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Abstract. GP2 is a rule-based programming language based on graph
transformation rules which aims to facilitate program analysis and ver-
ification. Writing efficient programs in such a language is challenging
because graph matching is expensive. GP2 addresses this problem by
providing rooted rules which, under mild conditions, can be matched in
constant time. Recently, we implemented a number of changes to Bak’s
GP2-to-C compiler in order to speed up graph programs. One key im-
provement is a new data structure for dynamic arrays called BigArray.
This is an array of pointers to arrays of entries, successively doubling
in size. To demonstrate the speed-up achievable with the new imple-
mentation, we present a reduction program for recognising binary DAGs
which previously ran in quadratic time but now runs in linear time when
compiled with the new compiler.

Keywords: Rule-Based Graph Programs · GP2 · Time Complexity

1 Introduction

Rule-based graph transformation has been a topic of research since the early
1970s and has been the subject of numerous articles of both a theoretical and
practical nature (see the monographs [11, 12]). In addition, various graph pro-
gramming languages and model transformation tools have been developed, in-
cluding AGG [22], GReAT [1], GROOVE [14], GrGen.Net [17], Henshin [2] and
PORGY [13]. This paper focuses on the implementation of GP2, an experimen-
tal programming language based on graph transformation rules [19]. GP2 has
been designed to support formal reasoning on programs [21, 20] and comes with
a formal semantics in the style of structural operational semantics.

GP2 programs manipulate directed graphs whose nodes and edges are la-
belled with heterogeneous lists of integers and character strings. The principal

⋆ Supported by a Vacation Internship and a Doctoral Training Grant No. (2281162)
from the Engineering and Physical Sciences Research Council (EPSRC) in the UK,
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programming construct in GP2 are conditional graph transformation rules la-
belled with expressions. Rules operate on host graphs according to the attributed
graph transformation framework of [16]: in a two-stage process, the rule is first in-
stantiated by replacing all variables with values of the same type and evaluating
all expressions, yielding a rule in the double-pushout approach with relabelling
[15]. In the second stage, the instantiated rule is applied to the host graph by
constructing two suitable pushouts.

The performance bottleneck for GP2 (and graph transformation in general)
is matching the left-hand graph L of a rule within a host graph G, requiring time
polynomial in the size of L [4]. As a consequence, linear-time graph algorithms
in imperative languages may be slowed down to polynomial time when they
are recast as rule-based programs. To speed up matching, GP2 supports rooted
graph transformation where graphs in rules and host graphs are equipped with
so-called root nodes, originally developed by Dörr [10]. Roots in rules must match
roots in the host graph so that matches are restricted to the neighbourhood of
the host graph’s roots.

Using GP2 programs with rooted rules, it has been possible to solve the
2-colouring problem for graphs of bounded degree in linear time [5]. Remark-
ably, the program generated by Bak’s GP2-to-C compiler matches the running
time of Sedgewick’s hand-crafted C implementation of the 2-colouring problem
[23]. Meanwhile a few more conventional linear-time graph algorithms have been
shown to have GP2 implementations running in linear time on bounded-degree
graphs [8]. To the best of our knowledge, no comparable performance results
for low complexity graph algorithms have been reported for any other graph
transformation language.

In this paper, we outline some performance issues of the existing GP2-to-C
compiler and the changes we made to address them, motivating each change,
with examples where relevant. We also explain why we have not reached for off
the shelf garbage collection algorithms. The new compiler produces programs
with asymptotic runtime performance either the same as the original, or strictly
faster. We give some timing results measuring the performance of the output
programs of the original and improved compiler, providing empirical evidence
both of our improvements and lack of performance degradation in cases beyond
the scope of the improvements. We also implemented a root-reflecting mode to
the compiler to allow a clean theoretical treatment of rooted rules.

2 Bak’s GP2 Compiler

Before we discuss our modifications to the GP2 Compiler4, we first outline its
prior state. The compiler detailed in Bak’s thesis [3] compiled GP2 programs into
C code, which was then compiled by the GCC compiler into an executable. The
original compiler stored a graph as two dynamic arrays, one for nodes and one for
edges. Internally, each of these contained two arrays, one of the actual elements

4 The new compiler is available at https://github.com/UoYCS-plasma/GP2
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and another of indices that were empty, or “holes”. In the case of nodes, we
dub these the node and hole arrays respectively. When iterating through nodes,
each index would have to be checked to ensure it was not a hole. Deleting a
node would require tracking the new hole and inserting nodes could be done
by filling a hole should one exist. This raised performance issues if a program
deleted a large number of nodes, for instance, in a graph reduction algorithm,
as the enormous number of holes would make traversing the final smaller graph
as slow as the original larger one.

We demonstrate this effect by the toy reduction program in Figure 1 which
recognises edgeless graphs. (The loop del! applies the rule del as long as pos-
sible; the input graph is edgeless if and only if the program does not fail.) This
program should run in linear time, as finding an arbitrary node should take
constant time. Alas, each deleted node adds a new hole at the start of the node
array, making the program take quadratic time due to traversing the holes at
each rule match. The measured performance of both the original and improved
implementation on discrete graphs is provided in Figure 2.

Main = del!; if node then fail

del(x:list) node(x:list)

x ⇒ ∅ x ⇒ x

1 1

Fig. 1: The program is-discrete.gp2
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Fig. 2: Measured performance of is-discrete.gp2

Should the node array be too small for a new entry, it would be doubled
with the realloc() C standard library function, the same being done for the
hole array. However, this could change the array’s position in memory, making
any pointers to nodes invalid. This meant that Bak needed to store indices of
nodes instead of pointers, adding extra memory operations to resolve indices
every time a node was accessed.

For root nodes, Bak added a linked list to each graph, each entry holding
a pointer to a root node in the graph’s node array. Nodes would contain a
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flag themselves detailing if they were a root node or not. Iterating through or
deleting root nodes would now take constant time, should there be a constant
upper bound on the number of root nodes.

A node itself contained its own index, the number of edges for which it is
a source or target, termed its outdegree and indegree respectively, its incident
edges, label, mark and several boolean flags. The incident edges to a node were
stored in a unique manner, with indices of the first two edges being stored
statically as part of the node type itself, and the rest in two dynamically allocated
arrays of incoming and outgoing edges. This would avoid allocating arrays for a
node should its degree be below three. Each edge would contain its own index,
label, mark, and indices of its source and target nodes. It would, similarly to
nodes, hold a boolean flag of whether it had been matched or not yet, to prevent
overlapping matches.

Bak’s compiler implementation included a parser for input graphs, necessary
to allow programs to accept user provided input graphs. Unfortunately this im-
plementation could not dynamically allocate memory to accommodate arbitrar-
ily large input graphs. That is, only small inputs could be correctly processed,
with memory overflows not gracefully handled or even necessarily detected.

Finally, to accommodate programs running within the condition of an if

statement, for instance, a stack of states was needed. Bak implemented graph
stacks in two varieties: copying the previous graph into a stack to reuse it when
unwinding, and storing changes to the graph in the stack to undo them in reverse
when unwinding. The former simply stored all the data that a node or edge
contained, reconstructing the node or edge as needed as it unwound. Graph
copying would simply perform a deep copy of the graph as expected.

3 The Improved Compiler

We have updated the compiler implementation to address the issues described
in Section 2. We now present our improvements, which were first documented in
the unpublished report [9]. We draw root nodes using double circles.

3.1 Graph Parsing

To resolve the issues with parsing, we decided to employ Judy arrays5 [24],
instead of a simple dynamic array. Invented by Doug Baskins, Judy arrays are
a highly cache-optimised hash table implementation. The size of a Judy array is
not statically pre-determined but is adjusted, at runtime, to accommodate the
number of keys, which themselves can be integers or strings. Instead of storing
nodes in the array directly, we now store pointers to nodes in the host graph
as Judy arrays can only store references to a single word of data. Reallocating
the array when doubling it could move the array around and invalidate previous
pointers, an issue we resolve in the next subsection. This allowed an edge to

5 http://judy.sourceforge.net
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retrieve pointers to its source and target efficiently due to Judy arrays’ fast
runtime performance [18]. This also resolved problems with unnecessary node
array size, allowing node IDs to be arbitrarily large without causing memory
problems, as the array simply saw these IDs as meaningless keys. We consider
these improvements to be bug fixes, rather than performance improvements,
unlike our other internal data structure changes.

3.2 From Arrays to Linked Lists

To resolve the problems hole arrays pose, we switched to a linked list pointing to
nodes. This change let us run the discrete graph deletion program in linear time,
skipping holes we would otherwise traverse. Nodes, edges and now linked lists
could then be stored in arrays doubling in size when needed as before. We choose
this data structure above others that may have faster random access time, such
as binary trees, because our only use case is iterating through the entire list to
match subgraphs or adding and deleting nodes and edges. Accessing an arbitrary
element of the data structure quickly is therefore irrelevant, meaning linked lists
suit us perfectly.

It then became apparent that node indices were redundant, adding unneeded
memory operations to resolve a node’s address. Replacing indices with direct
pointers would in turn add the problem of pointers being invalidated should the
array of nodes or edges be moved when realloc() is called to enlarge them. To
fix this, we replaced all internal arrays with a new type we dubbed BigArray. The
BigArray type is an array of pointers to arrays of entries, successively doubling
in size. Accessing a given index is constant time, using the position of the largest
set bit in the index to identify which sub-array to access. A logarithmic number of
memory allocations are performed overall when filling the array with entries, with
the array of arrays being reallocated O(log(log(n))) times. While such doubling
arrays could lead to memory thrashing, in the case of GP 2 we are not interested
in working with graphs of such a scale that this would typically happen.

Big arrays also manage holes like the prior implementation did. However,
instead of using a second array of holes, big arrays store a linked list of holes
within the hole entries in the array, keeping a pointer to the first hole. When a
hole is created in the array, that position in the array is overwritten with the
data of a new linked list entry, becoming the head of the list of holes. This avoids
having to use extra memory for holes, making the BigArray type more memory
efficient and making deletion of elements constant time.

Most importantly, big arrays allow one to allocate more memory to the array
without having to possibly move previous entries in memory, simply creating a
new array. This means the low number of memory allocations may be maintained
without pointers to nodes and edges being invalidated. Thus, three big arrays
are now stored within a graph, one for nodes, one for edges, and one for entries in
the linked list of nodes, termed NodeList. A node list simply contains a pointer
to the node it refers to and a pointer to the next entry in the linked list. The
same is true of edge lists, albeit for edges.
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Each node now contains a big array of linked list entries for edges and pointers
to the linked list of outgoing edges and of incoming edges. No iteration through
edges directly is ever needed beyond printing a graph, which can be done by
iterating through the outgoing edges of every node, so no total list of edges is
maintained. A list of edges is again acceptable: our only use case is iteration.
Furthermore, as with the reasoning to add root nodes to GP 2, we are often
interested in graphs of bounded degree, making fast random access of edges
even less of a priority.

To avoid all pointers to a node or edge being garbage once it is deleted, nodes
and edges were also made to track who references them, only being garbage col-
lected when no such references exist. Nodes now hold flags representing if they
are in a graph or referred to in the stack of graph changes, and edges remember if
they are in a node’s list of incoming/outgoing edges or in the stack also. Should
a node or edge be deleted, the operation can be deferred should other references
still exist. Now, stacks of graph changes can simply store pointers to nodes and
edges rather than any data in them, as deletion would be automatic. We opted
to use a more manual approach to garbage collection rather than existing im-
plementations like the Boehm-Demers-Weiser garbage collector [6], as managing
this ourselves massively reduces the amount of system calls needed and lets us
even consider allocating memory in chunks doubling in size as we have done. Fur-
thermore, garbage collection is not the core content of our improvements, as our
focus remains on eliminating complexity issues in the aforementioned examples.

In the previous version of the compiler, there was only a single edge array
associated with each node. Now each node has, in addition to an internal big
array storing edges, two separate edge lists, for outgoing and incoming edges
respectively. It is now possible to run programs that previously required bounded
degree to obtain a certain worst case time complexity, now with only bounded
incoming degree, or bounded outgoing degree, since search plans can now only
consider edges of the correct orientation.

3.3 Root-Reflecting Mode

Finally, we have added a new “root-reflecting” mode to the compiler, allowing
the programmer to decide if rule application should reflect and well as preserve
root nodes. The motivation for this change is due to an issue in the theoretical
foundation of rooted graph transformation with relabelling originally used by
Bak and Plump which means that the right-hand square of a direct derivation
need not be a natural pushout.

That is, in the usual definition of injective graph transformation, the appli-
cation of a rule L ←֓ K →֒ R to a graph G, given a match L → G, is the
computation of the pushout complement (D,K → D,D →֒ G) of L → G and
K →֒ L, if it exists, and then the pushout (H,D →֒ H,R→ H) of K →֒ R and
K → D. The pushout complement exists exactly when the dangling condition
is satisfied, and D and H are unique up to unique isomorphism. When Plump
and Habel introduced relabelling in 2002 [15], in order to guarantee uniqueness
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they insisted on the pushout complement also being a pullback. This is no re-
striction, because both pushouts were already pullbacks in the original setting.
By comparison, looking at Bak and Plump’s explicit algorithm for computing
derivations as the definition of rule application, we have two problems:

1. The right square need not be a pullback.
2. The left square need not be a pushout.

← →





y

PB X

PO X





y

PB ×

PO X





y

← →

← ∅ →





y

PB X

PO ×





y

PB X

PO X





y

← ∅ →

Fig. 3: Problematic Derivation Examples

The first problem could be argued to not be major, since we remain compat-
ible with the original notion of injective DPO graph transformation, and we still
have uniqueness. However, there are two unfortunate consequences. The first
is that derivations are no longer invertible in the sense that if G ⇒r H, then
H ⇒

r
−1 G. The second is that non-root-reflecting matches may not properly

capure the intention of a programmer. Take for example, the left diagram of
Figure 3. The intention of a programmer writing such a rule would have been
to match a non-root and make it rooted, but if morphisms are not required to
reflect rootedness of nodes, the effect of applying the rule could be to do nothing,
if the non-root was matched against a root. Requiring root-reflecting morphisms
excludes this case, and the rule would, instead, be non-applicable.

The second problem is more serious, as it represents an irrevocable incom-
patibility with the definition of DPO graph transformation. This problem was
discovered by Plump and Wulandari in 2020, and their example is shown in the
right diagram of Figure 3.

Fixing both these problems (at the time, only aware of the first problem),
Campbell developed a new foundation for rooted GT systems with relabelling [7].
Instead of only insisting on matches preserving root nodes, one must additional
insist on them reflecting them too. This was formalised by defining rootedness
using a partial function into a two-point set rather than pointing graphs with
root nodes, thus allowing both squares in a derivation to be natural pushouts,
where formally, rules are allowed to have undefined rootedness in their interface
graphs. Plump and Wulandari also adopt Campbell’s new formalism in their
recent work [25].

4 Timing Results

We ran various benchmarks, comparing the old with the new implementation,
some examples of which are included here. Our full range of experiments can be
found in [9], and the concrete syntax of the programs is also available6.

6 https://gist.github.com/GrahamCampbell/c8d84d42e3913065d1f9859fd8aeb8dd
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In Section 2, we observed that even the program that simply deleted all
isolated nodes could not be executed in linear time by the old implementation.
A more subtle example is when the program splits up the input graph as it
executes. In Figure 4, we give a rooted reduction program with this property
that recognises binary directed acyclic graphs (DAGs).

Main = (init; Reduce!; if flag then break)!; if flag then fail

Reduce = up!; try Delete else set flag

Delete = {del1, del1 d, del21, del21 d, del22, del22 d, del0}

init(x:list) up(a,x,y:list)

x ⇒ x

1 1

x y ⇒ x y

1 2 1 2

a a

del1(a,x,y:list) del1 d(a,x,y:list)

x y ⇒ x

1 1

a
x y ⇒ x

1 1

a

del21(a,b,x,y:list) del21 d(a,b,x,y:list)

x y ⇒ x

1 1

a

b x y ⇒ x

1 1

a

b

del22(a,b,x,y,z:list) del22 d(a,b,x,y,z:list)

x

y

z ⇒

x

y

1

2

1

2

a

b

x

y

z ⇒

x

y

1

2

1

2

a

b

del0(x:list) set flag(x:list) flag(x:list)

x ⇒ ∅ x ⇒ x

1 1

x ⇒ x

1 1

Fig. 4: The program is-binary-dag.gp2

The program implements a depth-first search for nodes without incoming
edges, recording the “upward” path of the root node by dashed edges, combined
with reduction steps that delete such nodes. The main loop either terminates
with the empty graph, implying that the input graph was a binary DAG, or
upon execution of the break statement when a node has been detected to which
neither up nor one of the reduction rules is applicable. We observe that the
original compiler produces a program that runs in quadratic time on many graph
classes, including full binary trees and grid graphs. Our new compiler runs in
linear time on such graphs (see Figure 5).
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Fig. 5: Measured performance of is-binary-dag.gp2

Main = init; Reduce!; Unmark; if Check then fail

Reduce = {prune0, prune1, push}
Unmark = try unmark; try unmark

Check = {two nodes, has loop}

init(x:list) prune0(a,x,y:list)

x ⇒ x

1 1

x y ⇒ x

1 1

a

unmark(x:list) prune1(a,x,y:list)

x ⇒ x

1 1

x y ⇒ x

1 1

a

push(a,x,y:list)

x y ⇒ x y

1 2 1 2

a a

has loop(a,x:list) two nodes(x,y:list)

x ⇒ x

1 1a a

x y ⇒ x y

1 2 1 2

Fig. 6: GP2 Program is-tree.gp2

Main = link!

link(a,b,x,y,z:list)

x y z ⇒ x y z

1 2 3 1 2 3

a b a b

where not edge(1,3)

Fig. 7: The program transitive-closure.gp2
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Next, we look at a rooted tree reduction program by Campbell [7] (Figure 6)
that was linear time on graphs of bounded degree in the previous implementation
of the compiler. We confirm that it remains linear time (Figure 8). Finally, we
measure the performance of an unrooted program (Figure 7) which computes
the transitive closure of a graph. The new compiler is superior on linked lists and
grid graphs (Figure 9) due to the re-implementation of edge lists which speeds
up the intense search for edges in the absence of root nodes.
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Fig. 8: Measured performance of is-tree.gp2
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Fig. 9: Measured performance of transitive-closure.gp2

5 Conclusion and Future Work

The new compiler improves the performance of some programs significantly while
retaining the complexity class for others. The program is-discrete.gp2 has
been brought down to linear complexity due to our node list’s capacity to skip
holes in the underlying node array. Moreover, the new compiler outperforms the
old when running transitive-closure.gp2 by a significant constant factor. We
attribute this to better cache usage; in the old compiler, only the indices of the
first two edges are statically stored in the Node type, whereas the new compiler
stores several more direct pointers to nodes statically in a node’s big array.
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Some programs perform better or worse depending on the type of input
graph. For example, is-binary-dag.gp2 is accelerated from quadratic to linear
time on binary trees and linked lists, but is slightly slower now on grid graphs.
Such variance is to be expected with substantial implementation changes. Over-
all, the worst case drop in performance is by a constant factor, meaning no
complexities were worsened in the observed test cases. Several programs per-
form similarly to before with a slightly enlarged constant, a byproduct of the
memory operations that a linked-list data structure entails. Moreover, the new
compiler resolves some fundamental bugs in the graph parser’s implementation.

Future work should determine whether it makes sense to add lists of marked
and unmarked nodes in order to find a marked or unmarked node in constant
time. Ongoing research is also exploring what classes of graph algorithms can
be implemented in linear time in GP2 using the current compiler. Bak and
Plump showed that a depth-first search of graphs of bounded degree and with a
bounded number of connected components can be performed in linear time [4,
3], and also 2-colouring of such graphs. This paper shows that it is possible to
execute a reduction algorithm for binary DAGs in linear time that doesn’t limit
the growth of the number of components.
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