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Abstract

Causal inference and multisensory integration are two fundamental processes
of perception. It is generally believed that there should be one unified neural
circuit in the brain to realize these two processes in an optimal way. How-
ever, there is no solution yet due to the complicated neural implementation
for posterior probability computation. In this study, we propose a unified
neural network by solving the complicated posterior probability computa-
tion. A unified theoretical framework is presented from the viewpoint of
expectation. In addition, a biologically realistic neural circuit is proposed
with the combination of importance sampling and probabilistic population
coding. Theoretical analyses and simulation results manifest that our pro-
posed neural circuit can implement both causal inference and multisensory
integration. Taken together, our framework provides a new perspective of
how different perceptual tasks can be performed by the same neural circuit.
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1. Introduction

Perception is fundamental for accurate prediction and efficient action.
There are two important parts in perception: causal inference and multisen-
sory integration [1, 2, 3, 4]. For instance, the accurate seeing of localization is
crucial for a predator. When the predator receives noisy sensory information
from multiple modalities, such as visual and auditory modalities, it should
decide whether there is a common cause or not. This process is termed causal
inference [4, 5]. When the predator need to localize one object, it will com-
bine sensory signals, i.e. unisensory stimulus, multiple stimuli of the same
modality or multiple modalities, into the perception of localization. This
process is termed multisensory integration [6, 7]. It has been shown that
a number of cognition and perception activities in the brain are processed
and inferred in a near-optimal way [8, 9, 10, 11]. As a result, the studies
based on Bayesian approach are widely conducted to provide possible neural
mechanismes for different issues [12, 5, 13, 14, 15, 16, 17, 18, 19, 20, 21].

In recent years, theoretical ideas about possible neural implementation of
causal inference and multisensory integration are proposed, but a separate
way.

The core problem of multisensory integration is stimulus estimation by
probability. Beck et al. [22] and Ma et al. [23, 24] proposed to use prob-
abilistic population codes to realize neural circuit of probability. The firing
rates of a population of neurons correspond to the probability distributions.
The linear sum of the input population corresponds to the product of the two
posterior distributions. Therefore, they can estimate stimulus by taking the
summation of the firing rates of the corresponding neurons in each popula-
tion. However, they assume that two populations of neurons share the same
tuning curve profile, which is the expected value of firing rates, the two pop-
ulations encode information about the same stimulus. In other words, this
process is just a single-modal multisensory integration. Peña, Cazettes et al
.[25, 26, 27] proposed to use population vector to construct neural networks.
They assumed that neurons encode the likelihood probability in their tuning
curves and that the density of neurons reflects the prior information. As a
result, they can estimate stimulus by the neural implementation of the dot
product. However, there should be only one single vector for calculation due
to the rule of dot product. Therefore, they computed position just in single
sensory condition.

The core problem of causal inference is the calculation for probability of
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cause. Ma et al. [28, 29] defined a log posterior ratio to avoid the problem-
atic calculation of exponential function in the posterior probability. Such a
simplified calculation can be realized by rational neural activities. As a re-
sult, such neural circuits produces optimal decision rule to identify whether
there is a common cause. However, when computing stimulus estimate in
multisensory integration, their approach can not avoid the calculation of ex-
ponential function so that their approach needs extra complexity to deal with
exponential function. As a result, the circuit of multisensory integration is
different from that of causal inference. Yu et al. [30] constructed a hierar-
chical neural circuit with importance sampling. This neural circuit encodes
both decision and posterior probability, but without estimating stimulus for
multisensory integration. Cuppini et al [31] added a downstream layer on the
original multisensory neural circuit [32, 33, 34] to perform causal inference.
This downstream layer identifies the number of peaks from the multisensory
layers to output the number of cause. As a result, these two processes can
not be simulated with the same network.

In summary, these previous formalizations of multisensory integration
and causal inference are carried out separately. However, the space com-
plexity of one unified neural circuit tend to be lower under the same perfor-
mance. In addition, the unified circuit will be more flexible as it can perform
these two processes independently. Furthermore, it is generally believed that
there should be one unified neural circuit in the brain to realize the two
processes[35], because the brain tend to make full use of a limited number
of neurons in the long-term biological evolution. Here, we present the first
unified neural network model of perception that can perform both causal in-
ference and multisensory integration independently and optimally. Our main
contributions are threefold.

Firstly, we propose a unified theoretical formalization of these two pro-
cesses. We prove that both the probability calculation in causal inference
and the stimuli estimation in multisensory integration can be expressed as
the expectation defined on the posterior distribution. When the random
variable in expectation is probability, it represents causal inference. When
the random variable in expectation is stimulus, it represents multisensory
integration. In this way, adjusting the random variable (i.e. probability or
stimulus) in expectation can perform causal inference or multisensory inte-
gration, respectively, in the same neural circuit.

Secondly, we propose an efficient neural implementation on this unified
theoretical formalization. How to realize the neural implementation of the
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complicated exponential posterior distribution is always a challenge. The
bottlenecks are mainly due to the inefficient marginalization and the com-
plicated calculation of exponential posterior distribution. First, in order to
overcome the above bottlenecks, we use importance sampling to convert the
posterior calculation into the easy prior sampling and easy likelihood ratio.
Then, we assume that the tuning curve of the neuron is proportional to likeli-
hood and neurons follow some prior distribution in the brain. As a result, we
establish the bridge between the neural circuit and the posterior distribution.

Thirdly, our study provides mathematical explanations for the underly-
ing neural underpinnings in the brain computation. Divisive normalization
of firing rate in the cortex proposed by neuroscience [36, 37] studies can be
linked to the posterior distribution in Bayesian inference. In addition, phys-
iological experimental observations show that synaptic pulse signals in the
cerebral cortex change rapidly from one stable pattern to another [38, 39]. In
our simulation, when causal inference is switched to multisensory integration,
the random variable in expectation is switched from probability to stimulus
or vice versa. As a result, the weights of corresponding neural circuit vary
rapidly. This simulation results is consistent with the above physiological ex-
perimental observations. It further implies that there should be one unified
neural circuit in the brain to realize the two processes.

This paper is organized as follows. In Section 2, we present the gener-
ative model for causal inference and multisensory integration and introduce
the inference algorithm based on importance sampling. In Section 3, based
on the generative model in Section2, a unified theoretical framework for two
processes is derived and the corresponding neural circuit is designed. Nu-
merical simulations are presented and analyzed in Section 4. Section 5 gives
summary and discussion. Theorem derivation is deferred to the Appendix.

2. Bayesian generative model for two processes and importance
sampling inference algorithm

To model causal inference and multisensory integration, we consider the
following situation. When the observer are exposed to simultaneous auditory
and visual stimulus, he should report both the location of stimulus and exis-
tence of a common cause. As illustrated in Fig.1, the stimulus can be visual
S1 and auditory S2) cue. Due to noisy observation, there is a uncertainty in
the information conveyed by stimulus, which can be termed as noisy mea-
surement X1 for visual cue and X2 for auditory cue. Two processes can be
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Figure 1: Bayesian generative model of causal inference and multisensory integration.

expressed as:

• casual inference: inferring the existence of a common cause C through
noisy measurements X1 and X2, where C = 1 means the cues have the
same cause, and C = 2 means the cues have two different causes.

• multisensory integration: inferring the stimuli (Ŝ1, Ŝ2) that are the
optimal estimations from real stimuli (S1, S2).

When C = 1, there is one stimulus S, which is drawn from Gaussian
distribution p(S) with mean as 0 and standard deviation as σS. This stimulus
produces two measurements X1 and X2 drawn from Gaussian distributions
with the same mean as S but different standard deviation as σ1 and σ2. Thus
the likelihood probabilities are

p (Xi|S)=
1√
2πσi

exp

(

−(Xi − S)2

2σ2
i

)

with i = 1, 2, respectively.
When C=2, there are two stimuli S1 and S2, which are drawn from Gaus-

sian distribution p(S) with mean as 0 and standard deviation as σS. Stim-
uli S1, S2 produce two measurements X1 and X2 independently drawn from
Gaussian distributions with mean as S1, S2 and standard deviation as σ1, σ2,
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respectively. Thus the likelihood is

p (Xi|Si)=
1√
2πσi

exp

(

−(Xi − Si)
2

2σ2
i

)

with i = 1, 2, respectively.
Then, we introduce the inference algorithm based on importance sam-

pling. Given a noisy observation x and true stimulus x∗, the expectation
of some function f(x∗) over the posterior distribution p(x∗|x) is often use-
ful. However, it is hard to evaluate the expectation due to inefficient in-
tegration and complicated posterior distribution where direct sampling is
difficult. A Monte Carlo method, namely importance sampling, can solve
such intractable calculation in the elegant way. As Eq.(1) shows, by draw-
ing a large number of samples from the simple prior, importance sampling
can approximate the expectation where the posterior distribution is skillfully
converted to the ratio of likelihood.

E[f(x∗)|x] =
∫

f(x∗)p(x∗|x)dx∗ (1)

=

∫

f(x∗)
p(x∗)p(x|x∗)

∫

p(x∗)p(x|x∗)dx∗
dx∗

≃ 1

M

M
∑

i=1

f(x∗
i )

p(x|x∗
i )

∫

p(x∗)p(x|x∗)dx∗

≃
M
∑

i=1

f(x∗
i )

p(x|x∗
i )

M
∑

i=1

p(x|x∗
i )

x∗
i ∼ p(x∗)

3. One unified theoretical framework for tow processes

Based on the Bayesian generative model in Section2, the aim is to ob-
tain an optimal estimation of the stimulus location and feasible probabil-
ity calculation of the common cause. Now we propose a unified theoretical
framework of two processes and prove that both the probability calculation
in causal inference and the stimuli estimation in multisensory integration can
be expressed as the expectation defined on the posterior distribution.

Previous studies found that, to perform causal inference with importance
sampling, the posterior probability p(C = 1|X1 = x1, X2 = x2) can be
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written as a form of expectation by inducing hidden variables S1, S2 as follows
[30, 40],

p(C = 1|X1 = x1, X2 = x2) =p(C = 1|x1, x2) (2)

=

∫

S1,S2

p(C = 1,S1, S2|x1, x2)dS1, S2

=

∫

S1,S2

p(C = 1|S1, S2)p(S1, S2|x1, x2)dS1, S2

= E(p(C = 1|S1, S2))p(S1,S2|x1,x2)

≃
∑

Si
1
,Si

2
∼p(S1,S2)

p(C = 1|Si
1
, Si

2
)

p(x1, x2|Si
1
, Si

2
)

∑

Si
1
,Si

2
∼p(S1,S2)

p(x1, x2|Si
1
, Si

2
)

=
∑

Si
1
,Si

2
∼p(S1,S2)

I(Si
1
= Si

2
)

p(x1, x2|Si
1
, Si

2
)

∑

Si
1
,Si

2
∼p(S1,S2)

p(x1, x2|Si
1
, Si

2
)
.

Note that in Eq.(2), we abbreviate X1 = x1, X2 = x2 to x1, x2 and this
will hold in the rest of the paper. I(Si

1
= Si

2
) is an indicator function. When

Si
1
= Si

2
, it equals to 1. In other cases, it equals to 0.

We proved that causal inference can be inferred in an optimal way by
using a sampling-based inference algorithm [30]. Now we show that this
algorithm can be used for multisensory integration to estimate S1.

Without loss of generality, here we estimate S1. Assuming that the cost of
estimation is the mean squared error in Eq.(3), then the optimal estimation
is to get the lowest cost under the posterior probability [5]:

cost1 =
∫

(Ŝ1 − S1)
2p(S1|x1, x2)dS1, (3)

where Ŝ1 is the optimal estimation. Considering the cost is differential,
quadratic, and convex, the optimal strategy is to take the derivative with
respect to Ŝ1. Therefore, the optimal estimate is the expectation of stimulus
under the posterior probability p(S1|x1, x2) as shown in Eq.(4).

Ŝ1 =
∫

S1p(S1|x1, x2)dS1 = E[S1|x1, x2] ≃
∑

Si
1

Si
1

p(x1,x2|Si
1
)

∑

Si
1

p(x1,x2|Si
1
)
. (4)

Comparing the last equation in Eq.(4) with the last equation in Eq.(2),
the difference is mainly the likelihood p(x1, x2|Si

1) and p(x1, x2|Si
1, S

i
2). To
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reconcile with the theoretical framework of causal inference in Eq. (2), it
is necessary to convert the ratio formed by the likelihood p(x1, x2|Si

1) to
p(x1, x2|Si

1, S
i
2). By inducing the variable S2 into the ratio, we get,

p(x1, x2|Si
1)

∑

Si
1

p(x1, x2|Si
1)

=

∫

p(x1, x2, S2|Si
1)dS2

∑

Si
1

∫

p(x1, x2, S2|Si
1)dS2

(5)

=

∫

p(x1, x2|S2, S
i
1)p(S2|Si

1)dS2
∑

Si
1

∫

p(x1, x2|S2, Si
1)p(S2|Si

1)dS2

=

∑

Sj
2

p(x1, x2|Si
1, S

j
2)

∑

Si
1

∑

Sj
2

p(x1, x2|Si
1, S

j
2)

Si
1 ∼ p(S1) Sj

2 ∼ p(S2|S1)

=

∑

Si
2

p(x1, x2|Si
1, S

i
2)

∑

Si
1

∑

Si
2

p(x1, x2|Si
1, S

i
2)

Si
1, S

i
2 ∼ p(S2, S1)

In statistics, the operation where first Si
1 is sampled from p(S1) and then

Sj
2 is sampled from p(S2|S1) is equivalent to the one that Si

1, S
i
2 are sampled

from p(S1, S2) simultaneously. Thus, Eq.(6) is directly derived. Substitute
Eq.(5) in Eq.(4), we have,

Ŝ1 =
∑

Si
1

Si
1

p(x1, x2|Si
1)

∑

Si
1

p(x1, x2|Si
1)

=
∑

Si
1

Si
1

∑

Si
2

p(x1, x2|Si
1, S

i
2)

∑

Si
1

∑

Si
2

p(x1, x2|Si
1, S

i
2)

(6)

=
∑

i

Si
1

p(x1, x2|Si
1, S

i
2)

∑

i

p(x1, x2|Si
1, S

i
2)

Si
1, S

i
2 ∼ p(S1, S2)

Furthermore, the accuracy for estimation based on sampling-based in-
ference algorithm in Eq.(6) can be proved by the following theorem. This
theorem illustrates that the inference will converge to the optimal estimation
when the sample size goes to infinity. The full proof is shown in Appendix
A.

Theorem 1. Let P (C), P (S1S2|C), P (X1|S1), P (X2|S2) are the distributions
defined on Bayesian network. Si

1, S
i
2 ∼ p(S1, S2), then for arbitrary small
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Figure 2: The unified neural circuit of causal inference and multisensory integration.

number ǫ,

lim
N→∞

p(|
N
∑

i=1

Si
1

p(x1,x2|Si
1
,Si

2
)

∑

i

p(x1,x2|Si
1
,Si

2
)
−
∫

S1p(S1|x1, x2)dS1| < ε) = 1 (7)

Without loss of generality, the estimation of S2 also holds.

As shown in the Eq.(2), the probability of a common cause in causal
inference can be expressed as E(p(C = 1|S1, S2))p(S1,S2|x1,x2). As shown in
the Eq.(6), the stimuli estimation in multisensory integration can be ex-
pressed as E(S1)p(S1,S2|x1,x2). It’s easy to find that the only difference of
these two processes is the random variable in expectation, either probabil-
ity p(C = 1|S1, S2) or stimulus S1(orS2). Therefore, we unify the casual
inference and multisensory integration into one theoretical framework: the
expectation defined on the same posterior distribution. As a result, only
adjusting the random variable in expectation can perform causal inference
and multisensory integration respectively in the same neural circuit.

4. Neural implementation of the unified framework

A number of studies in psychophysics and physiology suggest that hi-
erarchical Bayesian inference is a reasonable framework to model the brain
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activities [41]. Much effort has been devoted to identify a neural substrate to
support Bayesian inference model [42, 23, 30, 28, 40]. There are two aspects
needed to be considered for neural implementation:

• Encoding: how the stimuli input can generate the activities of neurons;

• Estimation of posterior distribution: how the activities of neurons re-
alize the estimation of posterior probability since we are interested in
the expectation over posterior distribution.

For the first problem, a method called probabilistic population coding
(PPC) has been introduced to provide neural activities that reflects the in-
formation of inputs [23, 42]. In PPC it is assumed that a firing pattern
from a population of Poisson spiking neurons encodes a distribution instead
of specific values of a variable. The benefit is that the information of un-
derlying quantity is represented by its whole distribution, including vari-
ance/uncertainty and other aspects of a distribution. Assuming that Poisson
spiking neurons are conditionally independent of each other, this probabilistic
encoding is specified as:

p(r|x) =
∏

i

p(ri|x) =
∏

i

e−fi(x)fi(x)
ri

ri!
(8)

For neuron i, the tuning curve fi(x) is the mean firing rate for a range of
inputs. The response ri is the number of spikes in a fixed time interval given
the input. In particular, ri follows the Poisson distribution with the mean
firing rate fi(x) as a parameter. Thus, the neuron activities r = [r1, r2, ..., rN ]
represent the distribution p(r|x).

In our work, the characterization of neurons is determined by the prior
p(S1, S2) under the physiological assumption that the brain follows some prior
distributions [43, 44, 45]. Thus, N pairs of neurons S1

1S
1
2 , S

2
1S

2
2 , ..., S

N
1 SN

2 are
produced by p(S1, S2). Instead of tuning one modal into corresponding activ-
ities [40], these neurons S1

1S
1
2 , S

2
1S

2
2 , ..., S

N
1 SN

2 tune multiple modal by choos-
ing the tuning curve fi(x) as likelihood p(x1, x2|S1, S2). In this way, these
neuron activities are a full firing pattern from multiple stimuli, in some way,
to reflect multi-modal uncertainty. Given the stimuli input X1, X2, each of
neurons S1

1S
1
2 , S

2
1S

2
2 , ..., S

N
1 SN

2 emit spikes ri ∼ Poisson(c · p(x1, x2|S1, S2)).
Note that c is some positive constant. According to PPC, the neuron activ-
ities r = [r1, r2, ..., rN ] encodes the distribution p(r|X1, X2). That is to say,
these neuron activities encode the stimuli input X1, X2.

10



For the second problem, it can be divided into two steps, one for cal-
culation of posterior probability and another for neural implementation of
such calculation. Calculation of posterior probability is generally difficult.
Because it is impractical to sample directly from the posterior distribution
with the form of exponential family function. Importance sampling provides
a valuable method to approximate the posterior probability. As shown in
Eq.(9), it is easy to draw samples (si1, s

i
2) from the prior p(S1, S2) and the

posterior probability can be approximated by the ratio of likelihood.

p(S1 = si1, S2 = si2|X1, X2) =
p(X1, X2|si1, si2)p(si1, si2)

∫

p(X1, X2|S1, S2)p(S1, S2)dS1, S2

(9)

≈ p(X1, X2|si1, si2)
∑

i

p(X1, X2|si1, si2)

Then, we explore the neural implementation of posterior probability. Eq.(10)
has been proved[40], where R is total firing rate R =

∑

i ri. Note that
divisive normalization E(ri/R|R = n) in Eq.(10) is generally believed to
be prevalent in the cortex by neuroscience experiments [36, 37]. Combining
the Eq.(10) and Eq.(9), it is obvious that the normalization of firing rate
is an unbiased estimator to the posterior probability. In other words, the
brain may use divisive normalization to approximate posterior distribution
in Bayesian inference.

E(ri/R|R = n) =
p(X1, X2|si1, si2)
∑

i p(X1, X2|si1, si2)
(10)

Now we will describe the structure and mechanisms implemented in the
network.

• Inference process. As shown in the Fig.2, the network processes exter-
nal inputs X1, X2 together in the bottom-up direction. Inputs X1, X2

are first fed into a population of neurons S1
1S

1
2 , S

2
1S

2
2 , ..., S

N
1 SN

2 . These
neurons tune inputs X1, X2 into corresponding neuron responses r1, r2,
..., rN with tuning curve proportional to p(X1, X2|Si

1, S
i
2). Then, neu-

rons in lateral inhibition perform divisive normalization, i.e., E(ri/R|R =
n), to these neuron responses. It has been proposed that there is a clear
role for lateral inhibition to perform divisive normalization as gain con-
trol in visual processing [46, 47, 37, 48]. The normalized responses are
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fed into the next layer with synaptic weights W . For multisensory in-
tegration, synaptic weights W are Si

1(S
i
2). The output neurons sum

all the inputs from inhibitory neurons with synaptic weights W and
response with results E(S)p(S1,S2|x1,x2). For causal inference, synaptic
weights W are switched to I(Si

1 = Si
2)(I(S

i
1 6= Si

2) and the output neu-
rons response with results E(p(C = 1|S1, S2))p(S1,S2|x1,x2). In addition,
there should be another MAX layer to discriminate whether sensory
signals have a common cause. Therefore, the circuit is multiplexed for
causal inference and multisensory integration. In other words, causal
inference can be performed independently without relying the multi-
sensory integration and vice versa. It is a significant difference between
our model with other connectionist models.

• Generation process. In opposite direction to inference, generation pro-
cess is to generate sampling neurons S1

1S
1
2 , S

2
1S

2
2 , ..., S

N
1 SN

2 . Based on
the generative model in Section2, we get that sampling neurons fol-
low S1, S2 ∼ N (0, σ2

p). Thus, when C=1, sampling neurons Si
1 = Si

2

and they are drawn from the prior p(S), that is N (0, σ2
p). When C=2,

sampling neurons Si
1 and Si

2 are drawn from the prior p(S) respectively.

5. Network simulations

5.1. Verification on the validity of the model

We evaluate the validity of the model from two points: convergence with
increasing sampling size and accuracy with different inputs. This part is a
basic simulation so the configuration is as follow: the inputs (X1, X2) are
the two sources of vision and audition; the prior of a common cause is equal
to that of two independent causes, that is, p(C = 1) = p(C = 2) = 0.5;
the reliability of the two stimulus is the same, that is σ1 = σ2. Given each
input and each size of sampling neurons, we repeat the simulation 10 runs
and results are average over 10 runs. When we test convergence, we increase
the size of sampling neurons. The 13 different size of sampling neurons is
100 , 200, 500, 1000, 2000, 4000, 6000, 8000, 10000, 12000, 14000, 16000,
18000. Note that the convergence to optimal estimate is quantified by the

mean error δ = 1/N ·
N
∑

i=1

|Ŝi
1−Si

1|, where the index i represents the ith input,

Ŝ1 is the optimal estimate according to the formulation given in [28]. Ŝ1 is
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expressed in Eq.(11).

Ŝ1 = p(C = 1|x1, x2)Ŝ1,C=1 + p(C = 2|x1, x2)Ŝ1,C=2 (11)

=
1

1 + e−d

x1

σ2

1

+ x2

σ2

2

1
σ2

1

+ 1
σ2

2

+ 1
σ2

S

+
1

1 + ed

x1

σ2

1

1
σ2

1

+ 1
σ2

S

The results of testing on the convergence are shown in Fig.3. Fig.3a) is
the convergence in multisensory integration and Fig.3b) is the convergence in
causal inference. We find that: 1)For multisensory integration in Fig.3a), the
mean error of the stimulus estimate decreases exponentially with the sample
size increases to 103(Note that both figures are semilogarithmic coordinates).
In cases of the sample size is larger than 104, the mean error approximates
to 0 infinitely and becomes stable. It suggests that redundancy of neurons
will appear when the sample size increases to a certain amount. In fact,
when there are 2000 sampling neurons, the mean error is reasonably small as
0.1 for two-stimulus estimation. Considering there are millions of neurons in
the cerebral cortex, our proposed model can approximate the optimal value
infinitely. The performance of causal inference in Fig.3b) is similar to that
of multisensory integration.

Figure 3: Testing on the convergence. a)Mean error of |Ŝ1 − S1| the stimulus estimate
varies with sample size. b)Error rate of causal inference varies with sample size.

When we test accuracy, we produce 1000 inputs (X1, X2) with different
localization. Some inputs are produced from the common cause and others
are not. We compare the trial average of the stimulus estimate Si with
optimal value Ŝi across all inputs for different sample size. The results of
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testing on the accuracy are shown in Fig.4. For better display we resort and
index the 1000 different inputs according to the optimal value Ŝ1. It shows
that 1)Even if the sample size is 100, 1000 different input estimations all get
the satisfactory results. Among them, both the mean error and standard
deviation of the 800th input estimation is larger than other input. But when
the sample size is 1000, the estimation of 800th input is as accurate as that of
others. 2) Given each input, with the sample size increasing, the trial average
of the stimulus estimate approximates to the optimal value gradually, and
the standard deviation is getting smaller. In a word, when there are 1000
neurons, the approximate result is indistinguishable to the optimal one for
each different input.

Figure 4: The trial average of the stimulus estimate S comparing with optimal value Ŝ

across 1000 different inputs for different sample size. We repeat the experiment 10 times
to get the trial average. For convenience, we resort the stimuli of 1000 different inputs in
the increasing order of optimal value Ŝi in Fig.4.
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5.2. Verification on the generality of the model

We evaluate the generality of the model from two points: first, it can
be applied to unisensory stimulus, multiple stimuli of the same modality or
multiple modalities; second, it can be applied to different reliability of sensory
information.

In our daily life, the brain receives multiple sources of sensory infor-
mation, such as visual, auditory, and tactile information. It is necessary to
generalize our model to deal with unisensory stimulus, multiple stimuli of the
same modality or multiple modalities. As we formalize the causal inference
and multisensory integration into the expectation problem defined on con-
ditional posterior, increasing the stimuli only influences the conditional pos-
terior, whose calculation is tractable for our sampling-based method. Thus,
it’s convenient to implement multi-stimulus task with the same circuit of
two-stimulus task. Similar to Eq.(4)-Eq.(6), multiple stimuli estimation is
formulated as follows.

Ŝk = E[Sk|x1, x2, ..., xn] (12)

≃
∑

Si
k

Si
k

p(x1, x2, ..., xn|Si
k)

∑

Si
k

p(x1, x2, ..., xn|Si
k)

=
∑

Si
k

Si
k

∑

{Si
1
,Si

2
,...,Si

n}/S
i
k

p(x1, x2, ..., xn|Si
1, S

i
2, ..., S

i
n)

∑

Si
1
,Si

2
,...,Si

n

p(x1, x2, ..., xn|Si
1, S

i
2, ..., S

i
n)

=
∑

i

Si
k

p(x1, x2, ..., xn|Si
1, S

i
2, ..., S

i
n)

∑

i

p(x1, x2, ..., xn|Si
1, S

i
2, ..., S

i
n)

Si
1, S

i
2, ..., S

i
n ∼ p(S1, S2, ..., Sn)

Comparing Eq.6 and Eq.12, it’s obvious that we can realize the general-
ization just by converting several properties of two stimuli to that of multiple
stimuli. These properties include: 1), sampling prior p(S1, S2, ..., Sn); 2), the
tuning curve proportional to p(x1, x2, ..., xn|Si

1, S
i
2, ..., S

i
n); and 3), the synap-

tic weights I(Si
1 = Si

2 = ... = Si
n) (I(Si

1 6= Si
2 6= ... 6= Si

n)). Similarly, this
model can also be used for one sensory stimulus according to Eq.1. For this,
one can simply replace the likelihood p(X1, X2|S1, S2) by p(X|S), then the
sampling neurons become S1, S2, ..., SN from the prior p(S).

We test the spatial accuracy of the model in the unisensory and multi-
sensory conditions where the auditory and visual stimuli are presented in the
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Figure 5: Spatial distribution of the auditory localization error. a) comparison between
the our model and Cuppini’s model in the unisensory (auditory input alone:left panel) vs.
multisensory case (stimuli coincident in space:right panel) b) comparison in the behavioral
experiments of Odegaard et al modified from [31]. The inserted text is the corresponding
standard deviations.

same position. In addition, we compare the results with those reported by
Cuppini et al.[31] and behavioral data by Odegaard et al. [49]. Here, the
size of sampling neurons is 1000 and the reliability configuration is the same
as Cuppini et al. :σvision > σAuditory as visual stimuli is more reliable. Fig.5
shows that localization error is biased towards the center when two stimuli are
coincident. The SD of the auditory localization error in multisensory condi-
tions is significantly improved (which falls from 3.98◦ in unisensory condition
to 2.90◦ in multisensory conditions). Such a result is in line with the fact that
the localization of multisensory integration is more accurate than unisensory
estimation. The distribution of the localization of our model is comparable
to the behavioral findings of Odegaard et al. (The work by Cuppini et al.
and Odegaard et al. will be introduced in Section 5.3.)

We simulated the cases with three stimuli and ten stimuli respectively
to test the robustness of our model. The inputs are multiple stimuli that
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contain both a single modality and multiple modalities. We adopt the same
configurations and the criteria of convergence and accuracy as section 5.1.
The results of testing on the convergence are shown in Fig.6. Fig.6a) is the
convergence in multisensory integration and Fig.6b) is the convergence in
causal inference. It shows that: 1)Three stimuli task and ten stimuli task
show the similar behaviors of performance for our model.When the number of
sampling neurons increases, the error rate can be arbitrarily small in causal
inference, and the approximation manifestly converges to the optimal value
in multisensory integration. 2) The results of ten stimuli is not as good as
that of three stimuli. It is in line with human behavior that it is difficult to
identify too many stimuli. But, results of ten stimuli becomes desirable with
adequate sample neurons. The results of testing on the accuracy with ten
stimuli are shown in Fig.7. It shows that 1)Given each different input, with
sample size increasing, the trial average of the stimulus estimate approxi-
mates to the optimal value gradually, and the variance is getting smaller.
2) when the sample size is 100 in Fig.7 a), half of the inputs has a rela-
tively large estimation error, such as, the input index is 0,100,500,600. But
the approximation becomes indistinguishable to the optimal one with 1000
sampling neurons in Fig.7 d).

Figure 6: Testing on the convergence in multiple stimuli task. a)Mean error |Ŝ1 − S1| of
the stimulus estimate varies with sample size. b)Error rate of causal inference varies with
sample size.

Then, we test the generality of the model with different reliability. We
change these three parameters of sensory information in a wide range as σS,
σ1 and σ2 varying from 1 to 8 separately. Fig.8 shows the result of multi-
sensory integration: 1) The color graphics are asymmetrical. For example,
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Figure 7: The trial average of the stimulus estimate S comparing with optimal value Ŝ

across the 1000 different inputs for different sample size.

color of most block in the bar (σ1 = 1, σ2 = 1 : 8) is close to blue while color
in the bar (σ2 = 1, σ1 = 1 : 8) is close to red. Because the estimation of S1
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will be more affected by the reliability of S1 intuitively. 2) We divide panel
a) into four parts. Part in the bottom right corner represents σ1 < σ2 and
color in this part is close to blue. Part in the upper left corner represents
σ2 < σ1 and color in this part is close to red. Because intuitively, it is easier
to estimate S1 when S1 is more reliable than S2 and estimation of S1 will
be badly affected when S2 is more reliable. This performance also appears
in other panels b), c), d). Fig.9 shows the result of causal inference: 1) The
color graphics are symmetrical. Because whether σ1 < σ2 or σ2 < σ1, there
will be no effect on the discrimination. 2) Color in the bottom left part is
close to blue. Because when both stimuli are more reliable, it is easier to
discriminate multiple sensory signals. 3) When σS gets larger, the error rate
of causal inference is smaller. Because it is easier to discriminate when the
difference between two stimuli is larger.In general, the error rate is less than
0.1 and the mean error is less than 0.3 for the most parameters, which imply
that our model has a good performance for different reliability.

5.3. Verification on the applicability of the model

Applicability of our model is reflected in not only performing causal infer-
ence and multisensory integration, but also identify other neural mechanism
such as spatial ventriloquism [50, 51]. Spatial ventriloquism is a special
illusory phenomenon when the brain deals with causal inference and multi-
sensory integration. One of the performances is that when disparity between
sensory signals is increasing, the more reliable modality strongly influences
the other; when the disparity increases to a certain extent, multisensory in-
tegration breaks down. We simulated different experiments compared with
a existing connectionist model[31] and behavior data[49]. Here we briefly
introduce the above two works.

Odegaard et al.[49] tested the biases in visual and auditory localization
in the behavioral experiments. 384 observers answer the position and magni-
tude in both visual and auditory modalities when stimuli are presented alone
or combined with different positions. Data revealed that the visual modal-
ity is more reliable than auditory one and distance greater than 5◦ suggests
independent sources.

Cuppini et al.[31] provided a biologically inspired neurocomputational
model for audiovisual integration and causal inference. This model consists
of three layers: two encode auditory and visual stimuli separately and are
reciprocally connected via cross-modal synapses. Then, two layers are con-
nected to the downstream layer. The first two layers realize the multisensory
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Figure 8: Estimation error |Ŝ1 − S1| for different reliability with sample size being 1000.
and the model is fed into 1000 different inputs with the sample size fixed as 1000.

integration while the downstream layer realizes the causal inference. Among
others, the network can account for the ventriloquism effect. Cuppni et al
simulated different behavioral experiments of sensory detection tasks and
compared with corresponding behavior data. And results are in line with
human behavior.

In this simulation, we explore the pattern of sensory bias, the report of
unity and the distribution of the stimuli localization as a function of the
distance between the auditory and visual stimuli. We always fix the position
of the visual stimulus and shift the position of the auditory of the auditory
stimulus. The distance between two sensory signals changes from 0◦ to 20◦.
And we adopt the same configurations as Cuppini et al. Generally, when
the stimuli are coincident in space, it is more likely that two sources are
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Figure 9: Error rate of casual inference for different reliability with sample size being 1000.
and the model is fed into 1000 different inputs with the sample size fixed as 1000.

originated from the common cause on a priori. When the two stimuli are far
away, it is more likely that two sources are originated from the different cause
on a priori. Therefore, the prior of the common cause decreases from 0.7 to
0.3 with the auditory-visual distance increasing from 0◦ to 20◦. The size of
sampling neurons is 1000. Results were evaluated as the mean response over
1000 runs of the same task.

Fig.11 a) shows the report of the unity with the audiovisual spatial dis-
parity increasing. It shows the frequency of one common cause identified
by the network. When audiovisual disparity is smaller than 5◦, the network
judges the two stimuli being one common cause in more than 75% of the sim-
ulations. When the disparity is increasing, the percentage of identification of
a common cause decreased linearly with the distance. When the audiovisual
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Figure 10: Distribution of the localization of two-modal stimuli at different AV distances
simulated with our model and Cuppini’s model[31]. The visual stimulus is fixed at 0◦

(continuous vertical line) and the auditory stimulus is shifted from 0◦ to 20◦ (dashed
vertical line)

distance is 20◦, the network judges the two stimuli being one common cause
in almost 30% of the simulations. These results are consistent with human
behavior: when the distance between inputs is increasing, human are more
likely to identify the existence of different causes.

Fig.11 b) shows the bias of the perceived auditory position. It is computed
as the spatial disparity between the real position and evaluated position,
divided by the distance between the real auditory and the real visual stimuli.
When audiovisual disparity is smaller than 8◦, the bias remains stable. While
the audiovisual disparity is larger than 8◦, the bias decreases linearly.

Fig.10 shows the distribution of the localization of two-modal stimuli at
different AV distances. The fixed continuous vertical line is visual stimu-
lus and the shifted dashed vertical line is auditory stimulus in each panel.
When the audiovisual disparity is smaller than 10◦, the localization is mainly
distributed near the position of visual stimulus and the more reliable visual
modality dominates in the spatial domain; when the audiovisual disparity is
larger than 10◦, a bimodal distribution becomes evident: the first peak cen-
ters at the real position of visual stimulus and the second peak centers at the
real position of auditory stimulus. The results are in accordance with human
behavior: when the audiovisual disparity is within a certain range, the more
reliable stimulus attract the other; when the audiovisual disparity increases
to a certain amount, multisensory integration break down and estimation of
these two stimuli does not affect each other.

In the following, we analyze the space complexity between our model and
work of Cuppini et al. Without loss of generality, we assume there are two
stimuli of vision and audition receptively, and the number of neurons in one
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Figure 11: Report of unity (Fig a)) and Auditory Bias (Fig b)) at different AV distances
simulated with our model and Cuppini’s model[31].

modality is n. In our model, there are two populations of the visual and
auditory sampling neurons and the number of output neurons is 4 (2 for
causal inference and 2 for multisensory integration). So the total number of
neurons is 2n (Note that we ignore the output neurons because the number
of output neurons is far less than that of sampling neurons). The weight
between sampling neurons and output neurons is 4n and the weight in the
lateral inhibition is n. So the total size of weight is 5n. The total size of
space in our model is 7n. In the model of Cuppini et al., there are three
populations of neurons (two layer for vision and audition respectively and
one downstream layer for causal inference). So the total number of neurons
is 3n. The weight between sensory layers and downstream layer is 2n2. The
weight in cross-modal part is n. The weight in the lateral inhibition is 3n2.
So the total size of weight is 11n2+n. The total size of space in Cuppini et al.
is 11n2 +4n. The table 1 shows the space complexity for better comparison.
It shows that the space complexity in our model and Cuppni et al. is O(n)
and O(n2) respectively. Therefore, our model is significantly simple in the
case of the same experiment results compared with Cuppini et al.

6. Conclusion

In this paper, we unify the formalization of causal inference and multisen-
sory integration as the expectation defined on the same posterior distribution.
Then, based on probabilistic population codes and importance sampling, we
provide a reasonable neural circuit to realize these two processes optimally
and independently. To our knowledge, this is the first unified neural cir-
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Table 1: Comparison of space complexity with our model and Cuppini’s model.

Our model Cuppini et al.

the size of neuron 2n 3n
the size of weight 5n 11n2 + n

Total size 7n 11n2 + 4n
Space complexity O(n) O(n2)

cuit for these two processes. For mathematical rigor, theoretical analysis
and simulation results show that the approximation error can be arbitrarily
small when the sample size goes to infinity. Our simulations also show that
our circuit can get the satisfactory results with different reliability, unisen-
sory stimulus, multiple stimuli of the same modality or multiple modalities.
In addition, spatial ventriloquism can also be appeared in our circuit on the
verification of applicability.

Compared with other connectionist biological models, the advantages of
our model are two folds. From computational perspective, causal inference
can be performed in our model independently without relying on the multi-
sensory integration and vice versa. It suggests that our model will be more
flexible. In addition, the space complexity of our unified neural circuit is
lower under the same performance. It is consistent with long-term biological
evolution in which the brain tend to make full use of a limited number of
neurons. From physiological perspective, our unified circuit interprets some
underlying neural mechanisms mathematically. Divisive normalization of fir-
ing rate in the cortex [36, 37] can be linked to the posterior distribution in
Bayesian inference. In addition, rapid weight adjustment observed in the cor-
tex can be linked to the adjustment of variable in expectation when switching
between different processes [38, 39].

In this study, the proposed neural circuit only focuses on how to imple-
ment two processes, in which synaptic weights are given by a explicit form.
A clear question is how synaptic weights are updated to learn the new distri-
bution. Indeed, it is a significant challenge for understanding how the brain
adapts itself to the ever-changing world. Based on synaptic sampling, Kap-
pel et al [52] shed new light on the learning process in local neuronal circuit.
The essence of synaptic sampling is stochastic gradient descent. The dif-
ferential term is demonstrated theoretically as optimal STDP (Spike-timing
dependent plasticity) learning rule. Thus, the stochastic dynamics of network
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parameters enable their networks to learn the new distributions. The benefits
of sampling-based computation for spiking neurons and synapses have been
recently demonstrated in a series of studies [52, 53, 54, 55]. Future extension
of the current model is to address learning with sampling computation of
neurons and synapses.

Proof of Theorem 1

In order to prove Theorem 1, we present the Lemma 1 which has been
proved in [30].

Lemma 1. Supposing that random variables X1, X2, ..., Xn are
pairwise independent and X i ∼ P (X). Similarly, Y 1, Y 2, ..., Y n are
pairwise independent and Y j ∼ P (Y ). Besides, E (X) = µ1, E (Y ) =
µ2, µ1, µ2 6= 0, V ar (X) = σ2

1 and V ar (Y ) = σ2
2. Then for arbitrary

small number ε, we can conclude that P
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Theorem 1. Let P (C), P (S1S2|C), P (X1|S1), P (X2|S2) are the dis-
tributions defined on the Bayesian network.Si

1, S
j
2 ∼ p(S1, S2), then

for arbitrary small number ǫ,
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Without loss of generality, the estimation of S2 also holds for above
theorem.
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Proof: Supposing that f1 (x1, x2) =
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Likewise, we obtain,
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Note that S1, S2 ∈ [−L,L] and thus variance is bounded. [30] has
proved that for arbitrary small number ε,
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We can get for arbitrary small number ε,
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S1p(S1|x1, x2)dS1, it is easy to use Lemma 1 to show that for arbi-
trary small number ε,

27



P
(∣

∣f2 (x1, x2)−
∫

S1p(S1|x1, x2)dS1

∣

∣ < ε
)

> 1− 16σ2

2

Nµ2

1
ε2
− 16µ2

2
σ2

1

Nµ4

1
ε2
,

We also know that,
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By application of P (A ∩ B) ≥ P (A) + P (B) − 1, for arbitrary small
number ε we have,
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When N goes to infinite, it straightforward to conclude that for
arbitrary small number ε,
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