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ABSTRACT In this paper, optimum design of engineering problems is considered by means of 

the Atomic Orbital Search (AOS), a recently proposed metaheuristic optimization algorithm. 

The mathematical development of the algorithm is based on principles of quantum mechanics 

focusing on the act of electrons around the nucleus of an atom. For numerical investigation, 20 

of well-known constrained design problems in different engineering fields are considered; some 

of which have been benchmarked by the 2020 Competitions on Evolutionary Computation (CEC 

2020) for real-world optimization purposes. Statistical results including the best, mean, worst 

and standard deviation of multiple optimization runs are reported for the AOS algorithm. These 

results are compared to similar data from previous metaheuristic algorithms found in the 

literature to establish the efficiency and usefulness of the AOS. It is concluded that the AOS has 

acceptable behavior in dealing with all the considered constrained optimization problems while 

the maximum difference of about 40% between the best optimum values of the AOS and other 

approaches is noted for the robot gripper benchmark problem. 

INDEX TERMS Atomic Orbital Search; Engineering Design; Competition on Evolutionary 

Computation; Constrained Optimization 

I Introduction 

Optimization is a process of maximizing or 

minimizing a predefined objective function which 

may be subjected to multiple design constraints. 

This is relevant to decision-making and to 

engineering design across disciplines and 

stakeholders. For example, chief executive officers 

aim to maximize the overall profit from investments 

in engineering construction and infrastructure. 

Further, practicing engineers aim to minimize 

resources and materials used in designing 

components, structures, or processes. In this regard, 

optimization is a ubiquitous approach to facilitate 

rationalized decision-making and engineering 

design. Indeed, inventory, production, machine 

learning, design procedures and machine scheduling 

are some of the important problems addressed by 

optimization in engineering fields. 

The two most important facets of optimization are 

the solution algorithms and the mathematical 

formulation of the optimal design problem. 

Optimization algorithms should be conceptualized 

properly by an established mathematical model to 

support computationally efficient optimization 

solutions. Additionally, mathematically rigorous 

formulations or numerical descriptions of the 

optimal design problems are also required. The latter 

facet is addressed based on the physics of 

engineering problems and on developments in 

computer science. However, the development of 

efficient optimization algorithms leading to 

improved optimal solutions for complex problems is 

a field of open research. Whilst gradient-based 

optimization methods have been utilized for many 

years for the purpose, they are known to have 

numerous deficiencies which led to the birth and 

pursue of metaheuristic optimization algorithms. 

The latter algorithms involve an iterative procedure 

in which an optimum solution is sought by 
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conducting some random perturbations and search 

loops which are defined by drawing inspiration from 

the lifestyle of different leaving creatures (bio-

inspired) or other physics-based concepts. Some of 

the most well-known metaheuristics optimization 

algorithms are the Genetic Algorithm (GA) [1], Ant 

Colony Optimization (ACO) [2], Particle Swarm 

Optimization (PSO) [3], Imperialistic Competitive 

Algorithm (ICA) [4], Firefly Algorithm (FA) [5], 

Whale Optimization Algorithm (WOA) [6], 

Symbiotic Organisms Search (SOS) [7], Ray 

Optimization Algorithm (ROA) [8], Flower 

Pollination Algorithm (FPA) [9], Earthworm 

optimization algorithm (EWA) [10], Crystal 

Structure Algorithm (CryStAl) [11], Material 

Generation Algorithm (MGA)  [12], Heat Transfer 

Search (HTS) algorithm [13], Teaching Learning 

Based Optimization (TLBO) algorithm [14],  

Passing vehicle search (PVS) algorithm [15], Group 

Teaching Optimization (GTO) algorithm [16], 

Aquila Optimizer (AO) [17], Capuchin Search 

Algorithm (CSA) [18], Archimedes Optimization 

Algorithm (AOA) [19], and the Chaos Game 

Optimization (CGO) algorithm [20 and 21]. It also 

should be noted that some of the standard algorithms 

have been improved or hybridized for specific 

applications [22 to 34].  

Besides, some of the other challenges in 

optimization of engineering design problems can be 

mentioned as the epsilon constraint based HTS 

algorithm for optimization of multi-objective 

engineering design problems [35], Layout 

optimization of wind farms with an improved 

version of TLBO [36], design optimization of 

engineering problems by a hybrid approach of 

TLBO and the Neural Network Algorithm (NNA) 

[37], Symbiotic Organisms Search (SOS) algorithm 

for optimum design of multi-objective constrained 

engineering problems [38], Bayesian optimization 

(BO) for optimum design of engineering design 

problems, optimum design of real-world problems 

by Seagull Optimization Algorithm (SOA) [39] and 

the Black Widow Optimization (BWO) algorithm 

for optimization purposes in engineering 

applications [40]. 

In this paper, optimum design of engineering 

problems is considered by means of the Atomic 

Orbital Search (AOS), which is a recently proposed 

metaheuristic algorithm by Azizi [41]. This 

algorithm is developed based on the quantum-based 

atomic model which follows principles of quantum 

mechanics governing the act of electrons around the 

nucleus of an atom. For numerical investigation, 20 

of the well-known constrained design problems in 

different engineering fields are considered, some of 

which have been benchmarked by the 2020 

Competitions on Evolutionary Computation as CEC 

2020 [42] for real-world optimization purposes. For 

statistical investigation, 25 independent 

optimization runs are conducted by considering 

200000 objective function evaluations to evaluate 

the statistical results including the best, mean, worst 

and standard deviation while the results of other 

algorithms are also provided from the literature for 

conducting a comparative study. 

 

II Atomic Orbital Search 

(AOS) Algorithm 

a) Physical Motivation  

In this section, the AOS algorithm is presented in 

detail focusing on the inspirational concept of the 

approach alongside its mathematical model. This 

algorithm is inspired by the principles of quantum 

mechanics and the atomic orbital model, proposed 

by Erwin Schrodinger. In this model, electrons are 

assumed to move in waves with uncertain location 

instead of orbiting in set paths around the nucleus. 

In this regard, clouds of probability called orbitals 

are defined based on the probability of electron 

location. In the atomic theory developed based on 

quantum mechanics, an atomic orbital represents the 

wave-like behavior of electrons in atoms by means 

of a mathematical function. This mathematical 

function is utilized for calculating the probability of 

finding any electron in any specific region around 

the nucleus of an atom. In other words, the atomic 

orbital represents specific physical regions or spaces 

surrounding the nucleus which are probable 

locations of electrons (Fig. 1A). In Fig. 1B a 

snapshot of an atom is illustrated in which the 

electrons are moving around the nucleus by 

changing their instant positions with a wave-like 

behavior. In this setting, the electrons behave like a 

cloud of charge which instantly change their 

position over time. As presented in Fig. 1C, the 

positions of electrons around the nucleus are not 

deterministically defined so the location of electrons 

around nucleus is defined by means of probability 

density diagrams. The space around nucleus of an 

atom is divided into spherical concentric thin 

imaginary layers with specific radius of r to measure 

the probability of electrons being located at any 

specific distance from the nucleus (Fig. 1D). Since 

the volume of each specific layer increases faster 

than the probability density of that layer (Fig. 1E), 

the total probability of detecting any electron in the 

outer imaginary layers is higher than detecting it in 

the inner ones.  

According to the atomic orbital model, electrons in 

the ground state of energy are located within 

imaginary layers around the nucleus. For each 

imaginary layer with radius, r, a quantum number, n, 

is assigned which represents the energy level of the 

electrons positioned in that layer. The layers with 
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higher n values represent the orbitals with larger r 

values and higher energy levels while the layers with 

smaller n values correspond to lower energy levels 

with smaller r values. The electrons in the cloud of 

charge around nucleus are excited by the 

interactions with other particles, moving into 

magnetic fields and also by acts of photons (lights) 

which result in energy emission or absorption in the 

atom. In this regime, some binding energy is 

determined for each electron which represents the 

amount of energy required for removing the electron 

from its orbital. Considering the quantum staircase 

analogy, movement of electrons between different 

orbitals are possible, resulting in changes to their 

energy levels. In this regard, if an electron absorbs  

an amount of energy less than the electron binding 

energy, it will undergo a transition to an outer orbital 

with higher energy value. Besides, if an electron 

emits an amount of energy more than the electron 

binding energy, it will be repositioned in an inner 

orbital with lower energy value. The schematic 

representation of quantum staircase analogy in 

atoms is illustrated in Fig. 2. 

 

 

 

 

Fig. 1. Atomic orbital model and electron density configuration.

 

 

Fig. 2. Schematic representation of atomic quantum staircase analogy. 
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b) Mathematical Model 

The AOS algorithm is inspired by the previously 

mentioned principles of atomic orbital model in 

which the emission and absorption of energy by 

atoms alongside the electron density configuration 

are in perspective. As the first step, several solution 

candidates, 𝐗, are considered which correspond to 

the position of electrons around the nucleus of the 

atom. The solution candidates are taken as the cloud 

of electrons around the nucleus of an atom while the 

search space is defined as a spherical space, divided 

into concentric imaginary layers. Mathematically, 

this is written as 

𝐗 =

[
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,   {
𝑖 = 1,2,… ,𝑚.
𝑗 = 1,2,… , 𝑑.

  (1) 

where 𝑋𝑖 is the i-th solution candidate (electron) in 

the search space (electron cloud around nucleus of 

atom); 𝑚 is the total number of solution candidates 

or electrons in the search space; 𝑥𝑖,𝑗 is the j-th 

decision variable of the i-th solution candidate; 𝑑 is 

the dimension of the considered problem. 

A random initialization procedure is employed for 

determining the initial positions of the electrons 

around the nucleus. Following the atomic model, 

each electron has a specific state of energy which is 

defined as the objective function of the solution 

candidates to be minimized. Therefore, the electrons 

with lower energy levels are represented by solution 

candidates with better (lower) values of the 

objective function while the solution candidates with 

worse (higher) values of objective function are 

utilized for electrons with higher energy levels. The 

following notation is introduced accordingly 

𝐄 =

[
 
 
 
 
 
𝐸1

𝐸2

⋮
𝐸𝑖

⋮
𝐸𝑚]

 
 
 
 
 

,           𝑖 = 1,2, … ,𝑚.          (2) 

where 𝐄 is the vector of objective function values; 

𝐸𝑖 is the energy level of i-th solution candidates; 𝑚 

represents the total number of solution candidates or 

electrons in the search spac 

To represent the imaginary layers around nucleus 

mathematically, a random integer number, 𝑛, is 

assigned corresponding to the number of spherical 

imaginary layers, 𝐿, around the nucleus of atom. The 

imaginarily created layers represent the wave-like 

behavior of electrons around nucleus while the layer 

with smallest radius, 𝐿0,  indicate the nucleus 

location and the rest, 𝐿𝑖 the location of electrons. 

These aspects are presented in Fig. 3. 

 

 

 

Fig. 3. Schematic presentation of imaginary layers around nucleus. 

 

Based on the quantum-inspired atomic model, the 

instant locations of electrons are represented by an 

electron probability density diagram. This is 

mathematically modeled using a Probability Density 

Function (PDF). The latter is a mathematical 

function which specifies the probability of a variable 



                                                                                          Mahdi Azizi, Siamak Talatahari, and Amir Hossein Gandomi 

 

5 VOLUME XX, 2017 
 

value to lie within a predefined range. The PDF is 

used for distributing the solution candidates to the 

imaginary layers around nucleus. To this end, a 

sorting process is conducted in which the solution 

candidates with better objective function values 

(higher PDF values) are positioned in the inner 

layers with lower energy levels while the candidates 

with worse objective function values (lower PDF 

values), are located in the outer layers. In this regard, 

any of the Weibull, normal, logistic or Kernel PDF 

can be adopted for this purpose. Herein, the log-

normal Gaussian distribution function is utilized. 

The position determination for electrons (solution 

candidates) with a log-normal Gaussian distribution 

function is schematically illustrated in Fig. 4. In this 

distribution, the overall existence probability of the 

electrons in the second layer (𝐿1 to 𝐿2) is higher than 

the first layer (𝐿0 to 𝐿1) which represents the real 

wave-like behavior of the electrons in the quantum-

based atomic model. 

 

 

 

 

Fig. 4. Position determination of electrons (solution candidates) with PDF distribution. 

 

Using the above position determination process for 

the electrons, the solutions candidates are distributed 

in different layers. The vector 𝐗𝐤 containing the 

candidates in n different layers and their objective 

function 𝐄𝐤 values are represented as follows  

𝐗𝐤 =
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                        (4) 

where 𝑋𝑖
𝑘 is the i-th candidate positioned in the k-th 

layer; 𝑛 is the total number of imaginarily layers; 𝑝 

shows the number of candidates in the k-th layer; 𝑑 

represents the dimension for considered problem; 

𝐸𝑖
𝑘 represents the vales of objective function for the 

i-th candidate positioned in the k-th layer. The best 

candidate in the k-th layer is considered as the 

electron with lowest levels of energy, 𝐿𝐸𝑘, and the 

global best of all solution candidates represents the 

electron with lowest energy level, 𝐿𝐸, at the nucleus 

location (Azizi 2020). 

According to the principles of the atomic orbital 

model, the electrons are taken to be in the ground 

state of energy level. The concept of binding state in 

quantum-based atomic model represents the fact that 

electrons are not affected by others in this state. This 

attribute is mathematically modeled by considering 

the independency of solution candidates in the 

search space. In addition, the binding energy 

represents the energy amount that is required to 

move an electron to a different layer. To this end, the 

concepts of binding state and binding energy are 

mathematically modeled by considering the mean 

values of the position vectors and the objective 

function values of the solution candidates. For each 

of the considered imaginary layers, the binding state 

and binding energy are calculated as 
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𝐵𝑆𝑘 =
∑ 𝑋𝑖

𝑘𝑝
𝑖=1

𝑝
,           {

𝑖 = 1,2, … , 𝑝.
𝑘 = 1,2, … , 𝑛.

             (5) 

𝐵𝐸𝑘 =
∑ 𝐸𝑖

𝑘𝑝
𝑖=1

𝑝
,           {

𝑖 = 1,2, … , 𝑝.
𝑘 = 1,2, … , 𝑛.

            (6) 

where 𝐵𝑆𝑘 is the binding state and 𝐵𝐸𝑘 is the 

binding energy of the k-th imaginary layer. 

Since the overall energy level of an atom is 

evaluated by considering the binding state and 

binding energy of all the electrons, the mathematical 

presentation of the mean values of the position 

vectors and the objective function of the solution 

candidates in the entire search space are written as 

𝐵𝑆 =
∑ 𝑋𝑖

𝑚
𝑖=1

𝑚
,           𝑖 = 1,2, … ,𝑚.                   (7) 

𝐵𝐸 =
∑ 𝐸𝑖

𝑚
𝑖=1

𝑚
,           𝑖 = 1,2, … ,𝑚.                 (8) 

In the quantum atomic model, electrons with 

different energy states change their location and 

move between different layers with different states 

of energy. This phenomenon is due to the act of 

photons to electrons as well as to interactions with 

other particles and magnetic fields. Herein, this 

phenomenon is utilized for updating the solution 

candidates during the optimization process in the 

mathematical model of the AOS algorithm. 

Specifically, the position of the solution candidates 

placed in the imaginary spherical layers is updated 

by considering the absorption or emission of 

photons alongside other interactions with particles, 

while accounting for the energy level of electrons 

and the binding energy of the imaginary layers. 

To facilitate the mathematical representation of the 

position updating process in the AOS algorithm, a 

randomly generated number, 𝜑, uniformly 

distributed in the range of [0,1], is assigned to each 

electron to represent the probability of action of 

photons or other interactions. To distinguish 

between different interactions on electrons, the 

photon rate, PR, parameter is introduced to represent 

the probability of different interactions on electrons. 

For 𝜑 ≥ 𝑃𝑅, the act of photons on the electrons 

becomes possible. In this case, the energy level, 𝐸𝑖
𝑘, 

for the i-th electron or solution candidate, 𝑋𝑖
𝑘, in the 

k-th layer is compared to the binding energy of the 

k-th layer, 𝐵𝐸𝑘. If 𝐸𝑖
𝑘≥𝐵𝐸𝑘, the solution candidates 

(electrons) emit some amount of energy (photon). 

Depending on the energy, the electron could reach 

the binding state, 𝐵𝑆, of the atom or even the lowest 

state of energy, 𝐿𝐸, in the atom. The position 

updating step for this case is written as 

𝑋𝑖+1
𝑘 = 𝑋𝑖

𝑘 +
𝛼𝑖 × (𝛽𝑖 × 𝐿𝐸 − 𝛾𝑖 × 𝐵𝑆)

𝑘
,    {

𝑖 = 1,2, … , 𝑝.
𝑘 = 1,2, … , 𝑛.

  (9) 

where 𝑋𝑖
𝑘 is the current and 𝑋𝑖+1

𝑘  is the updated i-th 

solution candidate (electron position) at the k-th 

imaginary layer; 𝛼𝑖, 𝛽𝑖 and 𝛾𝑖 are uniformly 

distributed random numbers in the range of [0,1] 

which govern the amount of emitted energy. 

On the antipode, if 𝐸𝑖
𝑘<𝐵𝐸𝑘, the energy level of the 

i-th solution candidate in the k-th layer is lower than 

the binding energy of the considered layer so energy 

absorption becomes probable. In this case, the 

solution candidates (electrons) absorb some amount 

of energy (photon). Depending on the energy, the 

electron could reach the binding state of the k-th 

layer, 𝐵𝑆𝑘, or even the lowest state of energy, 𝐿𝐸𝑘, 

of the considered layer. The position updating step 

for this case is written as 

𝑋𝑖+1
𝑘 = 𝑋𝑖

𝑘 + 𝛼𝑖 × (𝛽𝑖 × 𝐿𝐸𝑘

− 𝛾𝑖 × 𝐵𝑆𝑘) ,   {
𝑖 = 1,2, … , 𝑝.
𝑘 = 1,2, … , 𝑛.

  (10) 

For 𝜑 < 𝑃𝑅, the absorption or emission of photons 

on electrons are not likely so moving into magnetic 

fields or interactions with other particles are in 

perspective. In this case, the position updating step 

for the solution candidates is written as 

𝑋𝑖+1
𝑘 = 𝑋𝑖

𝑘 + 𝑟𝑖 ,           {
𝑖 = 1,2, … , 𝑝.
𝑘 = 1,2, … , 𝑛.

        (11) 

where 𝑟𝑖 is a random number uniformly distributed 

in the range of [0,1]. 

Fig. 5. Pseudo-code of the AOS algorithm. 

Further to the above updating steps, the boundary 

violation of solution candidates alongside the 

termination criterion are also considered in the 

mathematical model of the AOS algorithm. In this 

regard, a flag is implemented in the AOS in which a 

boundary control for violating decision variables is 

determined while a predefined number of objective 

function evaluations or iterations can be utilized as 

termination criteria. In Fig. 5, the pseudo-code of 

AOS algorithm is provided while the flowchart of 

the algorithm is presented in Fig. 6. 
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Fig. 6. Flowchart of the AOS algorithm. 

 

III Benchmark Engineering 

Design Problems 

Constraint optimization problems emerge naturally 

in optimal engineering design in which precise 

handling of design constraints must be accounted for 

in minimizing/maximizing the objective function. In 

this regard, the AOS algorithm is herein applied to 

20 well-known constrained design problems in 

different engineering fields are considered, some of 

which being benchmarked by the 2020 Competitions 

on Evolutionary Computation as CEC 2020 for real-

world optimization purposes. In Table 1, a brief 

description of these design provided is provided. 
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Table 1. Basic characteristics of the considered engineering design problems. 

No. Name D g h Formulation 

F1 Industrial Refrigeration System 14 15 0 Andrei [43] 

F2 Three-Bar Truss 2 3 0 Gandomi et al. [44] 

F3 Planetary Gear Train 9 10 1 Savsani and Savsani [45] 

F4 Step-Cone Pulley 5 8 3 Rao [46] 

F5 Robot Gripper 7 7 0 Rao et al. [47] 

F6 Hydro-Static Thrust Bearing 4 7 0 Rao et al [47] 

F7 Four-Stage Gear Box 22 86 0 Kumar et al. [42] 

F8 Ten-Bar Truss 10 3 0 Yu et al. [48] 

F9 Rolling Element Bearing 10 9 0 Gupta et al [49] 

F10 Gas Transmission Compressor 4 1 0 Kumar et al. [42] 

F11 Tension/Compression Spring-Case 2 3 8 0 He et al. [50] 

F12 Gear Train 4 1 1 Zelinka and Lampinen [51] 

F13 Himmelblau's Function 5 6 0 Himmelblau [52] 

F14 Topology Optimization 30 30 0 Sigmund [53] 

F15 Steel I-Shaped Beam 4 2 0 Gandomi et al [44] 

F16 Piston Lever 4 4 0 Gandomi et al [44] 

F17 Corrugated Bulkhead 4 6 0 Gandomi et al [44] 

F18 Cantilever Beam 5 1 0 Gandomi et al [44] 

F19 Tubular Column 2 6 0 Gandomi et al [44] 

F20 Reinforced Concrete Beam 3 2 0 Gandomi et al [44] 

D: Dimensions 

g: Number of inequality constraints 

h: Number of equality constraints 

IV Numerical Investigation 

The results of the numerical study including the best 

optimum values of the AOS and other alternative 

algorithms alongside results statistics including the 

mean, worst and standard deviation are presented in 

this section. A simple penalty approach is 

considered as the constraint handling approach in 

dealing with these constraint problems. 

a) Industrial 

Refrigeration System 

This engineering design problem considers the 

optimum design of an industrial refrigeration system 

which has 14 design variables (x1 ~ x14) and 15 

inequality design constraints. The complete 

mathematical formulation of this problem is 

presented by Andrei [43]. The best results of the 

AOS algorithm are presented in Table 2 alongside  

results from other optimization approaches. In 

addition, the mean, worst and standard deviation 

statistics for the AOS and alternative algorithms are 

provided in Table 3. It is seen that AOS is able to 

provide improved best and statistical results than the 

other metaheuristic approaches which represents the 

capability of the algorithm in dealing with difficult 

optimization problems. 

Table 2. Best results of different approaches for the 

industrial refrigeration system problem. 

 Andrei [43] Present Study (AOS) 

Best 0.032213008 0.032213001 
x1 0.001 0.001 

x2 0.001 0.001 

x3 0.001 0.001 
x4 0.001 0.001 

x5 0.001 0.001 

x6 0.001 0.001 
x7 1.524 1.524 

x8 1.524 1.524 

x9 5 5 
x10 2 2 

x11 0.001 0.001 

x12 0.001 0.001 
x13 0.0072934 0.007293401 

x14 0.0875558 0.087555832 
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Table 3. Statistical results for the industrial refrigeration system problem considering different approaches. 

Approaches Best Mean Worst Std-Dev 

(IUDE) Kumar et al. [42] 0.0322 0.0322 0.0322 4.91E-18 

(MAES) Kumar et al. [42] 0.0322 0.0340 0.0445 4.09E-03 
(LSHADE) Kumar et al. [42] 0.0322 0.0323 0.0325 1.11E-04 

Present Study (AOS) 0.032213 0.032351 0.032555 0.003146 

IUDE: Improved Unified Differential Evolution Algorithm 

MAES: Matrix Adaptation Evolution Strategy 
LSHADE: Linear Success-History based Adaptive Differential Evolution 

 

b) Three-Bar Truss 

The total weight optimization of a three-bar truss 

structure is considered in this design example in 

which the objective function is formulated by 

determining the minimum required cross-sectional 

areas for the truss bars. This engineering design 

problem has two design variables including the 

cross-sectional areas of the oblique bars (A1) and 

straight bar (A2) while there are only three inequality 

design constraints. In Fig. 7, a schematic 

presentation of this constraint design problem is 

shown. Gandomi et al. [44] provides the related 

mathematical formulations. 

In Table 4, the best result of multiple optimization 

runs for the AOS and other algorithms in dealing 

with the three-bar truss problem are presented in 

which the optimum design variables and constraints 

are also provided. Most of the recently developed 

metaheuristics are capable of finding a similar 

optimum value; however, the AOS algorithm has 

also the ability of providing the so far best found 

optimum solution in this case. The statistical results 

of different approaches for this problem are also 

presented in Table 5 for comparative purposes. It is 

obvious that the AOS algorithm provides much 

better statistical results than previous approaches.  

 

Fig. 7. Visualization of the three-bar truss problem. 

 

 

 

Table 4. Best results of different approaches for the three-bar truss problem. 

 Gandomi et al. [44] Ray & Liew [54] Zhang et al. [55] Garg [56] Present Study (AOS) 

Best 263.97156 263.8958466 263.8958434 263.8958433 263.8958433 

A1 0.78867 0.7886210370 0.7886751359 0.788676171219 0.7886751359 

A2 0.40902 0.4084013340 0.4082482868 0.408245358456 0.4082482866 
g1(x) -0.00029 -8.275E-9 -2.104E-11 -1.587E-13 0 

g2(x) -0.00029 -1.46392765 -1.46410161 -1.4641049 -1.4641016195 

g3(x) -0.73176 -0.536072358 -0.5358983 -0.535895 -0.5358983805 

 

Table 5. Statistical results for the three-bar truss problem considering different approaches. 

Approaches Best Mean Worst Std-Dev 

Gandomi et al. [44] 263.97156 264.0669 NA 0.00009 

Ray & Liew [54] 263.8958466 263.9033 263.9033 1.26E-2 

Zhang et al. [55] 263.8958434 263.8958436 263.8958498 9.72E-7 
Garg [56] 263.8958433 263.8958437 263.8958459 5.34E-7 

Present Study (AOS) 263.8958433 263.8958435 263.8958453 8.26E-9 

 

c) Planetary Gear Train 

In this engineering design problem, the optimization 

of maximum errors in the gear ratio of the planetary 

gear train in the automobiles is considered. There are 

nine design variables including six integer variables 

for the number of teeth in the gears (N1, N2, N3, N4, 

N5 and N6) and three discrete design variables 

considering the modules of the first (m1) gear, the 

number of planet gears (P), and the modules of the 

second (m2) gear. This problem has ten inequality 

and one equality design constraints. In Fig. 8, a 

schematic presentation of this constraint design 



                                                                                          Mahdi Azizi, Siamak Talatahari, and Amir Hossein Gandomi 

 

10 VOLUME XX, 2017 
 

problem is prepared while Savsani and Savsani [45] 

provides the related mathematical formulations. 

 

 

Fig. 8. Visualization of the planetary gear train 

problem. 

 

In Table 6 and Table 7, the best and statistical results 

of the different metaheuristic algorithms including 

the AOS algorithm are presented for the planetary 

gear train problem. By comparing the best and 

statistical results of different approaches, it is 

demonstrated that the AOS performs better than 

previous algorithms in dealing with this complex 

engineering design problem with different continues 

and discrete design variables. 

 

Table 6. Best results of different approaches for the 

planetary gear train problem. 

 
Savsani & Savsani 

[45] 
Present Study (AOS) 

Best 0.525588 0.52325 

N1 34 40 
N2 25 21 

N3 33 14 

N4 32 19 
N5 23 14 

N6 116 69 

P 4 3 
m1 2.5 1 

m2 1.75 2 

g1(x) NA -77 
g2(x) NA -73 

g3(x) NA -122 

g4(x) NA -0.5 
g5(x) NA -12.35490039 

g6(x) NA -15.82818888 

g7(x) NA -2.896913326 
g8(x) NA -780.4549698 

g9(x) NA -17 

g10(x) NA -17 
h(x) NA -77 

 

Table 7. Statistical results for the planetary gear train problem considering different approaches. 

Approaches Best Mean Worst Std-Dev 

Rao & Savsani [57] (PSO) 0.53 0.5361934 NA NA 

Rao & Savsani [57] (ABC) 0.525769 0.5272922 NA NA 
Zhang et al. [55] 0.525589 0.525589 NA NA 

Savsani & Savsani [45] 0.525588 0.53063 NA NA 

Present Study (AOS) 0.52325 0.529848233 0.537058824 0.003894295 

PSO: Particle Swarm Optimization  

ABC: Artificial Bee Colony 

d) Step-Cone Pulley 

In this engineering design problem, the total weigh 

optimization of a step-cone pulley is considered in 

which there are five design variables for the width 

of the pulley (w) and the diameters of the steps in the 

pulley (d1, d2, d3, and d4). This problem has three 

equality and eight inequality design constraints. In 

Fig. 9, a schematic presentation of this constraint 

design problem is prepared while Rao [46] have 

provided the related mathematical formulations. 

For the step-cone pulley problem, the best results of 

different optimization runs considering the AOS and 

other alternatives are presented in Table 8 while the 

statistical results are provided in Table 9. It is found 

that the AOS is capable of providing outstanding 

best and statistical results in dealing with this 

problem. It also should be noted that the AOS 

provides lower values for the mean, worst and 

standard deviation of the results. 

 

 

Fig. 9. Visualization of the step-cone pulley 

problem. 
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Table 8. Best results of different approaches for the step-cone pulley problem. 

 
(TLBO) Rao et al. 

[47] 

(WOA) Yildiz et al. 

[58] 

(WCA) Yildiz et al. 

[58] 

(MBA) Yildiz et al. 

[58] 

Present Study 

(AOS) 

Best 16.63451 16.6345213 16.63450849 16.6345078 16.08558875 

d1 40 40 40 40 38.40665412 

d2 54.7643 54.764326 54.764300 54.764300 52.85751197 

d3 73.01318 54.764326 54.764300 54.764300 70.44556099 

d4 73.01318 54.764326 54.764300 88.428419 84.51666791 

w 73.01318 85.986297 54.764300 85.986242 89.98813622 
TLBO: Teaching-Learning Based Optimization 

WOA: Whale Optimization Algorithm 

WCA: Water Cycle Algorithm 
MBA: Mine Blast Algorithm 

 

Table 9. Statistical results for the step-cone pulley problem considering different approaches. 

Approaches Best Mean Worst Std-Dev 

(TLBO) Rao et al. [47] 16.63451 24.0113577 74.022951 0.34 

(WOA) Yildiz et al. [58] 16.6345213 20.93829477 24.8488259 3.3498 
(WCA) Yildiz et al. [58] 16.63450849 17.53037682 18.83302997 0.9229 

(MBA) Yildiz et al. [58] 16.6345078 16.702535 18.3237145 0.2627 

Present Study (AOS) 16.08558875 16.29548945 16.80334816 0.177212917 

 

e) Robot Gripper 

The robot gripper problem is one of the difficult 

engineering design problems in which the difference 

of the minimum and maximum force in the gripper 

is sought to be minimized by considering the 

displacement ranges of the gripper. This problem 

has seven design variables including the geometric 

properties of the robot while there are also seven 

inequality design constrains in the problem 

definition. In Fig. 10, a schematic presentation of 

this constraint design problem is prepared while Rao 

et al. [47] provide the related mathematical 

formulations. 

 

Fig. 10. Visualization of the robot gripper problem. 

 

The best results of the AOS and other approaches for 

the considered robot gripper problem are presented 

in Table 10 while the optimum design variables and 

design constraints are also provided for comparative 

purposes. In Table 11, the statistical results of 

different approaches considering multiple 

optimization runs are also presented. It is concluded 

that the AOS provides outstanding results than the 

other metaheuristics. The maximum difference 

between the best results of the AOS and other 

algorithms is about 40%. 

Table 10. Best results of different approaches for 

the robot gripper problem. 

 (TLBO) Rao et al. [47] Present Study (AOS) 

Best 4.247643634 2.54383687 

a 150 149.9973899 
b 150 149.880236 

c 200 200 

d 0 0 
e 150 149.9954554 

f 100 100.9429469 

δ 2.339539113 2.297394124 
g1(x) -28.09283911 -49.99999477 

g2(x) -21.90716089 -5.23E-06 

g3(x) -33.64959994 -49.99996461 

g4(x) -16.35040006 -3.54E-05 

g5(x) -79 999.998 -79737.112 

g6(x) -9.8E-11 -36.02117726 
g7(x) -0.00001 -0.943046876 

Table 11. Statistical results for the robot gripper problem considering different approaches. 

Approaches Best Mean Worst Std-Dev 

(ABC) Rao et al. [47] 4.247644 5.086611 6.784631 0.07 

(TLBO) Rao et al. [47] 4.247644 4.93770095 8.141973 0.56 
Present Study (AOS) 2.54383687 2.791745357 3.143355667 0.226323642 

ABC: Artificial Bee Colony  

TLBO: Teaching-Learning Based Optimization 
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f) Hydro-Static Thrust 

Bearing 

In this engineering design problem, the optimum 

configuration of bearing power loss in the hydro-

static thrust bearing system is considered in which 

four design variables including the recess radius 

(R0), bearing step radius (R), flow rate (Q) and the 

oil viscosity (µ) with seven inequality design 

constraints are considered in the problem 

formulation. In Fig. 19, a schematic presentation of 

this constraint design problem is prepared while Rao 

et al. [47] have provided the related mathematical 

formulations.  

Table 12 and Table 13 provide the best and 

statistical results of multiple optimization runs for 

the AOS and other approaches in dealing with the 

hydro-static thrust bearing design problem. The data 

demonstrate that the AOS has the ability of 

providing better results than the other metaheuristics 

while it yields better statistical results as the mean of 

runs, worst run and standard deviation values.   

 

Fig. 11. Visualization of the hydro-static thrust 

bearing problem. 

 

Table 12. Best results of different approaches for the hydro-static thrust bearing problem. 

 Siddall [59] Deb & Goyal [60] Coello [61] Rao et al. [47] 
Present Study 

(AOS) 

Best 2288:2268 2161.4215 1950.2860 1625.44276 1621.926212 

R 7.155 6.778 6.271 5.9557805026 5.968100069 

R0 6.689 6.234 12.901 5.3890130519 5.402028631 

µ 8.321E-06 6.096 E-06 5.605E-06 0.0000053586 5.36E-06 

Q 9.168 3.809 2.938 2.2696559728 2.267705635 

g1(x) -11086.7430 -8329.7681 -2126.86734 -0.0001374735 -63.57841887 

g2(x) -402.4493 -177.3527 -68.0396 -0.0000010103 -3.930479341 

g3(x) -35.057196 -10.684543 -3.705191 -0.0000000210 -0.039093072 

g4(x) -0.001542 -0.000652 -0.000559 -0.0003243625 -0.000324394 

g5(x) -0.466000 -0.544000 -0.666000 -0.5667674507 -0.566071438 

g6(x) -0.000144 -0.000717 -0.000805 -0.0009963614 -0.000996358 

g7(x) -563.644401 -83.618221 -849.718683 -0.0000090762 -1.865244618 

 

Table 13. Statistical results for the hydro-static thrust bearing problem considering different approaches. 

Approaches Best Mean Worst Std-Dev 

Şahin et al. [59] 1625.46467 1627.744198 1650.698747 3.815546973 

Rao & Waghmare [60] 1625.44271 1796.89367 2104.3776 0.21 

Rao et al. [61] 1625.44276 1797.70798 2096.8012 0.19 
Present Study (AOS) 1621.926212 1752.413561 1831.449755 23.6285497 

 

g) Four-Stage Gear Box 

In this design example, the weight optimization of a 

gear box with four stage is considered which has 22 

design variables for determining the positions of the 

gear and pinion, number of teeth and blank thickness 

with 88 design constraints. The complete 

mathematical formulation of this problem is 

presented in [42]. In Table 14, the best results of the 

AOS algorithm considering multiple optimization 

runs are presented in which the design variable are 

also provided for clarification. The statistical results 

for the AOS and some other metaheuristics are also 

presented in Table 15 for comparative purposes. It 

can be concluded that the AOS algorithm provides 

competitive best and statistical results in dealing 

with the four-stage gear box as a complex 

engineering design problem. 
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Table 24. Best results of different approaches for 

the four-stage gear box problem. 

 Present Study (AOS) 

Best 37.4042245 

x1 18 

x2 43 

x3 19 

x4 41 

x5 18 

x6 32 

x7 19 

x8 41 

x9 1 

x10 1 

x11 1 

x12 1 

x13 2 

x14 5 

x15 3 

x16 4 

x17 5 

x18 6 

x19 4 

x20 3 

x21 4 

x22 5 

Table 25. Statistical results for the four-stage gear box problem considering different approaches. 

Approaches Best Mean Worst Std-Dev 

(IUDE) Kumar et al. [42] 35.4 39.1 45.6 3.62 
(MAES) Kumar et al. [42] 60.7 57.8 19.9 68.5 

(LSHADE) Kumar et al. [42] 36.5 40.3 54.2 5.52 

Present Study (AOS) 37.4042245 52.83708891 90.81422082 11.89354773 

IUDE: Improved Unified Differential Evolution Algorithm 

MAES: Matrix Adaptation Evolution Strategy 

LSHADE: Linear Success-History based Adaptive Differential Evolution 

h) Ten-Bar Truss 

The weight optimization of a truss structure with ten 

structural elements is considered in this design 

example which has ten design variables for the 

cross-sectional areas of structural bars (A1, A2, A3, 

A4, A5, A6, A7, A8, A9, A10) with three inequality 

constraints. In Fig. 19, a schematic presentation of 

this constraint design problem is shown while Yu et 

al. [48] provide the related mathematical 

formulations. 

In Table 16, the best results of multiple optimization 

runs for different metaheuristics including the AOS 

algorithm in dealing with the ten-bar truss design 

example are presented. Regarding the fact that this 

example is one of the well-known real-size design 

examples in the structural optimization field, there is 

a challenging competition in finding the optimum 

weight of this truss structure. By comparing the best 

results of AOS to the reported results of other 

alternatives, it is concluded that AOS provides  

outstanding optimum values. In addition, the 

statistical results of the AOS algorithm including the 

mean, worst and standard deviation of multiple 

optimization procedures are also provided in Table 

17 for having a valid judgment. 

Fig. 12. Visualization of the ten-bar truss example. 

 

Table 16. Best results of different approaches for the ten-bar truss example. 

 Yu et al. [48] 
Lamberti & 

Pappalettere [62] 

Baghlani & 

Makiabadi [63] 

Kaveh & Zolghadr 

[64] 
Present Study (AOS) 

Best 544.7 534.57 530.76 529.25 525.6788438 

A1 36.380 35.148 35.494 39.569 34.8119633 
A2 12.941 13.169 14.777 16.740 15.30794832 

A3 35.764 37.69 36.203 34.361 34.78346867 

A4 18.314 19.556 15.387 12.994 13.71838609 
A5 3.002 1.087 0.6451 0.645 0.782401649 

A6 5.433 4.844 4.5896 4.802 4.666928874 

A7 20.989 18.314 23.211 26.182 25.61578707 
A8 24.14 27.415 24.561 21.260 22.17289405 

A9 9.753 12.562 12.482 11.766 11.71022039 

A10 18.102 12.106 12.324 11.392 13.66557392 
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Table 17. Statistical results of the AOS algorithm for the ten-bar truss problem. 

Approaches Best Mean Worst Std-Dev 

Present Study (AOS) 525.6788438 534.4838193 590.8453285 8.652827447 

 

i) Rolling Element 

Bearing 

In the rolling element bearing design example, the 

optimum tuning of the load-carrying capacity rolling 

element bearing system is considered in which a 

total number of five design variables including the 

ball diameter (Db), inner raceway curvature 

coefficient (fi), total number of balls (Z), pitch 

diameter (Dm), the outer raceway curvature 

coefficient (f0) and the specific design parameters of 

the system (KDmin, KDmax, ε, e, ζ) with nine inequality 

design constraints are considered in the problem 

definition. In Fig. 13, a schematic presentation of 

this constraint design problem is shown while Gupta 

et al. [49] provide the related mathematical 

formulations. 

In Table 18, the best results of the AOS and other 

metaheuristic algorithms are presented for the 

rolling element bearing design example alongside 

the optimum design variables. The statistical results 

including the mean of runs, worst run and standard 

deviation of multiple optimization runs are also 

provided in Table 19 for competitive purposes. 

Based in the results, it is concluded that the AOS is 

capable of providing very competitive results among 

other approaches. 

 

Fig. 13. Visualization of the rolling element 

bearing problem. 

 

Table 18. Best results of different approaches for the rolling element bearing example. 

 
(TLBO) Rao et al. 

[47] 

(ABC) Yildiz et al. 

[58] 

(GWO) Yildiz et al. 

[58] 

(ALO) Yildiz et al. 

[58] 

Present Study 

(AOS) 
Best 81859.74 85428.2495 85529.0830 85546.6377 83918.49253 

Dm 21.42559 125.6599 125.7090 125.718 125 
Db 125.7191 21.40862 21.42316 21.425242 21.875 

Z 11 11 11 11 10.77700905 

fi 0.515 0.515 0.515 0.515 0.515 
f0 0.515 0.515 0.529322 0.5157018 0.515 

KDmin 0.424266 0.427166 0.420867 0.4541646 0.476110618 

KDmax 0.633948 0.668849 0.633296 0.6464928 0.658142645 
ε 0.3 0.3 0.300224 0.3000122 0.3 

e 0.068858 0.071386 0.02 0.0638003 0.02 

ζ 0.799498 0.6 0.619432 0.6107592 0.618242202 

TLBO: Teaching-Learning Based Optimization 

ABC: Artificial Bee Colony 

GWO: Grey Wolf Optimizer 

ALO: Ant Lion Optimizer 

 

Table 19. Statistical results for the rolling element bearing problem considering different approaches. 

Approaches Best Mean Worst Std-Dev 

(TLBO) Rao et al. [47] 81859.74 81438.987 80807.8551 0.66 

(ABC) Yildiz et al. [58] 85428.2495 85121.7544 83859.0851 362.57 

(GWO) Yildiz et al. [58] 85529.0830 83395.0849 43543.4508 8224.5 
(ALO) Yildiz et al. [58] 85546.6377 84032.8636 73872.8164 3121.8 

Present Study (AOS) 83918.49253 82175.21266 83826.38337 23.38511 

 

j) Gas Transmission 

Compressor 

In this engineering design problem, the design 

optimization of a gas transmission compressor is 

considered which has four design variables with one 

inequality design constraint. The complete 

mathematical formulation of this problem is 

presented by Kumar et al. [42]. The best results of 

the AOS algorithm in dealing with this problem are 

presented in Table 20 while the statistical results for 
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different approaches are also provided in Table 21 

for comparative purposes. Since the results of other 

metaheuristics were not provided with accurate 

digits, it can be concluded that the results of the AOS 

is somehow better than the results of other 

metaheuristics. 

Table 20. Best results of different approaches for the gas transmission compressor problem. 

 Present Study (AOS) 

Best 2964895.417 

x1 50 

x2 1.178283953 

x3 24.59259097 

x4 0.388353075 

g(x) 0 

Table 21. Statistical results for the gas transmission compressor problem considering different approaches. 

Approaches Best Mean Worst Std-Dev 

(IUDE) Kumar et al. [42] 2.96E+06  2.96E+06  2.96E+06  6.59E-10 
(MAES) Kumar et al. [42] 2.96E+06  2.96E+06  2.96E+06  0.00E+00 

(LSHADE) Kumar et al. [42] 2.96E+06  2.97E+06  2.97E+06  1.23E+03 

Present Study (AOS) 2964895.417 2965102.327 2966483.832 251.8360974 

IUDE: Improved Unified Differential Evolution Algorithm 

MAES: Matrix Adaptation Evolution Strategy 

LSHADE: Linear Success-History based Adaptive Differential Evolution 

 

k) Tension or 

Compression Spring-

Case 2 

This problem is an extension of the tension or 

compression spring while the difference between 

this case and the standard version of this problem is 

in the objective functions and the design variables. 

In this case, the volume minimization of the required 

steel wire for a helical tension or compression spring 

is considered while three continuous, discrete and 

integer design variables (d, D, N) are considered for 

problem definition with a total number of eight 

inequality design constraints. The mathematical 

formulation and comprehensive description of this 

constraint example is provided by He et al. [50]. 

In Table 22, the best result of different approaches 

for the case 2 of tension or compression spring 

problem are provided in which the optimum values 

for the design variables and design constraints are 

also presented. It can be concluded that the AOS 

algorithm achieves better results than the other 

alternative algorithms. The statistical results of the 

AOS algorithm including the mean of runs, worst 

run and standard deviation of multiple optimization 

runs are also included in Table 23 for a comparison.

 

Table 22. Best results of different approaches for the tension or compression spring (Case 2). 

 
Lampinen & Zelinka 

[65] 
Deb & Goyal [60] Sandgren [66] He et al. [50] Present Study (AOS) 

Best 2.65856 2.665 2.7995 2.65856 2.615360373 
d 0.283 0.283 0.283 0.283 7.200436705 

D 1.223041010 1.226 1.180701 1.223041010 1.364635836 

N 9 9 10 9 0.2905583 

g1(x) -1008.8114 -713.510 -54309 -1008.8114 -44.67223896 

g2(x) -8.9456 -8.933 -8.8187 -8.9456 -9.407128275 
g3(x) -0.083 -0.083 -0.08298 -0.083 -0.0905583 

g4(x) -1.777 -1.491 -1.8193 -1.777 -1.635364164 

g5(x) -1.3217 -1.337 -1.1723 -1.3217 -1.696599054 
g6(x) -5.4643 -5.461 -5.4643 -5.4643 -5.464216405 

g7(x) 0 0 0 0 0 

g8(x) 0 -0.009 0 0 -0.000161721 

 

Table 23. Statistical results of the AOS algorithm for the tension or compression spring (Case 2). 

Approaches Best Mean Worst Std-Dev 

Present Study (AOS) 2.615360373 2.64371161 2.863796184 0.042854835 
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l) Gear Train 

In this design problem, the optimization of a 

compound gear train is considered in which the 

overall ratio of the gears is to be minimized. There 

are four design variables for the number of teeth in 

the gears of the system (zd, zb, za, zf) with only one 

inequality design constraint. In Fig. 14, a schematic 

presentation of this constraint design problem is 

shown while Zelinka and Lampinen [51] provide the 

related mathematical formulations. 

In Table 24, the best results of the AOS and some 

other metaheuristic alogirthms in dealing with the 

gear train design problem are presented alongside 

the optimum design variables. Since the main aim of 

this problem is to reach to a lower ratio of the gears, 

the AOS is capable of providing the lowest possible 

minimum value for this ratio in the optimization 

process. In addition, the statistical results of 

different approaches are presented in Table 25 in 

which the superiority of the AOS algorithm in 

obtaining better mean of multiple runs, worst run 

and standard deviation results are seen. 

 

Fig. 14. Visualization of the gear train problem.

 

Table 34. Best results of different approaches for the gear train problem. 

 Gandomi et al. [43] 
Loh & Papalambros 

[67] 

Kannan & Kramer 

[68] 
Sandgren [66] Present Study (AOS) 

Best 2.701E-12 2.7E-12 2.146E-08 5.712E-06 2.29E-19 

zd 19 19 13 18 16.17108014 
zb 16 16 15 22 14.24826982 

za 43 43 33 45 39.40873922 
zf 49 49 41 60 40.52327337 

 

Table 35. Statistical results for the gear train problem considering different approaches. 

Approaches Best Mean Worst Std-Dev 

Gandomi et al. [43] 2.7009E-12 1.9841E-9 2.3576E-9 3.5546E-9 

Loh & Papalambros [67] 2.7E-12 2.7E-12 2.7E-12 2.2122E-28 

(CPKH) Wang et al. [69] 2.22E-16 2.22E-16 8.5E-09 7.96E-22 
(ABC) Wang et al. [69] 2.92E-15 3.18E-15 8.5E-09 9.81E-10 

Present Study (AOS) 2.29E-19 6.25E-15 9.06E-14 1.26E-14 

CPKH: Chaotic Particle Swarm Krill Herd 
ABC: Artificial Bee Colony 

 

m) Himmelblau's 

Function 

Himmelblau's function is a well-known nonlinear 

benchmark constraint optimization problem which 

has been utilized as test function for performance 

evaluation of different novel and improved 

metaheuristic algorithms. This problem has five 

design variables with six inequality constraints 

while the complete mathematical presentation of this 

problem is provided by Himmelblau [52]. In Table 

26, the best results of different metaheuristic 

algorithms are provided for evaluating her overall 

performance of the AOS algorithm in which the 

optimum design variables and design constraints are 

also included. It is seen that the AOS yields 

acceptable results in dealing with this problem. 

Statistical results of different optimization runs 

including the mean of results, worst run and standard 

deviation are also presented in Table 27 for 

comparison. 
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Table 26. Best results of different approaches for the Himmelblau's function. 

 
Runarsson & Yao 

[70] 
Himmelblau [52] Gen & Cheng [71] He et al. [50] Present Study (AOS) 

Best -30665.539 -30373.949 -30183.576 -30665.539 -30665.539 
x1 78 78.62 81.49 78 78 

x2 33 33.44 34.09 33 33 

x3 29.995256025682 31.07 31.24 29.995256025682 29.99525603 
x4 45 44.18 42.2 45 45 

x5 36.775812905788 35.22 34.37 36.775812905789 36.77581291 

g1(x) -92 -91.7927 -91.7819 -92 -92 
g2(x) -98.8405 -98.8929 -99.3188 -98.8405 -11.15949969 

g3(x) -20 -20.1316 -20.0604 -20 -8.840500309 

 

Table 27. Statistical results of AOS algorithm for the Himmelblau's function. 

Approaches Best Mean Worst Std-Dev 

Present Study (AOS) -30665.539 -30638.19946 -30317.71871 66.71554068 

 

n) Topology 

Optimization 

Herein, the material layout optimization of a simply 

supported structural element in dealing with a 

predefined set of loadings is considered. This 

problem has 30 design variables which considers the 

geometric configuration of the element with 30 

inequality design constraints. In Fig. 15, a schematic 

presentation of the problem is shown while Sigmund 

[53] provides the related mathematical formulations. 

 

Fig. 15. Visualization of the topology optimization 

problem. 

In Table 28, the best result of the AOS algorithm is 

provided alongside the optimum design variables. 

Statistical results of different metaheuristic 

algorithms based on different optimization runs 

including the mean of results, worst run and standard 

deviation values are reported in Table 29. It is found 

that the AOS algorithm provides improved statistical 

results compared to other approaches.  

Table 28. Best AOS result for the topology 

optimization problem. 

 Present Study (AOS) 

Best 2.639346497 
x1 1 

x2 1 

x3 1 
x4 1 

x5 1 

x6 1 
x7 1 

x8 1 

x9 1 
x10 1 

x11 1 

x12 1 
x13 1 

x14 1 

x15 1 
x16 1 

x17 1 

x18 1 
x19 1 

x20 1 

x21 1 
x22 1 

x23 1 

x24 1 
x25 1 

x26 1 
x27 1 

x28 1 

x29 1 
x30 1 

Table 29. Statistical results for the topology optimization problem considering different approaches. 

Approaches Best Mean Worst Std-Dev 

(IUDE) Kumar et al. [42] 2.64 2.64 2.64 4.44E-16 

(MAES) Kumar et al. [42] 2.65 2.65 2.65 8.64E-03 

(LSHADE) Kumar et al. [42] 2.64 2.64 2.64 1.03E-15 
Present Study (AOS) 2.639346497 2.639346497 2.639346497 1.33227E-15 

IUDE: Improved Unified Differential Evolution Algorithm 

MAES: Matrix Adaptation Evolution Strategy 
LSHADE: Linear Success-History based Adaptive Differential Evolution 
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o) Steel I-Shaped Beam 

In this design example, the minimization of vertical 

displacement in a simply-supported steel I-shaped 

beam is considered in which there are four design 

variables including the width of the flanges (b), 

height of the web (h), thickness of the web (tw), and 

the thickness of the flanges (tf) with two inequality 

design constraints. In Fig. 16, a schematic 

presentation of this constraint design problem is 

prepared while Gandomi et al. [44] provide the 

related mathematical formulations. 

The best results of different optimization algorithms 

including the AOS algorithm are presented in Table 

30 while the optimum design variables are also 

included. In addition, statistical results of different 

optimization runs are also provide in Table 31 for 

having a valid comparative investigation. It is seen 

that the AOS yields improved results in dealing with 

this kind of complex optimization problem. 

 

Fig. 16. Visualization of the steel I-shaped beam 

problem.

 

Table 30. Best results of different approaches for the steel I-shaped beam problem. 

 (ARSM) Wang [72] (I-ARSM) Wang [72] 
(MATLAB) Wang 

[72] 

(CSA) Gandomi et 

al. [44] 

Present Study 

(AOS) 

Best 0.0157 0.131 0.0131 0.0130747 0.01307412 
h 80 79.99 80 80 80 
b 37.05 48.42 50 50 50 
tw 1.71 0.9 0.9 0.9 0.9 
tf 2.31 2.4 2.32 2.3216715 2.321792097 

ARSM: Adaptive Response Surface Method 

I-ARMS: Improved Adaptive Response Surface Method 

MATLAB: Matrix Laboratory Optimization Approach 
CSA: Cuckoo Search Algorithm 

 

Table 31. Statistical results for the steel I-shaped beam problem considering different approaches. 

Approaches Best Mean Worst Std-Dev 

Gandomi et al. [44] 0.0130747 0.0132165 0.01353646 0.0001345 

Present Study (AOS) 0.01307412 0.013178898 0.013814045 0.000155511 

 

p) Piston Lever 

In his problem, the volume optimization of the 

required oil in the piston lever is considered to 

optimally tune the position of the piston. There are 

four design variables in this problem including the 

H, B, X and D which represent the position of the 

piston with only four inequality design constraints. 

In Fig. 17, a schematic presentation of this constraint 

design problem is prepared while Gandomi et al. 

[44] provide the related mathematical formulations.  

In Table 32, the best results of AOS and other 

metaheuristic algorithms are presented while the 

statistical results including the mean of the results, 

worst run and standard deviation of multiple 

optimization runs are provided in Table 33. By 

comparing the results, it is found that the AOS 

outranks the other approaches. 

 

 

Fig. 17. Visualization of the piston lever problem. 

Table 32. Best results of different approaches for 

the piston lever problem. 

 Gandomi et al. [44] Present Study (AOS) 

Best 8.4271 8.419142742 

H 0.05 0.05 

B 2.043 2.042112482 
X 120 119.951727 

D 4.0851 4.084004492 
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Table 33. Statistical results for the piston lever problem considering different approaches. 

Approaches Best Mean Worst Std-Dev 

(HPSO) Gandomi et al. [44] 162 187 197 13.4 

(GA)(Gandomi et al. [44] 161 185 216 18.2 
(DE) Gandomi et al. [44] 159 187 199 14.2 

(CSA) Gandomi et al. [44] 8.4271 40.2319 168.5920 59.0552 

Present Study (AOS) 8.419142742 33.7412759 60.66498628 93.46674724 

HPSO: Hybrid Particle Swarm Optimization 
GA: Genetic Algorithm 

DE: Differential Evolution 

CSA: Cuckoo Search Algorithm 

q) Corrugated Bulkhead 

In this problem, the weight minimization of a 

corrugated bulkhead in tankers is considered. The 

problem has 4 design variables including the width 

(b), length (l), depth (h) and thickness (t) of the 

bulkhead with 6 inequality constraints. The problem 

is mathematically presented by Gandomi et al. [44]. 

Table 34 reports the best results of the AOS and 

other metaheuristic algorithms including the 

optimum design variables while the statistical results 

are also provided in Table 35 for comparative 

purposes. It is seen that AOS is competitive.

 

Table 34. Best results of different approaches for the corrugated bulkhead problem. 

 Gandomi et al. [44] Present Study (AOS) 

Best 5.894331 6.84295801 
b 37.1179498 57.69230769 

h 33.0350210 34.14762035 

l 37.1939476 57.69230769 
t 0.7306255 1.05 

 

Table 35. Statistical results for the corrugated bulkhead problem considering different approaches. 

Approaches Best Mean Worst Std-Dev 

Gandomi et al. [44] 5.894331 5.988257 6.126749 0.064360 

Present Study (AOS) 6.84295801 7.060808377 7.066936186 0.000649111 

 

r) Cantilever Beam 

In this design example, the weight minimization of 

a cantilever beam with 5 stepped hollow square 

sections is considered. There are 5 design variables 

including the width of the beam in different cross 

sections (x1, x2, x3, x4 and x5) with only one 

inequality design constraints. Gandomi et al. [44] 

provide the related mathematical formulations. 

In Table 36, the best results of different 

metaheuristic alongside the results of AOS are 

presented for comparative purposes. The optimum 

design variables are also provided for clarity. By 

comparing the obtained results of the AOS to the 

results of other algorithms, it is concluded that the 

AOS provides improved results. For completeness, 

the AOS statistical results are presented in Table 37.

Table 36. Best results of different approaches for the cantilever beam problem. 

 
(MMA) Gandomi et 

al. [44] 

(GCA-I) Gandomi et 

al. [44] 

(GCA-II) Gandomi 

et al. [44] 

(CSA) Gandomi et 

al. [44] 
Present Study (AOS) 

Best 1.34 1.34 1.34 1.33999 1.339956366 

x1 6.01 6.01 6.01 6.0089 6.016165407 

x2 5.3 5.3 5.3 5.3049 5.308902645 
x3 4.49 4.49 4.49 4.5023 4.494577659 

x4 3.49 3.49 3.49 3.5077 3.501505539 

x5 2.15 2.15 2.15 2.1504 2.152508461 

MMA: Method of Moving Asymptotes 

GCA: Generalized Convex Approximation 

CSA: Cuckoo Search Algorithm 

 

Table 37. Statistical results for the cantilever beam problem considering AOS algorithm. 

Approaches Best Mean Worst Std-Dev 

Present Study (AOS) 1.339956366 1.351954573 1.491711377 0.02499743 
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s) Tubular Column 

In this problem, the material and construction cost 

optimization of a tubular column is sought. There 

are three design variables including the average 

column section thickness (t) and average diameter of 

the column section (d) and six inequality design 

constraints. In Fig. 18, a schematic presentation of 

this problem is shown while Gandomi et al. [44] 

provide the related mathematical formulations. 

In Table 38, the best results of different 

metaheuristics including the AOS algorithm are 

presented for comparative purposes while the 

statistical results are also presented in Table 39 

based on multiple optimization runs. It is found that 

the AOS performs better in this problem. 

 

Fig. 18. Visualization of the tubular column 

problem

Table 38. Best results of different approaches for the tubular column problem. 

 Hsu & Liu [73] Rao [46] Gandomi et al. [44] Present Study (AOS) 

Best 25.5316 26.5323 26.53217 26.53137828 
d 5.4507 5.44 5.45139 5.451152962 

t 0.292 0.293 0.29196 0.291966716 

g1(x) -7.8E-05 -0.8579 -0.0241 -3.64E-06 
g2(x) 0.1317 * 0.0026 * -0.1095 -2.47E-06 

g3(x) -0.6331 -0.8571 -0.6331 -0.633105141 

g4(x) -0.6107 0 -0.6106 -0.610631931 
g5(x) -0.3151 -0.75 -0.3150 -0.314990412 

g6(x) -0.6350 0 -0.6351 -0.635041605 

* Violated Sets 

 

Table 39. Statistical results for the tubular column problem considering different approaches. 

Approaches Best Mean Worst Std-Dev 

Gandomi et al. [44] 26.53217 26.53217 26.53972 0.00193 
Present Study (AOS) 26.53137828 26.53161399 26.60821361 0.001030078 

 

t) Reinforced Concrete 

Beam 

Herein, the cost optimization of a reinforced 

concrete beam is sought. There are three design 

variables including the steel area (As), beam depth 

(h) and beam width (b) and two inequality design 

constraints. In Fig. 20, a schematic presentation of 

the problem is shown while Gandomi et al. [44] 

provide the mathematical formulation. 

In Table 40, the best results of different approaches 

including the AOS algorithm are presented. It is seen 

that the AOS provides better results than other 

algorithms. For completeness, statistical AOS 

results from different optimization runs are 

presented in Table 41. 

 

Fig. 20. Visualization of the reinforced concrete 

beam.

 

Table 40. Best results of different approaches for the reinforced concrete beam problem. 

 
Amir & Hasegawa 

[74] 
Shih & Yang [75] Yun [76] Gandomi et al. [44] Present Study (AOS) 

Best 374.2 362.00648 364.8541 359.2080 359.20800 

As 7.8 6.32 6.16 6.32 6.32 

b 31 34 35 34 34 

h 7.79 8.637180 8.7 8.5 8.5 

g1(x) -4.2012 -0.7745 -3.6173 -0.2241 -0.224094986 

g2(x) -0.0205 -0.0635 0 0 -1.00E-07 
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Table 41. Statistical results for the reinforced concrete beam problem considering AOS algorithm. 

Approaches Best Mean Worst Std-Dev 

Present Study (AOS) 359.20800 359.3306872 362.2535612 0.59614901 

V Convergence History 

In this section, the convergence behavior of the 

AOS algorithm in dealing with the considered 

constraint optimization problems is presented 

to demonstrate the convergence trends of the 

AOS to the optimum values of the objective 

functions in each of the considered problems. In 

Fig. 21, these convergence curves are illustrated 

in which the best results of 25 independent runs 

are determined for the considered problems. 
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Fig. 21. Convergence history of the AOS for different constraint problems. 
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VI Conclusions 

Optimum design of engineering problems has been 

addressed in this paper by means of the Atomic 

Orbital Search (AOS). The inspirational concept of 

this algorithm stems from the quantum-based atomic 

model relying on principles of quantum mechanics. 

For numerical investigation, 20 well-known 

constrained design problems in different 

engineering fields have been considered 

corresponding to real-life optimization benchmark 

design problems. By evaluating the results of the 

AOS algorithm in dealing with the considered 

engineering design problems, it was found that AOS 

has better performance in most cases as evidenced 

by comparing to the results of other metaheuristic 

algorithms from the recent literature. The maximum 

difference between the best optimum values of the 

AOS and other approaches are about 40% for robot 

gripper problem. In addition, the results of the AOS 

algorithm in dealing with three of the considered 

design examples including the four-stage gear box 

problem, rolling element bearing and the corrugated 

bulkhead are very competitive regarding the results 

of other approaches. The herein reported results 

renders the AOS a promising approach to tackle  

large-scale complex engineering optimization 

problems such as optimization-driven design of 

building structures under gravitational, wind, and 

seismic loads [22,25,30,77,78]. Such applications 

are left for future work.  
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