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ABSTRACT 

Seamless outdoors-indoors localization based on 

Smartphones sensors is essential to realize the full 

potential of Location Based Services. This paper proposes 

a Smart Indoors Localization Scheme (SILS) whereby 

participating Smartphones (SPs) in the same outdoors and 

indoors vicinity, form a Bluetooth network to locate the 

indoors SPs. To achieve this, SILS will perform 3 

functions: (1) synchronize & locate all reachable WiFi 

Access Points (WAPs) with live GNSS time available on 
the outdoors SPs; 2) exchange a database of all SPs 

location and time-offsets; 3) calculate approximate 

location of indoor-SPs based on hybridization of GNSS, 

Bluetooth and WiFi measurements. These measurements 

includes a) Bluetooth to Bluetooth relative pseudo ranges 

of all participating SPs based on hop-synchronization and 

Master-Slave role switching to minimize the pseudo-

ranges error, b) GNSS measured location of outdoors-SPs 

with good geometric reference points, and c) WAPs-SPs 

Trilateration estimates for deep indoors localization.  

Results, obtained from OPNET simulation and live trials 

of SILS built for various SPs network size and 
indoors/outdoors combinations scenarios, show that we 

can locate under 1 meter in near-indoors while accuracy 

of around 2-meters can be achieved when locating SPs at 

deep indoors situations. Better accuracy can be achieved 

when large numbers of SPs (up to 7) are available in the 

network/vicinity at any one time and when at least 4 of 

them have a good sky view outdoors.  

 
Keywords – Indoors localization; Smartphone LBS; 
Bluetooth localization; WiFi localization, GNSS 

I. INTRODUCTION 

Smartphones & Tablets, driven by mobile-
services/applications are becoming very important to our 

communication, localization and information needs. 

Demands are huge for seamless outdoors to indoors 

navigation, and especially for accurate indoors 

localization. Examples of such LBS applications include 

tracking users (via telematics) for security and safety, find 

nearest restaurant/shop, and other Point-Of-Interest (POI) 

information [1].  Unless there is a pre-installed 
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localization infrastructure of sensors in the vicinity that 

works with the current SPs, LBS Apps (eg. BLE-

iBeconing) will be very restricted due to the 

weakened/limited GNSS signals reception indoors [2]. 

Most of the current solutions do attempt to hybridize 

multi-GNSS signals (GPS plus GLONASS) with cellular, 
WiFi, Bluetooth, as well as other inertial sensors on SPs 

to offer accurate/seamless location. However, on-the-go 

structure-less solutions, like our proposed scheme, are 

very challenging and not yet matured. 

 Fig. 1 illustrates a typical scenario used to describe 

SILS. It shows a cluster of cooperative Android based SPs 

outside our department building. We assume that these 

SPs use enhanced GNSS localization algorithms, such as 

Google’s Map-matching to achieve accuracy to within 1 

meter [3]. SILS first forms a smart Bluetooth network of 

these SPs. SILS will then calculate the relative pseudo-

ranges between all SPs and compare that to the GNSS 
obtained location map to form a virtual localization map 

of this network. This map is shared with every SP in this 

network, and will also be shared with any new SPs joining 

the network. This map, as a third step will be used as 

reference points to synchronize all WAPs in the vicinity 

of our building. i.e. the WAPs clock offset will be 

calculated from the received Beacon signals from these 

WAPS, positioned at assumed altitude on every SP on this 

network, as shown in Fig.2 . This information may be 

required later for estimating initial position if any of the 

SPs in the network is in deep-indoors. Note that WAPs 
time is measured from the WAPs beacon signals that are 

generated at the millisecond level and received at the SPs 

in the MAC layer to avoid local interlayer nanoseconds 

delays. Once time synchronization is achieved with more 

than 4 SPs, the SPs then try to locate every WAP based on 

time-of-arrival (TOA) technique (one way measurement). 

 
Figure 1. SPs outdoors network scenario 

 
Figure 2. SPs outdoors network scenario showing available WAPs 

 

We assume this SPs network is on the move all the 

time, and some SP’s may be lost or new ones joining the 
network depending on the proximity of these nodes to 

each other (within Bluetooth coverage range). If any of 

the networked SPs enters indoors, as shown in Fig. 3, or if 

existing indoors SP join the network, with at least 4 SPs 

are still located outdoors with good sky view, then SILS 

will locate these indoors SPs to within 1 meter when at 

near-indoors and to within 2 meters when in deep indoors. 

Our study concluded that pseudo-ranging estimation 

using timing measurements gets better accuracy than 

using Receive Signal Strength (RSS) measurements, since 

RSS has a non-uniform shadowing and so any pseudo-
range estimation based on RSS would not be accurate [4]. 

Since Bluetooth communication is based on frequency-

hop synchronizations, then counting the hops at precise 

GNSS time can help measure the time of flight (TOF) for 

each frame transmission accuretly. 

Figure 3. Collaborative SPs network to locate indoors SP using 
WiFi, Bluetooth, and GNSS 
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The bigger aim of our research is to propose a 
Smartphone based localization solution that will capitalize 
on existing infrastructure (with no need for special external 
hardware/sensors), yet offering high localization 
performance/accuracy at low cost. During the 
implementation and trials of SILS, we found that Android 
based Smartphones with on-board Bluetooth, WiFi and 
GNSS hardware have many challenges; including 
accessing functions implemented in Firmware. This has 
limited our trials breadth to validate all positive results 
achieved from OPNET simulation. 

Section II of this paper reviews the literature on current 
cooperative localization solutions and evaluates the main 
drawbacks of them. Section III gives detailed explanation 
of the proposed SILS solution. This is then followed by a 
discussion of the experiments and scenarios performed to 
prove SILS in section IV. Finally, section V draws this 
paper’s conclusions and outlines possible future work. 

II. LITERATURE REVIEW 
Independent of pre-installed localization infrastructure 

networks, on-the-go Seamless indoors-outdoors 
navigation, and vice versa, capability on Smartphones is an 
essential function for many LBS applications. Localization 
techniques are currently based on a hybridization of 
existing GNSS based localization with functionality from 
sensors onboard the Smartphone such as WiFi, BLE, 
Accelerometer, Gyro and Cellular technology (3G, LTE) 
providing access to geographical maps and localization 
databases. Current solutions still suffer from the lack 
continuity due to loss of GNSS signals when SPs go 
indoors, unless pre-installed localization sensor networks, 
such as those offered by BLE-iBeaconing [5] and WiFi 
fingerprinting [6], are specifically implemented to provide 
the SPs location while indoors in that particular vicinity. 
GNSS signals suffer from strong attenuation caused by 
building materials when the SPs enter indoors. i.e. the 
provision of semi-accurate indoors SPs location, on the go 
anywhere anytime, has proven somewhat problematic to 
deliver thus far.  

Pre-installed Infrastructure localization network based 
on WiFi, Bluetooth, RFID, Zigbee and others will help 
tracking of SPs indoors to a good accuracy. The location 
errors in these solutions depend on how dense is the 
supporting fixed network nodes, how the 
concentration/presence of distractive signals emitted from 
other indoor equipment/devices that use the same air 
interface technology such as laptop’s using the WAP or 
other BT networks, and on how the orientation of the 
transmitting/receiving device antennas at the time of the 
ranging calculation. The literature is rich with 
contributions based on such solutions (e.g. Wi-Fi 
Positioning System (WPS)-Skyhook, Real-Time Location 
System (RTLS)-Ekahau, BLE-iBeaconing) using schemes 
such as sound, vision, light and radio frequency waves 
based on various localization techniques including ranging 
(Trilateration/Triangulations) and RSSI fingerprinting. 
However, the scope of this paper is to focus on 
collaborative SPs solutions that can use existing 
infrastructure, such common WAPs on building, but does 

not require special hardware installation. i.e. Cooperation 
between various existing resources, such SPs and WAPs 
can offer enhanced localization indoors.  

A GNSS based cooperative location optimization 
scheme has been proposed using a host server to fuse 
location coordinates supplied from onboard GNSS of any 
group of SPs to improve location accuracy. Then, pseudo-
ranging estimation between the group SPs is calculated 
based on TOA technique using acoustic signal [7]. The 
server then, as a final stage, receives these pseudoranges 
and uses a complex optimization model to obtain further 
location accuracy improvement, within 1.2 – 4 meters. 
Obviously, this scheme needs to access a dedicated 
database/server to improve and share the location 
information among all these SPs which acceptable as a 
small overhead. Porting the task of the server into the SPs 
will eliminate the overhead of this server and its associated 
wireless connectivity, but we believe the optimization 
algorithm will take considerable resource and time that 
will drain the SPs batteries.  

A skyhook WPS enabled SPs can obtain WAPs 
location in any vicinity. A group of such SPs can then use 
these WAPs as reference point to locate themselves within 
a claimed 10-20 meters when indoors. An improved 
location can be achieved if a GNSS position from an 
outdoors SP is shared with this group of SPs via a WiFi 
connectivity. This is achieved by applying “conditional 
prior probability” to improve the indoors SP location via 
probability distribution of the set of shared information 
(WAPs range, GNSS location of the reference SPs 
outdoors) [8]. The proposed “cooperative SPs localization” 
algorithm in this paper is based on four probabilistic 
methods namely Centroid method, Nearest Neighbour 
method, Kernel method and WAPs density method.  Both 
empirical and simulation results claims that the WAPs 
density method provided more accurate results than the 
others, since WAPs density provides a function  to 
distinguish the overlapped or the common shared WAPs 
information between the outdoors SPs and the indoors SPs. 
However, this location enhancement has resulted in 5-
meter accuracy. 

In a similar vain to SILS, an on-the-go (infrastructure 
independent) cooperative indoor localization using sensors 
onboard SPs (GNSS, inertial sensors such as 
accelerometer & magnetometer, and WiFi) has been 
proposed to locate indoors SPs to within 5 meters [9]. In 
this solution, a group of WiFi networked SPs, when 
outdoors, start a calibration process where estimated 
heading error is calibrated by GNSS heading estimation, 
and where pseudoranges error between these SPs is 
mitigated by detecting pedestrian-step trajectory using the 
onboard accelerometer. When indoor SPs join this 
network, shared location information will help establish 
initial position and the heading calibration process of these 
indoor SPs.  Experimental results show that this proposed 
cooperative solution can achieve location accuracy up to 5 
meter, if number of SPs is exceeds 40. 



Our proposed SILS scheme does work without the 
need for pre-defined WAPs location or pre-installed 
localization infrastructure, and also does away with RSS-
based technique. SILS is based on time-synchronization to 
GNSS-time of all participating devices and calculating 
pseudoranges based on time of signal flight; proven to 
offer accurate position calculation. 

III. SILS implementation 
We plan that SILS be implemented as a plug&play 

application on Android Smartphones (SPs). The scheme 
mainly access MAC level functions with the SPs onboard 
Bluetooth (BT) and WiFi transceivers as well as the GNSS 
receiver’s firmware.  

Our proposed scheme works in the following steps: 

1. SILS will first detect and form a BT Piconet on the 
go with any SPs in the vicinity (for our purpose 
and scenarios, these SPs would be running SILS 
too and the required function voluntarily and 
cooperatively. Also, we do check if the SPs have a 
fresh GNSS location fix and so assume these are 
outdoors SPs. i.e. as the SPs are outdoors, they can 
obtain their geographical location easily and 
accurately using their GNSS-enabled receivers 
augmented by whatever necessary to obtain a 
coordinates fix within 1 meter accuracy, for 
example with Google’s map-matching). 

2. Synchronizing the clock time to GNSS time and 
defining the location of WAPs within WiFi range 
to this SPs network is done next. This done by 
using the various outdoors SPs as reference nodes 
for doing TOA calculation based on the Beacon 
signals of these WAPs. Previous research work 
[10] showed that this method could achieve 
location accuracy of less than 1 meter, depending 
on the number of participating SP’s and their own 
position accuracy and geographical spread. That 
is, each of these SPs will calculate its 
pseudoranges to each of the reachable WAPs by 
comparing the timestamps of the transmitted and 
received WAPs beacon signals. The estimated 
pseudoranges are precise due to the highly 
accurate measurement of the WAPs clock offset 
and clock drift to within (±6 nsec) based on GNSS 
time.  

3. The freshly calculated WAPs positions is shared 
between all SPs on the network. An optimization 
algorithm is applied to unify the position amongst 
the achieved positioning at regular intervals as 
desired. Currently, fresh position calculation is 
performed whenever a new SP joins the network. 
SILS will use this WAPs location information to 
help localization of indoors SPs that are at deep 
indoors with less than 4 SPs in the network 
outdoors. 

4. When any SP moves indoors (from now on called 
SPm), SILS calculates SPm’s position based on 
TOA Trilateration technique using the outdoor 

SPs (from now will be referred to as SPos) as 
reference stations. Three algorithms based on BT-
to-BT connectivity are used to assure the location 
accuracy of SPm. These are described in the 
subsections below (A) BT-to-BT pseudo range 
measurements; (B) switching BT master-slave role 
to reduce error in the pseudo-ranging 
measurements; and (C) permutation reference 
points. 

5. For an SPm that is happen to be  deep indoors and 
there are only 4 or less SPos in the BT network, 
then we will use the WAPs as reference points to 
help in locating this SPm. Pseudoranges between 
such SPm and WAPs is calculated using time 
synchronized beacon signals in SP monitor mode. 
This location is now optimized with Pseudoranges 
calculated with SPos. 

A. Pseudo-range measurement via BT Signal 
Our pseudo-range measurement via BT signals is based 

on time-measurements. Imperially experimenting with 
various methods to do the pseudo range measurements 
between two BT nodes, we have concluded that Hop-
synchronization counting would the most accurate time 
measurement would be obtained by using. In a Piconet, 
when the connections between Master and Slaves have 
been made, both Master and Slaves generate a set of 
frequency sequences, which is called Hop-Sequence. 
These Hop-frequency values are generated based on 
Master’s clock offset and MAC address. This means that 
Slaves can use the same Master’s clock to count the hop-
frequencies and then synchronize with that clock. 
Therefore, when a packet is being transmitted, both Master 
and Slaves shall hop from one frequency to next selected 
frequency at same time. As illustrated in Fig. 4, time 
stamping the epoch of all frequency changes shall be very 
precise when using accurate source time (like GNSS 
receiver time). Our pseudo-range measurement algorithm 
utilizes modified POLL-NULL packets to calculate the 
time of flight for every BT transmission. The Master 
broadcasts POLL packets to check the connectivity with 
his slaves, periodically and each connected Slave will 
respond by sending NULL packets to the Master. 

 

Figure 4. Pseudo-range measurement using Bluetooth hop-

synchronization 



In Fig. 4, Master generates T1 and T3 as timestamps 
during hop-frequencies and when receiving the NULL 
packets, respectively. To measure the flight time, T1 is 

subtracted by T3 and Δtdelay (time processing delay of the 
received packet). Then the pseudo-range between the 
Master and any Slave is equal to the time-of-flight x speed 
of light. 

B. Proposed new switching  master/slave role (SR) 
In the following steps, SILS applies a new master/slave 

role-switching algorithm between all SPs in the Piconet to 
reduce the error of all pseudoranges measurement. To 
achieve this, SPm has to be the Master of this Piconet and 
will generates a database table, shared by all SPs, for 
storing several measurements described in the following 
steps: 

1. As a preparation step, SPm first measures and 
stores its pseudo-ranges from all Slaves in the 
network based on the hop synchronization 
counting. It will then collects and stores all SPos 
GNSS position. These geographical coordinates 
are stored into the “reserved bits” of the NULL 
packets that is sent from the SPos to the SPm. 
Finally it will generate a list of master-slave 
switching sequence based on the RSSI from all 
SPos (in most cases, this guarantees that switching 
rotation will be based on nearest to furthest order). 
This information is then shared with all SPos. 

2. The Master now surrenders his role to the first SPo 
in the switching list. i.e. the SPm becomes Slave 
and the SPo becomes the new Master. 

3. The new SPo Master SP will measure and store its 
pseudoranges from all SPs in the network. This 
master will now surrender his role to the next SPo 
in the switching list, and so on until the order 
reached the SPm again. 

4. The SPm, equipped with all the pseudo ranges 
from all switching master-slave sequence list, will 
now calculate its position, using a linear least 
squares fitting technique to enhance the SPm’s 
own pseudoranges measurements. Doing many 
experiments based on known SPs positions; we 
were able to achieve a 50% improvement to the 
accuracy of the SPm position calculation. 

5. SPm will perform the Permutation algorithm 
described in next section (C) to enhance its 
calculated position. 

 

C. Permutation reference stations (PR) algorithm 
To elevate the error caused by Trilateration 

measurements when SPos are in bad geometry shape 
(DOP issues), we use the following permutation algorithm: 

1. SPm will calculate an HDOP value for the current 
constellation of the network. This constellation is 
assigned two sets of weight values. 

2. An iteration process will the start by omitting the 
GNSS position and pseudoranges of each of the 
SPos one at a time to calculate a new SPm 
location. New Weight values will be assigned for 
each iteration. This is achieved by a training 
process that will change the current Weight 
values based on mean/min-difference statistics 
associated with the each position calculation 
iteration. 

3. The appropriate final position will be determined 
based on the resultant HDOP and weight set 
values. 

IV. TEST SCENARIOS AND RESULTS 
To prove SILS we have first simulated, using OPNET, 

a scenario where a group of 8 nodes start in the outside of 
our department building. One of these nodes will move 
indoors through light indoors area (signals are crossing 1 
wall from the outside) and deep indoors (signals are 
crossing 3 walls deep inside the building). The movement 
of this SP is illustrated in Fig. 5 by trajectory line. The 
other 7 nodes has moved around but stayed outdoors. 

 

Figure 5. Piconet when Master moved from outdoors to 
indoors 

In all the following experimental figures, three trials 
are conducted. For a trial where the indoor zone is a single 
wall is shown as a green line, the trial where the indoor 
zone is 2 walls is shown by the blue line, while the deep 
indoors 3-wall trial is shown by the red color. Fig. 6 shows 
the Signal/Noise obtained by the SP node that is labeled 
“master” as it travels from outdoors to deep indoors and 
back. Note that the Indoor zones in this scenario is based 
on the indoor path loss model of COST-231 [11] for both 
WiFi and Bluetooth signals. In addition, Fig. 7 shows the 
number of SPs connected in the BT network as the 
“master” nodes travels past extra walls. 



 

Figure 6. SNR measurements from outdoor to indoor 

 

Figure 7. Number of SPs connected in the BT network 

 The following experiments are chosen to demonstrate 
the achievements of the various algorithms implemented in 
SILS: 

1. Without adopting the master-slave switching 
algorithm, Fig. 8 shows the error obtained, using 
basic hop synchronization only, for locating the 
“master” node through the scenario path can be as 
high as 3.5 meters when the trial is for 3-wall deep 
indoors, and 2.5 meters for 2-wall deep trial. 

 

Figure 8. Location error from outdoors to indoors without 

switching master-slave role 

2. Fig. 9 shows the error when the master-slave 
switching and permutation algorithm are applied. It 
can be seen that for the 2-wall trail, the location error 
of the “master” SP being reduced to just over one 
meter. Also table 1 display the pseudoranges 
enhancement in comparison to the basic hop 
synchronization only measurements. However, SILS 
has failed to locate the “master” when 3-wall deep 
indoors. This is due to the restriction placed by the 
Permutation algorithm that restricts fixing when the 
BT network has 4 or less SPs connected. This issue 
has been solved as shown in the next experiment. 

 

Figure 9. Location error during development of the SILS 

without WAPs 

TABLE 1. PSEUDORANGES MEASUREMENT COMPARISON 

 
3. Fig. 10 shows how the error of 3-wall deep indoors 

trial has now been improved by including the WAPs 
as reference points to help locate the “master” when 
the BT network is less 4 SPs. Furthermore, the error 
for this trial has been reduced from 3.5 meters to just 
over 2 meters.   
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Figure 10. Location error for full SILS functionality 

A. Trials Experiments 
Android-based SPs (two Samsung Galaxy-mini III, 

two Samsung Galaxy-4 and one Samsung Galaxy III) are 
used to form various trials to confirm the performance of 
our OPNET simulations. We were able to prove that our 
BT-networking master-slave switching does improve the 
location error by 50% in the same way as our simulation 
results, see Fig. 11. However, due to lack of access to 
accurate nsec time functions on the Firmware of the GPS 
receivers on these SPs, we are unable at this point to 
conclusively demonstrate the rest of SILS functionality.  

 

Figure 11. Switching master/slave role between Android-based SPs 

V. CONCLUSION AND FUTURE WORK 
This paper presents SILS scheme to offer seamless 

outdoors/indoors Smartphones positioning achieved from 
hybridizing onboard SPs GNSS receivers with Bluetooth 
and WiFi transceivers. Our proposed scheme does not 
need any pre-installed and calibrated localization 
infrastructure (works on the go) or prior geographic 
surveying, thus enabling SILS to be viable for use as low 
cost solution for various LBS. Hop-synchronization with 
GNSS time can be used as an accurate method to measure 
time of flight between Bluetooth nodes. The proposed 
scheme uses master-slave role switching and permutation 
reference nodes algorithm to improve location accuracy..  

With the advancement of processing and memory 
onboard Smartphones has made such scheme as SILS a 

strong candidate for enabling any SP to locate itself 
indoors. We do make many assumptions regarding the 
cooperation of other SPs in the vicinity to make this 
possible and believe this is a realistic scenario for future 
solutions.  

We have hoped that we crack some of the hardware 
implementation issues such access to accurate timing 
from/to the sensors used in SILS onboard off-shelf SPs. 
However, this proved to be very difficult since most 
manufacturers have little time for researchers in academic 
capacity. We have managed to prove by trials the main 
algorithm used in SILS; however, we have not yet 
completed the full trials we planned. Irrespective, and 
based on simulation results, we have enhanced the indoors 
localization accuracy when compared to recent 
contributions in the literature. Our simulations showed that 
accuracy to within around 2 meters is possible for 3-walls 
deep indoors trials. 

Our further research focus will also include 
overcoming the signal interference issues at deep indoors. 
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