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Summary 

This thesis is about pattern formation in reaction - diffusion equations, par- 
ticularly Turing patterns and travelling waves. In chapter one we concentrate 

on Turing patterns. We give the classical approach to proving the existence of 
these patterns, and then our own, which uses the reversibility of the associated 
travelling wave equations when the wave speed is zero. We use a Lyapunov - 
Schmidt reduction to prove the existence of periodic solutions when there is 

a purely imaginary eigenvalue. We pay particular attention to the bifurcation 

point where these patterns arise, the 1: 1 resonance. We prove the existence of 

steady patterns near a Hopf bifurcation and then include a similar result for 

dynamics close to a Takens - Bogdanov point. 
Chapter two concentrates on travelling waves and looks for the existence of 

such in three different ways. Firstly we prove the conditions that are needed for 

the travelling wave equations to go through a Hopf bifurcation. Secondly, we 
look for the existence of travelling waves as the wave speed is perturbed from 

zero and prove when this occurs, again, using a Lyapunov - Schmidt reduction. 
Thirdly we describe a result proving the existence of periodic travelling waves 

when the wave speed is perturbed from infinity. In the last part of chapter 
two we prove the stability of such waves for A-w systems. 

In chapter three we discuss computer simulations of the work done in the 

earlier chapters. We present the mappings used and prove that their behaviour 

is similar to the original partial differential equations. The two specific exam- 

ples we give are a predator prey model and the complex Ginzburg - Landau 

equations. 
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Chapter 0 

Introduction 

This thesis is about pattern formation in reaction - diffusion equations. We 

study the existence of two types of patterns: those that are periodic in space 

but steady in time and those that are periodic in both space and time. 

In 1952 two papers were published which have been very influential in 

mathematical modelling. They both presented models of biological phenom- 

ena. Turing [Turing] described a model for developmental pattern formation 

which explained the appearance of structure in a previously undifferentiated 

collection of cells in an embryo. Hodgkin and Huxley's work [Hodgkin] consid- 

ered the propagation of an electrical pulse along a nerve axon. Although the 

two problems are very different, the models used belong to the same general 

class, that of reaction - diffusion equations. Turing showed that in some cir- 

cumstances these equations can have solutions which are independent of time, 

but vary in space. Hodgkin and Huxley showed that under different conditions 

they can have travelling wave solutions. 

In the following years many more phenomena ranging from contractions 

of the heart to the behaviour of the slime mold `Dictyostelium discoideum' 

have been shown to exhibit similar patterns and have been modelled using 

the same class of *equations (see [Murray] for example), see figure [0.1]. These 

phenomena have also been modelled using discrete methods, see for example 
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Figure 0.1: Patterns in slime mold and the 13-Z reaction 

[Hassell] [Ives]. Travelling waves have also been seen in the `LIMA' chemical 

reaction [Ouyang] [Winfree], but what is remarkable is that Turing patterns 

have also been seen there. Just about all the work that has been done on these 

two types of pattern has concentrated on either one or the other [Roberts]. 

In this thesis we include both in the same framework, or, iu other words, 

we use the same set of equations to investigate the existence of these pat- 

terns. Instead of restricting ourselves to what might strictly be called `Turing 

patterns' we consider any steady spatially periodic solutions. 'fliese are then 

just travelling waves with zero speed. A special type of model vliich we c-oin- 

sider is those in which the reaction part of the system goes through a IIopf 

bifurcation. Kopell and Howard [Kopell & Howard] have already sl)owii that 

travelling waves exist for such models, and we prove that 'l'uring patterns also 

exist under certain conditions. 

As much as possible we prove our results using general diffusion matrices 

as opposed to just diagonal diffusion which is the common approach. This is 
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important since even if the original models have diagonal diffusion then trans- 

formation of variables will affect this. It also helps to give a wider picture 

and means that more varied behaviour is seen. Throughout we restrict our- 

selves to considering one spatial dimension. We give specific examples as we 

go along, and we finish the thesis by giving various results which have come 

out of computer simulations. 

Overview 

In chapter one we concentrate on Turing type patterns. We give the classi- 

cal approach and then our own which uses the reversibility of the associated 

travelling wave equations when the wave speed is zero. We use a Lyapunov 

- Schmidt reduction to prove the existence of periodic solutions when there 

is a purely imaginary eigenvalue -a result that was first proved by Devaney 

[Devaney]. We pay particular attention to the bifurcation point where these 

patterns first arise. We prove the existence of patterns near a Hopf bifurcation 

and then describe the results of Pearson and Horsthemke [Pearson] who prove 

the same thing for dynamics close to a Takens - Bogdanov point. 

In chapter two we look for the existence of travelling waves in three ways. 

Firstly we prove the conditions needed for the travelling wave equations to go 

through a Hopf bifurcation. Secondly we look for the existence of travelling 

waves as the wave speed c is perturbed from zero, again using Lyapunov - 

Schmidt reduction. This perturbation is the connection between steady pe- 

riodic solutions and periodic travelling waves. Thirdly we describe a result 

by Kopell [Kopell] to prove the existence of periodic travelling waves when c 

is perturbed from infinity for two different types of local dynamics: periodic 

and near a Takens - Bogdanov point. The last part of chapter 2 proves the 

existence and stability of travelling waves in A-w systems, and extends a 
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result in [Kopell & Howard]. 

In chapter 3 we discuss how we simulated some of the work of earlier 

chapters on computer. We present the mappings we used and prove their 

behaviour is similar to the original partial differential equations. We present 

two examples: a predator prey model and the complex Ginzburg - Landau 

equation for which we use the same approach as [Rand]. 

Reaction - Diffusion Systems 

As already mentioned reaction - diffusion systems were proposed as models 

for biological phenomena in [Turing], and they have been widely studied since 

then. They are partial differential equations of the form 

ät =f u)+ Ds 
dx 

where u(x, t) is a vector of populations or densities, t is time and x is the 

spatial variable. As the name suggests these equations have two parts: a 

reaction part, given by f in the equation above, which describes the local 

dynamics of u; and a diffusion part which desuibes how u spreads out in space. 

Diffusion is based on the assumption of a random walk, and how individual 

populations affect each others movement is given by the matrix D. In all our 

work we take D to be constant. 

v 
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Chapter 1 

Turing Instability 

In 1952 Alan Turing [Turing] suggested that reaction diffusion systems could 

exhibit steady state heterogeneous spatial patterns. His idea was that if, in 

the well mixed or homogeneous system (ie in the absence of diffusion), the 

system has a stable steady state then spatially inhomogeneous patterns may 

evolve by diffusion driven instability. For instance, in a two species model in 

one spatial dimension of the form 

ut =f (u, v) + d, luxx 

vt = g(u, v) + d2vxx 

where f and g are the kinetics, Turing patterns may exist if certain conditions 

are met. These have been well documented for the case where the diffusion is 

diagonal [Murray]. We will be considering cases with general diffusion matri- 

ces. 

In this chapter we put the idea of Turing instability in a broader setting by 

considering an alternative approach to the classical one. We use reversibility to 

prove the existence of steady, spatially periodic solutions of reaction diffusion 

equations over a much larger region of parameter space. We restrict ourselves 

to considering one spatial dimension in `large' domains; where `large' means 

that we may consider patterns of any wavelength. Throughout this chapter 
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we consider the system of reaction diffusion equations 

ut =f (u) + Dux.. (1.1) 

where u= u(x, t) E Rn, tER, xER. We assume throughout that the 

diffusion matrix, D, is invertible, and that f: Rn H Rn is C°°. 

Finally, the end of the chapter considers the existence of these patterns near 

certain singularities. Firstly we consider Hopf bifurcations and then, following 

[Pearson], consider a coalescence point of Hopf and saddle-node bifurcations. 

1.1 The Classical Approach 

The classical approach to proving the existence of Turing patterns is to look for 

homogeneous solutions which are stable to homogeneous perturbations, but 

unstable to a band of heterogeneous perturbations. For examples of simple 

models in which Turing patterns have been shown to exist see [Schnakenberg] 

and [Gierer]. We give a brief review of the main ideas restricting, for simplicity, 

to the case n=2. 

Let u� be a homogeneous equilibrium solution to (1.1). Linearising about 

u,, gives the equation 

wt = duf (u«)w + Dwxx. 

Let A= dj (u�). Then u� is stable to perturbations of wavelength 2ir/k if the 

eigenvalues of A- k2D have negative real part. If n=2 this is equivalent to 

the conditions: 

tr(A - k2D) <0 (1.2) 

det(A - k2D) > 0. (1.3) 

6 



Figure 1.1: Graphs of det(A - k2D) 

where tr indicates the trace and det the determinant. We assume that tr(A) < 

0 and det(A) > 0, so u� is stable to homogeneous perturbations. We also 

assume that dll > 0, d22 >0 and detD -0 0. Then (1.2) holds for all k. The 

left hand side of (1.3) is quadratic in k2: 

det(A - k2D) = det(D)k4 - Bk2 + det(A) 

where B= alid22 + a22d11 - a12d21 - a21d12. The possible graphs of this 

quadratic are shown in figure [1.1]. If detD >0 and B>2 detAdetD then u� 

is unstable to perturbations with wave numbers k in the finite interval [a, ß], 

where a2 and #2 are the roots of the quadratic above. If detD '< 0 then u� is 

unstable to perturbations with k in the interval [a, oo). 

The existence of Turing patterns can be proved near the transition from 

case (ii) to case (iii) (see figure [1.2]) using bifurcation theory methods. Let 

aý2 be the double root of the equation at the transition point. Bifurcation 

theory shows that for B sufficiently close to 2 detAdetD equation (1.1) will 
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Figure 1.2: Graph of det(A - k2D) when there is a double root 

have equilibrium solutions of wavelength 21r/a, which are close to u.. If these 

solutions bifurcate supercritically, ie. they exist for B>2 detAdetD, then 

they will be stable (at least to perturbations with the same wavelength). 

1.2 The Travelling Wave Equations 

We now consider the same problem, but in more depth and using an alternative 

method. Later on we will be investigating the connection between the steady, 

spatially periodic solutions and travelling waves. To do this we consider the 

travelling wave equations of (1.1). Looking for solutions of the form u= 

u(x - ct), where c is the wave speed, gives the system of second order O. D. E. 's 

Du"+cu'+ f(u) =0 
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or, equivalently, the system of first order O. D. E. 's 

ü=v (1.4) 

v' _ -D-'[f (u) + cv], 

where' denotes differentiation with respect to s= x-ct. When c=0 (ie. when 

we have a stationary wave) the system of equations (1.4) becomes reversible 

under the involution (s, u, v) H (-s, u, -v), where `reversible' is defined as 

follows: - 

Definition 1 'Consider the n-dimensional autonomous dynamical system 

dx 

ät _ f(x)ý 

where xE Rn and f is C°°. This system is defined to be reversible if there 

exists a transformation R of the state variables such that R is an involution 

and 
dx 

_ _Rf (Rx) =f (x). 
ät 

(i. e. the equations are invariant under x i-+ Rx and t i-º -t. ) 

This symmetry can be used to look for periodic solutions of (1.4) when c=0. 

These correspond to time independent, spatially heterogeneous, solutions of 

(1.1), ie. Turing patterns. 

1.2.1 Linearisation 

We will prove the existence of periodic solutions of (1.4) by using bifurcation 

theory methods. We begin by considering the linearisation of (1.4). Suppose 

u= u* is an equilibrium solution of ut =f (u), then u= u� v=0 is an 

equilibrium of (1.4) and the linearisation at this point is 

I=v (1.5) 

v' = -D-'[Au + cv], 
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where A= du f (u�). We look for solutions of the form (u, v) = e)tt(ü, v) which, 

on substituting, gives 

and so 

ýü =v 

. ýv = -D'1 [Aü + cv] 

atü = -D-1[A+cal]ü. 

For non-trivial solutions to exist we must have 

or, equivalently, 

det[D-1(A + cXI) +A 2I] =0 

det[A + c. AI + \2D] = 0. 

When c=0, A is an eigenvalue of (1.5) if and only if -a2 is an eigenvalue of 

D'1 A. So, if .1 is an eigenvalue, then X, -A and -_X are also. This also follows 

from the reversibility of the equations [Seveyuk]. Thus the eigenvalues occur in 

the following groups: a double zero if D''A has a zero eigenvalue; two purely 

imaginary if D-' A has a real positive eigenvalue; two real if D'1 A has a real 

negative eigenvalue; four non-real if D-' A has a non-real eigenvalue. 

1.3 Periodic Solutions in Reversible Systems 

1.3.1 Liapunov - Devaney Theorem 

For steady, spatially periodic solutions we will be concerned with when purely 

imaginary eigenvalues occur - i. e. when D'1A has real positive eigenvalues. In 

this case there is a result, analogous to Liapunov's Theorem for Hamiltonian 

systems, which applies to reversible systems and appears to have been pre- 

sented first by Devaney [Devaney]. It states that if a reversible vector field has 
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a purely imaginary eigenvalue at a symmetric equilibrium point p, then, sub- 

ject to certain non-resonancy restrictions, there exists a one-parameter family 

of nested closed orbits of the vector field about p. 

Definition 2 An equilibrium point p of an R-reversible vector field is sym- 

metric if, and only if, p is fixed by the involution R. 

Theorem 3 Let X be a C2 R-reversible vector field in a neighbourhood of a 

symmetric equilibrium point p. Let A be an eigenvalue of dX(p), and suppose 

A is purely imaginary. Then, if no other principal eigenvalue is equal to )1 
-WG 

for any integer k, there exists a C2, two-dimensional, invariant manifold MA 

containing p with the property that MA consists of a nested, one-parameter 

family of periodic orbits. Moreover, the periods of the closed orbits tend to 

2ir/I. I as the initial conditions tend to p. 

Proof: 

\'Ve give a sketch proof of this result as it applies to our problem. The 

proof uses Lyapunov - Schmidt reduction (see eg. [Golubitsky]) and follows a 

similar pattern to [Vanderbauwhede]. For an alternative proof see [Devaney]. 

Suppose we have the system 

du 
=f (u) 

then we define 

F: C12rxRý-ºC2 

by 

F(u(s), r) = (1 + r) ds -f 
(u(s))" 

where C2. and CZ,,, are the spaces of continuous and once differentiable 2ir 

periodic functions from Rn to R. Then periodic solutions of period F; -, are 
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solutions of 

F(u�r) = 0. (1.6) 

By rescaling time, if necessary, assume du f (0) has simple eigenvalues ±i and 

no eigenvalues equal to ±ni for any integer n, n01. Then L=d. F(0,0) has 

a two dimensional kernel K and a two dimensional cokernel C2. ß/I where I is 

the image of L. Define an inner product on C2, ß by 

1 2ir (u(s), v(s)) = 2z 
f 

u(s)TV(s)ds. 

This restricts to an inner product on C. Let Al and N denote the orthogonal 

complements to K and I in CZ, 
r and C2,. respectively: 

CZ, =K®M 

C2, r=N®I. 

Let E denote the projection E: C2. ß -+ I with kerE = N. Then equation 

(1.6) is equivalent to the pair of equations: 

EF(u, r) =0 (1.7) 

(I - E)F(u, rr) = 0. (1.8) 

We can identify K and N with C. Assume K and N are spanned over C by ý 

and 0 respectively; so that any element of K can be written as zc for some z 

in C and, similarly, any element of N can be written as wo for some wEC. 

Then we can write u= zc +ü where üEM. Equation (1.7) becomes: 

EF(zc5 + ü, T) = 0. 

Since Ed. F(0,0) : CZ,, --> I is surjective this equation can be solved implicitly 

for ü to give 

ü= W(z, T). 
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Where W is unique and defined for (z, T) in some neighbourhood of (0,0). 

This implies that 

W(O, rr)=0dß-. 

The projection I-E: C2ir -* N is given explicitly by 

(I - E)v = (0, v). 

Substituting in W gives the following form for (1.8): 

9(z, r) = (0, F(zc + W(z, r), r)) =0 

where g: CxR -º C. Again, uniqueness of IV implies that 

9'(O, T) =0VT. 

There is a natural action of the circle group Sl on C2, r and C2.,, defined by 

(Ou)(s) = u(s + B). 

The mapping F commutes with this action, and the inner product is invariant 

under it, hence 

(9u, Ov) = (u, v). 

It follows that the subspaces K, M, I and N are Sl invariant; the projection 

E and the map W are equivariant and hence so is g, ie. 

9(B' z, r) = 0'9(x, 7)" 

The action of Sl on K, identified with C, is given by 

B"z=eiez 

and similarly for N. It follows that g must have the form (s« C , ou. o t5k, 3' 

g(z, T) = [Q(1 z12, T) + 2P(1z12, T)]Z. 
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So, non-trivial solutions of g(z, T) =0 are given by 

P(1z12, T) =0 (1.9) 

Q(1z12, r) =0 (1.10) 

We now take into account the fact that the system is reversible, ie. there 

exists an orthogonal involution R such that f (Ru) = -Rf (u). Therefore F is 

equivariant with respect to the actions 

u(s) F+ Ru(-s) on C127r 

u(s) H -Ru(-s) on C27. 

Again the inner product is invariant under this and so g will commute with 

the induced actions on K and N. This equivariance takes the form I 

9(z, r) = -9(z, r) 

which implies that 

Q(Iz12, T) - 0. 

Thus, periodic solutions are given by 

P(1z12, T) = 0. 

Lemma 4 PT(0,0) 00 

Proof: 

P1. (1 z12, T) = -ig: T(z, T) 

_ -i(&, duFr(c6 + Wz) + d2uF(c + Wz, WWT)+ d. F(Wrz)) 

where we have missed out dependent variables for ease of presentation. We now 

evaluate this at (z, T) _ (0,0). We calculate derivatives of W by differentiating 
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(1.7) with the substitution u= zO + W. So to find W. we differentiate with 

respect to z to get 

EL(O + Wz) =0 at (0,0). 

Now ¢E ker(L) and EL =L gives 

LW, (0,0) = 0, 

but TV (0,0) E Al and L is invertible on Al so W, (0,0) = 0. Similarly WT = 

L-LEFT, but 

F(0�r)=0=F, (0,0)=0 

and so WT(0,0) = 0. Finally we may ignore the term involving du. F since 

L=d. F(0,0) and 0 is chosen in the complement of the image of L. So the 

only term on the right hand side of the inner product to remain is 

duF, (0,0) 0= 
d0. 

We may choose 0 such that 0= e"c where c is an eigenvector of A= du f (0,0) 

with the properties: 
Ac=-ic, ct"c=1. 

And, similarly, we may choose 0 such that 0= et'd where d is an eigenvector 

with the properties: 

Atd = id, dc=1 dtc = 0. 

We know the latter two properties for d since 

-idtc = dt(Ac) = (Atd)c = idtc = dc = 0, 

and we know that dc#0 because otherwise c would be orthogonal to every 

eigenvector of At implying that c=0 which is a contradiction. Plugging these 

values for 0 and 0 into our equation for PT gives us 

PT(0,0) = 1. 
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This result implies that (1.9) can be solved for. rr as a function of Izj2, ie 

T= r(1z12) in a neighbourhood of z=0. Hence there is a one parameter 

family of periodic orbits near the origin with period near to 27r. 

Applying this to system 1.1 gives the following corollary. 

Corollary 5 If D-1A has a real positive eigenvalue k2 and m2 k2 is not an 

eigenvalue for any integer m, then equation (1.1) has a one parameter fam- 

ily of steady spatially periodic solutions which converge to the homogeneous 

equlibrium u.. As they approach u� the wavelengths of the solutions converge 

to 2ir/k. 

If we return now to figure [1.1] then we see that this corollary gives us the 

existence of steady, spatially periodic solutions for all parameter values which 

fall into one of the cases (iii), (iv) or (v), not just those near the Turing 

bifurcation point. In cases (iv) and (v) there will be solutions with wavelength 

near 27r/a; in case (iii) there will be families of solutions with wavelengths 

near both 2r/a and 27r/Q. 

1.3.2 1: 1 Resonance 

The classical approach to finding Turing patterns (e. g. see [Murray]) amounts 

to discovering when (1.5) has two pairs of purely imaginary eigenvalues. It 

is therefore interesting to consider the bifurcations which occur in this case. 

What is known classically as a Turing bifurcation point coincides with what 

is called a 1: 1 resonance, in the reversible system (1.4); that is to say there is 

a double eigenvalue iwo and a double eigenvalue -iwo. The following results 

come from [Arnol'd]. 

We will suppose that our system depends on a parameter e where e=0 

corresponds to the resonance and that the singular point is symmetric, at zero 
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and is independent of e. We may change the time scale if necessary so that 

wo = 1. So we have a double eigenvalue at i and at -i when e=0. We also 

assume that fore <0 the eigenvalues of (1.5) do not lie on the imaginary axis, 

while for e>0 they are ±vli, ±v2i, where vl and v2 are real and close to one. 

The difference I v2 - vi is of the order of Ve-. Since the origin is symmetric, each 

periodic solution of our system, in a neighbourhood of the origin, intersects 

the fixed involution plane at two points. These form a curve r, that depends 

on e. On this curve the involution R permutes the points belonging to the 

same periodic solution. 

Theorem 6 (Sevryuk) If the terms of order <3 of the Taylor series satisfy 

certain non-degeneracy conditions, then by a suitable choice of a coordinate 

system Oxy, which depends smoothly on e, for the fixed plane of the involution, 

and by a change in the sign of e, if necessary, the equation of the family of 

curves r is reduced to the form 

(e ± x2)x2 = y2. 

The choice of sign is determined by the terms of order <3 in the Taylor series. 

With the + sign the bifurcation is said to be hyperbolic, with the - sign it is 

elliptic. 

Remarks on the bifurcation diagrams - See figure [1.3] 

(a) Elliptic mode: F, = {x, y: (e - x2)x2 = y2}. 

Fore < 0, I', is just the origin, i. e. there are no periodic solutions near 

the origin. Fore > 0, r, has the form of a figure of eight. Thus, when the 

system passes through the 1: 1 resonance in the elliptic mode, a two dimensional 

surface is created from the origin which is foliated into symmetric cycles and 

has the topology of a sphere with two points identified (corresponding to the 
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e<0 
E=O E>0 

Figure 1.3: Bifurcation diagrams of periodic solutions near the 1: 1 resonance 

origin). The size of the surface is proportional to f. 

(b) Hyperbolic mode: I'E = {x, y: (e + x2)x2 = y2}. 

Ate =0 in the phase space of the system we have two two-dimensional 

C1-surfaces which are tangential at zero and are foliated into symmetric cycles. 

In order to relate the periodic solutions described above to the work we have 

already done we use a result from [Bridges]. Although, the work was done 

with Hamiltonian systems in mind, as is often the case, it can be shown to 

apply to reversible systems. We return to the case when we have the double 

eigenvalues moo. 

Theorem 7 Suppose the system has a 1: 1 resonance as described above, and 

that the same non- degeneracy, conditions are satisfied then the periodic solu- 
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Figure 1.4: Branches of periodic solutions near the 1: 1 resonance 

tions in a neighbourhood of the bifurcation point are in one-to-one correspon- 

dence with zeroes of the mapping g=0 with 

9(x, w, a) = x[-S(w - wo)2 + -rx2 - (a - ao)] 

where x is the amplitude of the periodic solutions; w is the frequency of the 

solutions; a is the bifurcation parameter such that a= ao is the resonance 

point; S and y are either +1 or -1 and indicate whether the bifurcation is 

elliptic or hyperbolic. 

The branches of periodic solutions are shown in figure [1.4]. When Sy <0 

we have the classical Turing bifurcation and can relate figure [1.4] to figures 

[1.1] and [1.2]. The first picture correlates to case (iii) the second to figure 

[1.2] and the third to case (ii). Here the two branches of solutions are globally 

connected and vanish into the origin as a --> ao. We must remember though, 

that we only expect these pictures to be true close to the bifurcation point. 

When Sy >0 the related graphs will be the same only reflected in the k axis. 
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Figure 1.5: Position of eigenvalues for system (1.5) 

Here the two branches come together, detach from the origin and persist into 

the unstable region. 

1.4 Two Species Models 

We can give a more detailed interpretation of the conditions for the existence 

of these patterns if we restrict ourselves to the case when n=2, or, in other 

words, to two species models. When n=2 (1.5) has four eigenvalues. The po- 

sition of these is determined by the trace and determinant of D-1A as shown 

in figure [1.5]. Throughout we use D= [d1 ] and A= [a; j]. We have two 

cases to consider: firstly, when there is precisely one pair of purely imagi- 

nary eigenvalues, and secondly, when there are two pairs of purely imaginary 
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eigenvalues. 

1.4.1 One Pair of Imaginary Eigenvalues 

The region of parameter space where we have precisely one pair of purely 

imaginary eigenvalues is defined by det D'1A < 0. In this case D-1A has a real 

positive eigenvalue and a real negative eigenvalue. There are two possibilities: 

detD >0 and detA <0 

Since det A<0 then u. is a saddle point of ut =f (u), and so the periodic 

solutions here cannot be classed as Turing instabilities, strictly speaking, as u� 

is not stable in the homogeneous system. If the `self-diffusion' coefficients d11 

and d22 are positive the condition dlld22 - d12d21 >0 is satisfied either if the 

cross-diffusion terms have opposite signs, or if their product is small compared 

to that of the self-diffusion terms. In particular, it is satisfied for diagonal 

diffusion matrices. 

detD <0 and det A>0 

Here u* is not a saddle point and could be stable. If we again assume that d11 

and d22 are positive then the cross-diffusion terms must have the same sign and 

their product must now be large in comparison with that of the self-diffusion 

terms. 

1.4.2 Two Pairs of Imaginary Eigenvalues 

The region where there are two pairs of purely imaginary eigenvalues is given 

by 

det D-lA > 0, (TrD-1A)2 >4 det D-lA 

The first condition is just the opposite of that above, so if u* is stable then 

D could be diagonal or have cross diffusion which is small or with coefficients 
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of opposite signs. If u� is a saddle point then we need strong positive cross 

diffusion. If we suppose that u* is stable and that D is diagonal then the 

second condition becomes 

a22 + 
d22 

all >2 det A. (i) 
d22 

VT- dll 

The two conditions for u* to be stable are 

all + a22 <O (ii) 

and 

aiia22 - a12a21 > 0. iii) 

(i) and (ii) imply that all and a22 have opposite signs, and this with (iii) then 

gives that a12 and a21 must also have opposite signs. If we assume without 

loss of generality that all >0 then Ia22I > all. The condition for the diffusion 

coefficients is d22/dll > d* >1 where d* is the largest solution of 

/a22+ des 
ail -2 det A=0. 

d22 di, 

These are the well known conditions for the classical Turing bifurcation. 

1.5 Stability 

Although we have proved the existence of steady, spatially periodic solutions 

over a larger region of parameter space, it seems likely that away from the 

actual Turing bifurcation point (ie. the 1: 1 resonance) these solutions will be 

unstable. To see this let u(x, t) = ü(x) be one of these solutions near u.. 

Linearising (1.1) about ü gives 

wt = duf (ic)w + Dwzx 
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We expect ü to be stable if (and essentially only if) the spectrum of the 

operator on the right hand side of the equation lies in the left half plane. 

However, this operator is a perturbation of the operator at u=u,,, ie. Aw + 

Dw, xx, and we can only expect it to be stable near where Aw + Dwx., is stable 

- ie. near the Turing bifurcation point. Although only stable patterns are 

expected to be `observable', information about unstable patterns is necessary 

in the construction of global bifurcation diagrams for Turing patterns. 

1.6 Turing Instability Near a Hopf Bifurca- 
tion 

In the next chapter we investigate what happens to the steady, spatially pe- 

riodic solutions when the system ut =f (u) goes through a Hopf Bifurcation. 

Before we can do this we need to show that these solutions exist before the 

bifurcation takes place. 

Proposition 8 Consider the reaction-diffusion system 

ut =f (u, A) + Dux., 
, 

where uE R' and AER. Suppose the homogeneous, system goes through a 

Hopf Bifurcation at A= Ao from the stable steady state u=u,. Then there 

exists a diffusion matrix D for which the reaction-diffusion system exhibits 

steady, spatially periodic solutions for A close enough to Ao. 

Proof: 

We define 

u=Us 
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We may transform J into Jordan normal form, using a transformation A, to 

give 
aA -W( 

AJA'1 = w(A) (. A)) 0. 

0 [Tý3(A)) 

Here a(Ao) = 0, w(. 1o) 0 and T is an (n-2) x (n-2) matrix. The diffusion 

matrix D may now be chosen so that B= A(J - Dk2)A-1 is of the form 

I a-Slk2 -w-S2k2 0 B= w-S3k2 a-Sgk2 

0 [Tq - D;; k2] 

We define the matrices E and F by 

B= E0 
0F 

This gives 

IBS = IEIIFI 

where J BI = det(B). If E satisfies the Turing condition IEI = 0, then so does 

B. We now consider the equation JEt = 0: 

5154 
- 

6253)k4 
- 

(a(Sl + 814) + w(53 - 
S2))k2 + CY2 + W2 =0. 

If we assume that 8154 - 5253 >0 then we need 

a(81 + 84) + w(53 - ö2) i0 

and 
(c (Si + 64 + W(53 - 

62) )2 
-4 

5154 
- 

6263) (a2 + w2) >0. 

For u=u, to be stable before the Hopf bifurcation we must have a<0. We 

may assume w>0 for A close to Ao and so if S3 - ö2 >0 then the first condition 

is satisfied near the bifurcation point since a --> 0 as A -+ Ao. In particular we 

note that the cross-diffusion terms cannot be zero in the Jordan normal form 

coordinates. The second condition may be rearranged to give 

a2(b1 - 54)2 +W2(62 +8 3 )2 + 2aw(Si + 84)(83 
-- 

82) + 4x28283 - 4W2b18q >0. 

This will be true close to the bifurcation point as long as (62 + 83)2 > 46164. 
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Example 

In order to give a clearer idea about what the diffusion coefficients must 

look like to satisfy the above conditions we consider a particular example. 

A common model used to describe a spatially extended system going through 

a Hopf Bifurcation is the complex Ginzburg - Landau (CGL) equation (see eg. 

[Newell]). Near a Hopf bifurcation a change of coordinates will put the terms 

of degree <4 of the Taylor series of any vector field into the normal form of 

the CGL equation. Clearly, the change of coordinates will also affect any diffu- 

sion coefficients. Consequently, we use an extended version with four diffusion 

coefficients which, after rescaling the time and space variables to reduce the 

number of parameters by two, has the following form: 

ut = (µ + i)u - (1 + vi)I uI2u + (1 + iß)uxx + (i' + i() xx 

Here p is the bifurcation parameter. The origin is stable if fc <0 and unstable 

if y>0. If this is written as a system of two equations for the real and 

imaginary parts of u then the self-diffusion coefficients are d11 =1+ and 

d22 =1-y, and the cross-diffusion terms are d12 = -, 3 and d21 =C+ß. 

Linearising about the origin we have 

B-J-Dk2 = 
µ-dllk2 -1-d12k2 
1-d21k2 11 -d22k2 

We now consider the equation ! BI =0 given by 

(diid22 - d12d21)k4 - (p(dil + d22) + (d21 - dl2))k2 + µ2 +1=02 

and on substitution: 

(1 + ß2 - 72 - C2)k4 - 2(jz + ß)k2 -r (1 + µ2) = 0. 

This equation has one positive solution for k2 if 

1-i-0 2 <72+b21 

25 



two positive solutions if 

1- 2 
1+#2>72+C2> 

(1 ß) 

+ f12 

and 

11 > -a; 

and no positive solutions in the complement of the closure of the union of these 

two regions. See figure [1.6]. Remarks 

1. One of the positive roots goes to oo as the boundary 1+ ß2 = 72 + (2 is 

approached. 

2. The 1: 1 resonance occurs along the boundary 72 + (2 = (1 - Mß)2/(1 + µ2) 

when a> -/3. 

3. The 1: 1 resonance occurs simultaneously with u� being stable as a solution 

of the homogeneous equation when ,ß>0, y<0 and 1 +, 82 = rye + C2. This 

situation corresponds to the classical Turing bifurcation. 

The CGL equation will have steady, spatially periodic solutions whenever 

7 2+(2 >1+ /32, ie. whenever the self-diffusion terms are sufficiently different 

or the sum of the cross-diffusion terms is sufficiently great. However, these 

solutions are probably not stable as solutions of the P. D. E. Stable Turing 

patterns probably do result from the Turing bifurcation described in remark 

(3). For this to occur we must have ß>0, ie. the cross-diffusion terms must 

be sufficiently different, and rye + (2 must be in the relatively narrow band 

1- (1+ ß)Z 
<f2+(2<1+ß2. 
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1.7 Turing Instability Near a Takens - Bog- 
danov Point 

In [Pearson] it is shown that if a Turing instability occurs in a reaction-diffusion 

system with a nearly scalar diffusion matrix, then the corresponding homoge- 

neous or well mixed system has at least two eigenvalues near zero. Conversely, 

if the homogeneous system is sufficiently close to a Takens-Bogdanov point (a 

coalescence point of Hopf and saddle-node bifurcations), where two eigenval- 

ues will be zero then there exists a nearly scalar diffusion matrix such that a 

Turing instability occurs. We give a condensed version of their results. 

Consider the general reaction-diffusion system 

ut =f (u, A) + Dux., 

where u is an n-vector, A is a p-vector of parameters, D is an nxn matrix and 

xER. Suppose u=u, is a stable steady state of the homogeneous system so 

that the eigenvalues of 

i 
Ou u=U' 

all have negative real part. In order to find Turing instabilities we analyse the 

determinant 

0=IJ-Dk21. 

For the following results we need J to have at least two eigenvalues that are 

sufficiently close to zero. In order to find such a point we need two control 

parameters, and so we suppose A= (A1, A2) and without loss of generality we 

may assume the double-zero condition is at A=0. We also define D such that 

D; 1 = a(Sij +edtj), where a is a real number, S; j is the Kronecker delta and d 

is a real matrix. The determinant 0 may now be written as 

0(Dk2, E) =IJ- ak2(I + ed) 1. 
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A well known result states that Turing instabilities cannot occur with scalar 

diffusion matrices. So in the system above there are no such instabilities when 

e=0. However, e may be as close to zero as we like. 

Lemma 9 If, in the system described above, there exists a set of dis such that a 

Turing instability occurs for arbitrarily small but nonzero e and the eigenvalues 

of J are bounded in modulus then 

lim)tC =0 
E-ýo 

where A= Ac is the point where 0=0. 

The proof of this result comes from considering the characteristic equation and 

the position of the eigenvalues. For a Turing instability two of the eigenvalues 

must have surrounding neighbourhoods which contain part of the positive real 

axis. So, as e decreases these two eigenvalues must near the origin. 

Theorem 10 For a system with kinetics sufficiently close to a Takens - Bog- 

danov point, there exists a set of di1 such that a Turing instability occurs for 

arbitrarily small but nonzero c. 

To prove this J is transformed to Jordan-Arnold form with transformation A 

to give 
010 

AJA-1 = -Pi -P2 
0 (T 1) 

Here the Takens-Bogdanov point corresponds to pl = P2 =0 and the steady 

state is stable when pi, p2 > 0. T is an (n-2) x (n-2) matrix. The d21 are now 

chosen such that B= A(J - ak2)A-' is of the form 

-akt 
-Pl + ecak2 B= 

0 

1 
i -P2 - ak 0 

Tjj-(a-I-O(c))k2, i= j 
Tij - O(ek2), i 
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The matrices E and F are defined by 

B_ 
E0 
0F 

and as before we note that if E satisfies the Turing condition then so does B. 

A quick calculation shows that this happens when 

ec - P2 >07 pi =4 (Ps - Ec)2 . 

So, as long as we are close enough to the Tatrens - Bogdanov point there will 

be a Turing instability for small e. 
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Chapter 2 

Travelling Waves 

In this chapter we investigate the periodic solutions of system (1.4) when 

c 54 0. These correspond to periodic travelling wave solutions of (1.1). It is 

important to note that when c 54 0 system (1.4) is no longer reversible and 

so the constraints on the eigenvalues that applied in the previous chapter no 

longer do so. We prove the existence of periodic solutions in three different 

ways. Firstly by looking for a Hopf bifurcation, secondly by considering what 

happens as c is perturbed from zero and lastly by looking at what happens 

when c is perturbed from infinity. The final section proves the existence of 

travelling waves and their stability for one class of reaction - diffusion systems, 

namely A-w systems. 

2.1 Hopf Bifurcations 

We know that system (1.4) exhibits periodic travelling wave solutions when it 

goes through a Hopf Bifurcation. This section investigates when this occurs. 
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2.1.1 Eigenvalues 

For simplicity we only consider two species models, or in other words four 

dimensional systems of travelling wave equations. If we consider system (1.4) 

with linearisation (1.5) about the steady state (u, v) = (u,,, 0) then the char- 

acteristic polynomial is 

(detD)a4 + c(trD)A3 + ((detD)tr(D-1A) + c2) \2 + c(trA)A + detA . 

Descartes' rule of signs easily proves the following lemma. 

Lemma 11 If trD > 0, trA <0 and detA >0 then the four eigenvalues 

cannot all have strictly positive real parts, or all have strictly negative real 

parts. 

Note that the hypotheses of this lemma basically cover the case when u,,, is a 

stable equilibrium point of ut =f (u), since trD >0 is a reasonable assumption 

for any diffusion matrix. 

Once c has been perturbed from zero, periodic travelling waves will occur 

in system (1.4) when there is a Hopf bifurcation. 

Proposition 12 For c 76 0 system (1.4) will have a Hopf bifurcation precisely 

when trA/trD >0 and 

2= (trA)2detD + (trD)2detA - (trA)(trD)(detD)tr(D-lA) 
- (trA)(trD) 

(2.1) 

Proof: 

We look for (a2 + a2) to be a factor of the characteristic polynomial 

IDIA4 + c(trD)A3 + (I DI tr(AD-1) + c2)A2 + c(trA)) + IAI, 

where IMI = detM. If we assume (a2 + a2) is a factor, where a is a real 

number, then the polynomial will look like 

IDI(A2 + a2)(A2 + bA + d), 
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where b and d are real numbers, or on multiplying out 

IDI(A4 + ba3 + (a2 + d) A2 + a2bA + a2d). 

Equating the coefficients of a3, A and 1 in the two polynomials gives 

2_ trA b_ c(trD) 
_ 

lAItrD 

trD IDI 'd IDItrA 

giving the condition trA/trD > 0. Equating the coefficients for a2 gives 

IDI(a2 + d) =I DItr(D-'A) + C2 

which, on substitution and rearrangement gives (2.1) and the result. 

So, if trD >0 as is usual in diffusion matrices, then a Hopf bifurcation can 

only occur if trA > 0, therefore, periodic travelling wave solutions of (1.1) can 

only bifurcate from an unstable equilibrium u*. A Hopf bifurcation will occur 

for some value of c if the right hand side of (2.1) is greater than zero. To give 

us a better picture of what this result means we consider two examples. 

Example 1: Diagonal Diffusion 

We apply this result for the case where we have diagonal diffusion. By rescaling 

the spatial variable, if necessary, D becomes 

D_ 10 
0d 

If (trA/trD) >0 then the denominator of the right hand side of (2.1) is greater 

than zero, and so if, in addition, the numerator is greater than zero then we 

will have a Hopf bifurcation for some value of c. On substitution this condition 

is 

(all + a22)2d + (1 + d)2(aiia22 - a12a21) - (ail + a22)(1 + d)(a22 + dale) >0 
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which, on rearranging becomes 

- ai2a2i(1 + d)2 - (a22 - da11)2 >0 

or 
(a22 - dall)2 

In particular, this implies that the linearisation A must be of `activator- in- 

hibitor' (or `predator-prey') type since a12 and a2l have opposite signs. To 

give us a clearer idea of what happens as d varies we rearrange the above 

condition to give us a polynomial in d: 

p(d) = (-a11 - ai2a2i)d2 + 2(aiia22 - ai2a2i)d - (ai2a2i + a22) > 0. 

The equation p(d) =0 has two real roots if and only if 

-ai2a2i(au + a22)2 > 0. 

So, if a12a21 is negative, then, for some value of d, there will always be a Hopf 

bifurcation, and hence periodic travelling waves. If we restrict ourselves to 

when d> -1 then we need trA > 0. Let c2 = q(d) then the asymptotic 

behaviour of q is given by 

q(d)-+-ooN-ä 

and 

d-ýoo=::, q(d) --±oo-±d. 

The graph of q divides into two families depending on the sign of -ail -a12a21. 

These are shown in figure [2.1]. Note that if -ail - a12a21, alla22 - al2a21 and 

-a22 - a12a21 are all negative then there are no Hopf bifurcation points for 

anyd>-1. 

34 



Figure 2.1: Graphs of c2 = q(d) 

Example 2: Oscillatory Linearisation 

We now consider systems with oscillatory dynamics, ie. ones for which the 

linearisation at u� of the local dynamics has the form 

A-a -w 
wa 

where, without loss of generality, w>0. The system is linearly stable for 

A<0 and unstable for A>0. Substituting this into (2.1) gives 

21 ()2 
2 

2trD a 
(41D1 - (trD)2) 

w 
+ 2trD(d12 - d21) + (trD)Z 

. 

which is an equation of the form 

c2=k [AA2+BA+C]. 
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Define q(\) to be the right hand side of this equation, then, if trD >0 we 

have the following asymptotic behaviour 

A-ºo+=> q(A)-+00" 

and 

-º oo q(A) --> ±oo - ±). 

So for A small and positive there is always a Hopf bifurcation for c large enough. 

Our assumption that trD >0 implies that we are only considering A>0. 

Suppose A>0 and B>0. This means that for A>0 we need 

-(dll - d22)2 - 4d12dn >0 

and so sign(d12d21) = -1, and for B>0 we need 

d12-d21>0. 

These would both be satisfied if d12 >0 and d21 <0 and the values of the 

diagonal terms were close enough. In this case the graph of q(A) is given by 

figure [2.2]. In particular periodic solutions would only exist for c> c=,, for 

some cmin > 0. If, on the other hand B<0 then 

d12-d21 <0 

and so we would need d12 <0 and del > 0. The graphs in figure [2.3] show 

that in this case there are two Hopf Bifurcation loci which could mean that the 

periodic solutions could 'disappear for large A. Note also that Hopf bifurcation 

points exist for all values of c. 

Suppose now that A<0 and B=0. So, either we have a diagonal diffusion 

matrix, or the cross diffusion terms are equal. Here the graphs are given by 

figure [2.4]. Again there are Hopf bifurcation points for all values of c. If we 
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Figure 2.2: Graph of c2 = q(A) when A>0, B>0 

s 
e 

Figure 2.3: Graph of c2 = q(A) when A>0, B<0 
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X 

Figure 2.4: Graph of c2 = q(. ) when A<0 

assume the diffusion matrix is diagonal then q(X) =0 when A=I dl-lýz I w. 

The graphs for the cases A<0, B<0 and A<0, B>0 are similar to 

the ones in figure [2.4] for when B=0. 

2.2 Perturbation from c=0 

This section investigates what happens to the Turing patterns as the wave 

speed is perturbed from zero and whether any travelling waves result. 

2.2.1 Lyapunov - Schmidt Reduction 

We know from chapter 1 that system (1.4) has periodic solutions when c=0 if 

there is a pair of eigenvalues on the imaginary axis. Using Lyapunov - Schmidt 

reduction we investigate if there is a branch of periodic solutions near these 

when c00. Suppose we write system (1.4. ) as u' =f (u, c) where uE R4. 
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To find periodic solutions we follow the same steps as already described in 

chapter 1, only this time we have the extra parameter, c. Let 

F: C2�xRxRF-*C21, 

be defined by 

F(u(s), r, c) = (1 + r) 
du 

- f(u(s), c). 

We restrict the discussion to the case when we have one pair of imaginary 

eigenvalues. Firstly we may rescale the equations so that the imaginary eigen- 

values have the values ±i. The kernel of dF(o, o, o) is two dimensional and so 

the reduced equation is 

g: CxRxRHC 

and solving g(z, c, T) =0 yields small amplitude periodic solutions. The group 

actions are as in Chapter 1, which yields that g has the form 

9(z, T, c) = [Q(Iz12, T, c) + iP(Iz12, T, c)]z, 

and so non-zero solutions of g are given by P=0, Q=0. A similar proof to 

that given in Chapter 1 may be used to show that PT (0,0,0) -0 0 and so P=0 

can be solved for T as a function of 1z12 and c. So periodic solutions are now 

given by 

Q(Iz12, T(Iz(2, c), c) = 0. 
As Q(Iz12, T, 0) -0 by our analysis in Chapter 1 then we may write 

T(lz12, c), c) = q(lzl2, T(lz12, c), c)c 

for some real valued function q. Now, solutions are given by c=0 (the time 

reversible solutions) and 

h(Iz12, c) = q(Iz12,7-(Iz12, c), c) = 0. 
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The Taylor series for h is 

h(Iz12, c) = h(o, o)+h , (0,0)c +hi=, 2(o, o)Iz12+h. o. t. 

where h. o. t. stands for `higher order terms'. If h(0,0) 54 0 then there will not 

be any periodic orbits near z=0 for c 0. However, if h(0,0) =0 then a 

branch of periodic solutions, parameterised by c, bifurcates from z=0, c=0. 

We would expect this to happen when the Hopf locus described earlier in the 

chapter, intersects the c=0 axis. 

Proposition 13 A branch of periodic solutions bifurcates from z=0, c=0 

precisely when the conditions given in Proposition 2 are met for c=0, ie 

tr(A)/tr(D) >0 and 

(trA)2detD + (trD)2detA- (trA)(trD)(detD)tr(D-'A) 
-0" (trA)(trD) 

Proof: 

In order to find h(0,0) we must calculate Re(g,, (0,0,0)). Using the same 

notation as Chapter 1 we note that 

g(z, r, c) = (0, F(zb + 1'V (z, T, c), T, c» 

where 0 and 0 are the basis for K and N respectively. For ease of presentation 

we leave out dependance on variables. Differentiating gives 

9: _( ýduF(¢+iii,, )), 

and 

9Zc = (sb, d. F, (c + IV-. ) + d. F(Wcz) + du2F(c + TV, TV, )). 

As in Lemma 4 in Chapter 1 two of the terms on the right hand side disappear 

to leave us with 

g=ý(0,0,0) = (0, duFc(O, 0, o)c). 
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If we let u= (u, v), then in the notation of (1.4) we have 

FuC 1+Tu 
_v (>T>) = (1 + T)v' -D-1(. f (u) + cv) 

and so 

d�F, (0,0,0)0 = 
-D-i 

0" 

Let 

¢=( 0 
lets 

where (a, ß) is an eigenvector for the eigenvalue -i, which gives us 

a0Ia 
-z Q= -D-'A -CD-1 16 

where each entry is a (2 x 2) matrix, with 0 being the zero matrix and I the 

identity matrix. When c=0 we get the following 

-ia =8 

Q= D-'Aß. 

Similarly if e)T e" then we have 

O -(D-'A)T 7 
2-I 

-c(D-1)T 

which, again at c=0, gives us 

iý = -Y 

ý= (D-lA) T 

Now 

g:, (0,0,0) = (, (0, -D-1 )T. 0) 

S)T ets, (0, -D-l9)T eis) 

2i 0 (fl. (1ß)ds 

2z Jo 
1 

-D-1, ß "' ds 
27r o 

2ý -1 d2291- d1292 
ds 

2r o ID) d11ß2 - d2iß, Z2- z 
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where I DI = det(D) and ß= (P,,, 62), C= (el) e2). Remember that for h(0,0) 

to be equal to zero we need Re(gZ, (0,0,0)) to be equal to zero, which is equiv- 

alent to the condition 

Re(Cl(dszßi = d12/32) + 2(d11ß2 - d2ißi)) =0. 

For ease of presentation we restrict ourselves to the case when D is diagonal 

for the remainder of the proof. The same method is used in proving the result 

for the most general case. The condition now becomes: 

Re(Zid22ßi + Zidi1Q2) =0. 

As shown below we can choose 6 and 0 so that their entries are real which 

gives the condition 

U201 + e2d, 1ß2 =0. (2.2) 

Nov, ß8 = D-1 A/3 and so 

laiid22 - dild22 a12d22 Qi 
__ 

0 
audit a22d, l - dild22 Qa 0 

MVe may choose 0 such that 

Qi = a12d22 , 
ß2 = diid22 - aiid22 

Similarly, since ý= (D"I A)T e, we may choose ý such that 

ý, = a21dii ' C2= diid22 - aiid22 

Substituting these into (2.2) gives 

22 a12a21d22 + aiidi2 - 2aiidiidi2 + diidz2 = 01 

Multiplying out the condition that det(D'1A - I) -0 gives the equation 

aiia22diid22 - aiidiid22 - a22diid22 1 diid22 - al2a2idiid22 =0. 
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Subtracting these two equations we get 

aisasid22+alldiz-alldi1d22-aiiazzdiid22+asadiid22+al2azidiidza =0. (2.3) 

We may also have chosen Q and ý such that 

Qi = diid22 - a22dii , ß2 = a2idii , 

ei = diid22 - a22dii '6= ai2d22 

If we again substitute these values into (2.2) and substitute in the equation 

det(D-IA- I) =0 then we have 

ai2a2idiid22-aiia22diid22+aiidiid22+a2 22dii-a22d2 lid22+ai2a2id2 ii = 0. (2.4) 

Subtracting (2.3) from (2.4) gives 

2a12a21d11d22 - 2a11a22d11d22 + al2a21d21 + a12a21d22 + a22d21 + a2 d22 =0 

which is the same as equation (2.1) when c=0. 

Example 

If we refer back to Example 2 in the previous section for the case when the 

diffusion was diagonal, then there exists a branch of small amplitude periodic 

solutions bifurcating from c=0 where the graph in figure [2.4] crosses the 

axis. This will happen exactly when A=( dl-2' 

2.3 Perturbation from c= o0 

We now consider what happens as c is perturbed from oo. To do this we look 

at two different types of local dynamics. 
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2.3.1 Periodic Dynamics 

This section uses a result in [Kopell]. Suppose, as before, we have the system 

ut =f (u) + Dux.. 

where f is such that we have periodic local dynamics. We show that for wave 

speed, c, large enough there always exist. periodic travelling waves. Recall 

that the first order O. D. E. travelling wave equations are 

U' =V 

vl = -D-'ff (u) + cv]. 

Let d= IIDII and 15 = äD. We now scale the travelling wave equations by 

using the substitutions r= äs, ü=u, v= cv so that they become: 

dv 

c 

v' = _j3. _1[ v+ 
.f 
(ü)] 

When -=0 the system has an invariant manifold of equilibria given by 

f (ü). This manifold is normally hyperbolic and so persists when is 

perturbed from zero. ie. for j<e for some e>0. To approximate the 

dynamics on the invariant manifold we again look at a scaling of the original 

equations, but this time using r= Cs, 
ü=u, v= cv to give 

s::: 
v 

which, on setting to zero, reduces to 

u, = -J(u/" 

This is just the original local dynamics with time reversed. Hence the flow on 

the invariant submanifold above is a perturbation of the flow of the original 
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O. D. E. with time reversed. In particular, if the O. D. E. has normally hyperbolic 

periodic solutions, then so does the travelling wave system for 4<e. For a 

fixed diffusion matrix, D, there exists a family of periodic travelling waves 

with wavespeeds c> As c --+ co these waves converge to homogeneous 

oscillations. 

If D is close to a scalar matrix (eg. D= dI for some dE R) then it can 

be shown that the periodic travelling waves are stable if is small enough 

[Kopell & Howard]. In particular the homogeneous oscillations are stable. 

Both the travelling waves and the homogeneous oscillations can be destabilised 

by unequal diffusion coefficients or by the presence of cross-diffusion. An 

example which demonstrates this for cross diffusion is given in section (2.4). 

2.3.2 Takens - Bogdanov Dynamics 

Suppose we have a reaction - diffusion system which has the codimension 

two singularity described in section (1.7); ie a coalescence point of Hopf and 

saddle - node bifurcations. Near the singularity it can be shown that, for 

certain parameter values, the two dimensional system has a homoclinic orbit 

(see [Guckenheimer]). The phase portrait will resemble that given by figure 

[2.5] with the homoclinic orbit indicated by the arrow. 

A similar proof to the previous section may be applied to the full reaction - 

diffusion system to show the existence of travelling waves for large wave speed 

c, obtained by perturbing the homoclinic solution. The difference in this case 

is that instead of periodic travelling waves this system has travelling pulses as 

portrayed in figure [2.6]. This result has been proved using a different method 

in [Schneider]. 
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Figure 2.5: Phase portrait showing homoclinic orbit 

Figure 2.6: Pulse travelling wave 
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2.4 A-w Systems 

In this section we analyse in more detail a specific class of reaction - diffusion 

system with oscillatory kinetics, namely, A-w systems. We prove the existence 

of both homogeneous and travelling wave solutions and the conditions needed 

for their stability. This is an extension of a result in [Kopell & Howard]; 

the difference being that our work includes cross diffusion in the system and 

analyses its affect. An example of such a system is the complex Ginzburg - 

Landau (CGL) equation as seen in chapter 1. In fact the CGL gave us the 

idea for the diffusion coefficients used in this section. If we take ry and C to 

equal zero in the CGL equation given in chapter 1, then the diffusion is the 

same as that given in (2.5). The system with two reactants is 

is = u. \(r) + vw(r) +, 7 2(U - Qv) (2.5) 

6= va(r) - uw(r) + p2(v + ßu) 

where r2 = u2 + v2, and /3 E R. Here A and w are real functions of r, and are 

chosen so that the system goes through a Hopf bifurcation depending on some 

parameter. If ro >0 is an isolated zero of A then the spatially homogeneous 

system exhibits periodic behaviour. If, in addition, A'(ro) <0 and w(ro) 54 0 

then a limit cycle exists. We start by changing system (2.5) into (r, 0) form, 

defined by 

u= rcosO, v= rsinO 

giving the transformed equations 

ra(r) + rTx - rOx + /3(-2rsOx - r4==) (2.6) 

0= w(r) 
2rý0x 

+ gxx + Q(rry - 02). 

We are looking for travelling wave solutions of the form: 

r=a; 9=Qt-kx, (2.7) 
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and on substituting these into (2.6) we find the following necessary and suffi- 

cient conditions for them to exist, namely 
k2 = A(a) 

o= w(a) - /3k2 

So, using a as the parameter, there is a one parameter family of travelling 

wave solutions of (2.5) given by 

u=a cos[(w(a) - /3.1(a))t - Al (a)x] (2.8) 

v=a sin[(w(a) - PA(a))t - Af2(a)x] 

Note that, in the notation of the previous section, the wave speed c= Q/k. 

Therefore, the waves described in section (2.3) are those detailed above when 

k is small. Because of the simplicity of the wave solutions in their polar form, 

all linear stability of these waves is considered by using small perturbations p and 

ý and setting 

r=a+p(x, t); O=at-kx+q(x, t), 

where IpI < 1,101 « 1. Substituting these into (2.6) gives 

pt = (a + p). \(r) + pxx - (a + p)(-k + cx)2 

+/3[-2pr(-k + 44x) - (a + p)4'rr] 

of+Q = W(a+p)+2pr(-k+4Sr), +0�+ß[ prr 
-(-k+0r)Z]. (a+p) p+a 

Linearising these equations, we get 

pt = c[pa'(a) + 2k¢x] + pxx + a[2kpz - «ýýxJ (2.9) 
Ot = pw'(a) - 

2-kpx 
+ 0=x + ß[p" + 2kc5x]. 

aa 

We need to find conditions on k and o such that p and ¢ -º 0 as t -º oo. 

Proposition 14 Travelling wave solutions of (2.5) given by (2.7) and (2.8) 

with amplitude a and wave number k are linearly stable if and only if 

(1)2] 
+aßw'+aA'<0. 4k2 i+ 

At 
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Proof: 

The coefficients in (2.9) are constants so we look for solutions in the usual 

fourier form by setting 

p Po 
exp(st + iqx), 

where q is the perturbation wave number and po, co are constants. For stability 

we want Re(s) < 0. Substituting this form into (2.9) above gives 

s+q2-aa'-2ißkq -2iakq-a/3g2 po 
-w' +! + ßq, s+ q2 - 2ißkq co = 0, (2.10) 

where we have used the notation \'(a) = A' and w'(a) = w' for ease of presen- 

tation. In order that we have a nontrivial solution we need the determinant 

of the 2x2 matrix in (2.10) to be zero, ie 

2 
(s+q2-a. '-2i, Okq)(s+q2-2i/kq)-(-2iakq-aßg2)(-w'-{-Zz ýq+Q4) 

= 0, 
aa 

which gives us the quadratic equation in s 

s2 + (2q2 - as - 4ißkq)s + q4 - a. \'q2 + 2ia/3A'kq 

-4ß2kg2 - [2iaw'kq + 4k2g2 + a/3w'g2 - /32g4] = 0, 

with the solutions 
81,2 = -q2 + "N, + 2i#kq 

4k2q2 + 2iaw'kq + aßw'g2 -, ß2q4 - 4i/3kg3. 

If either si or s2 has a positive real part for any q then the wave solutions 

(2.7) are linearly unstable. If q=0 then sl = 0, s2 = CA'. When q>0 tlicn 

Re(si) > Re(s2) so for stability we need only consider sl. Using 

Re(z2) _ -(Re(z) + IzJ)1 Vz in C 

we have 

R8(S1) _ -q2 + 2' + (a2, ý2 + 4k2q2 + a, ßw'g2 - p2 

2 

2 
+4k 2q2+ aßw'g2 - 

f32g4/2 
-}- (2awd kq - 4Qkg3)2 

. 
(2.11) 
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We know that Re(si) =0 at q=0, and so if the differential of Re(al) with 

respect to q2 is negative at q2 =0 then Re(sl) <0 for small q2. 

[dRe(si)] 
_ -1 -{- 

1 [4k2 
-}- a w' +2 _2 dq2 

9_0 aIa'I (aa')2 

and, since, for the periodic solutions in the spatially homogeneous system to 

be stable, )V <0 our condition for stability for small q2 becomes 

(1)2] 

4k2 1-}- 7, + aßw' + c(., < 0. (2.12) 

We assume this is true for the rest of the calculation. The condition 

Re(si) <0 is equivalent to: - 

[( ý)Z + 4k-2q2 + aßw'ga - ß2q4 1 
q2 -I> 72" 2 

z 
+2 )Z + 4k2q2 + aßw'g2 - p2g4) 

32 

-}- (2aw'kq - 4ßkg3)s 

Now A' <0 so we can square both sides giving 

(ß2 + 2)q4 - 4q2 (k2 + aa' + aßw') (aä'12 J 
24`2 

aa2 2/ 2- 242/. 3)2 
[((i)2 

+ 4ý q+ aßw qQ q) + (2aw kq - 4ßkq 

Using (2.12) we know that k2 +°4l+ °2: <0 and so we can again square 

both sides, and after a lot of algebra and rearranging the condition becomes 

Re(si) <0 Vq if and only if 

Z<1 4ß2q4 - 4aßw'g2 + a2w"2 (Q2 + 1)q2 - aa' - aß4' 
4(q2 - z, )2 + 4, ß2q4 - 4aßw'g2 + a2W/2 4 

Since A' <0 the right hand side is an increasing function in q, and, therefore, 

for the condition to hold for all q it must be true for q2 small. If we assume 

q2 is small then the condition becomes 

ks(azw'2 + a2, \2 )< -(a \' + aßw') 
(2) 
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which, on rearranging gives us equation (2.12). Therefore it is a necessary and 

sufficient condition for the travelling waves to be stable which gives us the 

result. 

This result shows that the effect of the cross diffusion term, /3, on travelling 

wave solutions of (2.5) depends on the sign of w'(a). If we suppose that for 

,ß=0 the waves are stable, and that w'(a) < O, then if we perturb ß from 

0 such that /3 >0 then the region of stability for the waves becomes smaller 

and for ,Q large enough the waves will become unstable. If, on the other hand, 

ß<0 then the region of stability becomes larger. Similarly if w'(a) > 0. So, 

as long as w'(a) 0, then adjusting the cross diffusion term may stabilise or 

destabilise the travelling wave solutions (2.8). 

For the homogeneous oscillations k=0 and so the stability condition (2.12) 

becomes 

a(ßw + a') < 0. 

We note that if /3 =0 then this condition is always true, and so the lhomoge- 

neous oscillations are always stable. Again these can be destabilised as long 

as ßw' >0 and large enough. A simple calculation shows that when k=0, 

then Re(s1) <0 for q2 sufficiently large as Re(sl) = -q2 in this case. This 

means that when the homogeneous solution goes unstable, it is to waves with 

a small wavenumber q, that is to say they will have a long wavelength. 

Steady spatially periodic patterns may be investigated for these systems by 

considering when the wave speed is zero. Note that the wavespeed c= a/k 

and so for c=0 we need a=0. This is equivalent to 

w(a) - Pk' = w(a) - ßa(a) =0. 
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Example 

As already mentioned an example of aA-w system is the Complex Ginzburg 

Landau equation. The stability of the travelling waves that exist for this 

system has already been investigated, for example see [Newell]. Since the 

diffusion is as described above we may use the transformation ü= e'µ'tu to 

give us the following form of the equation: 

ü =uu-(1 +iv)lul2u+(1+iß)V, u 

where u(x, t) is a complex variable, and p, v and ß are all real. In the above 

notation A (r) =p- r2 and w(r) = -vr2. Differentiating with respect to 

r gives A'(a) _ -2a and w'(a) = -2av which means that in the spatially 

homogeneous system there is a stable limit cycle. Substituting into (2.12) and 

using k2 = p-a2 produces the condition for the travelling waves to be linearly 

stable: 

4(it - a2)(1 + v2) - 2a2pv - 2a2 < 0, 

which rearranges to give the condition 

a2 > 
2p(1 + v2) 

3+Qv+2v2 

Since k2 =p- a2 >0 we know that f>a, and so from the one parameter 

family of wave solutions given by (2.8) the ones that arc stable arc those such 

that 

> a> 
2/L(1 + v2) 

3+ Qv + 2v2 

See figure [2.7]. This picture reinforces the result in section (2.3). Travelling 

waves exist and are stable near to when c= oo, ie. the curve a= Et. Finally, 

the stability condition for the homogeneous oscillations is 1+ ßv > 0. 

We may also look for steady, spatially periodic solutions by considering 

when the wave speed is zero. Remember that c= o/k and so for c=0 we 
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a 

11 

Figure 2.7: Stability region for travelling waves in the CGL 

need v=0. Recall 

Q= w(a) -, 6k' 
. 

Since the variable transformation we used puts the equation into a rotating 

reference frame, when looking for stationary waves we need to reinsert the 

imaginary part of the first coefficient ie p;. So for o=0 we have 

1.1; -va2 -pk2=0 

which, on substituting k2 =µ- a2 and rearranging we get the condition 

µ= ý[lýi + (Q 
- v)a2]" 

This curve crosses the curve where we have homogeneous oscillations at the 

point where 

N[p. 

+(~-V)a2J=c2 

or when 

µ; -vat=0. 
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P 

Figure 2.8: Turing patterns in the CGL 

So the two graphs meet if sign(p; v) = 1. If we assume sign(pip) <0 then the 

graphs will be as portrayed in figure [2.8]. Note that between the two stability 

curves we would expect these patterns to be stable. If fei =0 then small 

amplitude periodic spatial patterns branch out from the origin. This seems to 

contradict the results of section (1.6) except in that case we had scaled pi to 

equal one and in so doing assumed that it was not equal to zero. 
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Chapter 3 

Simulations 

3.1 Mappings 

The usual way to look at the behaviour of a dynamical system on a computer 

is by using a mapping. NVe now discuss some definitions and results which we 

needed to do computer simulations of systems that have appeared in earlier 

chapters. 

We start with a mapping that describes a local reaction 

uc+l = f(uc) 

where f: R" --º R". We use periodic boundary conditions in all of our 

numerical work, so we may think of the spatial domain as being S1. Let 

, ß'(S1, Rn) be the set of C°° functions from Sl to R", then f lifts to an operator 

on .F 
by 

utW I-, f(utlx)) 
" 

Define 0 :. 7 (SI, R") --º . F(SI, R") to be the Laplacian acting as 

A(ul, 
... , uk)= (Dul, 

... $ 
Auk 

, 

and then exp(Si) : Y(SI, R") -º 1(S, R) is the diffusion operator where b 

is a matrix of diffusion coefficients. 
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Definition 15 We define a reaction - diffusion mapping on .F to be a map of 

the form 

00 =eb°o f. 

Let RB : Sl -+ S' be defined by Re (¢) =¢+D. Then R lifts to a map on Fin 

the obvious way. For a travelling wave we want u such that ut+l(x) = u= (Rex) 

for some 0E S' by analogy with the continuous case. In the system above we 

have 

ed° o f(u=(x)) 

which, on substituting ut+l(x) = ut(x + 0), gives 

u: (x + ©) = c8 0 f(tit (x))" 

If we nowlet y=x+Oandu=ut then 

uýyý = e6A 0 f(u(y - ©)) 

= e6' o f(R-eu(y))" 

Therefore, for travelling waves, we are looking for fixed points of the operator 

e8A ofo R_0. 

3.1.1 Turing Instability 

Suppose we have the local two dimensional mapping ui+l = f(ug), and the 

Jacobian at some fixed point ü is given by A= [a; 1] for i, j=1,2. Then if 

ry = det(A) and ,Q= tr(A) the system is linearly stable about this point if all 

three of the following conditions hold: 

(a)Q-7<1 

(b)ß+7>-1 

(c) 7<i 

Our reaction - diffusion system is 

ui+i = eb' o f(ut) " (3.1) 
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If we let w=u-ü then linearising gives 

wt+l = eb° o Awt. 

Let W be a time independent solution to the spatial eigenvalue problem. ie. 

OW +V IV =0 where k is the eigenvalue. Let IVk be the eigenfunction 

corresponding to the wave number k. We look for solutions of the form 

Wg(X) _ ECkAtIVk 
k 

where A is the eigenvalue which determines growth with respect to time, and 

the ck are constants. Substituting this into the linearised equation above gives 

for each k 

, \i+i6Vk = can o AAt6Vk 

which, on cancelling the A's, gives 

a1Vk=eb°oA1Vk. 

The eigenspace corresponding to 114 is spanned by TVk times the basis vectors. 

Therefore both A and e6 leave the eigenspace corresponding to IVk invariant. 

We need to calculate the linear operator Ak such that 

AlVk = AklVk . 

For Turing instability we need IAI >1 for some k 54 0. In other words we nccd 

one of the three conditions (a), (b) or (c) not to hold for Ak. For simplicity we 

now suppose that 8 is a diagonal matrix with Sll = Sl >0 and 622 = Sz >0 

which, after a simple calculation, gives us 

and so 

alle-$1k2 a12e-a, k2 
Ak 

a21e-ask2 a22e-82k 
ý 

7' = ye-(51+$2)k2 
Q' = aiie-61 + a22e-8Ak . 
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Firstly condition (c) is always satisfied since ry' < 7. < 1 and so we either need 

p'-y' >1 or /3'+7' < -1. It is easily seen that for diffusion driven instability 

Si and Sz cannot be equal. 

Lemma 16 If, in the notation above, all or a22 are either greater than one or 

less than minus one then diffusion coefficients öl, 62 can be chosen such that 

(3.1) will display Turing instability for some values of k 

Proof: 

Without loss of generality we need only consider all. Firstly we suppose 

all > 1. Then, if we choose öl small enough and ö2 such that 52 » öl, we have 

pi -y= e-822 (a22 - aiia22 + ai2a2i) + e-digs all. 

If öl and b2 have been chosen correctly then it is easy to see that Q' - ry' >1 

for some k. Similarly, if we assume that all < -1, and we choose öl and 62 in 

the same way then 

ß' +7'= e-51k2 all + e_62k2(a22 + ai1a22 - a12a21). 

Again, if 81 and b2 have been chosen correctly, then /3' + ry' < -1 for some k. 

3.1.2 Mappings from Continuous Systems 

Suppose we have the continuous two dimensional reaction system 

ü= uf(u, v) (3.2) 

6= vg(u, v) 

then we consider the mapping 

ut+i = ut exp(cf (ut, vt)) (3.3) 

vt+i = ve exp(E9(ut, vt)) 
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where e>0 is small. We propose that (3.3) displays similar dynamics to 

(3.2) away from the axes u=0 and v=0. This condition is not as bad as 

it sounds as we are mainly applying this to biological models where we do 

notexpect either of the species to die out. Clearly, if (ü, v) is an equilibrium 

point for (3.2) then it is also an equilibrium point for (3.3). Also if (U^, v) is 

an equilibrium point for (3.3) and ü 76 0, v 54 0 then it is also an equilibrium 

point for (3.2). 

Lemma 17 If (ü, 6) is a coexistence equilibrium point of (3.2), (ie ü 54 0, 

v0 0) and if A denotes the Jacobian of (3.2) at this point and B denotes the 

Jacobian of (3.3) at the same point then if A= [ati] for i, j=1,2 then 

1 -f- call ca12 B= 
ca21 1+ ca22 

Proof: 
A(u, v) __ 

(u f�(u'v) u f9(u'v) 1 

vgu(ü, v) vg�(ü, v) J 

+ Ell f,, (ü, v) Ell fv(2l, v) 

Evg�(ü, v) 1+ 6g" (ü, 

Lemma 18 Suppose we have a coexistence equilibrium point (ü, v). Then, 

3e. >0 such that if e<E. 
n 
(ü, v) is linearly stable in (3.2) if and only if it 

is linearly stable in (3.3). Furthermore if e< e� then (3.2) exhibits diffusion 

driven instability at this point if and only if (3.3) also displays diffusion driven 

instability. 

Proof: 

We will use the notation of the previous lemma and note that ry and 3 refer 

to B. Since (ü, v) is stable in (3.2) then det(A) >0 and tr(A) < 0. Now 

ry =1+ etr(A) + e2det(A), 
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ß=2+etr(A) 

and so we need to check conditions (a), (b) and (c) detailed above. Firstly 

(3-ry=1-e2det(A)<1 

which is true for all e. Secondly 

/3+7=3+¬tr(A)+e2det(A) 

which can obviously be made to be greater than -1 fore < ci for some c1 > 0. 

Lastly 

ry =1+ etr(A) + e2det(A) 

and y<1 for c< e2 where ez = -tr(A)/dei(A). Now let c* = min(El, E2). We 

omit the only if part of the proof as it is just as easy. 

It can be shown that if (3.2) displays diffusion driven instability then with- 

out loss of generality A is of the form: 

or 
+- 

and since we know that 

B+ call ca12 

Ea21 1+ ca22 

then by our earlier analysis (3.3) exhibits diffusion driven instability since 
bll > 1. 

If we now assume that (3.3) has a Turing instability at (ü, v) then, since e 

is small we may assume that either bll or b22 is greater than one. Without loss 

of generality we assume that b11 > 1. This implies that all > 0. Now we know 

that tr(A) < 0, therefore a22 < 0. This along with the fact that det(A) >0 

gives us that a12 and a21 must have opposite signs. Hence A is of the form: 

A(u, v) -I- ?' 
or 

, +, - 

and so (3.2) displays Turing instability. 
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Diffusion 

In order to implement the diffusion operator numerically we discretise S' and 

use 
dAut 

"u=+1 =e 

where Lu= is an average over neighbours, and d is a scaled version of the 

diffusion matrix. In practice we use 

ut+1 A)Atut 

where, as Al -º oo we approach the exponential above. In our simulations a 

typical value for Al is three. 

3.2 Examples 

We now use the results above in some specific examples. 

3.2.1 Predator-Prey Model 

Consider the following reaction diffusion system 

ü=u(1-u)-u+b+dýuxx 

v v=rv(1--)+d2vxx. 
u 

This is a predator - prey system where the prey (u) has logistic growth in 
C#'%IVrr 

the absence of predators and the predator (v) response is of type IL The 

equilibrium points of the system are (1,0) and (ü, v) where ü=v is given by 

solving the equation 
au 

_1-ü. ü+b 
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This system exhibits Turing instability when (ü, v) is stable locally and also 

goes through a Hopf bifurcation by decreasing r. When r is very small there 

exists relaxation oscillations. 

The corresponding mapping has the form 

u=+1 = ealA oexpe(1-ut-- b) 

vt+l =6 S2 0 exp er(1 - ü) 

Linearising the reaction part gives us 

B(t, i = 
Z-}-E2l((u+6)ý-1ý 

E1' 1 -er 

For Turing instability we need 

>1 au 
(u+b)2 

or alternatively 

We also need dl and d2 chosen as outlined in section (3.1.1) (ie. d2 > dl). 

These patterns can be seen in figure [3.1]. The height and the number of 

waves may be changed by altering the parameters. As r is decreased and 

the systems goes through a Hopf bifurcation the pattern starts to oscillate 

and then degenerates to a homogeneous standing wave. Although travelling 

waves do exist near the Hopf bifurcation point (see Chapter 2) they were not 

observed on the computer. 

We note at this point that (ü, v) is stable if 

r) 
ü(1 -b- 2ü) 

ü+b 

as long as c is small enough. For a particular value of b we get the bifurcation 

diagram given in figure [3.2]. 
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Figure 3.1: Turing patterns for predator - prey model 

r 

Figure 3.2: Bifurcation diagram when b is constant 
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3.2.2 Complex Ginzburg Landau Equation 

The Complex Ginzburg-Landau partial differential equation appears in many 

interesting dynamical systems. It describes a system close to a global Hopf 

bifurcation. For other simulations work see for example [Doering]. We start 

with the equation 

zt = Etz - (1 + ia)Iz12z + (1 + iß)zxx (3.4) 

where zEC and p, a, 9ER. When the CGL goes through the Hopf 

bifurcation it oscillates about zero, and so we do not use the mapping described 

in section (3.1), but for the computer simulation we use the mapping described 

in [Rand]. We split the mapping into two parts: the local dynamics and the 

diffusion. If we look at (3.4) without the last term it can be written in (r, 0) 

form as 

r' = µr-r 

e -ar. 

We integrate the first of these for a time interval 7- to give 

r(t + r) = 
//-Ir(t) 

Fµ+(1 -)r(t)2) 

where A= e'2µr. Using this we can derive the local dynamics which are given 

by 

zn+l = F(zn) r" 
e -ir, 

[, nl2zn =V 
, 
u-A (1 

- 
A)Izn12 

To add the diffusion we have as before 

zn+l = F(eT0(l+saýýz%) 

where L z,, is an average over neighbours. Again, in practice we use 

in - ý1 + To (1 + ZI3ýýý1ýszn 
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-R 
homogeneous oscillations and periodic travelling waves unstable 

quasi-periodic travelling waves (turbulence) 

I/a 
--------------------------------- --------------------------------- 

homogeneous oscillations stable 

periodic travelling waves exist and are stable 

9 

Figure 3.3: Bifurcation diagram for the CGL mapping 

where, as Al --º oo we approach the exponential above. This full mapping has 

properties which closely resemble equation (3.4) for T small. 

The homogeneous solution for equation (3.4) is linearly stable if 1+a, 6 > 0. 

The equivalent condition for the mapping is 

1+ 21 M 
7-aß>0. 

This condition tends to the one for the P. D. E. as 7---+ 0. 

If we fix a>0 and assume ß<0 then computer simulations suggest 

the bifurcation diagram given in figure [3.3). On the computer we split the 

mapping into its real and imaginary parts. Let u= Re(z) and v= Im(z) then 

the local dynamics of u and v are given by 

ut+i =J 
(ut + vt )[cos(Ta(ut + vt )ut + sin(TCx(ut + vi))vt] 

vt+i =f 
(u= + vt)[COS(T(X(ui -- vý ))vt 

- sin(Ta(uý + vt ))Ut] 
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where 

f (x) = 
µ)x 

and the diffusion is added as before. Examples of the periodic travelling waves 

exhibited by the mapping are given in figure [3.4]. Although there is a band of 

stable travelling waves for any particular value of it, using periodic boundary 

conditions means that only a finite number of these will be seen in practice. 

66 



Figure 3.4: Travelling waves of the CGL mapping 
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