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ABSTRACT  The target of rapamycin (TOR) is an important signaling pathway 

on a hierarchical network of interacting pathways regulating central biological 

processes, such as cell growth, stress response and aging. Several lines of evi-

dence suggest a functional link between TOR signaling and sphingolipid me-

tabolism. Here, we report that the TORC1-Sch9p pathway is activated in cells 

lacking Isc1p, the yeast orthologue of mammalian neutral sphingomyelinase 

2. The deletion of TOR1 or SCH9 abolishes the premature aging, oxidative 

stress sensitivity and mitochondrial dysfunctions displayed by isc1Δ cells and 

this is correlated with the suppression of the autophagic flux defect exhibited 

by the mutant strain. The protective effect of TOR1 deletion, as opposed to 

that of SCH9 deletion, is not associated with the attenuation of Hog1p hyper-

phosphorylation, which was previously implicated in isc1Δ phenotypes. Our 

data support a model in which Isc1p regulates mitochondrial function and 

chronological lifespan in yeast through the TORC1-Sch9p pathway although 

Isc1p and TORC1 also seem to act through independent pathways, as 

isc1Δtor1Δ phenotypes are intermediate to those displayed by isc1Δ and 

tor1Δ cells. We also provide evidence that TORC1 downstream effectors, the 

type 2A protein phosphatase Sit4p and the AGC protein kinase Sch9p, inte-

grate nutrient and stress signals from TORC1 with ceramide signaling derived 

from Isc1p to regulate mitochondrial function and lifespan in yeast. Overall, 

our results show that TORC1-Sch9p axis is deregulated in Isc1p-deficient cells, 

contributing to mitochondrial dysfunction, enhanced oxidative stress sensitiv-

ity and premature aging of isc1Δ cells. 

 

Reduced TORC1 signaling abolishes mitochondrial 

dysfunctions and shortened chronological lifespan of 

Isc1p-deficient cells 

 

Vitor Teixeira1,2, Tânia C. Medeiros1, Rita Vilaça1,2, Pedro Moradas-Ferreira1,2, and Vítor Costa1,2,* 
1 Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal 
2 Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo 

Ferreira, 228, 4050-313 Porto, Portugal 

* Corresponding Author: Vítor Costa, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823; 4150-180 Porto, Portugal; 

Tel: +351 22 6074960; Fax: +351 22 6099157; E-mail: vcosta@ibmc.up.pt 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION 

Sphingolipids are ubiquitous structural components of eu-

karyotic cell membranes, and their bioactive metabolites 

(sphingosine, sphingosine-1-phosphate, ceramide, 

ceramide-1-phosphate and lyso-sphingomyelin) are known 

to act as second messengers in the regulation of signaling 

pathways [1-6]. Sphingosine (and related sphingoid bases) 

and ceramide are involved in the regulation of actin cyto-

skeleton organization, endocytosis, degradation of nutrient 

permeases, apoptosis, cell senescence and cell cycle arrest 

whereas sphingosine-1-phosphate plays a key role in pro-

liferation, mitogenesis, cell migration, cell survival and in-

flammation (in higher eukaryotes) [5]. Thus, subtle varia-

tions on the relative amounts of sphingosine-1-phosphate 

and sphingosine/ceramide are expected to determine cell 

fate in response to environmental or metabolic stresses. 

The importance of sphingolipids is recognized by the fact 

that sphingolipid signaling is implicated in the pathobiology 

of cancer and other human diseases such as diabetes, 

heart disease, microbial infections, neurological and im-

mune dysfunctions [7-11]. 

Sphingolipids metabolism and their route of synthesis 

are highly conserved from yeast to mammalian cells. Stud-

ies using the budding yeast Saccharomyces cerevisiae have 
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served in many ways to foster our understanding of sphin-

golipid dynamics and their role in the regulation of cell 

cycle, cell integrity, endocytosis, cytoskeleton dynamics 

and protein turnover [4,5]. Additionally, sphingolipids have 

been implicated in the regulation of stress responses and 

longevity. For instance, yeast mutants lacking Ydc1p (dihy-

droceramidase) are characterized by increased chronologi-

cal lifespan (CLS) whereas the overexpression of YDC1 trig-

gers mitochondria and vacuolar fragmentation, apoptosis 

and accelerated aging in yeast [12]. Genes involved in 

sphingolipid metabolism (LAG1, YPC1, YSR3, IPT1, and 

LCB5) show variable expression in senescent and apoptotic 

cells [13]. More recently, it was shown that the downregu-

lation of sphingolipid synthesis increases yeast CLS in part 

due to a reduction in long-chain bases (LCBs) mediated 

activation of Sch9p, the yeast homologue of mammalian 

ribosomal S6K protein kinase [14]. Furthermore, ceramide 

synthase (Lag1p) and LCB kinase (Lcb4p) activities decrease 

upon entry into the stationary phase, leading to a large 

increase in the levels of LCBs [15].  

We have previously demonstrated that Isc1p, the yeast 

orthologue of mammalian neutral sphingomyelinase-2 

(nSMase2) responsible for the hydrolysis of complex inosi-

tol phosphosphingolipids to produce ceramide, is implicat-

ed in oxidative stress resistance and CLS in yeast. Isc1p-

deficient cells display shortened CLS, oxidative stress sensi-

tivity and impaired redox and iron homeostasis [16]. Anal-

ogous to the role of ceramide and ceramide-activated pro-

tein phosphatases in regulating mammalian cell apoptosis, 

Isc1p acts upstream of Sit4p, the catalytic subunit of pro-

tein phosphatase related to type 2A protein phosphatases 

(PP2A) in yeast. Indeed, SIT4 deletion restores mitochon-

drial function of isc1Δ cells, increasing oxidative stress re-

sistance and extending CLS [17]. The activation of the HOG 

(High Osmolarity Glycerol) pathway is also deleterious for 

isc1Δ cells since ceramide signaling increases the phos-

phorylation of the Hog1p mitogen activated protein kinase 

(MAPK) and the disruption of HOG1 attenuates the pheno-

types of Isc1p-deficient cells [18].  

Recent studies also link ceramide to other important 

signaling pathways involved in the regulation of cell growth 

and survival, namely the TOR (Target of Rapamycin) path-

way. This pathway is highly conserved among organisms, 

ranging from flies, nematodes, protozoa alongside with 

mammals [19-24]. In S. cerevisiae, the TOR pathway is con-

trolled by two Ser/Thr protein kinases, Tor1p and Tor2p, 

which assemble into two protein complexes with distinct 

subunit composition and regulatory roles [25-27]. The ra-

pamycin-sensitive TOR complex 1 (TORC1) contains either 

Tor1p or Tor2p and is mostly associated with the regula-

tion of cell growth (nutrient sensing), autophagy, ribosomal 

and protein turnover and cell proliferation [27,28]. The 

TOR complex 2 (TORC2) contains Tor2p, but not Tor1p, 

mediates the proper maintenance of the cell cytoskeleton 

[29] and regulates ceramide biosynthesis by an Ypk2p-

dependent mechanism [30]. Furthermore, TORC2 indirectly 

modulates Isc1p turnover through the phosphorylation and 

activation of Slm1p and Slm2p [31]. 

The TORC1 pathway has also been linked to mitochon-

drial function and yeast CLS [32,33]. In fact, the deletion of 

TOR1 or pharmacological inhibition of TORC1 with rapamy-

cin extends CLS in yeast and other organisms [32,34,35]. 

TORC1 is active during early stages of growth and represses 

the induction of stress responses and entry into the sta-

tionary phase, in part by inhibiting the Rim15p protein 

kinase and consequently the translocation of Msn2p/4p 

and Gis1p transcription factors into the nucleus [36,37]. 

Reducing TORC1 signaling at early stages of growth ex-

tends CLS by an intrinsic mechanism involving enhanced 

mitochondrial membrane potential and superoxide pro-

duction. This in turn induces an adaptive response that 

contributes to decrease ROS production in the stationary 

phase and promotes longevity in yeast [33]. Moreover, 

reduced TORC1 signaling derepresses Rim15p and triggers 

the expression of genes regulated by the mitochondrial 

signaling pathway known as the retrograde response [38-

40] as well as stress-related genes under the control of 

Msn2p/Msn4p [37,41]. 

Some authors have identified downstream targets of 

TORC1 involved in the regulation of stress response and 

aging, namely the AGC protein kinase Sch9p and the Sit4p 

protein phosphatase. Apart from sensing nutrient and 

stress signals from TORC1, both proteins also regulate CLS 

by integrating sphingolipid signaling. In addition to phos-

phorylation in the C-terminus mediated by TORC1, Sch9p is 

phosphorylated in a Thr570 residue in the activation loop 

by Pkh1/2p protein kinases, homologues of mammalian 

phosphoinositide-dependent protein kinase 1 (PDK1), in 

response to LCBs [14,42]. On the other hand, Sit4p is 

downregulated by TORC1 in a Tip41p/Tap42p manner 

[43,44] but is also activated by ceramide and functions 

downstream of Isc1p [17]. How this complex network of 

interacting pathways regulates CLS remains poorly charac-

terized.  

In this study, we show that the activation of the TORC1-

Sch9p pathway impairs oxidative stress resistance, mito-

chondrial function and CLS in isc1Δ cells. Consistent with 

TORC1 activation, the autophagic flux is decreased in isc1Δ 

cells. Our results suggest that Isc1p regulate mitochondrial 

function and yeast CLS through the TORC1-Sch9p but Isc1p 

and TORC1 also seem to act through independent path-

ways. The suppression of isc1∆ phenotypes by TOR1 dele-

tion is not associated with the attenuation of Hog1p hy-

perphosphorylation. Our data also support a model in 

which TORC1 downstream effectors Sit4p and Sch9p act as 

physiological hubs integrating nutrient and ceramide sig-

naling driven by Isc1p. 

 

RESULTS 

The deletion of TOR1 or SCH9 suppresses the shortened 

CLS and oxidative stress sensitivity of isc1Δ cells 

To assess changes in TORC1 signaling associated with Isc1p 

deficiency, we have monitored TORC1 activity in vivo by 

assessing TORC1-dependent Sch9p phosphorylation at the 

C-terminus [45]. 
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FIGURE 1: Isc1p-deficient cells exhibit enhanced 

TORC1 activity in vivo. The TORC1-dependent C-

terminal phosphorylation of Sch9p was used to assess 

TORC1 activity in vivo. (A) S. cerevisiae BY4741 and 

isc1Δ cells transformed with pJU676 (expressing 

SCH9-5HA) were grown in SC-medium to the expo-

nential phase and NTCB-treated protein extracts were 

analyzed by immunoblotting using anti-HA antibody, 

as described in Materials and Methods. A representa-

tive blot out of three is shown. (B) Quantification of 

band intensities was performed by densitometry. The 

ratio between phosphorylated and unphosphorylated 

Sch9p (Pi
+/Pi

-) is shown. Values are mean ± SD of at 

least three independent experiments. ****p<0.0001. 

 

The results show that Sch9p is hyperphosphorylated in 

isc1Δ mutants when compared to parental cells, indicative 

of increased TORC1 activity (Fig. 1A-B). Apart from TORC1, 

Sch9p can also be phosphorylated by Pkh1/2p in response 

to LCBs. Since basal levels of phytosphingosine (PHS) are 

increased in isc1Δ cells during aging [17], we also assessed 

the Pkh1/2p-dependent phosphorylation of Sch9p on the 

Thr570 residue. The results show that the levels of Sch9p-

phospho-Thr570 were similar in parental and isc1Δ cells 

(Supplementary Fig. S1). 

This led us to postulate that TORC1 activation may con-

tribute to isc1Δ phenotypes. To test this hypothesis, we 

then evaluated if the deletion of TOR1 or SCH9 could abol-

ish the premature aging and hydrogen peroxide sensitivity 

of isc1Δ cells. In agreement with previous reports [16-18], 

isc1Δ cells presented a shortened CLS compared to paren-

tal cells (Fig. 2A). Although the acidification of the growth 

medium due to acetic acid production decreases yeast 

lifespan [46], it is unlikely that it contributes to the short-

ened CLS of isc1Δ cells since ISC1 deletion increases acetic 

acid resistance [47]. As expected, tor1Δ and sch9Δ cells 

exhibited an increased lifespan (Fig. 2A). The effect of SCH9 

deletion was significantly lower to that reported by other 

groups [48]. This probably results from differences in the 

growth medium composition, in particular amino acid con-

centration. Indeed, sch9Δ mutants display increased 

lifespan when cells are grown in media supplemented with 

a 3.5-fold excess of amino acids but present shortened 

lifespan than parental cells when grown in media with 0.5-

fold amino acid content [49]. Importantly, the deletion of 

TOR1 or SCH9 in isc1Δ cells significantly extended the CLS 

of this mutant but the isc1Δtor1Δ and isc1Δsch9Δ double 

mutants exhibited a shorter CLS compared to that of tor1Δ 

and sch9Δ cells, respectively (Fig. 2A).  

To assess oxidative stress resistance, cells were grown 

to the exponential or early stationary phase and treated 

with H2O2. Consistent with published data [50], tor1Δ and 

sch9Δ cells were more resistant to oxidative stress than 

parental cells (Fig. 2B-C). The deletion of TOR1 or SCH9 

suppressed the hydrogen peroxide sensitivity of isc1Δ cells 

(Fig. 2B-C). Similar results were obtained by the pharmaco-

logical inhibition of TORC1 using rapamycin (Supplemen-

tary Fig. S2). These results implicate TORC1-Sch9p activa-

tion in the premature aging and oxidative stress sensitivity 

of Isc1p-deficient cells. 

 

Reduced TORC1 signaling enhances mitochondrial cou-

pled respiration in isc1Δ cells 

It was previously shown that tor1Δ cells have an extended 

CLS in part associated with improved and better coupled 

mitochondrial respiration at early stages of growth, which 

ultimately preconditions yeast to better survive on the 

stationary phase [33]. Therefore, we evaluated if the dele-

tion of TOR1 and SCH9 could improve mitochondrial fitness 

of isc1Δ cells, eventually contributing to CLS extension ob-

served in isc1Δtor1Δ and isc1Δsch9Δ double mutants. To 

address this hypothesis, we analyzed cell growth in medi-

um containing glycerol, a non-fermentable carbon source, 

as well as oxygen consumption and cytochrome c oxidase 

(COX) activity. It was observed that the growth defect of 

isc1Δ cells on glycerol medium was suppressed upon the 

deletion of TOR1 or SCH9 (Fig. 2D). As expected, the dele-

tion of ISC1 almost completely abolished oxygen consump-

tion and COX activity in the post-diauxic shift (PDS; respira-

tory) phase (Fig. 2E-F). In tor1Δ and sch9Δ cells, both oxy-

gen consumption and COX activity were increased when 

compared to parental cells. Notably, TOR1 and SCH9 dis-

ruption suppressed the defects observed in isc1Δ cells: 

both oxygen consumption and COX activity increased in 

isc1Δtor1Δ and isc1Δsch9Δ cells, although to levels lower 

than those observed in tor1Δ and sch9Δ cells, respectively 

(Fig. 2E-F). To assess if enhanced mitochondrial respiration 

coupling contributes to the lifespan extension of isc1Δ cells 

imposed by reduced TORC1 signaling, CLS was analyzed in 

cells treated with 2,4-dinitrophenol (DNP), which decreases 

mitochondrial membrane potential and uncouples electron 

transport from ATP synthesis. Untreated Isc1p-deficient 

cells exhibited a shortened CLS that was not affected by 

exposure to DNP (Fig. 3), providing strong evidence that 

mitochondrial dysfunction largely contributes to isc1Δ 

phenotypes. In tor1Δ mutants, DNP significantly affected 

cell viability (e.g., it decreased 40% in DNP-treated vs con-

trol cells aged for 2 days). However, the detrimental effect 

of DNP in tor1Δ mutants was lower to the observed in pa-

rental cells (in this strain, the viability of cells treated with 

DNP and aged for 2 days decreased 68%). This is consistent 

with published data showing that tor1Δ cells present better  
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coupled respiration when compared to parental cells [33], 

and therefore are able to mount a more effective adaptive 

response to counteract DNP effects. The deletion of TOR1 

in isc1Δ cells extended CLS (in cells untreated with DNP) 

and this effect appears to be correlated with an increased 

coupled respiration imparted by reduced TORC1 signaling 

since DNP treatment decreased cell viability in such condi-

tions. The isc1Δtor1Δ double mutant presented an inter-

mediate phenotype between parental and tor1Δ cells since, 

at day 2 of aging, parental, tor1Δ and isc1Δtor1Δ cells pre-

sented 32%, 60% and 40% cell viability, respectively. Taking 

together, we claim that improved mitochondrial fitness 

 
 

FIGURE 2: The deletion of TOR1 and SCH9 abolishes the shortened CLS, oxidative stress sensitivity and mitochondrial dysfunctions dis-

played by isc1Δ cells. (A) S. cerevisiae BY4741, isc1Δ, tor1Δ and isc1Δtor1Δ, sch9Δ and isc1Δsch9Δ cells were grown in SC-medium and kept 

in the medium at 26°C. The viability was determined by standard dilution plate counts and expressed as the percentage of the colony-

forming units at time T in relation to T0. Values are mean ± SD of at least three independent experiments. (B, C) Yeast cells were grown in SC-

medium to the exponential phase (B) or stationary phase (48 hours after exponential phase) (C) and exposed to 1.5 mM H2O2 for 60 min (B) 

or 300 mM H2O2 for 30 min (C). Cell viability was determined by standard dilution plate counts and expressed as the percentage of the colo-

ny-forming units (treated cells versus untreated cells). Values are mean ± SD of at least three independent experiments. ****p<0.0001. 

***p<0.001. (D) S. cerevisiae BY4741, isc1Δ, tor1Δ and isc1Δtor1Δ, sch9Δ and isc1Δsch9Δ cells were grown in SC-medium to the exponential 

phase and then diluted to OD600=0.1. Fivefold dilution series were spotted on YPD (glucose) or YPG (glycerol) medium and cells were grown 

at 26°C for 4 days. (E) Oxygen consumption rate was measured in cells grown to PDS phase, as described in Materials and Methods. Values 

are mean ± SD of at least three independent experiments. ****p<0.0001; *p<0.05. (F) Cytochrome c oxidase (COX) activity was determined 

in cells grown to the PDS phase. Cells were lysed and enzymatic activity was measured as described in Materials and Methods. Values are 

mean ± SD of at least three independent experiments. ****p<0.0001; ***p<0.001 
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(increased coupled respiration) promoted by the deletion 

of TOR1 per se extends CLS in isc1Δ cells.  

 

Hyperpolarization and fragmentation of the mitochondri-

al network in isc1Δ cells are suppressed by TOR1 or SCH9 

deletion 

To get further insights into alterations in mitochondrial 

function operating on isc1Δ cells, we assessed the mito-

chondrial membrane potential (Δψm), a parameter that has 

been used to monitor changes on bioenergetics and func-

tions as a key indicator of cell health or injury [51]. For this 

purpose, yeast cells were labeled with a mitochondria-

specific voltage-dependent dye, 3,3-

dihexyloxacarbocyanine iodide [DiOC6(3)], which aggre-

gates and preferentially accumulates into functional mito-

chondria, and analyzed by flow cytometry (Fig. 4A). At the 

PDS phase, cells lacking Isc1p displayed an enhanced Δψm 

when compared to parental cells, which is consistent with 

mitochondrial hyperpolarization. In contrast, tor1Δ and 

sch9Δ cells had a slightly lower Δψm, which has been asso-

ciated with mild mitochondrial uncoupling [33]. Both TOR1 

and SCH9 disruption in isc1Δ cells reversed the mitochon-

drial hyperpolarization and decreased the Δψm to values 

similar to those observed in the respective single mutants. 

This probably increases cell survival in isc1Δtor1Δ and 

isc1Δsch9Δ cells, since isc1Δ cells die by caspase-

dependent apoptosis upon oxidative stress and during cell 

aging [16] and mitochondrial hyperpolarization has been 

associated with the activation of a mitochondrial depend-

ent apoptotic pathway, which initially involves a transient 

hyperpolarization followed by depolarization of the mito-

chondrial membrane and release of cytochrome c from the 

mitochondria into the cytosol [52].  

The mitochondrial membrane potential plays a key role 

in the regulation of mitochondrial morphology and altera-

tions on this parameter were demonstrated to impact on 

mitochondrial dynamics [53-56]. To assess changes in mi-

tochondrial network dynamics, yeast cells expressing a 

mitochondria-targeted DsRed protein were analyzed by 

fluorescence microscopy. At the exponential phase, the 

mitochondrial network was not yet fully developed and no 

significant differences were observed between the paren-

tal and isc1Δ cells (Fig. 4B). This was expected since cells 

are undergoing fermentative growth at this phase. Howev-

er, in the PDS phase, loss of Isc1p led to the formation of a 

typical punctuate pattern contrasting with the tubular and 

well-organized network observed in healthy parental cells 

(Fig. 4B). This structural alteration has been associated 

with mitochondrial fragmentation and observed in cells 

undergoing apoptotic cell death. The normal tubular mito-

chondrial network was restored upon disruption of TOR1 

or SCH9 in isc1Δ cells (Fig. 4B), suggesting that TORC1 and 

its downstream target Sch9p are also implicated in the 

regulation of mitochondrial dynamics by promoting net-

work fragmentation.  

Previous studies have demonstrated that autophagy 

has an important role in maintaining proper mitochondrial 

function and dynamics since autophagy-defective mutants 

present severe mitochondria dysfunctions [57,58]. In par-

ticular, the regulation of the mitochondrial membrane po-

tential appears to be crucial to regulate autophagic flux. In 

addition, accumulating evidence show that defects in au-

 

 
 

 

 

FIGURE 3: Increased mitochondrial 

coupled respiration imparted by 

reduced TORC1 signaling extends 

lifespan in isc1Δ cells. S. cerevisiae 

BY4741, isc1Δ, tor1Δ and isc1Δtor1Δ 

cells were grown in SC-medium to 

the PDS phase, treated with 10 µM 

2,4-dinitrophenol (DNP; �) or vehicle 

(DMSO; ) and kept in the medium 

at 26°C. The viability was determined 

by standard dilution plate counts and 

expressed as the percentage of the 

colony-forming units at time T in 

relation to T0. Values are mean ± SD 

of at least three independent exper-

iments. 



V. Teixeira et al. (2014)  Isc1p, TORC1-Sch9p axis activation and aging 

 
 

OPEN ACCESS | www.microbialcell.com 26 Microbial Cell | January 2014 | Vol. 1 No. 1 

 
 

FIGURE 4: The mitochondrial membrane hyperpolarization and decreased autophagic flux contribute to mitochondrial dysfunction and 

impairment of mitochondrial dynamics in isc1Δ cells. (A) S. cerevisiae BY4741, isc1Δ, tor1Δ and isc1Δtor1Δ, sch9Δ and isc1Δsch9Δ cells were 

grown in SC-medium to the PDS phase, stained with the potential-sensitive dye 3,3-dihexyloxacarbocyanine iodide [DiOC6(3)] for 30 min and 

analyzed by flow cytometry. Treatment of the parental strain (BY4741) with FCCP (carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone) 

was used as a positive control (depolarizing event). Values are mean ± SD of at least three independent experiments. ****p<0.0001; 

***p<0.001; **p<0.01. (B) Yeast cells transformed with pYX222-mtDsRed were grown to the exponential and PDS phases and analyzed by 

fluorescence microscopy, as described in Materials and Methods. Live cells were visualized by fluorescence microscopy. A representative ex-

periment out of three is shown. Scale bar: 5 µm. (C) S. cerevisiae BY4741, isc1Δ, tor1Δ and isc1Δtor1Δ, sch9Δ and isc1Δsch9Δ cells carrying 

pRS416 GFP-ATG8 were grown to the exponential phase in SC-medium and treated with either rapamycin (200 ng/mL) or DMSO (vehicle) for 

3 hours. Proteins were analyzed by immunoblotting, using anti-GFP antibody. (D) The autophagic flux was calculated by the ratio between 

the free GFP signal and the sum of free GFP and GFP-Atg8p signals. Values are mean ± SD of at least three independent experiments 

****p<0.0001; ***p<0.001; **p<0.01. (E) S. cerevisiae BY4741 and isc1Δ cells carrying pRS416 GFP-ATG8 were grown to PDS phase, washed 

twice with water and then maintained in water. Proteins were analyzed by immunoblotting, using anti-GFP antibody.  

 

tophagy deregulate mitochondrial dynamics [59]. Since 

isc1Δ cells present similar phenotypic features and TORC1, 

a negative regulator of autophagy, is activated in this mu-

tant strain, we evaluated if these cells present autophagy 

defects. For this purpose, we have monitored the pro-

cessing of GFP-Atg8p. Once autophagy is induced, GFP-

Atg8p is recruited to drive autophagosome biogenesis and 

then delivered to the vacuole inside the autophagic body. 

Whereas Atg8p is degraded by resident vacuolar hydrolas-

es, the GFP moiety is relatively resistant to proteolysis. 

Therefore, the appearance of free GFP signal is indicative 

of autophagy induction. To induce autophagy, yeast cells 

were treated with rapamycin. Under these conditions, the 

autophagic flux was significantly lower in Isc1p-deficient 

cells (35%) when compared to the parental strain (60%) 

(Fig. 4C-D). Notably, a slower migrating band (above free 
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FIGURE 5: The deletion of TOR1 or SCH9 decreases ROS production, attenuates catalase A deficiency and diminishes apoptotic cell death in 

isc1Δ cells. (A) S. cerevisiae BY4741, isc1Δ, tor1Δ and isc1Δtor1Δ, sch9Δ and isc1Δsch9Δ cells were grown to early stationary phase (day 1 in 

the CLS assay), stained with the dihydroethidium (DHE) for 10 min and analyzed by flow cytometry. Values are mean ± SD of at least three in-

dependent experiments. ***p<0.001; **p<0.01. (B) Yeast cells were grown to the PDS phase and catalase activity was detected in situ after 

non-denaturing polyacrylamide gel electrophoresis, using the H2O2/peroxidase system, as described in Materials and Methods. A representa-

tive experiment out of three is shown. (C) BY4741, isc1Δ, tor1Δ and isc1Δtor1Δ cells were double stained with DiOC6(3) and PI (propidium io-

dide) and analyzed by flow cytometry, as described in Materials and Methods. Representative histograms are shown. 

 

GFP) was observed in isc1Δ cells, both under basal condi-

tions and upon rapamycin treatment (see Supplementary 

Fig. S3 for a longer exposure time of the Western blot). It 

probably results from an incomplete or aberrant pro-

cessing of GFP-Atg8p, possibly due to vacuolar dysfunction 

(defective Pep4p-dependent proteolytic activity) [47] or 

alterations in vacuolar morphology upon deletion of ISC1 

[60]. In isc1Δtor1Δ and isc1Δsch9Δ double mutants, the 

autophagic flux increased to values close to those observed 

for the respective tor1Δ and sch9Δ single mutants (Fig. 4C-

D). It should be noted that rapamycin is predicted to have 

still some effect on tor1Δ cells because there is yet some 

functional TORC1 signaling. In fact, TORC1 complex is sen-

sitive to rapamycin due to binding of FKBP-rapamycin 

complex to subunits of TORC1. Thus, TORC1 is functional 

(although with reduced activity) in tor1Δ cells since it may 

also contain Tor2p (which may replace Tor1p) in its compo-

sition. These results implicate TORC1 and its downstream 

effector, Sch9p, in the deregulation of autophagy, possibly 

contributing to mitochondrial network fragmentation and 

impairment of oxidative stress resistance and CLS in isc1Δ 

cells. 

To provide further evidence that autophagy is impaired 

in isc1Δ cells, we have also monitored the autophagic flux 

during chronological aging. The rate of viability loss during 

aging of this mutant is very high when cells are grown in 

SC-medium (Fig. 2A). Thus, to avoid unspecific changes that 

may occur due to cell death, we assessed autophagy under 

conditions of calorie restriction (cells grown to PDS phase, 

washed and maintained in water overtime). We have pre-

viously shown that calorie restriction increases CLS in both 

isc1Δ and parental cells, but isc1Δ mutants still exhibit a 

premature aging phenotype [17]. The results show that the 

autophagic flux increased in parental cells aged for 3-5 

days, but it was significantly compromised in isc1Δ cells 

(Fig. 4E). Overall, the data suggests that autophagy is im-

paired in this mutant strain. 

 

TOR1 and SCH9 deletion in isc1Δ cells decrease ROS levels, 

catalase A deficiency and apoptotic cell death  

Apoptosis and aging has been extensively associated with 

enhanced ROS production [61-64]. Thus, the improvement 

of mitochondrial function and/or antioxidant defenses may 

decrease mitochondrial ROS production or increase its 

detoxification, leading to CLS extension. To test this hy-

pothesis, ROS levels were measured by flow cytometry 

using early stationary phase cells stained with dihydroeth-

idium (DHE), a molecular probe sensitive to superoxide 

radicals. The results show that ROS levels were low in pa-

rental, tor1Δ and sch9Δ cells but approximately 50% of 

isc1Δ cells were DHE-positive (Fig. 5A). In isc1Δtor1Δ and 

isc1Δsch9Δ mutants, ROS levels were higher than in paren-



V. Teixeira et al. (2014)  Isc1p, TORC1-Sch9p axis activation and aging 

 
 

OPEN ACCESS | www.microbialcell.com 28 Microbial Cell | January 2014 | Vol. 1 No. 1 

 
 

FIGURE 6: The deletion of TOR1 increases Hog1p phosphorylation without affecting its cytosolic localization whereas SCH9 disruption di-

minishes Hog1p phosphorylation in isc1Δ cells. (A) Hog1p activation was monitored in BY4741, isc1Δ, tor1Δ and isc1Δtor1Δ cells by im-

munoblotting, using anti-phospho-p38 antibody (top panel) that detects the phosphorylated form of Hog1p, or anti-Pgk1p (loading control) 

as primary antibodies. A representative blot out of three is shown. (B) S. cerevisiae BY4741, isc1Δ, tor1Δ and isc1Δtor1Δ cells expressing the 

consensus Rlm1p binding sequences fused to a LacZ reporter (2xRLM1-LacZ), were grown to the exponential phase and the β-galactosidase 

activity was measured as described in Materials and Methods. Values are mean ± SD of at least three independent experiments. 

****p<0.0001; ***p<0.001; *p<0.05. (C) Hog1p activation was monitored in BY4741, isc1Δ, sit4Δ and isc1Δsit4Δ cells by immunoblotting, as 

described in A. A representative blot out of three is shown. (D) Hog1p activation was monitored in BY4741, isc1Δ, sch9Δ and isc1Δsch9Δ cells 

by immunoblotting, as described in A. BY4741 and sch9Δ cells were grown to the exponential phase and treated with either 10 μM C2-

ceramide or DMSO (vehicle) for 1 h. A representative blot out of three is shown. 

 

tal cells but significantly lower when compared to Isc1p-

deficient cells (by approximately one-half), suggesting that 

TOR1 and SCH9 deletion increase survival in isc1Δ cells by 

decreasing ROS generation. 

Increased ROS levels have been associated with home-

ostatic imbalance partially dictated by impaired cellular 

antioxidant defences. Hence, we hypothesized that the 

improvement of the mitochondrial function and dynamics 

in isc1Δtor1Δ and isc1Δsch9Δ cells may contribute to up-

regulate antioxidant defence mechanisms and decrease 

ROS levels during the aging process. It was previously 

shown that isc1Δ cells fail to induce CTA1 gene expression 

in the PDS phase [65] and display a low activity of Cta1p 

[17], the catalase A form present in mitochondria and pe-

roxisomes. Moreover, CTA1 overexpression partially sup-

presses isc1Δ phenotypes [17]. Our results show that Cta1p 

activity was partially restored in isc1Δtor1Δ and isc1Δsch9Δ 

cells (Fig. 5B). In sch9Δ and isc1Δsch9Δ cells, Ctt1p (cyto-

solic catalase) activity was not detected, which is con-

sistent with the fact that the Sch9p kinase is directly or 

indirectly involved in the transcriptional control of CTT1 

expression in yeast [66]. The analysis of superoxide dis-

mutase activity did not reveal changes in Sod1p (cytosolic 

form) or Sod2p (mitochondrial form) activity upon the de-

letion of TOR1 or SCH9 in isc1Δ cells (data not shown). 

To evaluate if the decrease in ROS production and en-

hancement of antioxidant defenses (Cta1p) contribute to 

decrease apoptotic cell death in isc1Δtor1Δ mutants, early 

stationary phase cells were labeled with Di-

OC6(3)/propidium iodide (PI). The analysis of yeast cells by 

flow cytometry allows the definition of four distinct popu-

lations: healthy cells (DiOC6(3)-positive/PI-negative), early 

apoptosis (DiOC6(3)-negative/PI-negative), late apoptosis 

(DiOC6(3)-positive/PI-positive) and necrosis (DiOC6(3)-

negative/PI-positive). The results (Fig. 5C) clearly show that 

the large majority of parental and tor1Δ cells remained 

healthy whereas 62% of the isc1Δ cell population was al-

ready undergoing early (15%) or late (47%) apoptosis. In 

the isc1Δtor1Δ double mutant, however, a significant de-

crease of apoptotic markers was observed, particularly at 

late stages where a reduction of approximately 50% (from 

47% to 24%) was detected.  

 

SCH9 deletion but not reduced TORC1 signaling in isc1Δ 

cells attenuates Hog1p activation 

The hyperactivation of the HOG signaling pathway was 

previously implicated in the premature aging and mito-

chondrial dysfunction exhibited by Isc1p-deficient cells [18]. 
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FIGURE 7: Sit4p and Sch9p integrate nutrient and stress signaling 

from TORC1 with ceramide signals to regulate mitochondrial 

function and CLS in yeast. Cells lacking Isc1p present increased 

TORC1-Sch9p activity, ultimately leading to mitochondrial dys-

function, decreased oxidative stress resistance and shortened CLS. 

Apart from sensing signals from TORC1, the ceramide activated 

protein phosphatase Sit4p and the AGC protein kinase Sch9p also 

integrate ceramide signaling derived from Isc1p to regulate mito-

chondrial function, oxidative stress resistance and chronological 

lifespan in yeast. 

 

Thus, we hypothesized that the suppression of isc1Δ phe-

notypes by TOR1 and SCH9 deletion could be associated 

with the modulation of the HOG pathway. To address this 

question, Hog1p phosphorylation was monitored by 

Western blotting using an anti-phospho-p38 antibody that 

recognizes dually phosphorylated Hog1p, the active form 

of this kinase [67,68]. As illustrated in Fig. 6A, Hog1p 

phosphorylation was increased in isc1Δ cells when com-

pared to parental cells. In contrast, phosphorylated Hog1p 

could not be detected in tor1Δ cells. Notably, Hog1p 

phosphorylation levels in isc1Δtor1Δ cells were even high-

er to those detected in isc1Δ cells, suggesting a functional 

interplay between the HOG and TORC1 signaling pathways 

in isc1Δ cells.  

It was previously shown that Hog1p activation leads to 

its import into the nucleus where it phosphorylates the 

Msn2p/Msn4p, Hot1p, Sko1p and Smp1p transcription 

factors to promote adaptation to stress conditions [69-76]. 

Thus, we have also monitored Hog1p cell localization by 

fluorescence microscopy in cells expressing Hog1p-GFP 

(Supplementary Fig. S4). Similarly to parental cells, Hog1p 

was present in the cytoplasm of isc1Δ, tor1Δ and 

isc1Δtor1Δ mutants, implying that TORC1 may not regu-

late Hog1p localization. We have also evaluated the acti-

vation of the Cell Wall Integrity (CWI) pathway, since we 

have previously reported a Hog1p-dependent activation of 

Slt2p, a MAPK of the CWI pathway in isc1Δ cells [18]. For 

this purpose, we monitored the activation of Rlm1p, a 

transcription factor regulated by Slt2p, by measuring β-

galactosidase activity in cells expressing a LacZ reporter 

under the control of Rlm1p promoter. Consistent with the 

hyperactivation of Hog1p and induction of the Rlm1p-

driven LacZ reporter, β-galactosidase activity was increased 

by 1.7- and 4.3-fold in isc1Δ and isc1Δtor1Δ cells, respec-

tively (Fig. 6B). 

It was previously shown that the protein phosphatase 

Sit4p is negatively regulated by TORC1 signaling [44] but 

activated by ceramide [77]. Moreover, the deletion of SIT4 

suppresses isc1Δ phenotypes [17]. Notably, Hog1p phos-

phorylation increased in sit4∆ cells and it was exacerbated 

in isc1Δsit4Δ cells (Fig. 6C), as observed in isc1Δtor1Δ cells 

(Fig. 6A). This suggests that the phosphorylation of Hog1p 

is regulated by a Sit4p-dependent mechanism. 

Remarkably, the deletion of SCH9 decreased Hog1p 

phosphorylation in isc1Δ cells (Fig. 6D). It was previously 

reported that ceramide signaling increases Hog1p phos-

phorylation [18]. Thus, we tested if Sch9p regulates the 

HOG pathway in response to ceramide. As previously re-

ported, C2-ceramide treatment increased Hog1p phos-

phorylation in parental cells (Fig. 6D). In contrast, the dele-

tion of SCH9 completely abolished Hog1p activation upon 

treatment with ceramide (Fig. 6D). These results suggest 

that Sch9p is acting upstream of Hog1p in response to 

ceramide signaling.  

Overall, the results show that the deletion of TOR1 or 

SIT4 does not suppress isc1Δ phenotypes through the at-

tenuation of Hog1p hyperactivation and Sch9p appears to 

regulate the activation of the HOG pathway in response to 

ceramide in Isc1p-deficient cells. 

 

DISCUSSION 

The TORC1 pathway is a well-established nutrient response 

pathway that modulates aging and age-related diseases 

[23]. Here we provided evidence that TORC1 signaling is 

deregulated in cells lacking Isc1p, the yeast orthologue of 

mammalian neutral sphingomyelinase. Isc1p-deficient cells 

exhibit increased TORC1 activity, which is detrimental for 

this mutant. In fact, the deletion of TOR1 alleviates the 

premature aging, oxidative stress sensitivity and mito-

chondrial dysfunctions of isc1Δ cells. However, isc1Δtor1Δ 

cells exhibit lower resistance to oxidative stress, shortened 

CLS, slightly impaired mitochondrial function, and higher 

levels of ROS and apoptotic cell death markers compared 

to the tor1Δ mutant strain, suggesting that TORC1-

independent mechanisms also contributes to isc1Δ pheno-

types. In agreement, the overexpression of ISC1 does not 

suppress the rapamycin hypersensitivity of tor1Δ mutants, 

suggesting that Isc1p is not acting downstream of TORC1 

(Supplementary Fig. S5).  

Several lines of evidence suggest an intricate interplay 

between sphingolipid metabolism and TOR signaling. Both 

TORC1 and TORC2 control the biosynthesis of sphingolipids 

through regulation of Orm1p and Orm2p, two evolutionari-

ly conserved integral membrane proteins of the endoplas-

mic reticulum [78-80]. However, TORC1 and TORC2 signal-

ing seems to function independently in the regulation of 

sphingolipid metabolism. TORC1 negatively controls the 

synthesis of complex sphingolipids from ceramide via inhi-

bition of Orm1/2p phosphorylation in a process mediated 

by Npr1p [80]. TORC2 stimulates the de novo biosynthesis 
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of sphingolipids via activation of Ypk1p, which then phos-

phorylates and inactivates Orm1/2p [81]. Since Orm1/2p 

bind to and inhibit serine palmitoyl-coenzyme A transfer-

ase (SPT) [82], which catalyzes the first step in sphingolipid 

biosynthesis [83], its inactivation by a Ypk1p-dependent 

phosphorylation alleviates SPT inhibition and increases 

sphingolipid production. In addition, TORC2 stimulates 

ceramide biosynthesis by an Ypk2p-dependent mechanism 

[30] and inhibits Isc1p activity via modulation of Slm1/2p 

[31,84].  

Our data suggests a genetic interaction between ISC1 

and TOR1. A recent report suggests a link between 

ceramide generated by mammalian acid sphingomyelinase 

under amino acid deprivation conditions and mTOR inacti-

vation by a PP1/PP2A-dependent mechanism [85]. Notably, 

yeast Isc1p appears to occupy a central position and may 

possibly act as a metabolic hub (together with ceramide 

synthase) in the TOR pathway to regulate ceramide dynam-

ics, since Isc1p is functionally linked with both TORC1 and 

TORC2 branches. In particular, the modulation of complex 

sphingolipids turnover by coupling TORC1-regulated bio-

synthesis with Isc1p-driven hydrolysis may be important to 

control ceramide flux in yeast. 

The molecular mechanism by which TORC1 is activated 

in isc1Δ cells remains to be elucidated. Nevertheless, the 

activation of TORC1 in Isc1p-deficient cells may be part of a 

homeostatic response that aims to decrease the synthesis 

of complex sphingolipids, since isc1Δ cells accumulate ino-

sitolphosphorylceramide (IPC) and mannosyldiinositol-

phosphorylceramide (M(IP)2C) [31,86] and TORC1 negative-

ly controls their biosynthesis [80]. However, TORC1 activa-

tion impairs mitochondrial function and oxidative stress 

resistance in isc1Δ cells, and TOR1 deletion suppresses 

isc1Δ phenotypes. Such features are in agreement with 

previous studies showing that TOR1 deletion regulates 

yeast CLS by a cell-intrinsic mechanism [32,33]. Reduced 

TORC1 signaling increases mitochondrial coupling during 

active growth in yeast cells, eliciting an adaptive response 

that preconditions yeast cells to better survive in the sta-

tionary phase and promotes longevity [33]. Furthermore, 

TOR1 disruption leads to an increased translation of 

mtDNA-encoded subunits of the oxidative phosphorylation 

system [32], which is consistent with the higher oxygen 

consumption and COX activity observed in this study. In 

addition, it improves oxidative stress resistance in the sta-

tionary phase [50].  

In the present study, we demonstrate that TORC1-

driven Sch9p C-terminal phosphorylation is increased in 

isc1Δ cells and our results are consistent with TORC1 acting 

through Sch9p-associated mechanisms since the disruption 

of both TOR1 and SCH9 abolishes isc1Δ phenotypes. Im-

portantly, Isc1p-deficient cells presented reduced au-

tophagic flux, both upon treatment with rapamycin and 

during cell aging, which is consistent with the activation of 

the TORC1-Sch9p pathway. In agreement, TOR1 and SCH9 

disruption reestablished the functional integrity of autoph-

agy in isc1Δ cells and this is correlated with the restoration 

of mitochondrial function in the double mutants, ultimate-

ly abolishing the H2O2 hypersensitivity and premature aging 

exhibited by this mutant strain. 

It was previously demonstrated that the accumulation 

of very long chain ceramide species (dihydro-C26-ceramide 

and phyto-C26-ceramide species) and ceramide-activation 

of the protein phosphatase Sit4p are also implicated in 

isc1Δ phenotypes [17]. Since TORC1 negatively regulates 

Sit4p by promoting its association with the inhibitor 

Tap42p [44] and both TOR1 and SIT4 deletions suppress 

isc1Δ phenotypes, we propose that Sit4p may act in paral-

lel to TORC1 signaling, by directly sensing ceramide signals 

(Fig. 7). 

Several pieces of evidence suggest a functional link be-

tween sphingolipids, TOR signaling and the HOG pathway. 

The constitutive activation of Hog1p is deleterious for isc1Δ 

cells since the deletion of HOG1 attenuates the shortened 

CLS, hydrogen peroxide sensitivity and mitochondrial dys-

functions of this mutant strain [18]. The HOG pathway is 

activated upon treatment of yeast cells with myriocin, an 

inhibitor of the de novo sphingolipid biosynthesis, and in 

cells with impaired synthesis of IPC [87]. In addition, re-

duced TOR signaling lowers the basal activity of Hog1p in 

Candida albicans through the Hog1p tyrosine phosphatases 

Ptp2 and Ptp3 [88] and our results show a decrease of 

Hog1p basal phosphorylation in the tor1Δ mutant. In this 

study, we demonstrate that TOR1 deletion does not sup-

press Hog1p hyperactivation or alter Hog1p localization in 

isc1Δ cells. However, our results support a more intricate 

interplay between the two signaling pathways in isc1Δ cells. 

Indeed, Hog1p phosphorylation was even increased in 

isc1Δtor1Δ cells in comparison to isc1Δ cells and remarka-

bly a similar feature was also observed for both sit4Δ and 

isc1Δsit4Δ cells, which present extended lifespan when 

compared to isc1Δ or even to parental cells [17]. We pro-

pose that the deletion of TOR1 or SIT4 either suppresses 

putative deleterious effects of Hog1p hyperactivation on 

mitochondrial function and CLS or modulates the regulato-

ry role of Hog1p to determine cell fate in Isc1p-deficient 

cells. In fact, the activation of yeast Hog1p or its mammali-

an orthologue, p38 MAPK, has been implicated in both cell 

survival and cell death. For example, HOG1 deletion de-

creases osmotic and oxidative stress resistance and short-

ens CLS in yeast [89,90]. However, the expression of consti-

tutively active Hog1p mutant kinases or constitutive activa-

tion of the HOG pathway is lethal [91-93], and hyperactiva-

tion of Hog1p is detrimental under heat stress conditions 

[94]. In mammalian cells, p38 MAPK is activated during the 

onset of senescence [95,96], its inhibition moderately de-

lays replicative senescence [97] and its activation promotes 

apoptosis [98,99].  

Remarkably, we provide significant evidence that the 

activation of the HOG pathway is modulated by ceramide 

signaling by Sch9p-dependent mechanisms, ultimately con-

tributing to isc1Δ phenotypes. Indeed, C2-ceramide-

induced Hog1p phosphorylation [18] was suppressed by 

the disruption of SCH9. In addition, Hog1p phosphorylation 

decreased upon deletion of SCH9 in Isc1p-deficient cells. 

Overall, the results suggest that both proteins act in the 

same pathway since SCH9 (this study) and HOG1 [18] dele-
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tions suppressed isc1Δ phenotypes. Therefore, our results 

points out to a model in which Sch9p integrates nutrient 

and stress signals from TORC1 with ceramide signaling, the 

latter contributing to the modulation of the Hog1p phos-

phorylation. Interestingly, this appears to be ceramide-

specific since treatment with phytosphingosine had no 

effect on Hog1p phosphorylation (data not shown). It is 

known that Sch9p possesses a C2-domain, which is known 

to bind to several substrates, namely Ca2+, phospholipids, 

inositol polyphosphates, and intracellular proteins [100]. 

Whether ceramide acts by binding directly to the C2-

domain remains to be established.  

In summary, our data implicate TORC1-Sch9p activation 

in the mitochondrial dysfunction, premature aging, oxida-

tive stress sensitivity and impaired autophagy exhibited by 

isc1Δ cells. However, Isc1p and TORC1 also seem to act 

through independent pathways, as isc1Δtor1Δ phenotypes 

are intermediate to those displayed by isc1Δ and tor1Δ 

cells.  

The lifespan extension in isc1Δ cells imparted by re-

duced TORC1 signaling is not associated with the attenua-

tion of Hog1p hyperphosphorylation. Our results suggest 

that complex signaling interconnections involving TORC1 

and its downstream effectors Sch9p and Sit4p govern the 

redox homeostasis and lifespan of isc1Δ cells and support a 

model in which both proteins act as physiological core cen-

ters integrating nutrient and stress signal from TORC1 and 

ceramide signaling derived from Isc1p to regulate mito-

chondrial function and CLS in yeast (Fig. 7).  

 

MATERIALS AND METHODS 

Yeast cells and growth conditions 

S. cerevisiae BY4741 was the parental strain of all haploid de-

rivatives used in this study (Table 1). Yeast cells were grown 

aerobically at 26°C in a gyratory shaker (at 140 r.p.m.), with a 

ratio of flask volume/ medium volume of 5:1. The growth me-

dia used were YPD [1% (w/v) yeast extract, 2% (w/v) bacto-

peptone, 2% (w/v) glucose], YPGlycerol [1% (w/v) yeast ex-

tract, 2% (w/v) bactopeptone, 4% (v/v) glycerol] or synthetic 

complete (SC) drop-out medium containing 2% (w/v) glucose, 

0.67% yeast nitrogen base without amino acids and supple-

mented with appropriate amino acids (80 mg histidine L-1, 400 

mg leucine L-1, 80 mg tryptophan L-1 and 80 mg uracil L-1). The 

tor1Δ cells were obtained by replacing TOR1 with a 

tor1::KanMX4 deletion cassette amplified by polymerase chain 

reaction (PCR) using the corresponding strain available from 

EUROSCARF (Germany) and the following primers: Fw (GA 

GAATCATTACCGGCGAAA) and Rv (ACGAACACGTTTTGGTG 

ATG). For ISC1 disruption in tor1Δ and sch9Δ::KanMX4 cells, a 

deletion fragment containing LEU2 and the flanking regions of 

ISC1 was amplified by PCR using pRS315 and the following 

primers: Fw (ATTTGCGCTTTCCGTAAAAAGGGAAAAAAAGCA 

GATATTTAAGCAAGGATTTTCT) and Rv (TCAGTAATTTTTTTACA 

TATGCTAAAGAAAATCGATAATACCGCATATCGACCCTCGAGGA 

G). Cells were transformed by electroporation. The tor1Δ cells 

were selected in YPD medium containing geneticin (0.4 

mg.mL-1) whereas isc1Δtor1Δ and isc1Δsch9Δ cells were se-

lected in minimal medium lacking leucine [0.67% (w/v) yeast 

nitrogen base without amino acids, 2% (w/v) glucose supple-

mented with appropriate amino acids (40 mg histidine L-1, 40 

mg uracil L-1 and 40 mg methionine L-1)]. The correct insertion 

of all cassettes was confirmed by PCR. 

To evaluate TORC1-dependent C-terminal phosphorylation 

of Sch9p, BY4741 and isc1∆ cells were transformed by elec-

troporation with pJU676 [45] and selected in minimal medium 

lacking uracil. For the analysis of mitochondrial morphology, 

yeast cells were transformed with a plasmid expressing mito-

chondrial DsRed (pYX222-mtDsRed) and selected in minimal 

medium lacking histidine. To evaluate autophagic flux, cells 

were transformed by electroporation with pRS416-GFP-ATG8 

[101] and selected in minimal medium lacking uracil. For 

Hog1p localization assays, yeast cells were transformed with 

pRS416-HOG1-GFP [102] and selected in minimal medium 

lacking uracil. To assess the activation of the CWI pathway by 

Rlm1p reporter transcriptional activity, yeast cells were trans-

formed with pLG∆312-2xRLM1-LacZ [103] and selected in 

minimal medium lacking uracil. For epistatic analysis, BY4741 

and tor1Δ strains were transformed with pYES2 and pYES2-

ISC1 [16] and selected in minimal medium lacking uracil.  

 

Stress resistance and chronological lifespan 

For H2O2 resistance assay, cells were grown to the exponential 

phase (OD600 = 0.6) or early stationary phase (48h after expo-

nential phase) and exposed to 1.5 mM or 300 mM H2O2 

(Merck) for 60 and 30 min, respectively. The CLS assay was 

performed as described [104]. For both assays, cell viability 

was determined by standard dilution plate counts on YPD 

medium containing 1.5 % (w/v) agar and expressed as the 

percentage of the colony-forming units after growth at 26°C 

for 3 days (time T vs. T0 (when viability was considered 100%) 

for the CLS assay; treated vs. untreated cells for H2O2 re-

sistance). Values are mean ± SD of at least three independent 

experiments. 

 

Enzymatic activities and oxygen consumption 

For enzyme activities, yeast cells were harvested by centrifu-

gation for 5 min at 4,000 r.p.m. (4°C). Cells were then resus-

pended in 50 mM potassium phosphate buffer (pH 7.0) con-

taining protease inhibitors (Complete, Mini, EDTA-free Prote-

ase Cocktail Inhibitor Tablets; Boehringer Mannhein) and 

phosphatase inhibitors (50 mM sodium fluoride, 5 mM sodium 

pyrophosphate, 1 mM sodium orthovanadate). Total protein 

extracts were obtained by mechanical disruption through 

vigorous shaking of the cell suspension in the presence of 

glass beads for 5 min. Short pulses of 1 min were applied fol-

lowed by 1 min incubation on ice. Cell debris was removed by 

centrifugation at 13,000 r.p.m. for 15 min and protein content 

was determined by the method of Lowry, using bovine serum 

albumin as a standard. Catalase activity was analyzed in situ, 

in the presence of 3,3′-diaminobenzidine tetrahydrochloride, 

using the H2O2/peroxidase system [105]. Cytochrome c oxi-

dase (COX) activity was determined by measuring cytochrome 

c oxidation [106]. β-galactosidase activity determination was 

performed as previously reported [18]. Oxygen consumption 

rate was measured for 3 x 108 cells in PBS buffer (pH 7.4), 

using an oxygen electrode (Oxygraph, Hansatech). Data was 

analyzed using the Oxyg32 V2.25 software.  
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TABLE 1. Saccharomyces cerevisiae strains used in this study. Harboring plasmids are shown in square brackets. 

Strain Genotype Source 

BY4741 
Mata his3Δ1, leu2Δ0, met15Δ0, ura3Δ0 [pJU676, pYX222-mtDsRed, pRS416-GFP-

ATG8, pRS416-HOG1-GFP, pLG∆312-2xRLM1-LacZ, pYES2, pYES2- ISC1] 
EUROSCARF 

isc1Δ 
BY4741 isc1Δ::KanMX4 [pJU676, pYX222-mtDsRed, pRS416-GFP-ATG8, pRS416-

HOG1-GFP, pLG∆312-2xRLM1-LacZ] 
EUROSCARF 

tor1Δ 
BY4741 tor1Δ::KanMX4 [pYX222-mtDsRed, pRS416-GFP-ATG8, pRS416-HOG1-

GFP, pLG∆312-2xRLM1-LacZ, pYES2,  pYES2-ISC1] 
This study 

isc1Δtor1Δ 
BY4741 isc1Δ::LEU2 tor1Δ::KanMX4 [pYX222-mtDsRed,  pRS416-GFP-ATG8, 

pRS416-HOG1-GFP, pLG∆312-2xRLM1-LacZ] 
This study 

sch9Δ BY4741 sch9Δ::KanMX4 [pYX222-mtDsRed,  pRS416-GFP-ATG8] EUROSCARF 

isc1Δsch9Δ BY4741 isc1Δ::LEU2 sch9Δ::KanMX4 [pYX222-mtDsRed, pRS416-GFP-ATG8] This study 

sit4Δ BY4741 sit4Δ::KanMX4 EUROSCARF 

isc1Δsit4Δ BY4741 isc1Δ::URA3 sit4Δ::KanMX4 [17] 

   

Mitochondrial membrane potential, ROS levels and cell 

death 

The mitochondrial membrane potential was measured using 

the potential-sensitive dye DiOC6(3). Briefly, 2x106 cells were 

resuspended in sample buffer [10 mM 2-(N-morpholino) 

ethanesulfonic acid, 0.1 mM MgCl2 and 2% (w/v) glucose, pH 

6.0]. DiOC6(3) (Molecular Probes) was added to a final concen-

tration of 1 nM. The cell suspension was then incubated for 30 

min at 26°C, collected by centrifugation and washed twice 

with PBS. Fluorescence was measured on the FL-1 channel of a 

Becton Dickinson FACS Calibur Analytic Flow cytometer with 

excitation and emission settings of 488 nm and 515–545 nm, 

respectively, without compensation. For the quantification of 

ROS levels, 5x106 cells were resuspended in PBS and the su-

peroxide anion sensitive probe dihydroethidium (DHE, Molec-

ular Probes) was added to a final concentration of 5 μM. Cells 

were incubated for 10 min at 26°C, pelleted by centrifugation, 

washed twice with PBS and analyzed by flow cytometry with 

excitation and emission settings of 488 nm and ≥670 nm (FL-3 

channel), without compensation.  

For the characterization of the cell death process, cells 

were dually stained with DiOC6(3) (1 nM) and propidium io-

dide (PI, 2μg mL-1, Molecular Probes) to evaluate mitochondri-

al membrane polarization and the plasma membrane integrity, 

respectively. Cells were incubated for 30 min at 26°C and har-

vested as previously described. After suitable compensation, 

fluorescence was measured by flow cytometry at different 

wavelengths: excitation/emission at 488/525 nm for DiOC6(3) 

(FL-1 channel), and at 536/600 nm for PI (FL-3 channel). Data 

treatment was performed using the FlowJo software (Tree 

Star). 

 

Western Blot analysis  

To evaluate the TORC1-dependent C-terminal phosphorylation 

of Sch9p, cells transformed with pJU676 (expressing SCH9-

5HA) were grown in SC-medium lacking uracil to the exponen-

tial phase. NTCB-chemical fragmentation analysis was done as 

described [45]. Proteins were then analyzed by SDS-PAGE 

using 10% polyacrylamide gels and blotted onto a nitrocellu-

lose membrane (GE Healthcare, Buckinghamshire, United 

Kingdom). Immunodetection was performed using rabbit anti-

HA (Sigma-Aldrich) at a 1:1,000 dilution as primary antibody, 

goat anti-rabbit IgG-peroxidase (Sigma-Aldrich) at a 1:5,000 

dilution as secondary antibody, and the Lumigen HRP chemi-

luminescent substrate (GE Healthcare, RPN2109, Buckingham-

shire, United Kingdom).  

To monitor Hog1p phosphorylation, yeast cells were 

grown to the exponential phase and protein extracts (50 μg) 

were separated by SDS-PAGE and blotted onto a nitrocellulose 

membrane (GE Healthcare, Buckinghamshire, United King-

dom). The membrane was incubated with the primary anti-

bodies rabbit anti-phospho-p38 MAPK (Cell Signaling Technol-

ogy, Denver, USA) at a 1:500 dilution or mouse anti-Pgk1p 

(Invitrogen, Carlsbad, USA) at a 1:30,000 dilution. Subsequent-

ly, the membrane was incubated with the secondary antibod-

ies, anti-rabbit IgG-peroxidase (Sigma-Aldrich) at a 1:5,000 

dilution, or anti-mouse IgG-peroxidase (Molecular Probes) at a 

1:3,000 dilution. Immunodetection was performed as de-

scribed above.   

The evaluation of LCBs mediated Phk1/2-dependent phos-

phorylation of Sch9p was performed as described [14]. To 

assess alterations in autophagic flux, cells were grown to the 

exponential phase in SC-medium and treated with either ra-

pamycin (200 ng mL-1, (Sigma-Aldrich) or DMSO (vehicle, Sig-

ma-Aldrich) for 3 hours. For CLS assay, cells were grown to the 

PDS phase, washed twice with water and then maintained in 

water overtime. Total protein extracts (30 μg) were analyzed 

in similar conditions as previously described. The membrane 
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was incubated with the primary antibodies mouse anti-GFP 

(Roche, Basel, Switzerland) at a 1:3,000 dilution or mouse anti-

Pgk1p (Invitrogen, Carlsbad, USA) at a 1:30,000 dilution. Sub-

sequently, the membrane was incubated with the secondary 

antibody anti-mouse IgG-peroxidase (Molecular Probes) at a 

1:3,000 dilution. Immunodetection was done as described.   

 

Fluorescence microscopy 

For mitochondrial morphology analysis, cells transformed with 

pYX222-mtDsRed were grown in SC-medium lacking histidine 

to the exponential or PDS phase. To assess Hog1p cell localiza-

tion, cells expressing Hog1p-GFP were grown in SC-medium 

lacking uracil to the exponential phase. Live cells were ob-

served by fluorescence microscopy (AxioImager Z1, Carl Zeiss). 

Data image stacks were deconvolved by QMLE algorithm of 

Huygens Professional v3.0.2p1 (Scientific Volume Imaging 

B.V.). Maximum intensity projection was used to output final 

images using ImageJ 1.45v software. 

 

Statistical analysis 

Data are expressed as mean values ± SD of at least three inde-

pendent experiments. Values were compared by Student’s t-

test. The 0.05 probability level was chosen as the point of 

statistical significance throughout. Statistical analyses were 

carried out using GraphPad Prism Software v5.01 (GraphPad 

Software). 
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