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1Scientific Computing Laboratory, Center for the Study of Complex Systems,

Institute of Physics Belgrade, University of Belgrade, Serbia
2Department of Physics, Faculty of Science, University of Zagreb, Croatia

3Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany

Realization of strong synthetic magnetic fields in driven optical lattices has enabled implementa-
tion of topological bands in cold-atom setups. A milestone has been reached by a recent measurement
of a finite Chern number based on the dynamics of incoherent bosonic atoms. The measurements
of the quantum Hall effect in semiconductors are related to the Chern-number measurement in a
cold-atom setup; however, the design and complexity of the two types of measurements are quite
different. Motivated by these recent developments, we investigate the dynamics of weakly inter-
acting incoherent bosons in a two-dimensional driven optical lattice exposed to an external force,
which provides a direct probe of the Chern number. We consider a realistic driving protocol in
the regime of high driving frequency and focus on the role of weak repulsive interactions. We find
that interactions lead to the redistribution of atoms over topological bands both through the con-
version of interaction energy into kinetic energy during the expansion of the atomic cloud and due
to an additional heating. Remarkably, we observe that the moderate atomic repulsion facilitates
the measurement by flattening the distribution of atoms in the quasimomentum space. Our results
also show that weak interactions can suppress the contribution of some higher-order nontopological
terms in favor of the topological part of the effective model.

I. INTRODUCTION

Ultracold atoms in optical lattices provide a perfect
platform for quantum simulations of various condensed-
matter phenomena [1]. Yet, since charge-neutral atoms
do not feel the Lorentz force, a big challenge in this field
was realization of synthetic magnetic fields. After years
of effort, artificial gauge potentials for neutral atoms were
implemented by exploiting atomic coupling to a suitable
configuration of external lasers [2, 3]. These techniques
were further extended to optical lattices, leading to the
realization of strong, synthetic, magnetic fields. As a re-
sult, important condensed-matter models – the Harper-
Hofstadter [4] and the Haldane model [5] – are nowadays
available in cold-atom setups [6–9]. The key property
of these models is their nontrivial topological content.
In the seminal TKNN paper [10] it was shown that the
quantization of the Hall conductivity observed in the in-
teger Hall effect can be directly related to the topological
index of the microscopic model - the Chern number.

Cold-atom realizations of topological models exploit
periodic driving, either through laser-assisted tunneling
[6, 7] or by lattice shaking [8]. Using Floquet theory
[11, 12], a periodically driven system can be related to
the time-independent effective Hamiltonian that corre-
sponds to a relevant condensed-matter system. The map-
ping is known as Floquet engineering and its important
features in the context of optical lattices are discussed in
Refs. [13–20]. Because of important differences of cold-
atom setups and their condensed-matter counterparts,
new quench protocols for probing topological features
were proposed [21–25]. Following up on these studies,
the deflection of an atomic cloud as a response to exter-
nal force was used to experimentally measure the Chern
number in a nonelectronic system for the first time [26].

While Floquet engineering is a highly flexible and pow-
erful technique, it poses several concerns. One of the
main open questions is related to the interplay of driving
and interactions which can heat up the system to a fea-
tureless, infinite-temperature regime according to general
considerations [27, 28]. In particular, it is shown that an
initial Bose-Einstein condensate in a periodically driven
optical lattice may become unstable due to two-body col-
lisions [29] or through the mechanism of parametric res-
onance [28, 30–36]. The preparation protocol, stability
and a lifetime of strongly correlated phases, expected in
the regime of strong interactions under driving is a highly
debated topic at the moment [28, 37, 38].

In order to further explore the role of weak atomic
interactions in probing topological features, here we
consider the dynamics of weakly interacting incoherent
bosons in a driven optical lattice exposed to an exter-
nal force. The setup that we consider includes all basic
ingredients for the Chern-number measurement [22, 26]
– the Chern number of the topological band can be ex-
tracted from the center-of-mass motion of atomic cloud
in the direction transverse to the applied force. We as-
sume an ideal initial state where the lowest topological
band of the effective model is almost uniformly popu-
lated. The optimal loading sequence necessary to reach
this state is considered in Refs. [39, 40]. Following the
recent experimental study [26], we assume that atoms
are suddenly released from the trap and exposed to a
uniform force. We perform numerical simulations for
the full time-dependent Hamiltonian and take into ac-
count the effects of weak repulsive interactions between
atoms within the mean-field approximation. We make
a comparison between the dynamics governed by the ef-
fective and time-dependent Hamiltonian and delineate
the contribution of interactions to the center-of-mass re-
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sponse and to the overall cloud expansion dynamics. Our
results show that interactions lead to the undesirable
atomic transitions between topological bands [41], but
we also find that a weak atomic repulsion can facilitate
the Chern-number measurements in several ways.
The paper is organized as follows. In Sec. II we de-

scribe the model and introduce a method that we ap-
ply for the description of incoherent bosons. In Sec. III
we address the dynamics of noninteracting incoherent
bosons, and then in Sec. IV we address the regime of
weak repulsive interactions. Finally, we summarize our
results in Sec. V. Appendixes A to F provide further de-
tails.

II. MODEL AND METHOD

In this section, we first present the driven model in-
troduced in Ref. [26], and then derive the corresponding
effective model and discuss its basic characteristics. At
the end, we explain our choice of the initial state and
outline the method that we use to treat the dynamics of
weakly interacting incoherent bosons.

A. Effective Floquet Hamiltonian

Interacting bosons in a two-dimensional optical lattice
can be described by the Bose-Hubbard Hamiltonian

ĤBH = −Jx
∑

l,m

(

â†l+1,mâl,m + â†l−1,mâl,m

)

− Jy
∑

l,m

(

â†l,m+1âl,m + â†l,m−1âl,m

)

+
U

2

∑

l,m

n̂l,m (n̂l,m − 1) , (1)

where â†l,m and âl,m are creation and annihilation oper-
ators that create and annihilate a particle at the lattice
site (l,m) = laex + maey (a is the lattice constant),

n̂l,m = â†l,mâl,m is the number operator, Jx and Jy are
the hopping amplitudes along ex and ey, and U is the
on-site interaction. In the derivation of the model (1)
we use the single-band tight-binding approximation [1].
Although the experimental setup [26] is actually three
dimensional, with an additional confinement in the third
direction, our study is simplified to a two-dimensional
lattice.
In order to engineer artificial gauge field in the exper-

iment [26], hopping along ex was at first inhibited by an
additional staggered potential

Ŵ =
∆

2

∑

l,m

(−1)ln̂l,m, (2)

and then restored using resonant laser light. The ex-
perimental setup can be described by a time-dependent

FIG. 1. Schematic representation of the model. The unit
cells are shaded. (a) Effective Hamiltonian without correc-

tion, Ĥeff,0 (6). Vertical links correspond to real hopping am-
plitudes (along ey direction), while the horizontal links to the
right of lattice sites labeled A, B, C, and D correspond to com-
plex hopping amplitudes with phases 3π

4
, π

4
, −π

4
, and − 3π

4
,

respectively (when hopping from left to right). (b) Effective

Hamiltonian with correction, Ĥeff,1 (7). Red lines represent
positive next-nearest-neighbor hopping amplitudes (connect-
ing uppercase letters), while the blue lines represent negative
next-nearest-neighbor hopping amplitudes (connecting lower-
case letters). Nearest-neighbor hopping amplitudes are the
same as in (a).

Hamiltonian

H̃(t) = ĤBH + V̂ (t) + Ŵ , (3)

where V̂ (t) is a time-dependent modulation

V̂ (t) = κ
∑

l,m

n̂l,m

[

cos

(
lπ

2
− π

4

)

cos
(

ωt− mπ

2
+ φ0

)

+cos

(
lπ

2
+
π

4

)

cos
(

−ωt− mπ

2
+
π

2
+ φ0

)]

,

(4)

κ is the driving amplitude, and ω = ∆ is the resonant
driving frequency. We set the relative phase φ0 between
the optical-lattice potential and the running waves used
for laser-assisted tunneling to φ0 = π/4.
Using Floquet theory, the time-evolution operator cor-

responding to the Hamiltonian (3) can be represented as

Û(t, t0) = e−iŴ te−iK̂(t)e−i(t−t0)Ĥeff eiK̂(t0)eiŴ t0 , (5)

where Ĥeff is the full time-independent effective Hamil-
tonian that describes slow motion and K̂(t) is the
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time-periodic kick operator that describes micromotion
[13, 14].
For the moment, in this subsection we first consider

the noninteracting model U = 0. We also assume that
the driving frequency ω is the highest energy scale, but
that it is still low enough that the lowest-band approxi-
mation used in deriving Eq. (1) is still valid. In the lead-
ing order of the high-frequency expansion, the effective
Hamiltonian Ĥeff is given by

Ĥeff,0 =J ′
x

∑

l,m

[

ei
(
(m−l−1)π/2−π/4

)

â†l+1,mâl,m + h.c.
]

− J ′
y

∑

l,m

(

â†l,m+1âl,m + â†l,m−1âl,m

)

, (6)

where the renormalized hopping amplitudes are J ′
x =

Jxκ√
2ω

= Jy and J ′
y = Jy

(

1 − 1
2
κ2

ω2

)

. A schematic rep-

resentation of this model is presented in Fig. 1(a). The
unit cell is shaded and the full lattice is spanned by the
vectors R1 = (4, 0) and R2 = (1, 1). Particle hopping
around a plaquette in the counterclockwise direction ac-
quires a complex phase −π

2 and the model is equivalent
to the Harper-Hofstadter Hamiltonian [4] for the case

α = 1/4 [4]. The explicit form of the kick operator K̂(t)
from Eq. (3) is given in Appendix A.
Following Refs. [13, 14], we find that additional cor-

rections of the order J2
x/ω contribute to the system’s dy-

namics and we introduce another approximation for the
effective Hamiltonian

Ĥeff,1 = Ĥeff,0

+
J2
x

ω

∑

l,m

(−1)l
(

2â†l,mâl,m + â†l+2,mâl,m + â†l−2,mâl,m

)

.

(7)

The derivation of Hamiltonian (7) is given in Appendix
A and its schematic representation is given in Fig. 1(b).
The J2

x/ω correction introduces next-nearest-neighbor
hopping along x direction with opposite signs for lattice
sites with either even or odd x-coordinate l. This term
does not change the total complex phase per plaquette,
but the unit cell is now doubled and thus the first Bril-
louin zone is halved. A similar term was engineered on
purpose in order to implement the Haldane model [8].
In the next subsection we investigate properties of en-

ergy bands of both effective Hamiltonians, Ĥeff,0 and

Ĥeff,1. We use the units where ~ = 1 and a = 1. Un-
less otherwise stated, we set the parameters to the fol-
lowing values: lattice size 100 × 100 sites, hopping am-
plitudes J ′

x = Jy = 1 ≡ J , and the driving amplitude
κ = 0.58 ω. This value of the driving amplitude was
chosen to be the same as in the experiment [26]. In
order to set the renormalized hopping amplitude along
ex to J ′

x = 1, the initial hopping amplitude has to be

Jx =
√
2ω/κ = 2.44, and the correction term is therefore

proportional to J2
x/ω = 5.95/ω, so it cannot be safely

neglected unless the driving frequency is very high.

B. Band structure

Momentum-space representations of the effective
Hamiltonians Ĥeff,0 and Ĥeff,1, denoted by Ĥeff,0(k) and

Ĥeff,1(k), respectively, are derived in Appendix B. Band

structures for the effective Hamiltonian Ĥeff,0 without
the J2

x/ω correction, Eq. (B1), as well as for the effec-

tive Hamiltonian Ĥeff,1 including the correction term, Eq.
(B2), are shown in Fig. 2 for the two values of driving
frequencies ω = 20 and ω = 10.
The Hamiltonian Ĥeff,0 is the Harper-Hofstadter

Hamiltonian for the flux α = 1/4. It has four energy
bands, where the middle two bands touch at E = 0 and
can therefore be regarded as a single band; see Fig. 2(a).
The topological content of these bands is characterized
by the topological index called the Chern number. The
Chern number is the integral of the Berry curvature [42]
over the first Brillouin zone divided by 2π,

cn =
1

2π

∫

FBZ

Ωn(k) · dS, (8)

where n denotes the band number and the Berry curva-
ture is Ωn(k) = i∇k × 〈un(k)|∇k|un(k)〉, expressed in
terms of eigenstates of the effective Hamiltonian |un(k)〉.
The Chern numbers of the three well-separated bands are
c1 = 1, c2 = −2, and c3 = 1.
Because the correction from Eq. (7) includes next-

nearest-neighbor hopping terms, the elementary cell in
real space is doubled [see Fig. 1(b)] and, as a consequence,

the first Brillouin zone for the Hamiltonian Ĥeff,1 is re-

duced by a factor of 2 compared to Ĥeff,0. There are now
eight lattice sites in the unit cell and eight energy bands,
but the number of gaps depends on the driving frequency.
The new bands touch in pairs, in such a way that there
are always maximally three well-separated bands. When
the driving frequency is high enough, the correction is
small and the gaps between the three bands remain open;
see Fig. 2(b). The original band structure of Ĥeff,0 is re-
covered in the limit ω → ∞. The Berry curvature and
the Chern number can be calculated using the efficient
method presented in Ref. [43]. Our calculations confirm

that the Chern numbers of Ĥeff,1 are equal to those of

Ĥeff,0 (c1 = 1, c2 = −2, and c3 = 1), as long as the gaps
between the energy bands are open. The gaps close when
the driving frequency is too low, see Fig. 2(c), and the
Chern numbers of the subbands can no longer be prop-
erly defined.

C. Dynamics of incoherent bosons

We need to take into account a contribution of weak,
repulsive interactions. Full numerical simulations of an
interacting many-body problem are computationally de-
manding, so we need a reasonable, numerically tractable
approximation. To this end we will use the classical field
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FIG. 2. Energy bands of the effective Hamiltonians. (a) Ĥeff,0(k) Eq. (B1), which is without the J2
x/ω correction term. (b)

Ĥeff,1(k) Eq. (B2), which includes the correction term. Driving frequency ω = 20; gaps are open. (c) Same as (b), but with
ω = 10. Gaps are closed.

method [44], which belongs to a broader class of trun-
cated Wigner approaches [45]. This method is similar
to the approach used to treat incoherent light in instan-
taneous media [46, 47], known in optics as the modal
theory.
The underlying idea of the method is to represent the

initial state as an incoherent mixture of coherent states
|ψ〉, âl,m|ψ〉 = ψl,m|ψ〉 [44]. This is explained in more
detail in Appendix C. In our study, we sample initial
configurations of these coherent states with

|ψ(t = 0)〉 =
Nm∑

k=1

eiφk |k〉, (9)

where φk ∈ [0, 2π) are random phases and the states
|k〉 correspond closely to the lowest-band eigenstates of

Ĥeff. Each of Nsamples initial states is time evolved and
physical variables can be extracted by averaging over an
ensemble of different initial conditions.
The time evolution of each of these coherent states is

governed by

i
dψl,m(t)

dt
=

∑

ij

Hlm,ij(t)ψi,j(t)− F mψl,m(t)

+ U |ψl,m(t)|2ψl,m(t), (10)

where Hlm,ij(t) = 〈l,m|Ĥ(t)|i, j〉 are matrix elements of

Ĥ(t) from Eq. (3), F is the external force, and interac-
tions U contribute with the last, nonlinear term. For-
mally, Eq. (10) takes the form of the Gross-Pitaevskii
equation [48–50]. The performances and limitations of
the method are discussed and reviewed in Ref. [51].
For comparison, we also consider the related time evo-

lution governed by the effective Hamiltonian

i
dψl,m(t)

dt
=

∑

ij

hefflm,ijψi,j(t)− F mψl,m(t)

+ U |ψl,m(t)|2ψl,m(t), (11)

where hefflm,ij = 〈l,m|ĥeff|i, j〉, with ĥeff being either Ĥeff,0

from Eq. (6), or Ĥeff,1 from Eq. (7). Equation (11) should

be considered only as a tentative description of the sys-
tem: the mapping between Ĥ(t) and Ĥeff is strictly valid
only in the noninteracting regime and the interaction
term may introduce complex, nonlocal, higher-order cor-
rections [27]. However, we expect their contribution to
be small in the limit U → 0, and for time scales which
are not too long [52–55].
In the following we use Nm = 300 modes and ac-

commodate Np = 300 particles per mode, so in to-
tal in the simulations we have N = NmNp = 90, 000
bosons. Typical densities in real space are up to 100
particles per site and we choose the values of U in the
range U ∈ [0, 0.05]. Other parameters: J ′

x = Jy = 1,
κ/ω = 0.58, ω = 10, 20, and F = 0.25J/a. The cor-
rection terms are non-negligible in this frequency range.
In practice, we first numerically diagonalize the Hamil-
tonian (C2) from Appendix C and set our parameters in
such a way that the lowest Nm modes have high overlap
with the lowest band of the effective model. In the next
step, we sample initial configurations (9). For each of
Nsamples = 1, 000 sets of initial conditions we then time
evolve Eq. (10) and extract quantities of interest by av-
eraging over resulting trajectories. This value of Nsamples

is chosen to be high enough, so that the fluctuations are
weak. We present and discuss results of our numerical
simulations in the following sections.

III. NONINTERACTING CASE

We start by addressing the dynamics of noninteract-
ing bosons. In this case we set U = 0 in Eq. (10) and
numerically solve the single-particle Schrödinger equa-
tion without further approximations. Our aim is to nu-
merically validate and compare the two approximations,
Eqs. (6) and (7), for the effective Hamiltonian. To this
purpose, we juxtapose results of the two approximative
schemes with the numerically exact results obtained by
considering the full time evolution governed by Ĥ(t). For
clarity, the four different time evolutions that we consider
in this section are summarized in Table I. We calculate
the center-of-mass position x(t) and plot the results in
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case initial state band populations evolution

1 Ĥeff,1 Ĥeff,1 Ĥeff,1

2 Ĥeff,1 Ĥeff,1 Ĥ(t)

3 Ĥeff,0 Ĥeff,0 Ĥeff,0

4 Ĥeff,0 Ĥeff,0 Ĥ(t)

TABLE I. Four different cases: the same effective Hamiltonian
is always used for the initial state and band definitions, either
with or without the correction. The evolution is governed
either by the time-dependent Hamiltonian or by the same
effective Hamiltonian as the one that was used for the initial
state and calculation of band populations.

Fig. 3. In this way we also find the regime of microscopic
parameters where the Chern-number measurement can
be optimally performed.
First, we consider the basic Harper-Hofstadter Hamil-

tonian (6) and select the occupied modes |k〉 of the initial
state (C1) as eigenstates of the model from Eq. (9) for

ĥeff = Ĥeff,0. As explained in the previous section, at the
initial moment t0 = 0, the confinement is turned off and
the force F = −Fey is turned on. As a consequence of
the applied external force and the nonzero Chern number
of the lowest band of the model (6), the particles exhibit
an anomalous velocity in the direction perpendicular to
the force [56]. In the ideal case, when the lowest band is
fully populated, the theoretical prediction for the center-
of-mass position in the ex direction is [26]

x(t) = x(t0) + c1
2Fa2

π~
t, (12)

where c1 = 1 is the Chern number (8) of the lowest band.
However, even in the ideal case, due to the sudden quench
of the linear potential, a fraction of particles is trans-
ferred to the higher bands. To take this effect into ac-
count, the authors of Ref. [26] introduced a filling factor
γ(t)

γ(t) = η1(t)− η2(t) + η3(t), (13)

where ηi(t) are populations of different bands of Hamil-
tionian (6) from Eq. (C4) in Appendix C and the plus
and minus signs in Eq. (13) are defined according to the
Chern numbers c1 = 1, c2 = −2, and c3 = 1. The final
theoretical prediction is then [26]

x(t) = x(t0) + c1
2Fa2

π~

∫ t

0

γ(t′)dt′. (14)

In Fig. 3(a) we consider the anomalous drift for a high
value of the driving frequency ω = 20, where we expect
the expansion in 1/ω to be reliable. We find an excellent
agreement between the prediction (14) (dotted black line)

and numerical calculation based on Ĥeff,0 (solid green
line). However, some deviations between the full numeri-
cal results (dashed purple line) and the results of the ap-
proximation scheme (solid green line) are clearly visible.

FIG. 3. Anomalous drift x(t). Dashed purple lines: numer-

ical simulations using the time-dependent Hamiltonian Ĥ(t)
(cases 2 and 4 from Table I). Solid green lines: effective Hamil-

tonians Ĥeff,1 (c) and (d) and Ĥeff,0 (a) and (b) (cases 1
and 3). Dotted black lines: theoretical prediction (14) from
γeff,1(t) or γeff,0(t). (a) Initial states and band populations

obtained using the effective Hamiltonian Ĥeff,0 without the
correction (cases 3 and 4). Driving frequency ω = 20. (b)

ω = 10. (c) Hamiltonian Ĥeff,1 with the J2
x/ω correction

(cases 1 and 2). Driving frequency ω = 20. (d) ω = 10.

These deviations are even more pronounced for ω = 10,
Fig. 3(b).

Now we turn to the effective model (7). In this case
we select the modes of the initial state as eigenstates of

Eq. (9) for ĥeff = Ĥeff,1. Moreover, we also consider band
populations (C4) of the same model. In the case when
ω = 20, Fig. 3(c), the anomalous drift obtained using the
effective Hamiltonian (7) (solid green line) closely follows
the theoretical prediction (14). Moreover, from the same

figure we can see that the effective Hamiltonian Ĥeff,1

reproduces the behavior of the time-dependent Hamilto-
nian very well. All three curves almost overlap for inter-
mediate times (5−40 ms); see Fig. 3(c). We attribute the
long-time (> 45 ms) deviations to the finite-size effects
introduced by the next-nearest-neighbor hopping terms,
which cause the atomic cloud to reach the edge of the
lattice faster. This effect is explained in more detail in
Sec. IVB.

For a lower driving frequency ω = 10, the effective and
the time-dependent Hamiltonians do not agree so well
anymore; see Fig. 3(d). The finite-size effects can be ob-
served even earlier in this case (around 25 ms). This
happens because the next-nearest-hopping terms are in-
versely proportional to the driving frequency. It is inter-
esting to note that the prediction (14) is close to numer-
ical data for short times even in this case when the gaps
of the effective model are closed, see Fig. 2(c), and the
Chern number of the lowest band is not well defined. In
fact, it is surprising that the anomalous drift even exists
in this case, as all subbands are now merged into a single



6

FIG. 4. Time evolution of the filling factor γ(t) for driving
frequency ω = 20. Solid purple lines: evolution governed by
the time-dependent Hamiltonian Ĥ(t) (cases 2 and 4 from
Table I). Dashed green lines: evolution governed by the ef-

fective Hamiltonian Ĥeff,1 or Ĥeff,0 (cases 1 and 3). Dotted
black lines: green lines shifted in order to compare them with
purple lines. Shift is chosen so that the two lines approxi-
mately overlap. (a) Initial states and band populations ob-

tained using the effective Hamiltonian Ĥeff,0, which is without
the J2

x/ω correction term (cases 3 and 4). (b) Hamiltonian

Ĥeff,1 which is with the correction term (cases 1 and 2).

band. We attribute this effect to our choice of the initial
state. When the gaps are closed, it is hard to set the pa-
rameters in such a way that the lowest band is completely
filled. The top of this band usually remains empty, and
the particles thus do not “see” that the gap is closed.
Time evolution of the filling factor γ(t) is plotted in

Fig. 4 for four different cases from Table I – evolution
using the effective Hamiltonian without correction Ĥeff,0

[γeff,0(t), case 3, dashed green line in Fig. 4(a)], the ef-

fective Hamiltonian with correction Ĥeff,1 [γeff,1(t), case
1, dashed green line in Fig. 4(b)], or the time-dependent

Hamiltonian Ĥ(t) [γ(t), cases 2 and 4, solid purple lines].
At the initial moment γ(t0 = 0) < 1, because the initial

state was multiplied by the operator e−iK̂(0). This in-
troduces a shift between γ(t) and γeff,1(t). Apart from
the shift, these two curves behave similarly, unlike the
γeff,0(t) curve that exhibits completely different behav-
ior. Because of this, we use only γeff,1(t) to estimate the
value of the prediction (14).
We find that the values of γeff,1(t) for ω = 20 are high:

≥ 0.95; see Fig. 4. For this reason, up to 50ms the
center-of-mass position x(t) exhibits roughly linear be-
havior with some additional oscillations. Interestingly,
the anomalous drift x(t) exhibits quadratic behavior on
short time scales in all cases from Fig. 3. In Appendix
D, we explain this feature using the time-dependent per-
turbation theory and Fermi’s golden rule.

IV. INTERACTING CASE

We now investigate the effects of weak repulsive inter-
actions. We work in the high-frequency regime and set
ω = 20. As shown in Sec. II B, for U = 0 the effective
Hamiltonian with correction, Ĥeff,1, is in this case equiv-
alent to the Harper-Hofstadter Hamiltonian with flux

α = 1/4. Moreover, the same approximative form of the
full effective model accurately reproduces the behavior
of the time-dependent Hamiltonian up to 50ms and thus
provides a good starting point for the study of weakly
interacting particles. We first consider the anomalous
drift of the center of mass of the atomic cloud and then
we inspect the expansion dynamics more closely in terms
of atomic density distributions in real and momentum
space.

A. Anomalous drift and dynamics of band

populations

To simulate the dynamics of many incoherent bosons,
we use the classical field method presented in Sec. II C
and propagate Eq. (10) in time. We assume that at t0 = 0
atoms are uniformly distributed over the lowest band of
Ĥeff,1. For this reason, the initial state is the same as
the one that we use in the noninteracting regime. In
this way, the dynamics is initiated by an effective triple
quench: at t0 = 0 the confining potential is turned off,
atoms are exposed to the force F = −Fey, and also the
interactions between particles are introduced. The total
number of particles is set to N = 90, 000, which amounts
to approximately 100 particles per lattice site in the cen-
tral region of the atomic cloud. We consider only weak
repulsion U ≤ 0.05.
The anomalous drift x(t) obtained using the full time-

dependent Hamiltonian is shown in Fig. 5(a) for several
different values of the interaction strength U . In compar-
ison to the noninteracting regime, we find that the weak
repulsive interactions inhibit the response of the center
of mass to the external force. In particular, at t = 50ms
the drift is reduced by about 15% for U = 0.005 and it is
further lowered by an increase in U . Finally, at U = 0.05,
the anomalous drift is barely discernible. Interestingly,
for weak U ∈ (0.001, 0.01) we find that the drift x(t) in
the range of t ∈ (10, 50)ms looks “more linear” as a func-
tion of time in comparison to the noninteracting result.
We now analyze the anomalous drift in terms of the fill-

ing factor γ(t) and compare the results of Eq. (10) with
the description based on Eq. (11). By solving Eq. (11) we
obtain the filling factor γeff,1(t) following Eq. (C4) and
present our results in Fig. 5(b). Whenever the results
of Eq. (10) reasonably agree with the results obtained
from Eq. (11), we are close to a steady-state regime with
only small fluctuations in the total energy, as Eq. (11)
preserves the total energy of the system. In this regime,
during the expansion dynamics the interaction energy is
converted into the kinetic energy and atoms are trans-
ferred to higher bands of the effective model. Conse-
quently, the filling factor γeff,1(t) is reduced. Typically,
we find three different stages in the decrease of γeff,1(t).

In an early stage, t ≤ t1 = 5ms, a fast redistribu-
tion of particles over the bands of the effective model
sets in due to the sudden quench of U . The factor
γeff,1(t) decays quadratically as a function of time down
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FIG. 5. Effects of interactions. (a) Anomalous drift x(t) for several different values of the interaction coefficient U . U is given

in units where J = 1. Thick lines: numerical simulations using the time-dependent Hamiltonian Ĥ(t). Thin lines: theoretical
prediction (14) from γeff,1(t). (b) Corresponding γeff,1(t) = η1(t)− η2(t) + η3(t), obtained from simulations using the effective

Hamiltonian Ĥeff,1.

to γeff,1(t1) ≈ 0.75 for U = 0.01, and γeff,1(t1) ≈ 0.25
for U = 0.05. In this process the interaction energy of
the system is quickly lowered as described in Appendix
E. At later times t > 5ms, we observe a linear decay of
the filling factor γeff,1(t) as a function of time, that fi-
nally turns into an exponential decay at even later times
(t > 10 ms). Similar regimes are observed in other dy-
namical systems. For example, a decay rate of an initial
state suddenly coupled to a bath of additional degrees
of freedom exhibits these three stages [57]. The initial
quadratic decay is often denoted as “the Zeno regime.”
For longer propagation times, Fermi’s golden rule pre-
dicts the linear decay. At even longer time scales, when
the repopulation of the initial state is taken into account,
the time-dependent perturbation theory yields the expo-
nential regime, known under the name of the Wigner-
Weisskopf theory [57].

We now investigate this last regime in more detail. For
the population of the lowest band η1(t), an exponential
decay function f(t) = a+ be−ct provides high quality fits
for t ∈ (10, 50)ms; see Fig. 6(a) for an example. Sim-
ilarly, the populations of two higher bands can also be
fitted to exponential functions. The obtained exponen-
tial decay coefficients c for the lowest band population
are plotted as a function of the interaction strength U
in Fig. 6(b). The resulting dependence is approximately
quadratic: c(U) = α0 + α1 U + α2 U

2. For small values
of U , the exponents c(U) obtained for the dynamics gov-

erned by Ĥ(t) and Ĥeff, 1 agree very well and exhibit lin-
ear behavior. At stronger interaction strengths U ≥ 0.03,
the approximation of Eq. (11) becomes less accurate as
it omits the quadratic contribution in c(U) found in the
full time evolution. In addition, the values of the expo-
nents c are affected by the force strength F and driving
frequency ω.

As we now understand some basic features of γeff,1(t),

we make an explicit comparison between the numerical
results for the anomalous drift and the expectation (14).
The dashed lines in Fig. 5(a) correspond to the theo-
retical prediction (14) calculated from γeff,1(t). For the
intermediate interaction strengths U ≤ 0.01, we find a
very good agreement between the two. From this we con-
clude that the interaction-induced transitions of atoms to
higher bands are the main cause of the reduced anoma-
lous drift x(t) as a function of U . When the interactions
become strong enough (U ∼ 0.02), the numerical results
start to deviate from the theoretical prediction (14) with
γeff,1(t). In this regime, Eq. (11) does not provide a reli-
able description of the dynamics, as higher-order correc-
tions need to be taken into account.

FIG. 6. (a) Evolution of the band populations ηi(t). Dashed
lines: numerical results obtained using the time-dependent
Hamiltonian Ĥ(t). Solid black lines: exponential fit using
f(t) = a + be−ct. The coefficient a was fixed to a1 = 0.25,
a2 = 0.50 and a3 = 0.25 for the first, second and third band
respectively. (b) Dependence of the exponential decay coeffi-
cients for the lowest band population η1(t) on the interaction
strength. U is given in units where J = 1.
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FIG. 7. Real-space density distribution, noninteracting case
U = 0. (a) Initial state. (b) After 50 ms (75 driving peri-

ods), evolution using the time-dependent Hamiltonian Ĥ(t).
(c) Evolution using effective Hamiltonian without correction

Ĥeff,0. (d) Evolution using effective Hamiltonian with correc-

tion Ĥeff,1.

B. Real and momentum-space dynamics

So far we have considered the averaged response of
the whole atomic cloud. We now inspect the expan-
sion dynamics in a spatially resolved manner. The real-
space probability densities at the initial moment and af-
ter 50 ms (75 driving periods) are shown in Figs. 7 and
8, and the corresponding momentum-space probability
densities in Appendix F.

At the initial moment, the atomic cloud is localized in
the center of the lattice. By setting r0 = 20 in the confin-
ing potential of Eq. (C2) and populating the lowest-lying
states, we fix the cloud radius to r = 20, Fig. 7(a). The
cloud density is of the order of 100 atoms per lattice
site and a weak density modulation is visible along x di-
rection. After the confining potential is turned off, and
the external force in the −ey direction is turned on, the
cloud starts to expand and move in the +ex direction.
As shown in the previous subsection, the band popula-
tions and therefore the anomalous drift are significantly
altered by the interaction strength, and this is also the
case with the expansion dynamics; see Figs. 7 and 8.

In the noninteracting case, Fig. 7(b), the atomic cloud
nearly separates into two parts moving in opposite direc-
tions along x axes (while the center of mass still moves in
the +ex direction). By comparing Fig. 7(c) and Fig. 7(d),
we conclude that this effect stems from the next-nearest-
neighbor hopping along x present in the effective Hamil-
tonian (7), as it does not happen in the effective model
without the correction term (6). This type of separation
was already observed in Ref. [22], where the next-nearest-

FIG. 8. Real-space density distribution after 50 ms (75 driv-
ing periods), interacting case. U is given in units where J = 1.

(a) Evolution using the time-dependent Hamiltonian Ĥ(t),
U = 0.01. (b) Same with U = 0.05. (c) Evolution using

the effective Hamiltonian Ĥeff,1, U = 0.01. (d) Same with
U = 0.05.

neighbor hopping terms were also present.

When the interactions between particles are included,
this separation is not so prominent [Fig. 8(a), U = 0.01],
and it almost completely disappears when the interac-
tions are strong enough [Fig. 8(b), U = 0.05]. This is also
the case when the evolution is governed by the effective
Hamiltonian Ĥeff,1; see Figs. 8(c) and 8(d). Atomic cloud

widths dx =
√

〈x2〉 − 〈x〉2 during the expansion are plot-
ted in Fig. 9. We observe a slow expansion of the cloud in
y direction, Fig. 9(b), and much faster expansion along x
direction, Fig. 9(a), which comes about as a consequence
of the cloud separation. On top of this, we observe that
the interactions enhance expansion along y. Surprisingly,
the opposite is true for the dynamics along x. This coun-
terintuitive effect is often labeled as self-trapping and its

FIG. 9. Atomic cloud width for different interaction
strengths, evolution using the time-dependent Hamiltonian
Ĥ(t). U is given in units where J = 1. (a) dx =

√

〈x2〉 − 〈x〉2.

(b) dy =
√

〈y2〉 − 〈y〉2.
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FIG. 10. (a) Comparison of anomalous drifts obtained from evolution using the time-dependent Hamiltonian Ĥ(t) (solid purple

line), effective Hamiltonian without correction Ĥeff,0 (dashed green line) and effective Hamiltonian with correction Ĥeff,1 (dotted
black line). Intermediate interaction strength U = 0.01. U is given in units where J = 1. (b) Time evolution of the inverse
participation ratio in momentum space for several different values of U . Evolution is performed using the time-dependent
Hamiltonian Ĥ(t). When the interactions are strong enough, IPR approaches the maximal possible value (10, 000 in this case),
which is equal to the total number of states and corresponds to the completely delocalized state. U is given in units where
J = 1. (c) Chern number of the lowest band obtained for different interaction strengths as the ratio of the theoretical prediction

for the anomalous drift and numerical results: c1(t) =
(

2Fa2

π~

∫ t

0
γeff,1(t

′)dt′
)

/ (x(t)− x(t0)).

basic realization is known for the double-well potential
[58, 59]. In brief, strong repulsive interactions can pre-
serve the density imbalance between the two wells, as the
system can not release an excess of the interaction en-
ergy. In our case, the situation is slightly more involved
as the cloud splitting is inherent (induced by the cor-
rections of the ideal effective Hamiltonian). Apart from
this, due to the driving the total energy is not conserved.
However, our numerical results indicate that the inter-
action energy is slowly released in the second expansion
stage, Fig. 14. Effectively, in this way the interactions
cancel out the contribution of the next-nearest-neighbor
hopping and favor the measurement of the properties of
the model (6). In Fig. 10(a) we show that deviations

between different approximations based on Ĥ(t), Ĥeff, 1,

and Ĥeff, 0 in the anomalous drift x(t) nearly vanish at
U = 0.01.

Another desirable effect might be that the interactions
make the momentum-space probability density more ho-
mogeneous, see Appendix F, so that the real-space prob-
ability density becomes more localized. We can quantify
momentum-space homogeneity using the inverse partic-
ipation ratio R(t) = 1∑

i P
2
i
(t)

, where Pi(t) = |ψi(t)|2 is

the probability that the state ψi is occupied at time t.
Minimal value of the inverse participation ratio (IPR)
is 1 and it corresponds to a completely localized state,
while the maximal value is equal to the total number
of states (in our case 10, 000) and corresponds to the
completely delocalized state, where the particles have the
same probability of being at any quasimomentum k. As
stated before, the first Brillouin zone of the lowest band
has to be as homogeneously populated as possible in or-
der to properly measure the lowest band Chern number.
From Fig. 10(b), we see that IPR increases in time when
the interaction coefficient U is large enough, so we can
conclude that the interactions are actually beneficial for
measuring the Chern number, as they can “smooth-out”
the momentum-space probability density. In Fig. 10(c)

we give estimates for the Chern number that can be ex-
tracted from our numerical data for different values of U .
We find the best estimate c1 ∼ 0.99 for the intermediate
interaction strength U ∼ 0.01.

C. Staggered detuning

Here we briefly consider the effects of staggered detun-
ing that was introduced in the experimental study [26]
during the loading and band mapping sequences. This
detuning can be described by an additional term

δ

2

∑

l,m

[
(−1)l + (−1)m

]
n̂l,m (15)

in the Hamiltonians Ĥ(t) and Ĥeff,1. We will ignore
the higher-order [at most O

(
1
ω2

)
] corrections that this

term introduces to the effective Hamiltonian. Staggered
detuning does not break the symmetry of the effective
Hamiltonian Ĥeff,1, but if δ is large enough, it can cause
a topological phase transition and make all bands topo-
logically trivial. By numerically calculating the Berry
curvature and Chern numbers c′i, we find that this tran-
sition occurs at δc ≈ 1.38 J ; see Fig. 11. This value is
lower than the one for the ordinary Harper-Hofstadter
Hamiltonian for α = 1/4, which is δc = 2 J [26], due to
the different hopping amplitudes J ′

x and J ′
y, and due to

the additional J2
x/ω correction that we consider.

We now investigate how this topological transition can
be probed through the dynamical protocol used in the
experiment. We again numerically calculate the anoma-
lous drift and the evolution of the filling factor, but now
with staggered detuning (15) included in the Hamilto-

nian Ĥinitial (C2) used to obtain the initial state, in the
equations of motion (10) and (11), and in the definitions
of the band populations ηi(t) (C4). Using these results,
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FIG. 11. Lowest band Chern numbers extracted from nu-
merical data for several different values of detuning δ. Pur-
ple circles: noninteracting case, U = 0. Green triangles:
U = 0.01. Blue squares: Theoretical values of the lowest
band Chern number c′1. A topological phase transition is vis-
ible at δc ≈ 1.38. The lines between points are only a guide
to the eye.

we repeat the procedure for the extraction of the low-
est band Chern number from numerical data that was
carried out in the previous section. The Chern number
obtained by comparing the anomalous drift to the pre-
diction calculated from the filling factor is then averaged
over the time interval t ∈ (20, 40)ms. This interval was
chosen in order to avoid the initial quadratic regime and
the finite-size effects at later times. The resulting lowest
band Chern numbers for several different values of de-
tuning δ in both the noninteracting case and the case of
intermediate interaction strength U = 0.01 are presented
in Fig 11.

We can see that the calculated value of the Chern num-
ber decreases from c1 = 1 to c1 = 0 with increasing
detuning δ. The obtained value of the Chern number
is lower than 1 even before the phase transition occurs.
This is due to our choice of the initial state, which is not
perfectly homogeneous in momentum space. Close to the
phase transition, both the energy bands and the Berry
curvature have pronounced peaks at the same regions of
the first Brillouin zone, and these regions are initially less
populated. Because of this, the Berry curvature at these
regions contributes less to the anomalous drift, which
lowers the measured Chern number. This effect is some-
what reduced by the interactions, as they smooth out
the momentum-space probability density, and might also
cancel out the detuning term. Similar interplay of in-
teractions and staggering was observed in the fermionic
Hofstadter-Hubbard model [60]. The obtained results are
in line with experimental measurements [26].

V. CONCLUSIONS

Motivated by the recent experimental results report-
ing the Chern numbers of topological bands in cold-atom
setups, we studied numerically bosonic transport in a
driven optical lattice. The considered driving scheme and
the range of microscopic parameters were chosen to be
close to those in a recent experimental study [26]. The
driving frequency was set to be high enough in order
to avoid strong energy absorption for the relevant time
scales. Additionally, the system was restricted to a two-
dimensional lattice, even though the actual experimental
setup had continuous transverse degrees of freedom. This
restriction stabilizes the system [29, 31, 41] and leads to
lower heating rates than those in the experiment. It cor-
responds to the case of strongly confined third dimension.
We investigated bosonic dynamics for the full time-

dependent Hamiltonian, the effective Floquet Hamilto-
nian, and included the effects of weak repulsive interac-
tions between atoms using the mean-field approximation.
In the noninteracting case, we found that the effective
Hamiltonian and its band structure depend on the fre-
quency of the drive ω through an additional J2

x/ω cor-
rection term. The initial state was set as a mixture of
incoherent bosons homogeneously populating the lowest
band, but a possible direction of future research could be
to simulate the full loading sequence of an initial Bose-
Einstein condensate and to try to obtain the incoherent
state through driving, as it was done in the experiment.
The main focus of this work is on the effects of weak

interactions. For a weak atomic repulsion, atomic tran-
sitions to higher effective bands obtained in our simu-
lations mainly occur due to a release of the initial in-
teraction energy during the atomic-cloud expansion. Al-
though the effect is undesirable, it can be properly taken
into account in the extraction of the Chern number. At
larger interaction strengths, the transitions are more pro-
nounced as the system absorbs energy from the drive. In
this regime the good agreement between the full and ef-
fective description is lost and the measurement should
become more complicated. In addition to causing re-
distribution of atoms over bands, our results show that
weak interactions can also be beneficial in measuring the
Chern number. Their desirable effect comes about due to
smoothening the atomic distribution over the topological
band and due to canceling out the contribution of some
less relevant terms to the bosonic dynamics.
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Appendix A: The effective model

After a unitary transformation into the rotating frame ψ̃ = e−iŴ tψ, where ψ̃ and ψ are the old and the new wave
functions, and Ŵ is the staggered potential, the new time-dependent Hamiltonian that describes the experimental
setup is given by [26]

Ĥ(t) = Jy
∑

l,m

(

â†l,m+1âl,m + â†l,m−1âl,m

)

+ V̂ (+1)eiωt + V̂ (−1)e−iωt +
U

2

∑

l,m

n̂l,m (n̂l,m − 1) , (A1)

where

V̂ (+1) = κ/2
∑

l,m

n̂l,mg(l,m)− Jx
∑

lodd,m

(

â†l+1,mâl,m + â†l−1,mâl,m

)

(A2)

V̂ (−1) = κ/2
∑

l,m

n̂l,mg
∗(l,m)− Jx

∑

leven,m

(

â†l+1,mâl,m + â†l−1,mâl,m

)

(A3)

g(l,m) = cos(lπ/2− π/4)ei(φ0−mπ/2) + cos(lπ/2 + π/4)ei(mπ/2−φ0−π/2). (A4)

The kick operator is given by

K̂(t) =
1

iω

(

V̂ (+1)eiωt − V̂ (−1)e−iωt
)

+O
(

1

ω2

)

, (A5)

and the effective Hamiltonian by

Ĥeff = Ĥ0
︸︷︷︸

Ĥ
(0)
eff

+
1

ω

[

V̂ (+1), V̂ (−1)
]

︸ ︷︷ ︸

Ĥ
(1)
eff

+
1

2ω2

([[

V̂ (+1), Ĥ0

]

, V̂ (−1)
]

+
[[

V̂ (−1), Ĥ0

]

, V̂ (+1)
])

︸ ︷︷ ︸

Ĥ
(2)
eff

+O
(

1

ω3

)

. (A6)

If we assume that the driving frequency is high and interactions are weak, the interaction term and almost all
O
(

1
ω2

)
terms can be neglected. After substituting Eqs. (A1), (A2) and (A3) into Eq. (A6) we obtain:

Ĥ
(0)
eff =− Jy

∑

l,m

(

â†l,m+1âl,m + â†l,m−1âl,m

)

(A7)

Ĥ
(1)
eff =

1

ω

[
κ

2

∑

l,m

â†l,mâl,m g(l,m)− Jx
∑

lodd,m

(

â†l+1,mâl,m + â†l−1,mâl,m

)

,

κ

2

∑

l,m

â†l,mâl,m g∗(l,m)− Jx
∑

leven,m

(

â†l+1,mâl,m + â†l−1,mâl,m

)]

(A8)

= Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4.
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We will now separately calculate each term:

Ĥ1 =− Jxκ

2ω

∑

lodd,m,l′,m′

g∗(l′,m′)
[

â†l+1,mâl,m + â†l−1,mâl,m, â
†
l′,m′ âl′,m′

]

=− Jxκ

2ω

∑

lodd,m

[(
g∗(l,m)− g∗(l + 1,m)

)
â†l+1,mâl,m +

(
g∗(l,m)− g∗(l − 1,m)

)
â†l−1,mâl,m

]

(A9)

Ĥ2 =− Jxκ

2ω

∑

leven,m,l′,m′

g(l′,m′)
[

â†l′,m′ âl′,m′ , â†l+1,mâl,m + â†l−1,mâl,m

]

=
Jxκ

2ω

∑

leven,m

[(
g(l,m)− g(l + 1,m)

)
â†l+1,mâl,m +

(
g(l,m)− g(l − 1,m)

)
â†l−1,mâl,m

]

(A10)

Ĥ3 =
J2
x

ω

∑

lodd,m,l′even,m
′

[

â†l+1,mâl,m + â†l−1,mâl,m, â
†
l′+1,m′ âl′,m′ + â†l′−1,m′ âl′,m′

]

=
J2
x

ω

∑

lodd,m

(

2â†l+1,mâl+1,m + â†l+3,mâl+1,m + â†l−1,mâl+1,m

− 2â†l,mâl,m − â†l+2,mâl,m − â†l−2,mâl,m

)

=
J2
x

ω

∑

l,m

(−1)l
(

2â†l,mâl,m + â†l+2,mâl,m + â†l−2,mâl,m

)

(A11)

Ĥ4 =
κ2

4ω

∑

l,m,l′,m′

g(l,m)g∗(l′,m′)
[

â†l,mâl,m, â
†
l′,m′ âl′,m′

]

= 0. (A12)

Using trigonometric identities and

g(l,m)− g(l ± 1,m) =±
√
2
(

sin((2l ± 1− 1)π/4)ei(π/4−mπ/2) (A13)

+ sin((2l ± 1 + 1)π/4)ei(mπ/2−3π/4)
)

, (A14)

we can rewrite the sum of terms (A9) and (A10) in a more convenient form

Ĥ1 + Ĥ2 =
Jxκ√
2ω

∑

l,m

(

ei
(
(m−l)π/2−π/4

)

â†l,mâl−1,m + e−i
(
(m−l−1)π/2−π/4

)

â†l,mâl+1,m

)

. (A15)

The only O
(

1
ω2

)
(Ĥ

(2)
eff ) term that cannot be neglected in the parameter range that we use is [26]

Jy
2

κ2

ω2

∑

l,m

(

â†l,m+1âl,m + â†l,m−1âl,m

)

. (A16)

Finally, the effective Hamiltonian becomes

Ĥeff,1 =
Jxκ√
2ω

∑

l,m

(

ei
(
(m−l−1)π/2−π/4

)

â†l+1,mâl,m + e−i
(
(m−l)π/2−π/4

)

â†l−1,mâl,m

)

− Jy

(

1− 1

2

κ2

ω2

)∑

l,m

(

â†l,m+1âl,m + â†l,m−1âl,m

)

(A17)

+
J2
x

ω

∑

l,m

(−1)l
(

2â†l,mâl,m + â†l+2,mâl,m + â†l−2,mâl,m

)

(A18)

with the renormalized nearest-neighbor hopping amplitudes J ′
x = Jxκ√

2ω
= Jy and J ′

y = Jy

(

1 − 1
2
κ2

ω2

)

, and a next-

nearest-neighbor along ex hopping term proportional to
J2
x

ω in (A18).
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Appendix B: Effective Hamiltonian in momentum-space

If we choose the unit cell as in Fig. 1(a) (lattice sites A = (1, 0), B = (2, 0), C = (3, 0) and D = (4, 0)), the

momentum-space representation of the effective Hamiltonian without correction Ĥeff,0 (6) is given by a 4× 4 matrix

Ĥeff,0(k) =







0 J′

xe
−i 3π

4 −J′

ye−ikR2 0 J′

xe
−i 3π

4
−ikR1

−J′

yeik(R2−R1)

J′

xe
i 3π

4 −J′

yeikR2 0 J′

xe
−i π

4 −J′

ye−ikR2 0

0 J′

xe
i π
4 −J′

yeikR2 0 J′

xe
i π
4 −J′

ye−ikR2

J′

xe
i 3π

4
+ikR1

−J′

yeik(R1−R2) 0 J′

xe
−i π

4 −J′

yeikR2 0






, (B1)

where R1 and R2 are the lattice vectors R1 = (4, 0) and R2 = (1, 1), and k is in the first Brillouin zone, which is
given by the reciprocal lattice vectors b1 = π

2 (1,−1) and b2 = 2π(0, 1).

When the
J2
x

ω correction is included in the effective Hamiltonian, Ĥeff,1 (7), the unit cell is doubled, see Fig. 1(b),
and the first Brillouin zone is therefore halved. If we now choose the lattice sites a = (1, 0), B = (2, 0), c = (3, 0),
D = (4, 0), A = (2, 1), b = (3, 1), C = (4, 1) and d = (5, 1) for the unit cell, the momentum-space representation of the

FIG. 12. Eight energy subbands of Ĥeff,1(k) for the driving frequency ω = 20. Subbands 1 and 2 form the lowest band with
Chern number c1 = 1, subbands 3, 4, 5, and 6 form the middle band with c2 = −2, and subbands 7 and 8 form the highest
band with c3 = 1.
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effective Hamiltonian will be an 8× 8 matrix

Ĥeff,1(k) =
















−

2J2
x

ω
J′

xe
−i 3π

4 −

J2
x
ω

(1+eikR1 ) J′

xe
−i( 3π

4
−kR1)

0 −J′

yeikR2 0 −J′

yeikR1

J′

xe
i 3π

4
2J2

x
ω

J′

xe
−i π

4
J2
x
ω

(1+eikR1 ) −J′

y 0 −J′

yeikR2 0

−

J2
x
ω

(1+e−ikR1 ) J′

xe
i π
4 −

2J2
x

ω
J′

xe
i π
4 0 −J′

y 0 −J′

yeikR2

J′

xe
i( 3π

4
−kR1) J2

x
ω

(1+e−ikR1 ) J′

xe
−i π

4
2J2

x
ω

−J′

ye−ik(R1−R2) 0 −J′

y 0

0 0 0 −J′

yeik(R1−R2) 2J2
x

ω
J′

xe
−i 3π

4
J2
x
ω

(1+eikR1 ) J′

xe
−i( 3π

4
−kR1)

−J′

ye−ikR2 0 −J′

y 0 J′

xe
i 3π

4 −

2J2
x

ω
J′

xe
−i π

4 −

J2
x
ω

(1+eikR1 )

0 −J′

ye−ikR2 0 −J′

y
J2
x
ω

(1+e−ikR1 ) J′

xe
i π
4

2J2
x

ω
J′

xe
i π
4

−J′

ye−ikR1 0 −J′

ye−ikR2 0 J′

xe
i( 3π

4
−kR1)

−

J2
x
ω

(1+e−ikR1 ) J′

xe
−i π

4 −

2J2
x

ω
















,

(B2)

with the lattice vectors R1 = (4, 0) and R2 = (2, 2). The reciprocal lattice vectors are then b1 = π
2 (1,−1) and

b2 = π(0, 1).

The energy bands of Ĥeff,1(k) are shown in Figs. 2 and 12.

Appendix C: Description of incoherent bosons

In a typical condensed-matter system constituent particles are electrons. Due to their fermionic statistics, at low
enough temperatures, and with Fermi energy above the lowest band, that band of the topological model is uniformly
occupied, and consequently the transverse Hall conductivity can be expressed in terms of the Chern number (8) [10].
In contrast, weakly interacting bosons in equilibrium form a Bose-Einstein condensate in the band minima and only
probe the local Berry curvature [21].
Yet in the experiment [26] the Chern number was successfully measured using bosonic atoms of 87Rb. This was

possible because in the process of ramping up the drive (4), the initial Bose-Einstein condensate was transferred into
an incoherent bosonic mixture. Conveniently, it turned out that the bosonic distribution over the states of the lowest
band of the effective Floquet Hamiltonian was nearly uniform. Motivated by the experimental procedure, we model
the initial bosonic state by a statistical matrix

ρ(t = 0) =

Nm∏

k=1

|k,Np〉〈k,Np| (C1)

where the states |k〉 = a†k|0〉 approximately correspond to the lowest-band eigenstates of Ĥeff and each of these Nm

states is occupied by Np atoms |k,Np〉 = N (a†k)
Np |0〉.

A procedure for selecting the states |k〉 is described in Refs. [22, 26]. In order to probe the Chern number of the

lowest band, the states |k〉 should correspond closely to the lowest-band eigenstates of Ĥeff. At the same time, in
the experiment in the initial moment the atomic cloud is spatially localized. According to Refs. [22, 26] the optimal
approach is to consider a steep confining potential and to use the low-lying eigenstates of

Ĥinitial = ĥeff +

(
r

r0

)ζ

, (C2)

where in our calculations ĥeff is either Ĥeff,0 from Eq. (6) or Ĥeff,1 from Eq. (7) and the parameters of the confining
potential are set to r0 = 20, ζ = 20.

The dynamics of the initial state (C1) is induced by a double quench: at t0 = 0 the atomic cloud is released from the
confining potential and exposed to a uniform force of intensity F along the y direction. During the whole procedure
the driving providing the laser-assisted tunneling, defined in Eq. (4), is running.

The main observables of interest are the center-of-mass position along x direction

x(t) =
〈∑

l,m

l|ψl,m(t)|2
〉

, (C3)

and the population of the ith band of the effective model

ηi(t) =
〈 ∑

|k〉∈i-th band

∣
∣
∣

∑

l,m

αk∗
lmψlm(t)

∣
∣
∣

2〉

, (C4)
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where the states |k〉 = ∑

l,m αk
lm|l,m〉 correspond to the eigenstates of the effective model. Here, angle brackets 〈 〉

denote averaging over Nsamples sets of initial conditions.
In the case of non-interacting particles, these and other quantities can be numerically accessed by solving the

single-particle time-dependent Schrödinger equation for Nm different initial states |k〉. This is equivalent to sampling
the initial state according to Eq. (9).

In the end, we give two technical remarks. First, all our calculations are done in the rotating frame; see Eq. (A1) in
Appendix A. The staggered potential (2) is removed in this way. Second, in the case when the evolution is governed

by the time-dependent Hamiltonian (10), the initial state is multiplied by the operator e−iK̂(0) in order to properly
compare these results to the ones obtained from the evolution governed by the effective Hamiltonian (11); see Eq.
(5).

Appendix D: Initial quadratic regime

For simplicity, we will consider only the case without the confining potential and with very weak force F = 0.01.
The initial state is a Bose-Einstein condensate in one of the eigenstates of the effective Hamiltonian. The results are
later averaged over all first band eigenstates.
Fermi’s golden rule predicts that the probability for transition from an initial state ψi to a final state ψf , induced

by a perturbation ∆Ĥ, is proportional to the square of matrix elements |〈ψi|∆Ĥ|ψf 〉|2. In this case, the perturbation

is ∆Ĥ = F ŷ. If we assume that the probability of a particle being in the initial state is always Pi(t) = |ψi(t)|2≈ 1,
Fermi’s golden rule predicts [61]

PFGR1

i→f (t) =
1

~2
|〈ψi|∆Ĥ|ψf 〉|2t2. (D1)

If we now also consider transitions from the other states to the initial state, but keep the assumption that the
populations in other states are small Pj 6=i(t) = |ψj 6=i(t)|2≪ 1, the time-dependent perturbation theory then predicts
[61]

PFGR2

i→f (t) = |〈i|∆Ĥ|f〉|2
1− 2e−

Γ
2~ t cos

(
Ef−Ei

~
t
)

+ e−
Γ
~
t

(Ef − Ei)
2
+ Γ2

4

, (D2)

where Γ = 2π
~
|〈i|∆Ĥ|f〉|2 and Ei (Ef ) is the energy of the initial (final) state.

We plot the numerical results and both theoretical predictions from Fermi’s golden rule in Fig. 13. Here we can
see that all three curves agree well for short times, the second approximation longer remains close to the numerical
results, and that the initial quadratic regime is reproduced by theory. This is the so-called quantum Zeno regime [57].

FIG. 13. Population in higher bands, comparison of numerical results (solid line) with the Fermi’s golden rule in the first
and second approximation (dashed lines). Band populations are calculated for an initial BEC in an eigenstate of the effective
Hamiltonian and then averaged over (approximately) all states in the first band. (a) Initial state and evolution from the

effective Hamiltonian with correction Ĥeff,1, Eq. (7). (b) Without the correction, Ĥeff,0, Eq. (6).
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FIG. 14. (a) Kinetic energy per particle (expectation value of the time-dependent Hamiltonian Ekin(t) =
1

N

〈

∑

l,m,i,j
ψ∗

l,m(t)Hlm,ij(t)ψi,j(t)
〉

divided by the total number of particles N) for several different interaction strengths.

(b) Interaction energy per particle Eint(t) =
1

N
U
2

〈

∑

l,m
|ψl,m(t)|2

(

|ψl,m(t)|2 − 1
)

〉

. U is given in units where J = 1.

Appendix E: Energy

Time evolution of kinetic and interaction energy per particle for different interaction strengths is plotted in Fig. 14.
Here we define the kinetic energy per particle as the expectation value of the time-dependent Hamiltonian (A1) divided

by the total number of particles Ekin(t) = 1
N

〈
∑

l,m,i,j ψ
∗
l,m(t)Hlm,ij(t)ψi,j(t)

〉

, while the interaction energy per

particle is Eint(t) =
1
N

U
2

〈
∑

l,m|ψl,m(t)|2
(
|ψl,m(t)|2 − 1

) 〉

. Both energies grow with increasing interaction coefficient

U .

When the interactions are strong enough and after long enough time, the atoms become equally distributed between
the eigenstates of the Hamiltonian Ĥ(t). As the energy spectrum of Ĥ(t) is symmetric around zero, the expectation

value of Ĥ(t) (kinetic energy) should be zero when all bands are equally populated. We can see this in Fig. 14(a),
where the kinetic energy approaches zero at t ≈ 50 ms for the case U = 0.05.

The interaction energy at first rapidly decreases, as the cloud rapidly expands after turning off the confinement
potential V̂conf , and after that continues to slowly decrease as the cloud slowly expands; see Fig. 14(b).

These considerations also provide a possibility to discuss the applicability of the approximative method introduced
in Sec. IV. As we work in the regime of high frequency ω = 20, we find that for weak interaction, at short enough times
of propagation, the energy is approximately conserved. At stronger values of U ≥ 0.01 we observe a slow increase in
the total energy on the considered time scales. In both cases we do not find the onset of parametric instabilities [31].
If present, these instabilities are signaled by an order of magnitude increase in energy on a short time scale, that we
do not find.

In addition, the two-body interaction can deplete the occupancies of initial coherent modes [29, 41] and limit the
validity of our approach. In principle, these types of processes can be addressed by including quantum fluctuations
along the lines of the full truncated Wigner approach [45]. Yet, we set our parameters in such a way that these
additional contributions are small.

Appendix F: Momentum-space density distribution

The momentum-space probability densities at the initial moment and after 75 driving periods (50 ms) are shown
in Fig. 15. The interactions deplete the lowest band, but also smooth out the density distribution.
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FIG. 15. Momentum-space density distribution in all bands, η1(k) + η2(k) + η3(k). U is given in units where J = 1. Left:

evolution using the time-dependent Hamiltonian Ĥeff,1. Right: evolution using the time-dependent Hamiltonian Ĥ(t). (a),
(b) Initial state. (c), (d) Final state after 50 ms (75 driving periods), noninteracting case U = 0. (e), (f) U = 0.01. (g), (h)
U = 0.05.
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