
oBiometrics: A Software protection scheme using
biometric-based obfuscation

Torben Kuseler, Ihsan A. Lami, Hisham Al-Assam
Applied Computing Department

University of Buckingham
Hunter Street, Buckingham, MK18 1EG, UK

Email: {first.last}@buckingham.ac.uk

Abstract— This paper proposes to integrate biometric-based key
generation into an obfuscated interpretation algorithm to protect
authentication application software from illegitimate use or
reverse-engineering. This is especially necessary for mCommerce
because application programmes on mobile devices, such as
Smartphones and Tablet-PCs are typically open for misuse by
hackers. Therefore, the scheme proposed in this paper ensures
that a correct interpretation / execution of the obfuscated
program code of the authentication application requires a valid
biometric generated key of the actual person to be authenticated,
in real-time. Without this key, the real semantics of the program
can not be understood by an attacker even if he/she gains access
to this application code. Furthermore, the security provided by
this scheme can be a vital aspect in protecting any application
running on mobile devices that are increasingly used to perform
business/financial or other security related applications, but are
easily lost or stolen. The scheme starts by creating a personalised
copy of any application based on the biometric key generated
during an enrolment process with the authenticator as well as a
nuance created at the time of communication between the client
and the authenticator. The obfuscated code is then shipped to the
client’s mobile devise and integrated with real-time biometric
extracted data of the client to form the unlocking key during
execution. The novelty of this scheme is achieved by the close
binding of this application program to the biometric key of the
client, thus making this application unusable for others. Trials
and experimental results on biometric key generation, based on
client's faces, and an implemented scheme prototype, based on
the Android emulator, prove the concept and novelty of this
proposed scheme.

Keywords-biometrics; mobile applications, obfuscated
interpretation; software protection

I. INTRODUCTION
Software anti-piracy protection techniques attempt to

contain/limit the financial damage of software piracy or misuse
of any kind. Software misuse is rapidly increasing every year
and it was quoted to cost the industry some $51.4 billion in
2009 [1]. One of the major concerns to software developing
companies and software users in today’s highly mobile and
connected world is the distribution of “cracked”, and the use of
unlicensed software. On the other hand, mobile applications on
Smartphones or Tablet-PCs, e.g. iPhone/Android based
devices, are increasingly used to perform financial/business or
security related transactions everywhere anytime. As these
mobile devices are easily lost or stolen, the protection of data

and applications on such devices against unauthorised
access/use becomes even more important.

Biometric-based (or data regarding one's identity, or
something you are) authentication, knowledge-based (or data
of something you know, e.g. a password) authentication and
object-based (or data about something you have, e.g. a token)
authentication have been used extensively in various remote
communication to validate a client to an authenticator [2]. In
contrast to object-based or knowledge-based authentication
factors, in biometric-based authentication a legitimate client
does not have to carry or remember anything to perform the
authentication. However, biometric authentication, which is
known to be more reliable than the other traditional
authentication methods, requires only the physical presence of
the client, which makes it a very convenient and simple to use
for authentication.

Current generations of personal computers, notebooks,
Smartphones or Tablet-PCs feature a wide variety of sensors
(e.g. camera, microphone or multi-touch displays) that can be
easily employed to capture a client's biometrics.

This paper proposes to use a biometric key, generated from
fresh and real-time captured client biometric data, in
conjunction with obfuscated interpretation to protect the
"execution of a software application" on the client’s device.
Without presenting the correct biometric key to the system, the
obfuscated program will not run at all or will produce an
incorrect authentication for any illegitimate client.

A prototype of oBiometrics is implemented on an Android
platform emulator. It is designed in such a way that it can
handle both normal (unprotected) applications as well as
obfuscated (protected) applications at the same time. Also, the
proposed methods can be combined seamlessly and trouble-
free with other software protection techniques, e.g. opaque
predicates or lexical/control flow transformations as the
instruction obfuscation is employed on the result of previous
transformation steps. Additional software protection methods
that increase the number of instructions can further enhance the
security of the obfuscated interpretation.

The rest of the paper is organised as follows: Section II
describes the background and outlines related work of software
protection techniques and biometric-based key generation.
Section III introduces the general concept of the proposed
biometric-secured obfuscated interpretation scheme. Section IV

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BEAR (Buckingham E-Archive of Research)

https://core.ac.uk/display/44413074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

describes the implementation of the prototype application
based on the Android emulator and discusses the trial and
experimental results. Finally, we conclude the paper and
outline future work in Section V.

II. BACKGROUND AND RELATED WORK

A. Software protection techniques
Software protection can be broadly categorised into three

main groups [3]: 1) Software watermarking, 2) Software
tamper proofing or tamper resistance, and 3) Software
obfuscation. Software watermarking adds visible or hidden
information to source code to prevent software theft or to proof
the original ownership, if a misuse of a piece of software has
been discovered. To generate resilient, cheap and stealthy
software watermarks various methods based on, for example,
opaque predicates [4], register allocation [5] or self-validating
branches [6] were proposed. Software tamper proofing or more
precisely tamper resistance (as every protection mechanism can
be bypassed with sufficient knowledge, time or resources) tries
to prevent illegal modification or distribution of software.
Examples of proposed tamper resistance techniques include
self-modifying and self-decrypting Integrity Verification
kernels (IVK) [7] or dynamic integrity checking [8]. Software
obfuscation is similar to tamper resistance in that it also aims to
protect the code against malicious modifications. However, in
contrast to tamper resistance, software obfuscation [9] attempts
to transform a piece of software into an equivalent program
that has the same behaviour but is more difficult to reverse-
engineer and therefore harder to manipulate by an attacker.

Neither watermarking nor tamper resistance or obfuscation
techniques alone can guarantee a fully protected software [10].
But even though one technique on its own can be easily broken
[11], a combination of several methods can “raise the bar”
substantially. This makes any attempt to fool such protection
system uneconomical for the attacker.

Monden has introduced a framework for obfuscated
interpretation [12] where a hardware implemented finite state
machine (FSM) was proposed. This ASM “retranslates” the
instructions of an obfuscated program into the original ones
during program execution/interpretation (Fig. 1). The main
security concept of obfuscation interpretation is that a program
can be considered "secure" (in terms of reverse-engineering) if
an attacker can not understand the real semantics of the
program from the available code instructions, without having
the state transition rules for the retranslation (reverse
obfuscation). A major drawback of the framework proposed by
Monden is that the change of the transition rules is very
difficult in the hardware based implementation of the FSM
during development and nearly impossible once the hardware
unit is integrated into the end-user device. In addition, dummy
instructions must be injected into the code to guarantee the
correct interpretation by the FSM. However, dummy
instructions could leak information about the real semantics of
the program code and so make attacks possible. To overcome
these problems, Zhang [13] proposed an obfuscated
interpretation framework that uses a permutation-based
interpreter (PMI) implemented in software. The PMI allows in
their proposed framework an easy change of the transition rules

and does not require any additional dummy instructions.
Recently, Zeng [14] has developed a software watermarking
scheme based on obfuscated interpretation.

oBiometrics uses a protection scheme similar to [13], but
uses biometric generated keys to (de-)obfuscate instructions
during program development and execution/interpretation. This
will tightly bind the obfuscated software to the legitimate client
and shall remove the requirement to hide the interpreter from
the program user (or a possible attacker) as well as the
necessary encryption of the permutation rules described by
Zhang.

Figure 1. Concept of obfuscated interpretation as originally proposed in [12]

B. Biometric key generation methods
Biometric cryptosystems have been proposed to provide

stronger security mechanisms by combining biometrics with
cryptography. Biometric cryptosystems can be broadly
categorised into three main approaches: (i) key release, (ii) key
generation, and (iii) key binding.

In the key release approach, the cryptographic key and the
biometric data of a client are stored as two separate identities at
different hosts where the key is released only when an
authentication attempt of the client is successful. This method
is straightforward and easy to implement but it has two major
drawbacks [15]. The first drawback is due to the fact that
biometric templates are not secure and that the "biometric
matcher" can be overridden. The second drawback is due to the
fact that cryptographic keys are not secure because they are not
combined with biometric data when compared to the other two
approaches.

In the key generation approach, a cryptographic key is
directly derived from the biometric data without storing it
anywhere. Typically, biometric features in this approach are
represented as a binary string and the robust bits are selected as
a cryptographic key. It has been shown that such methods have
high False Rejection Rates (FRRs) which them an impractical
method [16].

Finally, in key binding approaches, the biometric template
and the key are combined in a way that makes it
computationally infeasible to retrieve the key without previous
knowledge of client’s biometric data. The cryptographic key is
randomly generated during the enrolment stage. Then it is
discarded after combining it with the biometric data. At the
authentication stage, the cryptographic key is released only if
the query biometric sample is matched. It is known that
biometric data are fuzzy due to intra-class variations resulting

from the differences between the freshly captured biometric
sample and the enrolled templates. On the other hand,
cryptographic keys have to be precise and repeatable every
time. Therefore, there is a need to employ error correction
techniques such as Error Correcting Codes (ECC) to bridge the
gap between the fuzziness of biometric and the preciseness of
cryptographic keys.

oBiometrics adopts the key binding approach for our
implementation based on face biometric. Note that, throughout
this paper "key binding" and "key generation" are used
similarly. Fig. 2 illustrates the process of biometric key
binding. The cryptographic key is fed into an ECC encoder and
then XORed with the binary representation of biometric data to
produce a biometric lock or helper data. After that, the key is
discarded and the biometric lock and the hash of the key are
saved. The binary representation of the biometric data is
calculated from extracted biometric features where a client-
based transformation such as random projection [17] can be
employed to produce cancellable biometric followed by a
biometric binarisation. At the authentication stage (key
retrieval stage), the binary representation is calculated using a
fresh biometric sample in the same way as described above and
then XORed with the biometric lock. Then, an error correcting
technique is used in the decoding mode to tolerate intra-class
variation. The decoding is successful and the key released if the
difference between the reference biometric sample(s) and the
fresh biometric sample is within a certain predefined threshold.

Figure 2. Biometric key binding process

III. BIOMETRIC-SECURED OBFUSCATED INTERPRETATION
The two base elements of the oBiometrics scheme are (1)

the biometric key generation and (2) a standard software
development cycle supplemented by an optional specification
step that defines the application elements to be obfuscated (Fig.
3).

Define
elements

(classes/methods)
to obfuscate

Application
development

Application
obfuscation

Application
distribution and

installation

Application
compilation /

testing

Application

Application development

Biometric keyX

Biometric
enrolment

Client1

Biometric
key generation

Client1

Biometric
enrolment

ClientN

Biometric
key generation

ClientN

......

Client enrolment

Biometric
key

database

Figure 3. Application development and client enrolment

During an enrolment process, biometric keys are generated
from the freshly taken client biometrics (e.g. face) and stored
for later use (application obfuscation) in a database together
with additional client information (e.g. unique client identifier).
To protect the sensitive client-specific biometric data, only
cancellable / revocable biometric keys [18] are used and stored
in the database.

A possible usage scenario for oBiometrics is a remote
authentication process between a client and a bank in a
mCommerce transaction. For example, the bank wants to offer
their services only to enrolled clients, who have been
successfully verified to the bank at the moment of system use.
Another application example is when any software developer
or business company (e.g. bank) wants to distribute a new (or
an updated version of) their biometric-secured software
application to their enrolled clients. Then, a standard software
development cycle (e.g. Java development for Android based
mobile devices) is executed. If it is not possible or desired that
the complete application is protected by obfuscated
interpretation (e.g. when some parts may be used as libraries by
other (not protected) applications), then an optional
development step can specify the elements to be obfuscated.
Otherwise the complete application code is obfuscated. If the
software works as expected, the new (or updated) application is
obfuscated using the biometric key. In this process, the original

program instructions are substituted (obfuscated) with
instructions selected on the basis of each client's stored
biometric key making the resultant application program code
uniquely tailored/dependent on each client. This individual
biometrically-secured obfuscated application "code" is then
distributed to its associated and enrolled client for installation
on the client’s device, e.g. Smartphone. To enhance the
authentication process, some transactions may encode a
"nuance" generated at the communication/transaction time to
secure the transmitted program code and so eliminate the
replay attacks.

Secure storage of the client’s cancellable biometric keys in
the proposed scheme removes the necessity of re-enrolment of
the client for each new (or updated) version of the application,
which would be expensive, time-consuming and inefficient in
scenarios with many applications and enrolled clients.

Once a client wants to execute a possible protected
application on the mobile device, for example for
authentication purpose for a financial transaction, the proposed
scheme shall start the application and check if this application
is protected and so needs an obfuscation interpretation (Fig. 4).
As the general layout and the instructions of an obfuscated
program are not distinguishable from an unprotected program
during interpretation/execution, an additional label is inserted
during the obfuscation process. If this label is present in the
application, or in some parts of the application, then the
scheme invokes a process, which generates a new biometric
key from a freshly taken client biometrics (e.g. face), and
passes this key to the application interpreter to perform the
obfuscated interpretation. Otherwise, the application is
executed normally by the interpreter.

Figure 4. Application execution on client’s mobile device

IV. OBIOMETRICS IMPLEMENTATION AND RESULTS

A. Prototype implementation
To test this proposed biometric-secured obfuscated

interpretation scheme, and to verify the practicality of this
authentication, a prototype implementation, based on Android
version 2.2 (Froyo), was developed.

Android is a software stack initially invented by Android
Inc. and since 2005 developed by Google Inc and the Open
Handset Alliance [19]. The fact that the complete software
stack, including the operating system, middleware and
important applications are available to the development
community as Open Source makes Android a perfect candidate
for this prototype development. Furthermore, Android is the

fastest growing operating system used in mobile devices with
enhanced sensors and capabilities. Note that this
implementation does require the use of Smartphones so to
capture and process the biometric data. It is expected that
Android will surplus all other mobile operating systems by
2014 [20].

The Android operating system is based on a modified
Linux kernel. System and client applications are
executed/interpreted by the Dalvik virtual machine (DVM)
which is part of the Android runtime and located in the
Android system architecture above the Linux kernel. The DVM
is a register-based virtual machine which interprets Dalvik byte
code instructions generated by the “dx” tool from compiled
Java language sources, i.e. each application, when started on an
Android device, is first loaded from an .apk-file which contains
the generated Dalvik byte code instructions. This is then
verified and optimised before being interpreted by the DVM
(Fig. 5).

For our testing, to execute the biometric-secured obfuscated
interpretation inside the DVM, the source code of the DVM
was adapted; a new operating system image was compiled; and
used with the Android emulator for testing this prototype
implementation.

Figure 5. DVM steps during application execution

B. Byte code instructions for obfuscation
In order for an application to pass the compilation, loading,

verification and optimisation steps of the Android DVM, not
all byte code instructions can be substituted during the
obfuscation process. For example, it is not possible to replace
the “return-void” instruction because this is the only DVM
instruction without parameters. Similarly, “iget*”, “iput*”,
“invoke-*” or “invoke-*/range” instructions (Table I) can not
be obfuscated because these instructions are automatically
replaced by the DVM optimiser with other instructions, and
thus are not available to the interpreter for de-obfuscation.
Finally, instructions can be only replaced with other
instructions, if and only if they have the same general return
type as well as the same number and type of parameters. All
other substitutions would not pass the verification stage of the
DVM. For example the “add-int” instruction can only be
substituted with 16 byte code instructions, the “if-eqz” with 6
instructions (Table II).

Obviously, the security of obfuscated interpretation
increases by increasing number of instructions that can be used
for substitution of byte code instructions. Table III shows the
total number of instructions for six Android applications. The
first four applications (Browser, Contacts, E-Mail and Phone)
are standard system applications available on all Android
mobile devices, while the remaining two applications (PayPal
and FXCM Mobile TSII (MarketSimplified Inc)) are “top-free
in Finance” applications from the Android market. The total
number of byte code instructions in the .apk-file of the

application varies between 23.000 (Browser) and 100.000 (E-
Mail) with around 60% of instructions that can be theoretically
obfuscated.

TABLE I. INSTRUCTIONS REPLACED BY DVM OPTIMISER

Instruction
group Instruction Mnemonic

iget*
iget, iget-wide, iget-object, iget-boolean,
iget-short, iget-byte, iget-char, iget-short

iput* iput, iput-wide, iput-object, iput-boolean,
iput-short, iput-byte, iput-char, iput-short

invoke-* invoke-virtual, invoke-super,
invoke-direct, invoke-static

invoke-*/range invoke-virtual/range, invoke-super/range,
invoke-direct/range, invoke-static/range

TABLE II. POSSIBLE INSTRUCTION SUBSTITUTIONS

Instruction Possible substitutions

add-int

add-int, sub-int, mul-int, div-int, rem-int,
and-int, or-int, xor-int, shl-int, shr-int,
ushr-int, add-float, sub-float, mul-float,
div-float, rem-float

if-eqz if-eqz, if-nez, if-ltz, if-gez, if-gtz, if-lez

TABLE III. INSTRUCTIONS AVAILABLE FOR OBFUSCATION

Application
name

Total #
instructions

instructions
to obfuscate

% instructions
to obfuscate

Browser 23000 14400 63%

Contacts 33800 22100 65%

E-Mail 99600 67700 68%

Phone 42200 25100 59%

Paypal 60000 38600 64%

FXCM Mobile 34300 20900 61%

C. Biometric generated keys
The oBiometrics prototype implementation of biometric

key binding (generation) is based on face biometric as
illustrated in Fig. 2. The Extended Yale B database [21], which
has 38 subjects and each one in frontal pose has 64 images
captured under different illumination conditions, is used for the
experiments. The images in the database are divided into five
subsets according to the direction of the light-source from the
camera axis. Fig. 6 illustrates this variation for images of the
same person in the database.

Figure 6. Images for the same person in different illumination subsets

In the experiments, the first three images per client from
subset 1 (the Yale-B database) were selected as the gallery set
and all the remaining images were used for matching. Discrete
Wavelet Transforms (DWTs) are selected as a facial feature
extraction technique to be used efficiently on Smartphones. By
selecting wavelet feature at the third level of decomposition,
each face is represented by 504 value feature vector X, which
is then converted to a binary string as described in [22]. By
analysing the error patterns of inter- and intra-class variation of
face images, it was concluded that 38% of the binary face
feature vectors need to be corrected, i.e. 191 bits out of 504
bits. In other words, if the hamming distance between two
binary feature vectors is less than 191, then the two feature
vectors belong to the same individual. Otherwise, the two
feature vectors are considered to be from two different
individuals. To cope with intra-class variations of face samples,
Reed-Solomon (RS) error correcting code algorithm is selected
(version RS(511,129,191)), which takes a cryptographic key of
size 129 bits as an input to produce a biometric lock of size 511
bits, and corrects up to 191 errors.

The experiments showed that the Equal Error Rates (EERs
%) of biometric key binding is 0%, 0.9%, 1.33%, 15.48%,
17.15% for subset1, subset2, subset3, subset4, and subset5 of
the extended Yale face dataset respectively based on Reed-
Solomon ECC to retrieve a key of size 129 bits. It is worth
mentioning that the 129 bit biometric key can be used as a seed
to generate longer keys of any length based on techniques such
as Linear Feedback Shift Registers (LFSR).

D. oBiometrics application development and byte code
obfuscation
Android applications are written in Java, compiled with

Java language compilers and then converted to Dalvik byte
code by the Android “dx” tool. In oBiometrics prototype, the
concept of Java Annotations is used to define which methods
and/or complete classes should be obfuscated. Introducing the
concept of “partial obfuscation” in the oBiometrics allows
protection of nothing but the important parts and algorithms of
an application. This will speed-up the DVM interpretation in
applications which do not require complete code protection as
the number of necessary de-obfuscation steps decreases. To
obfuscate the byte code instructions, the Dalvik source code is
de-compiled in the prototype by a disassembler. Fig. 7 shows
an example of a short java method with an “Obfuscate”
annotation, two integer parameters and the resultant de-
compiled Dalvik byte code.

As the number of instructions available for obfuscation
varies from application to application, an instruction
substitution key with a fixed length, as produced by a standard
biometric key generator, is not applicable. A pseudorandom
number generator (PRNG) with the biometric generated key as
seed is used to produce a pseudorandom bit stream of the
required length.

Figure 7. Java source code and Dalvik byte code instructions

Depending on the byte code instruction and the next random
bits from the PRNG output, an instruction from the same
instruction group is selected. Fig. 8 shows the obfuscation
process for the two instructions “add-int” and “if-gez” (see Fig
7 and Table II). First, the biometric key of the enrolled client is
then extracted from the biometric key database and used as a
seed to the PRNG. “add-int” is in step 2 the first instruction
which needs to be obfuscated. The group size of possible
substitutions for this instruction is 16 elements, i.e. requires 4
bits from the key stream. The first 4 bits from the stream are
“0110” (or position 6 in the group, starting with 0). These bits
are then used to index the substitution instruction “or-int”. The
group of the second instruction “if-gez” contains 6 elements
and therefore requires only the next 3 bits (“010”) from the key
stream; resulting in the substitution instruction “if-ltz”. After
all instructions are successfully obfuscated, the byte code is
assembled again. This "obfuscation and protected Android
application file" can be then distributed to the client.

Figure 8. Instruction obfuscation process

E. Application execution and de-obfuscation process on the
mobile device
Upon receiving the obfuscated application from the

authenticator, the client installs it on his mobile device. Once
the client starts this protected application, the DVM on the
mobile device triggers a process to capture fresh biometric
information of the client. A biometric key and its
pseudorandom bit stream are then calculated/generated in
similar steps to the key generation process at the authenticator
side (cp. section IV.D). The resultant PRNG output is then

used to de-obfuscate the application code during interpretation.
Based on the next PRNG input value and the following
obfuscated instruction read from the protected byte code, the
original instruction is determined/obtained by reversing the
used obfuscation rule (Table II). The resultant de-obfuscated
code is then ready to be executed by the DVM.

V. CONCLUSION AND FUTURE WORK

A. Conclusion
In conclusion, this paper proposes to combine biometric-

based key generation with obfuscated interpretation to prevent
the illegitimate execution of applications as well as to protect
the software against reverse-engineering. This is particularly
aimed at, but not limited to, application software installed on
mobile devices with enhanced capabilities and sensors such as
Smartphones or Tablet-PCs. oBiometrics can be utilised in a
similar way to all kinds of software programs running on
standard PCs. Obfuscating the program instructions with a
client's specific biometric key shall tightly binds the genuine
client to the application and hence eliminates the possibility
that an attacker is able to use this protected application. This
becomes more and more important as the use of mobile devices
to perform financial/business or other security related
transactions grows.

The implemented prototype of oBiometrics based on
Android Froyo shows clearly the practicality of this proposed
scheme. That is the advantages and benefits of this tight
combination of biometric authentication and software
protection through obfuscated interpretation. The Dalvik virtual
machine (which runs all system and client applications on
Android based mobile devices) was modified to test the
obfuscated interpretation in a real operating system
environment. An Android system image with the adapted
DVM was generated and used in the emulator based trials and
experiments. Analyses of many Android build-in and market-
place applications as well as the Dalvik byte code structure
shows that around 60% of all byte code instructions can be
statistically obfuscated. Also note that instructions can be
replaced only with similar ones from the same instruction
group. Otherwise the byte code verifier or optimiser would
recognise the incorrect program and an application installation
on the mobile device would not be possible. Also, the group
size of similar instructions varies for the Android Dalvik byte
code between two and sixteen elements. This results in an
immense number of possible substitution combinations. For
example, a simple method with only 20 instructions (10
instructions from the “add-int” and 10 from the “if-eq” group)
would already result in 6.6*1019 possible combinations. The
fact that a standard Android application has several thousand
byte code instructions makes it very difficult to understand the
real semantics of a program without having the correct de-
obfuscation key. Although it would be possible for an attacker
to start a program protected by oBiometrics, as the obfuscated
program is still a valid application, the attacker can not be sure
about the program behaviour or results, or if the program
terminates correctly. However, it is more likely that the
program will crash and produce no meaningful output at all.

Since oBiometrics adds with the required byte code
deobfuscation process an additional step to the application
interpretation and therefore increases the application execution
time. As the methods and classes and consequently the
resultant number of byte code instructions to be deobfuscated
can be precisely specified during the application development
process, the run-time overhead can be adjusted to the desired
security level of the application. Trails on the emulator showed
that the introduced overhead by oBiometrics is not noticeable
for any client in an authentication application scenario.
However, full time and CPU overhead measurements are
planed when the full actual implementation has been completed
and tested on Android mobile devices.

B. Future work
Work on the biometric-secured obfuscation interpretation is

ongoing to further analyse and enhance the security of
oBiometrics. As a first step, the authors will extent the
prototype and implement all possible instruction substitutions
in the obfuscation process as well as inside the Dalvik virtual
machine. Furthermore, real-world experiments and trials on
Android mobile devices will be carried out, which requires
installation of the adapted Android operating system on real
hardware.

The authors will also investigate, how the integration of
present location and real-time into the key generation and
obfuscation process can further eliminate various possibilities
of application misuse, i.e. by employing the current location of
the mobile device determined by the GPS receiver into the
obfuscation algorithms. This shall eliminate various types of
"distance attacks" which are a main threat to mobile devices
and mobile based applications.

To further verify and increase the security of oBiometrics,
the results of various de-compilation and reverse-engineering
tools for Java and Dalvik byte code, e.g. “undx” or “Dex2Jar”
on the biometric-secured obfuscation applications will be
analysed. However, first reverse-engineering experiments
clearly showed that these programs are not able to restore the
original semantics of the obfuscated applications.

Finally, the combination of biometric-secured obfuscated
interpretation with other software protection techniques, e.g.
control flow obfuscation [23] or opaque constructs [24], will be
investigated. It is expected, that these techniques can be easily
used together and that a combination will not negatively effect
the obfuscated interpretation. In contrast, they should further
enhance the security of oBiometrics as they build a first line of
defence against attacks and even increase in some cases the
number of instructions which then can be obfuscated.

REFERENCES
[1] B. S. Alliance, “Seventh annual bsa/idc global software 09 piracy

study,” May 2010. [Online]. Available: http://portal.bsa.org/-
globalpiracy2009/studies/globalpiracystudy2009.pdf

[2] S. Z. Li and A. K. Jain, Eds., Encyclopedia of Biometrics. Springer US,
2009.

[3] C. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and
obfuscation - tools for software protection,” IEEE Transactions on
Software Engineering, vol. 28, pp. 735–746, 2002.

[4] G. Myles and C. Collberg, “Software watermarking via opaque
predicates: Implementation, analysis, and attacks,” Electronic
Commerce Research, vol. 6, no. 2, pp. 155–171, 2006.

[5] W. Zhu and C. Thomborson, “Algorithms to watermark software
through register allocation,” in Digital Rights Management.
Technologies, Issues, Challenges and Systems, ser. Lecture Notes in
Computer Science, R. Safavi-Naini and M. Yung, Eds. Springer Berlin /
Heidelberg, 2006, vol. 3919, pp. 180–191, 10.1007/11787952_14.

[6] G. Myles and H. Jin, “Self-validating branch-based software
watermarking,” in Information Hiding, ser. Lecture Notes in Computer
Science, M. Barni, J. Herrera-Joancomart, S. Katzenbeisser, and
F. Pérez-González, Eds., vol. 3727. Springer, 2005, pp. 342–356.

[7] D. Aucsmith, “Tamper resistant software: An implementation,” in
Information Hiding, ser. Lecture Notes in Computer Science, R. J.
Anderson, Ed., vol. 1174. Springer, 1996, pp. 317–333.

[8] P. Wang, S. Kang, and K. Kim, “Tamper resistant software through
dynamic integrity checking,” in Proceedings of the SCIS, 2005.

[9] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Technical Report 148, Department of Computer
Science, University of Auckland, Tech. Rep., July 1997.

[10] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang, “On the (im)possibility of obfuscating programs,” in
Lecture Notes in Computer Science. Springer-Verlag, 2001, pp. 1–18.

[11] A. W. Appel, “Deobfuscation is in np,” Aug 2002.
[12] A. Monden, A. Monsifrot, and C. Thomborson, “A framework for

obfuscated interpretation,” in ACSW Frontiers ’04: Proceedings of the
second workshop on Australasian information security, Data Mining
and Web Intelligence, and Software Internationalisation. Darlinghurst,
Australia, Australia: Australian Computer Society, Inc., 2004, pp. 7–16.

[13] X. Zhang, F. He, and W. Zuo, “A framework for mobile phone java
software protection,” in ICCIT ’08: Proceedings of the 2008 Third
International Conference on Convergence and Hybrid Information
Technology. Washington, DC, USA: IEEE Computer Society, 2008, pp.
527–532.

[14] Y. Zeng, F. Liu, X. Luo, and C. Yang, “Robust software watermarking
scheme based on obfuscated interpretation,” in 2010 International
Conference on Multimedia Information Networking and Security. IEEE,
2010, pp. 671–675.

[15] F. Hao, R. Anderson, and J. Daugman, “Combining cryptography with
biometrics effectively,” IEEE Transactions on Computers, pp. 1081–
1088, 2006.

[16] K. Nandakumar, A. Jain, and S. Pankanti, “Fingerprint-based fuzzy
vault: Implementation and performance,” Information Forensics and
Security, IEEE Transactions on, vol. 2, no. 4, pp. 744–757, 2007.

[17] H. Al-Assam, H. Sellahewa, and S. Jassim, “A lightweight approach for
biometric template protection,” in Proceedings of SPIE, vol. 7351,
March 2009, pp. 73510P.1–73510P.12.

[18] A. Teoh, Y. Kuan, and S. Lee, “Cancellable biometrics and annotations
on biohash,” Pattern recognition, vol. 41, no. 6, pp. 2034–2044, 2008.

[19] O. H. Alliance, “Open handset alliance.” [Online]. Available: http://-
www.openhandsetalliance.com/

[20] Gartner Inc., “Forecast: Mobile communications devices by open
operating system, worldwide, 2007-2014,” August 2010.

[21] A. Georghiades, P. Belhumeur, and D. Kriegman, “From few to many:
Generative models for recognition under variable pose and
illumination,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 23, pp. 643–660, 2001.

[22] A. Jin, D. Ling, and A. Goh, “Biohashing: two factor authentication
featuring fingerprint data and tokenised random number,” Pattern
Recognition, vol. 37, no. 11, pp. 2245–2255, 2004.

[23] T. Hou, H. Chen, and M. Tsai, “Three control flow obfuscation methods
for java software,” IEE Proceedings-Software, vol. 153, no. 2, p. 80,
2006.

[24] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap,
resilient, and stealthy opaque constructs,” in Conference Record Of The
ACM Symposium On Principles of Programming Languages 1998,
POPL’98, vol. 25. San Diego, CA: Association for Computing
Machinery Inc., January 1998, pp. 184–196.

