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Abstract (150 words) 26 

15
N-DNA stable isotope probing (

15
N-DNA-SIP) combined with 18S rRNA gene-based 27 

community analysis was used to identify active fungi involved in decomposition of 
15

N-28 

labeled maize and soybean litter in a tropical Vertisol. Phylogenetic analysis of 
15

N-labeled 29 

DNA subjected to 18S rRNA gene-based community fingerprinting showed that organic 30 

residue quality promoted either slow (i.e. Penicillium sp., Aspergillus sp.) or fast growing (i.e. 31 

Fusarium sp., Mortierella sp.) fungal decomposers in soils treated with maize or soybean 32 

residues, respectively, whereas Chaetomium sp. were found as dominant decomposers in both 33 

residue treatments. Therefore, we have clear evidence that specific members of the fungal 34 

community used 
15

N derived from the two different organic resources for growth and 35 

stimulated early decomposition of maize or soybean decomposition. In conclusion, our study 36 

showed that 
15

N-DNA-SIP-based community analyses cannot only follow the flow of N from 37 

organic resources into bacteria, but also into the actively decomposing fungal communities of 38 

soils. 39 

 40 

Keywords 41 

15
N-DNA stable isotope probing, active decomposing fungi, tropical soil, plant residue 42 

quality. 43 

44 
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Entire text (1486 words) 45 

Soil fungi represent a major proportion of soil microbial biomass and have been 46 

acknowledged to be predominant decomposers of organic matter in tropical soils (Rillig et al. 47 

2001; Yang & Insam 1991; Lodge 1985). However, the relationship between fungal 48 

community dynamics and fungal decomposition processes in tropical soils remains is 49 

relatively unexplored and thus needs further investigation to improve our current 50 

understanding of the specific contributions of fungi to organic residue decomposition and 51 

nutrient cycling in soils (Gomes et al. 2003). Although there has been progress in 52 

understanding the nature of bacterial communities contributing to crop residue decomposition 53 

(Bernard et al. 2007), knowledge of fungal communities is limited, and generally restricted to 54 

cultivation-dependent studies (e.g. Robinson et al. 1994). 55 

The development of nucleic acid-based, cultivation-independent approaches has opened new 56 

avenues for the sensitive detection of microbial communities in terrestrial ecosystems (Theron 57 

& Cloete, 2000), but these have rarely been used to study fungal communities in tropical soil 58 

ecosystems (Gomes et al. 2003). Since the advent of combining molecular techniques with 59 

stable isotopes (e.g. 
13

C, and 
15

N), DNA-based stable isotope probing (DNA-SIP, Radajewski 60 

et al. 2000) has became a powerful tool to achieve better understanding of microbial 61 

processes through identifying relevant organisms that determine nutrient cycling and 62 

metabolize plant-derived carbonaceous compounds (Rasche et al, 2009; Bernard et al, 2007; 63 

el Zahar Haichar et al. 2007). While 
13

C-based DNA-SIP has focused on the C cycle, 
15

N-SIP 64 

is particularly attractive to trace microbial processes involved in N cycling (Buckley et al. 65 

2008; Buckley et al. 2007; Cupples et al. 2007). However, 
15

N-DNA-SIP has to our 66 

knowledge not been used to investigate the role of soil fungi involved in the decomposition of 67 

complex plant residues. 68 
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In a previous study, we have proven that 
15

N-DNA-SIP combined with 16S rRNA gene-based 69 

community fingerprinting was appropriate to detect active bacteria involved in the 70 

decomposition of complex, 
15

N-labeled plant residues of different quality (i.e. maize and 71 

soybean) in a tropical Vertisol (España et al. in revision). Based on this preliminary study, we 72 

hypothesized that 
15

N-DNA-SIP along with 18S rRNA gene-based community fingerprinting 73 

was suited to assess the effect of organic residue quality on active members of the 74 

decomposing fungal community in the previously assayed tropical soil. 75 

15
N-enriched leaf residues (90 atom-%), i.e. maize (Zea mays L.) (total nitrogen (Nt) content 76 

1.21%; C-to-Nt ratio: 32; cellulose content: 24.9%) and soybean (Glycine max L. Merr.) 77 

(2.71%; 15; 15.5%), and an unlabeled control of both residues were incubated (1%) under 78 

controlled conditions (40% water holding capacity, 25°C) in topsoil (0-20 cm) of a Vertisol 79 

taken from a long-term field experiment in Venezuela (Rodriguez et al., 2004). After 15 days 80 

incubation, DNA was extracted from 0.3 g fresh soil (FastDNA Spin Kit for soil, MP 81 

Biomedicals, Solon, USA), and quantified (BioPhotometer 6131, Eppendorf, Hamburg, 82 

Germany). Isopycnic fractionation (SIP) of labeled and unlabeled DNA was performed 83 

according to Cadisch et al. (2005) and Hutchens et al. (2004). DNA density gradients were 84 

purified (Sambrook et al., 1989), and DNA from density-resolved SIP fractions was 85 

quantified as described above. 
15

N-enrichment of DNA fractions was determined according to 86 

España et al. (in revision). Fungal 18S rRNA genes were amplified by a semi-nested PCR 87 

protocol using a ready-to-use PCR mix (Biomix, Bioline, Luckenwalde, Germany). The first 88 

PCR (PCR 1) was performed in 25 µl reactions containing 12.5 µl ready-to-use PCR mix, 30 89 

ng DNA of each fraction, oligonucleotides (0.2 mM each) NS1 and EF3 (Oros-Sichler et al. 90 

2006; Fisher Scientific, Schwerte, Germany) and ultra-pure PCR water (Roth, Karlsruhe, 91 

Germany). PCR 1 was performed with 94°C for 5 min; 25 cycles at 94°C for 30 s, 47°C for 92 

45 s and 72°C for 3 min; and a final extension at 72°C for 10 min. Two µl of PCR 1 were 93 

http://www.desert-tropicals.com/Plants/Poaceae/Zea_mays.html
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used as template for the second amplification (PCR 2) with oligonucleotides NS1 (Oros-94 

Sichler et al. 2006) and NS2-GC (Marschner et al. 2002) (0.2 mM each, Fisher Scientific). 95 

PCR 2 was run with 94°C for 5 min, 80°C for 10 min, 35 cycles at 94°C for 30 s, 47°C for 45 96 

s and 72°C for 3 min, and a final extension at 72°C for 10 min. Amplicons were checked in 97 

2% Sybr® Green stained agarose gels (Sigma-Aldrich, Munich, Germany) and subjected to 98 

denaturing gradient gel electrophoresis (DGGE) analysis according to España et al. (in 99 

revision). Three independent DGGE analyses per fraction were performed for each sample to 100 

verify the method reproducibility. Four bands revealing distinct changes of their relative 101 

intensity along the gradient (from „light‟ unlabeled to „heavy‟ 
I5

N-labeled DNA fractions) 102 

were selected for cloning and sequencing analysis (Fig. 1; bands: maize (M): M1 to M4; 103 

soybean (S): S1 to S4). DGGE gel bands were purified and used for generating the 18S rRNA 104 

gene libraries according to España et al. (in revision). From each library, four positive clones 105 

were partially sequenced (GATC Biotech, Konstanz, Germany) with reverse M13 primer and 106 

sequence information (approximately 550 bases) was subjected to BLAST analysis with the 107 

National Center for Biotechnology Information (NCBI) database. Sequences were deposited 108 

in Genbank under accession numbers HM475173 to HM475268. 109 

Our study showed that 
15

N-DNA-SIP was suited to asses active decomposing fungi in both 110 

15
N-labeled plant residues evaluated and proved that 

15
N-DNA-SIP was useful for fungal 111 

decomposition studies using organic materials with contrasting biochemical composition. A 112 

prerequisite to the successful application of 
15

N-DNA-SIP is the use of highly 
15

N-enriched 113 

(at least 90 atom%) residues allowing a sufficient labeling of soil DNA to obtain reliable, 
15

N-114 

enriched SIP fractions (Fig. 1) (Cadisch et al. 2005) and to identify the active decomposing 115 

community, either fungi (this study) or bacteria, as was shown by España et al. (in revision). 116 

However, the use of unlabeled residues as control is mandatory to eliminate the effect of 117 

different G+C contents (Buckley et al. 2007; Cupples et al. 2007; Neufeld et al. 2007). 118 
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Residue incorporation induced remarkable differences in the community structure by inducing 119 

new bands in the 18S rRNA gene DGGE gels (patterns labeled with “M” for maize, and “S” 120 

for soybean), which were not present in the control (C) treatment (without residue) (Fig. 1). In 121 

both residue treatments, unlabeled control treatments revealed only small community changes 122 

compared to those of the 
15

N-labeled treatments. Several bands increased (e.g. M1, M2, M4, 123 

S1, S2, and S4) in relative intensity from „light‟ (fraction #5, 2.4 atom-% (soybean), and 0.06 124 

atom-% (maize), Fig. 1) to „heavy‟ (fraction #1, 87.1 atom-% (soybean), and 57.8 atom-% 125 

(maize), Fig. 1) DNA fractions, or remained constant (M3, and S3). 126 

Phylogenetic assignment of cloned bands revealed that the majority of sequences obtained 127 

from both maize and soybean treatments were affiliated with Chaetomium sp. (bands M3, M4, 128 

S3, and S4), while sequences obtained from bands S1 and S2 were related to Fusarium sp. 129 

and Mortierella sp., respectively. These active species belong to Ascomycota, known as key 130 

players in organic residue decomposition (Thorn & Lynch 2007; Kjøller & Struwe 2002; 131 

Montgomery et al. 2000). Chaetomium sp. and Fusarium sp. are known to degrade a range of 132 

contrasting and complex organic materials (e.g. maize and soybean residues) (Shaheen et al. 133 

2008; Katapodis et al. 2007), while Mortierella sp. has been shown to utilize mainly easy 134 

degradable C compounds (Thorn & Lynch 2007). Interestingly, Penicillium sp. and 135 

Aspergillus sp., slow growing fungi, and important in the initial cellulose degradation 136 

(Horwath 2007), were identified only in the maize treatment (bands M1 and M2) evincing 137 

almost twice as much cellulose than soybean residue. Contrastingly, Fusarium sp. and 138 

Mortierella sp., which were only found in the soybean treatment, are considered to be fast 139 

growing fungi (Thorn & Lynch 2007; Kjøller & Struwe 2002; Montgomery et al. 2000). We 140 

assumed that the fast fungal response to soybean residue addition was due to the development 141 

of opportunistic fungi feeding on relatively easily degradable plant residue constituents such 142 

as glucose and proteins rather than cellulous components. Although it has been shown that 143 
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readily decomposable compounds are mainly utilized by bacteria, fast growing opportunistic 144 

fungi have recently been found to also be stimulated by easy accessible C sources and high N 145 

availability (Poll et al. 2010; Rousk & Bååth 2007; van der Wal et al. 2006). 146 

In conclusion, 
15

N-DNA-SIP along with 18S rRNA gene-based community profiling was a 147 

powerful approach to follow the flow of N from contrasting organic resources into the fungal 148 

communities actively decomposing complex maize and soybean residues in a tropical 149 

Vertisol. Indications were provided that certain fungi were essentially involved in early stages 150 

of organic matter decomposition. However, we investigated only some prominent DGGE 151 

bands in more detail and therefore recommend for future research to extend community 152 

profiling approaches with studying total fungal communities to assess their richness and 153 

abundance as well as relevant functional genes to better understand the essential contribution 154 

of soil fungi in specific decomposition processes and nutrient cycling. 155 
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Figure caption 239 

 240 

Figure 1 241 

Denaturing gradient gel electrophoresis (DGGE) patterns of 18S rRNA genes obtained from 242 

DNA fractions along the caesium chloride (CsCl) density gradient (fraction #1 („heavy‟) to 243 

fraction #6 („light‟) from unlabeled control and 
15

N-labeled soybean (A) and maize (B) 244 

residue treatments. 
15

N-enrichment in labeled fractions: soybean (fraction #1 (87.1 atom-%), 245 

#2 (44.6 atom-%), #3 (20.4 atom-%), #4 (3.02 atom-%), and #5 (2.4 atom-%)), and maize 246 

(fraction #1 (57.8 atom-%), #2 (22.0 atom-%), #3 (19.2 atom-%), #4 (0.24 atom-%), and #5 247 

(0.06 atom-%)). DGGE pattern coding: C = DGGE pattern of control without any residue 248 

treatment; M/S = DGGE pattern of non-CsCl-fractionated soil DNA from soybean (S) and 249 

maize (M) residue treatment. Arrows indicate the DGGE-bands which have been selected for 250 

cloning and sequencing analysis. Affiliation of sequenced clones (12 clones per band): 251 

Fusarium sp. (Ascomycetes, band S1; 9 clones with associated Genbank accession number 252 

(closest NCBI match): EJ613599, homology: 98-100%; 2 clones: AB110910, 99-100%; 1 253 

clone: GQ166777, 98%), Mortierella sp. (Zygomycetes; band S2; 4 clones: AY129549, 99%; 254 

3 clones: EU736291, 98%; 2 clones: AY550125, 100%; 2 clones: AF113425, 99-100%; 1 255 

clone: AY546098, 99%), Penicillium sp. (Ascomycetes; band M1; 4 clones: AF245241, 98-256 

99%; 4 clones: AF245268; 99-100%; 2 clones: AF245267, 98-99%; 1 clone: GU190185, 257 

99%; 1 clone: AF245245, 99%), Aspergillus sp. (Ascomycetes; band M2; 5 clones: 258 

EF033516, 98-99%; 2 clones: AP007173, 98-99%; 2 clones: FJ393420, 99-100%; 2 clones: 259 

EU884135, 98-100%; 1 clone: AB048285, 100%), and Chaetomium sp. (Ascomycetes; bands 260 

S3, S4, M3, M4; all clones: FJ393436, 98-100%). Note: from fractions #1 of the unlabeled 261 

control treatments and fractions #6 of the 
15

N-labeled treatments, no 18S rRNA gene 262 

amplicon could be achieved. 263 

264 
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Figure 1 266 


