volatility surfaces in the last Chapter suggested that a more 

complex dynamic existed. Given these results, it is not surprising a higher order strike 

price effect was uncovered. 

Apart from modelling the strike price effects, we find that a number of the 

other variables are important in understanding the nature of the implied volatility 

processes for stock index options. As was discussed previously many of these 

variables would not be expected to be significant in the regression model. The 

CRASH variable has now been eliminated from our model for all stock index options. 

While the two shock variables do appear, the interpretation of their coefficients is not 

obvious. Clearly, they are acting to correct for the fact that the intercept of the 

regression is not equal to 100. Roughly speaking one might state that the first shock 

tended to increase implied volatility levels and the second to reduce implied volatility 

levels. However, since all the volatilities have been standardised, this conclusion is 

somewhat difficult to justify. The ATMVOL variable is also not significant for all 

stock index options markets. Thus, it would appear that no systematic effect is 

appearing to suggest that we have mis-estimated this variable for these markets. 
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One interesting result is that the time effects appear to be fairly consistent 

across all the stock index option markets. While the first order effect is not significant 

for all stock index options markets, the second order effect is significantly negative 

and the third order effect significantly positive. As was suggested earlier, this could be 

capturing the negative exponential of time observed for two of the individual markets. 

Indeed this is fortunate result, because an argument can be made now that for a non- 

linear regression approach as the more appropriate approach to modelling implied 

volatility, given that we know that the time effect to be exponential in nature. 

Finally, in Table 8.9a, we are interested in assessing if the individual markets 

have strike price effects that are not captured by the model for all stock index options. 

The coefficients for the market dummy variables should be insignificant. However, 

for the S&P and Nikkei, they have a significantly positive result. Again, these results 

are difficult to interpret as our dependent variable has been indexed. Nevertheless, 

they could be indicating that the overall levels of the indexed implied volatilities are 

higher for these markets compared to the other stock index options. Furthermore, for 

three of the four stock index options, there are at least one significant strike price 

effect. The first order strike price effect for the S&P is significantly negative 

suggesting that this market displays more of a negative skew than the other markets. 

The FTSE, on the other hand, has a positive first order strike price effect: it is less 

negatively skewed compared to other stock index options. For the second order strike 

price effects, the S&P displays less curvature, and the FTSE and the DAX slightly 

more. 
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Implications of the Findings for Stock Index Options Smile Surfaces 

Thus, it would appear that when modelling individual stock index option 

markets, we observe different coefficients for the models that describe the implied 

volatility dynamics. The significance of the market related strike price variables 

suggests that somewhat different dynamics are occurring for the implied volatility 

patterns of the same asset class. Nevertheless, it is interesting to note that many of the 

variables in these models do influence all stock index options markets in similar ways. 

All stock index options display a negatively skewed first order strike price effect. This 

effect differs before and after the 1987 stock market crash. Thus, we conclude that the 

1987 stock market crash changed this effect for all stock index options. It is further 

interesting to note that the degree of the skewness lessens as the expiration of the 

option is approached for each of the four stock index options and across all the stock 

index options markets. 

The pure second and third order strike price effects are consistently of the 

same sign and of similar magnitude for each of the stock index options markets. Apart 

from the consistency in how the second shock effected the degree of the second order 

strike price effect, the major consistency between all the markets is the relationship of 

the second order strike price effect to the at-the-money implied volatility. For all the 

markets, the higher the at-the-money implied volatility, the lower the curvature of the 

second order effect. 

One conclusion from these findings is that consistency exists between the 

dynamics of the implied volatility patterns observed for these markets with the 

dynamics of the objective dispersion processes we examined previously in this 

research. In the first part of this research, we observed that both stochastic volatility 

models and jump processes are required to understand the dynamics of the objective 
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dispersion processes. Given the relationships between the time and expected variances 

with the first order and second order strike price effects, we may be seeing a similar 

effect. 

For example, if market participants are concerned about negative jumps, this 

would clearly lead to a negative (skewed) first order strike price effect. However, if 

the expected variance already incorporates this event and was accordingly higher to 

include the risk premium of such a jump, this effect would be amplified in a more 

extreme negative strike price effect. The negative relationship of the first order strike 

price effect with time could point to the inclusion of some stochastic volatility model. 

It has been pointed out in the literature [Hull & White (1987a) and Stein & Stein 

(1991)] that the longer the maturity of an option, the greater the impact of uncertainty 

in the nature of the dispersion process on the deviations of the option price from the 

Black-Scholes assumptions. Therefore, it may be that the longer the term of the 

option, the greater the probability of a negative jump occurring. 

Clearly, the implied volatilities are stochastic and would therefore require a 

stochastic volatility model to understand their behaviours. The consistent nature of the 

pure second and third order strike price effects could suggest that either stochastic 

volatility models or jump processes are the possible reasons. However, the fact that 

the second order strike price effect becomes more extreme as the expiration of the 

option approaches may suggest that jumps are the more likely reason. Nevertheless, it 

is more probable that both elements are responsible for the risk-neutral dispersion 

processes (as with the objective dispersion processes). We will examine this question 

in more detail in the next Chapter, where we will show that both factors play their part 

in describing the implied volatility dynamics we observe for stock index options 

markets. 
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Comparisons of Models For Fixed Income Options 

For the fixed income options markets, there is a similar degree of consistency 

in the importance of the independent variables to each model (compared to the stock 

index options). In Table 8.9b, there are five first order STRIKE-related independent 

variables that are fairly consistent for all bond option markets. These include both the 

two TIME interaction variables. As with the stock index options, these indicate that 

the skewness has a negative relationship with TIME and a positive relationship with 

TIME2. Again, the interpretation of this coefficient is that if a negative skew exists, it 

will flatten as the expiration date of the option is approached. Another STRIKE- 

related variable that is consistent across all fixed income option markets exists for the 

level of the at-the-money volatility (ATMVOL). The consistent negative coefficient 

indicates that the higher the level of the expected variance, the more the volatility 

pattern is skewed. This is similar to the result observed for the stock index options 

markets. Finally, it appears that market specific shocks have an important impact on 

the nature of the first order strike price effect. For almost all shocks (apart from the 

second shock for the US T-Bond), the impact was to increase the negative skew of the 

implied volatility pattern. 

As with the stock index options, there is a consistently positive kurtosis effect 

measured by the coefficient for STRIKE2. There is also consistency in the first order 

impact of TIME. This result suggests that the curvature of the implied volatility 

patterns becomes more extreme as the options expiration date is approached. The only 

exception exists for the BTP. However (as was pointed out earlier), the increased 

curvature effect comes from the second order time factor, TIME2. Finally, the only 

other consistent independent variable (for the second order strike price effect) is the 
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relationship between the curvature and the level of the at-the-money implied 

volatility. As with the stock options markets, the significantly negative coefficient for 

this variable (STRIKE2*ATMVOL) suggests that the higher the level of the expected 

variance, the flatter the curve of the implied volatility pattern. 

As with the stock index options, we observe that higher strike price effect 

moments are significant in modelling the implied volatility dynamics. The third order 

strike price variable (STRIKE3) is positive and of a similar magnitude for all the fixed 

income options examined. 

Most of the other independent variables do not display the same degree of 

consistency either in terms of the sign or the magnitude. The only important exception 

is for the ATMVOL variable, which is significantly positive for all the four fixed 

income option markets (and across all markets). As was stated previously, this 

probably suggests errors in how we have measured this variable. Nevertheless, it is 

interesting to compare the results for the stock and fixed income options. We find that 

for the stock index options, this variable was not significant and for the fixed income 

options it was. However, the other strike-price related independent variables are fairly 

consistent between both asset classes. Thus, while the at-the-money implied 

volatilities may be introducing errors for the fixed income options markets, they 

probably have little or no effect on the other variables that are the focus of this 

research. 

Finally, the individual dummy variables for each market do suggest that 

significant divergences do exist among the fixed income options markets. Of the pure 

dummy variables, only the US T-Bond and the BTP are significant. Given that these 

variables are difficult to interpret, we will instead concentrate on the market specific 

strike price effects. Regarding the first order strike price effect, the BTP and Bund 
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options markets display more negative skewness. For the second order effect, the US 

T-Bond has more curvature, while the Gilt has somewhat less. Apart from these 

differences, it appears that the overall model captures most of the first and second 

order strike price dynamics. 

At this point, it would appear that both stock index and fixed income options 

share a number of similar factors capturing the nature of the implied volatility process 

for these markets. It is interesting to reflect that the adjusted R-squared statistic for 

ALL BONDS is 0.8620 for the simple OLS model and for ALL STOCKS the 

adjusted R-squared statistic is 0.9082. While it is acknowledged that biases in the 

regressions make these numbers suspect, we have demonstrated that when corrections 

are made to correct for these biases, we would expect the resulting models to 

approach this degree of explanatory power. In any event, it does appear that we are 

explaining a substantial amount of the variance in the implied volatility process for 

both asset classes. 

Comparisons of Models For Foreign Exchange Options 

For the foreign exchange options markets, we observe less consistency among 

the four markets we examined, and there is also less consistency with the results 

found for the previous two asset classes. In Table 8.9c, we find that that overall first 

order strike price effect is not consistent (or even significant for the four markets). It 

would appear that skewness in not normally endemic for these assets. While the pure 

first order effect (skew) does tend to be positive (in three of four markets), the effect 

for all foreign exchange options is insignificant. There also does not seem to be any 

consistency in the relationship between the first order strike price effect with either of 

the two TIME interaction variables or for the level of the at-the-money volatility. The 
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only first order strike price effect somewhat consistent across the foreign exchange 

markets is that the CRASH tended to cause a negative skew to appear in the implied 

volatility patterns. However, this effect is slight. An opposite effect exists for the 

occurrence of the second shock for each market. This tended to cause the first order 

effect to be slightly more positive. One could claim that our interpretations of these 

coefficients are misleading given that we have chosen the foreign currency as our 

numeraire. All these options (and the underlying futures) are expressed as the number 

of US Dollars per unit of foreign currency. If these were expressed as the inverse, then 

the coefficients would reverse sign. However, given that the coefficients are of 

different signs for the four markets and in many instances insignificant, even with this 

transformation of the price series, the first order strike price effect is not as important 

for foreign exchange as it is for the fixed income and stock index markets. 

On the other hand, there is a great deal of consistency in the second order 

strike price effects between the foreign exchange options and the two previous asset 

classes. As with both the two previous asset classes, there is a consistently positive 

kurtosis effect measured by the coefficient for STRIKE2. There is also consistency in 

the first and second order impacts of TIME. Again, this result suggests that the 

curvature of the implied volatility patterns becomes more extreme as the options 

expiration date is approached. Finally, the only other consistent independent variable 

(for the second order strike price effect) is the relationship between the curvature and 

the level of the at-the-money implied volatility. As with the other two asset classes, 

the significantly negative coefficient for this variable (STRIKE2*ATMVOL) suggests 

that the higher the level of the expected variance, the flatter the curve of the implied 

volatility pattern. 
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There also appears to be a higher order strike price effect required for 

understanding the dynamics of foreign exchange implied volatilities. The third order 

strike price variable, (STRIKE3), is also significant for all the four markets (and 

overall). However, while for the previous two asset classes this relationship was 

positive, this relationship is a negative one for all markets apart from the British 

Pound (which was barely significant). Thus, we could conclude that some other 

higher order dynamics influence this market and it is left to further research to 

uncover the nature of these dynamics. 

Of the other independent variables, the only variable that is consistent across 

all the four markets and overall is the ATMVOL variable. This is significantly 

negative for all the models. As was stated previously, this is most probably due to 

errors in our method of estimating the at-the-money implied volatility. Yet, while we 

acknowledge that suggests potential problems in our models, we are unsure as how to 

estimate this variable better. Furthermore, we have demonstrated that when alternative 

modelling approaches were examined, this variable did not provide the same degree 

of contribution to the regression. Thus, we conclude that the biasing effect introduced 

by this variable is not critical to our interpretation of the other independent variables 

in the model. 

Finally, the individual dummy variables for each market do suggest that some 

substantive divergences exist among the foreign exchange options markets. The only 

one of the simple market dummy variables that was statistically significant was the 

British Pound. All the other market specific effects came from strike price effects. 

Each of the other three foreign exchange options had significant first and second order 

strike price effects. For the Deutsche Mark, Swiss Franc and Japanese Yen, the first 

order strike price effect was positive. Both the Deutsche Mark and Japanese Yen also 
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had a higher second order strike price effect (although small). Only the Swiss Franc 

displayed a slightly flattened second order curvature in the implied volatility patterns. 

Overall, it would appear that foreign exchange options are not as 

homogeneous in the nature of the implied volatility process as stock index or fixed 

income options. Nevertheless, the adjusted R-squared statistic has only been reduced 

to 0.8484 for the model of the aggregated foreign exchange options markets. While 

we must interpret this result with care, it is clear that this model approaches the 

explanatory power of the models for the previous two asset classes. Thus, it could be 

said that while fewer variables are required to understand the nature of the foreign 

exchange options implied volatility dynamics, the significant variables provide 

relatively more explanatory power. 

From this analysis, we can compare the factors that describe the implied 

volatility process across asset classes. It is clear that individual option markets have 

idiosyncratic features that cause them to differ even within their own asset class. 

Nevertheless, there does appear to be consistency within an asset class for those 

independent variables that explain the implied volatility dynamics. This consistency 

seems to be similar across the three asset classes we have examined. Even so, we must 

reject the hypothesis that within the same asset class, the dynamics of the implied 

volatility process are identical. 

Finally, we will address the question, which factors explaining the implied 

volatility processes are consistent across all markets. 
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8.8 COMPARISONS OF IMPLIED VOLATILTY MODELS FOR ALL 

MARKETS 

For this final analysis, we created an aggregated data file of all the three asset 

classes. Thus, we obtained one file that we referred to as ALLMARKETS. This was a 

combination of ALLSTOCKS, ALLBONDS, and ALLFX. The regression model for 

this data set took the following form: 

VSI =a +STRIKE " (ß, + ß, " TIME+ ß3 " TIME2 + ß4 " CRASH + ß3 " SHOCKI + ßb " SHOCK2 + ß7 " ATMVOL) 

+ STRIKE2 " (ßg + ß9 " TIME + ß, 
o " TIME2 + ß� " CRASH + ß12 " SHOCKI + A3 " SHOCK2 + ß14 " ATMVOL) 

+ As " STRIKE3 + ß16 " CRASH + ß� " SHOCKI +P" SHOCK2 + ß, 
q " ATMVOL + ßp " TIME + ß=, " TIME2 

+ ßu " TIME' + ß23 " BOND + ß2, " BOND * STRIKE + ßu " BOND * STRIKE2 + ß26 " STOCK 

+ ß27 " STOCK * STRIKE + ß28 " STOCK * STRIKE2 + ß, " FX + ß30 " FX * STRIKE + ß� " FX * STRIKE' 

+ 032 " USTB + ß33 " USTB * STRIKE + ß34 " USTB * STRIKE2 + ß33 " GILT + ßM " GILT * STRIKE 

+ ß37 " GILT * STRIKE' + ß3, " BTP + ß, " BTP * STRIKE + ßb " BTP * STRIKE2 + ß� " BUND 

+ß02"BUND *STRIKE +ß, 3"BUND *STRIKE=+ß44 "S&P+ß45"S&P* STRIKE +/3«. S&P*STRIKE2 

+ ß� " FTSE + ß48 " FTSE * STRIKE + ß19 " FTSE * STRIKE2 + ß, " Nikkei + ß� " Nikkei * STRIKE 

+ ß52 " Nikkei * STRIKE2 + ßs3 " DAX + ß54 " DAX * STRIKE + ß, s " DAX * STRIKE2 + ß56 " BP 

+ß� "BP*STRIKE +ßS8"BP*STRIKE 2+ß59 "JY+ß, "JY*STRIKE +ßb, "JY*STRIKE2+ß62 - SF 

+ ß6, " SF * STRIKE + ß64 " SF * STRIKE2 + ß, " DM + ß« " DM * STRIKE + ßb, " DM * STRIKE2+e 

(8.11) 
This regression includes all the variables used in the OLS regression in 

equation 8.2 for each of the individual markets. The difference for this model is that 

we have included three dummy variables for each asset class (STOCK, BOND, FX) 

and dummy variables for each individual market. For each of these dummy variables, 

we determined two more strike price dependent variables. Each of these variables was 

determined by simply multiplying the strike (or strike squared) by the dummy 

variable. With these additional variables, the OLS regression was rerun for all the 

options markets in this research and the results can be seen in Table 8.14. For the sake 

of comparisons, we have included the OLS results for the three asset classes that 

appeared in Tables 8.9a, 8.9b and 8.9c 
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We observe that the coefficients of the regression model differ substantively 

among the asset classes and for the aggregate of all markets. Therefore (and as 

expected), we can see that implied volatility dynamics are not the same across all 

asset classes. Nevertheless, as with the previous analyses, we can see that a number of 

general relationships are shared among asset classes and all markets. Therefore, we 

will once again concentrate on those results where the sign of the coefficients (and the 

relative magnitude) for the independent variables are similar. 

For the four models presented in Table 8.14, we do observe a number of 

general tendencies that are shared across markets. For the first order strike price 

effects, the first STRIKE-related variable that is consistently of the same sign and 

relative magnitude is the interaction between the STRIKE and the CRASH. It appears 

that for almost all markets, the occurrence of the crash led to a significantly negative 

skew after that event. Secondly, for all markets, there is a significant impact from the 

level of the expected variance and the degree of the volatility skew. The coefficient of 

the STRIKE*ATMVOL variable is extremely significantly negative. Thus for all 

markets, the higher the level of the expected variance the more negative the volatility 

skew is. It is of interest that this effect is most pronounced not for the stock index 

options markets but for the foreign exchange and fixed income options markets. 

Regarding the second order strike price effect (STRIKE2), many more of the 

coefficients for all markets share the same sign and similar magnitudes. For all the 

models, the pure kurtosis effect is positive and of a similar magnitude. The first and 

second order impacts of STRIKE2 with TIME are also similar for all the models. 

Again, this suggests that the curvature of the smiles becomes more extreme as 

expiration is approached for all markets. Finally, the only other consistent 

independent variable (for the second order strike price effect) is the relationship 
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between the curvature and the level of the at-the-money implied volatility. For all 

markets, the significantly negative coefficient for this variable (STRIKE2*ATMVOL) 

suggests that the higher the level of the expected variance, the flatter the curve of the 

implied volatility pattern. 

The higher order strike price effect (STRIKE3) is relevant for all the asset 

classes and indeed across all markets. However, given that the impact for the foreign 

exchange options markets is of the opposite sign of the impact for the stock index and 

fixed income options, this suggests different dynamics may be driving different asset 

classes. Nevertheless, this suggests that further work is needed to understand these 

higher order impacts. 

For the remaining variables, there is little consistency across asset classes or 

the overall aggregate of all options markets. One interesting result is that relationship 

of the ATMVOL variable to the model for ALLMARKETS has now assumed a 

negative sign. If one examines the coefficients of this variable across all asset classes, 

one will observe both positive and negative signs. The results of our previous tests of 

the regression models had us to assume that this effect is most probably due to 

random error in the estimation of the at-the-money implied volatility and 

inconsequential to our general conclusions. 

It is also of interest that strong TIME impacts are observed overall for all 

markets. However, this effect may either indicate errors in time estimation or may be 

indicating some negative exponential of time impact. It is interesting to note that this 

seems to be offsetting the coefficient of the ATMVOL variable. Thus, this could be 

some complex correction for the error we have identified there. 

2 However, it may be a question of the choice of the numeraire for the four foreign exchange options. If 

we chose the numeriare as the US Dollar, this effect would be consistent across all markets. 
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Finally, in Table 8.14, a number of the market specific dummy variables have 

significant coefficients. For the pure dummy variables, BOND, STOCK, US T-Bond, 

S&P, Nikkei and British Pound are significant. As before, the interpretation of these 

coefficients is somewhat difficult. 

Of more interest are the strike-related interactions with these market dummy 

variables. We observe that for all stock index options there is a significant negative 

first order strike price effect. The S&P and the DAX have a further significant 

negative first order effect, which is consistent for the analysis presented in Table 8.9a. 

The FTSE has a positive first order strike price effect that suggests it is less negatively 

skewed than the other options markets examined. 

The BOND and FX asset classes all show a positive first order strike price 

effect. However, for individual markets within these asset classes, the first order effect 

is also significant. For the fixed income options markets, the GILT is more positively 

skewed, while the BTP and BUND are negatively skewed. For the foreign exchange 

options, only the British Pound (negative) and Swiss Franc (positive)' have first order 

strike price effects. 

For the second order strike price effects, the only significant asset class is the 

foreign exchange class. Here the coefficient is slightly positive suggesting that more 

curvature exists for this asset class. There are, however, a number of individual 

markets that have significant second order strike price effects. The US T-Bond, Bund, 

Japanese Yen (barely) and FTSE all have slightly positive coefficients, while the 

S&P, Nikkei and Swiss Franc have negative coefficients. While these do suggest 

divergences, the levels of these market specific impacts are relatively small. 
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8.9 CONCLUSION 

In this Chapter, we have been able to develop a robust modelling approach 

that relies on the use of a simple OLS regression technique with dummy variables. 

The ANCOVA approach has allowed us to explain the majority of the variance in the 

implied volatility surfaces for the twelve option markets under investigation. 

From this analysis, we can draw a number of conclusions. The implied 

volatility dynamics are clearly different for different markets. Nevertheless, there are 

a number of variables that have a similar impact on the modelling of the surfaces both 

in terms of the sign of the impact and the relative magnitude. It appears that all 

markets share a similar degree of absolute implied kurtosis (measured by the 

STRIKE2 variable). All markets experience more implied kurtosis as the expiration of 

the option is approached. In addition, the strike price effects (both first and second 

order) for all markets are inversely related to the level of the expected variance. An 

increase in the at-the-money volatility serves to increase a negative skew in the 

implied volatility pattern and decreases the curvature of the implied kurtosis in the 

pattern. 

As was stated previously, these results suggest that consistencies may exist 

between the dynamics of the implied volatility patterns observed for these markets 

with the dynamics of the objective processes we examined previously in this research. 

We demonstrated in Chapter 5 that both stochastic volatility models and jump 

processes are required to understand the dynamics of the objective processes. One 

" could interpret the first order and second order strike price effects we have identified 

in this Chapter as reflecting both these factors. 

The existence of a consistent negative (skewed) first-order strike price effect 

might suggest that market participants are concerned about negative jumps. However, 
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we did not observe a significant negative skew effect for the unconditional return 

series. The only two markets that displayed a significantly negative skew in the 

returns were the S&P 500 and FTSE 100 and this was entirely due to the 1987 stock 

market crash. Yet, for all the stock index and fixed income options a negative 

(skewed) first-order strike price effect was found. From our analysis, we established 

that this is due to the occurrence of the crash. Thus, it would appear that even though 

such a negative skew is not necessary warranted by the objective process, market 

participants consistently price options as if it were3. There are a number of possible 

explanations for this. The most obvious is that the 1987 stock market crash led 

participants to include a risk premium of such a negative jump. Thus, it would be 

appropriate to expect jumps in order to understand this effect. However, the negative 

relationship of the first order strike price effect with time could point to the inclusion 

of some stochastic volatility model. It has been mentioned previously that the longer 

the maturity of an option, the greater the impacts of uncertainty about the nature of the 

dispersion process (and the effect on the deviations of the option price from the 

Black-Scholes results). Therefore, it may be that the longer the term of the option, the 

greater the probability of a negative jump occurring and that is one conclusion that 

can be drawn from the results of our models. 

Furthermore, in the last Chapter we demonstrated that the implied volatilities 

are indeed stochastic (see Figures 7.1a, 7.1b and 7.1c). Thus, it is consistent that an 

understanding of the dynamics of implied volatilities requires a stochastic volatility 

model. As with the analysis of Chapter 5, we demonstrated that both jumps and 

stochastic volatility models are necessary to capture the dynamics of volatility. In this 

Chapter, (our results suggest again that) the consistent nature of the pure second and 

3 Jackwerth and Rubinstein (1996) completed a detailed analysis of the skewness effect. They 
, 
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third order strike price effects suggest that both stochastic volatility models and jump 

processes act in combination. However, the fact that the second-order strike price 

effect becomes more extreme as the expiration of the option approaches may allow a 

conclusion that jumps are the more likely explanation. 

One interpretation of these results is that similar models are required to 

understand both the objective and risk-neutral processes. To test this hypothesis (that 

a combination model best explains both dispersion processes), we will now examine 

the relationships between the actual implied volatility dynamics and the implied 

volatility processes that are consistent with these combination models. 

suggested that this is a particularly difficult paradox to unravel. We have, therefore, concentrated on 
somewhat different issues 
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CHAPTER NINE 
THE ANALYSIS OF RISK NEUTRAL PROBABILITIES IN 

OPTIONS ON FUTURES COMPARISON OF IMPLIED 
VOLATILITY SMILES WITH SIMULATED SMILES DERIVED 

FROM OBJECTIVE DISPERSION PROCESS MODELS 

9.1 INTRODUCTION 

In the first portion of this dissertation, we examined a variety of models to 

explain the objective processes associated with twelve financial futures markets. With 

these models we have a means to generate simulated price series, which were 

demonstrated to be effective in explaining the dynamics of the objective processes for 

these markets. 

With this price generation methodology, we can now assess the dynamics of 

the prices of options on these futures markets that would be consistent with these 

dispersion processes. To achieve this we employed a Monte Carlo simulation to 

estimate call options with a variety of strike prices. This is similar to the approach by 

Johnson and Shanno (1987). As with this research, they were interested in 

understanding the exercise price bias, which was pointed out by MacBeth and 

Merville (1979) and Rubinstein (1985). However, these exercise price biases were 

only identified for stock options and we will extend this analysis for fixed income and 

foreign exchange options. 

9.2 SIMULATING IMPLIED VOLATILITY DYNAMICS CONSISTENT 

WITH THE OBJECTIVE PROCESS MODELS 

The first step required the generation of price series of 62 (trading) days, 

which were determined by either a Student-t model with constant variance, the 
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optimal stochastic volatility model (assuming price innovation followed GBM) or the 

optimal model which incorporated stochastic volatility and a Student-t distribution. 

These 62 trading days are comparable to the 90 calendar days used in the 

previous two chapters. The following table compares the number of trading days (in a 

year of 252 trading days) compared to the calendar days (in a year of 365 days). 

Calendar 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 
Days 

Business 37 10 14 17 21 24 28 31 35 38 41 45 48 52 55 59 62 
Days 

The reason why we must work with trading days is that the best fitting models 

in the first portion of this research assumed that time was measured as trading days 

rather than calendar days. In Chapter 6, we discussed that previous research had 

pointed out that to correctly estimate implied volatility one should use calendar time. 

Thus, we will estimate the price generation series using trading time and then for 

comparison's sake, we will convert this result using the above schedule to compare 

this with the implied volatilities estimated using calendar time. 

For the Monte Carlo simulation we used an anti-thetic approach suggested by 

Boyle (1977). Using a Box-Muller approximation, we determined 5000 draws of 62 

observations from a N(0,1) distribution. Then to apply the anti-thetic approach, we 

multiplied each of these Z's by minus one (-1). This generated the series of 62 draws 

from a normal distribution (10000 times) that had an average of 0.0 and a variance of 

approximately 1.0 (0.999998). These random numbers were then stored and used for 

all subsequent Monte Carlo simulations. This was done so that all results could be 

compared without introducing variation from the selection of the random numbers. 

The three models we examined included: 1) the model that assumed the 

underlying price series followed a Student-t distribution with constant variance, 2) the 
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model that assumed the underlying price series followed Geometric Brownian motion 

but the volatility evolution followed some stochastic process, and 3) the model that 

assumed the underlying price series followed a Student-t distribution and the volatility 

followed some stochastic process. The choice of the models and the parameter values 

were drawn from Chapters 3,4 and 5, where we determined the optimum models 

using the minimised sum of squared errors approach. 

An apparent inconsistency in this research approach is that the use of Monte 

Carlo simulations to price options assumes that a risk-neutrality condition exists. As 

was discussed in Chapter 6, this suggests that the state space is continuous and 

spanned across that space by existing securities. From the examination of these 

models, we are introducing both jumps and stochastic volatility into the state space. 

As we indicated earlier there are not securities in existence, which allow us to span a 

state space where the volatility displays such dynamics. Therefore, these models do 

not allow us to invoke a unique risk neutral measure and therefore will not allow us 

(in the strictest sense) to price the options unambiguously. This is the apparent 

theoretical inconsistency. Our objective is to compare the simulated options prices 

(and their implied volatilities) to those we observe empirically. The prices are 

determined by expectations under the usual form of risk neutral adjustment. While we 

cannot justify these as no-arbitrage prices, we can justify them as possible prices. 

Given the incompleteness of our markets, we must assume that a risk premium is 

likely to exist due to the inability to span the volatility state space. Such a comparison 

between these simulated options prices and the actual options prices will provide us 

an insight into the nature of this risk premium. 
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9.3 SIMULATING IMPLIED VOLATILITY DYNAMICS CONSISTENT 

WITH A STUDENT-t DISTRIBUTION MODEL 

For the first model (the Student-t distributed underlying price evolution with 

constant variance), we drew 62 random numbers from a normal distribution and 

adjusted these using the Student-t estimation technique described in Chapter 3. This t- 

distribution was approximated using the following approach. To obtain a fat-tailed 

distribution, we simulated a t-distribution with 5 degrees of freedom. This was 

achieved by taking 5 draws from a normal distribution that used the Box-Muller 

technique. The draws were squared and summed. This result was divided by five (5) 

and then the square root was taken. To sample from the Student-t distribution, a 

random normal variate is divided by this factor. This is repeated for each of the 62 

days to expiration and the entire simulation was repeated 10000 times. This final 

simulation resulted in a symmetrical distribution that had a mean that was exactly 

equal to zero, somewhat higher than unit variance and the fat tails we are looking for. 

Theoretically, the expected kurtosis should be equal to nine (9). 

The summary statistics of the 62 Student-t draws done 10000 times were as 

following: 

Moments 62 Draws (10000 times) 

Mean 0.0000 
Std. Dev 1.2910 
Skewness 0.0000 
Kurtosis 8.969 

From this series, we have obtained somewhat less than the kurtosis we were 

expecting, but the difference is slight. As with the draws from the normal distribution, 

these draws from the Student-t distribution were saved and used for all subsequent 

simulations that used the Student-t distribution. 
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With these draws from the Student-t distribution, we generated a series of 62 

(trading) days prices using the following formula: 

S=S eµ dr+a, -rar. St 
t-1 (9.1) 

This is the same Euler approach used in Chapter 3. The term 67, reflects the 

volatilities estimated from the various models tested and the previous day's volatility 

estimate is used to estimate today's new asset price. Given that the volatilities are 

assumed to be constant for the first model, this does not change. It was set for the 

simulations at 20% per annum. One should note that the price generation process does 

not use dZl but rather dTl. This notation reflects that we are using the Student-t 

distribution rather than assuming Geometric Brownian motion. The function dT1 

represents the volatility input, a, time the square root of time, 41/252, times the draw 

from the Student-t distribution. For these simulations we assumed the interest rate was 

0% (zero), so that the drift term is expressed as: -1hß2 * 1/2521. 

With these 10000 simulations of 62 trading days, we then estimated the Monte 

Carlo prices for call options with strike prices from 80 to 120 in 2 point increments. 

The initial price of the underlying asset was set to 100. Using the above schedule for 

trading days that corresponded to the same number of calendar days (as was examined 

in the last two chapters for the implied volatilities), we determined the average price 

for the call options. For example, for the call options, which correspond to 5 calendar 

days to expiration, the Monte Carlo price of the call options were determined with 3 

trading days ahead of the initial starting value of 100. From these call option prices, 

we determined a matrix of call option prices that varied across the range of strike 

prices and had different times to expiration. These can be seen in Table 9.1. For the 

sake of comparison, time is represented both in trading days and calendar days. 
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With these call option prices determined, we then input these prices into the 

Black 1976 option pricing formula to estimate the implied volatilities for each of the 

strike prices at each time to expiration. For this estimation, the initial underlying price 

was 100, the interest rates were set to zero (0%) and time is measured as calendar 

time. It should be noted that since the time parameter in this model is the percentage 

of a year, the time input actually used corresponds to the appropriate percentage that 

the trading days (of each option) represents in a 252 trading day year. From this we 

were able to obtain a series of implied volatilities across strike prices and across time. 

These results can be seen in Table 9.2. 

Finally, using the standardisation technique that was discussed in Chapter 7, 

the implied volatilities were indexed. The final transformed volatility matrix can be 

seen in Table 9.3. To aid evaluation, the results of this matrix have been drawn to 

produce a series of volatility smiles at different times to expiration. This can be seen 

in Figure 9.1 (where the strike price was transformed by the formula: 

[ln(X IF) /6 t 252 J). 

One interesting result is that this model displays many of the features we 

observe in the empirical volatility smiles (see Figures 7.11a, 7.11 b and 7.11 c., Figures 

7.16a, 7.16b and 7.16c., Figures 7.17a, 7.17b and 7.17c and Figures 7.18a, 7.18b and 

7.18c for the empirical smile patterns). To make these comparisons easier, we have 

produced a series of graphs that contain the actual implied volatility surface for each 

of the twelve markets (and for each period) and included the simulated smiles from 

the three alternative models. These figures can be seen as Figures 9.2a, 9.2b, 9.2c, 

9.2d for the stock index options. For the fixed income options, these results can be 

t Since in this simulation the process is non-Gaussian, this is not strictly correct. However, given that 
the time increment (dt) is a small number this is a good approximation. 
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seen in Figures 9.3a, 9.3b, 9.3c and 9.3d. Finally for the Currency options, these 

results can be seen in Figures 9.4a, 9.4b, 9.4c and 9.4d. 

The smiles generated from the Student-t model are relatively flat with 62 

trading days (90 calendar days) to expiration. As the expiration is approached, the 

smiles become more curved. This result is consistent with the finding in the last 

Chapter that the second order strike price becomes more extreme as expiration is 

approached. Nevertheless, we must reject this model on two grounds. The first is that 

it is clear that from a comparison of the smile patterns the Student-t model simulated 

smile displays more of a time effect on the curvature of the implied volatility pattern 

than we observe empirically. Secondly, it is clear from the summary statistics 

(presented in Tables 7.1a, 7.1b and 7.1c) for the at-the-money implied volatilities that 

the implied volatilities do follow a stochastic process and we must reject (from a 

theoretical sense) any model which assumes constant variance. 

Now that we have simulated what smile behaviour would be consistent with a 

Student-t distribution model with constant variance, we will now compare the 

structure of the smile surface from this model to the actual smile behaviour of the 

twelve option markets. While graphs can be helpful in comparing results, we will 

instead use a standard minimisation of errors method to test statistically how well this 

model behaves. 

9.4 TESTING THE EXPLANATORY POWER OF THEORICAL PRICING 

MODELS FOR THE IMPLIED VOLATILITY SMILE PATTERNS 

To achieve this, we first needed to fit a two-dimensional surface using a 

polynomial function. This approach was to fit the data from Table 9.3, using all the 
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strike prices from 80 to 120 and all the times to expiry2. The surface we need to fit is 

the matrix of VSI values from the Student-t distribution model with constant variance. 

We chose to fit this surface with the following equation: 

VSI=ao+ß1X+ß2X2+ß3X3+ß4XT+p5X2T+ß6XT2 (9.2) 

Where, X is the standardised strike price and T is the time to expiration of the 

option expressed in the percentage in a (trading) year. While this equation bears 

resemblance to equation used by Dumas, Fleming and Whaley (1996) to determine 

their Deterministic Volatility Function (see equation 8.1d), this model is based upon 

the findings from the previous Chapter that indicated that additional higher order 

terms were required to understand the complex relationship between strike prices and 

time. For each VSI observation, we have a standardised strike price (X) and a specific 

time to expiration (T). 

The results from the above polynomial equation for the Student-t distribution 

model appear in Table 9.4. 

Factor Coefficient Standard Error T-Statistic 

Intercept a 99.9132 0.1272 -0.04039 
Strike 51 0.0525 0.2237 0.23457 
Strike2 02 2.5721 0.0245 104.9837 
Strike3 133 0.0065 0.0085 0.7647 
Strike*Time (34 6.0387 3.7425 1.6136 
Strike2*Time (3s -11.4791 0.5458 -21.0317 
Strike* Time 2 (i6 -35.0199 14.4992 -2.4153 

R-Squared 0.977402 

Table 9.4 Results from Fitting the Student-t Model Theoretical Implied Volatility Surface with 
a Polynomial Function. 

Of most importance in this table, is the fact that the R-squared confirms that 

this approach is a good approximation to the points estimated numerically. Of less 

2 This was necessary because the actual options (we are trying to explain) have discrete strike prices 
that will not necessarily correspond exactly to the strike prices of our simulation. Rather than re- 
running each Monte Carlo simulation for each observed option, we wished to fit the theoretical surface 
and then use this to predict the observed options. 
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interest is whether the independent variables are statistically significant ( this is 

indicated by a bold typeface). As we expected, all the independent variables that 

include the second order strike price effect are significant. The first order strike price 

effect is not captured apart from the interaction of Strike and Time 2 (and this is barely 

significant). Furthermore, this effect is also of the opposite sign to what we observed 

for the actual markets (see Table 8.14 for example). In addition, this model fails to 

include the higher order strike price variable, STRIKE3, as a significant contribution 

to the regression. For all the actual option markets, this effect was extremely 

significant. 

From this preliminary analysis, we would conclude that substantive 

differences exist between the Student-t model with constant variance and what we 

observe in the actual options markets. It is hardly surprising that we have failed to 

capture the first and third order strike price effects as this model was only intended to 

capture the second order strike price effect. 

With this equation, we generated a predicted series of VSI values for each 

option available for the twelve markets. With these predicted results, the test of 

whether this model is effective or not was to run a simple linear regression of the 

form: 

VSlacta, =a+ß" 
VSI 

predicted 
+: (9.3) 

From this regression, we are interested in assessing the intercept, the slope 

coefficient, and most importantly the R2 of the regression. What we will focus on is 

the adjusted R2 of the regression as a measure of the ability of the model to explain 

the actual behaviour of the implied volatilities and the slope coefficient to indicate if 

the models display the appropriate dynamics. The intercepts and the slope coefficients 

will provide us a method of assessing what may be occurring in the regression. We 
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expect that the intercept should have a value of 0.0 and the slope coefficient should 

have a value of 1.0. To assess if the slope coefficient is statistically different than 1.0, 

we used a t-test for each slope coefficient with the critical value equal to 1.0. If the 

regression results are significantly different than what we expect, this will provide an 

indication that problems could exist with the models. 

9.5 TESTING THE EXPLANATORY POWER OF A STUDENT-t 

DISTRIBUTION MODEL FOR THE IMPLIED VOLATILITY PATTERNS 

Using this approach, the Student-t distribution model was applied to all twelve 

markets and for both time periods. These results for the twelve markets, for the entire 

period and the first and second portions of the data appear in Tables 9.5a, 9.5b and 

9.5c. 

Markets Intercept ß Coefficient Standard Error T-Statistic3 Adjusted R-squared 

S&P 500 -125.87 2.3473 0.04496 29.9667 0.1803 
FTSE -115.12 2.2015 0.03038 39.5491 0.4292 
DAX -114.47 2.1827 0.05562 21.2639 0.3574 
Nikkei -92.37 1.9468 0.05648 16.7635 0.2521 

Bund -76.40 1.7972 0.03374 23.6277 0.2559 
BTP -91.79 1.9318 0.03311 28.1426 0.2839 
Gilt -62.48 1.6573 0.02664 24.6734 0.2993 
UST-Bond -85.43 1.9324 0.01957 47.6444 0.5057 

D-mark -97.47 2.0090 0.01553 64.9710 0.6018 
Pound -96.79 1.9981 0.01645 60.6748 0.6165 
Yen -121.08 2.2465 0.01300 95.8846 0.6969 
S-Franc -78.96 1.8211 0.01549 53.0084 0.5388 

Table 9.5a, Regression Results for the Predicted Smile Behaviour from a Constant Volatility 
Student-t Distribution model against the Actual Smile Behaviour for Twelve Option Markets 
for the Entire Period of the Analysis. 

3 The t-test is relative to an expected Beta coefficient of 1.0. 
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Markets Intercept ß Coefficient Standard Error T-Statistic Adjusted R-squared 

S&P 500 -103.94 2.1006 0.05963 18.4572 0.2065 
FTSE -194.00 2.9467 0.06884 28.2786 0.5045 
DAX -165.45 2.6736 0.14730 11.3619 0.2616 
Nikkei -60.65 1.6293 0.08449 7.4482 0.2521 

Bund -91.14 1.9514 0.04930 19.2982 0.3044 
BTP -94.89 1.9637 0.04085 23.5912 0.3902 
Gilt -80.11 1.8185 0.04139 19.7753 0.4542 
US T-Bond -74.67 1.8313 0.05401 15.3916 0.4165 

D-mark -99.97 2.0486 0.02741 38.2561 0.5891 
Pound -88.73 1.9185 0.02812 32.6636 0.5482 
Yen -111.13 2.1553 0.02502 46.1751 0.6463 
S-Franc -71.62 1.7628 0.02714 28.1061 0.5077 

Table 9.5b, Regression Results for the Predicted Smile Behaviour from a Constant Volatility 
Student-t Distribution model against the Actual Smile Behaviour for Twelve Option Markets 
for the First Half of the Available Observations. 

Markets Intercept ß Coefficient Standard Error T-Statistic Adjusted R-squared 

S&P 500 -140.44 2.5204 0.06259 24.2914 0.1754 
FTSE -102.22 2.0887 0.03499 31.1146 0.4074 
DAX -106.80 2.1148 0.06575 16.9551 0.3598 
Nikkei -114.95 2.1766 0.07561 15.5614 0.3509 

Bund -64.51 1.6733 0.04578 14.7073 0.2224 
BTP -90.24 1.9156 0.04777 19.1668 0.2443 
Gilt -56.17 1.5994 0.03285 18.2466 0.2601 
US T -Bond -86.98 1.9466 0.02117 44.7142 0.5165 

D-mark -95.82 1.9847 0.01821 54.0747 0.6231 
Pound -99.97 2.0294 0.02069 49.7535 0.6427 
Yen -125.62 2.2881 0.01504 85.6450 0.7214 

S-Franc -83.27 1.8561 0.01841 46.0190 0.5678 

Table 9.5c, Regression Results for the Predicted Smile Behaviour from a Constant Volatility 
Student-t Distribution model against the Actual Smile Behaviour for Twelve Option Markets 
for the Second Half of the Available Observations. 

From this analysis, we find that all the slope coefficients are higher than 1.0. 

This indicates that the actual curvature of the implied volatility smiles for the options 

is more extreme than for the smiles predicted by the Student-t models. Given that 

these coefficients are higher, the intercept is correspondingly negative. This , is 

because the intercept adjusts the mean to correspond to the general level of 100. The 

intercept is of little interest to our analysis as it simply is a scaling adjustment. 

We are also interested in the R-squared. This statistic indicates which model 

has the best shape. One potential source of concern for this analysis is we are 

comparing simulations always based upon five degrees of freedom (for the 
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determination of the Student-t distribution). Previously in Chapter 5, we examined 

eight draws from a Student-t distribution with five degrees of freedom. Given the 

selection of the random numbers, the realised draws would imply different degrees of 

freedom. However, subsequent analysis indicated that the results from Chapter 5 

were not substantively altered for a Student-t result consistent with five degrees of 

freedom 

Overall, the results are somewhat disappointing. While we are explaining a 

significant portion of the variance in the actual implied volatility patterns, in most 

cases we are explaining less than 50% of the variance. The markets that are best 

explained (by a R-squared criterion) tend to be the foreign exchange options. If our 

criterion for the best model is a slope coefficient closest to 1.0, then the models best 

explain the fixed income markets. The Beta for most of the markets indicates that the 

amplitude of the observed smiles is roughly double what the models predict. 

One possible reason for the R-squared result is that the models for the 

objective processes do not capture the first order strike price effect. As was discussed 

previously, we chose not to examine the skewness in the objective processes. This 

was justified because negative skewness was only important for two of the twelve 

markets (S&P 500 and FTSE 100) and appeared to be solely a result of the 1987 

crash. Nevertheless, the implied volatility patterns for all stock index options and 

fixed income options have a significant first order strike price effect (even though the 

objective processes do not seem to justify this). Thus, it is not possible for our model 

to capture this effect with our Student-t model. 

Another reason is that this model is failing to correctly capture the second 

order strike price effect. As was indicated above, the regression results suggest that 

the amplitude of the actual implied volatility surface is approximately twice what the 
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models predict. This is not surprising given that in the comparison of the three models 

for the objective processes (see Chapter 5, Tables 5.3,5.8 and 5.11), the Student-t 

distribution was never the best model. Therefore, our prior would be to assume that if 

the Student-t model was not the best model for the objective process, it would also fail 

to best explain the risk-neutral dispersion process. 

9.6 SIMULATING IMPLIED VOLATILITY DYNAMICS CONSISTENT 

WITH GBM STOCHASTIC VOLATILITY MODELS 

To test the second model (stochastic volatility models with the assumption of 

GBM for the underlying asset price), we needed to generate another series of 62 days 

prices that were consistent with the appropriate model. For this we needed to generate 

a series of 62 volatilities 10000 times (again using the anti-thetic method). This was 

done by determined a new series of random N(0,1) draws using the Box-Muller 

approach. These were determined in the same manner as the random draws for the 

N(0,1) used for the price generation (and the estimation of the Student-t draws). 

However, these new random draws were independent of the initial draws. These were 

saved and used for all subsequent estimations of the stochastic volatility models. 

Then we chose the appropriate stochastic volatility model that was the best 

fitting model (that was determined in Chapter 4) for each of the twelve markets and 

for the whole period, the first half and the second half of the available observations. 

For these models, we generated a series of random volatilities. With these, we then 

estimated a series of 62 days prices using the following formula: 

µ"dt+&, _1 "dZ1 St = St_i "e (9.4) 

Again this is the simple Euler approach used previously in Chapter 4. The 

term c r, reflects the volatilities estimated from the various models tested and the 
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previous day's volatility estimate is used to estimate today's new asset price. For this 

simulation, the dZl represents a standard Geometric Brownian motion process and is 

the draw from the random N(0,1)'s which we initially estimated and were saved for all 

subsequent simulations. This generated a price series from a starting value of 100 and 

we captured each daily price until 62 days forward in time. As before, we assumed the 

interest rate was 0% (zero), so that the drift term (µ) is expressed as: -'hß2 * 1/252. 

For each of the simulations, we examined the best stochastic volatility models 

for each of the twelve markets and for each of the three estimation periods. The best 

fitting models and the optimal parameter values can be seen in Tables 4.4,4.6 (for the 

entire period), 4.7,4.9 (for the first period), and 4.10 and 4.12 (for the second period). 

Then we repeated the same procedures used previously to determine 

standardised implied volatilities across strike prices and time. As was done 

previously, the results of this matrix have been drawn to produce a series of volatility 

smiles at different times to expiration. These graphs can be seen as Figures 9.2a, 9.2b, 

9.2c, 9.2d for the stock index options. For the fixed income options, these results can 

be seen in Figures 9.3a, 9.3b, 9.3c and 9.3d. Finally for the Currency options, these 

results can be seen in Figures 9.4a, 9.4b, 9.4c and 9.4d. For each of these plots, we 

have included the standardised (and averaged) VSI graphs for the actual implied 

volatility for the entire period of analysis, the VSI graph associated with the Student-t 

distribution, the VSI graph associated with the best fitting stochastic volatility model 

and the VSI graph associated with the best combination model (Student-t distribution 

and stochastic volatility model). After these figures, there also appear similar graphs 

for the earlier portion of the data and for the latter period of the data. 

These figures confirm the results suggested by the earlier research by Hull & 

White (1988), Stein & Stein (1991) and Heston (1993). These stochastic volatility 
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models will increase the second order strike effect the longer the term to maturity of 

the option. This effect was rejected in the analysis of the last Chapter. There we 

demonstrated that the second order strike price effect is inversely related to the time 

remaining to expiration, which is exactly the opposite of what is generated by these 

stochastic volatility models. Thus, we would expect that the explanatory power of 

these models would be low when explaining the risk-neutral dynamics associates with 

actual options implied volatilities. 

Now that we have simulated what smile behaviour would be consistent with 

the best stochastic volatility models for each market (assuming the underlying asset 

price follows GBM), we will now compare the dynamics of this model to the actual 

smile behaviour of the twelve option markets. To assess the effectiveness of the 

stochastic volatility models in explaining the empirical smile behaviour, the same 

analysis was completed as was done previously for the Student-t distribution model 

with constant variance. 

9.7 TESTING THE EXPLANATORY POWER OF STOCHASTIC 

VOLATILITY MODELS FOR THE IMPLIED VOLATILITY PATTERNS 

The regression results for the best fitting stochastic volatility models for all 

three periods can be found in Tables 9.6a, 9.6b and 9.6c for all twelve markets. For 

the sake of comparisons, the adjusted R-squared statistics from the Student-t 

distribution model also appear. 
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Adjusted Student-f 
Markets Intercept ß Coefficient Standard Error T-Statistic R-squared R-squared 

S&P 500 -383.43 4.8299 0.03968 96.520 0.5446 0.1803 
FTSE -253.55 3.5385 0.03691 68.775 0.5684 0.4292 
DAX -729.38 8.2599 0.10591 68.548 0.6873 0.3574 
Nikkei -202.55 2.9957 0.05277 37.819 0.4778 0.2521 

Bund -141.86 2.4229 0.03168 44.915 0.4149 0.2559 
BTP -124.50 2.2144 0.02450 49.567 0.4876 0.2839 
Gilt -136.75 2.3674 0.02853 47.929 0.4319 0.2993 
T-Bond -90.347 1.9304 0.01755 53.014 0.5595 0.5057 

D-mark -136.35 2.3768 0.01887 72.962 0.5887 0.6018 
Pound -157.03 2.5755 0.02963 53.172 0.4514 0.6165 
Yen -266.94 3.6728 0.02440 109.541 0.6355 0.6969 
S-Franc -248.91 3.4961 0.02689 92.826 0.5883 0.5388 

Table 9.6a, Regression Results for the Predicted Smile Behaviour from the Optimal 
Stochastic Volatility Model assuming that Underlying asset follows GBM versus the Actual 
Smile Behaviour for Twelve Option Markets for the Entire Period of the Analysis. 

Adjusted Student-t 
Markets Intercept ß Coefficient Standard Error T-Statistic R-squared R-squared 

S&P 500 -124.40 2.2317 0.03997 30.816 0.3955 
FTSE -367.07 4.6336 0.14346 25.328 0.3668 
DAX -704.57 8.0168 0.23279 30.142 0.5611 
Nikkei -185.88 2.8354 0.07936 23.129 0.3906 

Bund -185.29 2.8690 0.05244 35.641 0.4555 
BTP -97.45 1.9622 0.03875 24.831 0.4151 
Gilt -100.06 2.0095 0.06616 15.258 0.2844 
T-Bond -35.149 1.3846 0.03382 11.372 0.5101 

D-mark -241.59 3.4233 0.04106 59.019 0.6408 
Pound -189.05 2.8917 0.04642 40.752 0.5030 
Yen -269.81 3.6940 0.03447 78.155 0.7388 
S-Franc -194.74 2.9563 0.03900 50.162 0.5841 

0.2065 
0.5045 
0.2616 
0.1571 

0.3044 
0.3902 
0.4542 
0.4165 

0.5891 
0.5482 
0.6463 
0.5077 

Table 9.6b, Regression Results for the Predicted Smile Behaviour from the Optimal 
Stochastic Volatility Model assuming that Underlying asset follows GBM versus the Actual 
Smile Behaviour for Twelve Option Markets for the First Half of the Available 
Observations. 
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Adjusted Student-t 
Markets Intercept ß Coefficient Standard Error T-Statistic R-squared R-squared 

S&P 500 -401.10 5.0080 0.04633 86.510 0.6052 0.1754 
FTSE -289.47 3.8916 0.04248 68.070 0.6183 0.4074 
DAX -1306.77 14.0226 0.19064 68.310 0.7463 0.3598 
Nikkei -247.76 3.4506 0.07856 31.194 0.5574 0.3509 

Bund -187.72 2.8751 0.05184 36.171 0.3972 0.2224 
BTP -246.18 3.4176 0.05222 46.296 0.4627 0.2443 
Gilt -150.43 2.5075 0.03426 44.002 0.4429 0.2601 
T-Bond -184.16 2.8529 0.02390 77.527 0.6429 0.5165 

D-mark -131.10 2.3280 0.02968 44.744 0.4614 0.6231 
Pound -152.24 2.5357 0.04045 37.965 0.4235 0.6427 
Yen -157.79 3.5868 0.02179 118.715 0.6121 0.7214 
S-Franc -165.41 2.6633 0.02885 57.653 0.5239 0.5678 

Table 9.6c, Regression Results for the Predicted Smile Behaviour from the Optimal 
Stochastic Volatility Model assuming that Underlying asset follows GBM versus the Actual 
Smile Behaviour for Twelve Option Markets for the Second Half of the Available 
Observations. 

Somewhat surprisingly, the stochastic volatility models have performed much 

better when explaining the variance of the actual implied volatility patterns compared 

to the Student-t model. By examining the R-squared statistics, it appears these models 

are better. Unfortunately, if we examine the slope coefficients, these are also higher. 

So this suggests that while these models are better at capturing the overall shape of the 

implied volatility surface, the amplitude is even more incorrect. 

It is somewhat surprising that these models have a higher R-squared because 

the smile surfaces in the above mentioned figures for the simulated stochastic 

volatility models- displayed more curvature the further the time to expiration and that 

is opposite to what we observe. Nevertheless, this result might be expected since these 

models were also better at explaining the objective process (see Tables 4.6,4.9 and 

4.12). If these classes of models better explain the objective processes, one might 

expect to also better capture the dynamics of the risk-neutral processes. Only for the 

Foreign exchange options (in the majority of cases) does the Student-t model explain 

more of the variance in the actual implied volatility patterns. 
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These puzzling results may be better understood by reviewing how the smile 

surfaces for stock index, fixed income and foreign exchange markets vary. For the 

actual smile surfaces, the stock index and fixed income options display both a 

significant negative first order strike price effect (skewness) and second order 

(kurtosis) strike price effect. For the foreign exchange options, the only significant 

strike price effect is second order (kurtosis). Given that these model perform poorly 

for foreign exchange options, it is reasonable that this is because the stochastic 

volatility models do not display sufficient excess kurtosis to capture the second order 

strike price effect. Indeed, this appears to be the case from the review of the figures 

and is consistent with previously referenced work (see Chapter 6) that suggests that 

the stochastic volatility models will not produce sufficiently high enough kurtosis (to 

be consistent with observed implied volatility surfaces). Thus, the foreign exchange 

options are better explained by a Student-t distribution that displays more kurtosis. 

Nevertheless, these models are better at capturing the overall dynamics of the 

volatility surface for stock index and fixed income options. The most likely reason is 

that they must be addressing the first order strike price effect. 

From the last Chapter, we demonstrated that the time dependency of the first 

order strike price effect for both stock index and fixed income options was negative 

(see Tables 8.13a and 8.13b). This implies that the longer the time period to expiration 

of the option, the more the smile surface was negatively skewed. From an 

examination of the figures (9.2 to 9.10), we also find that the stochastic volatility 

models display more curvature as the time to expiration is lengthened. In this 

regression analysis, we are comparing the standardised implied volatilities of 

individual options to predicted implied volatilities from the model. If we tend to have 

all strike price options represented equally, then the increased curvature of the 
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stochastic volatility models would better explain the first order dynamics of lower 

strike price options and would poorly explain the first order dynamics of higher strike 

price options. Overall, we would expect the ability to capture this effect would be 

poor. However, we found that lower strike price options were much more likely to be 

represented than higher strike price options in the observed data sets. 

This being the case, it would appear that the stochastic volatility models fit the 

stock index and fixed income options smile surfaces better because they capture the 

important time dependent dynamics of this effect. Given our data set of options prices 

tends to have more lower strike price options compared with higher strike price 

options, the fact that the skewness becomes more negative with time is consistent with 

the dynamics of these models. 

Even though these models fit the stock index and fixed income options 

implied volatility patterns better than the Student-t model, they still barely explain 

half of the' variance. One reason could be that these models fail to capture the first 

order strike price effect for options with higher strike prices (see previous two 

paragraphs). Secondly, it is clear (from the figures 9.2a to 9.10d) that the general 

tendency of these models is to increase the curvature of the implied volatility smile 

the further the time to expiration (which is the opposite of what we observe 

empirically). Even given these factors, it does confirm what we have observed 

previously that implied volatilities do follow some stochastic process and these 

models are capturing some of these dynamics. 

It is interesting to note that this analysis of the risk neutral dispersion 

processes is following a similar sequence to our previous research on the objective 

processes. At similar stages in both lines of research, we concluded that the stochastic 

volatility models (for the most part) were better at explaining the process than a 
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simple Student-t distribution with constant variance. In some ways this is comforting 

given that we know that implied volatilities follow some stochastic process and we 

must (therefore) reject the Student-t model. Even so, we have an entire asset class 

(foreign exchange options) where the Student-t model is superior. This presents a 

dilemma: how can a model, which assumes constant volatility, provide a better fit 

than models which allow the volatility to evolve stochastically. Fortunately (as with 

our previous investigation into the objective processes), we have a solution. As was 

demonstrated in Chapter 5, a combination model of both stochastic volatility with a 

Student-t evolution of the underlying asset return was in the vast majority of cases the 

best approach. It is not unreasonable to surmise that similar dynamics might also work 

for the risk-neutral processes. As was suggested previously, it may be that the 

stochastic volatility models are required to capture the dynamics of the first order 

strike price effect and jumps are required to capture the second order strike price 

effects. 

9.8 SIMULATING IMPLIED VOLATILITY DYNAMICS CONSISTENT 

WITH STOCHASTIC VOLATILITY & STUDENT-t DISTRIBUTION 

MODELS 

To test this class of models, we followed the same steps as were previously 

taken. As before, we generated new series of 62 daily prices that were consistent with 

the appropriate optimised model and repeated this process 10000 times using the anti- 

thetic approach. To allow comparisons to be drawn, the same random numbers were 

used. As with the previous analysis, we examined the best fitting model (that was 

determined in Chapter 5) for each of the twelve markets and for the whole period, the 
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first half and the second half of the available observations. These prices were 

estimated using the following formula: 

St =S, -, e u. dt+d, _I. ar, (9.5) 

This is the simple Euler approach used previously in Chapter 5. The term c r, 

reflects the volatilities estimated from the various models tested and the previous 

day's volatility estimate is used to estimate today's new asset price. For this 

simulation, the dTl represents the Student-t distributions that were used for the 

previous simulations. This generated a price series from a starting value of 100 and 

we captured each daily price until 62 days forward in time. As before, we assumed the 

interest rate was 0% (zero), so that the drift term (µ) is expressed as: -1/2a2 * 1/252. 

With 10000 of these price series estimated, we then evaluated the values of the 

options at a range of strike prices and finally determined a series of implied 

volatilities from the Black 1976 model. 

For each of the simulations, we examined the best combined stochastic 

volatility and Student-t models for each of the twelve markets and for each of the 

three estimation periods. One difference between these simulations and the analysis 

done in Chapter 5 is that previously we could only use a single Student-t distribution. 

In that analysis, optimisation was run both over different Student-t distributions and 

different parameter values for the stochastic volatility models. Thus, it could be 

possible that the results are due to the selection of the random numbers for each of the 

eight Student-t distributions. To test this, we re-ran all the previous optimisations 

using a Student-t distribution which matched the statistical moments of the average 

Student-t distributions in the Monte Carlo simulation (see the summary statistics of 

the Student-t moments presented earlier in this Chapter). When this was completed, 

we found that the results were only slightly different. Thus, we confirmed that the 
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selection of the Student-t distribution has a minor effect on the model and these 

results are insensitive to the choice of the random numbers generating the Student-t 

distribution. 

The best fitting models and the optimal parameter values can be found in 

Chapter 5. For the entire period, these appear in Table 5.1a, 5.1b and 5.1c. For the 

first period, these appear in Tables 5.6a, 5.6b and 5.6c. Finally, for the second period, 

these appear in Tables 5.9a, 5.9b and 5.9c. 

Again, we then estimated Monte Carlo prices for call options with strike 

prices from 80 to 120 in 2 point increments. From these call option prices, we 

determined thirty-six matrices of call option prices that varied across the range of 

strike prices and had different times to expiration. Finally, implied volatilities were 

determined. 

As before, to better compare the smile behaviour that is associated with these 

best fitting models, graphs were produced for each of the twelve markets and for all 

three periods. These graphs can be seen as Figures 9.2a, 9.2b, 9.2c, 9.2d for the stock 

index options. For the fixed income options, these results can be seen in Figures 9.3a, 

9.3b, 9.3c and 9.3d. Finally for the Currency options, these results can be seen in 

Figures 9.4a, 9.4b, 9.4c and 9.4d. As was discussed previously, these graphs compare 

the smile behaviour of the actual options market to the three models we determined 

for the objective processed for the underlying futures markets. As before these graphs 

are for the entire period of analysis. The graphs for the first and second periods of the 

analysis period appear in subsequent figures and are clearly labelled. 

From an examination of the graphs, it would appear that the combination 

model does appear to fit the (average) empirical smiles better. The combination of the 

stochastic volatility models with a Student-t evolution for the underlying asset price 
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yields implied volatility smiles that are the closest to what we observe for the actual 

implied volatility smiles. We appear to be capturing the second order strike price 

effect well. For the actual implied volatility patterns, a curved pattern that exists for 

the entire period from 90 days until 5 days until expiration. As was indicated in the 

last two Chapters, this pattern becomes more extreme as the expiration of the option is 

approached. Also clear is that our combination model fails to capture the first order 

strike price effect. This is hardly surprising given that we did not attempt to capture 

this effect for the objective processes in the first portion of this research. Even though, 

the patterns appear to fit better, the acid test is whether the errors from these models 

are less than the two previous models tested. 

Now that we have simulated what smile behaviour would be consistent with 

the best stochastic volatility models for each market (assuming the underlying asset 

price follows a Student-t distribution), we will now compare the dynamics of this 

model to the actual smile behaviour of the twelve option markets. To assess the 

effectiveness of the stochastic volatility models in explaining the empirical smile 

behaviour, the same analysis was completed as was done previously for the two 

earlier models. 

9.9 TESTING THE EXPLANATORY POWER OF STOCHASTIC 

VOLATILITY & STUDENT-t MODELS FOR THE IMPLIED VOLATILITY 

PATTERNS 

The regression results for the best fitting combination model for all three 

periods can be found in Tables 9.7a, 9.7b and 9.7c for the three periods of the 

analysis. For the sake of comparisons, the adjusted R-squared results from the 

previous two models also appear. 
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ß Standard Adjusted Sto-Vol Student-t 
Markets Intercept Coefficient Error T-Statistic R-sauared -s uar d -s uuar d 

S&P 500 -59.97 1.5950 0.01483 40.121 0.4828 0.5446 0.1803 
FTSE -88.76 1.8755 0.01591 55.028 0.6657 0.5684 0.4292 
DAX -127.36 2.2979 0.05237 43.878 0.4102 0.6873 0.3574 
Nikkei -80.25 1.7886 0.04104 43.819 0.3503 0.4778 0.2521 

Bund -81.72 1.8144 0.02387 34.118 0.4210 0.4149 0.2559 
BTP -26.61 1.2378 0.01698 14.005 0.3824 0.4876 0.2839 
Gilt -47.84 1.4745 0.01729 27.443 0.4454 0.4319 0.2993 
T-Bond -21.58 1.2042 0.00729 28.011 0.7414 0.5595 0.5057 

D-mark -85.92 1.8660 0.00983 88.098 0.7649 0.5887 0.6018 
Pound -84.95 1.8429 0.01115 75.596 0.7485 0.4514 0.6165 
Yen -105.93 2.0696 0.00875 122.240 0.8113 0.6355 0.6969 
S-Franc -81.14 1.8213 0.01022 80.364 0.7286 0.5883 0.5388 

Table 9.7a, Regression Results for the Predicted Smile Behaviour from the Optimal 
Stochastic Volatility Model assuming that Underlying asset follows a Student-t Distribution 
against the Actual Smile Behaviour for Twelve Option Markets for the Entire Period of the 
Analysis. 

ß Standard Adjusted Sto-Vol Student-t 
Markets Interce t Coefficient Error T-Statistic R-squared R-sayared d R-sguare 

S&P 500 -25.12 1.2350 0.02310 10.173 0.3749 0.3955 0.2065 
FTSE -164.99 2.6182 0.06360 25.443 0.4849 0.3668 0.5045 
DAX -178.53 2.7942 0.13669 13.126 0.3102 0.5611 0.2616 
Nikkei -26.00 1.2384 0.04118 5.789 0.3123 0.3906 0.1571 

Bund -81.32 1.8107 0.02917 27.792 0.5185 0.4554 0.3044 
BTP -74.93 1.7315 0.02777 26.341 0.5184 0.4151 0.3902 
Gilt -39.10 1.3783 0.02705 13.985 0.5282 0.2844 0.4542 
T-Bond 5.57 0.9446 0.01489 -3.721 0.7144 0.5101 0.4165 

D-mark -88.04 1.8833 0.01367 64.616 0.8296 0.6408 0.5891 
Pound -73.99 1.7310 0.01631 44.819 0.7461 0.5030 0.5482 
Yen -97.98 1.9837 0.01528 64.378 0.8058 0.7388 0.6463 
S-Franc -74.01 1.7753 0.02323 33.375 0.5881 0.5841 0.5077 

Table 9.7b, Regression Results for the Predicted Smile Behaviour from the Optimal 
Stochastic Volatility Model assuming that Underlying asset follows a Student-t Distribution 
against the Actual Smile Behaviour for Twelve Option Markets for the First Half of the 
Available Observations. 
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ß Standard Adjusted Sto-Vol Student-t 
Markets Intercept Coefficient Error T-Statistic R-squared -s uar R-squared 

S&P 500 -233.12 3.4670 0.04219 58.474 0.4698 0.6052 0.1754 
FTSE -135.56 2.3633 0.02472 55.150 0.6384 0.6183 0.4074 
DAX -133.63 2.3724 0.06702 20.477 0.4051 0.7463 0.3598 
Nikkei -126.59 2.2481 0.05632 22.161 0.5098 0.5574 0.3509 

Bund -52.82 1.5248 0.03305 15.879 0.3131 0.3972 0.2224 
BTP -94.19 1.9057 0.03036 29.832 0.4420 0.4627 0.2443 
Gilt -72.21 1.7243 0.02345 30.887 0.4452 0.4429 0.2601 
T-Bond -109.67 2.1214 0.01570 71.427 0.6974 0.6429 0.5165 

D-mark -78.39 1.7840 0.01162 67.470 0.7665 0.4614 0.6231 
Pound -90.14 1.8898 0.01433 62.094 0.7650 0.4235 0.6427 
Yen -104.19 2.0436 0.00971 107.477 0.8322 0.6121 0.7214 
S-Franc -91.92 1.9219 0.01303 70.752 0.7374 0.5239 0.5678 

Table 9.7c, Regression Results for the Predicted Smile Behaviour from the Optimal 
Stochastic Volatility Model assuming that Underlying asset follows a Student-t Distribution 
against the Actual Smile Behaviour for Twelve Option Markets for the Second Half of the 
Available Observations. 

Generally, we find that the combination model is much better at explaining the 

variance of the actual implied volatility patterns. If our criterion is R-squared, in most 

cases, this model is best. In twenty-three of the thirty-six cases, the combination 

model has the highest adjusted R squared (and thus the minimised error). All cases 

where this model is not the best, the pure stochastic volatility model was slightly 

superior. Regarding our other criterion, the slope coefficients are now much closer to 

one. Thus, we conclude that these models are better than the stochastic volatility 

models at capturing the amplitude of the empirical implied volatility surfaces. Of the 

three asset classes, the model best explains the behaviour of the foreign currency 

options. In many cases, the explained variance is above 75%. For the other asset 

classes, the explanatory power is probably being reduced given that the implied 

volatility patterns for these markets have significant first order strike price effects we 

are not capturing. Thus, it would appear that the pure stochastic volatility model is 

better at capturing the skewness effect found in the stock index and fixed income 

options. Nevertheless, it appears some class of stochastic volatility models best 

explains both the objective and risk-neutral processes for these twelve markets. 
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9.10 COMPARISON OF THE THREE MODELS FOR EXPLAINING THE 

DYNAMICS OF THE IMPLIED VOLATILITY SMILES 

Comparison by Minimised Least Squares 

Now that we have completed the least squares analysis for each market and for 

all three time periods, we can summarise our results. From Tables 9.7a, 9.7b and 9.7c, 

we have all the adjusted R-squared statistics for the three candidate models. These 

results are summarised in Table 9.8a for the four stock index options, in Table 9.8b 

for the four fixed income options and in Table 9.8c for the four foreign exchange 

options. We have also included a column that indicates which model is best. 

Markets 
(PERIOD) 

S&P 500 
Whole Period 
First Period 
Second Period 

FTSE 
Whole Period 
First Period 
Second Period 

DAX 
Whole Period 
First Period 
Second Period 

Nikkei 
Whole Period 
First Period 
0.5098 

Combo Sto-Vol Student-t BEST 
R-squared R-squared R-squared MODEL 

0.4828 0.5446 0.1803 Stochastic Volatility 
0.3749 0.3955 0.2065 Stochastic Volatility 
0.4698 0.6052 0.1754 Stochastic Volatility 

0.6657 0.5684 0.4292 Combination 
0.4849 0.3668 0.5045 Student-t 
0.6384 0.6183 0.4074 Combination 

0.4102 0.6873 0.3574 Stochastic Volatility 
0.3102 0.5611 0.2616 Stochastic Volatility 
0.4051 0.7463 0.3598 Stochastic Volatility 

0.3503 0.4778 0.2521 Stochastic Volatility 
0.3123 0.3906 0.1571 Stochastic Volatility Second Period 
0.5574 0.3509 Stochastic Volatility 

Table 9.8a, Comparisons of the Adjusted R-Squares Statistics for the Three Possible Models 
to explain the Dynamics of the Implied Volatility Smiles for Four Stock Index Options. 
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Combo Sto-Vol Student-t BEST 
Markets R-squared R-squared R-squared MODEL 

(PERIOD) 

Bund 
Whole Period 0.4210 0.4149 0.2559 Combination 
First Period 0.5185 0.4554 0.3044 Combination 
Second Period 0.3131 0.3972 0.2224 Stochastic Volatility 

BTP 
Whole Period 0.3824 0.4876 0.2839 Stochastic Volatility 
First Period 0.5184 0.4151 0.3902 Combination 
Second Period 0.4420 0.4627 0.2443 Stochastic Volatility 

Gilt 
Whole Period 0.4454 0.4319 0.2993 Combination 
First Period 0.5282 0.2844 0.4542 Combination 
Second Period 0.4452 0.4429 0.2601 Combination 

T-Bond 
Whole Period 0.7414 0.5595 0.5057 Combination 
First Period 0.7144 0.5101 0.4165 Combination 
Second Period 0.6974 0.6429 0.5165 Combination 

Table 9.8b, Comparisons of the Adjusted R-Squares Statistics for the Three Possible Models 
to explain the Dynamics of the Implied Volatility Smiles for Four Fixed Income Options. 

Combo Sto-Vol Student-t BEST 
Markets R-squared R-squared R-squared MODEL 

(PERIOD) 

D-mark 
Whole Period 0.7649 0.5887 0.6018 Combination 
First Period 0.8296 0.6408 0.5891 Combination 
Second Period 0.7665 0.4614 0.6231 Combination 

Pound 
Whole Period 0.7485 0.4514 0.6165 Combination 
First Period 0.7461 0.5030 0.5482 Combination 
Second Period 0.7650 0.4235 0.6427 Combination 

Yen 
Whole Period . 0.8113 0.6355 0.6969 Combination 
First Period 0.8058 0.7388 0.6463 Combination 
Second Period 0.8322 0.6121 0.7214 Combination 

S-Franc 
Whole Period 0.7286 0.5883 0.5388 Combination 
First Period 0.5881 0.5841 0.5077 Combination 
Second Period 0.7374 0.5239 0.5678 Combination 

Table 9.8c, Comparisons of the Adjusted R-Squares Statistics for the Three Possible Models 
to explain the Dynamics of the Implied Volatility Smiles for Four Foreign Exchange Options. 

From these results, we can confirm that in almost all cases a stochastic 

volatility model is required to best understand the implied volatility surface. For the 

stock index options, a simple stochastic volatility model tends to explain the highest 

variance. However, for the FTSE-100, the combination is better for the overall period 
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and for the second period and for the first period the Student-t model is the (only 

instance) best model for the FTSE-100. This is not surprising when we consider that 

the FTSE-100 has the highest second order strike price effect for the period. This can 

be seen in Table 8.2a where the coefficient 08) for the STRIKE2 was highest for the 

FTSE-100 and in Table 8.14 where the coefficient 049) for the FTSE* STRIKE2 also 

indicated a higher level of this effect. Thus, the Student-t distribution may required to 

address this effect. 

For the four fixed income options, the combination model also tends to be the 

best performing model (in terms of variance explained). The only exception is for the 

BTP (and the Bund in the second period). This could be due to the fact that the BTP 

has the highest degree of negative skewness relative to the other fixed income options. 

This effect can be seen in Table 8.13b, where the coefficient ((330) for the BTP* 

STRIKE variable demonstrates this fact. What is interesting is that it appears that the 

simple stochastic volatility may perform better when a significant negative skew 

exists. However, the combination model is best when the second order strike price 

effect (kurtosis) is dominant. 

Finally, for the foreign exchange options, the combination model is in all cases 

the best model. Fortunately, this means that we have a model that is consistent with 

the fact that we have a stochastic volatility process. Nevertheless, as was shown for 

the objective processes, the simple stochastic volatility models did not produce 

enough excess kurtosis relative to what we observe in the markets. A comparison of 

Figures 7.14a, 7.14b and 7.14c demonstrates that the foreign exchange options tend to 

have the highest levels of implied kurtosis. Thus, it is hardly surprising that the 

combination model captures this effect well when the kurtosis effect is consistently 

dominating the skewness effect. 
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Comparison by Averaged Differences in Predicted and Actual Results 

While the previous comparisons may be valid if our sole concern is minimised 

sum of squared errors, we may be drawing the wrong conclusions. Clearly, this test is 

relevant as we wish to minimise the errors from the models we predict. However, it is 

important to recognise that the R-squared of the regression measures the fit after 

adjusting the intercept and rescaling the effect of the predicted variable. Ideally, we 

would wish to obtain results with an intercept centred at the origin and a Beta 

coefficient of 1.0. For almost all the regression results, the intercepts are significantly 

different than zero (and negative) and the slope coefficients are significantly different 

than 1.0 (and greater). 

This suggests that although our models display a similar implied volatility 

surface, the scaling is wrong. Thus, we would be able to capture the shape of the 

implied volatility surface but would be unable (a priori) to accurately predict the 

actual observed implied volatilities. Only after the estimation of the regressions would 

we know that these predictions would require rescaling to be used. 

To better assess how well these models perform, another test was done that 

examined how different the raw predictions are compared to the observed 

standardised implied volatilities. This test took the averaged (absolute) differences 

between the predicted and observed observations. Specifically, we estimated this test 

using the following formula: 

N 

"ý VSI - VSI 2 (9.5) 
N Prod act i=l 

With this test, the resulting statistic will indicate the degree of divergence 

between the observed and predicted standardised volatilities and for our purposes, the 

best fitting model has the lowest average deviation. The results of this test for the 

twelve markets and for the three periods of analysis appear in Tables 9.9a (for the 
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stock index options), 9.9b (for the fixed income options) and 9.9c (for the four foreign 

exchange options). In these tables the column heading for the test statistic appears as 

RMSE. 

Combo Sto-Vol Student-t BEST 
Markets RMSE RMSE RMSE MODEL 

(PERIOD) 

S&P 500 
Whole Period 22.053 27.797 29.234 Combination 
First Period 19.210 21.263 23.893 Combination 
Second Period 29.486 30.078 32.125 Combination 

FTSE 
Whole Period 16.495 21.216 20.953 Combination 
First Period 12.125 13.580 12.555 Combination 
Second Period 20.488 23.429 23.169 Combination 

DAX 
Whole Period 16.964 18.629 17.411 Combination 
First Period 11.001 11.437 11.241 Combination 
Second Period 19.639 22.192 19.807 Combination 

Nikkei 
Whole Period 15.677 16.179 17.127 Combination 
First Period 14.252 15.354 16.329 Combination 
Second Period 16.358 17.670 18.111 Combination 

Table 9.9a, Comparisons of An Average Difference Test for the Three Possible Models to 
explain the Dynam ics of the Implied Volatility Smiles for Four Stock Index Options. 

Combo Sto-Vol Student-t BEST 
Markets RMSE RMSE RMSE MODEL 

(PERIOD) 

Bund 
Whole Period 10.658 11.532 12.208 Combination 
First Period 10.210 12.319 12.550 Combination 
Second Period 10.689 11.635 11.939 Combination 

BTP 
Whole Period 13.106 13.490 14.998 Combination 
First Period 10.109 11.159 11.669 Combination 
Second Period 14.988 16.472 16.746 Combination 

Gilt 
Whole Period 8.811 10.205 10.700 Combination 
First Period 7.244 9.598 8.854 Combination 
Second Period 9.617 10.681 11.266 Combination 

T-Bond 
Whole Period 12.533 20.285 22.326 Combination 
First Period 10.671 15.876 19.920 Combination 
Second Period 20.223 22.801 22.784 Combination 

Table 9.9b, Comparisons of An Average Difference Test for the Three Possible Models to 
explain the Dynamics of the Implied Volatility Smiles for Four Fixed Income Options. 

410 



Combo Sto-Vol Student-t BEST 
Markets RMSE RMSE RMSE MODEL, 

(PERIOD) 

D-mark 
Whole Period 8.128 10.121 10.055 Combination 
First Period 8.557 12.214 11.663 Combination 
Second Period 7.174 9.921 9.064 Combination 

Pound 
Whole Period 8.912 12.132 11.030 Combination 
First Period 7.228 10.368 9.723 Combination 
Second Period 9.662 13.474 11.879 Combination 

Yen 
Whole Period 10.806 14.175 12.617 Combination 
First Period 10.630 14.069 13.209 Combination 
Second Period 10.242 12.932 12.339 Combination 

S-Franc 
Whole Period 7.695 10.270 9.256 Combination 
First Period 9.875 10.929 10.621 Combination 
Second Period 7.227 9.227 8.446 Combination 

Table 9.9c, Comparisons of An Average Difference Test for the Three Possible Models to 
explain the Dynamics of the Implied Volatility Smiles for Four Foreign Exchange Options. 

The interpretation of the results is somewhat simplified given that the VSI 

methodology has indexed volatilities to 100. One could roughly interpret the 

deviations as the average percentage error between the predicted and actual 

standardised volatilities. Clearly, this error is highest for the stock index options. This 

varies between 11% to 30%. The most probable reason is these models cannot capture 

the negatively skewed first order strike price effect. The errors for the fixed income 

options are in the range of 7% to 30%. Again, this is most probably due to a similar 

reason. For the foreign exchange options, the errors are between 7% and 11%. As 

with the previous test, it appears that for markets where the second order strike price 

is dominant, our models perform best. 

Overall, this testing approach suggests that in all cases the combination model 

is the best alternative for capturing the dynamics of the actual implied volatility 

dynamics. While it is clear that significant prediction errors exist, it appears that the 

best models for explaining the objective processes are also best in capturing the 

dynamics in the implied volatility surface. 
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Implications of the Results 

At this point, it is useful to consider the implications of these results. We have 

already demonstrated that the implied volatility process is stochastic and we would 

therefore expect a stochastic volatility model to capture some of this effect. 

Unfortunately, even our best fitting stochastic volatility and combination models fail 

to explain all the variance in the implied volatility surface. The most likely reason for 

this is that the implied volatilities represent a risk-neutral surface and our optimal 

combination models represent an objective surface. Only under certain situations 

would we expect these to be identical. 

The existence of skews in the risk-neutral processes that are not justified by 

the historical processes suggests that other factors are at work. As was suggested 

previously, this could be due to a risk premium associated with the occurrence of 

negative jumps or even transaction costs. Nevertheless, there are also important 

consistencies between the two approaches to modelling the processes. 

In Chapter 5, we showed that the optimal combination model was superior to 

the optimal stochastic volatility in twenty-nine of the thirty-six comparisons. 

Furthermore, in all cases, some stochastic volatility model was superior in describing 

the objective process compared with the Student-t model. Similar results were 

obtained in this Chapter for the risk-neutral process. Of the thirty-six cases, only one 

was better described by the Student-t model. In the remaining thirty-five cases, the 

combination model was superior in twenty-three cases (if our criterion is R-squared). 

In the case that our criterion is based upon the average deviation in the predicted and 

actual standardised implied volatilities, in all cases the combination model was 

superior. 
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Thus, it would appear that both processes could best be understood with some 

form of a combination model including stochastic volatility and jumps. These results 

imply that the implied binomial tree methodology suggested by Rubinstein (1992), 

Derman and Kani (1994) and Dupire (1992,1994) is mis-specified. These approaches 

assume that the underlying price process follows some diffusion process and this is 

inconsistent with the existence of stochastic volatility and jumps that we have 

indicated exist in the implied volatility surfaces. 

Even so, it must be recognised that the implied volatility surfaces display more 

skewness and extreme curvature than is consistent with the objective processes. Thus, 

only a portion of the features of the implied volatility surface are explained by 

knowledge of the objective processes. 

Nevertheless, this result is consistent with previous research on the risk-neutral 

processes associated with options prices. Bates (1996) found similar results when he 

derived a model for pricing American options on stochastic volatility/jump-diffusion 

processes under systematic jump and volatility risk. He estimated the parameters 

implicit in Deutsche mark (DM) options for his model and tested various other models 

for the period 1984 to 1991 using a non-linear generalised least squares approach. 

Finally, these models were tested for consistency with $/DM futures prices and the 

implicit volatility sample path. He also found that a GBM stochastic volatility model 

could not explain the 'volatility smile' evidence of implicit excess kurtosis, except 

under parameters implausible given the time series properties of implicit volatilities. 

He concluded that Jump fears were necessary to explain the smile. 

Other research has also pointed to a similar conclusion. Jones (1984) has also 

argued that option pricing models should be derived that allow for both large and 

small asset-price changes, given the empirical evidence of such jumps. 
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Unfortunately, our findings present a challenge for further research. Firstly, it 

can be extremely difficult to incorporate jumps (which will no longer indicate that 

options can be priced using the preference free assumptions) into option pricing. 

Derman (1996) indicated that Fischer Black had suggested this problem. Black 

indicated that any model which described volatility smiles must include jumps. 

Derman states "... when Iraj Kani and I were working on models of the volatility 

smile, Fischer [Black] always insisted that anything we did would be unsatisfactory as 

long as we ignored the effect of the expectation of jumps on the implied distribution 

of the index, no matter how difficult that might be. No excuse about the difficulty of 

doing so, or the fact that jump models were usually not preference-free, placated him, 

because jumps were there. " (page 22) 

Thus, this research points ominously to the fact that many of the standard tools 

required for the determination of contingent claims may not be adequate in the 

presence of jumps. Given most of the best fitting models for both the objective and 

risk-neutral processes include Student-t distributions (which are a surrogate for such 

jumps), it is clear that as Black would no doubt say, these must be included to 

properly understand the nature of the dispersion processes of markets. 

9.11 CONCLUSIONS 

In this Chapter, we examined implied volatility surfaces that are consistent 

with models that explain the behaviours of the objective processes. By employing a 

Monte Carlo simulation technique, we estimated call options with a variety of strike 

prices. The simulations assumed that the underlying price process either followed a 

Student-t distribution, a GBM process with stochastic volatility, or a combination of 

the two. 
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Our findings were broadly consistent with those obtained for the objective 

processes. All markets display stochastic volatility and therefore require stochastic 

volatility models to understand their dynamics. Furthermore, jump processes are 

equally important and must be incorporated to fully understand the behaviour of the 

volatility surfaces. Depending upon the criteria used for the determination of the best 

models, the combination of stochastic volatility and jump process models is optimal. 

These models were especially effective for explaining the implied volatility 

surface for foreign exchange options. Nevertheless, they were less effective for stock 

index and fixed income options. These models fail to explain the negative skewness 

effect for these asset classes. The reason is simple: such extreme negative skewness is 

not significant in the objective processes so our models do not capture this. 

These findings suggest that significant divergences exist between the objective 

process and the risk neutral process implied by options prices. While the expected 

dispersion process for the underlying asset is a major determinant of option prices, 

market imperfections and perhaps risk premia seem be present. An alternative 

explanation is that we have assumed the simplest possible structure for risk premia 

and it is possible that this actual process may be more complex. Potential market 

imperfections could include transaction costs, the discrete nature of underlying and 

options prices or the lack of continuous trading in markets. 

It is left for future research to understand the nature of these differences in the 

objective and risk neutral processes. However, this research does point the way 

forward. This research has developed a clear methodology for the determination of the 

key conditions in the objective process that impact options values. This allows us to 

determine smile surfaces consistent with these processes. One could surmise (if the 

structure of the risk premium is as simple as we have assumed) the difference between 
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the objective surface and the empirical implied volatility surface could then be 

examined to understand the reasons. 

Of all these effects, the two major effects that must be examined are the 

negative skewness (implied in the actual implied volatility surface) and the difference 

in amplitude in the curvature. Research must examine the nature of these effects. It 

could very well be that the skewness effect is due to concerns about negative shocks 

or jumps. Given that such events are unhedgable, then the implied volatilities would 

include a risk premium for this event. The extreme amplitude in the risk-neutral 

volatility surface could be due to a number of complicated factors. These could 

include transaction costs, the fact that option sellers will not offer options at a price 

below some absolute minimum or other structural reasons. Nevertheless, because this 

research has been able to strip out the volatility surface explained by the objective 

processes, this future research will be considerably easier. 
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CHAPTER TEN 
CONCLUSIONS AND SUGGESTIONS 

FOR FURTHER RESEARCH 

Our initial objective was to understand the dynamics of the objective processes 

for twelve financial futures markets. Our first conclusion is that the objective 

processes for all twelve markets do not conform to the assumption of lognormality. 

Although we reject that the objective processes for these markets are stationary, we 

conclude that the objective processes display similar dynamics over different time 

periods. 

The second objective of this research was to determine which models best 

explain the dynamics of the objective process. We tested three classes of models: a 

jump diffusion model (simulated by a Student-t distribution) with constant variance, 

three stochastic volatility models (assuming the underlying price innovation followed 

Geometric Brownian motion) and a model combining jump diffusion with stochastic 

volatility. We found that for each market and for every period, a jump diffusion model 

was superior to a Geometric Brownian motion model. For the stochastic volatility 

models (assuming GBM price innovation), in thirty-four of the thirty-six cases, these 

models were superior to the jump diffusion model. Finally, for the combination 

model, we found that in all cases this combination model was superior to a jump 

diffusion model with constant variance. In addition, the combination model was 

superior to the (GBM) stochastic volatility models in twenty-nine of the thirty-six 

cases. 

In conclusion, we found that for all markets, to understand the objective 

process, one must allow volatility to be stochastic. Secondly, the evidence suggests 

that a jump diffusion process also describes the objective process. For some markets, 
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solely knowing the stochastic volatility process is sufficient to capture the dynamics 

of the objective dispersion process. However, for the vast majority of the markets (and 

time periods) under investigation, both a jump diffusion process and stochastic 

volatility interact in defining the behaviour of the objective process. 

This research then investigated the risk-neutral dispersion processes implied 

by options prices on these same twelve markets. The breadth and scope of this 

research goes beyond what has previously appeared in the literature. This was done by 

examination of the implied volatilities across strike prices and time (generating an 

implied volatility surface). To allow comparison of these processes within and 

between markets, a method for standardisation was determined. This standardisation 

allowed implied volatility surfaces to be drawn and directly compared. We conclude 

that a significant degree of consistency exists for the implied volatility surfaces for the 

same markets over all periods of analysis. Consistency is defined as displaying a 

similar shape and similar dynamics as a function of time. By assuming that the 

dynamics of the implied volatility surface at a single point in time could be captured 

as a quadratic function of the strike price, we were able to split the strike price biases 

into first order and second order effects. We also observed consistency in both of 

these effects for the same markets. 

An important result is that we also observed similarities in the implied 

volatility surfaces for markets in the same asset class. The stock index, fixed income 

and foreign exchange options all display similar first order and second order strike 

price effects. Given consistency exists, this suggests that similar mechanisms may be 

causing the strike price biases within asset classes. We then estimated functional forms 

for the implied volatility surface using an analysis of covariance approach. We conclude 

that while the implied volatility dynamics are clearly different for different markets, 
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there are a number of factors that affect all options markets in a similar way. We 

observe similar effects both within each asset class and for all markets. 

Specifically, it appears that all markets share a similar degree of absolute 

kurtosis and that the time dependency of this expected kurtosis is similar. This is 

somewhat surprising given the observed kurtosis found in the objective return series 

differed across the markets. The expected kurtosis rises as the expiration of the option 

is approached. For all markets, strike price effects (both first and second order) are 

inversely related to the level of the expected variance. An increase in the at-the- 

money volatility serves to increase a negative skew in the implied volatility pattern 

and decreases the curvature of the implied kurtosis in the pattern. 

These results suggest that the dynamics impacting the objective dispersion 

processes may also be affecting the risk-neutral dispersion processes. The existence of 

a consistent negative (skewed) first-order strike price effect might suggest that market 

participants are concerned about negative jumps. However, we did not observe a 

significant negative skew effect for the unconditional return series. Only two markets 

(and for a single period) of our twelve markets had significant negative skewness 

statistics in the unconditional return series. Yet, for all the stock indexes and fixed 

income options a negative (skewed) first-order strike price effect was found. Thus, it 

would appear that even though such a negative skew is not necessary warranted by the 

objective dispersion process, market participants consistently price options as if it 

were. We conclude that this effect is consistent with expectations of negative jumps. 

Therefore, it is consistent with the conclusions from modelling the objective 

dispersion processes: a jump-diffusion process is required. Furthermore, the time- 

dependency of the negative skew suggested that if such a jump diffusion process 

existed, the volatility for this process was stochastic. Finally, we established that the 
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implied volatility process is itself stochastic. Thus, for both the objective and risk 

neutral dispersion processes both jump diffusion and stochastic volatility models are 

required to capture the dynamics. This leads directly into the final Chapter where we 

assessed the relative contribution each of these models to understanding the dynamics 

of the risk-neutral processes. 

The final objective of this research was to examine the relative contributions 

of jump diffusion and stochastic volatility models to the dynamics of the risk neutral 

processes and to assess the relationship between the objective and risk neutral 

processes. This was achieved using a Monte Carlo simulation to determine implied 

volatility surfaces that were consistent with models that capture the dynamics of the 

objective processes. Our findings were broadly consistent with those obtained for the 

objective processes. All markets display stochastic volatility and therefore require 

stochastic volatility models to understand their dynamics. Furthermore, jump 

processes are equally important and must be incorporated to fully understand the 

behaviour of the volatility processes. Depending upon the criteria used for the 

determination of the best models, the combination of stochastic volatility and jump 

process models are optimal. 

These models were especially effective for capturing the dynamics of the 

implied volatility surface for foreign exchange options. Even so, it became clear that 

important discrepancies existed. By employing minimised least squared errors (OLS 

regression) as one of our criterion, we were able to understand some of the 

divergences between the objective and risk neutral processes. We observed that the 

slope coefficients for the regression between the objective and empirical implied 

volatilities were consistently above one. This suggests that while the optimal objective 
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models will produce (qualitatively) the right shape, the empirical volatility surfaces 

display greater amplitude. 

Furthermore, we observed that the optimal objective models were somewhat 

less effective for stock index and fixed income options (displaying further 

discrepancies). These models fail to explain the negative skewness effect for these 

asset classes. One reason for this is that negative skewness was not observed for the 

unconditional return series of most of the markets under investigation. This suggests 

that significant divergences exist between the objective dispersion processes and the 

risk neutral dispersion processes implied by options prices. While the expected 

dispersion process for the underlying asset is a major determinant of option prices, 

market imperfections and perhaps risk premia seem be present. An alternative 

explanation is that we have assumed the simplest possible structure for risk premia 

and it is possible that this actual process may be more complex. What is clear is that 

understanding the objective process does explain a majority of the dynamics of the 

implied volatility surface. What remains for further research is to understand the 

nature of the residual dynamics in the implied volatility surface. This may come from 

examination of a more complex risk premia functional form or from market 

imperfections. Such imperfections could include transaction costs, the discrete nature 

of underlying and options prices or the lack of continuous trading in markets. 

Furthermore, since negative jumps and stochastic volatility are known to exist and 

these factors are not currently spanned by instruments in the capital markets, risk 

premia may exist which effect options prices. 

This research points in a number of directions. The most obvious path to take 

is the understand the nature of the risk premium implied by the difference between the 

objective and risk neutral volatility surfaces. One approach would be to test whether 
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the close relationship we have identified would allow profitable trading opportunities. 

Of particular interest would be an examination of the risk reward trade-offs from such 

a strategy. It would also be interesting to assess the impacts of transaction costs 

Another line of research would be to examine the time series consistencies of 

the objective and risk neutral processes. Specifically, it would interesting to assess the 

time series behaviour of the at-the-money implied volatilities and compare these to 

the dynamics of implied volatilities consistent with the objective processes. This 

research would need to filter the actual implied volatilities to correct for noise and 

should estimate the true variability of the time series. 

Clearly one implication that both the objective and risk neutral processes 

include both jump processes and stochastic volatility is that the hedging of contingent 

claims must be re-examined. Tompkins (1997) examined the impact on hedging costs 

for both simple European calls and a range of Exotic options assuming volatility is 

stochastic. What should be done is to examine the costs of dynamic hedging 

contingent claims when both stochastic volatility and jumps are included. This 

research will provide future researchers an insight into what models would be 

consistent for such analysis. 

Finally, a number of papers have appeared in the literature that suggest that the 

diffusion process can be captured by knowledge of the implied volatility surface. We 

have shown that this approach is mis-specified. The first evidence is that the smile 

surface is not static but tends to remain centred at the forward price of the underlying 

asset. Secondly, these models assume a diffusion process. Since we have 

demonstrated that both the objective and risk neutral processes include stochastic 

volatility and jumps, this is clearly incorrect. What would be valuable would be to 

rework these models to be consistent with the processes suggested from this research. 
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Market: FTSE 
Contract: June 1996 

Market: FTSE 
Contract: September 1996 

Market: FTSE 
Contract: December 1996 

Strike Call Imnl_ vnl_ call Put ImnI vnI mit 

Strike CaII Imnl_ vnl call Put Imnl uni not 

2625 1092 4N/A 1 0.400817283 
2725 992.5 #N/A 1 0.36199124 
2825 893.5 #N/A 1 0.324289894 
2875 843.5 #N/A 1 0.305821098 
2925 794 #N/A 1 0.287585817 
2975 744.5 #N/A 1 0.269568103 
3025 695 #N/A 1 0.251751654 
3075 645.5 #N/A 1 0.234119565 
3125 595.5 #N/A 1 0.216654015 
3175 546.5 #N/A 1.5 0.210819832 
3225 497 #N/A 1.5 0.192841519 
3275 448 #N/A 1.5 0.174960178 
3325 399 #N/A 2 0.164465522 
3375 351 0.162671451 3.5 0.161467282 
3425 305 0.166067357 7.5 0.167370101 
3475 258 0.155895921 10 0.156398421 
3525 213 0.148750306 14.5 0.148725406 
3575 169.5 0.140019668 21 0.141031439 
3625 129.5 0.133184584 30.5 0.133747171 
3675 92 0.123377088 42.5 0.1236255 
3725 61 0.116513259 61 0.116513259 
3775 38 0.112989004 88 0.113744441 
3825 22 0.110769592 121.5 0.111368884' 
3875 12 0.109962382 161 0.110369231 
3925 6 0.109072286 204.5 0.109106298 
3975 2.5 0.106289642 251 0.109290654 
4025 1.5 0.112134934 299 #N/A 
4075 1 0.119285738 347.5 # N/A 
4125 1 0.132922452 397 #N/A 
4175 1 0.146202968 446.5 #N/A 
4225 1 0.159161212 496.5 # N/A 

3025 703.5 #N/A 5 0.188988847 
3125 609.5 #N/A 8 0.180059308 
3225 517 0.173841159 14 0.175384202 
3325 425 0.1607915 19.5 0.16133554 
3425 337.5 0.150968349 29.5 0.150894644 
3525 257 0.143788947 46.5 0.143347446 
3625 185.5 0.137642165 73.5 0.138165713 
3725 125.5 0.132366142 110.5 0.131989493 
3825 78.5 0.127625359 161.5 0.1275096 
3925 48 0.127636106 229 0.127814124 
4025 27.5 0.127304218 306 0.127084699 
4125 15.5 0.128595854 392 0.128836961 
4225 8 0.128465735 482 #N/A 

Strike C9II Imnl unl tall DI it Imnl uni nil? 

3125 639.5 #N/A 18 0.174028237 
3225 548 0.161959178 23 0.161719603 
3325 462.5 0.156273404 34 0.156385276 
3425 382.5 0.152273071 50 0.151974324 
3525 309.5 0.149511042 73.5 0.149463335 
3625 245 0.147867273 105.5 0.148 005968 
3725 187.5 0.145008806 144 0.144866048 
3825 135.5 0.139338646 188.5 0.139365345 
3925 93 0.133977403 242.5 0.134182217 
4025 63 0.131914942 308.5 0.131826299 
4125 42 0.131318153 384 0.131446942 
4225 28 0.132121488 466 0.131817727 
4325 18 0.132350426 553 #N/A 

Table 7.2 Option prices and implied volatilities for FTSE-100 as of May 7th. 1996 
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Market: S&P 
Contract: June 1996 

Strike Call Impl. vol. call Put Impl. vol. nut 
475 16405 #N/A 5 0.289612079 
480 15905 #N/A 5 0.280230418 
490 #N/A #N/A 10 0.281453716 
500 13905 #N/A 15 0.27470694 
510, 12905 #N/A 20 0.264173584 
520 11905 #N/A 25 0.251329516 
525 11405 #N/A 30 0.247298346 
530 10905 #N/A 35 0.242277389 
540 9920 0.196614869 55 0.237698319 
550 8940 0.200348154 75 0.227796743 
560 7970 0.199553859 105 0.218943316 
565 #N/A #N/A 130 0.216659894 
570 7025 0.200705056 160 0.214316285 
575 6560 0.199998484 190 0.210296517 
580 6090 0.195762098 220 0.204923778 
585 #N/A #N/A 250 0.198401112 
590 5170 0.187688845 295 0.193963978 
595 #N/A #N/A 345 0.188982122 
600 4280 0.179128729 400 0.183384083 
605 #N/A #N/A 470 0.178640195 
610 3435 0.17076599 550 0.173599359 
615 3035 0.16676626 645 0.168728486 
620 2640 0.161284973 750 0.163118311 
625 2270 0.15661553 875 0.157768811 
630 1920 0.151788543 1020 0.152339863 
635 1590 0.146525042 1190 0.14706047 
640 1290 0.141599476 1385 0.141599476 
645 1025 0.137244621 1615 0.136708119 
650 785 0.132138075 1870 0.131020989 
655 590 0.128343925 2175 0.127144368 
660 425 0.124167606 2505 0.1221578 
665 295 0.12034736 2875 0.118005222 
670 195 0.116541584 3270 0.11268644 
675 125 0.113539371 3700 0.10853133 
680 75 0.110271575 4150 0.103196655 
685 45 0.108388863 4620 0.097643907 
690 25 0.106059118 #N/A #N/A 
695 15 0.105838027 #N/A #N/A 
700 , 10 0.107440344 6095 #N/A 
705 5 0.105481208 #N/A #N/A 
710 5 0.112146201 7095 #N/A 
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Market: S&P 
Contract: September 1996 

Strike Call Imnl_ vol_ call Pitt lmnl uni nit 
510 134.6 0.256015545 1.55 0.226263803 
520 #N/A #N/A 1.95 0.221050596 
525 #N/A #N/A 2.15 0.21768322 
530 #N/A #N/A 2.9 0.224851425 
540 #N/A #N/A 3.25 0.214093239 
550 96.95 0.213539465 3.95 0.207781296 
560 #N/A #N/A 4.65 0.199592391 
570 #N/A #N/A 5.6 0.192738241 
575 74.4 0.191215409 6.15 0.189363642 
580 70.05 0.187240176 6.75 0.185953025 
585 #N/A #N/A 7.4 0.182462188 
590 #N/A #N/A 8.15 0.179311785 
595 #N/A #N/A 8.95 0.175960676 
600 53.5 0.173586327 9.9 0.173212834 
610 45.75 0.167135827 12 0.167099923 
615 #N/A #N/A 13.2 0.164037764 
620 38.5 0.161349007 14.55 0.161247566 
625 35.05 0.158435827 16 0.15830436 
630 31.75 0.155657203 17.6 0.155496772 
635 28.5 0.152294838 19.3 0.152432679 
640 25.45 0.149285397 21.15 0.149390228 
645 22.65 0.146879226 23.2 0.146632056 
650 19.8 0.143101198 25.3 0.143143417 
655 17.4 0.141110368 27.8 0.141121685 
660 15.1 0.138631066 30.4 0.138610754 
665 12.95 0.135948745 #N/A #N/A 
670 11 0.13337405 36.1 0.133284449 
675 9.25 0.130910829 39.3 0.131149766 
680 7.7 0.128584758 #N/A #N/A 
690 5.05 0.123234402 #N/A #N/A 
695 3.95 0.120183699 #N/A #N/A 
700 3 0.116873271 #N/A #N/A 
705 2.45 0.116712747 #N/A #N/A 
710 1.95 0.115983848 #N/A #N/A 
715 1.5 0.114611193 #N/A #N/A 
720 1.15 0.113527195 75.9 0.124601244 
725 0.9 0.113204317 #N/A #N/A 
730 0.7 0.112924273 #N/A #N/A 
740 0.4 0.111783154 #N/A #N/A 
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Market: S&P 
Contract: December 1996 

Strike Call Impl. vol. call Put Impl. vol. put 
540 #N/A #N/A 5.2 0.196649233 
550 103.75 0.197234999 6.1 0.19147353 
560 #N/A #N/A 7.45 0.189005126 
570 #N/A #N/A 8.9 0.185474435 
575 #N/A #N/A 9.65 0.183247521 
580 #N/A #N/A 10.4 0.180613104 
590 #N/A #N/A 12 0.174886152 
600 62.45 0.169053842 13.75 0.16859696 
610 54.9 0.163453214 15.95 0.163395121 
620 48.05 0.159952065 18.8 0.159971015 
625 44.8 0.158352145 20.4 0.158406605 
630 41.7 0.156989854 22.15 0.157078385 
640 35.65 0.153333039 25.8 0.153487088 
650 30.05 0.149637031 29.85 0.149605678 
660 25.1 0.146767277 34.6 0.146803098 
670 20.6 0.14363376 39.75 0.143483807 
675 18.5 0.141851209 42.5 0.141733529 
680 16.6 0.140438626 45.45 0.140353938 
690 13 0.136606189 51.6 0.136873272 
700 10 0.133245729 58.35 0.133924825 
710 7.55 0.130274766 #N/A #N/A 
725 4.55 0.124478029 #N/A #N/A 
730 3.9 0.123777667 #N/A #N/A 
740 2.95 0.12381632 #N/A #N/A 
750 2.25 0.124394694 #N/A #N/A 
760 , 1.95 0.128687322 109.85 0.148096422 
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! '1 Strike Call Impl. vol. call Put Impl. Vol. 
-Put Market: NIKKEI 

Contract: June 1996 

b 

v 

Market: NIKKEI 
Contract: September 1996 

r 
i 

* 

A 

1450 #N/A #N/A 0 #N/A 
1750 #N/A #N/A 0 #N/A 
1800 #N/A #N/A 0.5 0.222627662 
1900 245 #N/A #N/A #N/A 
1950 199 0.178449683 4 0.190138656 
2000 153 0.174385878 8 0.181441191 
2050 111.5 0.173836527 16 0.176208522 
2100 74 0.165353675 27 0.161595176 
2150 43.5 0.156448563 47.5 0.156448563 
2200 23.5 0.15472575 77 0.152820323 
2250 12.5 0.159491193 116 0.157010332 
2300 6 0.161762364 159 0.154077603 
2400 0.5 0.147464172 #N/A #N/A 

i 

r 
E 

Strike Call Imnl_ vol_ call Put Imol. vol. nut 
2050 150 0.176298955 #N/A #N/A 
2100 118 0.173286192 #N/A #N/A 
2150 92 0.173915465 #N/A #N/A 
2200 67 0.167948611 #N/A #N/A 
2250 50 0.16945863 #N/A #N/A 
2300 33.5 0.163515782 #N/A #N/A 
2400 16 0.164578286 #N/A #N/A 
2500 6.5 0.162593747 #N/A #N/A 
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Market: DAX 
Contract: June 1996 

Strike Call Imol. vol. call Put Imol. vol. auf 
2175 300.6 0.183900326 1.4 0.185138239 
2200 276 0.175733329 1.7 0.176827798 
2225 251.9 0.173541081 2.5 0.174404504 
2250 228 0.16999292 3.5 0.170700396 
2275 204.3 0.165044752 4.7 0.165642269 
2300 180.8 0.158694007 6.1 0.159210683 
2325 157.8 0.152668136 8 0.153116186 
2350 136.1 0.149954768 11.2 0.150338755 
2375 114.6 0.143831218 14.7 0.144580011 
2400 94.8 0.140082925 19.7 0.140393056 
2425 77.3 0.138981518 26.9 0.138637779 
2450 60.4 0.134190974 35.2 0.134764625 
2475 45.4 0.129341336 45 0.129621933 
2500 33.5 0.127244395 58.1 0.127832002 
2525 23.3 0.123610517 72.7 0.123939141 
2550 15.5 0.120609481 89.8 0.120996759 
2575 9.9 0.11839222 109.2 0.119310697 
2600 6.2 0.117476978 130.4 0.118668219 
2625 3.6 0.115730211 152.6 0.116633166 
2650 2 0.114380754 176 0.116812814 
2675 1.1 0.113966116 199.9 0.116051774 
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Market: BUND 
Contract: June 1996 

Sfrika ('-nil Imr I vnl 'rill PI of Irrºnl vnl rm, f 

92 3.74 0.091499756 0.01 0.091499756 
92.5 3.25 0.090058942 0.02 0.090058942 

93 2.76 0.084303569 0.03 0.084303569 
93.5 2.27 0.076045273 0.04 0.076045273 

94, 1.8 0.07196578 0.07 0.07196578 
94.5 1.35 0.067446927 0.12 0.067446927 

95 0.94 0.063675098 0.21 0.063675098 
95.5 0.6 0.061580905 0.37 0.061580905 

96 0.34 0.059656634 0.61 0.059656634 
96.5 0.17 0.058546419 0.94 0.058546419 

97 0.08 0.059283974 1.35 0.059283974 
97.5 0.03 0.05837707 1.8 0.05837707 

98 0.02 0.065477866 2.29 0.065477866 
98.5 0.01 0.068614707 2.78 0.068614707 
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Market: BTP 
Contract: June 1996 

Strike Call Imnl vnl call Put ImnI vnI noif 
105 8.82 0.165638024 0.01 0.165638024 

105.5 8.33 0.171917199 0.02 0.171917199 
106 7.83 0.162609821 0.02 0.162609821 

106.5 7.34 0.162876153 0.03 0.162876153 
107 6.84 0.153080261 0.03 0.153080261 

107.5 6.35 0.150270953 0.04 0.150270953 
108 5.85 0.140035103 0.04 0.140035103 

108.5 5.36 0.135161204 0.05 0.135161204 
109 4.86 0.124477716 0.05 0.124477716 

109.5 4.37 0.117975703 0.06 0.117975703 
110 3.87 0.106790199 0.06 0.106790199 

110.5 3.4 0.104959715 0.09 0.104959715 
111 2.92 0.097759941 0.11 0.097759941 

111.5 2.49 0.098873805 0.18 0.098873805 
112 2.06 0.095502884 0.25 0.095502884 

112.5 1.66 0.09278145 0.35 0.09278145 
113 1.3 0.090837516 0.49 0.090837516 

113.5 0.99 0.089838244 0.68 0.089838244 
114 0.71 0.086998827 0.9 0.086998827 

114.5 0.5 0.086436754 1.19 0.086436754 
115 0.32 0.08363016 1.51 0.08363016 

115.5 0.2 0.082620349 1.89 0.082620349 
116 0.1 0.077820367 2.29 0.077820367 

116.5 0.05 0.07596849 2.74 0.07596849 
117, 0.03 0.078179581 3.22 0.078179581 

117.5 0.02 0.081866384 3.71 0.081866384 
118 0.01 0.081882192 4.2 0.081882192 

118.5 0.01 0.090047796 4.7 0.090047796 
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Market: GILT 
Contract: June 1996 

Market: GILT 
Contract: September 1996 

Strike Call Imol. vol. call Put Imol. vol. Dut 
100 4.60938 0.107070582 0.01563 0.107070582 
101 3.625 0.09744759 0.03125 0.09744759 
102 2.67188 0.091621949 0.07813 0.091621949 
103 1.79688 0.088584931 0.20313 0.088584931 
104 1.01563 0.080354555 0.42188 0.080354555 
105 0.48438 0.078809965 0.89063 0.078809965 
106 0.1875 0.078440149 1.59375 0.078440149 
107 0.0625 0.079979352 2.46875 0.079979352 
108 0.01563 0.080020444 3.42188 0.080020444 

Strike Call Imol. vol. call Put Imol. vol. out 
94 9.5625 0.095584492 0.0625 0.095584492 
95 8.60938 0.096487601 0.10938 0.096487601 
96 7.65625 0.093999503 0.15625 0.093999503 
97 6.71875 0.091194011 0.21875 0.091194011 
98 5.79688 0.087692216 0.29688 0.087692216 
99 4.9375 0.086702785 0.4375 0.086702785 

100 4.10938 0.084559131 0.60938 0.084559131 
101 3.34375 0.082789799 0.84375 0.082789799 
102, 2.65625 0.081476518 1.15625 0.081476518 
103 2.01563 0.078666884 1.51563 0.078666884 
104 1.48438 0.076883727 1.98438 0.076883727 
105 1.04688 0.075152795 2.54688 0.075152795 
106 0.71875 0.07431702 3.21875 0.07431702 
107 0.48438 0.074241768 3.98438 0.074241768 
108 0.28125 0.071506792 4.78125 0.071506792 
109 0.1875 0.073042361 5.6875 0.073042361 
110 0.14063 0.076776501 6.64063 0.076776501 
111 0.07813 0.075538565 7.57813 0.075538565 
112 0.04688 0.076043558 8.54688 0.076043558 
113 0.03125 0.077995721 9.53125 0.077995721 
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Market: USTB 
Contract: June 1996 

Strike Call Impl. vol. call Put Impl. vol. Put 
74 #N/A #N/A 0.01563 0.801788669 
78 #N/A #N/A 0.01563 0.696492029 
84 #N/A #N/A 0.01563 0.546468283 
86 #N/A #N/A 0.01563 0.498245953 
90 #N/A #N/A 0.01563 0.403985177 
92 #N/A #N/A 0.01563 0.357764893 
94 #N/A #N/A 0.01563 0.312010479 
96 #N/A #N/A 0.01563 0.266590188 
98 8.95313 0.241293522 0.01563 0.221334582 

100, 6.95313 0.189522176 0.01563 0.176005098 
102 4.95313 0.13820943 0.01563 0.130217996 
103 #N/A #N/A 0.03125 0.120112939 
104 3 0.110855354 0.0625 0.109111524 
105 2.09375 0.104865647 0.15625 0.104209543 
106 1.3125 0.102382078 0.375 0.102166985 
107 0.71875 0.101328493 0.78125 0.101341121 
108 0.32813 0.099691422 1.39063 0.099942725 
109 0.125 0.09918443 2.1875 0.099944457 
110 0.03125 0.094733925 3.09375 0.097294131 
111 0.01563 0.105777668 4.07813 0.111464016 
112 0.01563 0.126946237 5.07813 0.134868675 
113 0.01563 0.14745282 6.07813 0.157824823 
114 0.01563 0.167404211 7.07813 0.180408802 
116 0.01563 0.205916799 9.07813 0.224643577 
118 0.01563 0.242876791 11.0781 0.267820262 
120 0.01563 0.278526273 13.0781 0.310078081 
122 0.01563 0.313031775 15.0781 0.351506706 
124 0.01563 0.346516496 17.0781 0.392169731 
126 0.01563 0.37907617 19.0781 0.432115614 
128 0.01563 0.410787769 #N/A #N/A 
130 0.01563 0.441714746 23.0781 0.510009353 
132 0.01563 0.471910473 25.0781 0.548011748 
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Market: DM 
Contract: June 1996 

Market: DM 
Contract: September 1996 

Market: DM 
Contract: December 1996 

Strike Call Imnl. vol. call Put Imnl. vol. nut 
620 376 0.104177396 2 0.098454883 
625 #N/A #N/A 3 0.093610352 
630 279 0.091818832 5 0.090609289 
635 #N/A #N/A 7 0.083966189 
640, 186 0.081379729 12 0.081756007 
645 #N/A #N/A 20 0.079711005 
650 107 0.078058535 32 0.077562619 
655 75 0.076549316 50 0.076400375 
660 50 0.076110416 75 0.076258792 
665 33 0.078058803 108 0.078547164 
670 22 0.081485832 146 0.08082553 
675 14 0.083795325 188 0.083448821 
680 9 0.086765037 233 0.086944882 
685 6 0.090580438 280 0.091641132 
690 4 0.09421494 328 0.096695439 
695 3 0.099757953 #N/A #N/A 
700 2 0.102888163 426 , 0.110265894 
705 1 0.101708807 #N/A #N/A 
710 ,1 0.110509723 525 #N/A 

Strike Call Imnl. vol. call Put ImDl. vol. out 
600 #N/A #N/A 0.9 0.104105804 
610 #N/A #N/A 1.5 0.10134975 
620 43.1 0.099496431 2.4 0.098137421 
630 34.8 0.097648197 4 0.097295115 
640, 27.3 0.09669105 6.4 0.096965076 
650 20.8 0.096533568 9.7 0.096576914 
660 15.3 0.096283721 14 0.096137122 
670 10.9 0.096418551 19.4 0.096077977 
680 7.5 0.096612222 25.9 0.096762933 
690 5 0.096991042 33.2 0.096923915 
700 3.3 0.098179459 41.4 0.098836833 
710 2.1 0.09898082 50.1 0.100762168 
720 1.4 0.101508477 59.4 0.106585774 
730 1 0.105582916 69 0.115134272 
740 0.6 0.105913315 78.7 #N/A 
750 0.4 0.108457643 88.7 #N/A 
760 0.3 0.112833644 98.7 #N/A 
770 0.1 0.105501993 108.7 #N/A 

Strike Call Imnl_ vnI call Put Imnl_ vol_ nut 
600 66.6 0.112553449 #N/A #N/A 
610 57.7 0.107094071 3.5 0.1040288 
620 49.5 0.105223698 5.1 0.10341486 
630 41.8 0.103621575 7.2 0.10269081 
640, 34.6 0.101699005 9.8 0.101417892 
650 #N/A #N/A 13.2 0.100955316 
660 22.7 0.100676283 17.4 0.100872591 
670 18 0.100883414 22.4 0.101044933 
680 14 0.100912802 28.1 0.1010449 26 
690 

, 
10.8 0.101525302 34.6 0.101629755 

700 8.2 0.102051801 41.8 0.102729591 
710 6.2 0.10299961 #N/A #N/A 
720 4.6 0.10363685 #N/A #N/A 
730 3.4 0.104530151 #N/A #N/A 
740 2.4 0.104399494 75.4 0.111775979 
750 1.7 0.104781858 84.8 0.118263122 
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f ohl- 

l 

Market BP 
Contract: June 1996 

Market BP 
Contract: September 1996 

Market BP 
Contract: December 1996 

Strike Call Imnl_ vol- call Put Imnl. vol_ nut 
1440 #N/A #N/A 2 0.071732541 
1450 #N/A #N/A 4 0.070027959 
1460 #N/A #N/A 6 0.064806042 
1470 #N/A #N/A 10 0.060615642 
1480 #N/A #N/A 18 0.05749464 
1490 228 0.056525639 34 0.055867509 
1500 156 0.055406118 62 0.055148419 
1510 90 0.050078823 96 0.050094166 
1520 52 0.051352316 156 0.050465188 
1530 28 0.052624704 234 0.053360583 
1540 18 0.057936901 322 0.057386962 
1550 10 0.06038825 414 0.06028091 
1560 6 0.063910007 510 0.064746299 

'1570 4 0.068419821 #N/A #N/A 
1580, 2 0.069492282 #N/A #N/A 

Strike Call Imnl. vol. call Put Imol. vol. out 
1400 #N/A #N/A 1.2 0.075238243 
1420 #N/A #N/A 2.2 0.07270351 
1440 #N/A #N/A 4.4 0.07277132 
1460 #N/A #N/A 7 0.068629486 
1480 40 0.06856317 12.2 0.068292189 
1500 27.6 0.06738903 19.6 0.067562123 
1520 18.6 0.068676266 30.2 0.068683056 
1540 11.6 0.068553638 42.8 0.068375194 
1560 7 0.069285545 58 0.069636977 
1580 4.2 0.070915611 75 0.072114909 
1600 3 0.076313018 #N/A #N/A 
1620 1.8 0.078045079 #N/A #N/A 
1660 0.8 0.084752894 #N/A #N/A 
1680 0.6 0.089327028 #N/A #N/A 

Strike Call Imol. vol. call Put Imol. vol. nut 
1400 #N/A #N/A 4.6 0.078385147 
1420 #N/A #N/A 7 0.07699717 
1460 61.8 0.077380081 16 0.076913391 
1480 #N/A #N/A 22.6 0.076514772 
1500, 37.8 0.076408484 31 0.076396359 
1520 28.6 0.076451732 41.2 0.076410341 
1540 21 0.076271399 53 0.076197076 
1560 15.2 0.076645539 #N/A #N/A 
1580 10.6 0.076557923 #N/A #N/A 
1600 7.2 0.076525147 #N/A #N/A 
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Market: JY 
Contract: June 1996 

Strike Call Impl. vol. call Put Impl. vol. put 
880 #N/A #N/A 1 0.114721622 
885 #N/A #N/A 1 0.107867966 
890 #N/A #N/A 2 0.111049842 
895 #N/A #N/A 2 0.103645958 
900 570 0.106282449 3 0.102583836 
905 #N/A #N/A 4 0.099618608 
910 472 0.096212335 5 0.095387512 
915 #N/A #N/A 7 0.093206228 
920 376 0.08866243 9 0.089260757 
925 331 0.088837753 13 0.087880818 
930 287 0.087669904 19 0.087255123 
935 245 0.086522965 27 0.08647408 
940 206 0.085969147 38 0.086181607 
945 170 0.085362697 52 0.085779026 
950 140 0.087018969 71 0.086729366 
955 113 0.087865662 94 0.087788747 
960 90 0.088853773 121 0.088979469 
965 72 0.091018611 153 0.091358765 
970 57 0.092974621 187 0.092617274 
975 46 0.096138013 #N/A #N/A 
980 37 0.099106759 267 0.099215872 
985 29 0.101050419 309 0.101477988 
990 24 0.104962596 353 0.104340153 
995 19 0.107223081 398 0.106902516 

1000 15 0.109401863 444 0.109489048 
1005 13 0.114144973 #N/A #N/A 
1010 11 0.117968071 540 0.119235508 
1020 7 0.122158014 636 0.125435786 
1025 6 0.125857256 #N/A #N/A 
1030 5 0.128757284 734 0.13487542 
1040 4 0.137299282 833 0.146805084 
1050 3 0.143845717 932 0.157952342 
1060 2 0.147566532 1031 #N/A 
1070 1 0.146040875 1131 #N/A 
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Market: JY 
Contract: September 1996 

Market: JY 
Contract: December 1996 

Strike Call Imnl. vol. call Put Imnl_ vol_ out 
840 #N/A #N/A 0.5 0.119630674 
860 #N/A #N/A 0.9 0.113409058 
870 #N/A #N/A 1.2 0.11020301 
880 88.9 0.115410042 1.7 0.108489501 
890, 79.6 0.110811949 2.4 0.107020698 
900 70.6 0.107667422 3.4 0.106117761 
910 62 0.105775796 4.7 0.105028185 
920 53.9 0.104866033 6.5 0.104694405 
930 46.4 0.104744117 8.8 0.104432275 
940 39.3 0.103814001 11.6 0.103898359 
950 33.1 0.104387748 15.2 0.104330464 
960 27.6 0.105144375 19.5 0.104959755 
970 22.7 0.105607656 24.5 0.105746023 
980 18.5 0.106304245 30.1 0.106314803 
990 15 0.107399652 36.4 0.107275887 

1000 12.2 0.109203312 43.5 0.109429962 
1010 9.8 0.110583905 50.9 0.110674553 
1020 7.8 0.11180431 58.8 0.11233139 
1030 6.2 0.113216621 67 0.113615722 
1040 5 0.115331169 75.7 0.11631711 
1050 4 0.117165843 84.7 0.119736212 
1060 3.1 0.118022071 93.7 0.121690146 
1070 2.5 0.120181496 #N/A #N/A 
1080 2 0.122065731 112.5 0.129863111 
1090 1.7 0.125481521 122.2 0.13640219 
1100 1.5 0.12966757 132 0.143929995 
1110 1.3 0.133191983 141.9 0.15261782 
1120 1.1 0.135961937 151.8 #N/A 
1130 0.9 0.137826694 #N/A #N/A 

Strike Call lmnL vol_ call Put lmnl_ vol_ nut 
850 #N/A #N/A 1.6 0.111829658 
860 #N/A #N/A 2.2 0.111713339 
870 110.5 0.123043363 #N/A #N/A 
880 #N/A #N/A 3.7 0.109438236 
890 92.3 0.113613103 4.9 0.109452887 
900 #N/A #N/A 6.4 0.10955796 
910 #N/A #N/A 8.2 0.109525859 
920 #N/A #N/A 10.4 0.109698453 
930 #N/A #N/A 13 0.109882477 
940 54.3 0.110189816 16 0.109968927 
950 48 0.110128732 19.4 0.109896004 
960 42.2 0.110229897 23.3 0.109983507 
970 37 0.110790581 27.9 0.110874154 
980 32.3 0.111447503 32.9 0.111507754 
990 28.1 0.112241531 38.4 0.112279512 

1000 24.3 0.112892253 #N/A #N/A 
1010 21 0.113833877 #N/A #N/A 
1020 18.1 0.114827533 #N/A #N/A 
1030 15.3 0.114826775 64.5 0.115159874 
1040 , 13 0.115445235 #N/A #N/A 
1050 11 0.11604927 79.8 0.117261725 
1060 9.2 0.116297996 #N/A #N/A 
1070 7.8 0.117308419 96.2 0.119709489 
1080 6.5 0.117727073 104.8 0.1 21 457846 
1090 5.5 0.118817774 113.7 0.124089687 
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Market: SF 
Contract: June 1996 

Market: SF 
Contract: September 1996 

Strike Call imnl uni call Put 1mnl vnl not 

760 #N/A #N/A 4 0.109417205 
765 #N/A #N/A 5 0.103961662 
770 #N/A #N/A 7 0.100723124 
775 #N/A #N/A 9 0.095424338 
780 #N/A #N/A 13 0.092839197 
785 #N/A #N/A 20 0.092549746 
790 198 0.087163265 27 0.088550159 
795 #N/A #N/A 38 0.086408826 
800 127 0.086894989 55 0.086894989 
805, 97 0.085910874 75 0.085910874 
810 72 0.085364184 100 0.085364184 
815 54 0.087353759 132 0.087353759 
820 40 0.089419282 167 0.088247421 
825 29 0.091096389 206 0.089752717 
830 20 0.091576319 247 0.089960165 
835 14 0.093125173 291 0.091130671 
840 10 0.095436469 337 0.092938296 
845 8 0.100349046 384 0.094124384 
850 6 0.103510257 432 0.095541725 
855 4 0.104230096 #N/A #N/A 
860 3 0.107267777 529 0.091019099 
865 2 0.108212203 #N/A #N/A 
870 1 0.105202595 628 #N/A 

Strike Call Imel_ vol_ call Put Imel_ vol_ nut 
750 #N/A #N/A 2.3 0.109056061 
760 #N/A #N/A 3.4 0.10776552 
770 #N/A #N/A 5 0.107245608 
780 #N/A #N/A 7.1 0.106491788 
790 #N/A #N/A 9.9 0.106268647 
800 27.7 0.106284192 13.4 0.106011546 
810 22.1 0.105883818 17.7 0.106006435 
820 17.4 0.106174244 22.8 0.106143797 
830 13.4 0.106158751 28.6 0.1059 69457 
840 10.2 0.1066477 35.3 0.106868237 
850 7.6 0.10691139 42.5 0.106968482 
860 5.6 0.107473052 50.4 0.108074219 
870 4 0.107479286 58.7 0.108818968 
880 3.1 0.110669064 67.7 0.112957724 
890 2.2 0.111169284 76.7 0.114833251 
900 1.6 0.112626061 #N/A #N/A 
910 1.2 0.114894888 #N/A #N/A 
920 1 0.119436799 #N/A #N/A 
930 0.8 0.12280265 #N/A #N/A 
940 0.6 0.124658548 #N/A #N/A 
950 0.4 0.124290224 #N/A #N/A 
960 0.3 0.126190776 #N/A #N/A 
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Market: SF 
Contract: December 1996 

Strike Call Impl. vol. call Put Impl. vol. put 
780 #N/A #N/A 11.4 0.113224126 
790 #N/A #N/A 14.4 0.11 3009567 
800 39.4 0.112967285 17.9 0.112756494 
810 33.8 0.11302492 22 0.112795295 
820, 28.7 0.112901575 26.7 0.11305832 
830 24.1 0.112612161 31.8 0.112742146 
840 20.1 0.112607097 37.5 0.112712339 
850 16.6 0.112566145 43.7 0.112647151 
860 13.7 0.113075646 50.6 0.113586732 
870 11.2 0.113452509 #N/A #N/A 
880 9.1 0.113890583 #N/A #N/A 
890 7.3 0.114075586 #N/A #N/A 
900 5.9 0.114857489 #N/A #N/A 
910 4.7 0.115289705 #N/A #N/A 
920 3.8 0.116389725 #N/A #N/A 
930 3 0.11684675 #N/A #N/A 
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