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RESEARCH PAPER

ABSTRACT

We collected contemporary foraminiferal training sets from two salt marshes to 

enable more precise and accurate proxy historical sea-level reconstructions from 

southeastern Australia. Combined with an existing training set from Tasmania, this 

new regional set consists of 112 samples and 16 species of foraminifera, of which 

13 are agglutinated. Cluster analyses group the regional training set into a high–

elevation cluster, dominated by Trochamminita salsa, a mid–elevation cluster, 

dominated by Entzia macrescens and Trochammina inflata, and a mid–low elevation 

cluster dominated by Miliammina fusca and tidal-flat species. We develop transfer 

functions using local and regional training sets and assess their performance. Our 

resulting site-specific and chosen regional models are capable of predicting sea level 

with decimetre-scale precision (95% confidence intervals of 0.12–0.22 m). These 

results are comparable to other examples from around the world. When developing 

regional training sets, we advocate that the similarity in the environmental settings 

(particularly salinity) should be assessed as an alternative way of grouping sites, rather 

than simply using spatial proximity. We compare our findings with global results and 

conclude that salt marshes along microtidal coasts yield models with the lowest 

vertical uncertainties. Studies with the lowest uncertainties are located in the western 

Pacific and the western Atlantic, whereas those from the eastern Atlantic generally 

have larger tidal ranges and carry larger vertical uncertainties. Our models expand the 

existing region available for sea-level reconstruction and can be used to generate new 

late Holocene sea-level reconstructions across southeastern Australia.
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1. INTRODUCTION 

Proxy-based palaeo sea-level reconstructions usefully 

complement historical tide-gauge data (Kopp et al. 

2016) as they expand our knowledge of sea-level change 

beyond instrumental records and can be used to validate 

instrumental records where both overlap. Proxy data are 

particularly important in the Southern Hemisphere as 

tide-gauge records are sparse and often short compared 

to those in the Northern Hemisphere (Holgate et al. 

2013). Both proxy and tide-gauge sea-level data have 

shown that, globally, the 19th to 20th century sea-level 

acceleration is larger than any acceleration over the 

preceding 3000 years (Kopp et al. 2016). Proxy records 

derived from salt-marsh foraminifera in New Zealand 

and Tasmania have shown that the rise in regional 

mean sea level in the earlier half of the 20th century 

may have been anomalously fast in comparison to the 

global mean (Gehrels et al. 2008; Gehrels et al. 2012). 

However, the few long tide-gauge records from the 

region do not show the same early 20th century trends as 

the proxy records (e.g. Gehrels et al. 2012). Compaction 

has been suggested as a possibility for the discrepancy 

between the proxy and instrumental data (e.g. Grenfell 

et al. 2012); however, these Southern Hemisphere salt 

marshes are shallow and are composed of a stratigraphy 

not very susceptible to compression (Brain et al. 2012). 

Therefore, this possible discrepancy is still unexplained.

An important first step towards increasing our 

understanding of long-term sea-level fluctuations is to 

develop salt marsh sea-level transfer function models 

from training sets of contemporary salt-marsh micro-

organisms (e.g. foraminifera and diatoms; Barlow et al. 

2013; Kemp & Telford, 2015). This involves quantifying 

the relationship between elevation and contemporary 

foraminifera in order to generate palaeomarsh surface 

elevations. While there are numerous Northern 

Hemisphere high-resolution salt marsh sea-level 

reconstructions based on such microfossil proxies, 

especially from the North Atlantic region (e.g. Barlow et 

al. 2013; Barnett et al. 2019; Gehrels et al. 2020; Kemp et 

al. 2017b; 2018; Kopp et al. 2015; 2016; Saher et al. 2015), 

there are very few from the Southern Hemisphere. High-

resolution reconstructions are available for Tasmania 

(Gehrels et al. 2012), New Zealand (Gehrels et al. 2008; 

Grenfell et al. 2012), South America (Frederikse et al. 2021) 

and South Africa (Strachan et al. 2014). However, the 

potential for salt-marsh based sea-level reconstructions 

from South Africa, Asia and South America are spatially 

constrained by the small availability of marsh in these 

parts of the world, with much greater availability in the 

Northern Hemisphere (FitzGerald & Hughes, 2019). 

Nonetheless, these Southern Hemisphere records 

are crucial for answering questions about the apparent 

early 20th century discrepancy in rates of sea-level 

rise observed between proxy and tide-gauge records 

(Gehrels et al. 2012; Grenfell et al. 2012), as well as 

helping to determine the cause of the rapid rise in sea 

level observed in these records. Gehrels et al. (2012) 

suggest that the sea-level acceleration observed in the 

Tasmanian proxy record may be due to the melting of 

Arctic and Greenland land-based ice, which, as sea-level 

fingerprinting demonstrates, would result in sea-level 

rises around Australia (Fleming et al. 2012). Whilst mass 

loss from the West Antarctic Ice Sheet could also result 

in sea-level rises along the southeast coast of Australia 

(Fleming et al. 2012; Gomez et al. 2010), the timing of 

the apparent sea-level acceleration in the Australian and 

New Zealand records appears to correspond with a period 

of anomalous warming in the Arctic (Hegerl et al. 2018) 

and subsequent enhanced melt of Arctic glaciers and the 

Greenland ice sheet (e.g. Bjørk et al. 2012; Kjeldsen et al. 

2015; Parkes & Marzeion, 2018; Vermassen et al. 2020). 

It is well established globally that foraminifera occupy 

specific niches within the tidal frame which reflect both 

frequency and duration of tidal inundation (e.g. Birks, 

1995; Gehrels et al. 2012; Kemp et al. 2012; Scott & 

Medioli, 1978). As such, modern training sets linking 

salt-marsh elevation with species assemblages can be 

used to generate transfer functions for empirically-based 

numerical estimates of past sea-level change when 

applied to fossil counterparts in cores (Kemp & Telford, 

2015; Sachs, Webb & Clark, 1977). In Australia and New 

Zealand, studies using transfer functions originating 

from salt-marsh foraminifera have demonstrated their 

use as a successful proxy, able to predict sea level with 

sub-decimetre vertical uncertainties (e.g. Callard et al. 

2011; Grenfell et al. 2012; Southall, Gehrels, & Hayward, 

2006). In this paper we develop new local and regional 

training sets of contemporary salt-marsh foraminifera for 

southeastern Australia by collecting new samples from 

Tasmania and New South Wales and combining these 

with published training sets from Tasmania (Callard et al. 

2011). We compare our findings with other microfossil 

training sets from around the world and assess how 

transfer function performance is affected by mean tidal 

range. The training sets presented in this study can be 

used to establish more salt-marsh based sea-level 

reconstructions across a wider region in southeastern 

Australia. 

2. STUDY SITES 

Existing foraminifera-based training sets from Australia 

primarily focus on mangrove sediments in the lower 

latitudes (e.g. Haslett, 2001; Horton et al. 2003; Woodroffe 

et al. 2005); however, sea-level reconstructions from 

mangrove environments are limited by the dynamic 

nature of the mangrove ecosystem. Reworking of material 

is often a large concern, preservation of foraminifera 

can be poor, and calcareous intertidal foraminifera 
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with large elevational tolerances can increase vertical 

uncertainties of transfer function models (Woodroffe, 

2009). Salt marshes provide an alternative to mangrove 

environments for developing modern microfossil training 

sets and subsequent sea-level reconstructions. Salt 

marshes are less susceptible to reworking and can often 

provide sea-level records with centennial to decadal 

temporal resolution (Gehrels et al. 2012). 

We establish new training sets using data collected from 

a total of four transects at Lutregala salt marsh in the south-

west of Tasmania (43.299°S, 147.307°E) and Wapengo salt 

marsh located in southern New South Wales (36.593°S, 

150.009°E) (Figure 1). We also employ the previously 

published foraminiferal training set from Little Swanport, 

Tasmania (Callard et al. 2011; 42.341°S, 147.931°E). 

The new sites have minimal evidence of anthropogenic 

disturbance, are located in bedrock-framed inlets, and 

have small tidal ranges (≤1 m, see section 3.2). These 

factors are important to maximise the likelihood that tidal 

ranges have not changed significantly over time, as this 

could have affected the vertical foraminiferal zonation. 

We give site descriptions for the two new sites; site details 

for Little Swanport can be found in Callard et al. (2011), 

Gehrels et al. (2012) and Moss, Gehrels & Callard (2016). 

2.1 LUTREGALA 

Lutregala salt marsh is located on Bruny Island 

(Indigenous name is lunawanna-allonah) which lies off 

the coast of Tasmania (lutruwita), around 70 km south-

west of Hobart (nipaluna; Figure 1b). An isthmus called 

‘The Neck’ joins North and South Bruny Island, with 

Lutregala, ~0.4 km2 in area, fronting onto Simpsons Bay 

on South Bruny Island (Prahalad & Jones, 2013). Due to 

its sheltered and shallow nature, Simpsons Bay includes 

several wetland areas (Clark, Cochran & Mazengarb, 

2011). The bay is joined to the D’Entrecasteaux Channel, 

which is located between Bruny Island and mainland 

Tasmania. The average salinity in Simpsons Bay changes 

very little annually, with a mean salinity of 32.8 ppt in the 

bay (Crawford & Mitchell, 1999) and 31.5–34.7 ppt in the 

surrounding D’Entrecasteaux Channel (Parsons, 2012). 

The mean nearshore water temperature is 13.88°C 

(Crawford & Mitchell, 1999). At the northern extent of 

Lutregala, tidal channels and creeks are prevalent, with 

three large outflow channels and a system of inflow 

channels which extend into the salt marsh by several 

hundred metres. The largest creek, Simpsons Creek, runs 

through the length of the salt marsh and is part of a larger 

low-lying saline marsh system supplied by freshwater 

-40.000

-30.000

130.000 140.000 150.000

43.30

147.30

36.50

150.00

43.00

148.00 36.60
150.03

Melbourne

Sydney

Brisbane

VIC

NSW

QLD

SA

WA

NT

TAS
Tasman sea

Southern Ocean

Bass Strait

B

C

A

Little Swanport

Spring Bay

Hobart

Lutregala (D)
North Bruny

South Bruny

D�Entrecasteaux
Channel

Wapengo (E)

Bermagui

3

4

1 2

Simpsons Bay

Wapengo Lake

N

B C

D

E

NN
N

Bithry
Inlet

Figure 1 Site and surface transect localities. A. Map of Australia detailing state boundaries major cities, seas, oceans and study sites 

in bounding boxes. B. Site and tide-gauge locations (Tasmania), including the previously published site at Little Swanport C. Site and 

tide- gauge location (New South Wales) D. Lutregala salt marsh located on Bruny Island, Tasmania. Transects 1 and 2 are surface 

transects located at Lutregala salt marsh. E. Wapengo salt marsh located in southern New South Wales. Transects 3 and 4 are 

surface transects located at Wapengo salt marsh.



4Williams et al. Open Quaternary DOI: 10.5334/oq.93

originating in the South Bruny Range (Bryant, 2018). 

The site and immediate surroundings are underlain by 

sub- and supra-littoral Quaternary deposits, as well as 

Quaternary alluvium, aeolian dunes, and sheet sand 

deposits, and is surrounded by Triassic sandstone and 

Jurassic Dolerite to the northwest and Permian mudstone 

formations to the southeast (Farmer & Forsyth 1993).

At Lutregala, the upland is dominated by regenerating 

grazing land and sclerophyll forest, consisting primarily 

of Eucalyptus ovata (black gum) dry forest with a grassy 

understorey. There is a patch of Eucalyptus amygdalina 

(coastal black peppermint) forest and E. ovata dry forest 

located on a dune system at the Simpson Bay beach 

side of the salt marsh (northeast area); we define this as 

vegetation zone 1 (Z1). Whilst all flora is found throughout 

the salt marsh, the dominance of the plants vary. The start 

of the transect 1 is largely characterised by Juncus krausii 

(salt-marsh rush) and Gahnia filum (chaffy saw sedge). 

From 120 m of transect 1, Sarcocornia quinqueflora 

(beaded glasswort) dominates. Juncus krausii is absent 

from 155 m along transect 1; however, all other marsh 

flora are found until the end of the transect. We define 

this as vegetation zone 2 (Z2). Along transect 2, all of 

the dominant marsh flora are found along the length 

of the transect, but S. quinqueflora tends to dominate 

the start of the transect and J. krausii and G. filum 

dominate the lower end of the transect. We note the low 

abundance of Tecticornia arbuscula, (shrubby glasswort), 

Samolus repens (sea primrose) and Suaeda australis 

(seablite) in the salt marsh. 

2.2. WAPENGO 

Wapengo salt marsh is located around 30 km south 

of Bermagui in southern New South Wales (Figure 1c). 

The salt marsh, which is around 0.51 km2 in extent 

(Creese et al. 2009), is located at the northern end 

of the Wapengo Lake estuary. Towards the southern 

end, the estuary has a narrow bedrock-framed mouth 

(Bithry Inlet). The bottom of the channel is 1.2 m 

below mean high tide (Roper et al. 2011) and is not 

fast flowing (Scammell, Batley & Brockbank, 1991). 

Whilst some sites along this coastline are occasionally 

cut off from the open ocean, the entrance to Wapengo 

is permanently open (Scanes et al. 2007), and so 

Wapengo continuously maintains a connection to the 

ocean. Due to the proximity to the Bithry Inlet, the 

site has a high salinity, with multiple recordings from 

2010–2012 showing salinity in the range of ~34–37 ppt 

(Garside et al. 2014). The average temperature in the 

estuary is ~16°C (Garside et al. 2014). The underlying 

geology of Wapengo is a formation known as the 

Adaminaby Group, which comprises Late Ordovician 

turbidities of metagreywacke and phyllite (Rickard & 

Love, 2000). 

The floral composition at Wapengo salt marsh is 

similar to that of Lutregala, reflecting the low floral 

diversity found in the salt marshes of southeastern 

Australia (Kelleway et al. 2017). We note the presence 

of a Eucalyptus sieberi (stringybark) dry forest with a 

shrub understorey, which transitions into a narrow 

fringe of coastal Melaleuca (tea tree) forest just above 

the salt marsh. We define this as vegetation zone 1 

(Z1). Sarcocornia quinqueflora is most dominant at the 

start of the transects and declines in dominance down 

transect, and J. kraussii is dominant at the start and 

end of the transects with a decline in the middle of 

the salt marsh. Gahnia filum is present sporadically at 

the start, but increases in abundance down transect 

and is dominant towards the end of the salt marsh. 

Tecticornia arbuscula and Distichlis distichophylla 

(Australian salt grass) also increase in abundance 

down transect. We also note the low presence of 

S. australis and Disphyma crassifolium (rounded-

leaved pigface) in the salt marsh. We define this 

zone of salt-marsh plants as vegetation zone 2 

(Z2). A transitional zone sees the appearance of 

Avicennia marina (grey mangrove) interspersed with 

T. arbuscula and D. distichophylla which we define 

as vegetation zone 3 (Z3). This develops into a dense 

mangrove forest at the lower elevations (vegetation 

zone 4; Z4). 

3. METHODS 
3.1 FIELD SAMPLING

We established two transects at each site from upland 

to tidal flat to obtain samples from all of the ecological 

zones observed in each salt marsh. At the sampling 

locations we collected samples ~1 cm in thickness and 

12.5 cm3 in volume.

3.2 ELEVATION AND TIDAL DATA

To enable inter-site comparison, we first related the 

height of all samples to the Australian Height Datum – 

Geocentric Datum 2020 (AHD). We established sample 

elevations using both a Trimble M1 (DR2”) total station 

and a Trimble R4 real-time kinematic GPS relative to 

a temporary benchmark. To survey sample heights 

into the geodetic datum, we employed a ‘rapid static’ 

method between the temporary benchmark and a 

local geodetic benchmark. Mean sea level (MSL) and 

highest astronomical tide (HAT) were obtained from 

the Australian National Tide Tables (AHP11; Australian 

Government, Department of Defence, 2020) using data 

from the nearest local tide station to each site (Table 1). 

As the tide gauges are located 20–50 km from the salt 

marshes, we checked for spatial differences in tidal 

range using the TPXO8-Atlas global tidal model (Egbert & 

Erofeeva, 2010). The tidal range at the Hobart tide gauge is 

0.81 m (Australian Government, Department of Defence, 

2020) and the TPXO8-Atlas global tidal model indicates a 

minor difference in tides (0.02 m difference in MSL – HAT 
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range) between the tide gauge and Lutregala (Egbert & 

Erofeeva, 2010). The tidal range at the Bermagui tide 

gauge is 1.01 m (Australian Government, Department 

of Defence, 2020) and the TPXO8-Atlas global tidal 

model indicates no difference in tidal range between 

the tide gauge and the entrance to Wapengo Lake 

estuary (Egbert & Erofeeva, 2010). We normalise tidal 

range between sites using a Standardised Water-Level 

Index (SWLI; Zong & Horton, 1999). Wright, Edwards 

& van de Plassche, (2011) suggest using the highest 

occurrence of foraminifera (HOF) as the upper datum, 

as non-linearity between elevation and tidal inundation 

is most pronounced in the high marsh. Therefore, we 

applied the following equation:

 
( )100 –

100
–

n MSL

n

HOF MSL

h h
SWLI

h h
= +

Where SWLI
n
 is the Standardised Water-Level Index for 

sample n, h
n 
is the sample elevation, h

MSL
 is the elevation 

of mean sea level (MSL), and h
HOF 

is the elevation of the 

HOF. A SWLI of 100 is MSL and the HOF is 200. 

3.3 LABORATORY PROCESSING OF 

FORAMINIFERAL SAMPLES

Prior to analysis, samples were kept refrigerated below 

4°C (Edwards & Wright, 2015). A volume of 5 cm3 of 

each surface sample was subsampled using a scalpel 

to remove sediment from the surface sample and a 

graduated cylinder to measure volume. Samples were 

shipped to the University of York and stained immediately 

upon arrival using a buffered solution of rose Bengal and 

ethanol for 24 hours to distinguish between live and 

dead specimens (Walton, 1952). Most studies typically 

stain within 24 hours of collection (e.g. Shaw et al. 2016); 

however, experiments have shown that even after 

death, foraminiferal protoplasm can stain over a month 

after collection (Murray & Bowser, 2000). Subsequently, 

samples were sieved through 500 µm and 63 µm sieves, 

and the residue from the 63 µm sieve was collected 

for foraminiferal analyses. Samples were preserved in 

a solution of deionised water and 30% ethanol until 

analysis. 

As sample counts of ~50–200 are sufficient for low 

diversity assemblages typical of salt-marsh environments 

(Edwards & Wright, 2015; Fatela & Taborda, 2002; Grenfell 

et al. 2012; Kemp, Wright & Cahill, 2020), samples were 

split into eight equal aliquots using a wet splitter (Scott 

& Hermelin 1993). Samples were counted wet via light 

microscopy using a Zeiss Stemi DV4 microscope at 

80×–320× magnification and identified with reference to 

Hayward, Le Coze & Gross (2019). We retain taxonomic 

consistency between this training set and the Callard et 

al. (2011) training set, identifying Trochamminita as two 

distinct species: Trochamminita salsa and Trochamminita 

irregularis. The dead assemblage was enumerated, 

as dead foraminifera have been shown to be a better 

analogue for fossil assemblages compared to living. This 

is due to the fact that dead assemblages are independent 

of factors such as seasonality, minimise temporal 

variability in modern distributions and are less likely to 

result in taphonomic bias arising from the dissolution of 

certain, usually calcareous, species (e.g. Grenfell et al. 

2012; Horton & Edwards, 2006; Horton & Murray, 2006; 

Wright, Edwards & van de Plassche, 2011; Walker et al. 

2020). Where possible, a count of at least 200 individuals 

per sample was taken (e.g. Chen et al. 2020; Figueira & 

Hayward, 2014); however, where counts were less than 

200, the entire sample was counted. 

3.4 TRAINING SET SCREENING

We create transfer function models employing only 

agglutinated foraminifera following Edwards & Horton 

(2000). Prior to statistical analyses we removed 

calcareous species from the training sets (Quinqueloculia 

sp., Haynesina germanica, and Elphidium sp.) as these 

species are susceptible to dissolution and are rarely 

preserved within the fossil salt-marsh sediments (e.g. 

Milker et al. 2015b). Calcareous species totalled 159 out 

of 27,390 individuals (~0.6% of the combined training 

set), 157 of which came from Little Swanport (Callard et 

al. 2011). We also removed samples with total count sizes 

less than 50 as we deem these statistically unreliable 

(Kemp, Wright & Cahill, 2020).

3.5 CLUSTERING AND ORDINATION

We employ partitioning around medoids (PAM) clustering 

and silhouette analysis (Rousseeuw, 1987; Kaufman & 

Rousseeuw, 1990) to determine biozones present within 

the training sets using the ‘cluster’ (Maechler et al. 2013) 

and ‘Factoextra’ (Kassambara & Mundt, 2017) packages 

in statistical software R (R Core Team, 2020). We only 

analyse species distributions against elevation, as this 

is largely considered to be the environmental variable 

most responsible for influencing species distributions 

(e.g. Horton et al. 2003; Horton & Murray, 2007; Shaw 

SITE LOCAL TIDE 

STATION

MEAN SEA 

LEVEL (M AHD)

HIGHEST OCCURRENCE OF 

FORAMINIFERA (HOF) (M AHD)

Lutregala Hobart 0.05 0.96

Wapengo Bermagui –0.03 1.07

Little Swanport Spring Bay 0.04 0.76

Table 1 Tidal data used to calculate Standardised Water-Level Index (SWLI) values.
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et al. 2016). We favour PAM over alternative hierarchical 

clustering methods, such as k-means, as it is considered 

more statistically robust (Kemp et al. 2012). The PAM 

method minimizes a sum of dissimilarities which means 

there is no requirement for clusters to have a certain size 

and structure (Chen et al. 2020; Kaufman & Rousseeuw, 

1990; Kemp et al. 2012). We determine the optimal 

number of clusters using the average silhouette method, 

where a silhouette width (Si) of 1 indicates a sample to 

be perfectly assigned to the cluster, while –1 indicates 

incorrect assignment (Kaufman & Rousseeuw, 1990). 

We also perform detrended correspondence 

analysis (DCA; Hill & Gauch, 1980) on the training sets 

using R packages ‘vegan’ (Oksanen et al. 2007) and 

cluster. Ordination plots provide further information on 

groupings within a training set and have typically been 

used to show difference and similarity amongst samples. 

The plots indicate which samples contain higher or lower 

abundances of certain species based on their distribution 

around the species’ centroid (ter Braak & Verdonschot, 

1995). Samples with similar composition are located 

close together in ordination space, whereas those with 

dissimilar compositions will plot further away from each 

other on the ordination plot (Kemp, Horton & Culver, 

2009). 

3.6 TRANSFER FUNCTION DEVELOPMENT

In previous sea-level reconstruction studies, transfer 

functions have typically been applied using training sets 

of data local (i.e. within a few kilometres) to the fossil 

record. However, many studies have advocated for 

combining training sets from a broad region (i.e. from 

hundreds of kilometres; e.g. Barlow et al. 2013; Gehrels, 

Roe & Charman, 2001; Hocking, Garrett & Cisternas, 

2017; Watcham, Shennan & Barlow, 2013; Wilson & 

Lamb, 2012) to generate regional training sets. Some 

studies have also sub-divided regional training sets 

into sub-regional training sets by grouping training 

sets from sites located in fairly close spatial proximity 

(e.g. Hocking, Garrett & Cisternas, 2017). These studies 

highlight that whilst the precision of the resulting models 

often decreases, accuracy increases by providing more 

modern analogues for the fossil assemblages in cores. 

We create training sets at varying spatial scales from 

local up to regional in order to assess how both accuracy 

and precision alter with increased spatial extent. 

To investigate whether the relationship between 

foraminiferal assemblage and elevation is unimodal or 

linear, we employ detrended canonical correspondence 

analysis (DCCA) in CANOCO version 4.5 (ter Braak & 

Smilauer, 2002). Following Birks (1995), we assume that 

axis one gradients greater than two standard deviations 

indicate that species respond unimodally to elevation. 

Based on the DCCA result, we use either Partial Least 

Squares (PLS) or Weighted Averaging Partial Least 

Squares (WAPLS; ter Braak & Juggins, 1993; ter Braak et 

al. 1993) regression models in R package ‘Rioja’ (Juggins, 

2020). 

Following guidelines from Barlow et al. (2013) and 

Kemp & Telford (2015) we employ a ‘minimum adequate 

model’ approach where no more than three components 

are used to avoid over-fitting data, and we use the 5% 

improvement in root-mean-squared-error-of-predictions 

(RMSEP) rule as guidelines for the use of additional 

components. We assess transfer function performance 

via cross-validated model statistics. Bootstrapping 

is chosen as our cross-validation method because it 

provides sample-specific errors (ter Braak & Juggins, 

1993). In line with the recommendations of Kemp & 

Telford (2015), we limit outlier removal to a single pass 

to leave as much natural variability in the models as 

possible. We consider removing samples with cross-

validated residuals exceeding two standard deviations 

from the mean (Juggins & Birks, 2012). We calculate 

species optima and tolerances using the R package 

‘palaeoSig’ (Telford, 2011). 

4. RESULTS
4.1 MODERN FORAMINIFERAL DISTRIBUTIONS

4.1.1 Lutregala 

At Lutregala, transect 1 spanned a distance of 315 m and 

transect 2 spanned 260 m. Combined, they covered a 

vertical range of 0.77 m. A total of 51 surface samples were 

taken. Within the Lutregala training set, we identified 10 

agglutinated species and 1 calcareous species (Ammonia 

beccarii – 1 single individual encountered in the training 

set). Eleven surface samples had total counts lower than 

50 individuals (Figure 2); therefore, we removed these 

samples from the training set. In the resulting training 

set, the total individual count ranged from 56–814, with 

an average total count of 232 individuals per sample. 

Along transect 1, the HOF was observed at 0.96 

m AHD (0.91 m above MSL). Immediately below HOF, 

the higher elevation samples were dominated by T. salsa 

and Haplophragmoides wilberti (0–75% and 0–43% 

respectively). Mid-low elevations were dominated by 

Trochammina inflata (1–84%), Entzia macrescens (0–

71%) and T. irregularis (0–38%). Low elevation samples 

were dominated by Miliammina fusca (0–97%), with the 

largest abundance found in the lowest elevation sample. 

Along transect 2, E. macrescens and T. inflata dominated 

the high-mid elevation samples (0–66% and 12–69% 

respectively). Trochamminita irregularis and H. wilberti 

were also found in these samples at lower abundance 

(0–13% and 0–16% respectively). Low elevation samples 

were again dominated by M. fusca (0–75%) and, similarly 

to transect 1, the largest abundance was found in 

the lowest elevation sample. Minor species included 

Siphotrochammina lobata, Polysaccammina ipohalina, 

Ammobaculites agglutinans and Textularia sp., which 

each contribute less than 10% to a sample when present.
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4.1.2 Wapengo

At Wapengo, a total of 45 samples were taken. Transect 

3 spanned 250 m and transect 4 spanned 60 m. The two 

surface transects had a total vertical range of 0.71 m. 

Thirty samples contained total counts greater than 50 

(Figure 3). Within the resulting training set, we identified 

13 agglutinated and 1 calcareous species (Haynesina 

germanica – 1 individual noted within the training set). In 

the training set, the total count ranged from 55–453 and 

averages 159 individuals per sample.

The HOF was observed at 1.07 m AHD (1.10 m above 

MSL). Along transect 3, the high-mid elevation samples 

were dominated by T. inflata and E. macrescens (0–92% 

and 0–55% respectively) with low relative abundances 

of T. salsa (0–2%), H. wilberti (0–9%) and T. irregularis 

(0–5%). These samples generally had the lowest total 

counts (<100 individuals). Mid-elevation samples were 

dominated by P. ipohalina (0–71%) and low elevation 

samples were dominated by M. fusca and Ammobaculites 

exiguus (0–90% and 0–49%) with A. agglutinans and 

Polysaccammina hyperhalina in low abundance (0–7% 

and 0–9% respectively). Along transect 4, the high-mid 

elevation samples were largely dominated by T. inflata 

(0–89%), with a low abundance of T. salsa (0–5%) 

and Miliammina fusca (0–72%). Entzia macrescens 

was dominant in the lowest elevation samples (6–

85%), with a low abundance of P. ipohalina (0–17%). 

Siphotrochammina lobata was also observed in the 

training set but contributes less than 10% to a sample 

when present.

4.2 MULTIVARIATE ANALYSES 

4.2.1 Partitioning Around Medoids Analysis

Combining samples from Lutregala, Wapengo, and the 

previously published site at Little Swanport (Callard et 

al. 2011) into a regional training set, we find that PAM 

analysis groups samples into three clusters (Figure 4). 

PAM identifies a high-elevation cluster (cluster one), 

a mid-elevation cluster (cluster two) and a mid-low 

elevation cluster (cluster three). Cluster one (191 SWLI 

Figure 2 Lateral distribution of surface foraminifera (dead assemblage) along transects 1 and 2 at Lutregala salt marsh. Foraminifera 

presented represent at least 10% of the total count in at least one sample. Unfilled bars represent total counts lower than 50. The 

highest occurrence of foraminifera (HOF) was found at 0.96 m AHD (0.91 m above MSL). Vegetation zones are also shown.
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average) contains large relative abundances of T. salsa 

(average relative abundance 63%); the species is 

principally dominant at the uppermost elevations, but is 

present from ~200–155 SWLI. Cluster one also contains 

the largest relative abundance of H. wilberti (~188–156 

SWLI; 11% average). Cluster two (163 SWLI average) 

comprises the majority of samples and is largely 

composed of T. inflata (~200–118 SWLI; 55% average 

relative abundance) and E. macrescens (~190–118 

SWLI; 30% average relative abundance). Both species 

have wide elevational ranges. Cluster three (155 SWLI 

average) comprises the majority of low elevation 

samples and has the largest relative abundance 

of M. fusca (average 59%). We find that M. fusca is 

generally sparse at high elevations and increases 

at lower elevations, with a maximum abundance 

at 114 SWLI. The cluster also contains typical low-

marsh species including A. exiguus, A. agglutinans, 

P. hyperhalina and Ammobaculites subcatenulatus. 

No samples from Little Swanport were classified into 

cluster three. This is likely due to the near-absence of 

M. fusca at the site. 

4.2.2 Detrended Correspondence Analysis

DCA analyses (Table S1) indicate that, across all training 

sets, SWLI is closely aligned with axis 1, although r2 

decreases when samples are combined together with 

Little Swanport in the regional training set (Lutregala r2 = 

0.60, p = <0.01; Wapengo r2 = 0.52, p = <0.01; Regional r2 

= 0.22, p = <0.01; Figure 5). In each ordination plot, high-

elevation samples plot furthest away in ordination space 

from low-elevation samples, suggesting these samples 

have the most disparate assemblages. 

In the Lutregala training set, four clusters are identified 

– a high-elevation cluster is dominated by T. salsa, a 

mid-elevation cluster is dominated by E. macrescens 

and T. irregularis and another mid-elevation cluster is 

dominated by T. inflata (Figure 5a). A low-elevation cluster 

is dominated by M. fusca, with influences from A. exiguus 

and P. ipohalina. Conversely, in the Wapengo training 

set, there is no defined high-elevation cluster; high-mid 

elevation samples form one cluster largely dominated by 

T. inflata and E. macrescens and low-elevation samples 

are dominated by M. fusca and Ammobaculites spp. 

(Figure 5b). This may be due to the low abundance of T. 

Figure 3 Lateral distribution of surface foraminifera (dead assemblage) along transects 3 and 4 at Wapengo salt marsh. Foraminifera 

presented represent at least 10% of the total count in at least two samples and filled bars represent counts greater than 50. The 

highest occurrence of foraminifera (HOF) was found at 1.07 m AHD (1.10 m above MSL). Vegetation zones are also shown.
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Figure 4 A. Relative abundance of modern foraminifera across the regional training set, showing species exceeding 10% abundance 

in at least one sample with total counts greater than 50 individuals. Samples are ordered by Standardised Water-Level Index (SWLI); 

the highest occurrence of foraminifera (HOF) and mean sea level (MSL) are displayed. Partitioning around medoids (PAM) cluster for 

each sample is shown. B. Average silhouette method to determine optimal number of clusters across the regional training set. The 

peak and the dashed line denotes that samples are best clustered into three groups. C. Silhouette width of individual samples within 

the regional training set. The dashed horizontal line indicates the average silhouette width across the entire regional training set. Site 

key: LG = Lutregala, WAP = Wapengo, LSP = Little Swanport.
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salsa at the site (~0–5%), compared with ~50–85% in 

samples near HOF at Lutregala and Little Swanport.

In the regional training set, cluster one is dominated 

by T. salsa and samples with the highest SWLI values and 

cluster two is dominated by T. inflata and E. macrescens, 

with some influence from T. irregularis and S. lobata 

(Figure 5c). In cluster three, the mid-low elevation samples 

towards the centre of the plot are also dominated by T. 

inflata and low-elevation samples are dominated by 

M. fusca and Ammobaculites spp. Whilst Little Swanport 

has low-elevation samples, these samples are grouped 

into the mid-elevation cluster, again, likely due to the 

absence of low-marsh and tidal-flat species within 

the training set. Samples from Lutregala generally plot 

towards the negative side of the DCA triplot, whereas 

samples from Wapengo plot to the positive side of the 

DCA triplot, likely reflecting the differences in species 

assemblages between the sites, with T. salsa near 

absent from Wapengo but prevalent at Lutregala and 

Ammobaculites spp. and Polysaccammina spp. more 

prevalent at Wapengo but near absent at Lutregala. 

4.3 DEVELOPMENT OF A TRANSFER FUNCTION 

FOR SOUTHEASTERN AUSTRALIA 

We develop transfer functions for three local training sets 

(Lutregala, Wapengo and Little Swanport), a sub-regional 

training set that comprises the two Tasmanian sites 

(Lutregala and Little Swanport), a regional training set (I) 

that includes all samples (Lutregala, Wapengo and Little 

Swanport), and a regional training set (II) comprising 

only our new samples (Lutregala and Wapengo). Data 

are expressed as percentage abundance (Figure 6). 

Both the Lutregala and Wapengo local training sets, as 

well as the regional II training set, have axis one lengths 

greater than two standard deviations (2.05, 2.06 and 

2.34 respectively; Table 2) therefore, we apply WAPLS 

models in these sites. The sub-regional and regional 

I training sets have axis one lengths less than two 

standard deviations (1.48 and 1.52 respectively; Table 2); 

therefore, we apply PLS models. Callard et al. (2011) had 

previously used a WAPLS and a PLS model on the Little 

Swanport training set as the axis one gradient length was 

close to two standard deviations (1.68; Table 2); however, 

we employ a PLS model (Birks 1995). 

The local training sets from Lutregala and Wapengo 

perform well, with model performance comparable to, or 

better than, that of the final Little Swanport model reported 

by Callard et al. (2011) (Table 3). The Lutregala model has the 

lowest RMSEP, demonstrating an ability to predict sea level 

within ± 6.4 SWLI units (equivalent to ± 0.06 m at Lutregala 

at 68% confidence or ± 0.12 m at 95% confidence). The 

Wapengo model prediction error is larger at ± 9.7 SWLI units 

(equivalent to ± 0.11 m at Wapengo at 68% confidence 

or ± 0.22 m at 95% confidence). No models exhibit a 5% 

improvement from component one, therefore we cannot 

justify the addition of a second component. 

Comparison of the sub-regional and regional model 

I performance with those of the local models highlights 

that the inclusion of Little Swanport into the models 

results in a decrease in performance, measured by an 

increase in RMSEP and a decrease in r2
boot 

(Sub-regional 

RMSEP SWLI units = 12.64, r2
boot

 = 0.41; Regional I RMSEP 

SWLI units = 12.91, r2
boot

 = 0.34; Table 3). The residuals are 

much larger for the sub-regional and regional I model 

than for the local models, suggesting a poor fit to the 

observed elevations. Removing Little Swanport from 

the regional training set (regional II model) results in a 

~40% improvement in RMSEP over regional I. Regional II 

exhibits the best performance of the multi-site models 

(RMSEP = 7.66 SWLI units, r2
boot 

=
 
0.69) and has the 

second lowest vertical uncertainty after the Lutregala 

local model (Table 3).

We analyse species optima and tolerance across 

the Lutregala and Wapengo local transfer functions 

and the regional II transfer function. We find that 

species optima and tolerances are largely similar 

between the models (Figure 7). The largest discrepancy 

is in the predicted optima of M. fusca; Lutregala 

and regional II predict the species optima 13 and 

6 SWLI units higher respectively than the Wapengo 

model. We note this pattern is also replicated with 

T. salsa, T. irregularis and E. macrescens, with higher 

predicted species optima in the Lutregala and 

regional II model in comparison to Wapengo. The 

tolerance of T. salsa is also larger in the Wapengo 

model than in the Lutregala or regional II model. The 

species with the closest optima between all models 

is T. inflata, with a difference of only 0.95 SWLI units. 

Haplophragmoides wilberti and P. ipohalina optima 

are also predicted at very similar SWLI values across 

all models (within 1.7 SWLI units or less). The tight 

vertical optima and tolerance of P. ipohalina across 

all three models highlights the usefulness of this rare 

species in sea-level reconstruction. 

5. DISCUSSION
5.1 CONTROLS ON FORAMINIFERAL 

DISTRIBUTION AND DIVERSITY 

Multivariate analyses demonstrate that elevation (as 

a proxy for duration and frequency of tidal inundation, 

or hydroperiod) has an influence on foraminiferal 

distribution, and supports findings reported across 

the literature (e.g. Avnaim-Katav et al. 2017; Barnett, 

Garneau & Bernatchez, 2016; Edwards,Wright & van de 

Plassche, 2004; Gehrels, 2000; Horton & Edwards, 2006; 

Kemp, Horton & Culver, 2009, Milker et al. 2015a). The 

ratio of the first constrained DCCA eigenvalue (λ1) to 

the second unconstrained eigenvalue (λ2) indicates 

the importance of an environmental variable as a 

determinant of species distribution (e.g. Juggins, 2013). 

Across all three sites, we find that the ratio exceeds 1 
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Figure 6 Transfer function performance for local training set models Lutregala A. and Wapengo B. as well as our chosen regional 

model C. (Lutregala and Wapengo combined). Data are presented with elevation converted to Standardised Water-Level Index 

(SWLI). 95% prediction uncertainties are given for each sample.
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TRAINING SET AXIS 1 

LENGTH

AXIS 1 

EIGENVALUE

AXIS 2 

EIGENVALUE

AXIS 3 

EIGENVALUE

AXIS 4 

EIGENVALUE

CUMULATIVE % 

VARIANCE OF 

SPECIES DATA

EIGENVALUE 

(λ1/λ2) 

RATIO

Lutregala 2.05 0.36 0.27 0.15 0.07 24.0 1.33

Wapengo 2.06 0.39 0.30 0.11 0.07 21.7 1.29

Little Swanport 1.68 0.29 0.12 0.05 0.02 28.9 2.51

Sub-regional 1.48 0.19 0.37 0.13 0.09 12.7 0.53

Regional I 1.52 0.19 0.56 0.33 0.16 7.7 0.33

Regional II 2.34 0.39 0.34 0.22 0.13 16.0 1.16

Table 2 Detrended canonical correspondence analysis results for the local, sub-regional and regional training sets.
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Lutregala Local Lutregala 37 9 WAPLS C1 6.42 0.06 0.65 –0.01 7.86

WAPLS C2 6.57 0.06 0.65 0.13 7.42

WAPLS C3 7.40 0.07 0.60 0.14 8.62

Wapengo Local Wapengo 29 12 WAPLS C1 9.73 0.11 0.56 0.12 20.32

WAPLS C2 10.80 0.12 0.53 0.50 18.14

WAPLS C3 12.49 0.14 0.50 1.02 18.77

Little Swanport Local Little Swanport 41 6 PLS C1 15.23 0.11 0.42 0.11 32.74

PLS C2 15.55 0.11 0.44 –0.03 32.95

PLS C3 14.88 0.11 0.53 –0.38 28.23

Sub-regional Sub-regional Lutregala & Little 

Swanport

76 9 PLS C1 12.64 – 0.41 0.00 32.83

PLS C2 12.71 – 0.41 0.11 33.86

PLS C3 12.91 – 0.40 0.21 33.67

Regional I Regional Lutregala, 

Wapengo & Little 

Swanport

105 13 PLS C1 12.91 – 0.34  0.06 35.12

PLS C2 12.40 – 0.36 0.06 34.34

PLS C3 12.39 – 0.37 0.06 34.68

Regional II Regional Lutregala 

& Wapengo

65 13 WAPLS C1 7.66 – 0.69 0.07 9.15

WAPLS C2 8.49 – 0.65 0.29 8.54

WAPLS C3 9.68 – 0.63 0.50 8.18

Table 3 Summary statistics for cleaned model data across local, sub-regional and regional training sets. Rows highlighted in bold indicate the chosen model for each training set.
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(λ1/λ2 = 1.33, 1.29 and 2.51 at Lutregala, Wapengo and 

Little Swanport respectively; Table 2), further suggesting 

that elevation is an important environmental variable 

in explaining species distribution at all sites. DCCA axis 

1 values suggest elevation is responsible for 24%, 22% 

and 29% of the cumulative variance of species data at 

Lutregala, Wapengo and Little Swanport respectively 

(Table 2); however, these values are generally lower 

than those typically reported in other foraminiferal 

studies (e.g. Hawkes et al. 2010; Horton & Edwards, 

2006). Barnett, Garneau & Bernatchez (2016) show 

that for M. fusca and T. inflata, some of the most 

dominant species in our training set, the amount of taxa 

variation accounted for by axis 1 is low. Furthermore, 

the values are not out of ranges reported elsewhere 

in the literature – Avnaim-Katav et al. (2017) report 

elevation influences 17.1% of species distribution in 

their training set. Our values may therefore suggest 

other environmental variables also influence species 

distribution at the sites. 

We find that the vertical distribution of species varies 

spatially, with foraminifera at Little Swanport having 

the widest vertical distributions (Figure 4a). For example, 

H. wilberti, T. irregularis and E. macrescens are generally 

observed at SWLI values above 150 at Lutregala and 

Wapengo, but are present at 89 SWLI at Little Swanport, 

a difference of ~61 SWLI units. Freshwater flooding 

events (Pearce et al. 2005) and variable rainfall (Hedge 

& Kriwoken, 2000) in the Little Swanport estuary have 

periodically lowered the salinity in the estuary to values 

lower than 10 ppt (Crawford & Mitchell, 1999). We 

suggest this may cause a non-uniform salinity gradient 

across the salt marsh, which can cause poorly defined 

vertical distributions (de Rijk & Troelstra, 1997). Low and 

variable salinity at the site may also explain the low 

abundance of M. fusca site in comparison to Lutregala 

and Wapengo. 

Salinity may also influences species diversity; 

Wapengo has the highest species diversity, followed by 

Lutregala. Foraminifera have higher species diversities 

at salinities of 32–27 ppt (Murray, 2006), and both the 

Lutregala and Wapengo estuaries have salinity values 

in this range (Crawford & Mitchell, 1999; Garside et al. 

2014; Parsons, 2012). The average salinity in the Little 

Swanport estuary is ~27 ppt and decreases to ~20 ppt 

in the salt marsh and mudflat (Sakabe & Lyle, 2010); 

therefore, the weaker and variable salinity in the Little 

Swanport estuary may also explain the lower species 

diversity of this site. The higher species diversity at 

Wapengo is a result of the presence of a greater number 

of Ammobaculites species. Lal et al. (2020) suggest that 

high abundances of Ammobaculites spp. are correlated 

with a transition from mangrove to mixed mangrove 

and salt-marsh vegetation at the mid-elevations of 

the upper intertidal zone. Ammobaculites exiguus has 

been noted to often reside within mangroves and in 

unvegetated muddy tidal and sand flats, which we 

find at Wapengo (Hayward & Hollis, 1994; Schröder-

Adams,Boyd & Tran, 2014). Vegetation is influenced 

by elevation and salinity (Lal et al. 2020); therefore 

we suggest that a combination of tidal frequency and 

duration as well as salinity and vegetation type exert 

influence on species distribution and diversity at our 

sites. 

Figure 7 Species optima and tolerances from the local Lutregala and Wapengo models and the regional II model.
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5.2 FORAMINIFERAL DISTRIBUTIONS AND 

DIVERSITY IN SOUTHEASTERN AUSTRALIA 

AND NEW ZEALAND

Modern foraminiferal distributions at Lutregala and 

Wapengo are broadly similar to those observed in 

other studies from southeastern Australia and New 

Zealand. At four sites located near Wollongong, New 

South Wales, M. fusca, E. macrescens and T. inflata also 

dominate surface sample assemblages (Lal et al. 2020). 

Trochammina inflata is especially dominant, which is 

also a common occurrence in New Zealand salt marshes 

(Hayward, 2014), with the species noted to often be 

found from pasture and salt meadow to mangroves 

(Hayward, Grenfell & Scott, 1999). 

We find T. salsa present from ~155–200 SWLI (the upper 

half of the range between MSL and HOF), which is broadly 

similar to previous work conducted in New Zealand, 

where T. salsa is largely found in the upper third of the 

intertidal zone (Hayward & Hollis, 1994). The species can 

often extend into the upper reaches of estuaries, and is 

common in brackish settings with significant freshwater 

input (Hayward, 2014; Hayward, Grenfell & Scott, 1999; 

Hayward & Hollis, 1994). The species has previously been 

noted both in Tasmania (Callard et al. 2011) and Victoria 

(Apthorpe, 1980), and, in agreement with our findings, 

often occurs as a near-monospecific fauna (Hayward, 

2014). However, the species is not documented in lower 

latitude Australian sites (Berkeley et al. 2008, 2009; Cann 

et al. 1993; Haslett, 2001; Haslett et al. 2010; Horton et 

al. 2003; Lal et al. 2020; Strotz, 2015; Wang & Chappell, 

2001; Woodroffe, 2005), which may suggest that the 

species has a preference for temperate salt marshes in 

Australia. 

Of the dominant agglutinated taxa noted in Lal et 

al. (2020) (i.e. those found at all of their Northern New 

South Wales sites), which includes Ammobaculites spp., 

Ammotium directum, E. macrescens, M. fusca, S. lobata 

and T. inflata, we note the presence of all but A. directum 

in our regional training set. Furthermore, Lal et al. (2020) 

encounter H. wilberti, but do not find it at every site. 

Previous literature shows A. exiguus can tolerate a wider 

range of salinities, usually around 20–32 ppt (Ostrognay 

& Haig, 2012; Schröder-Adams, Boyd & Tran, 2014), with 

preferences for mangrove and tidal flat environments 

(Hayward & Hollis, 1994; Schröder-Adams, Boyd & 

Tran, 2014). We find A. exiguus in one creek sample at 

Lutregala, and the species is absent from Little Swanport, 

supporting evidence of the species’ preference for 

mangrove and muddy substrate. 

Rarer species encountered by both Lal et al. (2020) 

and this study include Textularia spp., and P. ipohalina. 

Polysaccammina ipohalina is noted to be rare in temperate 

salt marshes, but has also been documented in New 

Zealand (Hayward, Grenfell & Scott, 1999). Whilst the 

species is found both at Lutregala and Wapengo, it is more 

prevalent at the latter site. Polysaccammina ipohalina has 

been associated as often subdominant to E. macrescens 

and T. inflata environments (Camacho et al. 2015), which 

is replicated also at our sites. 

Haslett et al. (2010) observed modern distributions 

at Minnamurra Inlet, one of the four sites studied by 

Lal et al. (2020) and note the presence of T. inflata, 

Ammobaculites spp., and Haplophragmoides spp., but also 

encountered species not found at our sites, with the site 

reflecting a higher species diversity. However, they find 

only very low total counts in all surface samples (mean 

3.27 specimens/g sediment), with single occurrences 

common. Furthermore, at Smiths Lake located north 

of Sydney (Strotz, 2015), species diversity of benthic 

foraminifera is also markedly higher than at our sites. 

Species common to our sites include M. fusca, T. inflata, 

Textularia spp., and A. agglutinans. We find species 

diversity tends to be higher at these lower latitude sites 

as calcareous foraminifera are far more prevalent. 

We do not include the samples from Haslett et al. 

(2010), Lal et al. (2020), and Strotz (2015) in our regional 

training set due to the site and sample selection criteria 

outlined in this paper. Lal et al. (2020) employ both living 

and dead foraminifera in their relative abundance counts, 

whereas our training set uses only dead assemblages. 

The Haslett et al. (2010) training set has insufficient total 

counts (<50 individuals) and the Strotz (2015) training 

set does not comply with our site selection guidelines, 

as the training set is derived from an artificially managed 

system. Other benthic foraminiferal studies from 

Australia (i.e. Berkeley et al. 2008; Cann et al. 1993; Dean 

& De Deckker, 2013; Haslett, 2001; Horton et al. 2003; 

Wang & Chappell, 2001; Woodroffe, 2005) are either 

located outside of the region of interest, lack elevation 

data, or use grab samples that are not representative of 

the surface assemblages. 

5.3 IMPLICATIONS OF ENVIRONMENTAL 

VARIABILITY ON REGIONAL TRANSFER 

FUNCTION PERFORMANCE

Whilst the role of frequency of tidal inundation as a 

primary driver of the vertical distribution of foraminifera 

has long been established (e.g. Scott & Medioli, 1978), 

other abiotic and biotic factors such as food availability, 

oxygen, organic matter, grain size, salinity, vegetation and 

temperature can also influence species distributions (e.g. 

Murray, 2006). Multivariate analyses of contemporary 

salt-marsh foraminifera from salt marshes on the 

Atlantic coast of North America have directly indicated 

that elevation does not exclusively control foraminiferal 

distribution (Edwards, Wright & van de Plassche, 2004; 

Wright, Edwards & van de Plassche, 2011). Whilst 

regional models can be advantageous due to the fact 

that they combine sites with differing physiographical 

and environmental parameters, making them applicable 

to a larger range of palaeoenvironments (Kemp & Telford, 

2015), we find that the differing vertical foraminiferal 
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distribution between species at Little Swanport and the 

two new sites greatly affects model performance. In 

both the sub-regional and regional I transfer functions, 

nearly all Little Swanport samples have predicted 

elevations ~158 SWLI (see Figure S1). This is likely due to 

the near absence of M. fusca and dominance of T. inflata 

at the site. As such, while the regional II transfer function 

is appropriate for reconstructing sea level from fossil 

assemblages at both Lutregala and Wapengo, this model 

is likely not suitable for reconstructions at sites with low 

(i.e. less than ~30 ppt) or variable salinity. We suggest 

that in such cases, a local model is currently more 

suitable and further modern samples should be collected 

to extend the training set. In line with other studies (e.g. 

Watcham et al. 2013; Hocking, Garrett & Cisternas, 2017), 

we suggest that when employing regional models, a 

wide spatial extent beyond a sub-region may be needed 

for good model performance. 

5.4 THE USE OF TRANSFER-FUNCTION MODELS 

IN RELATIVE SEA-LEVEL RECONSTRUCTION

5.4.1 Comparison with other local and regional 

sea-level transfer-function models 

Transfer function approaches are now widely employed 

in palaeoenvironmental research as they provide a 

quantitative and largely objective method by which 

reconstructions of palaeoenvironmental conditions can 

be directly compared and replicated by other studies 

(Kemp & Telford, 2015). We compare our transfer-

function model performance with other proxy-based 

transfer functions from the literature, updating a global 

database of transfer function performance versus 

mean tidal range (MTR; Barlow et al. 2013; Barnett et al. 

2017; Callard et al. 2011; Mills et al. 2013). The updated 

database integrates data from multiple proxies used in 

sea-level reconstruction: diatoms, benthic foraminifera, 

testate amoebae and pollen (Table 4). 

We find a positive and significant correlation between 

MTR and model performance (both local and regional 

models) assessed using RMSEP (r2 = 0.44, n = 67, p = <0.01; 

Figure 8a). Our results suggest that microtidal ranges, 

such as those seen at Lutregala and Wapengo, provide 

the optimal environments for sea-level reconstructions 

as they yield models with low vertical uncertainties. 

We find that, due to generally smaller MTR, sites in the 

western Pacific (e.g. Callard et al. 2011; Horton et al. 2003; 

Southall, Gehrels & Hayward, 2006), western Atlantic, 

(e.g. Barnett, Garneau & Bernatchez, 2016; Horton et al. 

2006; Kemp, Horton & Culver; Wright, Edwards & van de 

Plassche, 2011) and South Atlantic (e.g. Newton et al. 

2021), have lower vertical uncertainties, whereas those 

from the eastern Atlantic, with larger tidal ranges, have 

larger vertical uncertainties (e.g. Barlow et al. 2013; 

Horton & Edwards, 2005; Massey et al. 2006; Mills et al. 

2013). This supports findings previously described in the 

literature. When our regional model is compared to other 

regional models from across the world (Figure 8b), we 

note that our model performs well, with similarly small 

vertical uncertainties to western Atlantic regional models 

from Barnett, Garneau & Bernatchez, (2016), Charman 

et al. (2010), Horton et al. (2006) and Kemp, Horton & 

Culver, (2009). Spatially, the closest regional training set 

to ours currently is located in Japan (Sawai, Horton & 

Nagumo, 2004); most regional training sets come from 

the East and West Atlantic; therefore, future work should 

concentrate on developing more training sets for the 

western Pacific (Oceania) region in order to better resolve 

recent sea-level histories for this region of the world.

5.4.2. Alternative methods for paleoenvironmental 

reconstruction 

An alternative to the transfer-function approach is a 

‘visual assessment’ (VA; Long et al. 2010). VAs may be 

used to assess key changes in microfossil taxa, whilst 

incorporating environmental data. Variables such as 

stratigraphy, loss on ignition and particle size, which 

cannot be incorporated into traditional transfer-function 

analyses, can be considered with a VA approach. VAs may 

also be used where the modern training set yields no 

good modern analogues for fossil material (e.g. Barnett 

et al. 2015). This method is not used widely, but may be 

utilised at sites with microtidal ranges, particularly in the 

upper marsh where species are mostly constrained to a 

small vertical range. However, the VA method has been 

criticised as it considers elevation as a discrete variable 

which can result in step changes in relative sea-level 

reconstructions, whereas transfer-function approaches 

produce sample-specific errors as elevation is treated as 

a continuous variable (Kemp et al. 2017b). Furthermore, 

generally, transfer-function approaches will yield models 

with lower vertical uncertainties (Kemp & Telford, 2015). 

The recent use of Bayesian transfer functions in relative 

sea-level reconstruction provides an alternative to both 

of these methods and may incorporate the best aspects 

of both approaches (e.g. Cahill et al. 2016; Kemp et al. 

2017a; Walker et al. 2021). Future relative-sea level 

studies may choose to use this approach over the more 

traditional transfer-function method.

6. CONCLUSIONS

This study is the first to collate salt-marsh foraminifera 

into a regional training set for southeastern Australia 

and produces new transfer functions that will underpin 

future late Holocene sea-level reconstructions in the 

region. We report assemblages from two new sites: 

Lutregala salt marsh located on Bruny Island, Tasmania 

and Wapengo salt marsh located in southern New South 

Wales, and combine these with a previously published 

training set from Little Swanport, Tasmania (Callard et 

al. 2011), successfully expanding the available region for 
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REGION SITE REF MODEL MICROFOSSIL N RMSEP MTR RMSEP/MTR

Adriatic Croatia – Values given relative to Split tide gauge Shaw et al. (2016) WA-PLS Foraminifera 60 0.08 0.19 42.1

Eastern Atlantic Brancaster Marsh, UK Gehrels,Roe & Charman, (2001) WA-Tol Diatoms 88 0.21 3.81 1.4

Eastern Atlantic Brancaster Marsh, UK Gehrels,Roe & Charman, (2001) PLS Foraminifera 90 0.08 3.81 2.2

Eastern Atlantic Brancaster Marsh, UK Gehrels,Roe & Charman, (2001) PLS Testate 52 0.08 3.81 2.2

Eastern Atlantic UK – Values given relative to Cowpen Marsh Horton,Edwards & Lloyd, (1999) WA-Tol Foraminifera 131 0.12 3.37 3.4

Eastern Atlantic Mersey River UK Mills et al. (2013) WA-PLS Foraminifera 56 0.13 5.93 2.2

Eastern Atlantic Ho Bugt Denmark Szkornik,Gehrels & Kirby, (2006) WA-PLS Diatoms 40 0.14 1.5 9.3

Eastern Atlantic UK- Values given relative to Cowpen Marsh Zong & Horton, (1999) WA-Tol Diatoms 88 0.21 3.37 6.3

Eastern Atlantic Scotland (average of 9 locations) Barlow et al. (2013) WA-PLS Diatoms 215 0.4 4.3 9.3

Eastern Atlantic Scotland (average of 9 locations) Barlow et al. (2013) WA-PLS Diatoms 121 0.21 4.3 4.9

Eastern Atlantic Scotland Barlow et al. (2013) WA-PLS Diatoms 73 0.16 4.3 3.7

Eastern Atlantic Scotland Barlow et al. (2013) WA-PLS Diatoms 53 0.1 4.3 2.3

Eastern Atlantic Norway – Values given relative to Lødingen Barnett, (2013) WA-PLS Testate 29 0.09 1.92 4.7

Eastern Atlantic Western Denmark Gehrels and Newman, (2004) WA-Tol Foraminifera 16 0.16 1.5 10.7

Eastern Atlantic Florida, USA – Values given relative to Little 

Manatee River

Gerlach et al., (2017) WA-PLS Foraminifera 66 0.07 0.47 14.9

Eastern Atlantic Bristol Channel, England Hill et al. (2007) WA-Tol Diatoms 61 0.88 11.66 7.5

Eastern Atlantic Norfolk, England (average of 2 locations) Horton and Edwards, (2005) WA-PLS Foraminifera 47 0.25 4.8 5.2

Eastern Atlantic Southern Portugal Leorri et al. (2010) PLS Foraminifera 22 0.14 2 7

Eastern Atlantic Northern Portugal Leorri et al., (2011) WA-PLS Foraminifera 30 0.1 1.95 5.1

Eastern Atlantic Brittany, France Leorri et al., (2010) PLS Foraminifera 43 0.22 2.59 8.5

Eastern Atlantic Northern Spain (average of 4 sites) Leorri, Horton & Cearreta, (2008) WA-PLS Foraminifera 30 0.19 2.5 7.6

Eastern Atlantic South Devon Massey et al. (2006) WA-PLS Foraminifera 85 0.29 4.65 6.2

Eastern Atlantic Schedlt estuary, Belgium Ooms, Beyens and Temmerman, 

(2012)

WA-PLS Testate 37 0.24 4.98 4.8

(Contd.)
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Eastern Atlantic Brittany, France (average of 2 sites) Rossi et al., (2011) PLS Foraminifera 36 0.07 3 2.3

Eastern Atlantic Brittany, France – Values given relative to Bay of 

Brest 

Stéphan et al. (2014) WA-PLS Foraminifera 29 0.2 3.89 5.1

Eastern Pacific Upper Cook Inlet, Alaska USA (average of 4 

locations)

Barlow,Shennan & Long, (2012) WA-PLS Diatoms 149 0.3 7.98 3.8

Eastern Pacific California, USA – Values given relative to Tijuana 

River Estuary

Avnaim-Katav et al. (2017) WA-PLS Foraminifera 55 0.09 1.13 8.4

Eastern Pacific Alaska, USA Hamilton & Shennan, (2005) WA-PLS Diatoms 154 0.11 7.98 1.4

Eastern Pacific Oregon (average of 5 sites) Hawkes et al., (2010) WA-PLS Foraminifera 91 0.2 1.81 11

Eastern Pacific Chile, South America – Values given relative to 

Chaihuín 

Hocking, Garrett & Cisternas, 

(2017)

WA-PLS Diatoms 176 0.23 0.95 24

Eastern Pacific Southern Oregon – values given relative to South 

Slough

Milker et al. (2016) WA-PLS Diatoms 160 0.16 1.71 9.2

Eastern Pacific Alaska, USA – Values given relative to Anchorage Watcham, Shennan and Barlow, 

(2013)

WA-PLS Diatoms 255 0.66 8 8.3

Northern Atlantic Viðarholmi

Iceland

Gehrels et al. (2006) WA-Tol Foraminifera 21 0.2 2.1 9.5

Northern Atlantic Viðarholmi

Iceland

Saher et al., (2015) WA-PLS Diatoms 53 0.09 2.1 4.3

Northern Atlantic Aasiaat, Greenland Woodroffe & Long, (2010) WA-PLS Diatoms 64 0.16 2.7 5.9

Northern Atlantic Sisimut, Greenland Woodroffe& Long (2010) WA-PLS Diatoms 70 0.19 4.5 4.2

Red Sea Shuaiba Lagoon Abu-Zied & Bantan, (2013) WA-PLS Foraminifera 29 0.16 0.06 266.7

South Atlantic Galpins salt-marsh – Values given relative to Port 

Elizabeth

Strachan et al. (2015) PLS Foraminifera 37 0.17 1.12 15.2

South Atlantic Swan Inlet Newton et al. (2021) WA-Tol Testate 

amoebae

28 0.13 0.07 0.19

South Atlantic Swan Inlet Newton et al. (2021) WA-PLS Diatoms 37 0.06 0.07 0.09

South Atlantic Swan Inlet Newton et al. (2021) WA-PLS Multiproxy 46 0.09 0.07 0.13

(Contd.)
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Western Atlantic Magdalen Islands – Values given relative to Cap-

aux-Meules

Barnett,Garneau & Bernatchez, 

(2016)

PLS Foraminifera 39 0.12 0.29 41.4

Western Atlantic Magdalen Islands Barnett,Garneau & Bernatchez, 

(2016)

Wa-Cla Testate 62 0.08 0.29 27.6

Western Atlantic Newfoundland Wright,Edwards & van de 

Plassche, (2011)

WA-PLS Foraminifera 37 0.07 0.83 8.4

Western Atlantic Pattagansett River, Connecticut, USA Wright,Edwards & van de 

Plassche, (2011)

WA-PLS Foraminifera 26 0.1 1.16 8.6

Western Atlantic Maine and Nova Scotia, North America – Values 

given relative to the Chezzetook Inlet

Charman et al. (2010) WA-Tol Testate 29 0.05 1.25 4.2

Western Atlantic Connecticut USA (average of 4 sites) Edwards, Wright & van de 

Plassche, (2004)

WA-PLS Foraminifera 91 0.18 1.36 13.2

Western Atlantic Maine USA (average of 4 sites) Gehrels, (2000) WA-PLS Foraminifera 68 0.25 3.11 8

Western Atlantic Nova Scotia (Gehrels et al. 2005) WA-Tol Foraminifera 46 0.06 1.86 3.2

Western Atlantic New Brunswick, Canada Gehrels, Hendon & Charman, 

(2006)

WA Testate 12 0.08 5.8 1.4

Western Atlantic Maine, USA Gehrels,Hendon & Charman, 

(2006)

WA Testate 17 0.07 2.6 2.7

Western Atlantic Delaware, USA Gehrels,Hendon & Charman, 

(2006)

WA Testate 9 0.07 1.75 4

Western Atlantic Outer Banks North Carolina USA (average of 3 

sites)

Horton et al. (2006) WA-PLS Diatoms 46 0.08 0.35 22.9

Western Atlantic Outer Banks North Carolina USA (average of 10 

sites)

Kemp et al. 2009) WA-PLS Foraminifera 46 0.04 0.27 14.8

Western Atlantic New Jersey – Values given relative to Leeds Point Kemp et al. (2012) WA-PLS Foraminifera 62 0.14 1.16 11.8

Western Atlantic New Jersey – Values given relative to Leeds Point Kemp et al. (2013) WA Foraminifera 175 0.15 1.16 13.2

Western Atlantic Elizabeth River, North Carolina, USA Wright, Edwards & van de 

Plassche, (2011)

WA-PLS Foraminifera 53 0.14 1.34 10.4

Western Pacific Kaledupa Engelhart et al. (2007) ML Pollen 63 0.22 1.13 19.6

(Contd.)
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REGION SITE REF MODEL MICROFOSSIL N RMSEP MTR RMSEP/MTR

Western Pacific Central Great Barrier Reef – values given relative 

to Cleveland Bay

Horton et al. (2007) WA-PLS Foraminifera 43 3.5 1.51 231.1

 Western Pacific Hokkaido Japan (average of 2 sites) Sawai,Horton & Nagumo, (2004) WA-PLS Diatoms 78 0.29 1.05 27.6

Western Pacific Caitlins Coast Southall, Gehrels, & Hayward, 

(2006)

WA-Tol Foraminifera 31 0.05 1.5 3.3

Western Pacific Little Swanport Callard et al. (2011) WA-PLS Foraminifera 43 0.1 0.6 16.7

Western Pacific New Zealand -Values given relative to Mokomoko Garrett et al. (Unpublished) PLS Foraminifera 77 0.08 1.89 4.2

Western Pacific Manukau Harbour Grenfell et al. (2012) WA-Tol Foraminifera 25 0.11 1.84 6

Western Pacific Cocoa Creek, Great Barrier Reef Coastline, 

Australia

Horton et al. (2003) WA-PLS Foraminifera 34 0.07 1.48 4.7

Western Pacific Lutregala This study WA-PLS Foraminifera 37 0.06 0.47 12.8

Western Pacific Wapengo This study WA-PLS Foraminifera 28 0.11 0.95 11.6

Western Pacific Regional II – Values given relative to Lutregala This study WA-PLS Foraminifera 65 0.07 0.47 14.9

Table 4 Comparisons of model performance and mean tidal range from multiple regions across the globe. Good model performance is recognised by a lower root mean squared error of performance 

(RMSEP). N – number of samples within training set. WA – Weighted Averaging regression, WA-Tol — Tolerance Down-Weighted Weighted Averaging regression, WAPLS — Weighted-Average Partial-Least-

Squares regression, PLS — Partial-Least-Squares regression, ML – Maximum Likelihood. Table updated from those published by Barlow et al. (2013), Barnett et al. (2017), Callard et al. (2011) and Mills et al. 

(2013) combining and adding studies that utilise either diatoms, benthic foraminifera, testate amoebae, pollen or multiproxy (diatoms, foraminifera and testates combined) for sea-level reconstruction. We 

omit the Horton et al. (2007) subtidal transfer function from the analysis as this represents a large outlier in the dataset.
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reconstruction north and southwards of the previous site. 

Multivariate analyses identify three clusters within the 

combined regional foraminiferal training set, comprising 

a high elevation biozone, a mid-elevation biozone and a 

mid to low elevation biozone. Similar to contemporary 

foraminiferal distributions reported elsewhere in 

Australia and New Zealand, T. inflata is dominant at 

all sites and found along the majority of the sampled 

elevation gradient. No samples from Little Swanport 

are classified into the mid to low elevation cluster; we 

attribute this to the low and variable salinity in the Little 

Swanport estuary. 

New local transfer functions for Lutregala and 

Wapengo perform well, with an ability to predict sea 

level within ± 0.06 m (68% confidence) or ± 0.12 m (95% 

confidence), and ± 0.11 m (68% confidence) or ± 0.22 

m (95% confidence), respectively. The dominance of 

T. inflata and near-absence of M. fusca at Little Swanport 

complicates the development of a transfer function 

model that incorporates all three sites. Rather, a model 

combining the two higher salinity sites provides improved 

performance (RMSEP = 7.66 SWLI units) despite the large 

distance between these sites. When developing regional 

training sets, we advocate that the similarity in the 

environmental settings (particularly salinity) should be 

assessed as an alternative way of grouping sites, rather 

than simply using spatial proximity. 

Our transfer functions provide comparable predictive 

ability to other transfer functions reported elsewhere 

in Australia and New Zealand (e.g. Callard et al. 2011; 

Southall et al. 2006). By updating a global database of 

transfer function model performance we also show 

that our models are comparable with studies in distant 

regions, namely those from the western Atlantic. Our 

revised database of studies that use diatoms, benthic 

foraminifera, testate amoebae and pollen for sea-level 

reconstruction demonstrates that model performance 

is superior in locations with microtidal regimes. Future 

sea-level reconstructions from the microtidal coasts of 

New South Wales and Tasmania underpinned by the 

work presented here offer the potential for sea-level 

reconstructions with low vertical uncertainties that 

will help to refine understanding of late Holocene sea-

level change in Australia as well as shed light on the 

discrepancy in rates of sea-level rise observed in proxy 

and instrumental records in the western Pacific, and help 

to elucidate the causes of the early 20th century sea-level 

acceleration. 

Figure 8 A. Relationship between model performance (root mean squared error of prediction; RMSEP) and mean tidal range (MTR) 

across 67 models (Table 4) including the Lutregala (L) and Wapengo (W) local training sets and the regional II model (R). The 

updated dataset integrates training sets that use diatoms, benthic foraminifera, testate amoebae, pollen and multiproxy (diatoms, 

foraminifera and testates combined) approaches for sea-level reconstruction from multiple regions of the world. B. Relationship 

between model performance and mean tidal range showing only regional models.
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ADDITIONAL FILES

Data availability (Supplementary file 1): Percentage counts 

of unscreened dead contemporary foraminifera as well as 

elevation data expressed in m AHD and tide-gauge data. 

Code availability: Code used to compute the multivariate 

and transfer function analyses as well as to generate 

the figures within this publication are available through 

figshare: https://doi.org/10.6084/m9.figshare.14573358 or 

see https://figshare.com/authors/Sophie_Williams/9360050. All 

assemblage figures in this publication were created in R 

package ‘tidypalaeo’ (Dunnington, 2021).

TRAINING 

SET

DCA 

AXIS 1

DCA 

AXIS 2

DCA 

AXIS 3

DCA 

AXIS 4

Lutregala 0.56 0.24 0.12 0.13

Wapengo 0.72 0.26 0.30 0.17

Regional 0.65 0.33 0.22 0.22

Table S1 Detrended Correspondence Analysis axis scores for 

the Lutregala, Wapengo and Regional (Lutregala, Wapengo and 

Little Swanport combined) training sets. 

•	 Lay Summary. New salt-marsh foraminifera training 

sets for late Holocene sea-level reconstruction in 

southeastern Australia. DOI: https://doi.org/10.5334/

oq.93.s1

•	 Supplementary information. Foraminifera and 

elevation data associated with this publication. DOI: 

https://doi.org/10.5334/oq.93.s2
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