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Abstract

Any commercially viable wireless solution onboanthétphones should resolve the
technical issues as well as preserving the limitegources available such as
processing and battery. Therefore, integrating/aomd the process of more than one
function will free up much needed resources thatlmathen reused to enhance these
functions further. This thesis details my innovatisolutions that integrate multi-
GNSS signals of specific civilian transmission fr@a®S, Galileo and GLONASS
systems, and process them in a single RF front-eimahnel (detection and
acquisition), ideal for GNSS software receiver ardoSmartphones.

During the course of my PhD study, the focus of work was on improving the
reception and processing of localisation technigbased on signals from multi-
satellite systems. | have published seven papersewn acquisition solutions for
single and multi-GNSS signals based on the bandgaspling and the compressive
sensing techniques. These solutions, when applédard Smartphones, shall not
only enhance the performance of the GNSS locadtisatolution but also reduce the
implementation complexity (size and processing ireguents) and thus save valuable

processing time and battery energy.

Firstly, my research has exploited the bandpasglgagmtechnique, if being a good
candidate for processing multi-signals at the same. This portion of the work has
produced three methods. The first method is dedigmeletect the GPS, Galileo and
GLONASS-CDMA signals’ presence at an early stagerbehe acquisition process.
This is to avoid wasting processing resources #natnormally spent on chasing
signals not present/non-existent. The second fecoseovercoming the ambiguity
when acquiring Galileo-OS signal at a code phaselugon equal to 0.5 Chip or

higher and this achieved by multiplying the recdiwggnal with the generated sub-
carrier frequency. This new conversion saves d@ngomplete correlation chain
processing when compared to conventionally usedhadst The third method

simplifies the joining implementation of the Gatil®©S data-pilot signal acquisition
by constructing an orthogonal signal so as to aeqgthiem in a single correlation

chain, yet offering the same performance as uswgcbrrelation chains.

I1



Secondly, the compressive sensing technique istosschuire multi-GNSS signals to
achieve computation complexity reduction over datoe based methods, like
Matched Filter, while still maintaining acquisitiomtegrity. As a result of this
research work, four implementation methods weréyced to handle single or multi-
GNSS signals. The first of these methods is dedignechange dynamically the
number and the size of the required channels/edorsl according to the received
GPS signal-power during the acquisition processs @taptive solution offers better
fix capability when the GPS receiver is locatedaiarsh signal environment, or it
will save valuable processing/decoding time wheae thceiver is outdoors. The
second method enhances the sensing process obrf@rassive sensing framework
by using a deterministic orthogonal waveform sushte Hadamard matrix, which
enabled us to sample the signal at the informadbiamd and reconstruct it without
information loss. This experience in compressivess®y led the research to manage
more reduction in terms of computational complexityd memory requirements in
the third method that decomposes the dictionaryrimdtepresenting a bank of
correlators), saving more than 80% in signal adtjois process without loss of the
integration between the code and frequency, irasgeof the signal strength. The
decomposition is realised by removing the generddegbpler shifts from the
dictionary matrix, while keeping the carrier frequg fixed for all these generated
shifted satellites codes. This novelty of the deggosed dictionary implementation
enabled other GNSS signals to be combined withGRS signal without large
overhead if the two, or more, signals are foldeddown-converted to the same
intermediate frequency. The fourth method is, tfeees implemented for the first
time, a novel compressive sensing software recdivar acquires both GPS and
Galileo signals simultaneously. The performancehisf method is as good as that of a
Matched Filter implementation performance. Howeteis implementation achieves
a saving of 50% in processing time and produceseffequency for the Doppler
shift at resolution within 10Hz.

Our experimental results, based on actual RF cagbtsignals and other simulation

environments, have proven that all above sevenemehtation methods produced

by this thesis retain much valuable battery enemgy processing resources onboard
Smartphones.
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Chapter 1

Introduction

The Global Navigation Satellite System (GNSS) isamstellation of satellites,
transmitting signals from space that offers nawigatpositioning and timing data. In
fact, there are various satellite systems suchhas United States (GPS), the
Europe's (Galileo) and the Russian (GLONASS) ndmigasystems. Each of these
GNSS systems has different constellation like a emof orbits, the number of
satellite in each orbit, etc.

Practically, in challenging conditions such as arlbanyons or harsh environments,
the GNSS signals of a single system, like GPS kigoanetimes are not sufficient to
provide accurate positioningrior to 2012,a GPS receiver was considered as a
standard technology for localisation/navigationereer inside most Smartphones. A
growing number of Smartphones, 3.1 billion device2014 and expected to be over
7 billion devices in 2019, as well as the incregsiemand on the localisation based
services led designers to combine multi-GNSS sgymah single solution based on
multi-GNSS receivers implementation, in order tor@ase the chance of finding
localisation in multipath environment. As a resule multi-GNSS solution is
nowadays becoming an essential criterion in mosarghones designs. However,
this extra processing required (in hardware oms# processing) has to consider the
limited resources such as processing and battetgdiuas well as cost and size of

such multi-GNSS solution.

From a technical point of view, the new Galileo dhed GLONASS-CDMA civilian
transmission signals are designed to improve tmedmal and vertical localisation.
These new technologies will offer better performeatitan the GPS-C/A signal in
mitigating the multipath effect [1]. Therefore, Stphone based solution with multi-
GNSS signal receiving capability will improve thecaracy of localisation by factor
2 in open sky and urban area; thus reducing the tionfirst fix and increasing the in-
view-signal availability to 95% [2]. This is achied because combining multi-GNSS
signals in a single localisation solution enhanttes satellite-user geometry and
increases the number of satellites in view, asaiegiin Figure 1-1
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-=*537_.— Non-line of sight signal

Figure 1-1 Multi-GNSS constellation in a multipatienvironment

By design, the specification of these Galileo andOGASS-CDMA signals are
interoperable with existing GPS so as to encoutafe integration between these
technologies in future solutions [3]. Consequenthgst of these modern GNSS
signals share the same technical aspects like tdlation techniques, the carrier
frequencies, and spreading at the same chippirgy (edbeit, these systems have
completely different constellation, signal powesresading codes, etc.). This makes
pursuit for a more energy efficient, faster to acepj more integrated, and high-
sensitivity multi-GNSS signal solution very attiaetto researchers. As a result, it is
estimated that 60% of the current Smartphones airggoffered with dual GNSS
(GPS-CA and GLONASS-FDMA signals) receivers onbddid Such solutions are
typically implemented with minimum integration iigsal processing (side-by-side
like parallel processing in hardware and/or sof@yarequiring extra power
consumption and processing resources. As our tlilerassurvey, detailed in Section



2.2 and Section 6.2, shows that several implementahave recently combined the
processing from transmissions of either differepstams (GPS, Galileo and/or
GLONASS), or from the same system (GPS-L1 and GPS-Most of these

implementations do improve the localisation issumg result in undesirable

processing overhead.

This thesis focuses on addressing combining mNIBGS signals that are transmitting
at same carrier frequency (GPS-L1, Galileo-E1 ah@®BASS-L1-CDMA signals)

in a single processing chain to reduce the proogsssources in a multi-GNSS
signal receiver, as well as to enhance user latalis The combined multi-GNSS
signal receivers are designed to detect/acquirentiie-GNSS signals simultaneously

in a single receiving/correlation chain.

This thesis also details other implementations #natdeveloped to solve a specific
challenge when acquiring single GNSS signal andided to combine multi-GNSS
signals. For example, overcoming the ambiguity ofjuéring the Galileo signal
enables to combine the acquisition of the Galilgma with the GPS signal in a
single CS based process. Also, acquiring the Gi&akbased-CS technique helps to
understand the matching process in the CS-domain.

1.1 Research challenges and achievements

| completed my MSc degree in Applied Computing fralme University of

Technology in Baghdad, Irag. Then | started worlahthe University of Technology
and later at the Engineering College under Dyiatavérsity. During my tenure, |

was awarded a scholarship to study Ph.D. in Appliedhputing, and my proposal
was Air Traffic Management Software Simulator. Uorival here at the University
of Buckingham, | met the staff members of Applieoh@uting (Dr. lhsan Lami and
Dr. Sabah Jassim) to discuss my project propodétr Aauch deliberation, | learnt
that there are many subjects and projects undekithEraffic Management umbrella.
Unfortunately, | was not interested in any of thdnalso concluded that the work
based on the simulator is to serve a purpose rttharbe a novelty. They were kind
enough to suggest different projects, and | chbge groject because it fulfils my
aspirations. In addition | wanted to understand tiype of the services provided

through these signals, which my country can benifin and capitalise on,



especially given that the infrastructure of thiadiof services is immature in my
country. On the other hand, admittedly | found thgearch in this particular field a
bit challenging because my academic backgroundtisety different. Fortunately, |

have been encouraged and offered timely guidanamybgupervisor in helping me

tackle and surmount all my obstacles.

The main challenges were: -
1- Understanding the concept of the GNSS system.

2- Comprehending the signal modulation and the effestthe transmission line

from a satellite to the GNSS receiver.

3- Realising the processing of the received GNSS Egsach as receiving,

acquiring, tracking and demodulation.
4- How to combine these signals into a single efficarain.

Building a solid background in the GNSS signalsmfed an active part of my
learning process. | would like to attribute my gradbut definite progress to the
generous efforts of Dr Ihsan Lami, who was alsalenough to invite me to become
a part of the GNSS research team in the Applied iZmimg Department.

I thoroughly enjoyed acquiring the expertise needimdthe project as well as
enjoying the work with the GNSS team. The experesied knowledge | have gained
during this research helped me to overcome thdestgds and difficulties in this
particular project. In addition, this work has iraped my skills in the academic
research. | would most certainly like to continug work on the GNSS signals in the

future.

This thesis offers my achievements and contribstitrat | have made during my 4
years study, some of which were to combine multiSSh\ignals in single function in

hardware/software that can be used to help the-@MSS receiver designers.



Research progress

At the beginning of this research, | wanted to dbal firm base in this field. My

research started by understanding the GPS samlitstellation and the GPS signal
modulation, which is based on BPSK modulation. Thisad led to investigating the
BOC modulation, Galileo signal processing and fagdout the difference/overhead

between these types of modulations.

The effect of a multipath signal on the GPS sigtracking process and the
techniques/algorithms that were proposed to méighaé multipath effect have been
studied and explored in this research. The purpbs#eis study is to comprehend the
signal processing of the tracking signals as wetibaunderstand the multipath effect,

especially the function of the early-late corretatside the DLL.

Then, as shown in Figure 1-2, the following reskascinvestigated the GPS signal
acquisition (such as Serial Search Acquisition,algr Frequency Space Search
Acquisition, Parallel Code Phase/FFT Search Actioisi Matched Filter Search
Acquisition and other researchers’ methods). lutof Precision (DOP) and the
BPS technique have also been investigated. Incpéati in the BPS technique the
research focused on how to capitalise on the BEI$higue to sample multi-GNSS

signal and the folded frequency calculation inFENZ.

Since October 2011 there have been two primary wgrlareas to develop new
algorithms or methods, which are compatible in cminlg multi-GNSS signals, and

as follows:
1. Processing GNSS signals based on BPS technique.
2. Processing GNSS signals based on CS technique.

Proposing two approaches concluded the progressilmasBPS technique, and these
approaches are proposed to detect multi-GNSS si@BBS-L1, Galileo-E1 and
GLONASS-CDMA-L1 signals). The detection in the firapproach, which was
contributed by my colleagudr Maher Al-Aboodi (PhD candidate at the Univeysif
Buckingham),is based on using Volterra Serie®ore details in [5]While, the second
approach takes the advantage of the signal moduogatiike the BPSK modulation
and BOC modulation, to fold the GNSS signals withmeerlapping between them in
the FNZ, by filtering the side lobe of the BOC sfm
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Other implementations also utilised BPS techniqueeteive the Galileo-OS signal.
These implementations introduce new methods toiacdois Galileo signal. The
first method “ESCE” is designed to:

1. Overcome the ambiguity issue when acquiring Galdgmal at> 0.5 Chip

resolution.
2. Enhance the probability of detection.
3. Accelerate the acquisition process.

4. Enable existing GPS receivers to acquire the Gallignals without large

overhead.

The second method “OGSR” focused on joining botia @ad pilot Galileo signal to

acquire them in a single correlation chain. In thisthod, the data and pilot Galileo
signals were combined in the orthogonal formatsHufting the phase of a copy of the
received signals by 90-degrees and then addirgtltet original received signal. The

motivation of having an orthogonal signal is to:
1. Reduce the cost of the acquisition process by gaxatuable resources.
2. Maintain the 3dB power of the received two signals.
3. Decrease the acquisition time.

4. Provide a cost effective implementation algoritton $martphone’s software

receiver.

In each method, the Galileo signal has been degdldpstly in the simulation
environment using MATLAB Simulink-based platform dathen in real wireless

communication channel using the Signalion HaLo-gla@form.

The second research area is based on the CS teehifilge main challenge is how to
utilise this technique that has been specificatlyppsed for image processing, to be
used in the signal processing. In this particutsearch part, DCSR a dynamic GPS
signal acquisition based on CS was implemented.réagons for having a dynamic

design are:

1. The dynamic scenario becomes very usual nowadagsciedly in the

Smartphone or in the navigation devices.



2. All of the algorithms in the typical solutions adesigned with either fixed
number of correlators or fixed length of the datediin the acquisition.
Increasing one of these algorithm parameters caagse#ncrease in the

processing time.

This designed receiver overcomes these static diioits, where in our DCSR

implementation the receiver location determinesnitvaber of required channels, i.e.
minimum number of channels is adopted when GPSwescis located outdoors and

vice versa. The other implementation “GCSR” progdseenhance the previous work
by utilising a deterministic matrix to improve th@thogonality in the sensing

channels. Different deterministic matrices weredusech as Hadamard matrix and
Jacket matrix, and both of them have the same pesiace.

The experience of using CS to acquire GPS sigsaltesl in finding a new way that
can offer further savings in terms of processimgetiand memory requirements. A
new implementation was proposed to acquire GPSakigmly (SCSSR) by
decomposing the dictionary matrix. The dictionaratnx represents a bank of
correlators, which are used to determine the gatelumber, code phase delay and
frequency Doppler shift. The decomposition is aebieby making carrier frequency
fixed for all generated PRN codes. For that reasen,have modified the search
algorithm, the OMP algorithm that is used in mdsthe CS-based implementations
to search in two dimensions rather than in one dgioa. Significant savings were

achieved in this work by generating a bank of cadéser than a bank of correlators.

To capitalise on this saving, we then investigakedv to use this process for
acquiring multi-GNSS signal (CSSR), the GPS-C/Aeaihd the Galileo-OS-code
signals. Even though, the GPS-C\A signal and thide@20S signal have different
modulation techniques (BPSK and BOC) but they shia@esame centre frequency.
Nevertheless the SCCSR implementation and the EB8&Rod make combining two
GNSS signals in single CS framework easier. Botithef GPS and Galileo signals
have first been generated in the simulation enwwem using MATLAB Simulink-

based platform. Then both signals are transmitted &eceived in realistic

environments using the Signalion HaLo-430 platform.

I would like to acknowledge the combined effortgled University of Buckingham

and Ghent University. The European Cooperationr8ei@and Technology (COST)



group graciously offered me a grant in November2@ltest my proposed methods
in the laboratory at Ghent University. During thisit, | used the Signalion HalLo-
430 platform to send and receive real-time GNSB8adgyin a realistic environment.
In point of fact, various scenarios were colledtegalidate the performance of my

proposed methods.
Research novelties and achievements

During this 4-year research study, the followinggra and novelties were published
with fellow researchers within the Department of pApd Computing at The

University of Buckingham:

1. Maher Al-Aboodi,Ali Albu-Rghaif , lhsan Lami, ‘GPS, Galileo and
GLONASS L1 signal detection algorithms based ompass sampling
techniques Ultra Modern Telecommunications and Control &ys$ and
Workshops (ICUMT), 2012 IEEE 4th International Coess, pp. 255-261.

2. Ali Albu-Rghaif, lhsan Lami, DCSR: A dynamic channel and resolution
sampling for a Compressive Sensing receiver to ieeqGPS signals
Microwaves, Communications, Antennas and Elect®oniSystems
(COMCAS), 2013 IEEE International Conference, p. 1

3. lhsan LamiAli Albu-Rghaif , Maher Al-Aboodi, GCSR: A GPS Acquisition
Technique wusing Compressive Sensing enhanced iepighor.
International Journal of Engineering and Innovativechnology (IJEIT),
2013, vol. 3, no. 5, pp. 250-255.

4. Ali Albu-Rghaif, Ihsan Lami, Novel Dictionary Decomposition to Acquire
GPS Signals Using Compressed Serisirigternational Conference on
Network Computing and Applications (ICNCA), 2014HE International
Conference pp. 1-5.

5. Ali Albu-Rghaif, lhsan Lami, Maher Al-Aboodi, Patrick Van Torre,
Hendrik Rogier“Galileo Signals Acquisition Using Enhanced Subearri



Elimination Conversion and Faster Processindn the 3rd Computing,

Communication and Information Technology (CCIT) favence, 2015.

6. Ali Albu-Rghaif, lhsan Lami, Maher Al-AboodiOGSR: A Low Complexity
Galileo Software Receiver using Orthogonal Data d&ikbt Channel’ In
the 3rd Computing, Communication and InformatiorcArelogy (CCIT)
conference, 2015.

7. Ali Albu-Rghaif, lhsan Lami “CSSR: a 2FOR1 Compressive Sensing
Software Receiver with combined correlation for @B and Galileo-OS
signals”. In The Institute of Navigation (ION+GNSS) 2015.

8. Maher Al-Aboodi,lhsan LamiAli Albu-Rghaif, Patrick Van Torre, Hendrik
Rogier “A Single Acquisition Channel Receiver for GPS L1&W L2C
Signals Based on Orthogonal Signal Processingi. The Institute of
Navigation (ION+GNSS) 2015.

1.2 Thesis organization

The rest of the thesis is organised as follows:

Chapter two provides the concept of the bandpass samplingvexcand presents
our “quick-early GNSS signal detection” implemerdat In this chapter we shall
explain how we overcome the overlapping amongstR&, Galileo and GLONASS
L1-signals in the FNZ in order to make each sigmale distinct folded frequency,

which makes signal detection easier.

Chapter three explains the acquisition ambiguity when acquiridglileo-OS signal
at 0.5 Chip and discusses the mostly used solupomsosed to overcome this issue.
In addition, we shall describe our new ECSE unaodug method. Our analysis
focuses on one hand, on the cross-correlation inmaompared with ambiguous
solutions, and on the other hand, on the perforemanc complexity with commonly

used solutions.

Chapter four presents our novel OGSR method that combinesdteeahd the pilot
Galileo signals in an orthogonal format. The metBtrdcture and the mathematical

model are also explained. The assessment in thigcydar method introduces an
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experiment study to determine the appropriate timledsthat must be used in the

acquisition using frequency-domain search algorithm

Chapter five describes the main concept of the CS techniquer@ndws the latest
solutions that are proposed based on CS. This ehapmprises two solutions that
are designed to acquire the GPS-C/A-code signad. first solution is the novel
DSCR that dynamically resizes both of the CS sensimannels number and the
measurement matrix according to the received powfethe GPS signal. This
dynamic design adds more freedom to manipulateagsgyn the required resources
to be prepared when acquiring GPS signal outdaumtsraloors. The second solution
is the GCSR that has been designed to improve éhsirggy matrix by utilising a

deterministic matrix in such GPS receiver.

Chapter six details the study of decomposing the CS-dictiomaagrix of the GPS
signal, followed by reviewing the multi-GNSS signaiceivers. Acquiring Multi-
GNSS signals and single GNSS signal implementagoasxplained in this chapter.
The evaluation of both implementations focuses lom probability of detection,

computational complexity and the frequency resoiuti

Chapter sevenconcludes our work and highlights the significanhievements, as

well as pointing out the potential directions foture research.
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Chapter 2

Multi-GNSS Signal Detection

The GNSS signals that reach a receiver are weak eten outdoors, which are
under the noise level of around -130 dBm [6]. lty@ical GNSS receiver, acquiring
the signal requires hundreds of correlators to hepged for hardware
implementation or it involves a lot of digital pexsing in software implementation.
In addition, when the GNSS-receiver is locatedad beception area or indoors, the
received signal degrades by about (25-30) dB [R]s Tauses the receiver to thrash
all its available resources to find the signal,dobsn filtering or guessing algorithms,
and dependent on the receiver architecture. Aswtrehe acquisition process drains

the receiver’s resources, such as battery energy.

Moreover, multi-signal GNSS (including GPS and GLA®E) solutions are
nowadays rolling out in most Smartphones. Solutithrag implement these various
GNSS-receivers side-by-side will be costly (procegspower, area, etc.) and will
stil mean that only one signal type is processédaatime. Hence, the key
requirements for any GNSS solution on a Smartplawaentegration in a small size;
take advantage of all the GNSS signals availabliéewdsing minimum power, and to
be low cost. BPS receiver's architecture is a dpdnd so it is more likely to meet
these requirements since it is designed to handlé-signals in a single RF chain
[8]. However, most of the proposed implementatiares based on combining multi-
GNSS signal that transmit at different frequencpdsa as detailed in Section 2.2.
Resultant, a higher sampling frequency is requicedample these signals, because
they occupy different information bandwidths. Toardly that, GPS-L1 signal
accommodates 2MHz information bandwidth and GPSatéommodates 24MHz
information bandwidth. Therefore, the required pssming time for the GPS-L1
signal will be at least 10 times if it is combinetith the GPS-L5 signal, since the
minimum sampling frequency when combined with thegmals based on BPS
technique will be at least 52MHz if there is noredapping between these signals.
While if the GPS-L1 signal combines for example hwiGalileo-E1 signal the
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minimum sampling frequency will be equal to 12MHmd 4MHz if it is not

combined as explained in Section 2.1.

In order to minimise the processing overhead, diegenulti-GNSS signal prior to
the DSP, i.e. in RF front-end, would prepare thecessing algorithms like
acquisition and tracking of the GNSS receiver fealthg with the available GNSS

signals only.

2.1 Basic concept of the Bandpass Sampling technique

The BPS is a technique that eliminates the neecaf@atogue mixers, as used in
traditional receiver’'s design [9], by bringing tBh&C as close as possible to the
antenna as shown below in Figure 2-1. This is aelidy folding the "information

band" at the centre frequency of the received s$ifaat the "information band" at

the centre frequencies of the received signalsencase of a multi-signal BPSR) to
the FNZ without any requirement to the down-conegrgrocess. Therefore, it is
important to choose a suitable sampling frequemcyrevent overlapping of the
signal with itself or with other signals in a medignal BPSR scenario in the FNZ.
Consequently, this makes multi-signal BPSR a ga@odliclate for use in the SDR and

cognitive radio [10].

(e
BPF LNA ADC

— —
_v_

RF Front-End

Figure 2-1 BPS receiver

Practically, the minimum sampling frequency basedB&#S has to be double the
bandwidth of the received signals [11]. This metras the sampling frequency is a
fraction of the Nyquist rate and much less thancduier frequency of the received
signal. Equation (2.1) shows the mathematicalioglahip defining the folding of the

carrier frequency to the FNZ.
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jfrem(fc,fs) if fix <0. Sfi fg) is even ) 1
ffold = ~ . . f. .
lfs rem(f;, fs) if fix (0'5 - ﬁ) is odd

wherefr, 4 is the folded frequency; is the sampling frequency, is

the carrier frequency, fix(a) is the truncated pont of argument a,

and rem(a,b) is the reminder after dividing a by b.

Figure 2-2 and Figure 2-3 show the flowcharts oflcdating the
appropriate/minimum folding frequency to the FNZheut overlapping for:

a) The single signal with itself.
b) The multi signals with each other or with itself
The main differences between these two algorithms a

1- For the single signal it is equal to double theinfation band, while for multi
signals the initial sampling frequency is equaldtmuble the summation of

information bandwidths.

2- The last check in the multi signal algorithm is d¢beck if there is any

overlapping between folded signals.
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Initial Sampling Freq.
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( Return [FC,FEJ)
=3

Figure 2-2 Selecting the sampling frequency ofiage signal
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Initial Sampling Freq.
F.=2 7 BW; i=1:N
N = no. of signals

(F; =rem (F.F.)

(

Even

v

F:=F.-rem
(Fe.Fs)

No

Fi: -BW/2>0

No

F¢ +BWI/2 <F./2
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( Retum (F..F.) )
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Figure 2-3 Selecting the sampling frequency of rtidignals
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2.2 Multi-GNSS signals receiver literature survey

Several technical integrations were designed ampgzed for the multi-GNSS
receiver using single RF front-end and a designniaiti-GNSS (GPS-CDMA and
GLONASS-FDMA) receiver was finalised [12]. Theseotgignals were received in a
single chain, and then fed to the two bandpassrdilto isolate their frequencies, as
depicted in Figure 2-4. The filter used for the Gdtghal is centred on frequency of
1575.42MHz with 3.2MHz bandwidth, while the GLONASHgnal’s filter was
designed to pass 1-12 channels and is therefarenired at 1605.656MHz with
7.5MHz bandwidth to accommodate the frequenciethe$e 12 channels. Then the
filtered signals were combined and finally sampleda single ADC at 22MHz
sample rate in comparison to the 3.2GHz is requimetthe traditional sampling. In
effect, these signals are ideal for BPS concepdeeceiver, as their frequencies will

not overlap in the FNZ.

Figure 2-4 BPS receiver of multi-GNSS signals

In the same vein, an L1 (1575.42MHz), L2 (1227.6NBizd L5 (1176.45MHz) GPS

signals are combined in the SDR solutions based BfSiver and have been
successfully implemented in the front-end [13]. 8bandpass filters with 24MHz
bandwidth for each filter are used in this desigteediter the signals based on their
bands. Then the resultant filtered signals are aoadband fed to a single ADC. The
minimum sampling frequency is 221MHz, where belbig tate there is overlapping
between two or three signals’ bands. While, 32M#xVIHz and 50MHz bandpass
filters are used for the Galileo E1 (1575.42MHzp EL191.795MHz) and E6

(1278.75MHZ) signals respectively and the minimuampling frequency that is

found without overlapping between these Galileoaigis 331MHz.
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Similarly, GPS L1, L2 and L5 signals and Galileo, El6 and E6 signals were
combined in a GNSS receiver based SDR solution. [AABPS receiver has been
exploited to sample all the mentioned bands. Themum sampling frequency is the
key parameter of this implementation, and findingnimum sample rate would
reduce the required processing time in the DSResflige minimum sample rate in
this design is 110MHz to accommodate the infornmatiand of the L5-GPS and E5-
Galileo signals. Even though, this sample rat@esminimum rate for these bands, it
is still wasteful for the L1-GPS signal that neatieast 4MHz sample rate.

In the same way, a multi-GNSS receiver was desidrased on BPS receiver to
receive and sample GPS and Galileo signals. Traedgdass filters have been used to
filter multi-frequencies L1/E1l, L2 and L5/E5 in ependent channels [15]. The
filtered signals are then combined and sampled. Jdmapling frequency range
considered in this design is 158-227MHz. Unlike frevious work, this work
focuses on analysing the noise, gain and lineafithe RF components rather than
determining minimum sample rate. By contrast, ru#iquency GNSS receiver was
proposed to receive GPS and Galileo signals aneldiace the sampling frequency of
these GNSS signals, “the L1, L2 and L5 GPS freqgesnand E1 and E5 Galileo
frequencies” [16]. These signals have been recearatl passed to multi-bandpass
filter and then sampled. This work is based onrdateng the minimum sampling
frequency that satisfies non-overlapping in FNZtfor folded signals, as well as the
non-interference errors among these signals. Timgeraof minimum sampling
frequency obtained in this work is 111-222.5 MH&jieh is lower than the range of
the previous work. In spite of that these two impdatations also introduce a

complexity to the DSP stage by using high sampkefa the L1/E1 signals.

The drawback in the previous implementations hanbevercome in a
reconfigurable direct conversion front-end, i.e.o@$ing sample rate that is
proportional to the information band, to handle GBS (L1, L2 and L5) and the
Galileo (Eland E5) signals [17]. This design isedlnl select these signals based on
four operating modes. Switching between these demas based on changing the
rate of the sampling frequency manually, basecherreéquired setup. Modes 1 and 2
handle the GPS signals with 3.125MHz and 6.25MHxnpda rate respectively.
While, modes 3 and 4 have 12.5MHz and 25MHz samgiterespectively to handle
the Galileo signals alone or the GPS+Galileo sgnéhis solution copes with the
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handicap in the previous works by changing therggtample rate according to the
requirements. Correspondingly, a configurable wBNSS receiver was also
designed to receive GPS/Galileo/Compass signasgle RF front-end chain. This
multi-GNSS receiver can receive L1, E1, B1 (1568MBiz), B2 (1207.14MHz) and
B3 (1268.52MHz) frequencies with filter bandwidtdN2Hz to dominate all the
bandwidths of these signals. The GNSS signalsisiréiteiver are down-converted to

the IF of 46MHz by utilising a reconfigurable loaacillator signal [18].

On the other hand, the L1/L2 GNSS receiver wasgdesi to receive the GPS,
GLONASS and Galileo signals using two side-by-dife front-ends [19]. The first

front-end was for L1-GPS/Galileo/GLONASS signalsile/the second one was for
the L2-GPS/GLONASS signals. The signal acquisitimacking and demodulation
are based on SDR implementation, where the FPGAvadmd is used to design a
programmable GNSS receiver. Likewise a combiningltif@NSS signal was

implemented based on dual software receiver toivedel and L2 bands signals,
which are GLONASS-FDMA (1602MHz for L1 and 1246MHar L2) and GPS-

CDMA (L1) signals [20]. This implementation was bdson using two splitters, i.e.
each signal samples and demodulates separatelyusehef the frequency splitters
makes this design equivalent to using two RF chpiosess for each GNSS signal.
In these two implementations, it can be overcomesttie-by-side implementation by

employing a BPS technique to handle these multi-& R &quency bands.

2.3 Multi-GNSS signal detection setup

The conducted literature review shows that the iptesv implementations were

designed to prevent the overlapping between mWNIBS signals that transmit at

different frequency bands. Actually, these previaasks are categorised the signals
based on the transmission system, such as GPS @®# L1, GPS-L2 and GPS-L5

signals) or Galileo group (Galileo-E1 and Galileéatgnals).

This work is concerned with the GNSS signals thats the same frequency band as
well as focuses on detecting multi-GNSS signaligyreceiver at an early stage. This
will help the DSP to organize the resources acogrth available GNSS signals only,

as shown in Figure 2-5. Therefore, avoid chasing@NSS signals that do not exist.
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General Processing

RF front-end Acquisition Tracking Demodulation
chain Process Process Process

Our Processing
RF front-end Acquisition Tracking Demodulation
chain Process Process Process
A
Early Detect
process

Figure 2-5 Difference between our and general pessing

Two quick-early-detection approaches are desighatisense multi-GNSS signals in
a single view by measuring the power of all avddateceived signals prior to the
acquisition stage and based on the BPS techniqaeh Bpproach samples the
received GNSS signals at specific sampling frequemel according to the approach

setup as follows:

1- 1% Approach: Folding the whole bandwidth of the th@&SS L1- signals: A)
the GPS-C/A-BPSK, B) the Galileo-OS-BOC(1,1) andtl® modernization
GLONASS-BOC(2,2) to the FNZ, with isolation betwesignal frequencies
and their harmonics. The appropriate sampling chtesen is 92.07MHz. This
approach is jointly developed with my co-researolleague Mr. Maher Al-
Aboodi [5].

2- 2" Approach: Folding the Galileo and GLONASS BOC sigrwith the GPS
BPSK signal will result in overlapping of theseduencies when excited for a
BPSR in the FNZ, with sampling frequency 34.782MHMRis overlapping can
be eliminated by filtering out the lower/left-sidetul/lobe of the Galileo signal
as well as the upper/right-sideband/lobe of the 8ASS signal. Our second
approach combines these filtered single-lobe ssgnath the 3rd harmonic of
the GPS signal to avoid overlapping of these sgymaFNZ of a BPSR.

The mathematical representation of the GLONASS BXXJ(used in this simulation
has the same mathematical representation to tiheufarof the Galileo signal, but
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with different values for the bit rate being at Bi@s/s, chipping rate is 2.046 MHz,
and the subcarrier frequency at 2.046MHz.

The signal simulations of the approach are implaésterby using MATLAB
software. Seven scenarios were used to test ounagp and these scenarios are
based on satellite transmissions from GPS (C/A-BR&klileo (OS-BOC (1,1)) and
GLONASS (BOC (2,2)) using CDMA with a centre freqag of 1575.42 MHz, as

shown in Table 2-1.

Note that, in all the following simulation resulteg power spectrum density figures
are estimated using the Welch algorithm availabteiwMATLAB.

Table 2-1 Scenarios setup

Scenario| GNSS Signals CDMA transmission from
available
1 3 GPS + Galileo + GLONASS
2 2 GPS + GLONASS
3 2 Galileo + GLONASS
4 2 GPS + Galileo
5 1 GLONASS
6 1 Galileo
7 1 GPS

2.3.1 BPSR-Side lobe filtering (BPSR-SLF) approach

1. BPSR-SLF approach setup

The BPSR-SLF approach focuses on detecting the mppgaks of all GNSS signals
present in the FNZ. This is achieved by removing ¢hrerlapping between all the
folded GNSS signals in the FNZ so to ensure that#tection of the signals is easier
and faster. Therefore, the SSB of the Galileo dr@dGLONASS BOC signals are
used in this approach. The SSB is produced dusitg ihe subcarrier frequency in
the BOC modulation. i.e. the subcarrier offers lg #pe power spectrum of the BOC
signal into two symmetrical components around thatre frequency that makes
these SSB signals. Furthermore, splitting the D88 $SBs will remove the effect of
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the subcarrier frequency and make each sidebamdses a BPSK signal, like the
GPS signal [21], or the two SSB can be shiftedhe tentre frequency, by *
subcarrier frequency, resulting in each sidebanithisfBOC is like the BPSK signal
[22]. Based on that, this approach proposes a wayevent the overlapping between
the chosen GNSS signals. This approach filterstlmitieft-sideband of the Galileo
signal and right-sideband of the GLONASS signalsem the reverse of this process
Is also possible. This filtering must assure theremt choice of the sampling
frequency to guarantee there is non-overlappingdst these two signals with the
3 harmonic of the GPS signal. We chose tHeéGPS harmonic because using GPS
signal at the fundamental frequency will produceoarrlapping between the three
signals (GPS, Galileo, and GLONASS), where theifgldrequency will be located
at 9.207MHz. However, the power of th& Barmonic is lower than the power of the
fundamental frequency but it can still be distirslpgid in the FNZ [23].

The receiver front-end configuration of the BPSR=Sipproach is implemented in
MATLAB, as shown in Figure 2-6. The simulated signare passed through an
AWGN channel. The first three BPF are used to obtigiht-sideband of the Galileo
signal, left-sideband of the GLONASS signal and @RS signal. Then, the filtered
signals are amplified by using an LNA (38dB and 3disse figure). A 10-bit ADC
converts the amplified signals to their digital for This configuration uses a
sampling frequency of 34.782MHz to ensure non-apgring between the three
GNSS signals in the FNZ, as illustrated in Figuié 2

1

ight Side-Lobe |
% Galileo I

I

I

I

|
|
|
|
I
| GPS
GPS Simulated Signals |
Galileo Simulated Signals %
GLONASS Simulated Signals | I
: BPE LNA ADC |
I |
=R |
Left Side-Lobe |
| GLONASS I
l BPF

Figure 2-6 BPSR-SLF Multi-GNSS Signals BPS Recaive
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Figure 2-7 BPSR-SLF GNSS folded bands to the FNZ

2. BPSR-SLF approach results and discussion

The seven scenarios, shown above in Table 2-1lused to test this approach. In
these tests, the BPSR will deal with input sigrealghree distinct GNSS signals i.e.
each signal has a separate folded frequency iRNiZe As shown in Figure 2-8, these
signals have three distinct power peaks preseheifrNZ, and as follows:

1. The F'power peak is centred at 4.092MHz (GPS signah wibandwidth of
2MHz.

2. The 29 power peak is at 8.184MHz (GLONASS signal) withandwidth of
4AMHz.

3. The 39 power peak is at 11.253MHz (Galileo signal) wittbandwidth of
2MHz.

Also, there is no overlapping between these powek® and Figure 2-8 proves that

three signals are simultaneously excited to our®BPS
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Figure 2-8 Power spectrums of GPS, Galileo and QWASS signals

The results of the scenarios (2, 3 and 4) from&abl are illustrated in Figure 2-9,
Figure 2-10 and Figure 2-11. In these scenariesfrdgquency domain proves that
there are two separate power peaks existing i of any two signals processed
by our BPSR.

Power Frequency (dB/Hz)

5 10 15
Frequency (MHz)

Figure 2-9 Power spectrums of GPS and GLONASS siign

24



Power Frequency (dB/Hz)
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Figure 2-10 Power spectrums of Galileo and GLONASI§nals

Power Frequency (dB/Hz)

Frequency (MHz)
Figure 2-11 Power spectrums of GPS and Galileorsits

The results of the remaining scenarios (5, 6 andr@)illustrated in Figure 2-12,
Figure 2-13 and Figure 2-14. The power distributddrithe received signals in these
figures proves that there is only single signal popeak present in the FNZ from our
BPSR. The position of this power peak determinestyipe of the received signal

since each one has different folded frequency.
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Figure 2-12 Power spectrum of GLONASS signal
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Figure 2-13 Power spectrum of Galileo signal
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Figure 2-14 Power spectrum of GPS signal
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2.4 Concluding remarks on early detection

In this chapter, an early GNSS signals detectios deésigned, and introduced a rapid
early detection of available GNSS signals at theff@Rt-end. Such implementation
filters out the left-sideband of the Galileo sigraaid the right-sideband of the
GLONASS signal. This prevents the overlapping betwthese two folded signals
with the 3rd harmonic of the GPS signal in the FNMhich easily detects the
available GNSS signals. Simulation results showtti@proposed approach is a good
candidate for GNSS signals detection in the RFtfemrdl. This eliminates the need to
search and process signals that are not availakieeaime, thus saving valuable

resources and power.

This work has been presented by my supervisor Barii_ami in the Ultra Modern
Telecommunications and Control Systems and Worksh@@UMT), 2012 4th

International Congress on Friday, October 5,2012.
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Chapter 3

Unambiguous Galileo-OS signal Acquisition

The BOC modulation has been adopted in modern Gi®Smissions such as GPS-
M-code and Galileo-OS-code signals. This modulaBashesigned to help such signal
tracking process to mitigate the multipath signeérothat of the GPS-C/A code
signal. This will therefore enhance the localisataxcuracy in a harsh environment.
BOC signal is also designed to share an availablguéncy band with other GNSS
signals, like GPS-C/A-code signal and Galileo-O8ecsignal.

To generate the BOC modulated signal, the PRN codst be multiplied with a
rectangular subcarrier. The resulting BOC signakgrospectrum is separated into
two symmetric side-lobes placed above and beloved¢inére frequency. For instance,
the power spectrum of the BOC Galileo-OS represemtsBPSK signals, i.e. two
corresponding BPSK GPS-C/A signals, as illustrateeigure 3-1.

Our research focuses on the BOC Galileo-OS sighak signal consists of two
channels, where each channel has different companEne first one is called “data
channel (B)” that comprises the navigation mesgage g), data’s primary code
(Cgy ) and subcarrier frequenc$,). The second channel is called “pilot channel
(C)” and includes two pilot codes, primary and setary (Cg, ) and subcarrier
frequency(S.). These channels are then combined and shippedtamaously at E1
carrier (1575.42MHz), as depicted in Figure 3-2.
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Figure 3-1 Power spectrum of the Galileo-OS ana&t®PS-C/A signals

The Galileo-OS signal uses the CBOC modulation, ctvhmeans multi-level
spreading symbols formed from the weighted sum OICRBL,1) and BOC(6,1) as

expressed by the following equations [24].

g _ { sign (sin (?)) 0t =T, 31
BoC(1,1) = c )
0 elsewhere
and
Ypoc(e1) = {sign (sin (12TTctt)) 0=t =T 3.2
' 0 elsewhere

whereggoc(1,1) represents the BOC(1,1) spreading symhglgcs,1)
represents the BOC(6,1) spreading symbols, dpds the code chip

duration.

Note that, the typical notation for BOC modulatich BOC(m,n ), where (m)
represents the ratio of the subcarrier frequeficy {0 1.023MHz and (n) represents
the ratio of the chipping raté.] to 1.023MHz. For example, a BOC(1,1) means both
the subcarrier frequency and the chipping ratequal to 1.023MHz.
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Figure 3-2 Modulation Scheme for the Galileo-OSdsial

These BOCs modulations types are used for botldake channelSg) and for the

pilot channel §.) as expressed in equations (3.3) and (3.4) raspbct
Sp = a gpoc1,1) T B 9socen) 3.3

S¢ = @ gpoc1,1) — B 9Ipoce) 3.4

wherea and  are the power parameters to control the combined
power of the data and pilot channels and are ecwal/10/11,
+/1/11 respectively.

The mathematical representation of the transmitB®IOC signal is shown in

equation (3.5) and as described in the Galileo &imSpace Interface Control
Document (SIS-ICD) [25].

1 3.5
Xg1 = NG leg1 B(D)S, — g1 c(DSc]cos(2nfy;t)

where Xg; represents the CBOC Galileo E1 signal, #g p and
eg1 ¢ are the binary signal components (the navigatiegssage and

primary/secondary codes) arfg, is the carrier frequency of the E1
signal at 1.57542GHz.

The CBOC Gallileo signal received at the user emlderefore represented as:
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X, = Alegs (0T — 7)Sp — egy (0T — 7)S | eI E1+fanTs)
3.6

+ n,(nTy)
where X, A,n, T, 7, f; and n, represent the received signal, the
amplitude of the received signal, number of sampgl@s\pling period,
code phase delay, Doppler frequency shift and additwhite

Gaussian noise respectively.

| have studied this signal in terms of how it isdulated, received at RF front-end,
acquired and tracked. My main interest area is dbquisition stage, because
understanding the boundaries of the acquisitiorcgs® and its requirement might

enable combining this signal with other GNSS signsdich as GPS-C\A signal.

According to the literature on this particular i have found that the acquisition

process comprises two technical aspects:

1. Acquisition becomes ambiguous when the code phesmution is equal to
0.5 Chip or higher (see Section 3.1). The previsalsitions overcome the
acquisition ambiguity but at the expense of a cexpihplementation and/or
degrade the power of the received signal by ar@dil(see Section 3.2). To
tackle these limitations we have designed a nevmbiguous method called
“Enhanced Subcarrier Elimination Conversion (ESQB)acquire Galileo-OS
signal. Our ESCE method eliminates the subcamggpiency to overcome the

acquisition ambiguity.

2. The Galileo signal consists of two channels thahmase data and pilot
signals, as illustrated in Figure 3-2, ignoring @fi¢hese channels leads to a
3dB power loss that is important when acquirings thignal in multipath
environments, such as urban areas. The time-doswlition requires 4-
correlation channels to acquire this signal, white frequency-domain
solution needs 2-correlation channels. Chapter foilir describe how we
overcome this complex implementation by designingoghogonal joining
method that requires only single correlation chainombine these signals.
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3.1 Galileo-OS signal correlation process and ambiguity

condition

As described in the previous section, the powerctspe of the resulting BOC
Galileo-OS signal is separated around the centeguéncy. This separation
consequently appears at the receiver end whenlaiimgethe received BOC Galileo
signal with the generated BOC Galileo signal. Agicked in Figure 3-3, the result in
correlation domain will have additional undesirédespeaks besides the main peak
that we want. The width of each peak is designdaktequivalent to one-third of the
GPS-C/A signal’s peak; in order to enhance theasittacking accuracy [26], i.e. the
range of measurement error would be reduced bgrfaqual to 3.

Note that, the CBOC signals can be processed eitlliera CBOC generated signal
or with a BOC (1,1) generated signal [27].

[ — , :

Galileo Signal
| == == GPS Signal
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Figure 3-3 The cross-correlation function of thedlileo-BOC and the GPS-BPSK

signals

On the other hand, the BOC designers have pointedihat the CCF becomes
ambiguous when the received signal is correlatat thie reference BOC signal at
code phase resolutions of 0.5 Chip or higher. Wharén fewer generated peaks at
this resolution, the acquisition process may lackhe wrong peaks or miss the signal
detection when the correlated peak (the false pelaids not exceed a certain

threshold [28], as depicted in Figure 3-4. Themfdhe receiver should ensure that
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the right peak is acquired to reduce the synchabinis time with the received signal

in the tracking process.

To overcome this ambiguous correlation problem ntlost commonly used solutions

recommend that:

1. The code’s phase resolution must be divided by 3adbieve the same
correlation results as normally obtained with th®S3C/A signal, which

means more processing time is required.

2. The BOC signal is processed as two BPSK signalsa fesult, this approach
requires double processing, and that leads to coatiplg the acquisition

implementation.

1.2 .
== Correlation envelope
=== Acquisition samples
| |
0.8}

0.6+

Wrong Peaks

Cross-Correlation Envelope

-2 -1.5 -1 -0.5 0 0.5 1 15 2
Delay [chip]

Figure 3-4 Ambiguity problem when chip resolutige0.5 Chip

3.2 Common acquisition algorithms for the GNSS signals

Before reviewing the unambiguous methods, thisiaeatill give a brief discretion

of the commonly used algorithms to acquire the GNigBals.

Generally, in order to know the presence of the Gnals, the signal acquisition
must be used to determine the number of visiblellgas with respect to the position
of the GNSS receiver [29]. A conventional GNSS nemregenerates a replica PRN
code and carrier frequency within a range of DapfsEguencies (x4KHz) to acquire
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the GNSS signal [30]. Signal detection is sucegsghen the generated PRN codes
are aligned with received code in the incoming aligand the locally generated

frequency matches the frequency of the receivathsig

There are different algorithms to acquire the GNgfhals, such as serial search,
parallel frequency search, parallel code phasechedtfilter search and differential
algorithm. The following sections give a brief exiphtion of the commonly used

algorithms to acquire the GNSS signals.

|. Serial search algorithm

The serial search algorithm relies on a hardwamdementation. As shown in
Figure 3-5, the received GNSS signal multiplieshwiihe replica PRN code
sequence for a particular satellite. Then the dutpultiplies with the locally
generated carriers, which are the in-phase andubdrature-phase carriers [31].
Both channels are integrated according to the dedgth of received signal.
Finally, each branch is squared separately thgnareadded together at the end
of the acquisition process. The detection is sigfakwhen the output exceeds a

certain threshold.

Output

Incoming
signal

PRN code Local
generator oscillator

Figure 3-5 Block diagram of the serial search algihm
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Parallel code phase search (FFT-search) algorithm

The FFT search algorithm is accomplished in a soffwmplementation and the
correlation is based on the frequency domain tgkiynand reduce the number
of combinations [32]. As shown in Figure 3-6, theceived GNSS signal
multiplies with locally the in-phase (I) and theaginature-phase (Q) generated
carriers. The | and the Q outputs are then combaedl transformed to the
frequency domain using FFT transform. A replica PRbdte sequence for
specific satellite is generated, then it is tramsfed to the frequency domain
using FFT transform, and the transformed PRN ced®mplex conjugated to be
multiplied with the transformed signal [33]. Thesud is inversed to the time
domain using IFFT transform, and the absolute dugpsquared to be compared

with a certain threshold.

Incoming
signal

Output

Local
oscillator

PRN code
generator
Figure 3-6 Block diagram of parallel code phaseKF) search algorithm

Matched filter search algorithm

Matched filter algorithm is more commonly used e tGPS receiver. The
received signal firstly gets rid of the carrierduency by multiplying with a
complex local signal with specific Doppler shif§ shown below in Figure 3-7.
Then the samples fill the shift register to be elated with local PRN code that
accumulates in the buffer of the matched filtere Tdorrelation output is then
compared with a certain threshold to decide whdtneisignal is acquired or not
[34]. The acquisition accuracy based matched fdegwends on the space cell in

the shift register, which is most often equal t €hip search step.
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Figure 3-7 Matched filter algorithm

3.3 Related unambiguous contributions literature survey

We have studied the research literature for resglthe ambiguity issue of the BOC
signals, focusing on recent and most widely usethoas. It is clear that the authors
who formulated the BOC specification have actudégcribed this ambiguity clearly
and pointed out possible solutions. The most ols/gnlution is to use chip resolution
of less than 0.5 Chip.

In an application attempt to resolve the ambigoitythe BOC(10,5)-GPS-M code
signal, the “dual sideband (DSB) method” was dgwetbto acquire this signal as two
BPSK signals [21]. As illustrated in Figure 3-8istimethod is based on using two
filters to filter the upper and the lower sidebandéus, each sideband is now
repressing a BPSK(5) signal approximately, whember five refers to the chipping
rate 6 *1.023MHz). The acquisition is then accomplished through tivstinct
correlation channels for the upper and lower siddba Each of these channels
correlates the filtered received signal with aefittd BOC generated signal, where the
generated BOC signal is constructed by multiplyting replica PRN-code with the
subcarrier frequency. Finally, after summing thépats of these channels, the shape
of the result CCF is approximately like the shapthe BPSK CCF.

However, this method suffers from the undesiralisenthat is introduced by using

these filters in the beginning and inside during dlequisition process. For the sake of
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comparison, | have implemented this method to gghlthe requirements of this

method in terms of the processing time and the coatipnal complexity.

( Fiter ) ( Fitter )

Single-SB

X Dual-SB

—)( Lower Sideband

Figure 3-8 Dual sideband method

Single-SB

Similarly, an unambiguous method called “BPSK-Likeas designed to reduce the
complexity and to eliminate the effect of the naiseised by using filters in the DSB
method [22]. This is achieved by using a singkefifather than two filters, where the
bandwidth of this filter accommodates both of thegmer and lower sideband

signals. As shown in Figure 3-9, these sidebandstlaen shifted to the centre
frequency by the amount of the subcarrier frequdndy,). Then the shifted signals

are correlated in two parallel channels with theegated BPSK-modulated code, i.e.

only the code without the subcarrier frequency.

However, this method only works with an evB®C modulation order Ngoc,
whereNgoc = 2f;./f.). In addition, the use of a single-sideband sigesililts in 3dB
degradation in the SNR of the received signal,ibtitese sideband correlations are

summed then the loss can be partially compensated.
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— Single-SB
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the centre frequency

Figure 3-9 BPSK-Like method

Single-SB

To overcome the limitation of the BPSK-Like methadjditional conditions are
introduced to the BPSK-Like method. Hence, theselitions make the BPSK-Like
method work for both even and odd BOC modulatiares [35]. This distinction is
realized by determining the amount of the shiffiregjuency ©f,.), whered depends
on the BOC modulation order and equals to:
(1 if Ngoc even, sinand cos — BOC
Npoc — 1

o= Ngoc
| Ngoc +1

Ngoc

if NBOC Odd, sinBOC

if Ngoc odd, cosBOC

To reduce the complexity of the above DSB and BR#€-methods, three proposals
have been designed for “Low Complexity (LoCo)” implentations [36]. The
concept behind all of these three proposals isthaseshifting the received BOC
signal to the zero frequency and then generatiBP8K-PRN replica code. What
distinguishes the different proposals is the wayusing the filters. In the first
proposal (modified-DSB), the numbers of filters aeduced by generating BPSK-
PRN code rather than generating filtered BOC-PRMNecdrhe second proposal
(modified-BPSK-Like) introduces extra filters to emeome the BOC modulation
order. The third proposal does not use any filteridote that, the number of filters
used in both modified-DSB and modified-BPSK-Likes aqual for the dual or the
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single sideband; also their computational complkexiare same and less than the
DSB and BPSK-Like methods. Nevertheless, thesegsalp do not reach the same
performance as the DSB method, albeit they reche@plementation complexity.

Equally, a cyclically shift-and-combine unambiguoasquisition method was
designed based on the BPSK-Like method [37]. Thecept of this method is to
reduce the length of the correlated code via cgdire generated code L times then
combining the shifted codes and finally dividing ttombined codes into L sections,
where the L parameter should be a common divisah@fGalileo length code. The
idea behind it is to reduce the dimension of theetation by a factor equal to L if the
signal is detected in the first shift. On the othand, the process of cycling and
combining the code would decrease the level ofogidinality between the Galileo
codes because the full code for each satellitessgded to be orthogonal with other

satellites full codes or with the same code ifdbde phase shift is more than 1 Chip.

As is obvious, the previous methods depend on enguihe BOC signal as a BPSK
signal through an early pre-processing. While, thagbcarrier phase cancelation
(SCPC)” method was designed to remove the subcdrequency effect from the
BOC signal in the acquisition process [38]. Fig8f&0 shows the block diagram of
SCPC implementation, the received BOC signal miigtipby the in-phase and
quadrature-phase carrier frequency to get rid @Dbppler frequency shift. Then the
outputs are correlated with the local BOC signghlirse subcarrier and the local
BOC signal-quadrature-phase subcarrier. Unambig@@B can be then obtained
when all these in-phases and the quadrature-plbasetation channels are summed,
which is same as the CCF of the BPSK signal.

In contrast with the above DSB, BPSK-Like and La@ethods, this method does not
depend on filtering process to correlate the singl@ouble sidebands, but it does cost
more correlation channels, i.e. duplicates the remnbof required correlation
channels (the in-phases & quadrature-phases ofcénger frequency and the
subcarrier frequencies). In addition, the perforoeanf this method does not reach

the performance of the BPSK-Like method.
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Figure 3-10 SCPC method

An analysis was conducted to evaluate the perfocmah the BPSK-Like methods,

and the SCPC method [39]. The evaluation was basesing same filter bandwidth

and the same scenarios. The BOC signals used snatsessment are BOC(1,1),
BOC(10,5) and BOC(15,2.5) signals. The PRN codseido 1023 Chip for all these

signals and three integration times have been whech are 5, 10 and 20ms. The
results in the aforementioned analysis show tha& BPSK-like method has

performances better than the SCPC method ovéresktsignals and as follows:

1. The BOC(1,1) signal performance : BPSK-like metatB > than SCPC
method.

2. The BOC(10,5) signal performance: BPSK-like methoédB >than SCPC
method.

3. The BOC(15,2.5) signal performance: BPSK-like rodth SCPC method.

To construct CCF equivalent to the BPSK’s CCF, siue-peaks effects have been
removed by using multi-stages of matched filtercpss [40]. The process of this
solution started by correlating the received BO@nhal with the PRN code using
matched filter to produce BOC-CCF (three peaksenTthe BOC-CCF is squared;
this makes the main peak, i.e. the peak in the lmjdentred at the zero frequency
and the two unwanted replicas are far from the rudia by+2f,.. Then the squared
outputs are passed through another filter that oses three nonzero samples. This
stage will again generate seven nonzero samplesewhe main sample/peak is also

centred at zero frequency, and on each side (agtitleft) there are three samples.
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These seven nonzero samples construct the unamiSigtiGF that is equivalent to
the BPSK’s CCF.

Similarly, a side-peak cancelation method was sstggeto eliminate the subcarrier
effect [41]. The method is based on correlating rieeived BOC signal with the
divided generated subcarrier signals in multi-stagje each stage the received signal
Is correlated with partial subcarrier signals. Nibigt, each chip is represented by the
combined data and pilot subcarrier frequencies.niimeber of stages is equal to (v-1)
where “v” represents the ratio of the second sulsrairequency to the 1.023MHz,
l.e. in case of Galileo-OS signal there are 5 saige eliminate the subcarrier
frequency effect. The unambiguous CCF was achiewseh the whole correlations
between received and the divided generated sigmalsombined. Nevertheless, this
method requires more correlation due to a numbecoofelation stages that will
increase if the “v” value increased. In a differemnner, side peaks were cancelled
by combining the correlation of two formats [42]raEtically, after removing the
carrier frequency, this method takes the summatodriee correlations between the
received BOC signal with the generated BOC sigRRIN codex subcarrier) and the
generated PRN code (non-subcarrier). Then by takiegbsolute value of the above
correlation this will eliminate the side peaks. Tasult of this process creates sharper
CCF than the GPS’s CCF. For the sake of compatstween this method and the
SCPC method, both methods have a same number r@lat@n channels but this
method needs more mixers than the SCPC method sigemerates the subcarrier

and non-subcarrier signals.

3.4 Methodology of the ESCE method

As detailed in my literature survey (Section 3tBg previous methods can be divided
into two groups. The first group deals with the BGIGnal as a BPSK signal via
filtering or shifting processes such as DSB and d.ofethods. While, the second
group focuses on removing the subcarrier frequensigle the acquisition process
like SCPC method.

This section describes the methodology of our n@&E method that eliminates the
subcarrier frequency for the BOC Galileo-OS sigmalusing the whole subcarrier

frequency. ESCE process tackles three technicattspnd as follows:
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Resolving the ambiguity

As shown in Figure 3-11, the process of the ESCHauakstarts by multiplying

the received Galileo signal by either the generatath channel’'s subcarrier
(3.3) or by the generated pilot channel's subcarf8e4). This process will

convert the BOC modulation to a BPSK like modulatibecause we patrtially
remove the subcarrier frequency effect from theeikexd data and the pilot
Galileo signal. Practically, the subcarrier remgviprocess is equivalent to
shifting of the two side lobes to the centre fragryesimultaneously. As a result,
this process shapes the envelope of the CCF froftipheupeaks to a single

peak, as illustrated in Section (3.5.1).

Figure 3-11 The ESCE method

Therefore, the processing requirements of the atedesignal are same as the
BPSK signal’'s requirements, such as generatingcéinger frequency and the

PRN-code only without the necessity of generatisglacarrier frequency.

Note that, the required code in this implementatisntherefore either the

primary code of the data channel if the generatad dhannel’s subcarrier is
employed to eliminate the subcarrier frequencycgfier the primary code of the

pilot channel if the generated pilot channel’s sulier is used.

Enhancing the power of the received Galileo signal

The conducted literature review showed that theectirunambiguous methods,
such as BPSK-Like and LoCo methods suffer from 3uBver degradation
when the shifting process applies to the receivetlléd signal, as shown in
Figure 3-12. While, the other method that is basediltering like DSB method
might lose 3dB if a single sideband is used to meghe Galileo signal.
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signal Shifted signal

Received
Figure 3-12 Received vs. shifted Galileo signal

Therefore, to overcome the 3dB loss the two sideédashould be used to
compensate this power degradation. However, theneae is a more complex
implementation because it needs two distinct cati@h channels to handle each
sideband separately. In contrast, we have foundnthatiplying the subcarrier
frequency with the received Galileo-BOC signal aoly removes the subcarrier
frequency effect but it enhances the power of teeeived Galileo signal
because the powers of the two shifted sidebandsakse@ added together.
Therefore, the resulting output signal gained iseast 2dB, compared to the
actual received signal, as depicted in Figure 3-3.illustrate that, let us
assume the normalised power of the left sidebanleqo (1pows) and the
normalised power of right sideband equals (lpowsntthe gain of the
combined sidebands equal to 3dB (G =10log10(2povw®hsequently, this 2dB

power improvement will directly enhance the proligbof the signal detection.
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Figure 3-13 Received vs. our conversion Galilegrsl

Enabling GPS receiver to acquire Galileo signal

The GPS-CA code signal and Galileo-OS code sigsladse the same centre
frequency and they have the same chipping ratermlling the GPS receiver to
acquire the Galileo signal requires an additioeaburce. For example, in time-
domain implementation (unambiguous solution) thquimement is another

correlation channel to process the other sidebaghls While, in frequency

domain implementation the requirements are a stibcdrequency generation
for the Galileo signal as well as another correlatichannel if the

implementation does the joining between the datbthe pilot channels.

Our ESCE method enables the GPS receiver to acther&alileo signal and

reduce the overhead because the subcarrier fregedintnation is achieved in

an early stage before the acquisition process. Ehimination makes the

existing resources of the GPS receiver to be useddth signals, as depicted in

Figure 3-14, which means only single correlatioaroiel is required because:

A. In time-domain implementation, same frequency getiwr and the same

buffer can be used.

B. In frequency-domain implementation, same frequegeyeration and

same transformation can be used.

44



GNSS Receiver

RF ’ ,‘
[ Frontend Buffer ]

e X o,

) Galileo ! Subcarier frequency
Elimination Using
A \ ESCE Concept

Generafing Loading
GPSCode Galileo Code

|

Y

- ~
Canier Acquisition |«
Generator q ]

A >y

=y
3 ————

Figure 3-14 Enabling GPS receiver to acquire Gald signals

3.5 ESCE experimental setup

It was important to devise realistic signal envimemt, where ESCE can be tested
with multipath and harsh scenarios. The ESCE empmgiis were based on using
HalLo-430 platform that were performed within theo&Hrerm Scientific Mission
(STSM) at Ghent University during November 2014.these experiments, two
HalLo-430 platforms were used, as shown in Figudb3to transmit and receive

Galileo signals in the real communication channel.

(b)

Figure 3-15 HalLo0-430 platform (a) Transmitter (Beceiver
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This wireless testbed is fully controlled by MATLA&d up to four signals can be
transmitted and received simultaneously, but taesmission signals should be at the

same carrier frequency.
The transmitting process is as follows:

1. Generate Galileo baseband signals using MATLAB. Each Galileo
baseband signal, navigation data and secondarly qutte are spread in two
separate channels using two codes (primary data &od primary pilot code)
and two subcarrier frequencies. Then the two cHanaee combined to
construct CBOC baseband signal, as shown in Figulie

2. After that, the baseband signals are uploadedetdti_o-430 platform from
the PC via USB.

3. The uploaded baseband signals are then convertathtogue using DAC and
the signals are transmitted repetitively by RF-fema on the selected

transmission band.
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Figure 3-16 Uploaded Baseband Galileo-OS signal

In each scenario, we used all the four channeteeoHalLo0-430 platform to transmit
four SVs Galileo signals. This will help to analytbe performance of the detection
probability in terms of number of acquired sign&eppler frequency shift and code
phase delay. Also, | used all the four receivemalets via four antennae to obtain
different signal receptions.
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On the reception side, the receiving process fslsvs:

1. The received signals are down-converted to basebaddsampled by the

ADC and stored in real time into the memory.
2. Finally, the stored data are downloaded to the RQESB.

The Galileo-OS signal samples at rate 10MHz andRhe OHz. The general settings

of these scenarios are as follows:

1. Software setup-MATLAB: the number of Galileo sigha 4 SVs that are

uploaded simultaneously, and the length of thetksignal is 10ms.

2. Hardware setup-HalLo0-430: The powers of the trariethignals are set to 0
dBm; the frame length of each baseband signal j8281samples and the
number of pause samples after transmitting frani2&0 samples. The local
oscillator of the receiver device is equal to thaier frequency, which down-
converts the received signal to OHz. The frametlenfjthe received signal is
200,064 samples, which represents double the {esigtransmitting frame+
pause frame), to ensure receiving at least ondréutie of the transmit signal.
This frame length depends on the length of trartisgisignal and the sample

rate.

Several experiments were carried out to obtainouarisignals receptions, such as
LOS signals, multipath or NLOS signals, high andv I®NR values. This is

accomplished by:

1. Rotating the transmission antenna Byd@F, 18¢ and 270 to make LOS and
NLOS signals.

2. Fixing and moving transmission antenna, to proddagpler shift.

3. Blocking the transmitting and receiving antennaelifferent objects, such as
glass, metal, a human body, water and wood, tdaeldhOS signals as well

as to control the power of the received signatleggscted in Figure 3-17.

However, we believe that this testbed signal diles not meet the actual Galileo
signal received on ground after passing throughn23¥f space (troposphere and
ionosphere) and has attenuated considerably efipemae it is mixed with current

surrounding wireless technologies (Wi-Fi, etc.)
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Figure 3-17 Received real-time signals
3.6 Measurements results of the ESCE method

3.6.1 Unambiguous cross-correlation function result

The multiplication of the generated subcarrier cledg with the received Galileo
signal shapes the envelope of the Galileo-OS sifgoal multiple peaks to a single
peak. In order to assure the subcarrier eliminatw@ compared the CCF of our
ESCE method with the CCF of an ambiguous methadsti@vn in Figure 3-18.

Galileo
Signal Qutput

exp(j2TT(fe+fa)nT;)

Figure 3-18 Ambiguous method
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The result in Figure 3-19 shows that the CCF afreeddomain implementation of
ESCE has a single peak in comparison with an armbgumethod time-domain
implementation that produces three narrow peakso,Alt is obvious that the
magnitude of the CCF based ESCE method differs ffteenmagnitude of the CCF
based ambiguous method by around 0.5dB. This m&ahsemoving the subcarrier
frequency in our implementation does not affectreduce the performance of the
detection probability because the gain obtainechfazquiring 4ms at 10MHz sample
rate equals to 46dB.
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Figure 3-19 Cross-Correlation Function of ESCE armdmbiguous methods

3.6.2 Galileo power enhancement results and analysis

Apart from the ESCE implementation, we have impleteé three other
unambiguous methods. These are the DSB methodt[®BPSK-Like method [22]
and the LoCo method [36]. This enabled us to comEEBCE to popular existing

methods in similar conditions.

A probability of detection is important to determithe receiver sensitivity, because it
represents a function of the carrier to noise r@iiN). Therefore, we have performed
this comparison to; on one hand to assess the F&€fBrmance and on the other
hand to show the enhancement made to the receiabéigédssignal with the mostly

used methods.
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The performance comparison is based on frequenaanto using FFT-search
acquisition and realistic channel. The nominal iresk power of Galileo signal is set
to -127dBm that equals 50dB-Hz, which represents @éimount of C/N. The
performance comparison between all methods is ataduwith 4092 Chips PRN
code length and Doppler frequency bin equal to %00H

Figure 3-20 illustrates the detection probabilitéEESCE compared with the BPSK-
Like method and LoCo method. ESCE process imprtvegpower of the received
Galileo signal by around 2dB. This power improvemiads to enhancing the
probability of detection, where the ESCE methodlietter performance than BPSK-
Like and LoCo methods by 1 and 2 dB respectively.sAen the LoCo method has
lower performance than the BPSK-Like method dueagplying other filters to the
correlation process in each sideband. Also, becdugsmtermediate frequency of the
received Galileo signal is centred on OHz, this esathe performance of the LoCo
method close to the performance of the BPSK-Likehek In other words, if the
intermediate frequency is far from OHz by XMHz th&e shifting of each sideband
will be equal to (& f;.).
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Figure 3-20 ESCE probability of detection vs. C\N
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3.6.3 ESCE computational complexity considerations

The ESCE correlations can be implemented eithéime-domain or in frequency-
domain. The main difference in using these methedbkat the real and imaginary
parts are combined in the frequency-domain befaeengo correlated with the
reference code, while in time domain each partosetated separately with the
reference code. Therefore, the method that usesamibesidebands in time-domain
will require four correlation channels, two charmnfdr each sideband. The methods
involved in this comparison are the DSB and LoCdhmas, and the correlation is
done in frequency-domain. Note that, the complexdaye of the time and the
frequency domains correlation is same and bas¢di3)rcalculation.

This comparison demonstrates the correlation caxiipleersus different sampling
frequency, which means the signal lengih)(depends on the sample rate and equal
to code length (4092) multiplied by the number amgples per code. For example, if
the sampling frequency is 4.092MHz, then the sanpde code is 1. In this
comparison the addition operation is denotedMyy{), multiplication is represented
by (N,,, ) and the Fourier transform operationNgg{) and calculated byNglog(Ny)).

The complexity representation for each methodvgldd into three sections, the first
section comprises the shifting or filtering operatithe second section represents the
multiplication of the received signal with the ltdlgagenerated carrier signal
operations and the last section includes the rfeiteocorrelation process (i.e. from
the generated code to the final correlation stagel).simplicity we represented the

filtering process by a single multiplication.

The DSB’s computational complexitp§B.,mp) is equal to:

DSBcomp = [(ZNmu) + (6Nmu + 2Nggq + 2fot) +

3.7
(7Npmy + 4Ngge + Nagq) ]

It can be seen clearly in equation (3.7) that #wsd stage and the third stage have a
large number of multiplications because in the sdcstage the multiplications are
the shifting of the locally generated carrier by #tmount of the subcarrier frequency
for each sideband and the multiplication of theallycgenerated carrier. While, in

the third stage it requires generating BOC sigralthe generated code multiplied by
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the generated subcarrier frequency, then the giexteBOC signal is filtered using

another two filters.

The computational complexity of the LoCo metha®@o.,mp) is formulated as

shown in equation (3.8).

LOCOcomp = [(ZNmu) + (4Nmu + 2Nggq + 2fot) +

3.8
(4Npy + 4Ngge + Naga) ]

Finally, the computational complexity of our ESCEthod ESCE ) is illustrated
in equation (3.9).

ESCEcomp = [(Nmu) + 2Ny + Nagg + Ngge) + (N +

3.9
2 * Ngge + Naga) ]

To illustrate the calculation of the computationaimplexity for each method, let us
assume that the sampling frequency is 10MHz, thelN{4q = 40000, theN,,, =
1.6 * 10° and theNg = 1.84 x 10°. Consequently, our ESCE is about 70% less
computationally expensive than the DSB method a@éb 3ess than the LoCo
method, , as showrigure 3-21; this is achieved by saving completeatation chain
without affecting the acquisition process.
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Figure 3-21 ESCE Total computational complexity

For processing time comparison, a Monte Carlo satrart was performed with 100

runs to calculate the average acquisition timethisncomparison, all the methods are
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run with the same realistic signal-processing seen&s shown in Table 3-1, the
processing time achieved by ESCE is nearly halheftime required by the other
methods. This proves that ESCE implementation tsonty simple, but also faster.
However, the only limitation of our ESCE methodhse requirement of generating a
primary code based on the locally generated subcdirequency, which is either data

or pilot codes.

Table 3-1 ESCE processing time

Processing Time
Method
Average Standard deviation
ESCE Method 2.84 sec. 0.0231
DSB Method 5.53 sec. 0.0548
BPSK-Like Method 4.35 sec. 0.0278
LoCo Method 5.26 sec. 0.0474

3.7 Concluding remarks on the ESCE method

In this chapter, the ESCE method was proposed éocome the ambiguity and to
enhance the Galileo-OS signal acquisition. The em@ntation of ESCE has
eliminated the subcarrier frequency effect and &frag the acquisition process. The
implementation requirements and detection perfoomasf ESCE are analysed and
compared to other widely used solutions, such a8,DEPSK-Like and LoCo

methods. The results showed ESCE’s advantages rimsteof reducing the

complexity, improving the performance of the Gali®S signal acquisition and
accelerating the acquisition process. In additie, simulation shows that ESCE
elimination of the subcarrier frequency effect cffaround 2dB gain to the received
signal power. Moreover, the literature survey hbgstrated that unambiguous
methods have been successful in acquiring anditig&OC signals. However, most
of them suffer from having complicated implememas using double sideband
processing, or they suffer from a signal-to-noistedoration, of around 3dB power

in case of single sideband processing.

Our solution of eliminating the subcarrier frequemeroduces better results than the

previous work in terms of performance, saving pssogy time, implementation
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complexity and shapes the CCF to have a single jjaakhe CCF of the GPS-BPSK
signal. Furthermore, our acquisition method carnfgdemented in the time-domain

or the frequency-domain.

Therefore, we capitalised on this subcarrier elation to combine the acquisition of
the Galileo signal with the GPS signal in singlegaiss based on compressive sensing

technique, as will be detailed in chapter 6.

| gave an engaging presentation on the ESCE mathptementation in the 3rd
Computing, Communication and Information Technol@¥IT conference on
Wednesday, May 27, 2015 at Birmingham City UniugrdiK.
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Chapter 4

Orthogonal Joining Data and Pilot Galileo-OS

Signals Acquisition

The Galileo-OS signal offers an efficient powertriigition technique between the
two navigation components/channels. The poweriligton has been designed with
50/50 power split between the pilot and data chianf2®]. Hence, it is possible to
shorten the receiver’'s acquisition process by acgubnly the pilot or only the data
channel using a single correlation chain. Howetres, leads to a 3dB power loss that
Is important when being acquired in harsh enviramieConsequently, dual-channel
(DC) acquisition is preferable to enhance the pooiya of detection of weaker
signals. Obviously, the hardware implementatiorihef DC acquisition will require
double the size/resources, while the software implgation will require more

processing time as well as the resources overheads.

In this Chapter, we shall explain our novel implatagon “OGSR” to acquire the
Galileo-OS signal by joining these channels in rglgl correlation chain. This is
accomplished by shifting the phase by 90-degredéiset@opy of the received signals
and then adding the shifted signal to the origieakived signal. The motivations of

having an orthogonal signal are:

1. Both the data and the pilot signals are receiveith Wie same code phase

delay and Doppler frequency shift (see section 4.2)

2. To be able to perform the acquisition in a singleeation chain, yet offering
the same performance as using two correlation st{age section 4.4).

OGSR implementation will require, as an overheadjrig an orthogonally generated
signal instead of having data and pilot generatgdats separately. Note that the
newly formed orthogonal signal will have the saroeer as the received signal.
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4.1 Previous joining Galileo signal acquisition methods

literature survey

A joint-data-pilot signal acquisition method is eesary to acquire Galileo-OS signal
so as to gain the benefits of this transmissionerdiore, Galileo-OS signal

acquisition needs at least two correlation chanteefserform the joining between the
received data and the pilot signals. A typical tdognain acquisition process, the
received Galileo signal is multiplied by two ortloogl carrier frequencies, and then
the output of the in-phase and the quadrature-pt@sgonents will go through two

branches, as shown in Figure 4-1. The two branaleshen correlated with the data
channel components in the first branch and thet gitannels components in the
second branch [44]. The detecting stage is accshwali by joining the output from

these two branches, resulting in a 3dB gain as aglbvercoming the ambiguity
between the navigation message in the data chamdethe secondary code in the
pilot channel. However, this implementation regsif@ur correlation channels.

Data Channel

Galileo___|
Signal

@ OQutput

l Local Oscil lator I

Pilot Channel

Figure 4-1 DC acquisition method based serial sgfar

To implement a frequency-domain acquisition (FFarsk algorithm) for the

Galileo-OS signal, solutions either acquire theadat the pilot signal alone, i.e. SC
acquisition, or still join the data and the pilogreals, but using less correlation
channels than a time-domain implementation. Figi& shows a joint data-pilot

channels implementation [45]. This solution claitinat combining the powers of the
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two data and pilot signals provide a 2.8dB improgatmin the signal detection
performance over the acquisition of the data ootpsignal alone. However, this

implementation does require two correlation chasinel

Galileo

Signal -

F
A

L R
(%)

‘ Local Oscillator '

Figure 4-2 DC acquisition method based FFT search

Output

Complex
conjugate

Primary pilot- BOC
code generator

A combined time-domain (serial-search) and frequeatamain (parallel/FFT-search)
solution was designed to acquire weak Galileo $sgf¥6]. The primary code is
searched serially and the secondary code is sehnthparallel. The gain obtained by

combining these two engines is equal to:
Total Gain = Grimary + Gsecondary
Total Gain = 10 log(§ + 10 log(Ny)

where N represents the number of samples in serial seanth Ny

represents the number of samples in serial andllghisearch.

Thus, the gain obtained from the signal that ha€Rip code lengths is 13dB while
for the code lengths that are equal to 100 Chiggigal to 20 dB. Nevertheless, this
design has a good sensitivity, i.e. the procesgaig will increase because is directly

proportional to the number of the performed accuatmh powers of the samples, but
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it involves complex implementation because it dates the received signal with two
different engines, the serial and the parallel deahlso, the secondary code of the
Galileo-OS signal is same for all 32 satellites,johis not like the other Galileo
signals that have an own secondary code for edeliitea In fact, this gain can be
partially obtained by using a single engine (time foequency) for example

differential acquisition or by increasing the intagpn time.

A further enhancement has been achieved by a eiiffiat joint-data-pilot acquisition
solution (DfDC) [47]. In this implementation, theraplex correlator output of each
branch is multiplied by the delayed copy of itsal,shown in Figure 4-3. Where, the
two branches are the correlation of the power-tbfiee between data and pilot
signals (B-C) and the power-sum of the data andt gignals (B+C). These
multiplication outputs are then summed up to comeplinis differential joining
process. This solution claims that this post-prsicgs would help to improve the
acquisition of the low power signals that has C/N2% dB-Hz by 2dB. The
performance of this work was compared with othergd@ DC acquisition methods.
The results showed that the differential acquisitivas better performance, but

obviously at the expense of higher complexity.

((Post Differential Block )

Galileo

Signal Output

exp(2TT(fe+anT.)  ((B*C)equivalent channel)

(Post Differential Block )

Figure 4-3 DfDC acquisition Method

In the same vein, a space differential acquisi{l®DfC) solution claims to save half
of the memory requirements that are used in the$Dlution. This is achieved by
using the phases of both data and pilot signaliseasame time (rather than one at a

time as used in DfDC) because the data and thd pignals are transmitted
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simultaneously from the same satellite, which mebhasDoppler and phase shifts of
both signals are the same [48]. As depicted in rieiglt4, the complex correlator’'s
outputs are separated into the In-phase and thelr@uee-phase parts. Then the
acquisition process is accomplished by summingrtakiplication outputs of the real
parts (I_data x |_pilot) and the imaginary parts d@&a x Q_pilot). This solution,
therefore, has better detection probability than@€ solution by around 2dB, and it
is better than the SC solution by 5dB.

However, it requires more computational operatitisplit the real and imaginary
components of both signals, as well as requiringemesources, such as mixers in the
time domain, to multiply the complex correlator uits.

Galileo

Signal Output

Complex
conjugate

Qg
(=)

| Local Oscillator l
Figure 4-4 SDfC acquisition Method

A study was made to compare the performance ofrgkej@nt strategies that have
been designed to acquire Galileo-OS signal [49]esEhstrategies are SC, DC,
multiplying strategy (Bx C), assisted (B - C), summing combination (SB-6B+C)
and comparing combination (CC), as shown in Figite The comparison showed
that there was around 2.8dB improvement to theisitiqun performance for the CC,
(B x C) and DC strategies than using conventional S@mwthere is no assistance
available.
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Figure 4-5 Joint strategies to acquire Galileo-Eigsal

While, if there is assistance, like which satedlisge in view or the Doppler shifts for

the present satellites, the (B - C) strategy ishi choice to acquire Galileo signals.
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Moreover, in the low carrier to noise ratio C/N & @B-Hz, the performance of the
DC strategy is better than the CC strategy. Becaudhis region, low C\N, the
Galileo signal is still in the noise floor and tB8€ strategy makes the search space
suffers from the noise that coming from the two poments channels (R_B - R_C)
and (R_B +R_C).

To save valuable correlation resources, orthogsingliany two BPSK signals in a
bandpass sampling receiver have been successhplginented to track two signals
simultaneously [50]. In this implementation, onetloé received signals was passed
through an HT and then combined with the secondasitp construct an orthogonal
signal. The orthogonal signal is then folded to $hene reference frequency in the
FNZ by using a single ADC. It is worthwhile to miemt that this orthogonality has

been implemented in the RF front-end to simplify thgital processing.

Our proposed OGSR capitalises on this saving tegdesn orthogonal acquisition
chain for the Galileo-OS data and pilot signalsistisaving valuable resources and

processing time.

4.2 The OGSR method structure

OGSR is designed to overcome the complexity of rotH@C-receivers
implementations by half, or in other words, to rm&luthe overall
acquisition/processing time. As shown in Figure, 4k is achieved by making the
received Galileo signal orthogonal with a 90-degrpbase-shifted copy of itself,
using an HT to do the phase-shift. OGSR is posdibleause the Galileo data and
pilot signals are transmitted simultaneously, ahdrdfore they have the same
Doppler and phase shift, as illustrated in equai®n). Consequently, the 90-degrees
shift can be applied to any of the locally genatathannels. In this particular

implementation, we have chosen the pilot signaletdhe phase-shifted signal.
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Figure 4-6 OGSR acquisition method

The following steps illustrate the design procelsthe OGSR acquisition block. As
shown in Figure 4-6 the resultant combined orthafjaignal is represented by
equation (4.1).

Xc[nT,] = X, [nT,] - j X¢[nTs] 4.1
whereX represents the complex received signal.

By substituting equation (3.9) in equation (4.hgrt this orthogonal signal is:

X, = (A[eEl_B(nTs - T)Sb - eE1_C(nTs - T)Sc] el (2nlfe1+fa)nTs)

+ n, (nTs))

4.2
— j((Alegr p(nT, — DS,

- eE1_C(nTs - T)Sc] ej(zn(fE1+fd)nTS) + N, (nTs))

After removing the carrier frequency with Dopplénifs i.e. when the locally
generated frequency matches the frequency of thleogonal signal, then the
exponential term in equation (4.2) becomes equdl. tbhe noise component, is
considered uncorrelated, and for the sake of samplwill be ignored, then the
matched signal is shown in equation (4.3), whicmtaos the codes and the
navigation message only, but in a complex forkgt

Xco[nTs] = [egs s(nTs — T)Sp — gy c(nTs — 1)S|

) 4.3
— jlegrs(Ts — VS — ey c(nTs — 1) (nTs — 7)S]
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At this stage, we orthogonalise the replica BOCesodf the data and the pilot
channels. Therefore, the primary BOC-code of tha dhannel will be located in the
real part of the equation (4.4) while the primai@®-code of the pilot channel will
be located in its imaginary part. This represehésdomplex generated codg and

as follows:

CclnTs] = [egr s(nTs — D)Sp] + j [egs c(Ts — 7)Sc] 4.4

We now multiply this complex code with the matctsghal of equation (4.5) after
transforming them to the frequency domain:

Ygc = IFFT[FFT (X¢o[nTg]). FFT(Cc[nTs))*] 4.5

where IFFT represent the inverse Fourier transfod&T is
the Fourier transform andC[nT])* is the complex conjugate

of the complex generated code.
The aligned complex output of this stage is shawaguation (4.6).
Ypc = NDg1p—JN DE1B - N DElc —J N Dg1 ¢ 4.6

whereDg, p is the navigation messagey, . is the secondary

code andV is the total number of samples.

Finally, we square this complex output to represieatcorrelation outpugc_ogsr

as follows:

Spc—06sr(T, fa) = 2 N? Dgy, + 2 N? Dgy, 4.7

4.3 OGSR experiments setup

In order to verify the orthogonality of the designacquisition process, OGSR
method has been performed in two environments. SEbgps of these environments

are:

1. Realistic environments: a same setup that was nmattee ESCE method is

applied in this OGSR implementation, see Sectidrf@. more details.
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2. Simulink/MATLAB is used to simulate the OGCR implenation, with the
sampling frequency of the Galileo signal is set&B868MHz and the folding
frequency (IF) at 4.092MHZ. Figure 4-7 shows a shap of the Galileo-OS
signal Simulink block diagram and Figure 4-8 depitte Galileo-OS signal
generation block that is implemented based on equéd.5).

Various scenarios were chosen to validate the pedonce of our OGSR

implementation, as follows:

A. (Tx=>ChannebPRx) Block: the range power of the simulated Galileo
signal is from -127dBm to -150dBm.

B. Rayleigh Fading Block: two types of Doppler spegtrare used “Flat and
Gaussian” to create multipath signals, which aréoup multipath signals
in each generated signal.

C. AWGN Block: in this particular block the chosen Modas SNR-mode
to control the amount of the additive white Gaussiaise.

Rayleigh
Out1 P In1 Out1 > Fading > AWGN
Galileo CBOC Tx-=> Channel --> Rx _1 Multipath Rayleigh AWGN
signal generation_1 Fading Channel_1 Channel_1
out1 »{in1 out1 »|  Rayleigh > AWGN
Fading

signal generation_2 Fading Channel_2 Channel_2

bas
'(Iy‘

Galileo CBOC Tx-=> Channel --> Rx _2 Multipath Rayleigh AWGN

sigout
}—""‘1 I_M_{ Signal To
i Work:
outt > In1 outt p  Rayleigh > AWGN SLERace
Fading
Galileo CBOC Tx-=> Channel > Rx _3 Muitipath Rayleigh AWGN
signal generation_3 Fading Channel_3 Channel_3
outt »In1 outt > Rayleigh > AWGN
Fading
Galileo CBOC Tx-=> Channel --> Rx _4 Multipath Rayleigh AWGN
signal generation_4 Fading Channel_4 Channel_4

Figure 4-7 Galileo CBOC signals transmitter chanisgupper-level block

diagram)

64



Random Integer
Generator

Rate Transition

/\DSP
E1-Carrier Frequency
[r et ]
Random | » -
Integer H]Iﬂ]l]l hﬂ]lﬂ] ~ Navigation Message
elay

-
—»

X

B_code

Primary Code-Channel B

/\DSP
\/ Complex to

Sine (1.023¢8)  pegpimag

Product1

Sign1 Alpha

CBOC()

DSP

\j Complex to

Sine (6x1.023e6) Rei|-|ll'|=g1

Sign2 Beta

CBOC(-)

C_code

Primary Code-Channel C

X

L
—>
Product3

X

[ e Product

»

Sec_code

Secondary Code-Channel C

P

x

Productd
Product2

Figure 4-8 Galileo CBOC signal generation

4.4 Measurements validation of the OGSR method

r
D> CO
= Outi

This section highlights the achievements in ternfissaving processing time,

maintaining the acquisition performance, reducimng acquisition requirements and

determining a suitable threshold for ambiguousl€akignal acquisition.

4.4.1 OGCR performance and processing time results

A fair comparison is conducted by implementing B¢ method shown in Figure 4-

2, which is technically recommended in high and IGWN, as discussed in our

literature survey.
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For the processing time comparison, we performedt®l@arlo simulations with 100
runs to calculate the average processing timehisncomparison, all the methods are
run with the same simulation scenario. Table 4-bwshthe processing time
comparison, where our OGSR involves less procedsimgthan the DC method by
35% and is only 1% greater than the SC method.

Table 4-1 OGSR Processing Time

Method Processing Time
Average Standard deviation
OGSR Method 6.63 sec. 0.0525
SC Method 6.62 sec. 0.1084
DC Method 10.16 sec. 0.3766

To ensure that OGSR maintains the acquisition padiace as the DC method and
realises the joint acquisition gain, a probabitifydetection comparison is carried out
between our OGSR method with the DC and SC methidus.detection setup is as
follows:

A. The acquisition search algorithm is the FFT-search.

B. The transmission channel path loss is calculatedidiyg Rayleigh

Fading channel, where the nominal received pow&rdgdBm

C. The number of multipath signals in each scenarggisal to; 1-signal
in high C/N (>34 dB-Hz) and 2-signals in low C/N3&dB-Hz).

D. The Doppler frequency shifts are set to 1250 fenados (>34 dB-
Hz) and -1500 for scenarios (<34 dB-Hz), where hire frequency
step is 500Hz.

E. The dwell time is equal to 4ms length of the reediGalileo signal,
i.e. full bit of the navigation message and repmese by 4092 Chips
PRN code length.

Figure 4-9, shows the result of the signal detaectishere OGSR and DC
perform better than using SC by 2.8dB. This is exil as a result of

combining the accumulated power of the data angitbesignals. The results
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also show that the OGSR’s performance is as godkdea®C’s performance.
This is realised because the correlation outpubwf OGSR $gc_ogsr) IS

equivalent to the correlation output of the DC noethas described in Section

4.2.
1
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Figure 4-9 OGSR Probability of detection vs. C\N

4.4.2 OGSR computational complexity

In order to highlight the amount of reduction thatachieved in terms of the
computational complexity, we have compared our OG®R DC implementation.

The same consideration to calculate the operafi@ddition and multiplication used
in Section 3.6.3 is employed in this section. Tomputational complexity of the DC

method DC¢omp) is calculated based on equation (4.8).

DCcomp = [(ZNmu + Ngga + fot)

4.8
+ (4Np + 4Nspe + 2Ny, + Noaa)]

While, the complexity of our OGSR methddGSR,mp) is represented by equation

(4.9).

OGSRcomp = [(Nadd) + (ZNmu + Ngga + fot)
+ (3N + 2Ns e + Noaa)]

4.9
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As represented in equation (4.8) the DC method aoesequire a pre-processing
stage but it costs twice more than the OGSR corniplesen generating BOC signal
in the third stage. While, the overhead of OGSRN% when adding the shifted
signal and the locally generated BOC signal infitse and third stages. Figure 4-10
shows that our OGSR s less by 49% than the DCamehtation because it saves a
whole correlation processing chain, such as tramsftion to the frequency domain
for both the received signal and the generated s;adeerse transformation to the

time domain, and also the multiplication process.
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Figure 4-10 OGSR Total computational complexity

4.4.3 OGSR'’s threshold determination

Acquisition threshold is important to determine tieection probability and the false
alarm probability; where decreasing or increasimg amount of the threshold will

directly affect these probabilities. Typically, ttteeshold can be determined by two
ways, either by capturing real signal under varieagironments to determine the
threshold experimentally or by using simulated algwhere the Gaussian noise is

considered equivalent to the actual noise [51].

This measurement is valid when the acquired sipaal a single cross correlation
peak. In Section 3.1, we have explained the etittite side peaks on the acquisition

process, and as illustrated in Figure 3-4, the poaigo of the main peak to the side
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peaks is equal to 4. This ratio represents theslation between local BOC signal and
outdoors received signal, i.e. just LOS signal authany multipath or power loss.
While, in harsh environments the power of the nem@iGalileo signal is weak and
below -150dBm. Consequently, the power ratio betwtbe mean and the side peaks
decreases, because in this environment the powepisé is increased. Thus, the
noise and multipath effect might increase the posidghe side peaks to be equal or
higher than the main peak. Therefore, the powey (4) is not valid in this situation,
and we cannot acquire any present Galileo sigmalinSorder to understand what the
right threshold at low C/N is, this section shalbkain the suitable threshold that must

be used for the Galileo-OS signal.

To do so, we have performed our OGSR method andrie@od to find a proper
power ratio (threshold) that can allow acquiringil@a signal with minimum false

alarm probability. In this particular experimene thetup was as follows:
1. The received Galileo signal’'s power is set to -Brado -150dBm.
2. The fading channel used is Rayleigh Fading asiilited in Figure 4-7
3. The Doppler frequency shift is equal to 500Hz.
4. Two multipath signals with code phase delay equélms and 0.1ms)

5. The power degradations for these multipath sigasdsset to -2dB and -3dB

respectively.

As illustrated in Table 4-2, the ratio of the mpieak to the side peak is equal to (3) at
received power equal to -145dBm and when we mimrte power of the Galileo
signal to -150dBm the ratio is reduced to (2) aadbs and when the power goes

down the ratio also decreases.

Table 4-2 Main peak to side peak and noise ratio

Method OGSR Method DC Method
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-145dBm | -150dBm| -145dBm | -150dBm

Correlation Power (dB-unit) 77.06 75.39 72.59 70.71
Highest peak to the second peak 33 2.4 3.4 2.2
Highest peak to the noise leve 5.1 35 7.05 5.59

Where, decibels (dB) express the magnitude measutem
specified iny. The relationship between magnitualed
decibels is ydb = 20 log10(y).

Therefore, we have performed the false alarm test &unction of threshold with
fixed C/N (-145dBm) to determine the proper thrédhior both OGSR and DC
methods. As depicted in Figure 4-11, when the tolelsis below (1.8) the false
alarm is increased for both methods. Practicallyemvwe set the threshold to (2.5) it
lead to reducing both of the probability detectemd the false alarm probability,
which means the receiver cannot acquire the avail@hlileo signal. Consequently,
choosing a threshold equal to (2) will allow acmgrpresent Galileo signal and also
at this value the false alarm is equal to zero. fEsealso showed that the false alarm
of the DC method is only better than OGSR whentltineshold is below (1.5) and
that proves the competence of the OGSR method.

=—@— OGSR Method
—§- DC Method

o

False Alarm Probability
= o

2
Threshold

Figure 4-11 False alarm probability vs. Threshold
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On the other hand, it is obvious that the corretapower (acquisition gain) based on
our implementation is greater than the DC’s coti@apower by 5dB, as illustrated
in Table 4-2. This is because in our implementattom codes (primary of the data
and the pilot channels) are correlated twice inrda and the imaginary parts, while
in the DC method each code is correlated sepayateljlustrated in Figure 4-12. On
the other hand, the noise level in our OGSR is 28§her than in the DC method.
However, with a threshold equal to (2) this willtredfect the detection probability

performance, as shown in Figure 4-11.
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Figure 4-12 Highest correlation peak outputs (aXmethod and (b) OGSR
method

The main interesting results that have been olddiyeusing OGSR method are that
the correlation has occurred only when both theeqathse delay and the frequency
shift (carrier frequency + Doppler shift) of thettmygonal signal and the generated
signal are matched, as shown in Figure 4-13-aaarmbmpared with the DC method

that shown in Figure 4-13-b.
This is achieved because there is strong assatiagitvveen:

1. The integration of the codes and frequency in tileogonal received signal

and the orthogonal generated signal.

2. The correlation of the orthogonal codes in the ik@tkand in the generated

orthogonal codes.
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This means that acquiring Galileo-OS signal basedw OGSR is easily achieved
because we have only one correlation if the cods@llelay and Doppler frequency

shift are same in the received and generated signal
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Figure 4-13 Doppler frequency bin steps correlatia) OGSR method (b) DC

method

4.5 Concluding remarks on the OGSR method

In this work a novel joint-data-pilot signals acgjtion method for Galileo-OS signal
is designed. The novelty of this work focuses anify and acquiring these data and
pilot signals in a single correlation chain by famgnthem in an orthogonal format. So
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this process saves valuable resources and aceslénatacquisition time as compared
with conventional joining methods, such as time-domimplementation “4-
correlation channels” and frequency-domain impleiatgon “2-correlation
channels”.

The implementation requirements and detection pmdace are compared and
analysed with the DC acquisition method. The resghow that our OGSR
performance is as good as DC method because ouR@G®bines the Galileo-OS
data and pilot signals’ powers. In fact the sigaifit reductions are achieved in terms
of the computational complexity (49%) and the pssaogg time (35%); these make
our OGSR a good candidate for the Smartphone’svaodtreceiver.

I have presented this OGSR method in the 3rd CamguCommunication and
Information Technology-CCIT conference on WednesdMay 27, 2015 at
Birmingham City University, UK. The audience werery attractive of this novel

idea for constructing an orthogonal Galileo signal.
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Chapter 5

GPS Signals Acquisitions Based-Compressive

Sensing

The GPS/GNSS signal acquisition process is the mwsportant and
power/processing intensive in any GNSS solutioadiaieve short time to first fix. In
time domain solutions, typical receivers have haddr of hardware correlator
engines, while in the frequency domain a high perémce processor is needed to
perform FFT/IFFT processes. Either way, the actjorsiprocess requires a large
overhead from the Smartphone’s CPU and battery powe

The acquisition in such GPS conventional receigerserates replica SV signals PRN
codes and carrier frequency with a range of Dopipégruencies (x4KHz) to acquire

the GPS signals. i.e. signal acquisition is to fimel correct code delay and frequency
in the received signal. The search process is atedun two dimensions; the code
phase search and the Doppler frequency shift seershown in Figure 5-1, i.e. each
cell comprises a replica PRN code and locally geeer frequency. The signal

detection is achieved when the two parameterseottide and the Doppler have high

correlation value.

On the other hand, the CS technique aims to recinefull signal band by using
below-Nyquist rate sampling if the signal has arspaepresentation or is nearly
sparse [52]. Fortunately, the GNSS signals, likg avireless RF signal, are
relatively/nearly sparse. Thus, the GNSS-based-€&8iver solutions can achieve
faster acquisition process and low power consumptdiich can be performed with

fewer measurements than a conventional solution.

This chapter will introduce the main concept of &Sdetails in Section 5.1, and then
demonstrate the implementations of our CS-basetadstin Sections 5.3 and 5.6 to
acquire the GPS signal.

74



Signal

Doppler frequency Atk detection Len
search sequence +«—> / /
e O ¥ | akm

[

Start or_._ 1 Search Direction
search

1 Doppler : D) +4KHz
bin

Ar—— ] (23 ChiPS ——

Figure 5-1 Two-dimension signal detection

5.1 Basic CS concept

In typical signal acquisition processing, the slgaaampled based on Nyquist rate to
recover the full information of the signal, if pess. While, CS asserts that the
received signal can be sampled at below Nyquist sampling without information
loss if the signal has a sparse representation f829, it is guaranteed to acquire and
reconstruct any sparse signal with much fewer nreasents, by exploiting the
sparsity in the signal [53]. Practically, CS sarspilee received signal according to
either the “occupation information band” or thefimation rate”, which is less than
the minimum Nyquist sampling rate of double theiearfrequency. This is why CS

is very attractive in applications such as image signal processing [54].

As depicted in Figure 5-2, for any k sparse reakigignal x(t), in some “sparsity
basis” € CN*N| then, in CS theory this signal vectare RN*! can be recovered
from m linear measurements or compressed measuteyme®M*!, where (K < M
<< N) [55].

y=¢ya 5.1

where ¢ € RM*N is the sensing/transform matrix and

a € R¥*1 is recovery signal
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N
X©= ) anihn(® 5.2

To achieve this measurement's reduction, the faigveonditions have to be met
[52]:

1) The sensing/transform matigx should satisfy the Restricted Isometry
Property (RIP), where the RIP depends on the oahalgy of the arbitrary

subsets of the column vectors¢pfmore details in [56].

2) There should be low coherence between the trangfioatrix ¢ and the basis
matrix . This low coherencey(, 1), is expressed by:

w(é.w) =vn max [(¢,.bm)| € [1,vn] 5.3

1<k,m<n

Furthermore, the deterministic sensing matrix widwnsize the number of the
required measurements. Nonetheless, random semsaigx such as Gaussian
matrix, binary matrix [57] or Bernoulli matrix [58}an also be used, as they would
satisfy the RIP.

5.2 CS-based solutions literature survey

A high sample rate produces a huge number of santpbd are necessary for the
correlation (acquisition and tracking) process. dtam-based services/applications
on Smartphones require fast GNSS acquisition veith power consumption. On the
other hand, the principle of CS is to permit thengling of sparse signal below

Nyquist rate and reconstruct the signal withoubiinfation loss.

Therefore, an RD technique was designed to sant@ewireless signal below
Nyquist rate by exploiting the sparsity in the iged signal [59]. In this technique,
the received signal is typically mixed with a squavaveform (x1), as shown in
Figure 5-3, that are generateglan LFSR at or greater than Nyquist rate. Thigmgi

process makes each received signal have a disigncature. The mixed signal is
then applied to the low-pass filter and then sachpbelow the Nyquist rate.
However, the sampling based RD technique has tqpdréormed in the AFE,
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requiring synchronisation with the signal duringe threconstruction, which

necessitates the addition of more header bitsstgphead signal.

Pc(t) €{-1,1}

Figure 5-3 RD technique

Aimed at recent wireless communication technologyals, an RD technique has
been successfully applied to demodulate the dsequence spread spectrum IEEE
802.15.4 standard technology signals, where thatismnal is mixed with PRN

sequences for a period equal to the Nyquist rdig [Bhe sampling rate used in this

work is half the Nyquist rate, which leads to radgdhe power consumption.

An effective technique was proposed, called Xangptechnique, to improve on the
RD technique by [61]:

1. Improving the sparse representation of the recesigaal by aliasing it with a
locally generated arbitrary periodic waveforms gsmultichannel, as shown
in Figure 5-4. The mixing rate of these channel @fasms is below the
Nyquist rate (equal to the sampling rate, whiclthis maximum information

band of the received signals).

2. This multi-channel aliasing arrangement helps diggnal reconstruction

without the need for code synchronization [62].

The outputs from each channel represent basebgnalsiwith a distinct sensing, i.e.
each channel has its own signature, because in dtmel the received signal
multiplies with different periodic waveform. Asahn in Figure 5- 5 (a, b and c),
both signals occupy the same bandwidth (2MHz) leheone of them has different
sensing, these differences will help easily reqoe$tacquire the received signal by

utilising the same periodic waveforms (sensing mjatr
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The signal reconstruction is then accomplished by:

1. Converting the sparse/samples vector to a frammeyGTF block [63], which
converts the computational problem from infiniteaserement vectors to

multi-measurement vectors.

2. Converting these multi-measurement vectors to glesimeasurement vector
using the ReMBo algorithm [64].

3. Applying the OMP algorithm [65] to find the suppe#lues, this can be used
to reconstruct the signal.

(1)
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(@ (b) (©

Figure 5- 5 Power spectrum outputs from differerdarapling channels

Furthermore, the resolution of the RD and the Xamgptechniques is less than the
traditional techniques such as BPS. To illustratd the GPS code resolution based
on Xampling technique will be half a chip becauaehechip is represented by two
samples since the Xampling sampled the GPS signhdhe information band
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(2.046MHz). While the code resolution based on BRIE be at least double the
Xampling resolution because the received signsduspled at rate equal to double the
information bandwidth, as detailed in Section Zherefore, the acquisition gain or
the SNR of the acquired signal base on BPS willjtgater than the Xampling as it
accommodates the power of more samples but at xpense of higher digital

processing.

A compressive multiplexer can be used to sampleRiResignal below the Nyquist

rate [66]. The main differences between this atgoriand the RD technique are:
1. This algorithm uses a multichannel to sample tbeived signal.

2. Each of the channels will down convert the receisigghal to baseband, and
then mix the baseband signal with a square wawe @riod equal to the

Nyquist rate.

3. The output from the mixing process is summed orexecpip before being

sampled at a low rate.

In the same way, a combined RD and Xampling tealesqgare therefore more
efficient in reconstructing the signal [67]. Suampiementation takes the advantages
of Xampling by using multichannel to alias the iiged signal with the random
square waveform by using shift register at Nyquéde. Then the alias signals are
sampled below Nyquist rate. Note that increasirggritmber of channels would be
allowed to reduce the sample rate, but not bel@nsithnal information rate. However
it can apply the concept of the Xampling technitpueeduce the rate of the random

square waveform.

In order to have objective comparison, the resvesuispecifically summarises the
most recent CS-based solutions that are desigrechtare the GPS signal.

A CS-based solution would be to generate spardenseof the received GPS signals
using random compressive multichannel samplers, W5 As shown in Figure 5-

6, these random channels sample the GPS signtile &andwidth information rate
(2.046MHz) to have half chip resolution. The spdrsggnals are then acquired

through the same Xampling in three steps:

80



1. Convert the sparse vector to a frame using CTFkbloea convert the
computational problem from infinite-measurement toec to multi-

measurement vectors.

2. Convert these multi-measurement vectors to a simglasurement vector

using the ReMBo algorithm.

3. Apply the OMP algorithm to find the support valugsthe acquired signals,
where the recovery support represents the codeesiteday and the Doppler-

shift of each acquired satellite signal.

This solution allows for accumulating the receiymmver for acquiring 20ms length
with the same number of channels at once. Howdéveecessitates a complex front-
end hardware to constructing the random CMS. Mareahis solution is designed
based on static acquisition, and making it dynaamidoing any modification like
reducing the samplers’ length or improving theseltichannel will need very

complicated hardware implementation.

s ™\
) c4[n]
b —*
t=nTs \
Sparse
. Recovery
X(t) — : — Yixalnl
c[n]=By[n]
co[n] '
V> —
t=nTs 4§ )

Figure 5-6 CMS acquisition solution

On the other hand, a CS solution that targets A8 Gignal acquisition, we called
(GCS-1) uses a low sampling frequency (2.046MHzhave half chip resolution
[68]. The sampled signal then correlates with bankscorrelators or parallel-
correlators. The resultant sparse vecyg) (epresents the matching powers between
the correlation process, and these powers contééast three high values due to half

chip spacing in the generating correlators. Idgmif the code phase delay and
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Doppler shift of the GPS signal is then obtainedtwy stages using deterministic
sensing matrix (Walsh-Hadamard matrix) and the measurement matrij; & |,

that dividing the output into two sub-vectors.

v=[3.]
y= [wﬂ Yo 5.4

The first stage of detection, as expressed in equéb.5), is to find the peak index
from y, and the magnitude of this peak should be more gheartain threshold. The
next stage is to find the correct index, as expgekss equation (5.6), by taking the
maximum value of the inner product betwegn with each row of the second

measurement matrig,:

Y1 =V1o 5.5
z\max = arg mlalx((yz (m), ¥, ml(m))) 5.6

These operations of producing sparse vector andwbestages are repeated in the
same sequence to acquire the rest of the GPS sigdalvever, it overcomes the
computational complexity of the CMS solution itasthe expense of large memory
storage. Where the dimension of each bank is (2A®16) and each row comprises
single code phase delay and each bank includessordle Doppler frequency shift.
And therefore, there are 41 banks of correlatoreézh GPS satellite and so on. On
the other hand, this solution is designed withxadi signal length dictionary that
equals to 1ms, and changing the length will diyeetffect the required memory

storage.

In the same vein, the measurement matrix can bee n@dcquire either BPSK
modulation signal or BOC modulation signal, and m&ned as GCS-2 [69]. This
distinction in signal modulation is realized by adgan indicator (“0” for BPSK and

“1” for BOC) inside the measurement matrix. Thisthoel, however, focused on the
chipping rate to acquire the signals that use BRykHd BOC(1,1) but without

consideration of the codes’ length of these sigrias example:
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1. Both the GPS C/A-BPSK(1) code signal and the Galds BOC(1,1) signals
have the same chipping rate but they don’'t haveesaode length.

2. Both GPS L1-C, and Galileo E1-OS use BOC(1,1) matchn but they have
different code length, where 10ms for L1-C and 4on€1-0S.

Moreover, the measurement matrix was designed ndléaone type of signal at a
time, i.e. either BPSK signal or BOC signal.

A C/A code folding GPS signal acquisition was desit) based on CS to accelerate
the CS processing time (FCSG) [70]. Basically, @& codes for each satellite is
folded “M” times then the folded codes are combirtedreduce the computation
complexity in the code phase delay search proCESs. implementation, firstly,
transforms the received GPS signal to the CS-domamultiplying the signal with a
sensing matrix. Then the outputs are correlateld fwitled codes. The final process is
achieved by applying the correlated results with dictionary matrix to the search
algorithm. In this implementation, a new searchoatgm is proposed that is called
“Projection Elimination Recovery Algorithm (PE)”.h€& PE algorithm is developed
the OMP algorithm, where finding the supports vakiachieved by determining the
highest column sum, while the PE determines thea@upby taking the highest
projection. This implementation, however, reduces tost of the computational

complexity from two aspects
1. Reducing the size of codes and dictionary matrix
2. Minimise the search calculations in the OMP aldponit

Nevertheless, the folding process was firstly psgobfor the P(Y)-code GPS signal
acquisition because the length of P(Y)-code is§B1lx 1012) Chip while the C/A-

code is only (1023) Chip. Therefore, folding thé@bde generates a low orthogonal
code, because the C/A code is designed to be amlabdo itself at or more than 1
Chip phase delay and with other GPS signals’ catle®de length (1023) Chip and
otherwise this orthogonality will decay. On the estthand, this implementation
neglects the Doppler frequency shift and consitiesshift as constant. Incidentally,
we had this experience before and we have fourtdfthi@e code phase resolution is
0.5, which is same as the resolution in this im@etation, and there is at least
500Hz Doppler frequency shift that makes the cati@h between the received and
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locally generated code equal to “0”, more detaisSection 6.1. Consequently,
regarding this implementation if the Doppler freqoye shift is considered then the

maximum fold will be equal to one.

Three types of dictionary matrices are adopted ha CS-based GPS signal
acquisition implementation, which is called “Spa@&RS (S-GPS)” to find shortest

searching time versus these types [71]. Theseodmties are:

1. Multi-channel stacked: the dictionary of each diééebreaks down into small
dictionaries (code delay and Doppler shift). Thenber of dictionaries for
each satellite therefore is equal to the numberDaofppler bins (41
dictionaries) and the total number of channelgjisaéto (41 dictionaries 24
=984 channels).

2. Multi-channel flattened: This dictionary type comés the representation of
the code and frequency in a single dictionary tduce the number of
channels to make it only 24 channels. This typéneduce the computational

complexity in the search algorithm.

3. Single-channel flattened: this type joins all poaxd 24 channels in a single
channel to construct a full dictionary matrix fok @GPS satellites. Therefore,
this enables the S-GPS implementation to acqua&iRS signals at once.

Note that all these dictionaries consist of mwiipd) C/A code with in-phase (I) and
guadrature-phase (Q) of Doppler frequency shifts then multiplied by the sensing
matrix, as illustrated in Figure 5-7. Moreover,dédlictionaries are generated once

and stored in the memory to reduce the locally gead signal overhead.
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Figure 5-7 S-GPS solution

The S-GPS acquisition process is accomplished bliptying the received GPS

signal with the Gaussian sensing matrix to comptiesssignal and transformed to
CS-domain. Then the compressed outputs and the thenQ dictionaries are solved
based on Second-Order-Cone-Program. The last t&tkge the absolute value of the
resultant | and Q and then summed to find the Higlmorrelation. In this

implementation decreasing the compression facter,réducing the row number in
the sensing matrix, will reduce the detection pbilig. Even though the S-GPS has
a good acquisition quality it is at the expenséaafe memory requirements, | and Q
dictionaries, and costly searching process thatbeanvercome by combining these
dictionaries to construct a single complex dictignand this leads to reducing the

cost of searching process.

Regarding the compression concept, the GPS sigmmalsacquired based on the
traditional implementation using compress sampiesrder to reduce the acquisition
time [72]. The algorithm depends on the averagepszsnor down samples. The

sampling frequency that is employed in this implatagon is 5.115 MHz, which
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means each 1ms represents 5115 samples or pdi@se Ppoints are compressed or
down-sampled to 1024 points for each 1ms. The #@lgoruses 2ms to acquire the
GPS signal and that leads to having 2048 poings dftwn-sampled. These 2ms are
converted to the frequency domain using FFT transféit the same time, the locally
1ms generated signal compresses to 1024 pointshemdpadding 1024 zeroes to
create 2ms length as the received signal. Aftdr tha generated 2ms is converted to
the frequency domain, and the complex conjugatesesd to multiply with the
compressed received points. As a standard proé¢dbge &FT-search algorithm, the
IFFT is placed after this multiplication. Then tbetput points are divided into two
parts, and the second part is neglected while itls¢ iE checked with a certain
threshold. In this algorithm the authors pointed that if there is a bit transition in
the selected/tested 2ms then the probability afadiein will be reduced.

5.3 The DCSR structure

The use of CS technique to acquire GPS signalsganeeessing time and memory
resources when compared with hardware or softveareivers. The DCSR proposes;
on one hand, a dynamic CS-based acquisition for &gtls, and on the other hand
to reduce the hardware complexity of the CMS sotuind the software complexity
for the GCS-1 solution.

The main idea of having a dynamic implementatiostaad of using a fixed size
sensing channels and fixed number of correlatothenmeasurement matrix, is that
DCSR dynamically changes the number and the size thed required
Channels/Correlators according to the received &Sl power during acquisition
process. This adaptive solution offers better apability when the GPS receiver is
located in harsh signal environment, or it will sasaluable processing/decoding time
(battery power, especially for Smartphones) whea thceiver is outdoors. A
feedback loop is devised to control the sensingnicblanumber and resize the
measurement matrix. Furthermore, such CS solutsas @& fixed size measurement
matrix chosen to offer a compromise between thegqssing overhead and signals

acquisition success level.

In this chapter, the mathematical model of thegmaitted and received GPS signal
are presented in equations (5.7) and (5.8) reprdsemeceived GPS signal.
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() = ) V2P [C(OD(V) cos(2Fy, )] 5.7

where they,(t) represent the signals transmitted frofi k
satellites, , P is the power of the signé},(t) is the C\A
assigned to this satellit®, (t) is the navigation data sequence

andF;, is the carrier frequency of L1.

X (t) = ACi (t — T)Dy (t — 1) I @ (FLi~far)t+0) | y(¢) 5.8

where thex, (t) represent the received signaks,represents
the received powerr is the code phase deldy, is the
Doppler frequency shifty represents the carrier phase and

n,(t) represent a complex AWGN.

The rest of the sections shall describe how weamree the hardware complexity of
the CMS solution by using Xampling technique rattim complex multi-channels
samplers in Section 5.3.1, Section 5.3.2 illusgrdtee acquisition process, which
overcomes the software overhead in the GCS soluéiod Section 5.3.3 shows the

dynamism process that makes this solution adaptidéferent environments.

5.3.1 DCSR’s sampling and sensing procedure

In effect, the Xampling technique is proven to berenreliable for sampling signals
below Nyquist rate, as well as being easy to implanj61]. This is accomplished
because it produces a compressed signal that tabkuito be used with the CS
technique. Therefore, to achieve the desired atigmisaccuracy, this technique has

been adopted in our DCSR solution to sample anseste received GPS signal.

As shown in Figure 5-8, the received GPS signaés raultiplied by the square
periodic waveform ¢, (t) using a number of channels simultaneously; these
waveforms are equivalent to the binary sensingirtktat will be used, together with
the bank-correlators/dictionary mat#, to acquire the GPS signal. The rate of the
square wave ( is equal to the sampling ratesfFwhich corresponds to the
bandwidth of the received signal, wherg K =~ Bandwidth) [62]. The Xampling
samples the received signals according to the marifnandwidth of the multiband

signals. In our case, only the GPS signals are, @s@tiso the sample rate is equal to
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2.046MHz. The multiplication outputs represent aedir combination of the
frequency shift copies ofpFthen low-pass filters are used to filter the basel

signals, and the output is sampled at a low rateesponding to the signal bandwidth.

LPF
X4 (t) s

t=nTs

x(t)

z¢[n]

t=nTs

Figure 5-8 Multi-channel sampling

Zy(w) = Z q)k(k(*)p) Xk((*))' WEWg 59

keK

5.3.2 DCSR’s acquisition process

In order to acquire the GPS signals, we first aogstthe frame V from the jointly
sparse over time vectoz$n], as illustrated in equations (5.10) and (5.11)ubing

the CTF block, as shown in Figure 5-9.

z[n]=[zy[n], ... ,zk[n]]T 5.10

sz z[n]z"[n] 5.11

n
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Figure 5-9 Continuous to finite block

The sparse matrix U in equation (5.12) can be sblw@ng the “pursuit algorithm”
such as the OMP algorithm to find the support v@lfethe sparse matrix [64].

V=yU 5.12

where  is the measurement matrix y(w) =
[Y1 (@), ..., P (w)]T, which and consists of the sensing matrix

¢(w) and the bank-correlators matré(w).

The measurement matrix can be formulated as:

L
Wi () = z Z ¢, (084D 5.13

1=1 peP qeqQ

where L, P and Q are the numbers of satellitesafsk step of
code phase delay” (at half chip resolution) and tB®ppler
frequency shift” at 500 Hz steps respectively.

and
[6])p,q=Ci(t-pT,) &/ @rFata)Te 5.14

The bank-correlators matrix is the XLP x Q) columns vectors, where each column
represents an expected shift of the code phasg wélathe Doppler frequency shift
of each GPS satellite signal. After the completadnthe support recovery of the
sparse matrix U, the right code phase delay andtigpler frequency shift of the
acquired satellitegsupp; , 4) are determined by calculating the maximum valufes o

the column vectors of U (S = supp(V)).
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5.3.3 DCSR’s dynamic function

Acquiring GPS signals based CMS solution sufferemfr high processing
requirements if acquiring GPS signals in the harskhironment, else the GPS signals
lock is lost. In other words, using larger numbgctwannels will produce higher rate
of acquired satellite signals, but that means tlebsanels will have to be used in
good signal areas too, which is a waste of eff@tg. DCSR is designed to overcome
this drawback of using a fixed number of channelscbntrolling the deployed
number of channels and the size of used correRmtionthe go as needed determined

by the actual signal strength.

In fact, the DCSR will resize both sensing and meameent matrices by using the
feedback control as shown in Figure 5-10. The faekHzontroller continuously
measures the power of the received signal to deterthe signal complexity level.
The received power is calculated based on equgidb), more details in [6]:

P,=P,G,G,/4mp? 5.15

where R,P;, G , G, p are the power of the received GPS
signal, transmit power, satellite antenna gain L@ 12.3
dB), the effective area of the receiver antenna, eguation
(5.16) and measured pseudoranges respectively.

Ga=7\2/41'[ A is the wavelength = 0.1903 m 5.16

Once the power of the GPS signals is calculated;ameeasily determine the carrier
to noise ratio (C/N) or SNR [73].

C/No=Prasw) — Nrusw) 5.17

where ¢ N is the nominal carrier to noise ratio in dBW,
Piasw) is the received power in dBW (10log¢R W)) and
N1y is the thermal noise power (-204 dBW).
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Figure 5-10 Dynamic GPS signal acquisition

From the nominal carrier to noise ratio we can mei®e the actual C/N, as illustrated

in equation (5.18):
C/N=C/N, — Ng 5.18
where N is the cascade Noise Figure of this receiver.

The range of the SNR values of the received sigdalsends on the front-end
bandwidth BW (dB-Hz), which is equal to (BW= 10I¢§3)), and the k is a filter
bandwidth:

SNR = C/N - BW 5.19

More precisely, our dynamic design is based onethevels of measurement
complexity, as illustrated in Figure 5-11. High reae@ments levels are used in bad
reception areas and so 600 channels are selectamhipensate for the sensing and
measurements of these weak signals. While wheroorgdour simulations show that
using only 240 channels is sufficient to acquire thignals (represents a low
measurements level). Finally, 480 channels areeth@s a middle case to help
compare the DCSR and CMS algorithms performance. S®aulations show that
these three channel-number selection-levels mageDBCR much more efficient
than the CMS by using only necessary resourcesndepe on the reception

environment.
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Furthermore, the design of the measurement majifiy , ;;(t) makes the algorithm
more powerful because each element in the measntematrix contains all
information of a single satellite, see equatiod 3. in contrast with the design of the
measurement matrix in CMS solution. So, when thmber of channels is increased
or decreased, the information of the satellitehim ineasurement matrix does not get

affected, and only the sensing property of the mnessent matrix will be changed.

5.4 DCSR simulation setup and results

The DCSR algorithm performance has been compardd that used by the CMS
solution. Our dynamic scenario for the GPS sigmdlich has C/N value varies
according to the signal environment, is listed imblE 5-1. Note that the C/N is
ranged from 50dB-Hz to 25dB-Hz, the bandwidth of tbw-pass filter is set at 2

MHz with a 3dB cascade noise figure.

Table 5-1 Open-Sky and Multipath Scenarios

LOS & Multipath signals Scenarios

C\N dB-Hz ) _ Scenario
Number of received signals

name
50 5 LOS signals S1
5 LOS signals and one multipath for
45 to 40 _ S2
each signal
5 LOS signals and two multipath for
35 _ SM
each signal
15 multipath signals from 5
30 to 25 _ M
satellites

The scenarios in Table 5-1 start with an open skgption area having LOS signals
only (S1). These signals are then degraded, antpauhl signals are added to the
existing LOS signals. We consider two signal degtiads as shown in (S2) & (SM).
The urban area scenario is represented by onlyipathit signals (M). Since the
algorithms are based on acquiring weak GPS sighallength of tested signals is
chosen to be 20ms. This will increase the acqarsiiensitivity by around 13 dB
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more than the normal methods (1ms length), wheszegtin obtained by the 20ms

acquisition is around 46 dB compared with the 33gdh obtained from the 1ms
processing (GdB = 20lafn).

The bank-correlators matrix has a half chip resmtutor code phase delay; 500 Hz
frequency search steps with Doppler frequency ratg&KHz, and the maximum
channel delay distribution of the C/A code is 30dcreduce the implementation
complexity. Additionally, to reduce the computagbncomplexity as much as
possible, the “Approximate Conjugate Direction Geat Pursuit (ADGP)” algorithm
[74] is used rather than the OMP algorithm. Our udanons show that both

algorithms have the same performance overall sigpraditions.

The simulated dynamic scenario is illustrated iguFe 5-12-a, where the C/N values
represent the various received signal conditiodse d@ynamic scenario is changed
gradually to simulate Smartphone movements. Theltseshow that the number of
acquired satellites signals by our DCSR is almoastant at all signal strength cases,
while the CMS solution has failed to acquire signal low signal conditions as
shown in Figure 5-12-b.

Figure 5-12-c shows how the DCSR has dynamicalljtcked the number of
channels as dictated by the received signal camdigo, in order to acquire the GPS
signals in harsh environment, the DCSR switchegh® maximum number of
channels, while in ideal environment “open-sky”’e tbDCSR uses the minimum
number of channels to save power and reduce piogetssie. The results, therefore,
show the adaptability of the DCSR to work in vaga@anvironments to maintain the
performance of the GPS receiver while saving pmioggime and battery power.
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Figure 5-12 Dynamic channels vs. fix number of chiael performance, (a) the
dynamic scenario, (b) number of satellite signalsgaired from CMS & DCSR
algorithms and (c) number of channels of CMS & DCS#gorithms

5.5 Conclusion on the DCSR

In this DCSR solution a novel dynamic acquisitienimplemented based on CS
technique. The DCSR solution can reduce processiregand so minimise the power
consumption required by a GPS receiver to acqugeaks in outdoors. This is
accomplished by dynamically altering the numbemefasurements and the required
number of sparse channels to suit the actual sigtrahgth. Also, the DCSR
maintains lock of the available signals in difficaignal conditions by using an extra
number of channels to compensate the measurenieraddition, the design of the

dictionary matrix enables the measurement matrohemnge its size without affecting
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the signal compression and integrity. Moreover,lyapg the ADGP algorithm to

recover the sparse signal will also reduce the coatipnal complexity.

My supervisor Dr lhsan Lami has presented the DG®Rlementation in the
Microwaves, Communications, Antennas and Elects8igstems (COMCAS), IEEE
International Conference, on Wednesday, Octobe2@83.
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5.6 The GCSR structure

The GPS correlation process becomes very intensiven the signal power is
degraded, depending on the environment whereirtldag outdoors signal power is
around (-125 to -130) dBm, and it can be aroundbdBsn in light indoors. If
sampling is performed at the Nyquist recommendégisyghen a weak signal will
make the receiver thrash for all the 20ms availabkey to find the signal. The CS is
adopted to either use the 20ms more efficientlgiling the Doppler/Code matching
process a better chance to find the signal and/aot this matching at much less
sampling and correlations without impacting theohaison/sensitivity of the acquired
signals [57].

Our GCSR focuses; on one hand on acquiring the $g§?@l since it becomes a drain
especially during cold start and in harsh signalrenments, and on other hand to
enhance the sparseness of the GPS received signalig deterministic waveforms
such the Hadamard matrix or Jacket matrix in thesisg stage rather than any

periodic waveform.

In this section we shall illustrate the enhancihgttis made to the Xampling
technique, and then we shall explain the acquisipimcess. After that in Section 5.7

we shall demonstrate the experiment result.

. GCSR sensing enhancement

One of the GCSR aims is to enhance the sensingihy the same resources that are
used in this technique, i.e. there is no resouregh®ad. The sampling process is
started by multiplying the received analogue siga@ (see equation 5.8) by a
periodic waveform. The number of channels “m” ig-determined to generate z[n]
baseband vectors that represent unique values eofintftormation band at that
particular time. To check the sensing in our GCBimber of periodic waveforms
such as square, saw-tooth (Ramp) and sinusoidat¢ferems were tested. However,
we concluded that deterministic waveforms such hees Hadamard or the Jacket
blocks offered better performance when we constihetsignals. The Jacket block
[75] is an extension of the Hadamard matrix, and i centre-weighted matrix,

where the inverse matrix can be obtained from ddsem entity as shown below.

97



i.e. either block inverse or element-wise invenmgepssible as in equation (5.20) and
(5.21).

1 1 1 1
_|1 —c ¢ -1
D=1 ¢ ¢ -1 5.20
1 -1-1 1

1 1 1 1
1 -1/c 1/c -1
1 1/c —-1/c -1
1 -1 -1 1

where [J]4 a 4x4 Jacket matrix, and c is the norezgbitrary

number, which represents a weighted factor.

For “m”, the larger the number of channels seledteel more this will influence the
resolution of the sensing. Therefore, based oregperiments, we chose m=480 for

normal GPS signal and m=600 for acquiring low deritsi signals.
The main differences between GCSR and DCSR impl&atiens are:

1. The periodic waveform used in our GCSR is a detestic waveform rather

than square waveform that is employed in our DCSR.

2. The number of sensing channels is fixed and ncaayo.

[I. GCSR acquisition process

The acquisition process based GCSR implementasicgaine as DCSR acquisition
process (see cp. Section 5.3.2). Where, the resuiampled vectors are then
converted to a frame “V” by using CTF block as stiated in equations (5.10 and
5.11) and as shown in Figure 5-9. In our GCSR, axeehused the OMP algorithm to
find the dictionary elements (support values) ef theasurement matnix. After the

completion of the support recovery of the sparstirl, the right code phase delay
and Doppler frequency shift of acquired satelliissppp,q are determined by
calculating the maximum values of the column vextof U matrix (supgpq =

supp(U)) as adopted in our DCSR.
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5.7 GCSR experimental results

In this particular GCSR method, the results areédén into two parts. The first part

shows the performance of using deterministic wavefagainst the random periodic

waveforms. The second part of the result is focusethe effect of the CS processing

on the signal reconstruction.

GCSR acquisition performance

The GPS signals are simulated using MATLAB. Thenfrend is designed to
have 2 MHz bandwidth of the low-pass filter, 3 diiscade noise figure and the
nominal power of the received signal is set to -dB&. DCSR’s scenarios have
been adopted to prove the performance of GCSR mwiation, and as
illustrated in Table 5-1.

Considering the acquisition and the computationatfggmance, we have
compared our receiver with the CMS solution. Chogdio simulate a 20ms
length signal will add around 13dB gain to the @MNhe received signal at the
sample rate of 2.046MHz. The acquisition rate camiproved by increasing the
number of channels representing the rows in thesisgnmatrix. This will

improve the reliability of the sampling signal, whiresults in detecting weak
signals. To illustrate this, two types of channate used; 480-channels for
comparison with CMS method and 600 channels to dstrate the performance

of our GCSR, as shown in Figure 5-13.

The deterministic orthogonal waveforms “Hadamardaket matrices” used to
sample the received signal and to construct thesamement matrix increases the
acquisition rate by 20% more than when using a requaveform. The gain
obtained is equal to 3dB-Hz that is clearly notitean high noise situations.
This is achieved because of the low coherence legtveeir GPS dictionary
matrix and the Jacket/Hadamard matrix, as a restiite perfect orthogonality of

these matrices.
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Figure 5-13 GCSR Acquisition rate for different eimnels and waveforms

To ensure performance stability of the GCSR'’s settwaveforms, these seven
different C/Ns’ scenarios were performed based omtiel Carlo simulations with
100 runs for each waveform, i.e. (7 scenaros00 timesx 5 waveforms) as
shown in Figure 5-14. As shown, the use of the eidldikdamard matrix is more

stable than using others periodic waveforms vedgterent scenarios.
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Figure 5-14 Success rate with 100 runs for eachbofvaveforms and for each

of 7 scenarios
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To analyse the implementation and the performariceuo GCSR and CMS

implementations, the following points summarisa gmalysis:

1- The GCSR has a simple implementation as the CMShadetuses
multichannel random samplers to sample the GPSalsigmsing the
measurement matrix, which means complex hardwattepesrprocessing to

construct the measurement matrix.

2- GCSR achieves better signal matching. This is tsafinding the
dictionary elements in the CMS method depends emthatching between
the sensing matrix and the frame V, whereas, ous&@ethod depends on
matching between the measurement matrix and theefNd. This matching
can produce more reliable correlation since thaiagnmatrix multiplies by

both the received signal and the generated diatyona

GCSR tracking performance

For a further check on the quality of acquisitimyr GCSR has been also
compared with a traditional GPS receiver as shawRigure 5-15. To do this,
the resultant GCSR signals are fed into a GPS @ectmdrecover the actual
acquired SV navigation message.

RF front-end Digital Processing

I
Tracking & I
output
Acquisition H Biec o il ]l—’ tp

Figure 5-15 Traditional GPS receiver

The bit error rate (BER) and the error vector magla (EVM) are used for
evaluating and analysing the effect of GCSR acquisignals’ decoded
messages. The BER performance of both the GCSR/ee@nd the traditional
GPS receiver, as a function of the normalize Cfd,shown in Figure 5-16. The
results illustrate that our GCSR has a small degiawl of BER of about 10%
because the bit representation in our GCSR hasilesber of samples than the
traditional receiver. To clarify that, the numbdrsamples in each bit in our
GCSR equal to (2 1023x 20) while in the traditional receiver equal tox4
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1023x 20), where the *Lnumber refers to the number of samples in eagh, chi
the 29 number is the length of the GPS-C/A code and thawBnber represents
the number of the GPS-C/A code in each bit. In,fdus little degradation is

expected as an overhead of using the CS techni@le [

10°

—@— GCSR
—@— Traditional Receiver

BER

107 ' . : : :
-4 2 0 2 4 6 8
Eb/No

Figure 5-16 Bit error rate versus energy per bit hoise power spectral

density

The EVM analysis defines the difference between ésémated phase and
amplitude values of the demodulated/decoded symiibl the values of the
actual received symbol. This will show whether tBESR has preserved the
distance between any pair of samples (phases anplit@hes) during
compressing and reconstruction the GPS signalaréisr17 shows the values of
EVM of the estimated phase and amplitude of CSragahe traditional GPS
receiver. It displays a bit of distortion in estimg the phases & amplitudes in
the GCSR. However, this distortion is acceptabléhm application of the CS
technique [76].
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Figure 5-17 Error vector magnitude curves (RMS)

The final proof of the GCSR implementation is toasure the stability of the
PLL discriminator in the decoder part. The basicrkwof the PLL is to
recover/track the actual phase, amplitude and é&ecy of the received signal.
The traditional receiver and our GCSR have almustsame steady-state values
while running the simulation of tracking one-secafdGPS data, as shown in
Figure 5-18.
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Figure 5-18 The steady state of PLL discriminator
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5.8 Conclusion on the GCSR

The enhancements adopted in the GCSR implementdtiosimplify the front-end
design as well as introduce better performance vdoempared with other CS-based

or traditional GPS receiver solutions.

The higher acquisition rate is achieved by usirtggrministic waveform generator
to sparse the received signal such as the Hadaonatte Jacket matrices. This is
because these matrices have the best orthogorfsdity result, the sensing process

has been enhanced as well as improving the signglsg.

The GPS signals have been sampled below the Nyagaist and equal to the
information band. Acquiring GPS signals therefoaa be accomplished with fewer
correlations as the CS process is now transfem@d matching the length of the
whole signal samples number to matching whole rcivesinels of the sensing matrix.
Increasing the number of rows/channels will inceeathe acquisition rate

proportionately.

Reconstructing the signal based on our implememtasi simpler than others because
we have moved the measurement process to the [A8Rvkile others process it on
the Analogue side. Our test scenarios and anadysigied a slight phase distortion
and amplitude degradation of the decoded signalyekier the integrity of the

received signal was maintained.
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Chapter 6

Multi-GNSS Signals Acquisition using

Decomposed Dictionary Matrix

We have pointed out in chapter 5 that the CS teglencan be used for a software
receiver to acquire GPS signal with less computati@omplexity than traditional
implementations. Also, the experience gained thnd&s motivated our research to
capitalise on this saving in computational compiexo design a dual mode GNSS
receiver that is capable of acquiring both the @?&-code and the Galileo-OS-code
signals simultaneously. Initially, the requirememas to combine their dictionary
matrices @cps+ Oaaliieg) iN a single combined matri¥®). This meant that the size of
this combined matrix is too big, because the sizh®Ocaileo Matrix is four times
the ©gpsmatrix (the OS code length is equal to 4092 chipse the C/A code length
is equal to 1023 chips), i.e. the size of &enatrix is equal to 2ALCP.

To explain how the size of the dictionary matrixdetermined, we shall calculate the
size of the©gpsmatrix, as an example. This matrix consists ofdbée-phase delay
and the Doppler-frequency shift for each of the4eS¥ (= SVx Code phase delay
(P) x Doppler frequency shift (Q) = 242046x 41= 2x10°), where the code phase is
half chip resolution and the frequency search s&eg0 Hz with range (£10 KHz).
Consequently, combining the two matrices leads noircrease in the time of
searching for each of the dictionary elements.Haumore, thé®gpsis considered as
an “overcomplete dictionary” or fat dictionary, th& number of columns basis (C) is
much greater than the length of the tested GNSSakigN) [77]. Therefore, it has
become important to decompose tBematrix so as to make it manageable by

reducing the search process.
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6.1 Decomposition study

This section shall detail the simulation trailsttleal to decomposing of th@ matrix.

At the beginning of this study, we have tried watlsingle GNSS signal (GPS signal

only). The idea was to exploit the GPS signal patans and use them as a sensing
matrix, as they satisfied the RIP condition (see3gction 5.1), and so to generate

sparse vector. According to that we had two optiarsch are:
1. C/A codes sensing matrix with 0.5 Chip code phaselution
2. Doppler frequency sensing matrix with 500Hz freqryeresolution

Each one of these matrices (codes or frequena@gsgsents a deterministic matrix
and they are orthogonal. To emphasize the orthdigpid both proposals equation

(6.1) shows the normalised correlation or the inpssduct of the C/A codes
(C/Axc)-

1 if the phase shift = 0 Chip
C/A.. 0.5 if the phase shift = 0.5 Chip
NC ~ 0 if the phase shift > 1 Chip
~ 0 if correlated with other SV's codes

6.1

Equation (6.2) illustrates the normalised correlatof the Doppler frequency shifts
(Dne)-

1 if the frequency shift = OHz

6.2
0 otherwise

DNC:{

Firstly, we started with the C/A codes sensing imatrtest the new CS-framework.

1. The first stage of the CS acquisition takes thesinproduct between the
received GPS signal and the C/A codes matrix todywme a
sparse/compressed vector. According to equatidl),(6he output therefore
includes at least 3 peaks/values if the receivgilasicomprises only one GPS
signal. Then it was found that this scenario isy@pplicable if the Doppler

frequency shifts equal to OHz.

2. While, when we add Doppler frequency shift, forrepdée equal 250Hz to the
GPS signal, then these peaks are decreased in tefrmumbers and

amplitude.
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3. For further testing, we increased the Doppler fezmy shift to be 500Hz and
that led to fading of all the peaks.

4. Then we realised that in each chip there are 1§dl@< of carrier frequency
(1575.42MHz/1.023MHZz), i.e. if the code phase nesoh equals to 0.5 and if
the Doppler frequency shift equals or is greatanti50Hz then theoretically

the resultant correlation is zero.

In addition, using the C/A codes as a sensing mhas results in a large numbers of
rows, which is equal to (2 1023x 24 =49104 rows). Whereas, this number is equal
to double the signal length when (4ms length isl#es.138MHz sampling rate), and
this is inconsistent with the CS concept. WhilengsDoppler matrix produces very
good compression, however it too did not work bseeaof the resultant weak

correlation when there is a code or Doppler shift.

This strong association between the integratio@fcode and frequency in the GPS
signal led to conducting the research in this paldr area to devise new decomposed
dictionary ©p) matrix without affecting the signal integrity. @f©p matrix is
designed by making the Doppler frequency shiftediXor generating codes of all
GPS+Galileo signals. Thus, tk#& matrix is represented as a bank of codes rather
than a bank of correlators. In addition, ustdg matrix requires having input signal
to the CS framework without Doppler frequency shiitd two dimensions searching
algorithm becaus®p matrix contains only GNSS codes. Consequently,haee
used Doppler channels as a pre-processing tots&ipoppler frequency shift, where
these channels provide high frequency resolutisrexglained in Section 6.3.2. Also
we have modified the OMP algorithm to search fos thmensions by advising “2D-
OMP” algorithm, as detailed in Section 6.3.3.2.

In this chapter th&®p matrix is can be applied for dual GNSS signal®irexr like
(GPS+Galileo), as presented in Section 6.3, andkeasribed in Section 6.7, ti&p
matrix is can be also utilised in single GNSS digraeiver, such as GPS signal. To
illustrate the combined solution, the next secsball detail the multi-GNSS signal

receiver implementations.
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6.2 Combined multi-GNSS signals methods literature

survey

Using multi-GNSS signals in a localisation algaritican help mitigate the multipath
effects in urban canyons, as more SVs comes in,vieading to improved

availability, time to first fix and location accunaespecially in cold start scenarios.
Therefore, integrating multi-GNSS signals in a Enefficient acquisition/tracking

process is valuable in saving processing time anep on Smartphones. Several
solutions have been published for integration @& thulti-GNSS signals, most of
which need undesirable complexity (abundant nurobeorrelators) and/or overhead

(high sampling rate).

An example of these solutions is a hardware umit blas been designed to combine
the acquisition of the GPS-C/A-code signal and®adileo-OS-code signal [78]. As
depicted in Figure 6-1 acquiring signals is accoshgd by utilizing MF (coherent
integration) and FFT search (non-coherent integmati This design provides
considerable sensitivity for the weak signals bynbming the coherent and non-

coherent integrations.

Matched Filter Search FFT Search

(===

Baseband
Samples

A

Iﬁ““:ﬁi | Correlation 12+Q2 NS
e I Mx N l

generator

Galileo code
generator

Figure 6-1 Hardware unit acquisition for GPS and&hleo signals
However, it acquires one GNSS signal at a timethasverheads of this unit are:

1. Highly parallel scanning for the cells area (codd &equency) in the first
MF stage and long integration time in the FFT stadegre the dwell time is
4 times longer than the matched filter’s time.

2. As regards acquiring Galileo signal, the acquisiiambiguous because the
chip search space is half chip resolution. And dftee, to overcome the

ambiguity issue and to have the same correlatiom @mthe GPS signal, the
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chip search space of the Galileo signal must belelivby 3. Consequently, a
high sampling rate is required to satisfy propep cearch space.

3. This design becomes more complex due to combinuagdifferent engines
the MF and the FFT search algorithms.

A serial search algorithm (time-domain implemewta)j as illustrated in Figure 6-2,
was adopted to acquire the GPS-C/A code signaltaadGalileo-OS code signal
using side-by-side implementation [79]. This impétation was proposed to acquire
weak GNSS signals and by relying on aiding the odtwthat enables this
implementation to determine all possible visibldeBides with their estimation
Doppler frequency shifts. This aiding, however,uaek the size of the frequency bin

search but:

1. It still needs an abundant number of correlatoighlly parallel processing”
that accommodates all codes of the two GNSS signals
2. Long integration time, where 30ms are used for@RS signal and 200ms

are employed for the Galileo signal.
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Figure 6-2 Side-by-side GPS and Galileo Signalgjaisition
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To understand the processing overhead and complekitloing combined multi-
GNSS signal implementation the rest of survey fesusn software GNSS receiver

implementations rather than on hardware-correlaésed solutions.

A reconfigurable multi-GNSS signal receiver thah eequire and track any (BPSK,
BOC (m,n), CBOC, or TMBOC) signal at a time by meah software control was
designed [80]. In this software receiver only thdS% signals that broadcast in the
two bands of frequencies 1150-1310 MHz (for E5, LBand E6 GNSS signals) and
1550-1610MHz (for E1 and L1 GNSS signals) were aegqubased on 137.5MHz
sampling rate. Depending on the chosen signal tprbeessed at the time, various
number of correlation channels or various kindsedirch algorithms are deployed
such as using a single correlation channel forBR&K signals or the Data or the
Pilot signals, while another configuration migheusvo correlation channels for the
Data & Pilot signals and unambiguous methods likeBDor BPSK-Like method.
Also, different discriminators can be reconfiguordselected depending on the target
use of the receiver. Again, this receiver doescgss more than one signal
concurrently. In addition, it needs massive praogssspecially with that sampling
frequency. It would be remarkable if there was sachnge of sampling rate at least
to be worked per requirement, because it is unpataé to sample signal that has
2MHz bandwidth according to other GNSS signals thete 24MHz or 50MHz
bandwidth.

The limitation of acquiring a single GNSS signalaatime has been overcome by
combining the codes of multi-GNSS signals in a dBBIS-C/A-code signal and the
Galileo-OS-code signal acquisition solution. Thesachieved by generating a PRN
code that contains the sum of two or more GNSS<ddbese codes have the same
synchronization property (chipping rate) [81]. Tesultant code is then multiplied by
the local carrier frequency with a specific Dopdleiquency shift to construct a bank
of correlators. The acquisition is then accomplisive two stages. The first stage
determines the highest correlation between thergeetebank and the received signal
using a serial search engine. The second staglg fdsntifies the satellite ID then it
performs parallel correlation (parallel search eayto estimate the code phase delay
and Doppler frequency shifts for the identifiedefide. This method does acquire
multi-GNSS signal simultaneously but it also corogies the acquisition process by

joining two search engines, the serial search anallpl search.
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Another GNSS receiver implementation was proposedake advantage of the
interoperable properties between the GPS, GLONASSEGalileo signals, such as
sharing the same bands, i.e. L1-E1 and L5-E5 b§8#]s The number of required
correlators to track the BOC signals that have auler frequency equal to the
chipping rate is same as the number of correlaisesi in the BPSK signal. For
example, if the number of correlators to track GBES-BPSK signal is 3 (early,
prompt and late) then the same number can be d=ploy the Galileo-CBOC signal
because the rates of chipping to the subcarriguéecy are equal. While for the
other BOC signals such as GPS-M code signal thethigh subcarrier frequency,
then the required correlators are proportionalh® BOC order. This means, if the
BOC order is 2 then the required correlators araakdo twice the BPSK's
correlators. Moreover, for the other modulationhteques like QPSK modulation,
the required correlators are double the BPSK sigpeahuse it is processed as two
decomposed BPSK signals. However, to combine ad¢fGNSS signals in a single
tracking unit requires a high sampling rate (40Mi#tz)accommodate the wideband
signals such as GPS-L5 and Galile-E5 signals. Herowvords, the processing time to
track the GPS-L1 signal is now 10 times longer tifi#tris sampled at 4AMHz.

The combined solution that targets signals brodohtagrom the same system like
GPS signals has some advantages, such as compgrtkatidelay in the code phase
estimates the Doppler shift of the other signakv@itheless, there is no increase in
the number of satellites or any chance to haveerdifit distributions by integrating
these signals because they have the same comstelltcombined GPS L1-C/A and
L2-C signals was proposed to enhance error cooreati the entire system [83]. This
work was developed to acquire and track both sgyn&larious acquisition
implementations were designed and all of themdedie correlating the signals codes
separately and combining them at the end of theelation. For the tracking
implementation, Kalman filter was used to estim#te error caused by the

ionosphere, troposphere and the time delay ofristeliments biases.

Regarding the CS solutions, the GCS-2 solutiorhésdnly CS-based solution that
considers the BOC signal acquisition. Nevertheliégssnnot be applied to the current
BOC(1,1) signals like Galileo-OS or L1C signalsjess it modifies the size of the

banks of correlators and yet it only acquires ageas at a time [69].
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On the other hand, determining the fine frequerscgssential in the conventional
GNSS receiver to reduce the phase error betweerather frequency of the received
and the locally generated signals, and practicallys located after acquisition
process. Our implementation provides more accuraguency estimation due to
using the high resolution of the Doppler channledt tan overcome this processing

stage.

A fine-frequency acquisition method based on cacgbrrelation and the FFT-search
was proposed to prepare a 1Hz fine frequency ¢ordine tracking stage [84]. This
1Hz fine frequency is accomplished when the C/Nhef received signal is above
32dB-Hz. In a typical solution, if the coherentegtation time is equal to 1ms, then
the frequency bin search step is 333Hz [29], ilmemthe 1ms is used to acquire GPS
signal the frequency error is around +333Hz. Thecess of the fine frequency
calculation is mostly similar to the early-lateckang process. Where in this method
three channels are constructed, one in the middisipt “P” and the other two are
located in the left “L” and in the right “R” witlhréquency space equal to 666Hz. This
construction is more likely the space between thdyeand late correlators in the
tracking code phase delay (DLL). These channelsisee in three discriminators to

find the fine frequency; the best discriminator ated in this method is:

Fine frequency = GGr/Gp, Where G represents the amplitude of the poweroot

coherent integration.

6.3 The CSSR implementation

CSSR is designed to overcome the reviewed undésirabmplexity and the

processing overhead, as well as acquiring two GBi§&als simultaneously. Figure
6-3, shows the block diagram of our CSSR implentema and the following

sections are a detailed explanation of the 4 C3f§tementation stages; receiving
and sampling stage, removing the subcarrier frequeffect stage to convert the
BOC signal to the BPSK like signal, generating mmppler shift vectors stage to
compensate the measurement in our CS frameworkaaqgdisition stage in CS

domain.

112



uonisinbay sjeubig-go uoleIaud9 10)33 J9jddog-uoN UOISISAUOY) MSdg puz-juolq 4y sjeubig
iy obmyg ¢ abeyg i obgyg i} 9bmyg SSND

e e e ————————————— - N A E e e E e ——————————— o

fouanbaij )
191UBIGNS

uswa|g Buuinbay Bujsuasg
euopalg  :zdsis ‘L daig

I
1
1
[}
I
|
|
I
\ diNo-ae a\ ﬁ < _”C“_Ex,n_vv
1
[}
|
I
I
1
]

a8

[u]“p . [ulx=[u]*x
sjauuey ) Jaiddoq

< X|3eWw %
wdiddng | 1sasteds anjog | Z ﬁ Jonpolid Jauy|

=
b
 S—

== k-----

P e Y

XLe Juawainsealy

e ) (“p)
XLEN X188 sjauueyd

| P e

Figure 6-3 CSSR block diagram
113



6.3.1 CSSR-Receiving, sampling and removing the subcarme

effect

The CSSR can be implemented with any RF front-émdhis implementation we
have used BPS receiver, where the received GP%aliléo signals are sampled at
the rate equal to the summation of information kadths, which is equal to
6.138MHz and therefore the folded frequency istiedat 2.046MHz.

The challenges for achieving this CSSR implemematvere; on one hand, we
needed to overcome the Galileo signal acquisitiombiguity because the CS
dictionary matrix is based on half chip resoluti@n the other hand, we needed to
figure out how to reduce the complexity of the @&fework, because our chosen
Galileo OS and GPS-C/A signals use different machratechniques (BPSK and
CBOC modulations). The solution to both of thesalleimges is to have both signals
as BPSK modulated signals. To achieve this conmemsithout loss of signal power,
the best conversion to realize this without lossighal power is to use the DSB [21]
or BPSK-Like [22] methods. However, implementatiointhese two methods will
result in a complex CS framework. Therefore, taHer reduce the computational
complexity and adding more freedom to manipulatéhwie CS frameworks, we
have capitalised on our ESCE method (see cp. 9e8t#). This will eliminate the

subcarrier frequency effect and overcome the anlyigu

As illustrated in Figure 6-4the received GNSS signals go through two channels
simultaneously, the first channel filters out thelile@o signal to obtain GPS signal
only, while the second channel is responsible forverting the BOC modulation
signal to the BPSK like modulation signal. This mamg of the subcarrier
frequency effect is achieved by multiplying the i&al signal by the subcarrier
channel, which is either the data’s subcarrier nb&8$), (3.3) or the pilot's subcarrier
channelsS, (3.4). The resultant filtered and converted sigraak then combined to

construct a GGBPSK signal, which is then passeblemext processing stage.
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GGBPSK
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B Signal

Signals )

Figure 6-4 GGBPSK signal conversion

Note that, the required Galileo code in e matrix is therefore either the primary
code of the data channel §f is employed to eliminate the subcarrier frequency
effect, or the primary code of the pilot channeS§ifis used. Where, using one of
these channels (data or pilot) would simplify thenstruction of the®©p.
Furthermore, according to the experiments, ourmguendation is to use zero phase
shift of the generated subcarrier frequency. Wendoat this phase shift that the
elimination gives a better matching performancélite actual code-phase delay in

the received Galileo signal than the others shifts.

6.3.2 CSSR-Non-Doppler shift vectors generation

Converting BOC modulation signal to a BPSK modolatsignal will significantly
reduce the correlator complexity, i.e. frdlwode + subcarrier + frequency” to
“code + frequency”. Consequently, minimizing these numbers of cotoetawould
accelerate the acquisition process. Thus, the q@@epsing, non-Doppler channels, is

adopted here to generate non-Doppler shift vectors.

The ©p matrix is implemented without any Doppler shif, will be explained in
Section 6.3.4.1. In order to aid our CS framewask finding the right code, it
necessitates having a signal without Doppler shdt.that reason, the sampled signal
passes through “m” Doppler channéls(t) simultaneously that is expressed in
equation (6.3). This process will generate non-Depsghift signals/vectors that will
compensate the measurements in@aematrix. Therefore, only channels that have
zero frequency shifts will be selected for our C&rfework. Note that, the number
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“m” will control the acquisition complexity as itetermines the number of rows

vectors in the sensing matrix, which will be usedhe next stage.
d,, (t) = elzrmAft 6.3

As shown in Figure 6-5, these “m” Doppler chanreglatain a range of all possible
Doppler shifts £f), where “m” value for a normal signal environmenB821 and can
be increased to 401 for high-resolution acquisitiomarsh environments. So, when
the Doppler shift in the received signal matches generating frequency of the
channel, then the output will contain only the G@&BPsignal without Doppler shift

that can be easily acquired in CS process, asrdbesl in equation (6.4).

d[n]
+4KHz
x;[n]
L]
Aim-+1)2[N] l
OHz Xmealtl  — .
=[n] \Non-Doppler
X )® » * Vectors
d,[n]
-4KHz Xu[N]
Figure 6-5 Multi-Doppler channels
Xm (1) = X(D)dp (1)
Xp(®) =8St—1) ei2m(fLi—fa)t gj2mmaAft
Xm() =8t — T)e]'ZTrlet el2m(mAf—fg)t
Xm (t) = XO (t — T) e]'Z'IT(mAf—fd)t
Xm(t) =X, (t—7), when mAf = f4 6.4

where § is the navigation component andX,

represents the received signal without Dopplertshif
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6.3.3 CSSR-Signals acquisition procedure

6.3.3.1 Combined decomposed dictionaries

In fact, scaling down the number of required ceais and its requirements, i.e.
frequency, are highly desired and will directly ued the searching time and power
consumption. As a result, the processing in sté2&8) relaxes the construction of

the ©p matrix, whereas both the GPS+Galileo signals aesgmted now as a BPSK

signal and without Doppler shift.

Practically, the design of any GNSS dictionary imabased on CS technique should
include all the GNSS signal code shifts and Dopfiequency shifts; otherwise the
signal cannot be acquired. In Section 6.1, we hamated out that the current
dictionary matrix used to acquire GPS signals issaered as a fat dictionary. In
order to overcome this issue, we have effectivefplved that by decomposing the
dictionary matrix. This decomposition is achieveg denerating a bank of codes
multiplied by a fixed carrier frequency, i.e. wititcany Doppler shifts. Thus the size
of the dictionary will reduce fromsétellites number x codes shiftsx Doppler
frequencies shift3 to (satellites number x codes shift}, i.e. huge dimension

reduction can be achieved.

To realize this achievement the number of columetars in our©p matrix is equal

to:
| X (Pr+Py) = 24x ((1023+4092) 2) ~ 2.5x 1P

Where, this size is much less than the previousv&®d GPS dictionary dimension
(2x 10), i.e. it is only 12%, wheresRepresents the code phase of the GPS-C/A-code
and B represents the code phase of the Galileo-OS-cedexressed in equation
(6.5). Furthermore, ou®p matrix does maintain the signal integration betwte

codes and frequency, irrespective of the signahgth.
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where C., refers to the GPS C/A code ar@g

represent the Galileo OS primary (data or pilot edpd

The typical design of th®p matrix makes acquiring both GPS+Galileo signala in
single process possible, rather than one at aasmbe work proposed in [69]. It also

saves valuable processing time via minimizing thsnber of required correlators.

Moreover, the generality of th®p matrix enables any GNSS signals or other
wireless signals to be combined their dictionarghwthe GPS dictionary if these
signals are folded or down-converted to the samé&dguency. Fortunately, both
signals of interest share same frequency bandradfore their dictionaries can be
easily combined.

6.3.3.2 Finding the dictionary elements

By observing the output from Doppler channels, dh de seen that only a few
vectors are useful and have zero Doppler shift. i@ea is to exploit these numbers
of channels to determine the amount of Dopplerdeagy shift. In other words, the
channel that generates zero Doppler shifts wilthesen in our CS framework. As

shown in Figure 6-3, the CS acquisition is accosty@d in two steps:

1. The first step in the acquisition process is tramafng the time-domain non-
Doppler vectors to the CS-domain. This is accorhplisby multiplying (inner
product) the non-Doppler vectors outputs with avimarthogonal transform
“the sensing matri”, and the total multiplication will produce a corepsed

matrix “Z” ensemble with (mx m) dimension, this Z matrix compresses the
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necessary information to be simply acquired in C&@nain by linear

measurements.
Zi1 v Zim O, o Opnlpxt oo xt 1"
T S : :
Lm’ T Zm,m] Oy . Lin ...... erln]
7 2<xy > 6.6

As shown in equation (6.6) the dimensiondofmatrix is equal to (nx n)
dimension where m is equal to the number of Dopgh@nnels, and n is equal

to the number of samples.

2. The next step then is to acquire both signals, gh&e acquisition is

accomplished by solving matrix V in equation (6.7).
Z=yV 6.7
U= ¢6p 6.8

wherey(w) is the measurement matrix and constructs
by multiplying the transform matrig(w) with the®p

matrix.

To solve sparse matrix V it requires a two-dimenalosearch algorithm.
While, the frequently used CS-based algorithmsdasegned to search in one
dimension such as the Matching Pursuit (MP) algorif85], or the OMP
algorithm [65]. Practically, the main differencetlveen these algorithms is
the MP algorithm that is based on finding the esigproximation, which
represents the support value, while the OMP algoris based on finding the
better approximation but it updates this approxiomteach time or each
iteration. The approximation is can be realisedratching the compressed
signal (inner product between received signal aadsiag matrix) with
measurement matrig. Consequently, these algorithms suffer when the
problem has a fat dictionary, because it takesng kime to calculate the

support value (highest matching).
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In this CSSR implementation we have modified theFOdgorithm to search
in two dimensions rather than the one dimensions Tas managed by
adding an extra step to the OMP algorithm. Typycahe one dimension
OMP determines the matching from the highest sunr. &lditional step is
determined the highest peak inside the predetednimghest sum, as
illustrated in Algorithm 6-1.

Practically, the 2D-OMP algorithm selects one it&na time; this item is the
support value of th®p matrix, which represents the highest inner product
between thd and the residual, where the initial value of th&deal is theZ
matrix. So, the right code phase deRy = supp(V) is determined by the
number of columns that represents the highest $\Mhile, calculating the
Doppler frequency shift cannot be obtained from @hematrix because it
does not have any Doppler shifts. Our modificatiorthe OMP algorithm is
realised by determining the maximum value inside kighest surfy =
max( Si,c), which represents the highest inner product vahta the zero

Doppler shift vector.

Algorithm 6-1 2D-OMP Algorithm

1. Initialiser® = Z,y° = 0,1° =@
2. for n = 1;n := n+1 till stopping criterion is me

@v" = Y'rm
(b)p™ = argy max|v|
(©F" = arg maxlF7](update step)
@drm= rr~1 y pn
(ey" = Yl z
Or* =z - Yy"
3. Outputp™, ", r"& y"

Here the stopping criterion is the number of itera(n), which equals to twice of
the satellites number, and the daggendicates the Moore-Penrose pseudoinverse
[74].

120



For this particular modification we take a simplample to demonstrate how the
2D-OMP determines the highest correlation or matgiprocess. In this example, we
picked three matching outputs for each GNSS sigrad. setup of this example is as

follows:

1. The tested signals are the GPS-SV2 signal and alikeeGSV2.

2. The maximum channel delay distribution of the Chl dhe OS codes are set
to 10Tc, i.e. each satellite has 20 code shiftaee it is designed with half
chip resolution. Therefore the total number of oabuvectors in thedp
matrix is equal to (28 (24+24) = 980), as illustrated in Figure 6-6.

3. The code phase delay for the GPS signal is set i &d 1 Chip for the
Galileo signal.

4. The Doppler frequency shift of GPS signal is eqiwab00Hz and of the
Galileo signal is set to -500Hz. Where the row namb means +4KHz
Doppler frequency shift and row number 401 refeys-4KHz Doppler

frequency shift, as shown in Figure 6-7.

..........................................................................................
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Figure 6-7 Doppler channel distribution

In the first iteration when we matched the outpudnf sensing-step with the
measurement matrix, the highest sum is obtain@dlatnn number 23, as shown in
Figure 6-8-a. This column number belongs to the SW3 and code phase delay is
equal to 1¥2 Chip. The next step in this algoritlrtoifind the highest peak inside the
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highest column sum. As shown in Figure 6-8-b, tlghést peak is located at row
number 176, the red line and this point out that@oppler frequency shift is 500Hz.
The matching amplitude of the GPS-SV2 is threegithe matching amplitude of the
GPS-SV24 and of the Galileo-SV1 (blue and greesslirespectively). Then the
algorithm replaces the obtained highest peak wélog to perform the second

iteration.
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Figure 6-8 GPS matching results using 2D-OMP a)tdemining code phase delay
b) determining Doppler frequency shift
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In the second iteration, the highest sum is obthatecolumn number 502, as shown
in Figure 6-9-a. This column number refers to thail€o-SV2 with a code phase
delay equal to 1 Chip. Then finding the highestkpe®ide the highest sum is
performed and as depicted in Figure 6-9-b the lsigheak is located at row number
226, the red line, and that denotes the Doppleuiacy shift is equal to -500Hz. In
addition, the result shows that the matching amnidtof the Galileo-SV2 is three
times the matching amplitude of the GPS-SV1 andhefGalileo-SV24 (blue and

green lines respectively).
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Figure 6-9 Galileo matching results using 2D-OMRetermining code phase delay
b) determining Doppler frequency shift
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6.4 CSSR experiments setup

Several experiments were carried out to evaluaeérformance of our CSSR with
various signal conditions. We have captured signfitsm actual wireless
communication channel using Signalion HalLo-430 fptat. Also we have
implemented both GPS and Galileo signals in sinaatenvironment using

MATLAB-Simulink platform. The setups of both envinments are:

1. The use of the realistic HaLo-430 platform testleedbles us to assess the
performance of our CSSR versus other traditiongblémentations. The
setups of these scenarios are same as the ESCEnexqmissetup (see cp.
Section 3.5) except the following parameters:

a) The sampling frequency is equal to 6.25MHz.
b) The number of GNSS signals is four (two GPS sigraadd two
Galileo signals).
c) The length of tested signals is 20ms.
d) The frame length of each baseband signal is 125@61ples and the
number of pause samples after transmitting a fism2800 samples.
e) The frame length of the received signal is 300,88®ples.
Also, in each scenario we have used all the 4 ckanof the Halo-430
platform in the transmitter and receiver sides.

2. The simulation environments are used to highligme high frequency
resolution obtained based on CSSR implementatialeiuocontrol scenarios.
In this environment two GPS signals and two Galdemals are simulated in
each scenario. The same simulation conditions weae used to simulate
Galileo signals in our OGSR experimental setup (geeSection 4.3) have
been applied in this Simulink environment, such (ag>ChannebRy)
block, Rayleigh Fading block and AWGN block. Thettisg of the
experiments is as follows:

a) The sampling frequency is equal to 6.138MHz.
b) Two GPS signals, as shown in Figure 6-10, and twblé€d signals,

as depicted in Figure 4-8, are simulated in eaehasio.
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Figure 6-10 GPS C/A signal generation

6.5 CSSR results and performance

We worked on the GPS alone based on CS and wednael isnpressive results, this
work, when including a Galileo signal, we are sllthe borderline in that other

solution based CS.

For the GPS signal acquisition, we have found thatsuitable range of Doppler
channels is 81 channels as will be illustratedent®n 6.4, So, when combining two
GNSS signals these numbers of channels certainbt el increased. The Galileo
OS code length is 4 times longer than the GPS ©@erctherefore the minimum
number of Doppler channels is then 4 times the rarmised for only GPS signal,
i.e. 321 channels. Note that we cannot use 324alaerange of frequency bin step.
So, in order to improve and ensure correctnessuofGSSR, two ranges of the
Doppler channels are used to evaluate the CSSRrperhce, which are 321 and
401 channels. These Doppler channels produce vghyfrequency resolution and
equal to 25Hz when using 321 channels and 20Ha2lifchannels are deployed.

Our assessment is divided into two parts; the fpatt compares CSSR with
traditional implementation in terms of detectionfpemance, the acquisition time,
the acquisition frequency resolution and computetiocomplexity. The second
comparison compares CSSR (GPS+Galileo) with the Gb&ion [57] in terms of
the computational complexity and the memory reanésts, where this solution is

designed for acquiring only GPS signal.
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CSSR versus MF implementations

Apart from the CSSR implementation, we have implei®@ three other
combined implementations. These methods are theDMEPS+Galileo dual-
sideband), the MF-S (GPS+Galileo single-sidebandid ahe MF-BS

(GPS+Galileo single-BPSK-Like), as illustrated iigue 6-11. This enabled us
to compare CSSR to the others under similar caditi

Figure 6-12, shows the acquisition rate of our CSSRg various numbers of
Doppler channels, actually CSSR-H refers to usidfy dhannels and CSSR-L
refers to using 321 channels, compared with MF em@ntations. In this
particular test, the subcarrier-data channel isduse remove the subcarrier

frequency effect and then the primary data codsésl in théd matrix.

In this comparison, it is necessary to point oat the CSSR signals acquisition
performance of the 401 channels is better thanpiormance using 321
channels by 2dB. This increasing of the channel bermimproves the
measurements in the CS framework. For the perfocmarnf MF
implementations, it is clearly shown that the MRsCbetter than the MF-S by
2dB and 4dB outperforms the MF-BS, due to combipeders of the dual
sidebands when acquiring Galileo signal. The resildo shows that the
performance of CSSR-H is as good as MF-D in highlaw C/N.
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For the acquisition time comparison, it is hecegssarpoint that in traditional
(time-domain or frequency-domain) implementatiome tacquisition time
depends on two factors, which are the signal ler(gtlell time) and the
sampling frequency. So, long dwell time and highmglng rate leads to long
processing/searching time and vice versa. While aitquisition/searching time
in our CSSR implementation depends on the numbemwf vectors in the
sensing matrix and the number of column vectorth@© matrix. Therefore,
increasing the dwell time, for example from 4ms$tas or 20ms to acquire low
sensitivity signals will result in the same costtloé processing 4ms. The only
overhead takes place in the second stage, i.e. gdeerating the non-Doppler
shift vectors, while in the rest CS-process thestimalmost constant. To count
that:

1. The first stage complexity is the inner productwestn the output from
the Doppler channels,, and the sensing matréxand the computational
is highly dependent on the number of Doppler chinaed equal to
O(NgM?).

where Nd represents the number of samples and M is

the Doppler channels.

2. The complexity of the second stage, i.e. finding shipport elements is
same for all signal length because the inputs ¢o2lb-OMP algorithm

rely on the block Z (nx m) and the measurement mattiXm x (IPq)).

where “m” is the number of the Doppler channels; “I

represents 24 satellites and {As the code phases for
GPS+Galileo signals with half chip resolution
(10230).

As shown in Figure 6-13, increasing the dwell timakes the acquisition time
increase linearly in the MF implementation. Whiteaur CSSR the acquisition
time is constant and when counting the non-Dopplktor generation the
processing time is still much less than the timguned in the MF
implementation. Note that, in this comparison taegling frequency is equal to
6.138MHz.
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Figure 6-13 Processing time and first stage comyile vs. signal length

The third comparison focused on the frequency utewml obtained by our
CSSR, which is equivalent to the fine frequencytyimical GNSS receiver, the
fine frequency process is used to increase theuémry resolution of the
acquired signal, for example from 1KHz or 500Hz1fis of Hz. This process
would accelerate the lock of the local carrier frexgcy with the frequency of the
received signal in the tracking stage. This proce$scated after the acquisition
process, and that leads to make the transition fiame the acquisition stage to
tracking stage longer. Furthermore, in time-don@irirequency-domain signal
acquisition, the frequency resolution (frequencwrsle step) depends on the
signal length. This is because if the local carigeoff by one cycle it means
there is no correlation and when it is less thae oycle it leads to partial
correlation. Thus, in 1ms signal length then 1KHlt @hange one cycle because
the frequency bin step represents the ratio betvileersampling frequency to
the number of samples. For example, the samplieguincy in our simulation
setup is 6.138MHz and the number of samples of i$§6438 samples, then the
ratio is equal to 1KHz. Consequently, when theet@signal length is 4ms then
the frequency bin step is equal to 250Hz and savame details in [33]. While,
in CS-domain the acquisition resolution dependshencompression factor, i.e.
the numbers of rows in the sensing matrix. In o&S® implementation the

number of Doppler channels controls these row nusiabie fact, the frequency
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resolution that is deployed in our CSSR producgh fiequency resolution and
is equal to 20Hz. This resolution enables traclsiggal without any need for
the fine-frequency process and therefore our CS8&dweduce the transition

time.

Figure 6-14, shows the RMSE frequency resolutiomwf CSSR versus MF-S
implementation. Whereas, the typical use of the B@ppler channels (20Hz
frequency resolution) makes the estimation of tbp@er frequency shifts close
to the actual frequency of the received signalg] @@ accuracy are around
10Hz and 40Hz in high C\N and low C\N respectivéihile reducing these
channels to 321 (25Hz frequency resolution) wildluee the accuracy of
calculating the Doppler by 10Hz in the high and IGMN. However, the Doppler
frequency shift calculated by our CSSR is much ebpetthan the MF

implementation that based on 250Hz frequency résoluWhere, the RMSE

Doppler frequency shifts of the MF-S implementatioary between 60Hz-

150Hz in high C\N and low C\N respectively. Notattincreasing the frequency

bin step in MF will increase the acquisition time.
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Figure 6-14 RMSE Doppler frequency shifts

The last comparison with the MF implementation ks tcomputational
complexity. In this comparison we have compared R$Sing 401-channels
“CSSR-H” and the MF-S implementations, and astitated in Table 6-1.
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Table 6-1 CSSR vs. MF Computational Complexity

CSSR-H MF-S
Generate non-Doppler Vectors:| Removing carrier frequency
O(N M) O(N Q)
Inner Product: Correlating GPS codes
O(N M?) O(l C RsN)
Inner Projection Correlating Galileo codes
OM1PgS) O(l C RsN)
Find Code Phase Delay GPS accumulation
O(S log(l RY)) O(l PsN)
Find Doppler Shift Galileo accumulation
O(S log(M)) O(l PsN)
Stopping Criterion Threshold comparison
O(M S) O(l log(Ps))

where “Q” is 33 frequency bin step, “C” is 2
correlation channels (the in-phase and quadrature-
phase). “R’ is 8184 code phases for GPS or Galileo
signals with half chip resolution based on 4ms aign

length and “S” is 50 the numbers of iterations sgjt

Figure 6-15 depicts the total computational comipyexersus increasing the
sampling rate, from 2MHz to 16MHz. The comparisbiwed that more than
50% reduction has been achieved in acquiring bd®#s @nd Galileo signals

using our CS framework.
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II. CSSR (GPS+Galileo) implementation versus CMS (GBS&8tion

The achievements with regards to memory requiresnarg illustrated in

Table 6-2. The CSSR implementation again provesaleg of the required

memory storage, where o@p matrix is 73% of the CMS’s dictionary

matrix that is based on

GPS only.

Table 6-2 CSSR-Memory Requirements

Matrix CSSR CMS
Sensing Matrix MNd CIRQ
Dictionary Matrix | R Ng | Ns PsQ
Measurement Matrix M 1P Ns C

where “Ny’ represents the 24552 samples based on 4ms signal

length at 6.138MHz sampling frequen¢is” represents the

8,184 samples for the tested 4ms length signal.Gt6AMHz

sampling frequency, “I” is the 24 SV satellites, ™ @presents
the chosen 600 number of channels in CMS, “Q” is #1

frequency search steps and “Ps” is the 2046 codasph

resolution for GPS signals.
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Moreover, to discuss the dwell time effect on th8-liased acquisition
solution, we also compare CSSR with CMS and GC$Hitiens because
they have different dictionary matrix implementatioMe found that these
CS-based solutions were also directly proporticisathe dwell time, as

detailed below:

1. In CMS solution the sparse vector generation isatliy proportional
to the dwell time because the row length dependshensignal
length. Therefore increasing the dwell time wiltiease the time to
generate sparse vector [57].

2. In GCS-1 solution, the acquisition time is alscedily proportional
to the dwell time due to the bank of correlatoi tmultiplied by the
received signal must have the same length. So.easecrg or
decreasing the dwell time will directly effect ametmatching time

that located at the beginning of the CS acquisif&).

6.6 Conclusion on the CSSR

We called a 2forl receiver because it acquires GRS and Galileo signals at less

than the complexity and processing time requiredrbF acquisition process.

The CSSR implementation combines the acquisitiom®iGPS+Galileo signals, for
the first time, in single search process basede€Bnique. Acquiring GPS+Galileo
signals is accomplished with fewer correlators/meaments as the CS process
transfers the correlation/matching from the whelegth of the signal to the number
of rows/channels in the sensing matrix. CSSR coe®bithe dictionaries of these
signals in a single combined dictionary, by capsitaj on our previous ESCE
method that eliminates the subcarrier frequenogcefihat converts the BOC signal

to BPSK signal. This eliminates the repetitionitmfthe supports values.

The implementation requirements and detection pmdace of our CSSR are
analysed and compared with other MF implementatibasare based on ambiguous
and unambiguous Galileo signal acquisition. Also 6$SR is compared with the
CS-based solution that designed to acquire GPSalsmgnly. The results based on
simulation and realistic environments of our CS8&Rlementation indicate that, in

one hand, the acquisition time and complexity ass by 50% than the conventional
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MF implementations, as well as CSSR achieves highuency resolution. On the
other hand, CSSR reduces the memory storage remgnts and computational
complexity 73% and 21% respectively in comparismthe CS-based solutions like
CMS solution. In addition, to help acquiring lownséivity signals, the process of
increasing the dwell time from 4ms to 8ms or 20nisc@st the same as processing

4ms dwell in CSSR implementation.

The analysis of the CSSR implementation revealatittie control parameter is the
range of the Doppler channels, where increasimiporeasing channels will directly
effect on the CS measurements, the acquisitionaradethe resolution of estimating
both of the Doppler frequency shift and the codasghdelay. Thereby, in order to
obtain desired acquisition rate, frequency resotutand accuracy, increasing the

number of Doppler channels/sensing matrix’s rowgdgiired.

The other contribution in this implementation ig thD-OMP algorithm that can be
used to solve CS problem in one or two dimensidhg. computational cost of this
modification is much less than the cost when wees@S problem that has a fat

dictionary.

In conclusion, unlike other GNSS receivers, our BRS8plementation achieves
significant saving, in terms of reducing the comple and accelerating the
acquisition process, as well as achieving higheguency resolution acquisition that
Is equivalent to the fine frequency.

| gave an attractive presentation on the CSSR im@itation in the Institute of
Navigation (ION GNSS+ 2015) on Friday, September2l&5 at Tampa, Florida in
the USA.

134



6.7 The SCSSR implementation

As illustrated in Section 6.3.3 th& matrix can be used to acquire either a single
signal or combined signals, like combine GPS witheo GNSS or any wireless
signals if their frequencies are folded or downwaoted to the same IF frequency. In
this section we shall demonstrate the performaheequiring GPS signal only using

Op matrix.

Figure 6-16, shows the block diagram of our SCS®Rlementation. The SCSSR
process is less than the CSSR process by one ($tegeonversion stage) and this

makes acquiring GPS signal being accomplished In®stages:

1. The GPS signal is sampled at information rate (@hiprate = 2.046MHz) to

have half chip resolution.

2. Then the samples pass through “m” Doppler chanegiailtaneously to

generate non-Doppler shift vectors.
3. Acquiring GPS signal based on our CS framework etswists of two steps:
A. Sensing step

B. Acquisition step
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6.7.1 SCCSR-GPS dictionary matrix structure

As detailed in Section 6.3.3.1, tBe matrix is represented as a bank of codes rather
than a bank of correlators. Consequently @bematrix of the GPS signal is equal to
(I.P) multiplied by the same carrier frequency, veh@P) is the “search step of code
phase delay’. As a result, o@ps matrix implementation achieves a massive
dimension reduction in comparison to the previonglementations and as explained
in Section 6.1, where the number of columns vectorshe previous CS-based

dictionaries is:
IPQ = 24x (102%2) x 41~ 2x1(P
While in our SCSSR now equal to:

IP = 24x (102%2) ~ 4.%10*

Ci1 WL Ts
Cio WL Ts

Ops(t) = 6.9

jwp 1T
C1,2046 €M

jwp 1T
[C24,2046 €7H 8

It is worthwhile to mention that oips matrix is same as a Toeplitz matrix since all
descend diagonally from left to right be constartierefore, the solution will be
easier to find the right code. In other words, & assume that the dimension of the
dictionary matrix is (e c¢) then the computational complexity of the soltwill be
reduced fronD(c?) to0(2c — 1).

6.7.2 SCSSR-Non-Doppler shift vectors generation

The process of generating non-Doppler vectorsasstime process that is used for
our CSSR implementation. As explained in Secidh?2 the length of the C/A code
is a quarter of the OS and the required numberagpler channel then will be 81
channels. So, as expressed in equation (6.4) #nerkew vectors, which do not have
Doppler frequency that will be selected in our G&nfework. Furthermore, the
frequency resolution is now equal to 100Hz andsistill less than the frequency

resolution that is used in the traditional implema¢ions.
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6.7.3 SCSSR-Signal acquisition process

The same process that was deployed in our CSSFRemnapitation is used here. The

main differences in the size of matrices betweeB8SR and CSSR are:

1. The number of rows vectors “m” in the sensing magiless than that used in
the CSSR.

2. The number of column vectors of the measurementixmftis one-fifth than

the measurement matrix in the CSSR.

The process is accomplished by taking the innedymbbetween the non-Doppler
vectors output with the sensing matfixto construct (mx m) Z block (see equation
6.6). Then we used the 2D-OMP to solve matrix éguation (6.7) and to determine

the dictionary elements.

In our SCSSR implementation we also demonstrate tieev2D-OMP matching
process. As shown in Figure 6-17, three matchiriguis are selected to describe the

performance of our 2D-OMP algorithm and in thisrapée:

1. The simulated signal is a GPS-SV2 signal.

2. The maximum channel delay distribution of the CHAle is set to 2Q7 i.e.
each satellite has 40 code shifts, and therefagetdtal number of column
vectors in the measurement matrix is ¥424 = 960).

3. The code phase delay for the GPS signal is sef®@ Ch

4. The Doppler frequency shift of a simulated sigsatqual to 500Hz, note that
row number 1 means +4KHz Doppler frequency shift asw number 81
refers to -4KHz Doppler frequency shift.

As shown in Figure 6-17-a the highest sum is a&udeat column number 46 and this
number belongs to the GPS-SV2 with code phase egjagl to 3 Chip, because each
SV is represented by 40 code shifts. Then, asctégbin Figure 6-17-b, the highest
peak inside the highest sum is located at row nurB6€the red line) and that means
the Doppler frequency shift is 500Hz. While the chatg amplitude between the
generated GPS-SV-1 and generated GPS-SV24 (blugraet lines respectively)
with the simulated SV-2 is a quarter of the riglatam.
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6.8 SCSSR experimental results and performance

In order to highlight the reduction obtained fortlb@omputational complexity and
memory requirements, our SCSSR was compared wativitBS [57] and our GCSR
[86]. Table 6-3 illustrates the breakdown of thenpaoitational complexity. While,

Table 6-4 shows the memory storage requirements atea needed for the three
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matrices. In these tables, sNepresents the 8184 samples for the tested 4ngtHe
signal at 2.046MHz sampling frequency, “I” is thé @PS satellites, “M” is the 81
Doppler channels used in our SCSSR, “C” represt#rgschosen 480 number of
channels, “Q” is the 17 frequency search stepssad in CMS and GCSR methods,

“S” is the 24 number of iterations setting, and f®the 2046 code phase resolution.

This comparison shows that our computational corifyle and memory
requirements are less by 80% than CMS and GCSRi@wu Also, our SCSSR
satisfies acquiring signals at higher frequencylg®on up to 100 Hz, which is
almost equivalent to the “fine frequency” stageaofjuisition (reduced search space

integration deployed after acquiring the signaljhie traditional receivers.

Table 6-3 SCSSR Breakdown Computational Complexity

Steps Our SCSSR CMS & GCSR
Generate Vectors Digital Compression
= O(NsM) = O(NsC)
Inner Product CTF Block
> O(M? = O(C?
Residual Update | O(S?)
Inner Projection | O(MIPS) O(CIPQS)
Find Code Phase Delay Find Dictionary Element
= O(S log(IP)) = O(S log(IPQ))
Find Doppler Shift
= O(S log(M))
Stopping Criterion O(MS) O(CS)
Note that shaded cells represent the lowest cormpuih

Table 6-4 SCSSR Memory Requirements

Matrix type Our SCSSR CMS GCSR
Sensing Matrix MNs CIPQ CN
Dictionary Matrix N IP Ns IPQ Ns IPQ
Measurement Matrix M IP CN CIPQ
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To evaluate the performance of our SCSSR, fouraseen of various GPS signal
conditions, as shown in Table 6-5, are simulatethgusMATLAB. Firstly, the

simulated signals are fed to AWGN and the recep@der is set to -125dBm. Then
it is sampled at a rate equal to the informationdwadth, which is 2.046MHz and

the total cascade noise figure is 3dB.

To assess the performance of our SCSSR, we hat@rped several experiments
that use a different number of Doppler channeldlustrate the effect of increasing
these channels. Experimentally, we have found that minimum number of
channels that can be used to acquire GPS sigra® ishannels. This number is
controlled by the frequency bin step, where thefl@guency bin steps refers to
500Hz frequency resolution with +4KHz Doppler freqgy range. Hence,
increasing this number will enhance the acquisitite and increase the frequency
resolution. Therefore, two numbers of Doppler clesihave been chosen (33 & 81)
for these simulations. Also, to overcome the dwviietle ambiguity we have used

(Ims and 4ms), which are equivalent to 2046 and 8a8ples respectively.

Table 6-5 GPS Signals Scenarios

LOS & Multipath signals Scenarios
C\N dB-Hz Number of received signals
50-46 5 LOS signals
45-41 5 LOS signals and one multipath for eachadign
40-36 5 LOS signals and two multipath for each aign
35-30 5 LOS signals and three multipath for eaghai

As shown in Figure 6-18, SCSSR achieves low adiprisrate if the number of
channels (33-channels) is used and at lowest diwedl 1ms. Increasing the time of
tested signal to 4ms improves the acquisition lbgt@0%. While, when the number
of Doppler channels is risen from 33 to 81 chanrtéks probability of acquiring the
1ms signal will increase to 40%. And when increggime signal length to 4ms, the

fixed rate is more than 20% overall better perfarosa
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Figure 6-18 SCSSR probability of detection vs. C\N

Additionally, to emphasise the high frequency ragoh achievement, Figure 6-19
shows the performance of using two types of Dopgiannels, which are 33 and 81.
These Doppler channels will control the size or thenber of the rows in the
sensing matrix. i.e. the high number means higkiegrand of course more accurate
correlation or matching. The results show thatRIMSE is less than 100Hz when 81
Doppler channels are deployed, and can be assumnkd equivalent to the fine
frequency. While the use of 33 Doppler channels RIMSE increases to 150Hz,
which still is highly accurate than time and freqoag implementations that are based

on 500Hz frequency resolution.
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6.9 Conclusion on the SCSSR

Our SCSSR implementation achieves better GPS sigaafjuisition at much
reduced computational processing by up to 80% arndiationary matrix size than
other CS-based solutions. This reduction makesimaptementation method faster
and, therefore, consumes less battery power thaer anethods. The control
parameter of our method is the number of the chd3eppler channels, i.e.
increasing or decreasing these channels will dyreeffect on the acquisition
performance. In other words, increasing the Doppleannels will increase the
chance of acquiring available GPS signal; througingasing number of rows in the
transform matrix and that leads to increasing tence of sensing the samples. This
will also increase the high frequency resolutiomttiwill be close to the “fine

frequency” acquisition.

This SCSSR work was presented in the Computer Agipdins and Information
Systems (WCCAIS), IEEE International Conferencesanday, January 19, 2014.
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Chapter 7

Conclusion and Future work

7.1 Conclusion

This research has focused on enhancing the ac¢gumigif multi-GNSS signals in
Software receivers to reduce the processing ovdriwdh the rolling out of various
GNSS systems, our methods will make it more delgrfdy localisation providers to
deploy such solutions to enhance the localisatimtumacy. The technical
achievements of our methods have proven that aatbral approaches are aplenty

for solving and enhancing multi-signal acquisitasmfollows:

1. Most acquisition algorithms try to match the codege delay and Doppler
frequency shift of the received signal simultanépusespective of it being
done in the time or frequency domains. With the ak¢he Compressive
Sensing technique, it allowed us to recover theequthse delay first before
the Doppler frequency shift without loss of sigmalegrity or correlation
quality, but with 50% saving in processing time audjuisition complexity.
This accomplished by combining the codes of the @RSthe Galileo signals
in a single bank of codes multiplied by a fixedrmar frequency. So the
matching in our CS framework calculates the codaesplof the GNSS signal
from the matching in CS domain then it determirtes Doppler frequency

shift based on the highest code matching, as ddtailSection 6.3.3.

2. Down the processing chain thrashing (correlatiod artegration) can be
saved by an early detection mechanism if the sigealally exists or not,
before demodulating the received GNSS signal. €asaning about this issue
has led us to the use of a simple bandpass sampliegrer designed for this
purpose. This is achieved by folding the GNSS sgytmathe FNZ with non-
overlapping between them, and then examine the p@ve specific IF
frequency, as detailed in Section 2.3. It was alésgon for that slicing a

process over several parts can actually save miogeand time.
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3. As explained in Section 3.3, solving the ambiguggue when acquiring
Galileo-OS signal has been successfully overconteabuhe expense of
having a complex implementation or suffering from sanal-to-noise
deterioration. However, we found that the subcarfrequency can be
partially removed if the received Galileo-OS sigmalltiplies with one of the
subcarrier data or pilot channels before acquiritigg signal. This
multiplication converts the BOC signal to BPSK likgnal and shapes the
cross correlation function to have only single peethie correlation domain.

4. The Galileo-OS signal is constructed from combirtivg signals of data and
pilot channels in a single transmission, with tleelee phase delay and the
Doppler frequency shift are the same in both of¢hehannels, as detailed in
Section 4.2. Therefore, for a receiver, in the &itjon process, ignoring any
one of these channels means that it is losingthalfpower of the received
signal. Our determination to process both chanmétbout doubling the
efforts has led to designing our orthogonal actjarsichain. This design can
provide the same performance with half resourcebs mocessing time of a
parallel/multi acquisition chains. The orthogonalg achieved by making the
received Galileo signal orthogonal with a 90-degrphase-shifted copy of
itself. The only overhead of the orthogonal acduaisichain is to have both

generated data and pilot codes in orthogonal farmat

5. Studying the literature of receiver architecturésves that they are static
receivers  irrespective of how genius or optimum the
implementation/algorithms are. When we achieved saving with the CS
technique, we found that CS also allows us to rdactvarious SNR
conditions, which the receiver is in (not possiblth other architectures). The
sensitivity of the signal acquisition is determinag the size of the sensing
matrix in a CS scheme. Therefore, instead of fiximg at high sensitivity
acquisition for all SNR conditions, we have develdm dynamic sensing
algorithm that adjusts the acquisition channel ues® allocation depending
on the receiver location. i.e. it senses the SN® aapts fewer number of
measurements in open-sky environments and largd&uof measurements
in harsh environments to keep the lock for the emessignals. Full

explanation of this algorithm is in section 5.3.
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6. All our methods were successfully performed andessed in realistic
simulation environments. Effectively, the implensiin and the
performance of these methods clearly show the atafureduction achieved
in terms of the processing time and the resouregsirements, which make
most of these methods good candidates to be impleahen the current

Smartphones.

7. Our experiments and the results therein have pateatimprove the usage of
Smartphones for the end user. The methodologiegemgnted can offer a
more efficient battery life, faster and accuratesifpaning for multi-GNSS

signal reception.

In order to highlight the outcomes of our multi amthgle GNSS signals

implementations, Section 7.1.1 and Section 7.1n2hsarise the entire achievements.
7.1.1 My multi-GNSS research achievements

Under this particular area a novel CSSR implemanmtavas designed to combine the
acquisition of both the GPS-C/A-code signal and@adileo-OS-code signal. Where,
this implementation represents the main targehisfriesearch. Our CSSR is a 2forl
receiver because it acquires both GNSS signalalbtite complexity and processing
time that required by a MF acquisition process. TB&SR implementation was

capitalised on the concept of the CS process thasferred the matching from the
whole length of the signal to the number of rowshi@ sensing matrix. Our CSSR is
based on 4 stages: receiving-sampling, convertieg Galileo-BOC signal to the

Galileo-BPSK like signal by exploiting on our prems ESCE method that eliminates
the subcarrier frequency effect, generating nongbapshift vectors to compensate
the measurement in our CS framework and finallyabguisition stage accomplished
in CS domain. In our CS framework, we have combittedl dictionaries of these

GNSS signals in a single dictionary matrix. Theidgp design of the combined

dictionary matrix makes acquiring both GPS+Galilgignals in single process

possible rather than managing one at a time andlfieeliminating the repetition of

finding the dictionary elements that representdaellite 1D, code phase delay and
Doppler frequency shift.
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Furthermore, CSSR implementation overcomes the dfationary problem by
decomposing the dictionary matrix that is achielagdgenerating a bank of codes
multiplied by a fixed carrier frequency. Conseqlienthe generality of such
decomposition enables any GNSS signals or otheslegis signals to combine their

dictionary if these signals are folded or down-anted to the same IF frequency.

Our analysis showed that increasing or decreabimgange of the Doppler channels
will directly affect the CS measurements, the asitjon rate and the resolution of

estimating both of the Doppler frequency shift &mel code phase delay.

The comparison between our CSSR implementationoéimet MF implementations
(GPS + ambiguous and unambiguous Galileo signatpiisition), in terms of

implementation requirements and detection perfon@ashowed that:
1) The CSSR performed as good as the MF.
2) The CSSR accelerated the acquisition process bytbafothe MF.
3) The CSSR was less complex than MF by 50%.

4) The CSSR achieved high frequency resolution 10H#z4@hich equivalents

to the fine frequency.

5) The processing of different dwell time based on 6&SR, such as 4ms or

8ms/20ms has the same processing cost as using 4ms.

The second comparison was carried out between dBRC implementation
(GPS+Galileo) and other CS-based solutions (GP$),0slich as CMS solution,
denoted that:

1) The computational complexity of our CSSR was al2dgb.
2) The overall memory requirement was less by 73%.

In this particular implementation there was anotlwentribution, which was
developing a 2D-OMP algorithm. This algorithm irduzed a new way to solve any
CS problem that has one or two dimensions. The atatipnal complexity of this
modification costs much less than when solving a @&blem that has a fat

dictionary.
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The second achievement is a quick-early detectigorithm that was developed to
combine the GPS-L1, Galileo-E1 and GLONASS-L1-CDMinals in single RF
front-end. In this algorithm, the left-sideband tbe Galileo signal and the right-
sideband of the GLONASS signal were filtered outl ammbined with the '3

harmonic of the GPS signal to be sampled usinglesiAQ)C. The benefits of this

combination are to:
1) Prevent the overlapping between these GNSS signtie FNZ.

2) Detect quickly multi-GNSS signals in a single view measuring the powers
of the available received signals prior to the &itjan stage.

3) Stop chasing signals that are not available atithe, thus saving processing

time and power.
7.1.2 My single-GNSS research achievements

In this research area, Galileo-OS-code signal atgqn and GPS-C/A-code signal

acquisition methods were designed.

For the Galileo signal we have tackled the acdarsiprocess from two aspects,
ambiguity and data-pilot joining, and via two medepwhich are ESCE and OGSR

methods.

The ESCE method was designed to overcome the aitybiguacquiring Galileo
signal at code phase resolut.5 Chip, as well as to enhance the signal adopnisi
performance. This was obtained by eliminating thiecarrier frequency effect from
the received signal, so as to simplify the acqoisitprocess. The ESCE
implementation were analysed and compared to etidely used methods, such as
DSB, BPSK-Like and LoCo methods in terms of prolighof detection, complexity
and processing time. The assessment based on adtakdss channel experiments

showed that:

1) The ESCE method effectively overcame the ambigindyn the acquisition
process, which shaped the CCF of the convertedeG&PSK like signal to
have a single peak like the CCF of the GPS-BPSHKasig

2) The conversion result showed that the ESCE elinonatffers around 2dB

gain to the received signal power.
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3) The ESCE method had better performance than BP&&-And LoCo
methods by 1 and 2 dB respectively.

4) The acquisition time of the ESCE was half the theguired by the DSB, the
BPSK-Like and the LoCo methods.

5) The computational complexity of the ESCE was ali@3 less than the DSB
method and the LoCo method.

6) ESCE method can be implemented in the time-domaithe frequency-
domain.

The second method to acquire the Galileo-OS-cogieakiwas the OGSR method.
The novelty of this method was concentrated onngithe data and pilot signals in a
single correlation chain by forming these signalam orthogonal format. Therefore,
this process when compared with the traditionaletoiomain or the frequency-
domain joining methods definitely saves valuablsotgces. The implementation
requirements and detection performance were compand analysed with the DC
acquisition method, and the results showed that:

1) The OGSR performed as good as DC method due tO@f®R combined the
Galileo-OS data and pilot signals’ powers as theniéthod.

2) The computational complexity of the OGSR was 49%efDC method.
3) The OGSR required only 35% of the time requirediierDC method.

4) To allow acquiring more Galileo signals and to muhe false alarm
detection the acquisition threshold must be s&t to

Acquiring GPS-C/A-code signal was accomplished tasethe CS technique. Three
methods were proposed and each one of them soleddirc drawback of the
previous CS-based solutions.

A novel dynamic acquisition was implemented basedC& technique denoted as
DCSR. The novelty of such implementation was oletiby designing a feedback
controller that determines the position of the GB&iver, i.e. outdoors or indoors,

via calculating the power of the received signale DCSR was designed to:
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1) Overcome the hardware complexity in the CMS by aeiplg the complex
multichannel sampler with shift registers to getesgjuare waveforms. Thus
simplifying the receiver front-end and allowing gaimg the GPS signals at a

low rate.

2) Change dynamically the required sensing channeld essizing the
measurement matrix. This was achieved becauseesigrdof the dictionary
matrix enables the measurement matrix to changsizes without affecting

signal compression and integrity.

3) Reduce the processing time and so minimise the posresumption required
by a GPS receiver to acquire signals in outdoonss Was accomplished by
dynamically altering the number of measurementsthadequired number of

sparse channels to fit the actual signal strength.

4) Maintain the lock of the available signals in ditfit signal conditions by

using an extra number of channels to compensata¢asurements.

To enhance the measurement in our DCSR implemenfaBCSR implementation
was employed a deterministic waveform such as tidahkhard or the Jacket matrices/
waveforms instead of using any square or saw-tpetlodic waveforms. The use of
these deterministic waveforms produced better gdhality than the random square
waveform. The GCSR implementation pointed out that:

1) Using these deterministic orthogonal waveformsatastruct the measurement
matrix increased the acquisition rate by 20% mbaa tusing a random square

or saw-tooth waveforms.

2) Reconstructing the signal based on GCSR implementat simpler than the
CMS solution because we have moved the measurgmeress to the DSP

side while the other processed it on the Analogie s

3) Tracking reconstructed signal showed a slight pligstertion and amplitude
degradation of the decoded signal; however th@iityeof the received signal

was maintained.
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Finally the decomposed dictionary matrix design \applied to acquire a single
GNSS signal, the GPS-C/A-code signal that calle®SE. The analysis revealed

that:

1)

2)

3)

Both of the computational processing and memoryirements were less by
80% than other CS-based solutions and also lesslibén our DCSR and
GCSR methods. Consequently, this reduction makesiroplementation
method faster and therefore consumes less batergmthan other methods.
Increasing the dwell time from 1ms to 4ms improteel acquisition rate by
10%. While, when increasing the number of non-Depghannels from 33
to 81 introduced 40% improvement in the acquisiperformance.

The RMSE of Doppler frequency was around 50Hz whdeploying 81
Doppler channels, while it rose to 150Hz if 33 Digpchannels were used.
However, it is still highly accurate than time dnelquency implementations

that are based 500Hz frequency resolution.

7.2 Future work

My future work shall continue in the area of the &MNsignals. Various schemes will

be addressed; some of them will represent a dewsop of the current

achievements while others will focus on designiegymethods and as follows:

1.

Generalising the decomposed dictionary design Iptyam to other GNSS

signals, for example the Galileo-E1-OS-code andGR&-L1-C-code signal

as long as they are employing the same BOC modualdagchnique. The

challenge in such proposed designs will be howvieraome the variety of

the code length, as it is known that the GalileecE3-code is 4ms length and
the GPS-L1-C-code signal is 10ms length. Furtheesnoombine one of the
GNSS signals, such as GPS with other wireless sighat are currently used
in the Smartphones devices as they fold or downexnto the same IF

frequency.

Despite that those non-Doppler channels have spdodppler frequency

distribution (for the 401 channels the frequencgohetion is 20Hz and the
321 channels the frequency resolution is 25Hz) shadl improve either our

CSSR or SCSSR implementation to devise another nignaS-based

acquisition. The appropriate solution that canroeme this limitation is by
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designing a very high frequency resolution of tba-Doppler channels up to
10Hz or 5Hz to control various types of dynamicgan

. Capitalising on the saved dictionary and the mesamsant matrices to design
a new tracking method for the GPS signal only. Timplementation will
incur less processing cost than the traditionallémentation because the
early and the late correlators are already gerctiaatd saved in the memory,
as well as the code phase resolution is designselddban 0.5 Chip like the
space between the traditional correlators. Thickirg engine is not
applicable for the Galileo signal unless we hawghtiode phase resolution,
i.e. less than 0.5 Chip to overcome the ambiguitycontinuing with our
conversion using ECSE method.

. Exploiting our OGSR method and applying it to th€3E method to
propose, for the first time, unambiguous-joint-dpilat Galileo signal
acquisition. Moreover, according to our previoualaation of the OGSR and
the ECSE methods, we expect that the performantleeohew method will
be less than the normal ambiguous-joint by 1dB thiedcomplexity will be
quarter of the mostly used unambiguous methodkey tare designed for
joining purpose.

. To enhance the detection probability of the joiatadpilot Galileo signal
acquisition, i.e. the OGSR method, we shall impletveedifferential OGSR
acquisition. This implementation will take advardagf the orthogonal
format representation to have also a single cdroglaengine to acquire
Galileo signal.

. Finalising the proposed dynamic early-late cormglathe experiments in this
particular design would be based on dynamic scenee. from outdoors to
indoors and vice versa. Also, the assessment wingldde the proposed
discriminator to validate both of the proposals.atidition, determining the
threshold of the maximum space between the eadyata correlators would

be incorporated.
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