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ABSTRACT

In this paper, we study the influence of heat transfer on the peristaltic transport of an incompressible magne-
tohydrodynamic second grade fluid in vertical symmetric and asymmetric channels. The channel asymme-
try is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase.
The flow is investigated in the wave frame of reference moving with velocity of the wave. Perturbation
solutions are obtained for the stream function, temperature and pressure gradient under long wave length
assumption. Pressure difference and frictional force are discussed through numerical integration. The influ-
ence of various parameters of interest on the flow are discussed and also the graphical results are obtained
for different wave forms.

Keywords: Second grade fluid; Peristaltic transport; Porous medium; Magnetohydrodynamic flow; Heat
transfer.

1. INTRODUCTION

Peristalsis is an important mechanism generated
by the propagation of waves along the walls of a
channel or tube. In the recent times, peristalsis has
attracted much attention due to its important engi-
neering and medical applications. It occurs like,
chyme movement in the gastrointestinal tract, urine
transport from kidneys to bladder through ureter,
transport of spermatozoa in the ductus afferents of
the male reproductive tracts, movement of ovum in
the female fallopian tube, transport of bile in the
bile duct, transport of cilia, circulation of blood
in small blood vessels and many other glandular
ducts in a living body. Recently, peristaltic flows
in asymmetric channel have gained the attention of
researchers working in this field. This is because
the physiologists observed that the intrauterine
fluid flow caused by myometrial contractions may
occur in both symmetric and asymmetric directions
(Nadeem and Akbar 2011). Some important stud-
ies describing the peristaltic flows in asymmetric
channel are made in the references (Mishra and
Rao 2003; Ali and Hayat 2008; Noreen et al. 2012;
Rani and Sarojamma 2004).

Due to the extensive applications in bio engi-
neering and medical sciences, in recent years,

bio magnetic fluid dynamics is emerging as an
interesting area of research. Few such applications
include the development of magnetic devices for
cell separation, cancer tumor treatment, reduction
of bleeding during surgeries and development of
magnetic tracers (Rathish and Naidu 1995; Hayat
et al. 2007). Significant studies concerning the
magnetohydrodynamic peristaltic transport have
been made in (Hayat et al. 2007; Kothandapani and
Srinivas 2008; Nadeem and Akbar 2010; Nadeem
and Akram 2010; Nadeem and Akram 2011; Wang
et al. 2009). Further more, flow through porous
medium has attracted the attention of several
researchers due to its practical applications in bio
fluid dynamics. The porous medium is involved in
the human lung, bile duct, gall bladder with stones
and in small blood vessels (Afifi and Gad 2001). In
view of this, several investigators (Elmaboud and
Mekheimer 2011; Nadeem and Akram 2011; She-
hawey and Husseny 2002; Vajravelu et al. 2012;
Tripathi and Anwar 2012) have studied peristaltic
flow problems through porous medium. The study
of heat transfer on the peristaltic flow problems is
also most important in many engineering as well as
physiological applications. This mechanism may
occur in obtaining information about properties
of tissues, hypothermia treatment, sanitary fluid



K. Ramesh and M. Devakar / JAFM, Vol. 8, No. 3, pp. 351-365, 2015.

transport, blood pump in heart-lung machines and
transport of corrosive fluids (Nadeem and Akram
2011). Some more works on this topic can be seen
in (Nadeem and Akbar 2009; Hayat et al. 2011;
Vajravelu et al. 2011; Srinivas and Kothandapani
2008; Hayat et al 2014; Mehmood et al. 2012;
Saleem and Haider 2014; Tripathi and Anwar
2014).

Motivated from the previous studies, the aim
of the present paper is to discuss the influence of
heat transfer on peristaltic flow of a second grade
fluid through a porous medium in two-dimensional
vertical symmetric and asymmetric channels. The
fluid is electrically conducted in the presence of
a magnetic field. The governing equations of
second grade fluid have been modeled in cartesian
coordinates.

2. MATHEMATICAL FORMULATION

Consider the peristaltic flow of an incompressible,
electrically conducting second grade fluid in two
dimensional vertical asymmetric channel through
porous medium (see Figure 1). Asymmetry in the
flow is due to the propagation of peristaltic waves
of different amplitudes and phase on the channel
walls. The heat transfer in the channel is taken into
account. The left wall of the channel is maintained
at temperature T0, while the right wall has temper-
ature T1. We assume that the fluid is subject to a
constant transverse magnetic field B0. The mag-
netic Reynolds number is assumed to be small and
hence the induced magnetic field can be neglected.
In the laboratory frame, we select cartesian coordi-
nate system in such a way that X̄-axis lies along the
center line of the channel and Ȳ -axis normal to it.
We assume that, an infinite wave train is travelling
with velocity c along the walls. The geometry of
the wall surface is defined as

H1 (X̄ , t̄) = d1 +a1 cos
(

2π

λ
(X̄− ct̄)

)
(1)

H2 (X̄ , t̄) =−d2−a2 cos
(

2π

λ
(X̄− ct̄)+φ

)
(2)

In the above equations, a1 and a2 are the waves am-
plitudes, λ is the wave length, d1+d2 is the channel
width, c is the velocity of propagation, t̄ is the time
and X̄ is the direction of wave propagation. The
phase difference φ varies in the range 0 ≤ φ ≤ π,
in which φ = 0 corresponds to symmetric channel
with waves out of phase and φ = π corresponds to
that with waves in phase, and further a1, a2, d1, d2
and φ satisfy the condition a2

1 + a2
2 + 2a1a2cosφ ≤

(d1 +d2)
2.

Fig. 1. Schematic diagram of the physical
model.

In laboratory frame, the equations governing the
two-dimensional peristaltic motion of an incom-
pressible magnetohydrodynamic second grade fluid
through porous medium in the vertical channel are

∂Ū
∂X̄

+
∂V̄
∂Ȳ

= 0 (3)

ρ

(
∂

∂t̄
+Ū

∂

∂X̄
+V̄

∂

∂Ȳ

)
Ū =− ∂P̄

∂X̄
+

∂
(
S̄X̄ X̄

)
∂X̄

+
∂
(
S̄Ȳ X̄
)

∂Ȳ
−σB2

0Ū− µ
k

Ū +ρgγ(T −T0) (4)

ρ

(
∂

∂t̄
+Ū

∂

∂X̄
+V̄

∂

∂Ȳ

)
V̄ =−∂P̄

∂Ȳ
+

∂
(
S̄X̄Ȳ
)

∂X̄

+
∂
(
S̄ȲȲ
)

∂Ȳ
− µ

k
V̄ (5)

ρcp

(
∂

∂t̄
+Ū

∂

∂X̄
+V̄

∂

∂Ȳ

)
T =

k∗
(

∂2T
∂X̄2 +

∂2T
∂Ȳ 2

)
+Q0 (6)

where ρ is the density, Ū and V̄ are the velocity
components, σ is the electrical conductivity of the
fluid, k is the permeability parameter and B0 is the
magnetic field. Introducing a wave frame (x̄, ȳ)
moving with velocity c away from the fixed frame
(X̄ ,Ȳ ), the transformations
x̄ = X̄− ct̄, ȳ = Ȳ give ū = Ū− c, v̄ = V̄ ,

p̄(x̄, ȳ) = P̄(X̄ ,Ȳ , t̄) and T̄ (x̄, ȳ) = T (X̄ ,Ȳ , t̄) (7)

where (ū, v̄) and (Ū ,V̄ ) are velocity components, p̄
and P̄ are pressures, T̄ and T are temperatures in
wave and fixed frame of references respectively.
After employing Eq. (7), Eq.s (3)-(6) reduce to

∂ū
∂x̄

+
∂v̄
∂ȳ

= 0 (8)
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ρ

(
ū

∂

∂x̄
+ v̄

∂

∂ȳ

)
ū =−∂ p̄

∂x̄
+

∂
(
S̄x̄x̄
)

∂x̄
+

∂
(
S̄ȳx̄
)

∂ȳ

−σB2
0 (ū+ c)− µ

k
(ū+ c)+ρgγ(T̄ − T̄0) (9)

ρ

(
ū

∂

∂x̄
+ v̄

∂

∂ȳ

)
v̄ =−∂ p̄

∂ȳ
+

∂
(
S̄x̄ȳ
)

∂x̄
+

∂
(
S̄ȳȳ
)

∂ȳ

−µ
k

v̄ (10)

ρ

(
ū

∂

∂x̄
+ v̄

∂

∂ȳ

)
T̄ = k∗

(
∂2T̄
∂x̄2 +

∂2T̄
∂ȳ2

)
+Q0 (11)

Using the non-dimensional variables

x =
x̄
λ
, y =

ȳ
d1

, u =
ū
c
, v =

v̄
c
,

h2 =
H2

d1
, t =

ct̄
λ
, S =

d1

µc
S̄, p =

d2
1

λµc
p̄,

δ =
d1

λ
, d =

d2

d1
, a =

a1

d1
, b =

a2

d1
,

Re =
ρcd1

µ
, α1 =

cᾱ1

µd1
, α2 =

cᾱ2

µd1
,

M =

√
σ

µ
B0d1, Da =

k
d2

1
, ψ =

ψ̄

cd1
,

Pr =
µcp

k∗
, Gr =

ρgγd2
1(T̄1− T̄0)

µc
,

h1 =
H1

a1
, θ =

T̄ − T̄0

T̄1− T̄0
, β =

Q0d2
1

k∗(T̄1− T̄0)

in equations (8)-(11), we get

δ
∂u
∂x

+
∂v
∂y

= 0 (12)

Reδ

(
u

∂u
∂x

+
1
δ

v
∂u
∂y

)
=−∂p

∂x
+δ

∂(Sxx)

∂x

+
∂(Syx)

∂y
−
(

M2 +
1

Da

)
(u+1)+Grθ (13)

Reδ
2
(

u
∂v
∂x

+
1
δ

v
∂v
∂y

)
=−∂p

∂y
+δ

2 ∂(Sxy)

∂x

+δ
∂(Syy)

∂y
− δ

Da
v (14)

RePrδ

(
u

∂θ

∂x
+

1
δ

v
∂θ

∂y

)
=

(
δ

2 ∂2θ

∂x2 +
∂2θ

∂y2

)
+β(15)

Introducing the dimensionless stream function
ψ(x,y) such that u = ∂ψ

∂y and v = −δ
∂ψ

∂x , the gov-
erning Eq.s (13)-(15) become

Reδ

[(
∂ψ

∂y
∂

∂x
− ∂ψ

∂x
∂

∂y

)
∂ψ

∂y

]
=−∂p

∂x

+δ
∂(Sxx)

∂x
+

∂(Syx)

∂y

−
(

M2 +
1

Da

)(
∂ψ

∂y
+1
)
+Grθ (16)

−Reδ
3
[(

∂ψ

∂y
∂

∂x
− ∂ψ

∂x
∂

∂y

)
∂ψ

∂x

]
=−∂p

∂y

+δ
2 ∂(Sxy)

∂x
+δ

∂(Syy)

∂y
+

δ2

Da

∂ψ

∂x
(17)

RePrδ

(
∂ψ

∂y
∂θ

∂x
− ∂ψ

∂x
∂θ

∂y

)
=

(
δ

2 ∂2θ

∂x2 +
∂2θ

∂y2

)
+β (18)

with

Sxx = 2δ
∂2ψ

∂x∂y
+α1

[
2δ

2 ∂ψ

∂y
∂3ψ

∂x2∂y

−2δ
2 ∂ψ

∂x
∂3ψ

∂x∂y2 +4δ
2
(

∂2ψ

∂x∂y

)2

−2δ
2 ∂2ψ

∂x2
∂2ψ

∂y2 +2δ
4
(

∂2ψ

∂x2

)2 ]
+α2

[
4δ

2
(

∂2ψ

∂x∂y

)2

+

(
∂2ψ

∂y2

)2

+δ
4
(

∂2ψ

∂x2

)2

−2δ
2 ∂2ψ

∂x2
∂2ψ

∂y2

]
(19)

Syx =

(
∂2ψ

∂y2 −δ
2 ∂2ψ

∂x2

)
+α1

[
−δ

3 ∂ψ

∂y
∂3ψ

∂x3

+δ
∂ψ

∂y
∂3ψ

∂x∂y2 +δ
3 ∂ψ

∂x
∂3ψ

∂x2∂y
−δ

∂ψ

∂x
∂3ψ

∂y3

+2δ
∂2ψ

∂y2
∂2ψ

∂x∂y
+2δ

3 ∂2ψ

∂x2
∂2ψ

∂x∂y

]
(20)

Syy =−2δ
∂2ψ

∂x∂y
+α1

[
−2δ

2 ∂ψ

∂y
∂3ψ

∂x2∂y

+2δ
2 ∂ψ

∂x
∂3ψ

∂x∂y2 +4δ
2
(

∂2ψ

∂x∂y

)2

−2δ
2 ∂2ψ

∂x2
∂2ψ

∂y2

+2
(

∂2ψ

∂y2

)2 ]
+α2

[
4δ

2
(

∂2ψ

∂x∂y

)2

+

(
∂2ψ

∂y2

)2

+δ
4
(

∂2ψ

∂x2

)2

−2δ
2 ∂2ψ

∂x2
∂2ψ

∂y2

]
(21)

353



K. Ramesh and M. Devakar / JAFM, Vol. 8, No. 3, pp. 351-365, 2015.

The corresponding dimensionless boundary condi-
tions are

ψ =
F
2
,

∂ψ

∂y
=−1, θ = 1 at y = h1 (22)

ψ =−F
2
,

∂ψ

∂y
=−1, θ = 0 at y = h2 (23)

where F is the flux in the wave frame and a, b, d and
φ satisfy the relation a2 +b2 +2abcosφ≤ (1+d)2.

3. RATE OF VOLUME FLOW

In the laboratory frame, the dimensional volume
flow rate is

Q =
∫ H1

H2

Ū (X̄ ,Ȳ , t̄)dȲ . (24)

The above expression in wave frame becomes

q =
∫ h1

h2

ū(x̄, ȳ)dȳ. (25)

From Eq.s (7), (24) and (25), we can write

Q = q+ ch1− ch2. (26)

The average volume flow rate over one period(
T = λ

c

)
of the peristaltic wave is defined as

Q̄ =
1
T

∫ T

0
Qdt (27)

Using Eq.(26) into Eq.(27) and then integrating,
yields

Q̄ = q+ cd1 + cd2 (28)

We define the dimensionless time-mean flows Θ

and F respectively, in the laboratory and wave
frame as

Θ =
Q̄

cd1
and F =

q
cd1

, (29)

From Eq.(28), we obtain

Θ = F +1+d (30)

and

F =
∫ h1

h2

∂ψ

∂y
dy = ψ(h1 (x))−ψ(h2 (x)) (31)

where

h1 (x) = 1+acos(2πx),

h2 (x) =−d−bcos(2πx+φ) (32)

4. PERTURBATION SOLUTION

Since the Eq.s (16)-(18) are highly non-linear par-
tial differential equations, the exact solutions are
not amenable. Therefore, we use regular perturba-
tion method to find the approximate solution using
the pertarbation parameter δ. For perturbation so-
lution, we express ψ, θ and ∂p

∂x as

ψ = ψ0 +δψ1 +O(δ2) (33)

θ = θ0 +δθ1 +O(δ2) (34)

∂p
∂x

=
∂p0

∂x
+δ

∂p1

∂x
+O(δ2) (35)

Substituting Eq.s (33)-(35) in Eq.s(16)-(23), and
comparing the like power of δ, we get the zeroth
order and first order systems. Solving these sys-
tems with the corresponding boundary conditions,
the expressions of the stream function ψ, the tem-
perature θ and the pressure gradient ∂p

∂x are given
by
ψ = C1cosh(Ry)+C2sinh(Ry)+C3y3 +C4y2

+C5y+C6 +δ[G1y3sinh(Ry)

+G2y3cosh(Ry)+G3y2sinh(Ry)

+G4y2cosh(Ry)+G5ysinh(Ry)

+G6ycosh(Ry)+G7cosh(2Ry)

+G8sinh(Ry)+G9cosh(Ry)+G10y6

+G11y5 +G12y4 +G13y3 +G14y2

+G15y+G16] (36)

θ = −β

2
y2 +A1y+A2 +δ[D29ysinh(Ry)

+D30ycosh(Ry)+D31sinh(Ry)

+D32cosh(Ry)+D33y5 +D34y4

+D35y3 +D36y2 +E1y+E2] (37)

∂p
∂x

= I1y2 + I2y+ I3 +δ[J1y2sinh(Ry)

+J2y2cosh(Ry)+ J3ysinh(Ry)

+J4ycosh(Ry)+ J5sinh(Ry)

+J6cosh(Ry)+ J7sinh2(Ry)

+J8cosh2(Ry)+ J9sinh(Ry)cosh(Ry)

+J10sinh(2Ry)+ J11y5 + J12y4 + J13y3

+J14y2 + J15y+ J16] (38)

The non-dimensional expression for the pressure
difference per wavelength is given as follows

∆pλ =
∫ 1

0

(
d p
dx

)
dx. (39)
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The frictional forces at y = h1 and y = h2 denoted
by Fλ1 and Fλ2 respectively are given as (Saleem
and Haider 2014)

Fλ1 =
∫ 1

0
h2

1

(
−d p

dx

)
dx, (40)

Fλ2 =
∫ 1

0
h2

2

(
−d p

dx

)
dx (41)

The coefficients of the heat transfer Zh1 and Zh2 at
the walls y = h1 and y = h2 respectively, are given
by (Mehmood et al. 2012)

Zh1 =
∂h1

∂x
∂θ

∂y
, (42)

Zh2 =
∂h2

∂x
∂θ

∂y
(43)

After using Eq.(37) in the Eq.s(42)-(43), the ex-
pressions for heat transfer coefficients are

Zh1 = D1[−
βy
2

+A1 +δ(RD29ycosh(Ry)

+RD30ysinh(Ry)+(D29 +RD32)sinh(Ry)

+(D30 +RD31)cosh(Ry)+5D33y4

+4D34y3 +3D35y2 +2D36y+E1)], (44)

Zh2 = D2[−
βy
2

+A1 +δ(RD29ycosh(Ry)

+RD30ysinh(Ry)+(D29 +RD32)sinh(Ry)

+(D30 +RD31)cosh(Ry)+5D33y4

+4D34y3 +3D35y2 +2D36y+E1)] (45)

The expression for pressure gradient is not amica-
ble for integration with respect to x. Hence, the
pressure difference and frictional forces are com-
puted numerically.

(a)

(b)

(c)

(d)

Fig. 2. Velocity profiles for (a) x = 1, a = 0.7,
b = 0.5, d = 1, Gr = 0.4, δ = 0.0001, Θ = 2,

α1 = 0.5, Da = 1, Re = 0.1, Pr = 0.5, φ = π/6,
and β = 1; (b) x = 1, a = 0.7, b = 0.5, d = 1,

Gr = 0.4, δ = 0.0001, Θ = 2, α1 = 0.5, Re = 0.1,
Pr = 0.5, φ = π/6, M = 2 and β = 1; (c) x = 1,
a = 0.7, b = 0.5, d = 1, Gr = 0.4, δ = 0.0001,
Θ = 2, α1 = 0.5, Da = 1, Re = 0.1, Pr = 0.5,

φ = π/6 and M = 2; (d) x = 1, a = 0.7, b = 0.5,
d = 1, δ = 0.0001, Θ = 2, α1 = 0.5, Da = 1,

Re = 0.1, Pr = 0.5, φ = π/6, M = 2 and β = 1.355
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5. RESULTS AND DISCUSSION

The main purpose of this section is to describe the
effects of the different parameters on the stream-
lines, velocity, pressure gradient, frictional force
and pressure difference. Numerical integration
is performed over the domain [0,1] for pressure
difference and frictional force. The temperature
profiles and the heat transfer coefficient are also
analyzed for the various parameters. The results
are presented graphically.

The variations of velocity for different values
of Hartmann number M, Darcy number Da, heat
generation parameter β and Grashof number Gr
are presented in the Fig.s2(a)-2(d). It is observed
from figure 2(a) that, the velocity increases near
the boundaries and decreases in the middle of the
channel as Hartmann number M increases. From
Fig.s2(b)-2(c), it is clear that, with increasing of
Darcy number Da and heat generation parameter
β, the velocity decreases near the channel walls
and increases near the middle of the channel. It is
depicted from Fig.2(d) that, with the increase in
Grashof number Gr, the velocity profile decreases
in the left side of the channel, while it increases
in the right side of the channel. Figures 3(a)-3(d)
show that for x ∈ [0,0.2] and x ∈ [0.7.1], the
pressure gradient is small, that is, the flow can
easily pass without imposition of large pressure
gradient and in remaining part of the channel,
the pressure gradient is large, that is, it requires
a large pressure gradient to maintain the given
volume flow rate. Moreover, from Fig.3(a), the
pressure gradient increases with an increase in
Hartmann number M, in the wider part of the
channel and decreases in the narrow part of the
channel. The behavior is opposite for Darcy
number Da to that of Hartmann number M (see
Fig.3(b)). It is noticed from the Fig.3(c) that,
pressure gradient is increasing function of heat
generation parameter β. It is depicted from figure
3(d) that, with the increasing of phase difference
φ the pressure gradient decreases in the wider part
of the channel and increases in the narrow part of
the channel. Moreover, the narrow region in the
channel is shifting to the left with an increase in
φ. The pressure gradient for various wave forms
are displayed in Fig. 4. It is observed from Fig.s
4(a)-4(d) that, pressure gradient increases with
increasing volume flow rate. The pressure gradient
is small in the wider part of the channel and large
in the narrow part of the channel showing that,
in the narrow part of the channel, more pressure
gradient is required to push the fluid as compared
with the wider part of the channel in all the wave
shapes.
Figure 5 is prepared for pressure difference ∆pλ

(a)

(b)

(c)

(d)
Fig. 3. Pressure gradient for (a) y = 0, a = 0.7,
b = 0.5, d = 1, Gr = 0.4, δ = 0.0001, Θ =−1,
α1 = 0.5, Da = 1, Re = 0.1, Pr = 0.5, φ = π/6,
and β = 1; (b) y = 0, a = 0.7, b = 0.5, d = 1,

Gr = 0.4, δ = 0.0001, Θ =−1, α1 = 0.5,
Re = 0.1, Pr = 0.5, φ = π/6, M = 2 and β = 1; (c)

y = 0, a = 0.7, b = 0.5, d = 1, Gr = 0.4,
δ = 0.0001, Θ =−1, α1 = 0.5, Da = 1, Re = 0.1,
Pr = 0.5, φ = π/6 and M = 2; (d) y = 0, a = 0.7,

b = 0.5, d = 1, Gr = 0.4, δ = 0.0001, Θ =−1,
α1 = 0.5, Da = 1, Re = 0.1, Pr = 0.5, M = 2 and

β = 1.356
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against volume flow rate Θ for different values
of M, Da and β. It is observed from Fig.5(a)
that, when ∆p > 0 the pumping rate increases
with the increasing of M, pumping rate coincides
with each other for ∆p = 0 and for ∆p < 0 the
pumping rate decreases with the increase in M.
The behaviour opposite with Darcy number Da
to that of Hartmann number M (see Fig.5(b)).
From Fig.5(c), it is seen that with increase in β,
the pressure difference increases. It is noted from
figure 6 that, the frictional forces at the walls are
acting opposite behaviour of pressure difference.

Figure 7 plots the temperature profiles for
various values of flow parameters. Figures 7(a)-
7(c) show that the temperature increases as heat
generation parameter β, Grashof number Gr and
the volume flow rate Θ increases. Figure 7(d)
depicts that θ decreases by increasing Hartmann
number M. Figure 8 is prepared to study the
role of different parameters on the heat transfer
coefficient at the wall y = h1. Figure 8(a) shows
that the absolute value of heat transfer coefficient
increases by increasing heat generation parameter
β. It is observed from the Fig.s8(b)-8(c) that,
heat transfer coefficient increases with increasing
of Grashof number Gr and the volume flow rate
Θ. The situation is reversed with the increasing
of Hartmann number M (see Fig.8(d)) to that of
Grashof number Gr and the volume flow rate Θ.
The trapping phenomena is discussed for different
values of heat generation parameter β and Darcy
number Da for both symmetric and asymmetric
channels in the Fig.s9-10. The streamlines (a), (b)
are for symmetric channel while the streamlines
(c), (d) are for asymmetric channel. It is observed
from Fig.s9-10 that, the size of the trapped bolus
increases with increase in heat generation param-
eter β and Darcy number Da for both symmetric
and asymmetric channels. Moreover, the effect of
phase shift φ on trapping with the same amplitudes
are shown in these figures. It is found that the bolus
decreases and moves towards up with the increase
of phase difference φ.

(a)

(b)

(c)

(d)

Fig. 4. Pressure gradient for various wave forms
when y = 0, a = 0.5, b = 0.5, d = 1, Gr = 0.4,
δ = 0.0001, α1 = 0.5, Da = 1, Re = 0.1, Pr = 0.5,
φ = 0, β = 1 and M = 2.
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(a)

(b)

(c)

Fig. 5. Pressure difference for fixed values of
(a) y = 0, a = 0.7, b = 0.5, d = 1, Gr = 0.4,

δ = 0.0001, Θ =−1, α1 = 0.5, Da = 1, Re = 0.1,
Pr = 0.5, φ = π/6, and β = 1; (b) y = 0, a = 0.7,

b = 0.5, d = 1, Gr = 0.4, δ = 0.0001, Θ =−1,
α1 = 0.5, Re = 0.1, Pr = 0.5, φ = π/6, M = 2 and
β = 1; (c) y = 0, a = 0.7, b = 0.5, d = 1, Gr = 0.4,
δ = 0.0001, Θ =−1, α1 = 0.5, Da = 1, Re = 0.1,

Pr = 0.5, φ = π/6 and M = 2.

(a)

(b)

(c)

Fig. 6. Frictional force at the wall y = h1 for (a)
a = 0.7, b = 0.5, d = 1, Gr = 0.4, δ = 0.0001,
Θ =−1, α1 = 0.5, Da = 1, Re = 0.1, Pr = 0.5,

φ = π/6, and β = 1; (b) a = 0.7, b = 0.5, d = 1,
Gr = 0.4, δ = 0.0001, Θ =−1, α1 = 0.5,

Re = 0.1, Pr = 0.5, φ = π/6, M = 2 and β = 1; (c)
a = 0.7, b = 0.5, d = 1, Gr = 0.4, δ = 0.0001,
Θ =−1, α1 = 0.5, Da = 1, Re = 0.1, Pr = 0.5,

φ = π/6 and M = 2.
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(a)

(b)

(c)

(d)
Fig. 7. Temperature profile for (a) x = 1,

a = 0.7, b = 0.5, d = 1, Gr = 5, δ = 0.001, Θ = 2,
α1 = 0.2, Da = 1, Re = 0.8, Pr = 0.8, φ = π/4
and M = 2; (b) x = 1, a = 0.7, b = 0.5, d = 1,

δ = 0.001, β = 5, Θ = 2, α1 = 0.2, Da = 1,
Re = 0.8, Pr = 0.8, φ = π/4 and M = 2; (c) x = 1,
a = 0.7, b = 0.5, d = 1, Gr = 5, δ = 0.001, β = 5,

α1 = 0.2, Da = 1, Re = 0.8, Pr = 0.8, φ = π/4
and M = 2; (d) x = 1, a = 0.7, b = 0.5, d = 1,

Gr = 5, δ = 0.001, β = 5, Θ = 2, α1 = 0.2,
Da = 1, Re = 0.8, Pr = 0.8 and φ = π/4.

(a)

(b)

(c)

(d)
Fig. 8. Heat transfer coefficient at the wall

y = h1 for (a) a = 0.7, b = 0.5, d = 1, Gr = 5,
δ = 0.001, Θ = 2, α1 = 0.2, Da = 1, Re = 0.8,

Pr = 0.8, φ = π/4 and M = 2; (b) a = 0.7,
b = 0.5, d = 1, δ = 0.001, β = 5, Θ = 2, α1 = 0.2,
Da = 1, Re = 0.8, Pr = 0.8, φ = π/4 and M = 2;

(c) a = 0.7, b = 0.5, d = 1, Gr = 5, δ = 0.001,
β = 5, α1 = 0.2, Da = 1, Re = 0.8, Pr = 0.8,

φ = π/4 and M = 2; (d) a = 0.7, b = 0.5, d = 1,
Gr = 5, δ = 0.001, β = 5, Θ = 2, α1 = 0.2,
Da = 1, Re = 0.8, Pr = 0.8 and φ = π/4.
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(a) β = 0, φ = 0

(b) β = 5, φ = 0

(c) β = 0, φ = π/6

(d) β = 5, φ = π/6

Fig. 9. Streamlines for a = 0.5, b = 0.5, d = 1,
Gr = 0.4, M = 2, δ = 0.0001, Θ = 2, α1 = 0.5,

Re = 0.1, Pr = 0.5 and Da = 1.

(a) Da = 1, φ = 0

(b) Da→ ∞, φ = 0

(c) Da = 1, φ = π/6

(d) Da→ ∞, φ = π/6

Fig. 10. Streamlines for a = 0.5, b = 0.5, d = 1,
Gr = 0.4, M = 2, δ = 0.0001, Θ = 2, α1 = 0.5,

Re = 0.1, Pr = 0.5 and β = 1.
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6. CONCLUSIONS

The effects of heat transfer on the peristaltic flow
of a magnetohydrodynamic second grade fluid
through a porous medium in vertical symmetric and
asymmetric channels are investigated. The velocity,
frictional force, pumping, pressure gradient, tem-
perature, trapping and heat transfer coefficient are
examined for various fluid flow parameters. The
main findings of the work are summarized as fol-
lows:
• The trapping bolus increases with increasing

of heat generation parameter and Darcy num-
ber.

• The behaviour of velocity is qualitatively op-
posite for Hartmann number and porosity pa-
rameter.

• The pressure gradient for different wave forms
is relatively small in the wider part of the chan-
nel and it is relatively large in the narrow part
of the channel for given volume flow rate.

• The trapping bolus decreases and moves up-
ward with an increase in phase difference.

• The heat generation parameter and Grashof
number increases the temperature while Hart-
mann number decreases the temperature.

• The pressure difference and frictional forces
have opposite behaviour on pumping.

APPENDIX

A1 =
1

2(h1−h2)

(
2+β(h2

1−h2
2)
)

;

A2 =
1
2
(
2+βh2

1−2A1h1
)

; R =

√
M2 +

1
Da

;

B1 = sinh(Rh1)− sinh(Rh2);
B2 = cosh(Rh1)− cosh(Rh2);

B3 =
Gr(h1−h2)

2R3 (β(h1 +h2)−2A1);

B4 =
R3

B1
(B1cosh(Rh1)−B2sinh(Rh1)) ;

B5 =
B3R3sinh(Rh1)

B1
− GrβRh2

1
2

+GrA1h1

−Grβ

R2 +R2;

B6 = B1−
B2

2
B1
− B4(h1−h2)

R2 ;

C1 =
B3−C2B2

B1
;

C2 =
1

B6

(
F− B2B3

B1
+

Grβ(h3
1−h3

2)

6R2

+
GrA1(h2

2−h2
1)

2R2

+

(
Grβ

R4 +
B5

R2

)
(h1−h2)

)
;

C3 = −Grβ

6R2 ; C4 =
GrA1

2R2 ;

C5 = −Grβ

R4 −
B5 +C2B4

R2 ;

C6 =
F
2
−C1cosh(Rh1)−C2sinh(Rh1)

+
Grβh3

1
6R2 −

GrA1h2
1

2R2 −C5h1;

I1 =
Grβ

2
−6C3R2; I2 =−A1−2C4R2;

I3 = 6C3−A2− (1+C5)R2;
D1 = −2aπsin(2πx); D2 = 2bπsin(2πx+φ);

D3 =
1

2(h1−h2)2 (2(D2−D1)

+β(h1−h2)
2(2(D1 +D2));

D4 = βh1D1−A1D1−h1D3;
D5 = R(D1cosh(Rh1)−D2cosh(Rh2));

D6 = R(D1sinh(Rh1)−D2sinh(Rh2));

D7 =
Grβ

R3 (h1D1−h2D2)−
Gr
R3 (A1(D1−D2)

+D3(h1−h2));

D8 = (RB1D1−D6)sinh(Rh1)

+(D5−RB2D1)cosh(Rh1);
D9 = B1cosh(Rh1)−B2sinh(Rh1);

D10 =
1

RD2
9
(D5D9−B1D8);

D11 =
1

R2B2
1
(GrβB2

1D1h1−GrB2
1(A1D1

+h1D3)+B2
1D14−B1B3D1R2cosh(Rh1)

−B1D7Rsinh(Rh1)+B3D5Rsinh(Rh1));

D12 =
R3

B2
1
(B1D8−D5D9);

D13 =
1

B2
1
(B1B3D1R4cosh(Rh1)+(B1D7R3

−B3D5R3)sinh(Rh1))

−Gr(βD1h1−A1D1−h1D3);
D14 = D13 +C2D12 +B4D18;

D15 =
1

R2B2
1
(B2

1D5R2−2B1B2D6R2 +B2
2D5R2

−B2
1B4(D1−D2)−B2

1D12(h1−h2));

D16 = − 1
B2

1
(B1(B2D7 +B3D6)−B2B3D5)

+
Grβ

6R2 (3h2
1D1−3h2

2D2)
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+
Gr
2R2 [A1(2h2D2−2h1D1)

+D3(h2
2−h1)

2]+
Grβ

R4 (D1−D2)

+
1

R2 [B5(D1−D2)+D13(h1−h2)];

D17 = F− B2B3

B1
+

Grβ

6R2 (h
3
1−h3

2)

+
GrA1

2R2 (h2
2−h2

1)

+

(
Grβ

R4 +
B5

R2

)
(h1−h2);

D18 =
1

B2
6
(B6D16−D17D15);

D19 =
1

B2
1
(B1D7−B1(C2D6 +B2D18)

−D5(B3−C2B2));
D20 = R2[RC1D1sinh(Rh1)+D19cosh(Rh1)

+RC2D1cosh(Rh1)+D18sinh(Rh1)

−Grβ

2R2 h2
1D1 +

Gr
2R2 (2h1A1D1 +h2

1D3)

+C5D1−
h1D14

R2 +
Gr
R4 D3];

D21 = RePr(RC1D3 +βD18);
D22 = RePr(RC2D3 +βD19);
D23 = RePr(RC1D4−A1D18);

D24 = RePr(RC2D4−A1D19);
D25 = RePr(3C3D3 +βD37);
D26 = RePr(3C3D4 +βD38 +2C4D3−A1D37);
D27 = RePr(C5D3 +βD39 +2C4D4−A1D38);

D28 = RePr(RC5D4−A1D39); D29 =
D21

R2 ;

D30 =
D22

R2 ; D31 =
D23

R2 −
2D22

R3 ;

D32 =
D24

R2 −
2D21

R3 ; D33 =
D25

20
; D34 =

D26

12
;

D35 =
D27

6
; D36 =

D28

2
; D37 =

GrD3

2R2 ;

D38 = −D14

R2 ; D39 =
GrD3

R4 − D20

R2 ;

E1 =
1

h2−h1
[D29(h1sinh(Rh1)−h2sinh(Rh2))

+D30(h1cosh(Rh1)−h2cosh(Rh2))

+D31(sinh(Rh1)− sinh(Rh2))

+D32(cosh(Rh1)− cosh(Rh2))

+D33(h5
1−h5

2)+D34(h4
1−h4

2)

+D35(h3
1−h3

2)+D36(h2
1−h2

2)];
E2 = −[D29h1sinh(Rh1)+D30h1cosh(Rh1)

+D31sinh(Rh1)+D32cosh(Rh1)+D33h5
1

+D34h4
1 +D35h3

1 +D36h2
1 +E1h1];

E3 = −α1
[
2R3(C1D19 +C2D18)

]
;

E4 = −α1

[
2R2C4D19 +12C3D18R−C2D38R3

+2GrC1D3

]
;

E5 = −α1

[
2R2C4D18 +12C3D19R−C1D38R3

+2GrC2D3

]
;

E6 = −α1

[
R2C5D19 +

GrC2D3

R
−6C3D19

−C2D39R3 +4C4D18R−2C1D14

]
;

E7 = −α1

[
R2C5D18 +

GrC1D3

R
−6C3D18

−C1D39R3 +4C4D19R−2C2D14

]
;

E8 = −α1
[
2R3C1D18

]
; E9 =−α1

[
2R3C1D19

]
;

E10 = −α1
[
3R2C3D19−R3C2D37

]
;

E11 = −α1
[
3R2C3D18−R3C1D37

]
;

E12 = −α1

[
15GrC3D3

R2 −6C3D37

]
;

E13 = −α1

[
6GrC4D3

R2 −6C3D38−
12C3D14

R2

]
;

E14 = −α1

[
GrC5D3

R2 −6C3D39−
4C4D14

R2

]
;

E15 = R
[
2C4D19R2−C2D38R3] ;

E16 = R
[
2C4D18R2−C1D38R3] ;

E17 = R
[
C5D19R2 +

GrC2D3

R
−6C3D19

−C2D39R3
]

;

E18 = R
[
C5D18R2 +

GrC1D3

R
−6C3D18

−C1D39R3
]

;

E19 = R
[
3C3D19R2−C2D37R3] ;

E20 = R
[
3C3D18R2−C1D37R3] ;

E21 = R
[

3GrC3D3

R2 −6C3D37

]
;

E22 = R
[

2GrC4D3

R2 −6C3D38

]
;

E23 = R
[

GrC5D3

R2 −6C3D39

]
;

E24 = 2α[4C1D19R5 +4C2D18R5];
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E25 = 24αC3D19R3− GrD22

R
;

E26 = 24αC3D18R3− GrD21

R
;

E27 = 2α[12C3D18R2 +4C4D19R3 +2RGrC1D3]

+
GrD21

R2 − GrD24

R
;

E28 = 2α[12C3D19R2 +4C4D18R3 +2RGrC2D3]

+
GrD22

R2 − GrD23

R
;

E29 = 4α[C1D18R5 +C2D19R5];

E30 = −GrD25

4
; E31 =−

GrD26

3
;

E32 = −GrD27

2
; E33 =−GrD28;

E34 =
24αGrC3D3

R2 −GrE1; E35 = 4E3R2;

E36 = E4R2 +4E11R; E37 = E5R2 +4E10R;
E38 = 2E5R+E6R2 +2E10;
E39 = 2E4R+E7R2 +2E11;
E40 = 2E8R2 +2E9R2; E41 = E10R2;
E42 = E11R2; E43 = 2E12;

F1 =
1

8R2 (E24 +E35 +2E29 +2E40);

F2 =
E29 +E41

R2 ; F3 =
E20 +E42

R2 ;

F4 = − 4
R3 (E20 +E42)+

1
R2 (E15 +E26 +E36);

F5 = − 4
R3 (E20 +E42)+

1
R2 (E16 +E25 +E37);

F6 =
6

R4 (E29 +E41)+
2

R3 (E16 +E25 +E37)

+
1

R2 (E17 +E28 +E38);

F7 =
6

R4 (E20 +E42)+
2

R3 (E15 +E26 +E36)

+
1

R2 (E18 +E27 +E39);

F8 =
E30

30
; F9 =

E31

20
; F10 =

E21 +E32

12
;

F11 =
E22 +E33

6
;

F12 =
1
2
(E23 +E34 +E43)−

1
4
(E24 +E35);

G1 =
F2

6R
; G2 =

F3

6R
; G3 =

F4

4R
− F3

4R2 ;

G4 =
F5

4R
− F2

4R2 ; G5 =
F2

4R3 −
F5

4R2 +
F6

2R
;

G6 =
F3

4R3 −
F4

4R2 +
F7

2R
; G7 =

F1

3R2 ;

G8 = −G20

G21
; G9 =

1
RB1

[
RB2G20

G21
−G17

]
;

G10 = −F8

R2 ; G11 =−
F9

R2 ;

G12 = −F10

R2 −30
F8

R4 ; G13 =−
F11

R2 −20
F9

R4 ;

G14 = −360
F8

R6 −12
F10

R4 −
F12

R2 ;

G15 = −G18 +
G20

G21
Rcosh(Rh1)

+
1

B1

[
G17−

RB2G20

G21

]
sinh(Rh1);

G16 = −[G1h3
1sinh(Rh1)+G2h3

1cosh(Rh1)

+G3h2
1sinh(Rh1)+G4h2

1cosh(Rh1)

+G5h1sinh(Rh1)+G6h1cosh(Rh1)

+G7cosh(2Rh1)+G10h6
1 +G11h5

1

+G12h4
1 +G13h3

1 +G14h2
1 +G15h];

G17 = RG2[h3
1sinh(Rh1)−h3

2sinh(Rh2)]

+RG1[h3
1cosh(Rh1)−h3

2cosh(Rh2)]

+(3G1 +RG4)[h2
1sinh(Rh1)−h2

2sinh(Rh2)]

+(3G2 +RG3)[h2
1cosh(Rh1)−h2

2cosh(Rh2)]

+(2G3 +RG6)[h1sinh(Rh1)−h2sinh(Rh2)]

+(2G4 +RG5)[h1cosh(Rh1)−h2cosh(Rh2)]

+2RG7[sinh(2Rh1)− sinh(2Rh2)]

+G5[sinh(Rh1)− sinh(Rh2)]

+G6[cosh(Rh1)− cosh(Rh2)]

+6G10(h5
1−h5

2)+5G11(h4
1−h4

2)

+4G12(h3
1−h3

2)+3G13(h2
1−h2

2)

+2G14(h1−h2);
G18 = RG2h3

1sinh(Rh1)+RG1h3
1cosh(Rh1)

+(3G1 +RG4)h2
1sinh(Rh1)

+(3G2 +RG3)h2
1cosh(Rh1)

+(2G3 +RG6)h1sinh(Rh1)

+(2G4 +RG5)h1cosh(Rh1)

+2RG7sinh(2Rh1)+G5sinh(Rh1)

+G6cosh(Rh1)+6G10h5
1 +5G11h4

1

+4G12h3
1 +3G13h2

1 +2G14h1;

G19 = G1[h3
1sinh(Rh1)−h3

2sinh(Rh2)]

+G2[h3
1cosh(Rh1)−h3

2cosh(Rh2)]

+G3[h2
1sinh(Rh1)−h2

2sinh(Rh2)]

+G4[h2
1cosh(Rh1)−h2

2cosh(Rh2)]

+G5[h1sinh(Rh1)−h2sinh(Rh2)]

+G6[h1cosh(Rh1)−h2cosh(Rh2)]

+G7[cosh(2Rh1)− cosh(2Rh2)]

+G10(h6
1−h6

2)+G11(h5
1−h5

2)

+G12(h4
1−h4

2)+G13(h3
1−h3

2)

+G14(h2
1−h2

2);
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G20 = G19−
B2G17

RB1

+(h1−h2)

[
G17

B1
sinh(Rh1)−G18

]
;

G21 = B1−
B2

2
B1

+(h1−h2)[
RB2

B1
sinh(Rh1)−Rcosh(Rh1)

]
;

G22 = G1h3
1sinh(Rh1)+G2h3

1cosh(Rh1)

+G3h2
1sinh(Rh1)+G4h2

1cosh(Rh1)

+G5h1sinh(Rh1)+G6h1cosh(Rh1)

+G7cosh(2Rh1)+G10h6
1 +G11h5

1

+G12h4
1 +G13h3

1 +G14h2
1 +G15h;

J1 = 6G1R2−E10R−Re(3C3D19R−C1D21R2);
J2 = 6G2R2−E11R−Re(3C3D18R−C1D21R2);
J3 = 12α2C3D18R2 +18G2R+4G3R2−E4R

−2E11 +GrD29−Re
[

GrC1D3

R

+2C4D19R−6C3D18−C2D22R2
]

;

J4 = 12α2C3D19R2 +18G1R+4G4R2−E5R

−2E10 +GrD30−Re
[

GrC2D3

R

+2C4D18R−6C3D19−C1D22R2
]

;

J5 = 4α2

[
C4D18 +

GrC2D3

2R2

]
R2 +6G1 +2G5R2

+6G4R−E6R−E5 +GrD31 +Re
[

C1D14

R

−C5D19R+2C4D18 +C2D23R2
]

;

J6 = 4α2

[
C4D19 +

GrC1D3

2R2

]
R2 +6G2 +2G6R2

+6G3R−E7R−E4 +GrD32 +Re
[

C2D14

R

−C5D18R+2C4D19 +C1D23R2
]

;

J7 = 2α2C2D18R4−E3R−Re[C1D19R2

−C2D18R2];

J8 = 2α2C1D19R4−E3R−Re[C2D18R2

−C1D19R2];
J9 = 2α2R4(C1D18 +C2D19)−2R(E8 +E9);

J10 = 6G7R3; J11 =−6G10R2 +GrD33;
J12 = −5G11R2 +GrD34;
J13 = 120G10−4G12R2 +GrD35

−Re
[

3GrC3D3

R2 −6C3D21

]
;

J14 = 60G11−3G13R2 +GrD36−Re[
2GrC4D3

R2 − 3C3D14

R2 −6C3D22−2C4D21

]
;

J15 =
12α2GrC4D3

R2 −2G14R2 +24G12 +GrE1

−2E12−Re
[

GrC5D13

R2

−2C4D14

R2 −6C3D23−2C4D22

]
;

J16 =
4α2GrC4D3

R2 −G15R2 +6G13 +GrE2

−E13−Re
[
−C5D15

R2 −2C4D23

]
;
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