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Abstract

This paper explores homogeneity of coefficient functions in nonlinear models with functional

coefficients and identifies the underlying semiparametric modelling structure. With initial

kernel estimates, we combine the classic hierarchical clustering method with a generalised

version of the information criterion to estimate the number of clusters, each of which has a

common functional coefficient, and determine the membership of each cluster. To identify

a possible semi-varying coefficient modelling framework, we further introduce a penalised

local least squares method to determine zero coefficients, non-zero constant coefficients and

functional coefficients which vary with an index variable. Through the nonparametric kernel-

based cluster analysis and the penalised approach, we can substantially reduce the number

of unknown parametric and nonparametric components in the models, thereby achieving the

aim of dimension reduction. Under some regularity conditions, we establish the asymptotic

properties for the proposed methods including the consistency of the homogeneity pursuit.

Numerical studies, including Monte-Carlo experiments and two empirical applications, are

given to demonstrate the finite-sample performance of our methods.

Keywords: Functional-coefficient models, Hierarchical clustering, Homogeneity, Information

criterion, Nonparametric estimation, Penalised method.
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1 Introduction

We consider the functional-coefficient model defined by

Yt = X
⊺

tβ0(Ut) + εt, t = 1, · · · ,n, (1.1)

where Yt is a response variable, Xt = (Xt1, · · · ,Xtp)
⊺

is a p-dimensional vector of random covariates,

β0(·) =
[
β0

1(·), · · · ,β0
p(·)

]⊺
is a p-dimensional vector of functional coefficients, Ut is a univariate

index variable, and εt is an independent and identically distributed (i.i.d.) error term. The

functional-coefficient model is a natural extension of the classic linear regression model by allowing

the regression coefficients to vary with certain index variable, and thus captures flexible dynamic

relationship between the response and covariates. In recent years, there have been extensive

studies on estimation and model selection for model (1.1) and its various generalised versions, see,

for example, Fan and Zhang (1999, 2008), Cai, Fan and Yao (2000), Xia, Zhang and Tong (2004),

Wang and Xia (2009), Kai, Li and Zou (2011), Park et al (2015) and the references therein.

However, when the number of functional coefficients is large or moderately large, it is well-

known that a direct nonparametric estimation of the potentially p different coefficient functions in

model (1.1) would be unstable. To address this issue, there have been some extensive studies in the

literature on selecting significant variables in functional-coefficient models (Fan, Ma and Dai, 2014;

Liu, Li and Wu, 2014) or exploring certain rank-reduced structure in functional coefficients (Jiang et

al, 2013; Chen, Li and Xia, 2019), both of which aim to reduce the dimension of unknown functional

coefficients and improve estimation efficiency. In this paper we consider a different approach,

i.e., we assume that there is a homogeneity structure on model (1.1) so that individual functional

coefficients can be grouped into a number of clusters and coefficients within each cluster have the

same functional pattern. Throughout the paper, we assume that the dimension p may depend on

the sample size n and can be divergent with n, but the number of unknown clusters is fixed and

much smaller than p. It is easy to see that the dimension reduction through homogeneity pursuit

is more general than the commonly-used sparsity assumption in high-dimensional functional-

coefficient models (c.f., Fan, Ma and Dai, 2014; Liu, Li and Wu, 2014; Li, Ke and Zhang, 2015; Lee

and Mammen, 2016) as the latter can be seen as a special case of the former with a very large group

of zero coefficients. Specifically, we assume the following homogeneity structure on model (1.1):

there exists a partition of {1, 2, · · · ,p} denoted by C0 =
{
C0

1, · · · ,C0
K0

}
such that

β0
j(·) = α0

k(·) for j ∈ C0
k and C0

k1
∩ C0

k2
= ∅ for 1 6 k1 6= k2 6 K0, (1.2)

where the Lebesgue measure of
{
u ∈ U : α0

k1
(u) − α0

k2
(u) 6= 0

}
is positive and bounded away from

zero for any 1 6 k1 6= k2 6 K0, and U is a compact support of the index variable Ut. Furthermore,
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some of the functional coefficients α0
k(·) are allowed to have constant values, in which case model

(1.1) is semiparametric with a combination of constant and functional coefficients. Our aim is to

(i) explore the homogeneity structure (1.2) by estimating the unknown number of clusters K0 and

identifying members of the clusters C0
1, · · · ,C0

K0
; and (ii) identify the clusters of constant coefficients

and those of coefficients varying with Ut and estimate their unknown values.

The topic investigated in our paper has two close relatives in existing literature. On one hand,

the functional-coefficient regression with the homogeneity structure is a natural extension of

linear regression with homogeneity structure, which has received increasing attention in recent

years. For example, Tibshirani et al (2005) introduce the so-called fused LASSO method to study

slope homogeneity; Bondell and Reich (2008) propose the OSCAR penalised method for grouping

pursuit; Shen and Huang (2010) use a truncated L1 penalised method to extract the latent grouping

structure; and Ke, Fan and Wu (2015) propose the CARDS method to identify the homogeneity

structure and estimate the parameters simultaneously. On the other hand, this paper is also

relevant to some recent literature on longitudinal/panel data model classification. For example,

Ke, Li and Zhang (2016) and Su, Shi and Phillips (2016) consider identifying the latent group

structure for linear longitudinal data models by using the binary segmentation and shrinkage

method, respectively; Vogt and Linton (2017) introduce a kernel-based classification of univariate

nonparametric regression functions in longitudinal data; and Su, Wang and Jin (2019) propose a

penalised sieve estimation method to identify latent grouping structure for time-varying coefficient

longitudinal data models. The methodology of nonparametric homogeneity pursuit developed in

this paper will be substantially different from those in the aforementioned literature.

In this paper, we first estimate each functional coefficient in model (1.1) by using the kernel

smoothing method and ignoring the homogeneity structure (1.2), and calculate the L1-distance

between the estimated functional coefficients. Then, we combine the classic hierarchical clustering

method and a generalised version of the information criterion to explore the homogeneity structure

(1.2), i.e., estimate K0 and the members of C0
k, k = 1, · · · ,K0. Under some mild conditions, we show

that the developed estimators for the number K0 and the index sets C0
k, k = 1, · · · ,K0, are consistent.

After estimating the structure (1.2), we further estimate a semi-varying coefficient modelling

framework by determining the zero coefficients, non-zero constant coefficients and functional

coefficients varying with the index variable. This is done by using a penalised local least squares

method, where the penalty function is the weighted LASSO with the weights defined as derivatives

of the well-known SCAD penalty introduced by Fan and Li (2001). With the nonparametric cluster

analysis and the penalised approach, we can reduce the number of unknown components in model

(1.1) from p to K0 − 1 (if the zero constant coefficients exist in the model). Furthermore, the choice

of the tuning parameters in the proposed estimation approach and the computational algorithm is

also discussed. The simulation studies show that the proposed methods have reliable finite-sample
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numerical performance. We finally apply the model and methodology to analyse the Boston

house price data and the plasma beta-carotene level data, and find that the original nonparametric

functional-coefficient models can be simplified and the number of unknown components involved

can be reduced. In particular, the out-of-sample mean absolute prediction errors of our approach

are usually much smaller than those using the naive kernel method which ignores the latent

homogeneity structure.

The rest of the paper is organised as follows. Section 2 introduces the clustering method,

information criterion and penalised method to determine the unknown clusters and estimate the

unknown components. Section 3 establishes the asymptotic theory for the proposed clustering and

estimation methods. Section 4 discusses the choice of the tuning parameters and introduces an

algorithm for computing the penalised estimates. Section 5 reports Monte-Carlo simulation studies.

Section 6 gives the empirical applications to the Boston house price data and the plasma beta-

carotene level data. Section 7 concludes the paper. The proofs of the main asymptotic theorems are

given in a supplemental document.

2 Methodology

In this section, we first introduce a clustering method for kernel estimated functional coefficients in

Section 2.1, followed by a generalised information criterion for determining the number of clusters

in Section 2.2, and finally propose a penalised local linear estimation approach to identify the

semi-varying coefficient modelling structure in Section 2.3.

2.1 Kernel-based clustering method

Assuming that the coefficient functions have continuous second-order derivatives, we can use the

kernel smoothing method (c.f., Wand and Jones, 1995) to obtain preliminary estimates of β0
j(·),

j = 1, · · · ,p, which are denoted by β̃j(·), j = 1, · · · ,p. Let Yn = (Y1, · · · , Yn)
⊺

, Xn = (X1, · · · , Xn)
⊺

and Wn(u) = diag {Kh(U1,u), · · · ,Kh(Un,u)} with Kh(Ut,u) = K ((Ut − u)/h), where K(·) is a

kernel function and h is a bandwidth which tends to zero as the sample size n diverges to infinity.

Then the kernel estimation β̃(u0) can be expressed as follows

β̃(u0) =
[
β̃1(u0), · · · , β̃p(u0)

]⊺

=

[
n∑

t=1

XtX
⊺

tKh(Ut,u0)

]−1 [ n∑

t=1

XtYtKh(Ut,u0)

]

=
[
X

⊺

nWn(u0)Xn

]−1 [
X

⊺

nWn(u0)Yn

]
, (2.1)
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where u0 is on the support of the index variable. Note that other commonly-used nonparametric

estimation methods such as the local polynomial method (Fan and Gijbels, 1996) and B-spline

method (Green and Silverman, 1994) are also applicable to obtain the preliminary estimates.

Without loss of generality, we let U = [0, 1] be the compact support of the index variable Ut.

Define

∆̃ij =
1

n

n∑

t=1

∣∣β̃i(Ut) − β̃j(Ut)
∣∣ I(Ut ∈ Uh), (2.2)

where β̃i(·) is defined in (2.1), I(·) is the indicator function and Uh = [h, 1 − h]. The aim of

truncating the observations outside Uh is to overcome the so-called boundary effect in the kernel

estimation. Noting that h → 0, the set Uh can be sufficiently close to U, and thus the information

loss is negligible. In fact, ∆̃ij can be viewed as a natural estimate of

∆0
ij =

∫

Uh

∣∣β0
i(u) − β0

j(u)
∣∣ fU(u)du, (2.3)

where fU(·) is the density function of Ut. Under some smoothness conditions on β0
i(·) and fU(·),

we may show that

∆0
ij →

∫

U

∣∣β0
i(u) − β0

j(u)
∣∣ fU(u)du, n → ∞.

From (1.2) and (2.3), we have ∆0
ij = 0 for i, j ∈ C0

k, and ∆0
ij 6= 0 for i ∈ C0

k1
and j ∈ C0

k2
with

k1 6= k2. Then we define a distance matrix among the functional coefficients, denoted by ∆0, whose

(i, j)-entry is ∆0
ij. The corresponding estimated distance matrix, denoted by ∆̃n, has entries ∆̃ij

defined in (2.2). It is obvious that both ∆0 and ∆̃n are p × p symmetric matrices with the main

diagonal elements being zeros.

We next use the well-known agglomerative hierarchical clustering method to explore the

homogeneity among the functional coefficients. This clustering method starts with p singleton

clusters, corresponding to the p functional coefficients. In each stage, the two clusters with the

smallest distance are merged into a new cluster. This continues until we end with only one full

cluster. Such a clustering approach has been widely studied in the literature of cluster analysis

(c.f., Everitt et al, 2011; Rencher and Christensen, 2012). However, to the best of our knowledge,

there is virtually no work combining the agglomerative hierarchical clustering method with the

kernel smoothing of functional coefficients in nonparametric homogeneity pursuit. This paper fills

in this gap. Specifically, the algorithm is described as follows, where the number of clusters K0 is

assumed to be known. Section 2.2 below will introduce an information criterion to determine the

number K0.

1. Start with p clusters each of which contains one functional coefficient and search for the smallest
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distance among the off-diagonal elements of ∆̃n.

2. Merge the two clusters with the smallest distance, and then re-calculate the distance between clusters

and update the distance matrix. Here the distance between two clusters A and B is defined as the

farthest distance between a point in A and a point in B, which is called the complete linkage.

3. Repeat steps 1 and 2 until the number of clusters reaches K0.

Let C̃1, · · · , C̃K0
be the estimated clusters obtained via the above algorithm when the true

number of clusters is known a priori. More generally, if the number of clusters is assumed to be

K with 1 6 K 6 p, we stop the above algorithm when the number of clusters reaches K, and let

C̃1|K, · · · , C̃K|K be the estimated clusters.

2.2 Estimation of the cluster number

In practice, the true number of clusters is usually unknown and needs to be estimated. When the

number of clusters is assumed to be K, we define the post-clustering kernel estimation for the

functional coefficients:

α̃K(u0) =
[
α̃1|K(u0), · · · , α̃K|K(u0)

]⊺

=

[
n∑

t=1

X̃t,KX̃
⊺

t,KKh(Ut,u0)

]−1 [ n∑

t=1

X̃t,KYtKh(Ut,u0)

]
, (2.4)

where

X̃t,K =
(
X̃t,1|K, · · · , X̃t,K|K

)⊺
with X̃t,k|K =

∑

j∈C̃k|K

Xtj,

C̃k|K is defined as in Section 2.1. When the number K is larger than K0, α̃K(·) is still a uniformly con-

sistent kernel estimate of the functional coefficients (c.f., the proof of Theorem 2 in the Appendix);

but when K is smaller than K0, the clustering approach in Section 2.1 results in a misspecified

functional-coefficient model and α̃K(·) constructed in (2.4) can be viewed as the kernel estimate of

the “quasi” functional coefficients which will be defined in (3.3) below.

We define the following objective function:

IC(K) = log
[
σ̃2
n(K)

]
+ K ·

[
log(nh)

nh

]ρ
(2.5)
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with 0 < ρ < 1,

σ̃2
n(K) =

1

nh

n∑

t=1

[
Yt − X̃

⊺

t,Kα̃K(Ut)
]2

I(Ut ∈ Uh) and nh =

n∑

t=1

I(Ut ∈ Uh),

and determine the number of clusters through

K̃ = arg min
16K6K̄

IC(K), (2.6)

where K̄ is a pre-specified finite positive integer which is larger than K0. In practical application, K̄

can be chosen the same as the dimension of covariates p if the latter is either fixed or moderately

large. If we choose ρ close to 1 and treat nh as the “effective” sample size, the above criterion

would be similar to the classic Bayesian information criterion introduced by Schwarz (1978). Su,

Shi and Phillips (2016) use a similar information criterion to determine the group number in

linear longitudinal data models. The Bayesian information criterion has been extended to the

nonparametric framework in recent years (c.f., Wang and Xia, 2009).

2.3 Penalised local linear estimation

We next introduce a penalised approach to further identify the clusters with non-zero constant

coefficients and the cluster with zero coefficient. For notational simplicity, we let X̃t = X̃t,K̃ and

α̃(u0) = [α̃1(u0), · · · , α̃K̃(u0)]
⊺

be defined similarly to α̃K(u0) in (2.4) with K = K̃. Throughout the

paper, we call α̃(·) the post-clustering kernel estimator. It is obvious that identifying the constant

coefficients is equivalent to identifying the functional coefficients such that either their derivatives

are zero or the deviation of the functional coefficients, D0
k, is zero (c.f., Li, Ke and Zhang, 2015),

where

D0
k =

{
n∑

t=1

[
α0
k(Ut) − ᾱk

]2

}1/2

, ᾱk =
1

n

n∑

s=1

α0
k(Us).

In practice, we may estimate the deviation of the functional coefficients by

D̃k =






n∑

t=1

[
α̃k(Ut) −

1

n

n∑

s=1

α̃k(Us)

]2





1/2

,

for k = 1, · · · , K̃. Let

A =
(
a

⊺

1, · · · , a
⊺

n

)⊺
, at = (at1, · · · ,atK̃)

⊺

;

B =
(
b

⊺

1, · · · , b
⊺

n

)⊺
, bt = (bt1, · · · ,btK̃)

⊺

;
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Ak = (a1k, · · · ,ank)
⊺

, Bk = (b1k, · · · ,bnk)
⊺

.

As in Li, Ke and Zhang (2015), we define the penalised objective function as follows:

Qn(A,B) = Ln(A,B) + Pn1(A) + Pn2(B), (2.7)

where

Ln(A,B) =
n∑

s=1

Ln(as,bs) =
1

n

n∑

s=1

n∑

t=1

[
Yt − X̃

⊺

tas − X̃
⊺

tbs(Ut −Us)
]2

Kh(Ut,Us),

Pn1(A) =

K̃∑

k=1

p′
λ1

(
‖Ãk‖

)
‖Ak‖, Pn2(B) =

K̃∑

k=1

p′
λ2

(
D̃k

)
‖hBk‖,

in which Ãk = [α̃k(U1), · · · , α̃k(Un)]
⊺

, ‖ · ‖ denotes the Euclidean norm, λ1 and λ2 are two tuning

parameters, p′
λ(·) is the derivative of the SCAD penalty function (Fan and Li, 2001):

p′
λ(z) = λ

[
I(z 6 λ) +

(a∗λ− z)+

(a∗ − 1)λ
I(z > λ)

]
.

Following Fan and Li (2001)’s recommendation, we choose a∗ = 3.7 in this paper. Let

Âk = [α̂k(U1), · · · , α̂k(Un)]
⊺

and B̂k = [α̂′
k(U1), · · · , α̂′

k(Un)]
⊺

, k = 1, · · · , K̃, (2.8)

be the minimiser of the objective function Qn(A,B) defined in (2.7). Through the penalisation, we

would expect ‖Âk‖ = 0 when C̃k|K̃ is the estimated cluster with zero coefficient, and ‖B̂k‖ = 0

when C̃k|K̃ is the estimated cluster with a non-zero constant coefficient, see (3.9) in Theorem 3.

Hence, if ‖Âk‖ = 0, the corresponding covariates are not significant and should be removed from

the functional-coefficient model (1.1); and if ‖B̂k‖ = 0, the functional coefficient has a constant

value and can be consistently estimated by

α̂k =
1

n

n∑

t=1

α̂k(Ut). (2.9)

Implementation of the proposed methods in Sections 2.1–2.3 is summarised in the following

flowchart.

8



Obtain initial pre-clustering kernel estimates

β̃(·) of the functional coefficients via (2.1).

For each K with 1 6 K 6 K, use the ag-

glomerative hierarchical clustering method

in Section 2.1 to estimate the K clusters.

Obtain the estimate K̃ for the number of clusters

via the generalised information criterion (2.6).

Obtain the post-clustering kernel es-

timates α̃(·) of the functional coeffi-

cients after identifying the clusters.

Apply the penalised local linear estimation.

If ‖B̂k‖ = 0, the functional

coefficient has the constant value

which is estimated via (2.9).

If ‖Âk‖ = 0, the functional coeffi-

cient is zero and the correspond-

ing covariates are not significant.

Flowchart for implementing the methods proposed in Sections 2.1–2.3.

3 Asymptotic theorems

In this section, we give the asymptotic theorems for the proposed clustering and semiparametric

penalised methods. We start with some regularity conditions, some of which might be weakened

at the expense of more lengthy proofs.
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Assumption 1. The kernel function K(·) is a Lipschitz continuous and symmetric probability density

function with a compact support [−1, 1].

Assumption 2(i). The density function of the index variable Ut, fU(·), has continuous second-order

derivative and is bounded away from zero and infinity on the support.

(ii). The functional coefficients β0(·) and α0(·) =
[
α0

1(·), · · · ,α0
K0
(·)
]⊺

have continuous second-order

derivatives.

Assumption 3(i). The p× p matrix Σ(u) := E
(
XtX

⊺

t|Ut = u
)

is twice continuously differentiable and

positive definite for any u ∈ [0, 1]. Furthermore,

0 < inf
u∈[0,1]

λmin(Σ(u)) 6 sup
u∈[0,1]

λmax(Σ(u)) < ∞,

where λmin(·) and λmax(·) denote the smallest and largest eigenvalues, respectively.

(ii). Let (Ut,Xt, εt), t = 1, · · · ,n, be i.i.d. Furthermore, the error εt is independent of (Ut,Xt),

E[εt] = 0 and 0 < σ2 = E[ε2
t] < ∞, and there exists 0 < ι1 < ∞ such that E

(
|εt|

2+ι1
)
+

max16i6p E
(
|Xti|

2(2+ι1)
)
< ∞.

Assumption 4(i). Let the bandwidth h and the dimension p satisfy

p(ǫn + h2) = o(1), n2ι2−1h → ∞,

where ǫn =
√

logh−1/(nh) and ι2 < 1 − 1/(2 + ι1).

(ii). Let

p1/2
(
ǫn + h2

)
= o(δn), n1/2δn/(logn)1/2 → ∞,

where

δn = min
16k1 6=k26K0

δk1k2
, δk1k2

=

∫

Uh

∣∣α0
k1
(u) − α0

k2
(u)
∣∣ fU(u)du.

Remark 1. Assumptions 1–3 are some commonly-used conditions on the kernel estimation of

the functional-coefficient models. The strong moment condition on εt and Xt in Assumption

3(ii) is required when applying the uniform asymptotics of some kernel-based quantities. The

independence condition between εt and (Ut,Xt) seems restrictive, but may be replaced by the

following heteroscedastic error structure: εt = σ(Ut,Xt)ηt, where ηt is independent of (Ut,Xt)

and σ2(·, ·) is a conditional volatility function. By slightly modifying our proofs, the asymptotic

properties continue to hold under this relaxed error condition. Assumption 4(i) restricts the

divergence rate of the regressor dimension and the convergence rate of the bandwidth. In particular,

if ι1 is sufficiently large (i.e., the moment conditions in Assumption 3(ii) becomes stronger), the
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condition n2ι2−1h → ∞ could be close to the conventional condition nh → ∞. Assumption

4(ii) indicates that the difference between two functional coefficients (in different clusters) can be

convergent to zero with certain polynomial rate. In particular, when p is fixed, h = chn
−1/5 with

0 < ch < ∞, and δn = n−δ0 with 0 6 δ0 < 2/5, Assumption 4(ii) would be automatically satisfied.

On the other hand, letting h = chn
−1/5 and δn = n−1/5(logn)1/4, it follows from Assumptions

4(i)(ii) that

p = o
(
min

{
n2/5(logn)−1/2,n4/5δ2

n(logn)−1
})

= o
(
n2/5(logn)−1/2

)
,

indicating that the dimension p may be divergent to infinity at a polynomial rate of n.

Theorem 1. Suppose that Assumptions 1–4 are satisfied and K0 is known a priori. Then we have

P
({

C̃k, k = 1, · · · ,K0

}
6=

{
C0
k, k = 1, · · · ,K0

})
= o(1) (3.1)

when the sample size n is sufficiently large, where C̃k is defined in Section 2.1 and C0
k is defined in (1.2).

Remark 2. The above theorem shows the consistency of the agglomerative hierarchical clustering

method proposed in Section 2.1 when the number of clusters is known a priori, i.e., with probability

approaching one, the K0 clusters can be correctly specified. It is similar to Theorem 3.1 in Vogt and

Linton (2017) which gives the consistency of classification of nonparametric univariate functions

in the longitudinal data setting by using the nonparametric segmentation method.

We next derive the consistency for the information criterion on estimating the number of

clusters which is usually unknown in practice. Some further notation and assumptions are needed.

Define

Xt,K0
=
(
Xt,1|K0

, · · · ,Xt,K0|K0

)⊺
with Xt,k|K0

=
∑

j∈C0
k

Xtj,

and

ΣX|K0
(u) = E

[
Xt,K0

X
⊺

t,K0
|Ut = u

]
, u ∈ [0, 1].

Similarly, we can define ΣX|K(u) when K > K0 and there are further splits on at least one of C0
k,

k = 1, · · · ,K0. Define the event:

Cn(K0) =
{[
C̃k, k = 1, · · · ,K0

]
=
[
C0
k, k = 1, · · · ,K0

]}
. (3.2)

From (3.1) in Theorem 1, we have P (Cn(K0)) → 1 as n → ∞. Conditional on the event Cn(K0),

when the number of clusters K is smaller than K0, two or more clusters of C0
k, k = 1, · · · ,K0, are

falsely merged, which results in K clusters denoted by C1|K, · · · ,CK|K, respectively, 1 6 K 6 K0 − 1.

With such a clustering result, the group-specific functional coefficients cannot be consistently
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estimated by the kernel smoothing method, as the model is misspecified. However, we may define

the “quasi” functional coefficients by

αK(u) =
[
α1|K(u), · · · ,αK|K(u)

]⊺
=
[
ΣX|K(u)

]−1
ΣXY|K(u), (3.3)

where 1 6 K 6 K0 − 1,

ΣX|K(u) = E
[
Xt,KX

⊺

t,K|Ut = u
]

, ΣXY|K(u) = E [Xt,KYt|Ut = u] , (3.4)

and

Xt,K =
(
Xt,1|K, · · · ,Xt,K|K

)⊺
with Xt,k|K =

∑

j∈Ck|K

Xtj,

given C1|K, · · · ,CK|K. When K = K0, it is easy to find that the quasi functional coefficients become

the “genuine” functional coefficients conditional on the event Cn(K0). Define εt,K = Yt−X
⊺

t,KαK(Ut)

and εt1,K = Xt,Kεt,K. By (3.3), it is easy to show that

E [εt1,K|Ut] = 0 a.s., (3.5)

where 0 is a null vector whose dimension might change from line to line. A natural nonparametric

estimate of αK(·) would be α̃K(·) defined in (2.4) of Section 2.2, where the order of elements may

have to be re-arranged if necessary. Result (3.5) and some smoothness condition on αK(·) would

ensure the uniform consistency of the quasi kernel estimation (see the proof of Theorem 2 in the

supplemental document).

Let A(K0) be the set of K0-dimensional twice continuously differentiable functions α(u) =

[α1(u), · · · ,αK0
(u)]

⊺

such that at least two elements of α(u) are identical functions over u ∈ [0, 1].

The following additional assumptions are needed for proving the consistency of the information

criterion proposed in Section 2.2.

Assumption 5. There exists a positive constant cα such that

inf
α(·)∈A(K0)

∫ 1

0

[α0(u) − α(u)]
⊺

ΣX|K0
(u) [α0(u) − α(u)] fU(u)du > cα. (3.6)

Assumption 6 (i). For any 1 6 K 6 K̄ and given C1|K, · · · ,CK|K, the K× K matrix ΣX|K(u) defined in

(3.4) is positive definite for u ∈ [0, 1].

(ii). For any 1 6 K 6 K0 − 1 and given C1|K, · · · ,CK|K, the quasi functional coefficient αK(·) has

continuous second-order derivatives.
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Assumption 7. The bandwidth h and the dimension p satisfy ph2 = O(ǫn), nh
6 = o(1) and p =

o
(

min
{

ǫ
(ρ−1)/2
n , ǫ

−1/3
n

})
, where ρ is defined in (2.5).

Remark 3. Assumptions 5 and 6 are mainly used when deriving the asymptotic lower bound

of σ̃2
n(K) which is involved in the definition of IC(K) when K is smaller than K0. The restriction

(3.6) in Assumption 5 indicates that the K0 functional elements in α0(·) needs to be “sufficiently”

distinct. We may show that (3.6) is satisfied if inf16K6K0
infu∈[0,1] λmin

(
ΣX|K(u)

)
> c1 > 0 and the

Lebesgue measure of
{
u ∈ U : |α0

k1
(u) − α0

k2
(u)| > c2 > 0

}
is positive for any k1 6= k2. Assumption

6 is required to prove the uniform consistency of the kernel estimation for the quasi functional

coefficients. Assumption 7 gives some further restriction on h and p, and indicates that the

dimension of the covariates can diverge to infinity at a slow polynomial rate of the sample size

n. For example, letting h = n−1/4 (i.e., under-smoothing in the kernel estimation), ρ = 1/3 and

p = nδ1 with 0 6 δ1 < 1/8, we may verify the conditions in Assumption 7.

Theorem 2 below shows that the estimated number of clusters which minimises the IC objective

function defined in (2.5) is consistent.

Theorem 2. Suppose that Assumptions 1–7 are satisfied. Then, we have

P
(
K̃ = K0

)
→ 1, (3.7)

as n → ∞, where K̃ is defined in (2.6).

A combination of (3.1) and (3.7) shows that the latent homogeneity structure can be consistently

estimated. Define

A0
k =

[
α0
k(U1), · · · ,α0

k(Un)
]⊺

, B0
k =

[
α0′
k (U1), · · · ,α0′

k (Un)
]⊺

,

Âk = [α̂k(U1), · · · , α̂k(Un)]
⊺

, B̂k = [α̂′
k(U1), · · · , α̂′

k(Un)]
⊺

.

Without loss of generality, conditional on Cn(K0) and K̃ = K0, we assume that C̃1 = C0
1, · · · , C̃K0

=

C0
K0

, otherwise we only need to re-arrange the order of the elements in α0(·) =
[
α0

1(·), · · · ,α0
K0
(·)
]⊺

.

For notational simplicity, we also assume that α0
K0
(·) ≡ 0 and α0

k(·) ≡ α0
k for k = K∗, · · · ,K0 − 1

with 1 < K∗ < K0, where α0
k are non-zero constant coefficients (non-zero constant coefficients

do not exist when K∗ = K0 and all of the functional coefficients are constant when K∗ = 1). For

simplicity, we next assume that all the observations of the index variable, Ut, t = 1, · · · ,n, are

in the set Uh, to avoid the boundary effect of the kernel estimation, but this assumption can be

removed if an appropriate truncation technique, such as those discussed in Sections 2.1 and 2.2,

is applied to the penalised local linear estimation. Some additional conditions are needed for

deriving the sparsity property for the penalised estimation proposed in Section 2.3.

13



Assumption 8. For any k = 1, · · · ,K0 − 1, there exists a positive constant cA such that ‖A0
k‖ > cA

√
n

with probability approaching one. When k = 1, · · · ,K∗ − 1 (with K∗ > 2), there exists a positive

constant cD such that D0
k > cD

√
n with probability approaching one.

Assumption 9. Let p2nh5 = O(1), and the tuning parameter λ1 satisfy

λ1 = o(n1/2), n1/2p2h2 + n1/2pǫn + p4h−1/2 = o(λ1). (3.8)

The condition (3.8) is also satisfied when λ1 is replaced by λ2.

Remark 4. Assumption 8 is a key condition to prove that ‖Ãk‖/
√
n and D̃k/

√
n are bounded away

from zero with probability approaching one, which together with the definition of the SCAD

derivative and λ1 + λ2 = o(n1/2) in Assumption 9, indicates that when the functional coefficients

or their deviations are significant, the influence of the penalty term in (2.7) can be asymptotically

ignored. For the case when p is fixed and h = chn
−1/5 as discussed in Remark 1, if we choose

λ1 = λ2 = nδ∗ with 0.1 < δ∗ < 0.5, (3.8) in Assumption 9 would be satisfied. On the other hand, as

discussed in Remarks 1 and 3, the dimension p is allowed to be divergent to infinity.

Theorem 3. Suppose that Assumptions 1–9 are satisfied. Then, we have

P
(
‖ÂK0

‖ = 0, ‖B̂k‖ = 0,k = K∗, · · · ,K0

)
→ 1, (3.9)

as n → ∞, where Âk and B̂k are defined in (2.8).

The above sparsity result for the penalised local linear estimation shows that the zero coefficient

and non-zero constant coefficients in the model can be identified asymptotically.

4 Practical issues in the estimation procedure

In this section, we first discuss how to choose the bandwidth in the kernel estimation and the

tuning parameters in the penalised local least squares estimation; and then introduce an easy-to-

implement computational algorithm for the penalised approach in Section 2.3.

4.1 Choice of tuning parameters

The nonparametric kernel-based estimation may be sensitive to the value of bandwidth h. There-

fore, choosing an appropriate bandwidth is an important issue when applying our kernel-based

clustering and estimation methods. A commonly-used bandwidth selection method is the so-called
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cross-validation criterion. Specifically, for the preliminary (or pre-clustering) kernel estimation, the

objective function for the leave-one-out cross-validation is defined by

CV(h) =
1

n

n∑

t=1

[
Yt − X

⊺

tβ̃−t(Ut|h)
]2

,

where β̃−t(·|h) is the preliminary kernel estimator of β0(·) in model (1.1) using the bandwidth h

and all observations except the t-th observation. Then we determine the optimal bandwidth ĥopt

by minimising CV(h) with respect to h. The cross-validation criterion for bandwidth selection in

the post-clustering kernel estimation α̃(·) can be defined in exactly the same way.

For the choice of the tuning parameters λ1 and λ2 in the penalised local least squares method, we

use the generalised information criterion (GIC) proposed by Fan and Tang (2013), which is briefly

described as follows. Let λ = (λ1, λ2) and denote M1(λ) and M2(λ) the index sets of nonparametric

functional coefficients and non-zero constant coefficients, respectively (after implementing the

kernel-based clustering analysis and penalised estimation with the tuning parameter vector λ). As

Cheng, Zhang and Chen (2009) suggest that an unknown functional parameter (varying with the

index variable) would amount to m0h
−1 unknown constant parameters with m0 = 1.028571 when

the Epanechnikov kernel is used, we construct the following GIC objective function:

GIC(λ) =

n∑

t=1


Yt −

∑

k∈M1(λ)

X̃t,k|K̃α̂k,λ(Ut) −
∑

k∈M2(λ)

X̃t,k|K̃α̂k,λ




2

+2 log[log(n)] log(m0h
−1)(|M2(λ)|+ |M1(λ)|m0h

−1),

where α̂k,λ(·) and α̂k,λ are defined as the penalised estimation in Section 2.3 using the tuning

parameter vector λ, |M| denotes the cardinality of the set M, and the bandwidth h can be determined

by the leave-one-out cross-validation. The optimal value of λ can be found by minimising the

objective function GIC(λ) with respect to λ.

4.2 Computational algorithm for penalised estimation

Let X̃t = X̃t,K̃ =
(
X̃t,1|K̃, · · · , X̃t,K̃|K̃

)⊺
and define

Ω̃nk(j) = diag
{
Ω̃nk,1(j), · · · , Ω̃nk,n(j)

}

with Ω̃nk,s(j) = 2
nh

∑n
t=1 X̃t,k|K̃X̃t,k|K̃ [(Ut −Us)/h]

j
Kh(Ut,Us). We next introduce an iterative

procedure to compute the penalised local least squares estimates of the functional coefficients

proposed in Section 2.3 (c.f., Li, Ke and Zhang, 2015). It can be viewed as a nonparametric extension
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of the coordinate descent algorithm, which is a commonly-used optimisation algorithm that finds

the minimum of a function by successively minimising along the coordinate directions.

1. Find initial estimates of A0
k and B0

k, which are denoted by

Â
(0)
k =

[
α̂
(0)
k (U1), · · · , α̂

(0)
k (Un)

]⊺
and B̂

(0)
k =

[
α̂
′(0)
k (U1), · · · , α̂

′(0)
k (Un)

]⊺
,

respectively. These initial estimates can be obtained by using the conventional (non-penalised) local

linear estimation method.

2. Let Â
(j)
k and B̂

(j)
k be the estimates after the j-th iteration. We next update the l-th functional coefficient

starting from l = 1. Let

α̂
(j)
−l(Us) =

[
α̂
(j+1)
1 (Us), · · · , α̂

(j+1)
l−1 (Us), 0, α̂

(j)
l+1(Us), · · · , α̂

(j)

K̃
(Us)

]⊺
,

α̂′(j)(Us) =
[
α̂
′(j)
1 (Us), · · · , α̂

′(j)

K̃
(Us)

]⊺
,

Ŷ
(j)
t,−l = Yt − X̃tα̂

(j)
−l(Us) − X̃tα̂

′(j)(Us)(Ut −Us),

Ẽnl =
(
Ẽnl,1, · · · , Ẽnl,n

)⊺
, Ẽnl,s =

2

nh

n∑

t=1

X̃t,l|K̃Ŷ
(j)
t,−lKh(Ut,Us).

If ‖Ẽnl‖ < p′
λ1

(
‖Ãl‖

)
, we update Â

(j+1)
l = 0, otherwise,

Â
(j+1)
l =

[
Ω̃nl(0) + p′

λ1

(
‖Ãl‖

)
In/cl

]−1
Ẽnl,

where In is an n × n identity matrix, cl = ‖Â(j)
l ‖ if ‖Â(j)

l ‖ 6= 0, and cl = maxk 6=l ‖Â(j)
k ‖ if

‖Â(j)
l ‖ = 0.

3. Update the derivative of the l-th functional coefficient starting from l = 1. Let

α̂(j+1)(Us) =
[
α̂
(j+1)
1 (Us), · · · , α̂

(j+1)

K̃
(Us)

]⊺
,

α̂
′(j)
−l (Us) =

[
α̂
′(j+1)
1 (Us), · · · , α̂

′(j+1)
l−1 (Us), 0, α̂

′(j)
l+1(Us), · · · , α̂

′(j)

K̃
(Us)

]⊺
,

Y̌
(j)
t,−l = Yt − X̃tα̂

(j+1)(Us) − X̃tα̂
′(j)
−l (Us)(Ut −Us),

Ěnl =
(
Ěnl,1, · · · , Ěnl,n

)⊺
, Ěnl,s =

2

nh

n∑

t=1

X̃t,l|K̃Y̌
(j)
t,−l[(Ut −Us)/h]Kh(Ut,Us).

If ‖Ěnl‖ < p′
λ2

(
D̃l

)
, we update B̂

(j+1)
l = 0, otherwise,

hB̂
(j+1)
l =

[
Ω̃nl(2) + p′

λ2

(
D̃l

)
In/dl

]−1
Ěnl,
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where dl = ‖hB̂(j)
l ‖ if ‖B̂(j)

l ‖ 6= 0, and dl = maxk6=l ‖hB̂(j)
k ‖ if ‖B̂(j)

l ‖ = 0.

4. Repeat Steps 2 and 3 until convergence of the estimates is achieved.

Our numerical studies in Sections 5 and 6 below show that the above iterative procedure has

reasonably good finite-sample performance.

5 Monte-Carlo simulation

In this section, we conduct Monte-Carlo simulation studies to evaluate the finite-sample perfor-

mance of the proposed methods.

Example 5.1. Consider the following functional-coefficient model:

Yt =

p∑

j=1

β0
j(Ut)Xtj + σεt, t = 1, · · · ,n, (5.1)

where the random covariate vector, Xt = (Xt1, · · · ,Xtp)
⊺

with p = 20 or 60, is independently

generated from a multiple normal distribution with zero mean, unit variance and correlation

coefficient ρ being either 0 or 0.25, the univariate index variable Ut is independently generated

from a uniform distribution U[0, 1], the random error εt is independently generated from the

standard normal distribution and σ = 0.5. The homogeneity structure on model (5.1) is defined as

follows:

β0
ℓ(k−1)+j(·) = α0

k(·), for k = 1, 2, j = 1, . . . , ℓ, ℓ = p/5,

β0
ℓ(k−1)+j(·) = α0

k(·) ≡ α0
k, for k = 3, 4, 5, j = 1, . . . , ℓ, ℓ = p/5,

α0
1(u) = sin(2πu), α0

2(u) = (1 + δ) sin(2πu), α0
3 = 0.5, α0

4 = 0.5 + δ, α0
5 = 0,

where δ = 0.2, 0.4, 0.8. The above means that there are five clusters for the coefficients: some are

varying with Ut and others are constant. The size of each cluster in this example is the same (i.e.,

four). Figure 1 plots the five cluster-specific coefficient functions for each value of δ. The larger the

value of δ, the further the distance is between these functions, and hence, the easier it is to identify

the clusters.

The sample size n is set to be 200, 400 or 600, and the number of replications is N = 500. We first

use the kernel method to obtain preliminary nonparametric estimates of the functional coefficients

β0
j(·), j = 1, · · · , 20, with the Epanechnikov kernel K(z) = 3

4
(1 − z2)+ and the optimal bandwidth

selected from the cross-validation method in Section 4.1. The homogeneity and semi-varying
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Figure 1: Plots of the cluster-specific coefficient functions. Left panel: δ = 0.4; right panel: δ = 0.8.

coefficient structure in model (5.1) is ignored in this preliminary estimation. A combination of

the kernel-based clustering method in Section 2.1 and the generalised information criterion in

Section 2.2 is then used to estimate the homogeneity structure. In order to evaluate the clustering

performance, we consider two commonly-used measures: Normalised Mutual Information (NMI)

and Purity, both of which can be used to examine how close the estimated set of clusters is to

the true set of clusters. Letting C1 =
{
C1

1, · · · ,C1
K1

}
and C2 =

{
C2

1, · · · ,C2
K2

}
be two sets of disjoint

clusters of (1, 2, · · · ,p), the NMI between C1 and C2 is defined as

NMI(C1,C2) =
I(C1,C2)

[H(C1) +H(C2)] /2
,

where H(C1) and H(C2) are the entropies of C1 and C2, respectively, and I(C1,C2) is the mutual

information between C1 and C2 defined as:

I(C1,C2) =

K1∑

k=1

K2∑

j=1

(
|C1

k ∩ C2
j |

p

)
log2

(
p|C1

k ∩ C2
j |

|C1
k||C

2
j |

)
.

The NMI measure takes a value between 0 and 1 with a larger value indicating that the two sets of

clusters are closer. The Purity measure is defined by

Purity(C1,C2) =
1

p

K1∑

k=1

max
16j6K2

|C1
k ∩ C2

j |. (5.2)

It is easy to find that the Purity measure also takes values between 0 and 1, and if C1 and C2 are

equal, then Purity(C1,C2) = 1. However, the purity measure does not trade off the quality of

clustering against the number of clusters. For example, a purity value of 1 is achieved if one set

contains singleton clusters. The NMI, by contrast, allows for this tradeoff.
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We finally identify the clusters with zero coefficients and non-zero constant coefficients using

the penalised method introduced in Section 2.3. The tuning parameters in the penalty terms are

chosen by the GIC detailed in Section 4.1. In order to measure the accuracy of estimates of the

coefficients β0
j(·), 1 6 j 6 p, we compute the Mean Absolute Estimation Error (MAEE), which, for

the preliminary (pre-clustering) kernel estimates, β̃j(·), 1 6 j 6 p, is defined as

MAEE(PreC − Kernel) =
1

np

n∑

t=1

p∑

j=1

|β̃j(Ut) − β0
j(Ut)|,

and for the post-clustering kernel estimates,

MAEE(PostC − Kernel) =
1

np

n∑

t=1

p∑

j=1

|β̃∗
j (Ut) − β0

j(Ut)|,

where β̃∗
j (·) = α̃k(·) if j ∈ C̃k|K̃, 1 6 k 6 K̃, and α̃k(·) = α̃k|K̃(·), 1 6 k 6 K̃, are the post-clustering

kernel estimates of cluster-specific functional coefficients defined in (2.4). Let β̂j(·) = α̂k(·) if

j ∈ C̃k|K̃, 1 6 k 6 K̃, where α̂k(·), 1 6 k 6 K̃, are the penalised estimates of the cluster-specific

functional coefficients obtained by minimising (2.7). The MAEE of the penalised estimates is

defined as

MAEE(Penalised) =
1

np

n∑

t=1

p∑

j=1

|β̂j(Ut) − β0
j(Ut)|.

The main purpose for considering the MAEE of the post-clustering kernel and penalised estimates

for β0
j(·), 1 6 j 6 p, rather than for α0

k(·), 1 6 k 6 K0, is to avoid having to order the estimated

clusters and match each of them to one of the true clusters (as there is no natural way to do this).

Tables 1–3 below give the simulation results for the case where the dimension of Xt is 20 (i.e.,

p = 20). Table 1 presents the frequency (over 500 replications) at which a number between 1-10 is

selected as the number of clusters by the information criterion detailed in Section 2.2. Table 2 gives

the average values and standard deviations (in parentheses) of the NMI and Purity measurements

over 500 replications. Table 3 below reports the average MAEE’s and standard deviations (in

parentheses) over 500 replications for the pre-clustering kernel estimation, post-clustering kernel

estimation and the semiparametric penalised estimation. From Table 1, we can see that when

δ = 0.4 and the covariates are uncorrelated, the number of clusters can be correctly estimated in

about 80% of the replications even when n = 200, and when δ increases to 0.8, this percentage

increases to almost 98%. As the sample size increases to 400, the information criterion selects the

correct number of clusters in almost all replications. When the correlation coefficient between

the covariates is 0.25, the number of clusters is correctly estimated in only 34% of replications

when n = 200 and δ = 0.4 and in over 70% of replications when δ = 0.8. As the sample size
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increases to 400, this percentage rises to over 98%. However, when δ = 0.2, the distances between

different coefficient functions become smaller and the number of clusters is often underestimated

as 3 or 4, even when the covariates are uncorrelated. When the covariates are correlated, this

underestimation becomes worse. In all of the specifications, the estimated number of clusters rarely

goes below 3 or above 7. Table 2 shows that when there is no correlation among the covariates

and the different coefficient functions are moderately distanced (i.e., δ = 0.4 or 0.8), the NMI

and Purity values are close to 1 even when the sample size is as small as 200. The increase of

the covariates correlation coefficients to 0.25 or the decrease of δ to 0.2 causes the clustering to

become less accurate. Finally, the results in Table 3 show that, after identifying the homogeneity

and semi-varying coefficient structure, the average MAEE values of the semiparametric penalised

estimation are smaller than those of the post-clustering kernel estimation, which in turn are

much smaller than those of the pre-clustering kernel estimation. In addition, all three estimation

methods improve (with decreasing average MAEE values) as the sample size increases, and their

performance becomes slightly worse when the correlation between the covariates increases to 0.25.

Table 1: Results on estimation of cluster number for Example 5.1 with p = 20

δ ρ n K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

0.2 0 200 0 0 222 185 90 2 1 0 0 0
400 0 0 2 113 381 4 0 0 0 0
600 0 0 0 12 488 0 0 0 0 0

0.2 0.25 200 0 1 428 56 8 7 0 0 0 0
400 0 0 195 223 82 0 0 0 0 0
600 0 0 22 185 292 1 0 0 0 0

0.4 0 200 0 0 3 54 400 39 4 0 0 0
400 0 0 0 0 500 0 0 0 0 0
600 0 0 0 0 500 0 0 0 0 0

0.4 0.25 200 0 0 146 157 170 25 2 0 0 0
400 0 0 0 3 494 3 0 0 0 0
600 0 0 0 0 500 0 0 0 0 0

0.8 0 200 0 0 0 1 489 9 1 0 0 0
400 0 0 0 0 500 0 0 0 0 0
600 0 0 0 0 500 0 0 0 0 0

0.8 0.25 200 0 0 15 62 365 45 12 1 0 0
400 0 0 0 0 500 0 0 0 0 0
600 0 0 0 0 500 0 0 0 0 0
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Table 2: Average NMI and Purity for Example 5.1 with p = 20

ρ = 0 ρ = 0.25

δ n NMI Purity NMI Purity

0.2 200 0.8340 (0.0605) 0.9729 (0.0432) 0.7778 (0.0462) 0.9771 (0.0497)

400 0.9590 (0.0495) 0.9865 (0.0265) 0.8641 (0.0676) 0.9916 (0.0226)

600 0.9925 (0.0240) 0.9964 (0.0137) 0.9467 (0.0588) 0.9938 (0.0185)

0.4 200 0.9593 (0.0566) 0.9743 (0.0472) 0.8459 (0.0880) 0.9503 (0.0567)

400 1.0000 (0.0000) 1.0000 (0.0000) 0.9971 (0.0148) 0.9981 (0.0106)

600 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

0.8 200 0.9952 (0.0230) 0.9958 (0.0211) 0.9368 (0.0774) 0.9596 (0.0583)

400 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

600 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

Table 3: Average MAEE for Example 5.1 with p = 20

δ ρ n PreC-Kernel PostC-Kernel Penalised

0.2 0 200 0.1533 (0.0137) 0.0996 (0.0154) 0.0670 (0.0174)
400 0.0927 (0.0056) 0.0517 (0.0087) 0.0301 (0.0088)
600 0.0711 (0.0036) 0.0375 (0.0044) 0.0214 (0.0057)

0.2 0.25 200 0.2376 (0.0245) 0.1173 (0.0245) 0.0816 (0.0233)
400 0.1332 (0.0077) 0.0725 (0.0114) 0.0471 (0.0173)
600 0.1009 (0.0052) 0.0520 (0.0092) 0.0268 (0.0116)

0.4 0 200 0.1661 (0.0140) 0.0777 (0.0187) 0.0539 (0.0201)
400 0.0967 (0.0056) 0.0447 (0.0035) 0.0260 (0.0058)
600 0.0753 (0.0040) 0.0365 (0.0029) 0.0225 (0.0056)

0.4 0.25 200 0.2605 (0.0442) 0.1357 (0.0333) 0.1028 (0.0424)
400 0.1441 (0.0097) 0.0560 (0.0060) 0.0253(0.0064)
600 0.1090 (0.0055) 0.0445 (0.0034) 0.0200 (0.0042)

0.8 0 200 0.1918 (0.0161) 0.0778 (0.0132) 0.0460 (0.0132)
400 0.1083 (0.0062) 0.0488 (0.0041) 0.0253 (0.0048)
600 0.0832 (0.0043) 0.0393 (0.0029) 0.0223 (0.0037)

0.8 0.25 200 0.3020 (0.0522) 0.1336 (0.0439) 0.0845 (0.0541)
400 0.1637 (0.0105) 0.0611 (0.0050) 0.0267 (0.0055)
600 0.1206 (0.0054) 0.0492 (0.0037) 0.0233 (0.0048)
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Tables 4–6 give the results for p = 60. Comparing these results with those for p = 20, we can

see that as the dimension of the covariates increases, the estimation becomes poorer. However,

the overall pattern as δ, or ρ, or n changes is similar: as δ increases, the estimation becomes more

accurate due to the clusters becoming further distanced to each other; as ρ increases, the results

become poorer; and as n increases, the results improve.

Table 4: Results on estimation of cluster number for Example 5.1 with p = 60

δ ρ n K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

0.2 0 200 25 45 109 115 91 51 31 21 11 1

400 0 0 287 120 53 24 6 7 2 1

600 0 0 10 72 347 60 8 2 0 1

0.2 0.25 200 24 190 151 81 34 15 3 2 0 0

400 8 133 171 74 56 32 17 8 1 0

600 0 1 439 40 18 2 0 0 0 0

0.4 0 200 22 37 96 87 99 85 37 21 8 8

400 0 0 4 95 241 76 44 22 14 4

600 0 0 0 0 488 9 3 0 0 0

0.4 0.25 200 29 148 150 105 41 13 12 2 0 0

400 4 73 187 106 66 39 18 5 1 1

600 0 0 225 136 98 29 9 2 1 0

0.8 0 200 11 32 72 112 107 80 36 24 16 10

400 0 0 0 6 306 83 46 31 17 11

600 0 0 0 0 500 0 0 0 0 0

0.8 0.25 200 22 74 192 114 64 24 8 2 0 0

400 0 18 184 116 88 58 20 10 5 1

600 0 0 25 87 238 107 32 5 6 0
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Table 5: Average NMI and Purity for Example 5.1 with p = 60

ρ = 0 ρ = 0.25
δ n NMI Purity NMI Purity

0.2 200 0.3115 (0.1723) 0.6422 (0.1820) 0.3134 (0.1234) 0.7607 (0.1363)
400 0.7660 (0.0509) 0.9370 (0.0932) 0.3913 (0.1415) 0.7507 (0.1413)
600 0.8888 (0.0541) 0.9336 (0.0525) 0.7484 (0.0485) 0.9668 (0.0488)

0.4 200 0.3029 (0.1496) 0.6088 (0.1717) 0.3190 (0.1285) 0.7498 (0.1349)
400 0.8296 (0.0932) 0.8758 (0.1057) 0.4128 (0.1281) 0.7288 (0.1265)
600 0.9934 (0.0182) 0.9949 (0.0191) 0.7582 (0.0605) 0.9197 (0.0657)

0.8 200 0.3232 (0.1248) 0.5980 (0.1531) 0.3577 (0.1276) 0.7345 (0.1208)
400 0.9034 (0.0943) 0.9082 (0.1061) 0.4658 (0.1107) 0.7188 (0.1196)
600 0.9999 (0.0016) 1.0000 (0.0007) 0.8508 (0.0808) 0.9085 (0.0708)

Table 6: Average MAEE for Example 5.1 with p = 60

δ ρ n PreC-Kernel PostC-Kernel Penalised

0.2 0 200 0.3354 (0.0256) 0.3273 (0.0966) 0.3109 (0.0947)

400 0.1968 (0.0115) 0.1177 (0.0229) 0.0911 (0.0233)

600 0.1345 (0.0066) 0.0592 (0.0114) 0.0343 (0.0111)

0.2 0.25 200 0.6161 (0.0756) 0.2965 (0.0532) 0.2779 (0.0546)

400 0.4874 (0.0365) 0.2828 (0.0644) 0.2444 (0.0667)

600 0.3382 (0.0185) 0.1084 (0.0201) 0.0822 (0.0202)

0.4 0 200 0.3705 (0.0272) 0.3926 (0.0859) 0.3746 (0.0833)

400 0.2152 (0.0134) 0.1255 (0.0383) 0.0899 (0.0401)

600 0.1459 (0.0073) 0.0549 (0.0091) 0.0268 (0.0066)

0.4 0.25 200 0.6796 (0.0851) 0.3513 (0.0588) 0.3299 (0.0588)

400 0.5322 (0.0369) 0.3259 (0.0613) 0.2837(0.0623)

600 0.3686 (0.0199) 0.1563 (0.0283) 0.1238 (0.0377)

0.8 0 200 0.4365 (0.0375) 0.4897 (0.0836) 0.4687 (0.0814)

400 0.2546 (0.0149) 0.1390 (0.0442) 0.0960 (0.0469)

600 0.1713 (0.0084) 0.0627 (0.0084) 0.02998 (0.0059)

0.8 0.25 200 0.8062 (0.0959) 0.4451 (0.0683) 0.4207 (0.0710)

400 0.6213 (0.0425) 0.3968 (0.0705) 0.3448 (0.0698)

600 0.4292 (0.0220) 0.1632 (0.0459) 0.1099 (0.0551)
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Example 5.2. We consider model (5.1) with p = 20 but with the following homogeneity structure

instead:

β0
1(·) = α0

1(·), β0
2(·) = β0

3(·) = α0
2(·), β0

4(·) = · · · = β0
7(·) ≡ α0

3,

β0
8(·) = · · · = β0

13(·) ≡ α0
4, β0

14(·) = · · · = β0
20(·) ≡ α0

5.

The data generating processes for the random covariates Xt, the index variable Ut and the error

term εt are the same as those in Example 5.1. The definitions of α0
i(·) and α0

i are also the same as

those in the previous example. However, the sizes of the clusters are now unequal, which are 1, 2,

4, 6, 7, respectively. To save space, we don’t provide results for p = 60 for this example.

Tables 7 and 8 report the results for the estimation of the homogeneity structure and Table 9

reports the average MAEEs and standard deviations (in parentheses) for the pre-clustering kernel

estimation, the post-clustering kernel estimation and the penalised estimation over 500 replications.

Comparing the results in Table 7 with those in Table 1, we find that when δ = 0.2, the number

of clusters are more likely to be underestimated in Example 5.2 where cluster sizes are unequal.

However, as δ increases, the results for the two examples become more and more comparable. The

NMI and purity values in Table 8 are similar to those in Table 2, while the MAEE values in Table 9

are smaller than those in Table 3. The latter is mainly due to the fact that more coefficient functions

(i.e., 17 out of 20) are constant in Example 5.2.
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Table 7: Results on estimation of cluster number for Example 5.2 with p = 20

δ ρ n K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

0.2 0 200 0 0 76 374 40 9 1 0 0 0

400 0 0 0 419 81 0 0 0 0 0

600 0 0 0 363 137 0 0 0 0 0

0.2 0.25 200 0 0 187 281 27 4 1 0 0 0

400 0 0 8 460 31 0 1 0 0 0

600 0 0 0 471 29 0 0 0 0 0

0.4 0 200 0 0 0 193 274 30 2 1 0 0

400 0 0 0 4 495 1 0 0 0 0

600 0 0 0 0 500 0 0 0 0 0

0.4 0.25 200 0 0 0 306 177 16 1 0 0 0

400 0 0 0 43 457 0 0 0 0 0

600 0 0 0 3 497 0 0 0 0 0

0.8 0 200 0 0 0 2 485 11 2 0 0 0

400 0 0 0 0 499 1 0 0 0 0

600 0 0 0 0 500 0 0 0 0 0

0.8 0.25 200 0 0 0 16 455 29 0 0 0 0

400 0 0 0 0 500 0 0 0 0 0

600 0 0 0 0 500 0 0 0 0 0
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Table 8: Average NMI and Purity for Example 5.2 with p = 20

ρ = 0 ρ = 0.25
δ n NMI Purity NMI Purity

0.2 200 0.8946 (0.0667) 0.9646 (0.0501) 0.8626 (0.0630) 0.9656 (0.0524)
400 0.9643 (0.0277) 0.9956 (0.0185) 0.9499 (0.0410) 0.9905 (0.0248)
600 0.9746 (0.0163) 0.9998 (0.0032) 0.9654 (0.0158) 0.9989 (0.0073)

0.4 200 0.9785 (0.0308) 0.9901 (0.0365) 0.9630 (0.0420) 0.9869 (0.0379)
400 0.9997 (0.0033) 0.9999 (0.0022) 0.9970 (0.0097) 1.0000 (0.0000)
600 1.0000 (0.0000) 1.0000 (0.0000) 0.9998 (0.0027) 1.0000 (0.0000)

0.8 200 0.9979 (0.0120) 0.9973 (0.0178) 0.9900 (0.0302) 0.9918 (0.0280)
400 0.9999 (0.0031) 0.9998 (0.0045) 1.0000 (0.0000) 1.0000 (0.0000)
600 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

Table 9: Average MAEE for Example 5.2 with p = 20

δ ρ n PreC-Kernel PostC-Kernel Penalised

0.2 0 200 0.1092 (0.0092) 0.0634 (0.0142) 0.0415 (0.0168)

400 0.0714 (0.0049) 0.0369 (0.0050) 0.0213 (0.0061)

600 0.0571 (0.0035) 0.0303 (0.0032) 0.0169 (0.0042)

0.2 0.25 200 0.1347 (0.0126) 0.0723 (0.0146) 0.0503 (0.0190)

400 0.0862 (0.0058) 0.0399 (0.0076) 0.0211 (0.0087)

600 0.0687 (0.0043) 0.0320 (0.0036) 0.0161 (0.0034)

0.4 0 200 0.1179 (0.0100) 0.0534 (0.0102) 0.0410 (0.0100)

400 0.0755 (0.0049) 0.0358 (0.0042) 0.0167 (0.0040)

600 0.0597 (0.0033) 0.0287 (0.0030) 0.0134 (0.0031)

0.4 0.25 200 0.1457 (0.0137) 0.0660 (0.0152) 0.0353 (0.0144)

400 0.0919 (0.0059) 0.0383 (0.0051) 0.0173 (0.0054)

600 0.0724 (0.0040) 0.0309 (0.0033) 0.0131 (0.0031)

0.8 0 200 0.1343 (0.0113) 0.0622 (0.0096) 0.0304 (0.0080)

400 0.0843 (0.0050) 0.0394 (0.0042) 0.0188 (0.0042)

600 0.0664 (0.0036) 0.0315 (0.0033) 0.0157 (0.0037)

0.8 0.25 200 0.1686 (0.0153) 0.0701 (0.0160) 0.0346 (0.0157)

400 0.1030 (0.0066) 0.0414 (0.0046) 0.0203 (0.0093)

600 0.0803 (0.0044) 0.0332 (0.0033) 0.0151 (0.0065)
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6 Empirical applications

In this section, we apply the developed model and methodology to two real data sets: the Boston

house price data and the plasma beta-carotene level data. These two data sets have been exten-

sively analysed in existing studies where functional-coefficient models are usually recommended.

However, it is not clear whether certain homogeneity structure among the functional coefficients

exists. This motivates us to further examine the modelling structure for these two data sets via the

kernel-based clustering method and penalised approach introduced in Section 2.

Example 6.1. We first apply the developed model and methodology to the well-known Boston

house price data. This data set has been previously analysed in many studies (c.f., Fan and Huang,

2005; Cai and Xu, 2008; Wang and Xia, 2009; Leng, 2010). To investigate what factors influencing

the house prices, we choose MEDV (the median value of owner-occupied homes in US $1000)

as the response variable and the following 13 variables as the explanatory variables: INT (the

intercept), CHAS (Charles River dummy variable; =1 if tract bounds river, 0 otherwise), RAD

(index of accessibility to radial highways), CRIM (crime rate per capita by town), ZN (proportion

of residential land zoned for lots over 25000 sq. ft.), INDUS (proportion of non-retail business

acres per town), NOX (nitric oxides concentration in parts per 10 million), RM (average number of

rooms per dwelling), AGE (proportion of owner-occupied units built prior to 1940), DIS (weighted

distances to five Boston employment centres), TAX (full-value property-tax rate per US $10000),

PTRATIO (pupil-teacher ratio by town), and B (1000(Bk-0.63)2 where Bk is the proportion of

blacks by town). The variable LSTAT (percentage of lower status population) is chosen as the

index variable in the varying-coefficient model, which enables us to investigate the interaction of

LSTAT with the explanatory variables. The sample size is n = 506. The response variable and all

explanatory variables (except the intercept, INT) undergo the Z-score transformation before being

fitted: i.e., for any variable, xt, to be transformed, its Z-score is

zt =
xt − x̄

s(x)
, t = 1, · · · , 506, (6.1)

where x̄ and s(x) are the sample mean and sample standard deviation of xt. Furthermore, as

shown in the left panel of Figure 2, the index variable, LSTAT, exhibits strong skewness. Hence,

we first take the square-root transformation of this variable to alleviate skewness and then the

min-max normalisation:

U⋆

t =
Ut − min(U)

max(U) − min(U)
, (6.2)

where min(U) and max(U) denote the minimum and maximum of the observations of U, respec-

tively. After the min-max normalisation, the support of U⋆

t becomes [0, 1], consistent with the

assumption made on the index variable in the asymptotic theory. A histogram of this transformed
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Figure 2: Histograms for the original and transformed index variable in Example 6.1. Left panel:
original data for LSTAT; right panel: LSTAT after the square-root and min-max transformations.

variable is shown in the right panel of Figure 2.

Figure 3 plots the pre-clustering kernel estimated functional coefficients with the optimal

bandwidth selected via the leave-one-out cross-validation method. The kernel-based clustering

method and the generalised information criterion identify six clusters. The membership of these

clusters and the characteristics of their functional coefficients are summarised in Table 10. DIS

and TAX are found, by the penalised method, to have constant and similar negative effects on

the response, while the variables, CHAS, ZN, and B are found to be insignificant. All the other

explanatory variables have varying effects on the response as the value of LSTAT changes. Plots of

the post-clustering kernel estimates of the functional coefficients and their penalised local linear

estimates are shown in Figures 4 and 5, where for each k = 1, · · · , 6, αk(·) denotes the functional

coefficient corresponding to the k-th cluster listed in Table 10. The optimal tuning parameters in

the penalised method are chosen, by the GIC, as λ1 = 10 and λ2 = 2.3.
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Figure 3: Pre-clustering estimates of the functional coefficients in Example 6.1.
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Figure 4: Post-clustering estimates of the functional coefficients in Example 6.1 with αk(·), for each
k = 1, 2, . . . , 6, being the estimated functional coefficient corresponding to the k-th cluster listed in
Table 10.
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Figure 5: Penalised estimates of the functional coefficients in Example 6.1 with αk(·), for each
k = 1, 2, . . . , 6, being the estimated functional coefficient corresponding to the k-th cluster listed in
Table 10.

Table 10: The estimated homogeneity structure in Example 6.1

Clusters Variables Coefficient functions

Cluster 1 DIS, TAX Constant, value is -0.0296

Cluster 2 INDUS, NOX, AGE, PTRATIO Non-constant, values are negative

Cluster 3 CHAS, ZN, B Constant, value is 0

Cluster 4 RAD, RM Non-constant, values are mostly positive

Cluster 5 INT Non-constant

Cluster 6 CRIM Non-constant, values are negative

We next compare the out-of-sample predictive performance between the pre-clustering (pre-

liminary) kernel method, the post-clustering kernel method and the proposed penalised method.

We randomly split the full sample into a training set of size 400 and a testing set of size 106 and

repeat 200 times to reduce randomness in the results obtained. When calculating out-of-sample

predictions for the post-clustering and penalised methods, we use the homogeneity structure (i.e.

the clusters and their membership) estimated from the full sample but estimate the values of the

functional coefficients (evaluated at the LSTAT values belonging to the testing set) or the constant

coefficients from the training sets. The predictive performance is measured by Mean Absolute

Prediction Error (MAPE), which is defined by

MAPE =
1

n⋆

n⋆∑

t=1

∣∣Y⋆

t − Ŷ⋆

t

∣∣ , (6.3)

30



where n⋆ is the size of the testing set (106 in this example), Y⋆

t is a true value of the response variable

in the testing sample, and Ŷ⋆

t is the predicted value of Y⋆

t using the model estimated from the

training sample. Table 11 below reports the average MAPE values over 200 replications of random

sample splitting. We consider bandwidth values in the range [0.06, 0.18] (with equal increment

0.02), which covers the optimal bandwidth of 0.168 for the preliminary kernel estimation and post-

clustering kernel estimation. From Table 11, we can see that predicted values calculated from the

model estimated by the penalised method have the smallest MAPE’s over the range of bandwidth

considered. Predictions made from the model estimated by the post-clustering kernel method

have slightly larger MAPE values, while predictions from the pre-clustering kernel method has

the largest MAPE values. This comparison result shows that the simplified functional-coefficient

models from the developed kernel-based clustering and penalised methods provide more accurate

out-of-sample prediction.

Table 11: Average MAPE over 200 times of random sample splitting in Example 6.1

Method h = 0.06 h = 0.08 h = 0.10 h = 0.12 h = 0.14 h = 0.16 h = 0.18

PreC-Kernel 0.4957 0.4117 0.3622 0.3254 0.3029 0.2957 0.2944

PostC-Kernel 0.3436 0.3319 0.3091 0.2995 0.2946 0.2919 0.2919

Penalised 0.3273 0.3092 0.2987 0.2913 0.2858 0.2834 0.2844

Example 6.2. In this example, we use the proposed methods to analyse the plasma beta-carotene

level data, which have been previously studied by Nierenberg et al (1989), Wang and Li (2009)

and Kai, Li and Zou (2011). The data were collected from 315 patients and are downloadable

from the StatLib database http://lib.stat.cmu.edu/datasets/Plasma_Retinol. The

primary interest is to investigate the relationship between personal characteristics and dietary

factors, and plasma concentrations of beta-carotene. The response variable is chosen as BETA-

PLASMA (plasma beta-carotene level, ng/ml) and the candidate explanatory variables include INT

(the intercept), AGE (years), QUETELET (Quetelet index, weight/height2), CALORIES (number

of calories consumed per day), FAT (grams of fat consumed per day), FIBRE (grams of fibre

consumed per day), ALCOHOL(number of alcoholic drinks consumed per week), CHOLESTEROL

(cholesterol consumed per day). The data set also contains categorical variables: SEX (1=male,

2=female), SMOKSTAT (smoking status, 1=never, 2=former, 3=current smoker), VITUSE (vitamin

use, 1=yes, fairly often, 2=yes, not often, 3=no). We convert these into dummy variables: FEMALE

(=1 if SEX=2, 0 otherwise), NONSMOKER (=1 if SMOKSTAT=1, 0 otherwise), FORMERSMOKER

(=1 if SMOKSTAT=2, 0 otherwise), FREQVITUSE (=1 if VITUSE=1, 0 otherwise), OCCAVITUSE

(=1 if VITUSE=2, 0 otherwise), and also include them as explanatory variables. As in Kai, Li and

Zou (2011), the index variable is chosen as BETADIET (dietary beta-carotene consumed, mcg per
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Figure 6: Histograms for the original and transformed index variable in Example 6.2. Left panel:
original data for BETADIET, right panel: BETADIET after the square-root and min-max transfor-
mations.

day). We again transform the response and explanatory variables (except the intercept, INT) by

the Z-score method defined in (6.1). As can be seen from the left panel of Fig 6, the index variable

BETADIET also exhibits high skewness, so we first transform it by the square-root operator and

then the min-max operator in (6.2). Histograms for the original data for BETADIET as well as the

transformed data are given in Figure 6.

We again consider using a functional-coefficient model. In the preliminary kernel estimation,

the Epanechnikov kernel K(z) = 3
4
(1 − z2)+ is used and the optimal bandwidth is determined

via the cross-validation method in Section 4.1. We combine the kernel-based clustering method

and penalised local linear estimation (with the tuning parameters λ1 = 6.5 and λ2 = 3 chosen by

the GIC method) to explore the homogeneity structure among the functional coefficients. Three

distinct clusters are identified. The membership of each cluster and the characteristic of the

corresponding coefficient function are summarised in Table 12. The pre-clustering estimates of

all functional coefficients and the post-clustering and penalised estimates of the cluster-specific

functional coefficients are plotted in Figures 7-9.

The kernel clustering and shrinkage estimation results show that FIBRE, NONSMOKER, FOR-

MERSMOKER, FREQVITUSE form a cluster and their effects on the response variable, the beta-

carotene level, are positive, which implies that higher fibre intake, no smoking and frequent vitamin

use are helpful for increasing beta-carotene levels. The variables INT (intercept), AGE, CALORIES,

ALCOHOL, CHOLESTEROL, FEMALE, and OCCAVITUSE are found to be insignificant, while

QUETELET and FAT are found to have negative effects on beta-carotene levels.
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Table 12: The estimated homogeneity structure in Example 6.2

Clusters Variables Coefficient functions

Cluster 1
FIBRE, NONSMOKER, Non-constant,

FORMERSMOKER, FREQVITUSE values are positive

Cluster 2
INT, AGE, CALORIES, ALCOHOL, Constant,

CHOLESTEROL, FEMALE, OCCAVITUSE value is 0

Cluster 3 QUETELET, FAT Constant, value is -0.0937
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Figure 7: Pre-clustering estimates of the functional coefficients in Example 6.2.
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Figure 8: Post-clustering estimates of the functional coefficients in Example 6.2 with αk(·), for each
k = 1, 2, 3, being the estimated functional coefficient corresponding to the k-th cluster listed in
Table 12.
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Figure 9: Penalised estimates of the functional coefficients in Example 6.2 with αk(·), for each
k = 1, 2, 3, being the estimated functional coefficient corresponding to the k-th cluster listed in
Table 12.

As in Example 6.1, we further compare the out-of-sample predictive performance between the

preliminary kernel, post-clustering kernel and penalised methods. We randomly divide the full

sample (315 observations) into a training set of size 250 and a testing set of size 65, and repeat

the random sample splitting 200 times and compute the average MAPE values. The predictions

are calculated in the same way as in Example 6.1. The range of bandwidth values considered is

between 0.20 and 0.32 with an increment of 0.02. The results are reported in Table 13 below. From

the table, we find that the penalised and post-clustering kernel methods provide more accurate

out-of-sample prediction in terms of MAPE defined in (6.3) than the preliminary kernel method,

with the penalised method slightly outperforming the post-clustering kernel method when the

bandwidth is smaller.
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Table 13: Average MAPE over 200 times of random sample splitting in Example 6.2

Method h = 0.20 h = 0.22 h = 0.24 h = 0.26 h = 0.28 h = 0.30 h = 0.32

PreC-Kernel 0.6800 0.6761 0.6322 0.6209 0.6115 0.6114 0.6045

PostC-Kernel 0.5895 0.5826 0.5790 0.5754 0.5743 0.5730 0.5712

Penalised 0.5788 0.5768 0.5752 0.5751 0.5750 0.5746 0.5741

7 Conclusion

In this paper, we have developed the kernel-based hierarchical clustering method and a gen-

eralised version of information criterion to uncover the latent homogeneity structure in the

functional-coefficient models. Furthermore, the penalised local linear estimation approach is

used to separate out the zero-constant cluster, the non-zero constant-coefficient clusters and the

functional-coefficient clusters. The asymptotic theory in Section 3 shows that the estimation for

the true number of clusters and the true set of clusters is consistent in the large-sample case. In

the simulation study, we find that the proposed estimation methodology outperforms the direct

nonparametric kernel estimation which ignores the latent structure in the model. In the empirical

application to the Boston house price data and plasma beta-carotene level data, we show that the

nonparametric functional-coefficient model can be substantially simplified with reduced numbers

of unknown parametric and nonparametric components. As a result, the out-sample mean absolute

prediction errors using the developed approach are significantly smaller than those using the naive

kernel method which ignores the latent homogeneity structure among the functional coefficients.

Supplementary materials

The online supplementary material contains the detailed proofs of Theorems 1-3.
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