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Quasinormal modes of massive vector fields on the Kerr spacetime

Jake Percival* and Sam R. Dolan †

Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield,

Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom

(Received 1 September 2020; accepted 5 October 2020; published 19 November 2020)

We study the spectrum of quasinormal mode frequencies for a Proca field on a rotating black hole
spacetime. First, we review how the introduction of field mass modifies the spectrum in the scalar-field
case, leading to evanescent modes and to quasiresonance. Next, we examine the three physical
polarizations of the Proca field and their relation to the electromagnetic field modes in the massless
limit. Exploiting a separation of variables, we obtain a five-term recurrence relation from an appropriate
ansatz for the radial function. Gaussian elimination and the modified Lentz algorithm are applied, and the
quasinormal frequencies are computed from the roots of a continued fraction. We validate our method by
calculating quasibound state frequencies, which are complementary to quasinormal modes, and which can
be calculated using the same method. We present a selection of results for the low-lying overtones of all
three polarizations, across a range of black hole spins and field masses.

DOI: 10.1103/PhysRevD.102.104055

I. INTRODUCTION

A bell struck by a hammer vibrates in a characteristic
manner, emitting a series of harmonics (or partials) with a
spectrum of frequencies and decay rates that are intrinsic to
the bell itself, rather than to the hammer. Similarly, a
perturbed black hole will return to a quiescent state by
radiating through its natural damped resonances, known as
quasinormal modes (QNMs) [1–6]. The aim of black hole
spectroscopy is to characterize such modes theoretically,
and to extract QNM parameters from experimental data
[7,8]. In fact, gravitational wave (GW) chirps from binary
mergers, such as GW150914 [9], show the clear imprint of
the l ¼ m ¼ 2 fundamental mode at late times in the
ringdown phase. If two or more modes are identified [7,10],
QNMs can be used to constrain the mass and spin of the
black hole, and to test the no-hair theorem [11] and the
general theory of relativity itself.
The QNM spectrum is the infinite set of complex

frequencies ωλ ¼ ϖλ − iΓλ, with ϖλ the oscillation fre-
quency and Γλ the damping rate. Each mode in the
spectrum is specified by a set of discrete numbers λ, where
typically λ ¼ fl; m; n;Pg, with l and m the angular
momentum numbers, n the overtone number and P the
polarization state. The spectrum itself depends on the black
hole parameters, such as the mass M and angular momen-
tum J ¼ aM, and the properties of the perturbing field,
such as its spin s and its mass μ. A key dimensionless
parameter is Mμ

m2

P

, which is of the same order as the ratio of

the horizon radius of the black hole to the Compton
wavelength of the field. Here mP is the Planck mass;
henceforth we adopt units such that G ¼ c ¼ mP ¼ 1.
The gravitational QNMs (s ¼ 2, μ ¼ 0) of the Kerr black

hole have been well studied since the 1970s, due to their
key role in the ringdown phase of black hole mergers. More
widely, the study of QNMs of massless fields (μ ¼ 0) on a
variety of black hole spacetimes has generated a substantial
literature; see Refs. [4–6] for review articles. By compari-
son, the QNM spectrum of massive fields (μ ≠ 0) has
received less attention.
In 1991, Simone and Will [12] applied the WKB method

to find quasinormal frequencies of the scalar field on the
Schwarzschild and Kerr black hole spacetimes, finding that
the scalar field mass μ led to an increase in oscillation
frequency ϖ, and a decrease in damping Γ. Konoplya and
Zhidenko [13–15] found that, for large masses, the funda-
mental mode of the scalar field approaches a vanishing
damping rate (Γ → 0) and beyond a critical value the
fundamental mode disappears from the spectrum. This
phenomenon is known as quasiresonance [16].
The QNMs of massive scalar fields have attracted further

interest recently, motivated by the observation that a
subfamily of Horndeski theories gives rise to a scalar
QNM spectrum characterized by a single parameter
that acts as an effective mass [17,18]. In Ref. [17] a
series expansion of QNM frequencies in inverse powers
of L≡ lþ 1=2 was obtained, extending the method
of Ref. [19].
The QNMs of massive fields of higher spin (s > 0) on

Schwarzschild spacetime have also been studied. Cho [20]
applied the WKB method to study the QNMs of the Dirac
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field (s ¼ 1=2) concluding, as in the s ¼ 0 case, that ϖ
increases and jΓj decreases with the field mass μ (see also
Ref. [21] for the Reissner-Nordström spacetime). Konoplya
[14] investigated the QNMs of the monopole mode of
the Proca field. Rosa and Dolan [22] studied the higher
multipoles, identifying the three polarization states
expected for a massive vector field. Brito, Cardoso and
Pani [23] studied the massive spin-2 field on a black
hole spacetime, and calculated QNM frequencies for the
odd-parity axial sector (see Fig. 2 in Ref. [23]).
The QNMs of massive fields of higher spin (s > 0) on

Kerr spacetime is a relatively unexplored arena. In
Ref. [24], the first numerical results for the QNMs
of the massive Dirac field (s ¼ 1=2) on the Kerr space-
time were obtained via the Frobenius method. The
introduction of mass μ ≠ 0 splits a degeneracy in the
spectrum, leading to two polarizations with distinct QNM
frequencies.
To date, the QNMs of the Proca field (s ¼ 1, μ > 0) on

Kerr spacetime have not been calculated. The purpose of
this paper is to fill this lacuna by exploiting the separation
of variables for the Proca field on Kerr recently achieved by
Frolov et al. [25],1 who built on work by Lunin [26]. The
separability has already been used to calculate the spectrum
of quasibound states of the Proca field on Kerr [25,27–29]
(see Refs. [30–36] for complementary approaches). In this
work we show that both the quasinormal and quasibound
spectra can be calculated by solving a particular five-term
recurrence relation.
In Sec. II we review the QNMs of the massive scalar

field (s ¼ 0) in the Schwarzschild (II A) and Kerr (II B)
cases. Here we examine the association between QNMs
and unstable circular orbits of geodesics, via the WKB
method; and we distinguish propagative and evanescent
modes. In Sec. III, we detail our method for calculating
QNMs of the Proca field, covering the Kerr spacetime
(III A), the method of separation of variables (III B), a
new five-term recurrence relation for QNMs (III C);
polarization states and angular eigenvalues (III D); and
the numerical methods used and their validation (III E).
Section IV covers the main results, and we conclude with
a discussion in Sec. V.

II. REVIEW: MASSIVE SCALAR QNMs

In this section we review the QNMs of the massive
scalar field on a static black hole spacetime, principally to
develop an understanding of the effect of field mass μ on
the spectrum in a base case, to set a foundation for an
exploration of the Proca field on a spinning black hole
spacetime. It is also relevant in light of recent work on
QNMs in Horndeski gravity [17,18].

A. Scalar QNMs on Schwarzschild

The massive Klein-Gordon equation ð□ − μ2ÞΦ ¼ 0 on
Schwarzschild spacetime is amenable to a separation of
variables, Φ ¼ r−1ulωðrÞe−iωtYlmðθ;ϕÞ, leading to the
radial equation

d2ulω

dr2�
þ fω2 − VlðrÞgulω ¼ 0;

VlðrÞ ¼ f

�

μ2 þ lðlþ 1Þ
r2

þ 2Mβ

r2

�

; ð1Þ

where VlðrÞ is the effective potential, r� the tortoise
coordinate defined by dr�=dr ¼ f−1 with f ≡ 1–2M=r,
and β ¼ 1 for the scalar field. The mode that is ingoing at
the horizon satisfies the boundary condition

ulωðrÞ ∼
�

e−iωr� ; r� → −∞;

A−
lωe

−iprr−iχ þ Aþ
lωe

iprriχ ; r� → ∞;
ð2Þ

where p≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − μ2
p

with ReðpÞ > 0 and A�
lω are complex

coefficients. A quasinormal mode frequency ωln is such
that A−

lωln
=Aþ

lωln
¼ 0. In other words, the mode is purely

ingoing at the future horizon, and purely outgoing at future
infinity.
The QNM spectrum may be calculated numerically by

finding the roots of a certain continued-fraction equation, as
detailed in Ref. [37]. The structure of the spectrum near
the real axis may be understood by application of the WKB
method [38,39]. Schutz and Will [38] showed that, at
lowest WKB order, the square of the QNM frequency is
approximately

ω2

ln ≈ Vlðr0Þ − iðnþ 1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2V 00
l
ðr0Þ

q

: ð3Þ

Here r0 is the radius of the peak of the effective potential
barrier, where V 0

l
ðr0Þ ¼ 0 and V 00

l
ðr0Þ < 0. In other words,

the low-n QNMs are approximately determined by the
height of the potential barrier and its second derivative
only; and so where V 00

l
→ 0 a quasiresonance [6,16,40] is

anticipated.
In the eikonal regime (lþ 1=2 ≫ 1), there is an asso-

ciation between the effective potential VlðrÞ for the scalar
field in Eq. (1), and the effective potential VðgÞðrÞ for a null
(μ ¼ 0) or timelike (μ > 0) geodesic, viz.

_r2 ¼ E2 − VðgÞðrÞ; VðgÞ ¼ f

�

μ2 þ L2

r2

�

; ð4Þ

where E ¼ −ut, L ¼ uϕ and uα ¼ dxα=dλ is the geodesic
tangent vector such that gαβuαuβ ¼ −μ2. With the associ-
ations E ↔ ω and L ↔ lþ 1=2, the potentials VlðrÞ and
VðgÞðrÞmatch, up to terms involving neither μ nor lþ 1=2.

1The modes labeled “quasinormal” in Ref. [25] are the
quasibound states in our nomenclature; see Sec. II.
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[Alternatively, setting β ¼ 0 and making the usual Langer
replacement lðlþ 1Þ → ðlþ 1=2Þ2.]
The maximum (minimum) of the geodesic potential is

associated with an unstable (stable) circular geodesic orbit.
In turn, the unstable (stable) circular orbit is associated with
the low overtones of the quasinormal mode (quasibound
state) spectrum, via the correspondence above and the
WKB formula (3). We shall now distinguish between
propagative modes with Reðω2Þ − μ2 > 0 and evanescent

modes with Reðω2Þ − μ2 < 0. In the geodesic picture, if the
peak of the potential VðgÞðr0Þ exceeds μ2 the mode is
propagative; otherwise it is evanescent.
Figure 1 shows the geodesic potential VðgÞðrÞ for four

values of L=ðMμÞ. In the massless case [see Fig. 1(a)],
the maximum of VðgÞ is at the photon orbit at r0 ¼ 3M.
There is no quasibound spectrum in this case, due to
the absence of a potential minimum. For a “small” mass
[Fig. 1(b)], there is a spectrum of propagative QNMs
associated with the maximum (unstable circular orbits) and
quasibound states associated with the minimum (stable
circular orbits). Figure 1(c) shows the marginal case in
which VðgÞðr0Þ ¼ μ2 that separates propagative and evan-
escent QNMs. The associated geodesic is the marginally

bound zoom-whirl orbit. Figure 1(d) shows the case in
which the stationary points come together to form an
inflexion. At lowest WKB order the QNM frequency is
real [as V 00ðr0Þ ¼ 0], corresponding to a quasiresonance.
This QNM is evanescent, and the associated geodesic is the
innermost stable circular orbit (ISCO).
Figure 2 shows numerically determined fundamental

(n ¼ 0) QNM frequencies for the massive scalar field on
Schwarzschild. As the mass μ is increased, the modes
increase in frequency and move towards the real axis. The
transition from propagative to evanescent is indicated by a
change of symbol. At a critical value of Mμ, close to that
associated with the ISCO, the branch of QNMs disappears.
The lowest-order WKB approximation does well in

describing the migration of the fundamental frequencies
in the complex-ω plane for l≳ 2. The WKB frequencies
are shown in Fig. 2 by a dashed line [N.B. here we have
used the geodesic potential VðgÞðrÞ in place of the scalar
field potential VlðrÞ in Eq. (3).] A higher-order approxi-
mation, obtained in Ref. [17] and based on the method of
Ref. [19], is shown as a solid line.
The response of a black hole to a wave packet of a

massive scalar field was investigated in Refs. [41,42]. In the
low-mass regime (Mμ ≪ l), QNM ringing can be clearly
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FIG. 1. The geodesic potential for several values of L ¼ ðlþ 1=2Þ=Mμ, showing the unstable and stable circular orbits (red and blue
points) associated with quasinormal modes and quasibound states, respectively.
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identified, as in the massless case. However, outside this
regime the quasibound states and an oscillatory power-law
tail also play a role, and an unambiguous identification of
the different contributions in the response is not straight-
forward. Although Ref. [41] identified “giant ringings” for
certain QNMs, in Ref. [42] it was established that giant
ringings are not significant in practice, as they arise in
evanescent modes at late times, and cannot be easily
separated from the other contributions.

B. Scalar QNMs on Kerr

The QNM frequencies of the massive scalar field on
Kerr were calculated approximately via a WKB expansion
in Ref. [12], and more precisely via a three-term recur-
rence relation in Ref. [15]; and later also in Ref. [37].

The geometrical interpretation of the massless spectrum in
the eikonal limit was explored in [43–46].
Figure 3 shows the spectrum of the modes l ¼ m ¼ 1.

The rotation of the black hole a splits the degeneracy onm,
the azimuthal number. As in the a ¼ 0 case, the field mass
μ typically leads to an increase in oscillation frequency and
a decrease in damping, although the a ¼ 0.99, m ¼ 1 case
shows a slight increase in damping for small Mμ (see also
Fig. 1 in Ref. [37]).

III. PROCA QNMs ON KERR SPACETIME

A. Kerr spacetime and the principal tensor

The Kerr spacetime in the Boyer-Lindquist coordinate
system ft; r; θ;ϕg is described by the line element

FIG. 2. Fundamental (n ¼ 0) quasinormal mode frequencies of the massive scalar field (s ¼ 0) on Schwarzschild spacetime. Circles
(squares) indicate propagative (evanescent) modes calculated with the continued-fraction method [37], for massesMμ ¼ 0.02k (k ∈ N).
The last mode shown is at Mμ ¼ 0.36, 0.52, 0.8 and 1.1, for multipoles l ¼ 0, 1, 2 and 3 respectively. The solid line shows the
approximation of Eq. (29) in Ref. [17]; the dashed line the leading-order WKB approximation of Eq. (3) using the geodesic potential (4).

FIG. 3. Fundamental (n ¼ 0) quasinormal mode frequencies of the massive scalar field (s ¼ 0) on Kerr spacetime for l ¼ m ¼ 1 and
spin parameters a=M ∈ f−0.99;−0.9;−0.5; 0; 0.5; 0.9; 0.99g. The dashed line shows the massless spectrum. The points are for masses
Mμ ¼ 0.02k (k ∈ N) up to f0.40; 0.42; 0.46; 0.52; 0.52; 0.52; 0.64g reading left to right.
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ds2 ¼ −

�

1 −
2Mr

Σ

�

dt2 −
4aMrsin2θ

Σ
dtdϕþ Σ

Δ
dr2

þ Σdθ2 þ
�

ðr2 þ a2Þ þ 2Mr

Σ
a2sin2θ

�

sin2θdϕ2 ð5Þ

where

Δ≡ r2 − 2Mrþ a2 ¼ ðr − rþÞðr − r−Þ;
Σ≡ r2 þ a2cos2θ;

and r� ≡M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2
p

. The Kerr spacetime is stationary
and axisymmetric; these explicit symmetries are repre-
sented by Killing vectors ∂t and ∂ϕ. It also has hidden

symmetries [47]. In particular the Kerr spacetime belongs
to the family of Kerr-NUT-(A)dS spacetimes and thus it
admits a nondegenerate, closed, conformal, Killing-Yano
2-form hab known as the principal tensor [47], which is
the Hodge dual of the Killing-Yano tensor fab. For Kerr
spacetime,

gab ¼ Δ

Σ
l
ða
þ l

bÞ
− þ 1

Σ
m

ða
þm

bÞ
− ; ð6aÞ

fab ¼ a cos θ
Δ

Σ
l
½a
þl

b�
− þ ir

1

Σ
m

½a
þm

b�
− ; ð6bÞ

hab ¼ −r
Δ

Σ
l
½a
þl

b�
− þ ia cos θ

1

Σ
m

½a
þm

b�
− ; ð6cÞ

where

la� ≡ ½�ðr2 þ a2Þ=Δ; 1; 0;�a=Δ�;
ma

� ≡ ½�ia sin θ; 0; 1;�i csc θ�: ð7Þ

Here, round (rectangular) parentheses denote the sym-
metrized (antisymmetrized) tensors. The principal tensor
is used in the construction of the separable ansatz of the
Proca equation in this spacetime.

B. Proca field: Separation of variables

The Proca equation for a massive vector field AaðxÞ is

∇bF
ab þ μ2Aa ¼ 0; ð8Þ

where Fab is the Faraday tensor defined by Fab ¼ ∇aAb−

∇bAa. A non-zero mass μ removes any ambiguity in the
choice of gauge, as ∇aA

a ¼ 0 (the Lorenz gauge condi-
tion) is implied by taking the divergence of the field
equations (8).
The Lunin-Frolov-Krtouš-Kubizňák ansatz [25,26] used

to separate the field equation in the Kerr spacetime is

Aa ¼ Bab∇bZ; ð9Þ

where Z is a scalar field, and Bab is the polarization tensor
defined by

Babðgbc þ iνhbcÞ ¼ δac : ð10Þ

Here ν is a separation constant, henceforth referred to as the
angular eigenvalue. By solving Eq. (10), one obtains an
explicit expression for the tensor Bab in Eq. (9) given by
[27,48]

Bab ¼ Δr

2Σ

�

laþl
b
−

1 − iνr
þ la−l

b
þ

1þ iνr

�

þ 1

2Σ

�

ma
þm

b
−

1 − νa cos θ
þ ma

−m
b
þ

1þ νa cos θ

�

: ð11Þ

Frolov et al. [25] showed that the field equation
admits separable solutions of the form Z ¼ RðrÞSðθÞ×
expð−iωtþ imϕÞ, leading to second-order ordinary differ-
ential equations for the radial and angular functions,

qr

d

dr

�

Δ

qr

dR

dr

�

þ
�

K2
r

Δ
þ 2 − qr

qr

σ

ν
−
qrμ

2

ν2

�

RðrÞ ¼ 0; ð12aÞ

qθ

sin θ
d

dθ

�

sin θ
qθ

dS

dθ

�

−

�

K2

θ

sin2θ
þ 2 − qθ

qθ

σ

ν
−
qθμ

2

ν2

�

SðθÞ ¼ 0;

ð12bÞ

where

Kr ¼ ða2 þ r2Þω − am; qr ¼ 1þ ν2r2;

Kθ ¼ m − aωsin2θ; qθ ¼ 1 − ν2a2cos2θ; σ ¼ ωþ aν2ðm − aωÞ: ð13Þ

In Ref. [29] the radial equation was cast into a form that highlights the existence of five singular points in the complex
plane, viz.,

d2R

dr2
þ
�

1

r − rþ
þ 1

r − r−
−

1

r − i=ν
−

1

rþ i=ν

�

dR

dr
þ
�

−
Λ

Δ
− q2 þ ρ2þ

ðr − rþÞ2
þ ρ2−

ðr − r−Þ2
−

Aþ
ðrþ − r−Þðr − rþÞ

þ A−

ðrþ − r−Þðr − r−Þ
−
σ

ν

r

Δðr − i=νÞ −
σ

ν

r

Δðrþ i=νÞ

�

R ¼ 0; ð14Þ
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where

Λ ¼ μ2

ν2
−
σ

ν
þ 2aωm − a2ω2; ð15Þ

A� ¼ ρ2þ þ ρ2− þ 1

4
ðrþ − r−Þ2ðμ2 − ω2Þ þ ½M2ðμ2 − 7ω2Þ �Mðrþ − r−Þðμ2 − 2ω2Þ� ð16Þ

ρ� ¼ 2Mr�ω − am

rþ − r−
: ð17Þ

Regular singular points are located on the real axis at rþ; r− and in the complex plane at r ¼ �i=ν. There is a confluent
singular point at r ¼ ∞.
In Ref. [27], the angular equation was rewritten in the form

ð1 − a2ν2cos2θÞ
�

d2

dθ2
þ cot θ

d

dθ
−

m2

sin2θ
þ Λ

�

Sþ
�

q2a4ν2cos4θ − ðq2 þ 2σνÞa2cos2θ − 2a2ν2 sin θ cos θ
d

dθ

�

S ¼ 0

ð18Þ

where q2 ≡ μ2 − ω2.

C. Five-term recurrence relation

In this section we show that the problem of finding
QNMs and bound states of the Proca field is equivalent to
that of finding convergent solutions of five-term recurrence
relations,

αnanþ2 þ βnanþ1 þ γnan þ δnan−1 þ ϵnan−2 ¼ 0; n ≥ 2;

ð19Þ

where an are series coefficients in the solution, and
coefficients αn;…; ϵn depend implicitly on the parameters
including ω and ν.
First we specify an ansatz for the radial function RðrÞ

that respects the physical boundary conditions as r → rþ
and r → ∞. This is of the form

RðrÞ ¼
�

r − rþ
r − r−

�

−iρ

ðr − r−Þχeqr
X

∞

k¼0

ak

�

r − rþ
r − r−

�

k

; ð20Þ

where

q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 − ω2

q

; χ ¼ Mð2ω2 − μ2Þ
q

: ð21Þ

The parameter q in the exponential depends on the
boundary condition imposed far away from the black hole,
with the choice ReðqÞ > 0 for QNMs and ReðqÞ < 0 for
quasibound states.
The parameter ρþ is determined by substituting the

ansatz into the radial equation (14) and expanding around
r ¼ rþ. The requirement that the leading term in the radial
equation vanishes yields ρ ¼ �ρþ, where ρþ is defined
in Eq. (17). We demand that the field is regular on the
future horizon in a coordinate system that is horizon
regular, such as ingoing-Kerr coordinates; this necessitates
the choice ρ ¼ ρþ.
The recurrence relation (19) for the coefficients ak is

found by expanding the equation in powers of x ¼ r−rþ
r−r−

and

solving it term by term. These manipulations were per-
formed with the help of the symbolic algebra package

Mathematica. For brevity we have defined b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2
p

,
u� ¼ 1þ ν2r2�, t� ¼ 1� ν2rþr− and c� ¼ 1þMr�ν

2.
The coefficients in the five-term relation, Eq. (19), are

αn ¼ −16b2ðnþ 2Þq2uþðnþ 2 − 2iρþÞ ð22aÞ
βn ¼ 4bqf16bðnþ 1Þ2qcþ þ ðA− − AþÞuþð1 − 2iρþÞ þ 4bqAþuþ

− 2ðnþ 1Þ½uþðAþ − A−Þ þ 8bqðbðqþ rþðqrþ − 1Þν2Þ þ 2icþρþÞ�
− 4bq½−Λþ 2bquþð1 − 2iρþÞ − 2ir−rþν

2ρþ þ 2ρ2þ þ r2þνð−Λνþ 2νρþðiþ ρþÞ − 2σÞ�g ð22bÞ

γn ¼ −fuþðA− − AþÞ2 þ 8A−bqð1þ nð3þ rþð2M þ r−Þν2Þ − 3iρþ þ rþν
2ðrþ − ið2M þ r−ÞρþÞÞ

þ 8Aþbqð−1þ 4bqtþ þ nð−3 − rþð2M þ r−Þν2Þ þ 3iρþ þ irþν
2ð2r−ρþ þ rþðiþ ρþÞÞÞ

− 16b2q2½−2tþΛþ n2ð−6 − ð4M2 þ 2rþr−Þν2Þ þ 8bnð−Mν2 þ qtþÞ − uþρ
2
−

þ 2inð6þ ð4M2 þ 2rþr−Þν2Þρþ þ ρþð8ibMν2 − 8ibqtþ þ 5ρþ þ rþð2M þ 3r−Þν2ρþÞ − 4r−rþνσ�g ð22cÞ
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δn ¼ 2ftþðA− − AþÞ2 þ 32b2ðn − 1Þ2q2c− − 2A−bqð−1þ 6iρþ þ r−ν
2ð−2b − rþ þ 2ið2M þ rþÞρþÞÞ

þ 2Aþbqð−1þ 4bqu− þ 6iρþ þ r−ν
2ð−2b − rþ þ 2ið2M þ rþÞρþÞÞ

− 4bðn − 1Þq½A−ð−3 − r−ð2M þ rþÞν2Þ þ Aþð3þ r−ð2M þ rþÞν2Þ þ 8bqðbðqþ r−ðqr− − 1Þν2Þ þ 2ic−ρþÞ�
− 8b2q2½−Λ − 2ρ2− − 2bqu−ð1þ 2iρþÞ þ 4ρ2þ þ 2r−rþν

2ð−ρ2− þ ρþðiþ ρþÞÞ − r2−νðΛν − 2νρþðρþ − iÞ þ 2σÞ�g
ð22dÞ

ϵn ¼ −u−ðA− − Aþ þ 4bqðn − 2þ iρ− − iρþÞÞðA− − Aþ þ 4bqðn − ið−2iþ ρ− þ ρþÞÞÞ: ð22eÞ

In Ref. [49], Leaver conjectured that the smallest number
of terms in a recurrence relation is related to the number of
singular points in the differential equation. A five-term
relation (22) from a differential equation with 1 confluent
and 4 regular singular points (14) is consistent with the
conjecture.

D. Polarization states and the angular

eigenvalue spectrum

The Proca field has three distinct polarizations, in
contrast to the two polarizations of the electromagnetic
field. For given angular momentum numbers l, m and
overtone number n, there is one odd-parity mode and two
even-parity modes (see Ref. [22] for the Schwarzschild
case). The odd-parity mode and one of the even-parity
modes are of “vector” type, and the remaining even-
parity mode is of “scalar” type [22]. In the massless limit
(μ → 0), the vector-type even-parity and odd-parity QNMs
are degenerate (isospectral), matching with the ðl; m; nÞ
QNM frequency of the electromagnetic field [22]. In the
same limit, the scalar-type even-parity frequency matches
with the corresponding ðl; m; nÞ QNM frequency of a
massless scalar field (s ¼ 0).
The three polarizations correspond to three distinct

values of the angular eigenvalue ν, for each ðl; m; nÞ.
Below we make a closer inspection of the angular eigen-
value spectrum.

1. The massless limit (μ → 0)

The scalar-type mode is a pure-gauge mode in the
massless limit, that is, Aa ¼ ∇aZ for some scalar function
Z. Consequently, Fab ¼ 0 and the Lorenz-gauge condition
∇aA

a ¼ 0 implies that Z satisfies the Klein-Gordon equa-
tion (∇a∇

aZ ¼ 0). By comparing Aa ¼ ∇aZ with ansatz
(9), we conclude that Bab ¼ gab in this case, and hence it
follows from Eq. (10) that ν → 0 for all scalar-type modes
in the massless limit.
The angular eigenvalue ν for the vector modes can be

found in the massless limit by appeal to the Teukolsky
formalism [50]. In Refs. [27,51] it was established that λ,
the separation constant in the s ¼ −1 Teukolsky equations,
is related to ν by the following:

ν ¼ −2ω

λ ∓ B
¼ λ� B

2aðm − aωÞ ;

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ 4amω − 4a2ω2

p

; ð23Þ

where B is the Teukolsky-Starobinski constant. As can be
seen above, a single value of λ generates two values of ν.
The lower (upper) sign gives the angular eigenvalue for the
even-parity (odd-parity) vector mode. In the static limit
(a → 0), ν diverges for the odd-parity mode, and ν ¼ −ω

lðlþ1Þ
for the even-parity mode.

2. The Schwarzschild limit (a = 0)

In the static limit (a → 0), the second term in Eq. (18)
vanishes when ν is regular, and thus Eq. (18) reduces to the
general Legendre equation. For angular functions that are
regular at the poles, it follows that Λ ¼ lðlþ 1Þ, with l ∈

N and Λ is defined in terms of ν in Eq. (16). Rearranging
this yields two values of ν, viz.,

ν ¼ −ω

lðlþ 1Þ
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4lðlþ 1Þμ2=ω2
p

2
: ð24Þ

The lower (upper) sign gives the angular eigenvalue for
the even-parity scalar (even-parity vector) mode. In the
massless limit, these reduce to ν ¼ 0 and ν ¼ −ω

lðlþ1Þ,

respectively.
The eigenvalue of the odd-parity mode diverges in the

static limit. In the massless case, Eq. (23) implies that in the
static limit (a → 0) the quantities aν, σ

ν
, and Λ are all finite,

with aν ¼ lðlþ 1Þ=m and Λ ¼ σ
ν
¼ lðlþ 1Þ. Inserting

these expressions into the radial equation, Eq. (12), and
multiplying by f=r2, where f ¼ 1 − 2M=r, leads to the
s ¼ 1 Regge-Wheeler equation,

f
d

dr

�

f
dR

dr

�

þ
�

ω2 − f
lðlþ 1Þ

r2

�

R ¼ 0: ð25Þ

This is corroborating evidence that the odd-parity mode is
indeed of vector type.
The Schwarzschild limit is examined more closely in

Appendix B.
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3. Spectral decomposition method

With the massless and static limits established, we move
on to a method for computing the angular eigenvalue ν for
general a and μ. Following Ref. [27], the angular function
SðθÞ is decomposed in spherical harmonics Ym

l
0ðθÞ as

SðθÞ ¼
X

∞

l
0¼0

bl0Y
m
l
0ðθÞ; l

0 ¼ jmj þ 2k0 þ η: ð26Þ

The angular equation does not couple harmonics of
opposite parity, and so an eigensolution takes a definite
parity, and thus is expanded in only either odd or even
l-modes. Here

η ¼ 1

2
ð1 − ð−1ÞlþmþPÞ ð27Þ

where P ¼ 0 for even-parity modes and P ¼ 1 for odd-
parity modes. In other words, η takes the value 0 or 1, with
η ¼ 0 (η ¼ 1) if lþm is even (odd) for even parity, and
η ¼ 1 (η ¼ 0) for odd parity.
This ansatz is substituted into Eq. (18). The orthogon-

ality of the spherical harmonics is exploited to obtain a
matrix equation for the coefficients bk0 , namely,

X

∞

k0¼0

Mkk0bk0 ¼ 0; ð28Þ

where

Mkk0 ¼ ½Λ − l
0ðl0 þ 1Þ�δll0

þ a2½ν2l0ðl0 þ 1Þ − ν2Λ − 2σν − q2�cð2Þ
ll

0

− 2a2ν2d
ð2Þ
ll

0 þ q2ν2a4c
ð4Þ
ll

0 ; ð29Þ

l ¼ jmj þ 2kþ η and l
0 ¼ jmj þ 2k0 þ η. Here c

ð2Þ
ll

0 and

d
ð2Þ
ll0 are coupling constants that vanish when jk − k0j > 1

and c
ð4Þ
ll0 is a coupling constant that vanishes when

jk − k0j > 2. All three constants are defined in Eq. (32)
of Ref. [27]. In general, the matrixMkk0 is pentadiagonal. It
becomes tridiagonal in the marginally bound limit ω2 ¼ μ2

and diagonal in the static limit.
The angular eigenvalue ν is found by seeking the roots of

the (truncated) determinant of this matrix using the known
massless eigenvalue as the initial guess.
For the scalar-type polarization, ν vanishes in the

massless limit, for all l and m, and all five terms in the
recurrence relation vanish. As ν → 0 regardless of l, this
leads to a “pileup” of eigenvalues in the small μ regime.
To handle this issue, we made a change of variables,
defining τ via

ν ¼ μ2

ω
ð1þ τμ2Þ: ð30Þ

This is informed by the requirement that, for the scalar-type
mode, the angular differential equation (12b) should reduce
to the s ¼ 0 spheroidal harmonic equation in the massless
limit, which in turn implies that τ ¼ −

λ0
ω2 in this limit, where

λ0 is the Teukolsky s ¼ 0 eigenvalue. We can then repeat
the same procedure used to calculate ν in the vector
polarizations to calculate τ, with −

λ0
ω2 as an initial guess.

E. Numerical method

1. Calculating QNM frequencies

Naively, the series coefficients ak in Eq. (9) can be found
by solving the recurrence relations in Eq. (22) iteratively,
starting with α−1a1 þ β−1a0 ¼ 0 and a0 ¼ 1 at the first
step. However, for generalω, the series

P

∞
k ak is divergent,

and the outgoing boundary condition is not satisfied. For a
QNM frequency ωðQÞ, the series is convergent in principle,
but divergent in practice under forward recursion due to the
accumulation of numerical error.
A robust procedure for calculating QNM frequencies

from n-term recurrence relations was presented by Leaver
[3,49]. The first step is to apply Gaussian elimination [49]
to the n-term relation to reduce it to a 3-term relation of the
form

α̃0a1 þ β̃0a0 ¼ 0;

α̃nanþ1 þ β̃nan þ γ̃nan−1 ¼ 0: ð31Þ

This step is described in more detail in Appendix A. The
second step is to seek a solution sequence to the three-term
recurrence relation that is minimal as n → ∞. This is
equivalent [3] to seeking solutions of the continued-fraction
equation

0 ¼ β̃0 −
α0γ1

β̃1−

α̃1γ̃2

β̃2−

α̃2γ̃3

β̃3−
… ð32Þ

or one of its inversions [3]. Typically, the nth quasinormal
mode is the most numerically stable root of the nth
inversion [3]. The continued fraction is evaluated to the
desired precision using the modified Lentz algorithm [52].
Numerical solutions for ω such that (32) is satisfied may be
found with standard root-finding algorithms. As an initial
value for the algorithm we typically used the s ¼ 1 (vector)
and s ¼ 0 (scalar) massless QNM frequencies [53].
As a consistency check, we also evaluated the series

coefficients an by applying forward recurrence directly to
the 5-term relation (22). At a QNM frequency, the series
coefficients an typically decrease (janþ1j < janj) up to
some large value of n; but beyond this point accumulated
numerical error leads to renewed growth in the series
coefficients. We confirmed that the QNM frequencies
found via the continued-fraction method are close to the
minima in a merit function log janj for sufficiently large n.
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2. Validation

We made two consistency checks on the integrity of
our numerical code and recurrence relation. First, we
computed the spectrum of the even-parity QNMs in the
Schwarzschild case (a ¼ 0), and compared with the data-
sets in Ref. [22], finding agreement to 9 significant figures
(a direct comparison of the odd-parity QNMs was not
possible, due to the divergence of ν in the static limit).
Second, we computed quasibound state frequencies of the
Proca field on the Kerr spacetime, using the method above
with the opposite sign choice for q in Eq. (21). We found

agreement with the results of Ref. [27] to at minimum 6
significant figures.

IV. RESULTS

Here we present a selection of numerical results for the
QNM spectrum of the Proca field on Kerr spacetime.
Figure 4 shows the fundamental l ¼ m ¼ 1 QNM

frequencies of the Proca field in all three polarizations,
for a range of black hole spin parameters a. In the mass-
less limit, the QNM frequencies of the two vector-type

Vector Modes
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a=0.9

a=0.99

Scalar Modes
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a=0.99

0.25 0.30 0.35 0.40 0.45 0.50 0.55
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)

FIG. 4. Fundamental QNMs of massless and massive vector fields in the complex plane, l ¼ m ¼ 1; n ¼ 0. The blue curves show the
QNMs of the massless vector (electromagnetic) and scalar fields for varying a. On the upper curve, the black points show the odd-parity
Proca QNMs, and the red points show the even-parity Proca QNMs of vector type. On the lower curve, the purple points show QNMs of
even-parity scalar type. The mass spacing between large (small) points is Mμ ¼ 0.1 (0.01).
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FIG. 5. As for Fig. 4 but for the first overtone n ¼ 1. The thin blue lines are the massless QNMs of the fundamental mode shown in
Fig. 4.
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polarizations coincide with the QNM frequency of the
electromagnetic field (upper blue curve in Fig. 4) and the
QNM frequency of the scalar-type polarization coincides
with the frequency of the massless scalar field (lower blue
curve in Fig. 4). The general trend for the odd-parity and
scalar-type modes is for the oscillation frequency ReðωÞ to
increase, and for the damping rate −ImðωÞ to decrease,
with increasing field mass μ and with increasing black hole
spin a. This is broadly the same trend as seen for the
massive scalar field in Fig. 3, and may be understood with
reference to Eq. (3) and Fig. 1. Bucking this trend, the even-
parity vector mode decreases in frequency and increases in
damping rate for small μ. It is also notable that, at high spin

(e.g., a ¼ 0.99M), the damping rate of the even-parity
scalar mode increases with μ for small μ.
As the field mass increases, the QNMs become evan-

escent (see also Figs. 1 and 2). The QNM frequencies move
towards the real axis, and thus towards quasiresonance.
However, as noted in Ref. [42], evanescent modes will play
an insignificant role in the response of the black hole to an
initial perturbation, in comparison to the low-lying bound
states and the propagative QNMs in higher multipoles.
Figure 5 shows QNM frequencies for the first over-

tone (n ¼ 1) of the l ¼ m ¼ 1 mode on Kerr. As for
the fundamental mode, the introduction of a field mass
leads to a migration towards higher frequencies and lower
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FIG. 6. Vector-type QNM frequencies form ¼ −1 (left, orange),m ¼ 0 (center, green) andm ¼ 1 (right, blue) dipole (l ¼ 1) modes,
with a mass spacing ΔðMμÞ ¼ 0.01. The plot shows the detail of the m ¼ −1 and m ¼ 0 cases; the m ¼ 1 cases for higher a are shown
in Fig. 4.
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FIG. 7. The scalar-type Proca QNMs for them ¼ −1,m ¼ 0 andm ¼ 1 branches of the l ¼ 1, n ¼ 0 spectrum. As in Fig. 4, the mass
spacing between large (small) points is Mμ ¼ 0.1 (0.01).
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dampings for the odd-parity and scalar-type modes, with
the opposite trend in evidence for the even-parity vector
mode.
Figures 6 and 7 show the fundamental dipole frequencies

for m ¼ 1, m ¼ 0 and m ¼ −1, for the vector-type and
scalar-type QNMs, respectively. The m ¼ −1 modes
exhibit lower oscillation frequencies than the m ¼ 1

modes, as also seen in the scalar-field case in Fig. 3. In
the semiclassical picture, m < 0 modes are associated with
geodesic orbits that pass around the black hole in the
opposite sense to its rotation and such orbits have lower
orbital frequencies than their corotating counterparts.
Figure 8 shows a comparison between the spectrum of

the scalar-type polarization of the Proca field and the
spectrum of a massive scalar field. We observe that, for

small masses, the trajectories of the QNMs in the complex
plane are closely aligned. At higher masses, the branches
diverge from one another and the Proca modes typically
show lower oscillation frequencies and faster damping rates
than the scalar-field modes.
Figure 9 shows some examples of the fundamental

(n ¼ 0) QNM frequencies of higher multipoles (l ¼ 1;
2;…). For small masses Mμ, the even-parity vector mode
actually increases in damping rate and decreases in fre-
quency. However, for larger masses the damping rate
decreases, and each branch migrates towards the real axis;
similar behavior is shown in Fig. 2 for the scalar-field
Schwarzschild case.
Table I contains some sample QNM frequencies and

their respective angular eigenvalues.
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FIG. 8. Comparing the QNM spectrum of the scalar-type polarization of the Proca field (black) with the QNM spectrum of the massive
scalar field (red).
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FIG. 9. The higher multipoles of the even-parity vector QNMs for a ¼ 0.5M and m ¼ 1.
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V. DISCUSSION AND CONCLUSIONS

In the preceding sections we have computed the low-
lying QNM frequencies of the (neutral) Proca field on the
Kerr spacetime, for the first time. We find that the
degeneracy of the two vector modes of the electromagnetic
QNM spectrum is split by the introduction of a field mass,
and a third scalar (longitudinal) polarization state arises.
We have shown how the QNM frequencies migrate in the
complex plane as the field mass is increased, in a somewhat
similar manner to the modes of the massive scalar field, but
with subtleties associated with spin and polarization. As in
the scalar-field case, there is a transition from propagative
to evanescent behavior as the mass increases.
The achievements herein are primarily technical, extend-

ing the calculation of QNMs to a new domain that com-
bines field mass, spin and the frame dragging of spacetime.
The calculation was made possible by the complete
separation of variables achieved by Frolov, Krtouš and
Kubizňák for the Proca field on Kerr spacetime [25,54].
This reduced the problem to that of imposing boundary
conditions on a pair of second-order ordinary differential
equations. We have shown here that, with a suitable ansatz,
the problem of finding QNMs reduces to the problem of
finding convergent solutions to a five-term recurrence
relation (22); and this can be handled with the standard
methods of Gaussian elimination and the evaluation of a
continued fraction via the modified Lentz algorithm. The
numerical results appear robust and accurate.
The five-term recurrence relation (22) also yields the

quasi-bound state spectrum recently studied in Refs. [25,
27–36]. One may employ the numerical method exactly as
presented here, but with the opposite choice of sign in
Eq. (21). Our method is more accurate and robust
than the direct integration method used in Ref. [27],
and is complementary to the spectral method employed
in Ref. [29].
The prospect of observing the Proca QNM spectra in

nature seems remote, not least because of the apparent
absence of spin-one fields with sufficiently small mass. For
an astrophysical black hole, Mμ is exceedingly large for
vector bosons in the Standard Model, and exceedingly
small or zero for the photon, as can be seen by reinstating
dimensionful constants:

Mμ ¼ Mμ

m2
P

≈ 7.52 · 109 ×

�

M

M⊙

��

μc2

eV

�

: ð33Þ

For a black hole of mass 10 M⊙ and a W-boson, one has
Mμ ≈ 6 × 1021, conversely, for a BH of same mass and a
massive photon, one has Mμ≲ 2 × 10−16 (assuming a
photon mass ≲3 × 10−27 eV=c2). In the former case, all
modes with lþ 1=2≲OðMμÞ will be evanescent. In the
latter case, the QNM spectrum will in effect be identical to
the spectrum of the electromagnetic field, but with one key
difference: an additional longitudinal polarization with the
QNM spectrum of a scalar field, if μ > 0.
There are a variety of mechanisms by which a field can

acquire an effective mass. For example, in the presence of a
strong magnetic field [55], in Horndeski gravity and other
extensions of general relativity [17], and in string theory
compactifications and theories with “large” extra dimen-
sions. Ultralight fields with masses μ ≪ eV=c2 are often
considered as plausible dark-matter candidates [56]. A
well-known example is the (hypothetical) axion, a pseu-
doscalar introduced to solve the strong CP problem of
QCD. Axionlike particles with masses that are not linked
to the axion decay constant emerge from string-theory-
inspired theories, with compactification mechanisms that
generate a landscape of ultralight axions, known as the
“string axiverse” [57], on mass scales possibly down to
the present Hubble scale. Massive hidden Uð1Þ vector
fields are also a generic feature of BSM scenarios, again
particularly from string theory compactifications. For
stellar-size black holes (M ¼ 5–20 M⊙) and ultralight
boson(s) in the range μ ¼ 10−9–10−13 eV=c2, the funda-
mental propagative QNMs would be significantly altered
by the field mass. However, the existence of a boson in this
mass range would also lead to the inflation of “boson
clouds,” triggered by the exponential growth of quasibound
states in the superradiant regime [31,32]. The latter is the
dominant phenomenon, and the priority for those seeking
experimental signatures of ultralight bosons.
Finally, two extensions of this work suggest themselves.

First, an exploration of the QNM spectrum of the Proca
field on a charged, rotating black hole spacetime, i.e., the
Kerr-Newman solution. In that case, a slightly more general
five-term relation emerges, and there is a larger parameter

TABLE I. Sample quasinormal mode frequencies and angular eigenvalues for the parameters a ¼ 0.5, μ ¼ 0.1,
l ¼ 1, m ¼ 1.

Polarization l n ℜðMωÞ ℑðMωÞ ℜðMνÞ ℑðMνÞ
Even, vector 1 0 0.290441 −0.0890795 −0.201844 0.0587629
Even, vector 1 1 0.271840 −0.275480 −0.148270 0.174811
Odd, vector 1 0 0.298286 −0.0853954 3.85422 0.0407235
Odd, vector 1 1 0.273674 −0.269075 3.86338 0.128896
Scalar 1 0 0.354243 −0.0902282 0.0243336 0.00493117
Scalar 1 1 0.327587 −0.283202 0.0185236 0.0133421
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space to explore. Again, the method could also be used
to compute the quasibound states, complementing the
method of Ref. [58]. Second, an investigation of the
Proca spectrum in the approach to extremality (a → M),
where branching of QNMs has been found in the electro-
magnetic case [45,46].
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APPENDIX A: GAUSSIAN ELIMINATION

OF THE 5-TERM RECURRENCE RELATION

The recurrence relation can be written in matrix form,
Ma ¼ 0, as follows:

0

B

B

B

B

B

B

B

B

@

β−1 α−1 · · · · …

γ0 β0 α0 · · · …

δ1 γ1 β1 α1 · · …

ϵ2 δ2 γ2 β2 α2 · …

· ϵ3 δ3 γ3 β3 α3 …

… … … … … … …

1

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

@

a0

a1

a2

a3

a4

…

1

C

C

C

C

C

C

C

C

A

¼

0

B

B

B

B

B

B

B

B

@

0

0

0

0

0

…

1

C

C

C

C

C

C

C

C

A

:

ðA1Þ

A quasinormal mode corresponds to a frequency such that
detM ¼ 0. We now perform row operations on this system
of equations. The first step is to eliminate ϵn, using

ϵ0k ¼ 0; δ0k ¼ δk −
ϵkγ

0
k−1

δ0k−1
; γ0k ¼ γk −

ϵkβ
0
k−1

δ0k−1
;

β0k ¼ βk −
ϵkα

0
k−1

δ0k−1
; α0k ¼ αk; ðA2Þ

for k ≥ 2 (and δ0k ¼ δk, etc., for k < 2). The next step is to
eliminate δ0n using

ϵ00k ¼ δ00k ¼ 0; γ00k ¼ γ0k −
δ0kβ

00
k−1

γ00k−1
;

β00k ¼ β0k −
δ0kα

00
k−1

γ00k−1
; α00k ¼ α0k; ðA3Þ

for k ≥ 1 (and γ0k ¼ γk, etc., for k < 1). This leaves the
determinant of the matrix M in the form

	

	

	

	

	

	

	

	

	

	

	

	

	

	

β−1 α−1 · · · · …

γ0 β0 α0 · · · …

· γ00
1

β00
1

α1 · · …

· · γ00
2

β00
2

α2 · …

· · · γ00
3

β00
3

α3 …

… … … … … … …

	

	

	

	

	

	

	

	

	

	

	

	

	

	

ðA4Þ

using here that α00k ¼ αk. As this matrix is now tridiagonal,
the system of equations represents a three-term relation and
the continued-fraction method can be applied. The coef-
ficients in Eq. (31) are given by α̃k ¼ α00k−1, and likewise for
β and γ.

APPENDIX B: THE SCHWARZSCHILD LIMIT

In this section we link the separation ansatz (9) in the
Schwarzschild limit (a → 0) to the earlier approach of Rosa
and Dolan. In Ref. [22], a separation of variables for the
Schwarzschild case was performed using the vector spheri-
cal harmonics

Z
ð1Þlm
μ ¼ ½1; 0; 0; 0�Y ðB1Þ

Z
ð2Þlm
μ ¼ ½0; f−1; 0; 0��Y ðB2Þ

Z
ð3Þlm
μ ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þ
p ½0; 0; ∂θ; ∂ϕ�Y ðB3Þ

Z
ð4Þlm
μ ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þ
p

�

0; 0;
1

sin θ
∂ϕ;− sin θ∂θ

�

Y; ðB4Þ

where Y ≡ Ylmðθ;ϕÞ are scalar spherical harmonics.
Decomposing the vector potential in this basis,

Aμðt; r; θ;ϕÞ ¼
1

r

X

4

i¼1

X

lm

ciu
lm
ðiÞ ðt; rÞZ

ðiÞlm
μ ðθ;ϕÞ; ðB5Þ

where c1 ¼ c2 ¼ 1, c3 ¼ c4 ¼ ½lðlþ 1Þ�−1=2 leads to a set
of four second-order partial differential equations,

D̂2uð1Þ þ
�

2M

r2
ð _uð2Þ − u0ð1ÞÞ

�

¼ 0; ðB6aÞ

D̂2uð2Þ þ
2

r2
½ðM _uð1Þ − u0ð2ÞÞ − f2ðuð2Þ − uð3ÞÞ� ¼ 0;

ðB6bÞ

D̂2uð3Þ þ
�

2flðlþ 1Þ
r2

uð2Þ

�

¼ 0; ðB6cÞ

D̂2uð4Þ ¼ 0; ðB6dÞ

along with the first-order Lorenz condition,
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− _uð1Þ þ u0ð2Þ þ
f

r
ðuð2Þ − uð3ÞÞ ¼ 0; ðB7Þ

where f ¼ 1 − 2M=r and

D̂2 ≡ −
∂2

∂t2
þ ∂2

∂r2�
− f

�

lðlþ 1Þ
r2

þ μ2
�

; ðB8Þ

and _u≡ ∂u
∂t
¼ −iωu, u0 ≡ ∂u

∂r�
and the tortoise coordinate r�

is defined via dr� ¼ f−1dr.

1. Even parity

A straightforward comparison of Eqs. (9)–(11) and
Eq. (B5) shows that

u1ðrÞ ¼ −
ifrðνr∂r þ ω=fÞR

qr

; ðB9aÞ

u2ðrÞ ¼
frð∂r − ωνr=fÞR

qr

; ðB9bÞ

u3ðrÞ ¼ ΛR; ðB9cÞ

u4ðrÞ ¼ 0; ðB9dÞ

and SðθÞ ¼ Ylm, Λ≡ μ2=ν2 − ω=ν ¼ lðlþ 1Þ and ν is
given in Eq. (24). Consistency was checked by substituting
(B9) into (B6)–(B7) and employing (12a).

2. Odd parity

Additional care is required for the odd-parity sector
since, as noted in Sec. III D, the angular eigenvalue ν

diverges as a → 0, butmaν approaches a constant. A direct
comparison of Eq. (9)–(11) and Eq. (B5) yields u1 ¼
u2 ¼ u3 ¼ 0, u4ðrÞ ¼ RðrÞ and two equations for the
angular function,

ðsin θ∂θ þmaν cos θÞS ¼ imqθ

lðlþ 1ÞYlm; ðB10Þ

ðmþ aν sin θ cos θ∂θÞS ¼ i sin θqθ
lðlþ 1Þ ∂θYlm: ðB11Þ

These are consistent with Eq. (12b) in the a → 0 limit if and
only if aν ¼ lðlþ 1Þ=m. A consistent solution is

SðθÞ ¼ i

lðlþ 1Þm ðsin θ∂θ − lðlþ 1Þ cos θÞYlm: ðB12Þ

Employing the properties of associated Legendre polyno-
mials, we establish that

SðθÞ ∝ l
2ðlþ 1 −mÞPm

lþ1
ðcos θÞ

þ ðlþ 1Þ2ðlþmÞPm
l−1ðcos θÞ; ðB13Þ

which makes it clear that SðθÞ is odd parity.
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[41] Y. Décanini, A. Folacci, and M. Ould El Hadj, Phys. Rev. D

89, 084066 (2014).

[42] Y. Décanini, A. Folacci, and M. Ould El Hadj, Phys. Rev. D
93, 124027 (2016).

[43] S. R. Dolan, Phys. Rev. D 82, 104003 (2010).
[44] H. Yang, D. A. Nichols, F. Zhang, A. Zimmerman, Z.

Zhang, and Y. Chen, Phys. Rev. D 86, 104006 (2012).
[45] H. Yang, F. Zhang, A. Zimmerman, D. A. Nichols, E. Berti,

and Y. Chen, Phys. Rev. D 87, 041502 (2013).
[46] H. Yang, A. Zimmerman, A. Zenginoğlu, F. Zhang, E. Berti,

and Y. Chen, Phys. Rev. D 88, 044047 (2013).
[47] V. Frolov, P. Krtous, and D. Kubiznak, Living Rev.

Relativity 20, 6 (2017).
[48] V. P. Frolov, P. Krtouš, and D. Kubizňák, Phys. Rev. D 97,

101701 (2018).
[49] E.W. Leaver, Phys. Rev. D 41, 2986 (1990).
[50] S. A. Teukolsky, Astrophys. J. 185, 635 (1973).
[51] S. R. Dolan, Phys. Rev. D 100, 044044 (2019).
[52] W. H. Press and S. A. Teukolsky, Comput. Phys. 2, 88

(1988).
[53] E. Berti, Ringdown, https://pages.jh.edu/ eberti2/ringdown/.
[54] V. P. Frolov and P. Krtouš, Phys. Rev. D 99, 044044

(2019).
[55] R. Konoplya and R. Fontana, Phys. Lett. B 659, 375 (2008).
[56] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Phys. Rev.

D 95, 043541 (2017).
[57] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,

and J. March-Russell, Phys. Rev. D 81, 123530 (2010).
[58] R. Cayuso, O. J. Dias, F. Gray, D. Kubizňák, A. Margalit,

J. E. Santos, R. Gomes Souza, and L. Thiele, J. High Energy
Phys. 04 (2020) 159.

QUASINORMAL MODES OF MASSIVE VECTOR FIELDS ON THE … PHYS. REV. D 102, 104055 (2020)

104055-15


