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We combine theoretical and experimental efforts to propose a method for studying energy fluctu-
ations, in particular, to obtain the related bi-stochastic matrix of transition probabilities by means
of simple measurements at the end of a protocol that drives a many-body quantum system out-of-
equilibrium. This scheme is integrated with numerical optimizations in order to ensure a proper
analysis of the experimental data, leading to physical probabilities. The method is experimen-
tally evaluated employing a two interacting spin-1/2 system in a nuclear magnetic resonance setup.
We show how to recover the transition probabilities using only local measures which enables an
experimental verification of the detailed fluctuation theorem in a many-body system driven out-of-
equilibrium.

Energy fluctuations play a significant role on the out-
of-equilibrium thermodynamics of quantum systems [1–
3]. They are inherently related to fluctuation relations
[4–11], which embraces both thermal and quantum en-
ergy fluctuations. In this context thermal fluctuations
are, generally, related with thermal distributions at the
beginning of a driving protocol or at the end of a thermal-
ization process, while quantum fluctuations are associ-
ated to transitions between eigenstates in a quantum dy-
namics, depending on how the systems is driven. Here,
work and heat are described by stochastic variables with
probability distributions [1–3, 11]. The experimental ver-
ification or use of quantum fluctuation relations requires
the assessment of both types of energy fluctuations [12].

Here we introduce a powerful method to experimen-
tally access energy fluctuations of a many-body system
in an out-of-equilibrium quantum evolution. More specif-
ically we show how to reconstruct the bi-stochastic ma-
trix of transition probabilities pm|n between the initial
and final eigenstates of a driven protocol that determines
quantum fluctuations. We then use the matrix to recon-
struct the quantum work probability distribution. It can
also be used to reconstruct the statistics of other quanti-
ties such as heat in the absence of work. Previous meth-
ods for this purpose are very demanding when applied to
many-body systems since they involve controlled opera-
tions, as the interferometric method proposed in [13, 14].
In fact, so far, they have been employed in NMR ex-
periments with one-body (i.e. two level) quantum sys-
tems, such as in Refs. [15–18] or in the quantum work
meter implemented on an ensemble of non-interacting
two-level atomic systems [19]. An efficient protocol to ex-
perimentally investigate energy fluctuations in a general
out-of-equilibrium many-body system remains an out-
standing challenge: the aim of this letter is to provide
a long stride towards this goal by introducing a fresh ap-
proach. Previously we developed methods inspired by

density-functional-theory (DFT [20]) [21–23] to support
numerical calculations of energy fluctuations for out-of-
equilibrium many-body system, a tough problem in it-
self; here we focus on providing directly an experimental
method for measuring these quantities.

The transition probabilities among instantaneous
eigenstates pm|n allow us to access the statistical prop-
erties of a time-dependent driven system and it is in-
timately related to quantities in the out-of-equilibrium
thermodynamics as the work and entropy production.
The work is one of the key quantities to describe the
change of energy when an external agent acts on the sys-
tem. The work performed on a quantum system is not
an observable, but instead, it is determined by the way
the process is executed [24, 25]. For a protocol much
faster than the typical interaction time scale with the
environment [42] , the mean work performed on or by a
quantum system can be written as 〈W 〉 =

∫

P (W )dW ,
where the work probability distribution is P (W ) =
∑

n,m p0npm|nδ
(

W − ǫτm + ǫ0n
)

, with p0n is the probabil-
ity to find the system in the initial eigenstate |n(0)〉,

the transition probability pm|n = |〈m(τ)|Uτ |n(0)〉|
2
is the

conditional probability of driving the system to the in-
stantaneous eigenstate |m(τ)〉 (with energy ǫτm) at the
end of the evolution, given the initial state |n(0)〉(with
energy ǫ0n), where Uτ is the time evolution operator. We
note that the transition probability pm|n is the quantity
that defines how the driving processes is performed and it
is also a key element in the determination of the entropy
production in the protocol [9, 16, 26].

Conventionally, we can obtain pm|n by means of the
so-called two-point measurement protocol [7, 10, 24, 28].
In this protocol, the system is initially prepared in the
thermal equilibrium state, then the eigenstates of the
initial Hamiltonian H0 are measured, through a non-
destructive measurement represented by the projectors
Π0

n = |n(0)〉〈n(0)|. After that, the system is evolved due
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to the variation of a parameter of the Hamiltonian, whose
evolution is described by the operator Uτ . Finally, the
eigenstates of the final Hamiltonian Hτ are measured
and this measurement is represented by the projectors
Πτ

m = |m(τ)〉〈m(τ)|. Eventually, from the measurement
of the full statistics, it is possible to obtain pm|n. The
extension of the two-point measurement protocol to open
systems was proposed in [27]. Performing such non-
destructive projective measurements with high accuracy
in an experiment is a very difficult task, even in a few-
body system. Other theoretical protocols include gener-
alized energy measurements as Gaussian energy measure-
ments [29] and positive operator valued measurements
(POVM) [30]. Another possibility is to use an interfer-
ometric protocol as employed in Refs. [13–16, 18] that
requires a good control of each part of the many-body
system and of the interaction between its constituents,
which is challenging to implement experimentally even
in few-body systems. Here, we propose an alternative
way to obtain the transition probabilities pm|n through
the direct determination of a set of observables, easy to

measure in a given context.

Inversion scheme. Our protocol relies on an inversion
scheme to obtain pm|n and is based on similar ideas to
those given in Ref. [31] in the context of DFT. Let us
consider measuring the mean value of an operator O at
the end of a time-dependent protocol described by the
evolution operator Uτ that drives the system. We as-
sume that initially the system is prepared in a thermal
state ρeq0 , for a given thermal energy kBT , with an ini-
tial Hamiltonian H0. The system will evolve according
to Uτ and during this process all allowed transitions be-
tween energy levels may occur. At time τ , corresponding
to the end of the evolution, the mean value of a suitable
observable, 〈O〉, is measured. We can decompose this
in terms of the instantaneous Hamiltonian energy ba-
sis as 〈O(τ)〉 =

∑

m,m′,n Om,m′p0nTm,m′|n, where Om,m′

are the operator matrix elements written on the basis of
the final Hamiltonian Hτ , p

0
n is the initial Gibbs distri-

bution, and Tm,m′|n = 〈m(τ)|Uτ |n(0)〉〈n(0)|Uτ
†|m′(τ)〉

represents the transition elements, with pm|n = Tm,m|n.
It is important to highlight that the transition elements
are independent both from the initial temperature and
from the choice of O. Instead, they only depend on how
(’fast’ or ’slow’) the evolution of the system is performed.
Hence, we may choose an operator O which is diagonal
in the basis of Hτ , or in other words [O,Hτ ] = 0, thus
〈O(τ)〉 =

∑

m,n Omp0npm|n and we recover the transition
probability pm|n between the instantaneous eigenstates
of the initial and final Hamiltonians[43].

The key idea of our method is to write a system of lin-
ear equations based on the mean value 〈O〉, where the set
of variables are given by the elements pm|n. For a system
of Hilbert space dimension d, we should find d× d differ-
ent transition probabilities. However, the square matrix
pm|n is a bi-stochastic matrix, implying that, for each m

Figure 1. Pulse sequence for the driven dynamics
and measurement protocols. In the sketch of the pulse
sequence the blue (red) circles represent transverse rf pulses
in the x (y) direction that produce rotations by the displayed
angle. The orange connections represent free evolutions un-
der the scalar interaction HJ = hJσH

z σC
z /4 (with J ≈ 215.1

Hz) during the time 1/(2J). (a) Displays the sequence to im-
plement the forward protocol. (b) Represents the sequence to
implement the backward version of the driving protocol. (c)
Indicates which local measures should be carried out depend-
ing on the value of k. (d) Represents the operation S1 (S0 is
the identity). The values for αi and γi are displayed in [32].

and n, the system is subject to the normalization con-
ditions

∑

m pm|n = 1 and
∑

n pm|n = 1. Our system of
linear equations can then be reduced to (d− 1)× (d− 1)
elements. Thereby, if we have a two-level system, obtain-
ing the corresponding four transition probabilities with
the use of the normalization conditions intakes finding
just one additional equation. For a system with a higher
dimension we can find (d− 1)× (d− 1) equations by us-
ing different temperatures and/or measuring additional
operators, so to construct a matrix equation of the form
Ax = b as [32]

A =











a1

11 a1

12 · · · a1

d′,d′

a2

11 a2

12 · · · a2

d′,d′

...
...

. . .
...

ad′×d′

11
ad′×d′

12
· · · ad′×d′

d′,d′











, x =











p1|1
p1|2
...

pd′,d′











, b =











b1
b2
...

bd′,d′











(1)

where d′ = d − 1, b represents constants independent of
pm|n and the superscript in the constant coefficients ajmn

represents the different choices of operators and temper-
atures. Additionally, we can also use the symmetries of
the system to further reduce the number of variables.
To summarize, we aim to combine different observables
and initial temperatures to get enough linear independent
equations to allow reconstruction of the bi-stochastic ma-
trix pm|n. The number of observables needed depends on
the symmetries of the initial and final Hamiltonians. As
the measurements are done at the final time, they are
independent from the energy difference across the tran-
sition. In the spirit of DFT, we aim to use as observ-
able local magnetization or local particle densities. We
present ideas for general applications of the method to
large systems in the supplemental material[32].

Experimental implementation. In order to test our pro-
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Figure 2. Transition probabilities. Transition probabilities obtained by the inversion scheme for the (a) forward and (b)
backward protocols . For each protocol we show the comparison between the expected result given by the numerical simulation
of the protocol (theory) and the experimental result. The elements (pi|j) of the transition probability matrix are represented
by the columns in the figure and their values are above the columns.

posed scheme for many-body systems let us consider an
out-of-equilibrium evolution for a system of two interact-
ing spins. This is significantly more complex than the
single-qubit systems measured in some previous quan-
tum thermodynamics experiments [15–18, 33, 34], as the
number of transitions pm|n changes from 4 to 16. For
the experiment, we employed a 13C-labeled CHCl3 liquid
sample and a 500 MHz Varian NMR spectrometer. The
relevant nuclear spin Hamiltonian for this molecule, in a
rotating frame [32], is similar to the Ising model and can
be written as [35]

H = −
1

2
hδνHσ

H
z −

1

2
hδνCσ

C
z +

1

4
hJσH

z σ
C
z , (2)

where δνH and δνC are the difference between the Lar-
mor frequency and the rf-field frequency for the Hydrogen
and the Carbon nuclei, respectively, and J ≈ 215.1 Hz is
the coupling constant. For this experiment we have cho-
sen δνH = 2.0 kHz and δνC = 4.0 kHz. Time-modulated
rf-field pulses in the transverse (x and y) direction com-
bined with longitudinal field gradient pulses are used to
prepare initially thermal states. The rf-field pulses can
also be used to drive the nuclear spins provoking transi-
tions between the eigenstates of the Hamiltonian.
For testing our method, we consider a general driven

evolution of the two spins-1/2 system, which is imple-
mented through a set of rf pulses and free evolutions. At
the beginning and at the end of the evolution, the Hamil-
tonian of the system will be given by Eq. (2) defining
the reference energy levels. As demonstrated in Ref. [36]
a general two-qubit evolution can be realized by a cir-
cuit consisting of 12 elementary one-qubit gates and 2
CNOT gates. Since our goal is to perform a proof-of-
principle experiment, we are not concerned in knowing
what is the exact time-dependency in the Hamiltonian
that implements such evolution. What we want, is to im-
plement an evolution that produces as many as possible
non-zero transition probabilities between the initial and

final energy eigenstates, in order to produce a non-trivial
work probability distribution. To this aim, we can con-
sider just a subclass of the general evolutions proposed in
Ref. [36]. To test the detailed quantum fluctuation rela-
tion [8], we implement forward (UF ) and backwards (UB)
evolutions, by applying the unitary operations depicted
in the pulse sequences of Fig. 1, (a) and (b), respectively.
For UB to be the time reversal evolution of UF , we have to
apply all the pulses in the inverse order starting with the
angles γi and finishing with the angles αi. Also, γi → −γi
and αi → −αi to satisfy UB = U†

F . Finally, by an ap-
propriate choice of the angles αi and γi we can obtain an
out-of-equilibrium evolution that produces several tran-
sitions between the initial and final eigenstates.

Since we are dealing with a system of dimension 4 (two
spin 1/2), there will be a total 16 transition probabilities
that describe the work distribution in the driving proto-
col. By using the bi-stochastic properties of the tran-
sition matrix pm|n, our problem reduces to find 9 tran-
sitions probabilities only. Hence, in order to construct
the system of equations (1), we can measure three ob-
servables – chosen to be the longitudinal magnetizations
σH
z , σ

C
z , and the correlation function σH

z σ
C
z – at three dif-

ferent effective spin temperatures, kBT1 = 20 ± 3 peV,
kBT2 = 12±2 peV, and kBT3 = 9±2 peV (for more de-
tails related to the initial thermal states see [32]). These
chosen observables commute with the Hamiltonian (2),
which simplify the numerical analysis in the inversion
scheme. To obtain 〈σH

z 〉 and 〈σC
z 〉 in the NMR exper-

iment, we apply a π/2 rotation in the y-direction and
measure the traverse magnetization, which is the natural
observable in NMR (k = 0 in Fig. 1). For obtaining the
correlation function 〈σH

z σ
C
z 〉, we consider k = 1, with the

operation S1 being just a CNOT gate written in terms of
the rf pulses. Then at the end of the protocol we have to
measure the magnetization in the z-direction of the Hy-
drogen 〈σH

z 〉, as indicated in the grey table of Fig. 1(c).
Therefore, at the end of the day, we are measuring the
local magnetizations for obtaining all the observables for



4

Figure 3. Experimental result for the the work distribution. Work distributions for the forward (a,b,c) and backward
(d,e,f) protocols for the three different initial spin temperatures (a, d) kBT = 20 ± 3 peV, (b, e) kBT = 12 ± 2 peV and (c,
f) kBT = 9± 2 peV.

both the forward and backward processes. We note that,
depending on the experimental context different observ-
able can be chosen. In the case of an electronic system
what would be measured is the local particle density [31].

Due to experimental noise and imperfections, the di-
rect solution from the system of equations could lead to
a non physical transition probability matrix. In other
words, we could obtain negative values for pm|n’s or val-
ues greater than one. A similar problem happens in the
experimental implementation of quantum state tomog-
raphy (QST) [37–40], and its source is the fact that dif-
ferent experimental arrangements (measurement appara-
tus) are needed to measure different observables. Each
experimental arrangement carries a particular noise that
may lead to nonphysical values. In order to deal with this
kind of experimental errors, the Maximum Likelihood Es-
timation (MLE)[39, 40] method is commonly used for
QST. This method requires numerical optimization to
generate a definite positive density matrix given a set of
experimental data from quantum state tomography. To
implement the MLE, a likelihood function is introduced
that allows to determine how close the physically esti-
mated density matrix fits the experimental data. Moti-
vated by the successes in quantum state tomography, we
propose a MLE method adapted to our problem for ob-
taining physical transition probabilities for experimental
data with noise and imperfections [32].

The obtained statistics for pm|n elements is shown in
Fig. 2, where the 16 transition probabilities are identi-

fied for both the forward and backward protocols. The
experimental transition probabilities obtained from our
inversion scheme plus adapted-MLE method [32] and the
corresponding theoretical results obtained by direct nu-
merical simulation of the unitary operations in Fig. 1 are
in very good agreement for both forward and backward
protocols. Also, the validity of the micro-reversibility hy-
pothesis pFm|n = pBn|m is satisfied with a good accuracy.

With the method we propose, we can obtain P (W ) di-
rectly from the results in Fig. 2 and the measurement of
the population in the initial thermal state. Experimental
results for the work probability distribution are shown in
Fig. 3. Transition probabilities between higher energy
states are larger for the highest temperature case, with
most channels significantly different from zero, than for
the lowest temperature cases, where the population of the
ground-state is higher: compare Fig. 3(a) and (d) with
kBT ≈ 20 peV to Fig. 3(c) and (f), where kBT ≈ 9 peV.
To highlight the importance of interactions, we compare
in [32] the experimental results for the work distribution
to its theoretical interacting and non-interacting coun-
terparts.
Using our protocol we can also verify the detailed fluc-

tuation relation [5, 6, 8]

PF (+W )

PB (−W )
= e(W−∆F )/(kBT ), (3)

for this interacting spins system driven out-of-
equilibrium. Here ∆F is the free energy variation. In
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Figure 4. Detailed fluctuation relation for two interacting spin 1/2. The experimental results and the linear fit for
the logarithm of the detailed fluctuation relation, ln

[

PF (+W ) /PB (−W )
]

= W (kBT )
−1, are displayed for three different

initial-state-preparation temperatures: (a) kBT = 20 ± 3 peV, (b) kBT = 12 ± 2 peV and (c) kBT = 9 ± 2 peV. The
highlighted areas between the thin lines in the panels represent the prediction interval where an observation could fall with
confidence level of 99%. The linear regression is performed excluding these out-layer points: W = ±19.37peV for all panels
and also W = 35.92 peV for panel (a). The resulting temperatures are: (a) kBT = 21 ± 2 peV, (b) kBT = 12 ± 1 peV, and
(c) kBT = 8± 1 peV [32].

our experiment ∆F = 0, since the Hamiltonian after and
before the driving protocol are the same. In Fig. 4 we
show the logarithm of Eq. (3) for the three different tem-
peratures. The points represent the experimental result.
The solid line is the linear regression for each spin tem-
perature data set and, from Eq. (3), the slope of each
line gives an estimate of the corresponding inverse tem-
perature (kBT )

−1
. The estimated error of each point is

obtained by means of standard error propagation. The
temperatures estimated in this way are in good agree-
ment with the temperatures of the initial Gibbs states
certified by QST [32].

Conclusions. To summarize, we have proposed and ex-
perimentally implemented a new approach to access en-
ergy fluctuations and the work distribution in a many
body quantum system. We have tested our method
in an Ising-like system composed by two spin-1/2 and
driven out-of-equilibrium. In addition, by obtaining the
bi-stochastic transition probability matrix for the sys-
tem dynamics at different temperatures, we were able
to verify the detailed quantum fluctuation relation for
an interacting system. The method introduced here can
be applied in a diversity of physical setups to investi-
gate energy fluctuations and thermodynamical quanti-
ties such as, work, heat, and entropy production in non-
equilibrium quantum systems.
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SUPPLEMENTAL MATERIAL

We provide here supplementary details about the ex-
perimental setup, data analysis, and extensions to large
systems.

EXPERIMENTAL SETUP

For the implementation of the method and character-
ization of the energy fluctuations, we employed a 13C-
labeled CHCl3 liquid sample and a 500 MHz Varian NMR
spectrometer.The nuclear spins of the 1H and 13C atoms
of this molecule can be used to represent a two-qubit sys-
tem. The Hamiltonian of this system is composed by an
interaction term Hint that represents thel interaction be-
tween 1H and 13C nuclei in the molecule and a term HZ

which expresses the interaction with the external mag-
netic fields [35]. The interaction term is mainly due to
the scalar coupling between the Carbon and Hydrogen
nuclear spin that reads

Hint =
1

4
hJσH

z σC
z , (S1)

where J ≈ 215.1 Hz is the coupling constant. For per-
forming NMR experiments, the sample is placed inside of
a superconducting magnet where it is produced a strong
static magnetic field B0 ≈ 11.75 T . The interaction be-
tween the nuclear spins and this magnetic field aligned
along the z-axis induces the Zeeman effect with a Larmor
frequency of υn = −γnB0, where γn is the gyromagnetic
factor characteristic for each nuclear species [35]. In oder
to set correctly the resonance frequency of both nuclei,
the chemical shift should be also considered [35]. Includ-
ing the chemical shift, the interaction with the magnetic
field can be described by the Hamiltonian

HZ = −
1

2
hνHσH

z −
1

2
hνCσ

C
z , (S2)

where νH and νC are the resonance frequencies [35] of the
Hydrogen and Carbon nuclei, respectively. To describe
the dynamics of the nuclear spins, it is used a rotating
frame that moves around the z-direction with a traverse
frequency offset νrf , in such frame we obtain the effective
Hamiltonian [35]

H′ = −
1

2
h (νH − νrf )σ

H
z −

1

2
h (νC − νrf )σ

C
z

+
1

4
hJσH

z σC
z . (S3)

An important ingredient to perform our experiments is
the initialization of the system. A relevant feature in the
NMR experiments is that it is not possible to deal with
a single molecule but with samples containing an ensem-
ble of many identical molecules, each with the relevant

Figure S1. Populations of the initial state for all effective-
spin-temperatures considered.

nuclear spins (qubits). In particular, for the experiment
presented here we have used liquid samples highly diluted
in deuterated acetone. This ensures us that we will have
an ensemble of non-interacting molecules, which means
that we have many copies of the same system. For the
implementation of our protocol, we wish to start from
thermal states, which are diagonal in the Hamiltonian ba-
sis. Our sample is initially prepared in thermal-like states
corresponding to different spin-temperatures T and such
states can be characterized using a full quantum state
tomography [1].

The initial population distribution of the system (cor-
responding to a thermal Gibbs state) is shown in Fig. S1
for both the forward and backward protocols. Using
these populations we can estimate the effective spin tem-
perature of the initial pseudo thermal state by means

of the expression kBT = (E2 − E0) / ln
(

p0

p2

)

, where

E2−E0 is the energy difference between the ground state
and the second excited state.These spin temperatures are
reported in Table SI.

We implement the forward UF and backwards UB evo-
lutions, by applying the unitary operations depicted in
the pulse sequences of Fig. 1 with the angles display in
Table SII
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kBT (peV)

Forward Backward Average fluctuation relation

kBT1 21±3 19±3 20±3 21±2

kBT2 11±2 12±2 12±2 12±1

kBT3 8±2 9±2 9±2 8±1

Table SI. Characterization of the initial state temperature
for the forward and backward protocol. The effective spin
temperature of the prepared state is estimated from the pop-

ulations as kBT = (E2 − E0) / ln
(

p0
p2

)

, for this experiment

E2 − E0 = 30.3 peV.

i 1 2 3 4 5 6

αi (rad) 0.48 -0.80 π/2 -3.61 0.69 π/2

γi (rad) -0.83 1.40 π/2 -3.65 2.68 π/2

Table SII. Parameters used in the pulse sequence displayed in
figure 1 on the main text.

MAGNETIZATION AND CORRELATION
MEASUREMENTS

After applying experimentally the protocols that we
have described in the Letter, we measure the magneti-
zation. The obtained values are reported in Table SIII.
As we can see, the experimental values are very close to
expected theoretical values. However the influence of ex-
perimental imperfections and the uncontrolled coupling
with the environment is the reason we can observe some
deviations. These imperfections affect the statistics of
the system and therefore the transition probabilities:
this is why we have to apply the Maximum Likelihood
Estimation (MLE) adapted for such probabilities, as
presented in the following section.

MAXIMUM LIKELIHOOD ESTIMATION TO
OBTAIN TRANSITION PROBABILITIES

For our experiment we measured the magnetization of
each nuclear spin 〈σH

z 〉 , 〈σC
z 〉 and the correlation function

〈σH
z σC

z 〉 at three different spin temperatures. Using

〈O(τ)〉 =
∑

m,n

Omp0npm|n (S4)

(see main text) the expression of these mean values are
given by

〈σH
z 〉 (β) = 2

N−1
∑

n

(

pβn − pβ4

)

p1|n +

N−1
∑

n

(

pβn − pβ4

)

p3|n

+2pβ4 − 1, (S5)

〈σC
z 〉 (β) = 2

N−1
∑

n

(

pβn − pβ4

)

p1|n +
N−1
∑

n

(

pβn − pβ4

)

p2|n

+2pβ4 − 1, (S6)

〈σH
z σC

z 〉 (β) = −2
N−1
∑

n

(

pβn − pβ4

)

p2|n −
N−1
∑

n

(

pβn − pβ4

)

p3|n

−2pβ4 + 1. (S7)

Effective temperature 1

Experiment Theory

Forward Backward Forward Backward

〈σH
z 〉 0.13±0.05 -0.14±0.05 0.15 -0.16

〈σC
z 〉 -0.20±0.05 0.07±0.05 -0.19 0.07

〈σH
z σC

z 〉 -0.26±0.05 0.13±0.05 -0.27 0.11

Effective temperature 2

Experiment Theory

Forward Backward Forward Backward

〈σH
z 〉 0.26±0.05 -0.28±0.05 0.30 -0.31

〈σC
z 〉 -0.32±0.05 0.04±0.05 -0.32 0.01

〈σH
z σC

z 〉 -0.39±0.05 0.18±0.05 -0.36 0.18

Effective spin temperature 3

Experiment Theory

Forward Backward Forward Backward

〈σH
z 〉 0.34±0.05 -0.38±0.05 0.41 -0.42

〈σC
z 〉 -0.37±0.05 0.01±0.05 -0.39 -0.05

〈σH
z σC

z 〉 -0.44±0.05 0.17±0.05 -0.39 0.20

Table SIII. Values of the magnetization and correlation func-
tion.

Using the expression of the mean values (S5), (S6),
and (S7) we construct the matrix equation Ax = b as
explained in the main letter (see Eq. (1) of the main
text).
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(S8)

It is important to stress that if the measured data
were perfect (without any noise), as in a numerical sim-
ulation, the method leads directly to the correct result.
However due to experimental noise, the direct solution
of the Eq. (S8) from the experimental data could yield
to nonphysical results. We can overcome this problem
by searching in all the possible valid solutions (in the
sense of the set of transition probabilities obtained be-
ing a valid bistochastic matrix) and extract the closest
physical probabilities that solve Eqs. (S8). Those physi-
cal probabilities in general will not reproduce exactly the
measured data, but they will be the most likely to pro-
duce the experimental observation. A similar problem
occurs in quantum state tomography. Here, the usual
procedure to apply the MLE is to use a particular repre-
sentation for the density matrix given by

ρ =
T T †

Tr (T T †)
, (S9)

where T is a triangular matrix. Equation (S9) guaran-
tees that the density matrix will be a Hermitian defined
positive matrix with trace one. For example, considering
a system with two qubits, we can write T as

T =











t1 0 0 0

t5 + it6 t2 0 0

t7 + it8 t9 + it10 t3 0

t11 + it12 t13 + it14 t15 + it16 t4











, (S10)

where ti are the parameters that have to be defined in the
optimization of the maximum likelihood function given
the experimental data set.
However, for a transition probability matrix, things are

more complicated. For a transition probability matrix P ,
one could think to resort to the Birkhoff–von Neumann
decomposition [2]. This states that for a bistochastic
matrix P – i.e.

∑

m Pm|n =
∑

n Pm|n = 1 – there exist

the parameters θ1, θ2,. . . ,θk ∈ (0, 1) with
∑k

j= θj = 1
and the permutation matrices Λ1, Λ2,. . . ,Λk such that P

can be decomposed as

P = θ1Λ1 + θ2Λ2 + . . .+ θkΛk. (S11)

A permutation matrix Λj is a square matrix whose rows
and columns contain exactly one nonzero entry, which
is 1. However this representation may, in general, not
be unique, and finding the representation with the min-
imum number of terms has been shown to be NP-hard
problem [2]. Due to the difficulty of using such a repre-
sentation we are going to use a different approach and
instead of defining a specific representation for the tran-
sition probability matrix, we will solve Eq. (S8). From
that solution and by means of the numerical optimiza-
tions explained below, we will obtain the closest physical
solution.
Based on this, we define our likelihood function as

F (x) =
∑

k,j

(xk,j − Ξk,j)
2
, (S12)

where xk,j are the solution of the system of equations
given in (S8) as constructed from the set of the experi-
mentally measured observables, and Ξ is a positive ma-
trix, whose elements satisfy the condition 0 ≤ Ξk,j ≤ 1.
Then, we find the minimum of Eq. (S12) to obtain the
closest positive matrix Ξ that better fit our expected
result. Doing the minimization we only guarantee that
the elements of the optimized matrix are probabilities,
but such elements also have to satisfy the constraint
∑

k Ξk,j =
∑

j Ξk,j = 1. We can transform the posi-
tive matrix Ξ into a bistochastic one using the Sinkhorn-
Knopp algorithm [3]. That algorithm is a simple iterative
method that generates a bistochastic matrix by alterna-
tively normalizing the rows and the columns of a posi-
tive matrix. After getting the bistochastic matrix by the
application of the Sinkhorn-Knopp algorithm, we repeat
the minimization by using the likelihood function (S12)
where this solution enters in the next cycle as a new Ξk,j

and start the process over again until finally we reach a
convergence in the final solution. For our calculation we
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are setting a threshold of 1000 iteration with a tolerance
of 1× 10−6, but the convergence of this protocol is fast,
for the forward protocol we needed 3 iterations and for
the backward protocol 13 iterations only.

SYSTEMS LARGER THAN FEW BODIES

A. Initial state

The reconstruction of the system’s initial quantum
state is not strictly necessary at the beginning of the pro-
tocol. Quantum state tomography (QST) for the initial
state can in fact be avoided as long as it can be reasonably
assumed that the initial state is known, e.g. because the
system has been carefully prepared in a desired state or
has been allowed to thermalize at a known temperature.
In addition, for large systems, there are by now sev-

eral methods which significantly improve on the scaling
of QST with system size, making its scaling less than
exponential or providing a good approximation for the
state. Possibilities are, for instance, compressed sensing
QST [5], quantum state learning [6], QST assisted by
machine learning [7].

B. Adapting the method to large systems

1. Systems described by a lattice Hamiltonian

For lattice systems, the operators to be measured to
derive the work distribution function should be chosen
based on what is easy to measure for the specific system
at hand. However, for systems bigger than few-bodies,
the number of transitions would become prohibitively
large to be reconstructed one-by-one, by this – and possi-
bly any other – method. In this case it is suggested to use
an interpolation approach within the proposed method to
reconstruct the work distribution.
For large many-body systems, the number of transi-

tions increases rapidly with size: we expect then the work
probability distribution to regularise very rapidly to a
fairly well-defined bell shape. Indeed, we observed this
already for systems of the order of 6-8 spins [8]. In this
case, it would be superfluous to measure this curve for
every single transition, while a coarse-grained sampling
would be sufficient to reconstruct the curve. The solution
of Eq. (1) in our paper could then be adapted to the case
in which a simple continuous function is assumed for the
distribution. The same approximated methods for QST
for large systems mentioned in the previous subsection
could be adapted to solve this problem.
An interesting case would be the one of very strongly

correlated systems. In this case correlations reduce – de
facto – the Hilbert space to very few allowed transitions,
as seen for example in Fig. 1 (b) and (d) in Ref. [8]. Here

the original scheme as currently described in the paper
could be used.

2. Continuous, interacting N-particle systems

Within the context of density functional theory (DFT),
Ref. [31] proposed two functionals for the transition ma-
trix pm|n and discussed their limitations. These func-
tionals are derived via an inversion scheme, and their key
ingredient is the time-dependent electronic local density.
More recently, Ref. [9] proposed a way to access energy
fluctuations in scale-invariant, continuous quantum flu-
ids. In the following, we highlight how our method can
be adapted to systems of continuous variables.

For continuous, interacting N -particle systems, the
measure of a single local operator which commutes with
the final Hamiltonian Hτ is in principle sufficient to de-
termine the transition matrix pm|n and hence the work
probability distribution.

In this case we can write Eq. (S4) as

O(r, τ) = Tr[Ô(r)ρ̂(t)] (S13)

=

M
∑

m,n

O(r)mp0npm|n, (S14)

where both O(r, τ), and O(r)m are local and measur-
able. For example, where appropriate, O(r, τ) could be
the local particle density n(r, τ) or the local magnetiza-
tion m(r, τ). For electronic systems, the advantage of
these observables is that good estimates of them could
be calculated using DFT, which could facilitate the in-
version scheme.

Because the system is continuous, there is, in principle,
no limit to the number of points r where these measure-
ments could be taken, and hence the measurement of a
single local operator is enough to recover all elements of
the matrix pm|n. A more practical approach would be to
perform measurements over a manageable set of points
(r1, r2, . . . rs) and then fit the sets of measurements to
continuous functions. In addition, for electronic systems,
DFT methods [4] could be used to get approximations
for pm|n, which could aid the inversion scheme.

In electronic systems, the number of eigenstates M is
generally very large, for all practical purposes infinite.
This could be tackle by truncating the basis appropri-
ately with respect to the characteristic energies (includ-
ing the spin temperature) of the system at hand.

We aim to explore these points further in future devel-
opments of the method.
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COMPARISON BETWEEN EXPERIMENTAL
RESULTS AND THEORETICAL SIMULATIONS

FOR THE FORWARD AND BACKWARD
STROKE WORK DISTRIBUTION

We are reporting in this section the comparison be-
tween the experimentally extracted work distributions in
Fig. 3 of the main text with the corresponding theoret-
ical simulations, for both the forward (Fig. S2) and the
backward (Fig. S3) process. The technical imprecision is
associated to the errors bars in the experimental data.
Indeed, these figures confirms the very good agreement
between the theoretical predictions and results from the
experiment, with the great majority of experimentally
extracted work probabilities being well within one error
bar of the predicted results.

COMPARISON BETWEEN EXPERIMENTAL
RESULTS AND THE CORRESPONDING

NON-INTERACTING THEORETICAL SYSTEM
FOR THE FORWARD AND BACKWARD

STROKE WORK DISTRIBUTION

We are reporting in this section the comparison be-
tween the experimentally extracted work distributions in
Fig. 3 of the main text and the simulations’ results for the
corresponding non-interacting system (J = 0), for both
the forward (Fig. S4) and the backward (Fig. S5) pro-
cess. As can be observed the non-interacting results are
qualitatively and quantitatively distinct from the exper-
imental ones, underlying the importance of interactions
at the temperatures considered.
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Figure S2. Experimental (a, b, c) and theoretical (d, e, f) results for the forward work distribution for the three different
initial spin temperatures (a, d) kBT = 20± 3 peV, (b, e) kBT = 12± 2 peV and (c, f) kBT = 9± 2 peV

.

Figure S3. Experimental (a, b, c) and theoretical (d, e, f) results for the backward work distribution for the three different
initial spin temperatures (a, d) kBT = 20± 3 peV, (b, e) kBT = 12± 2 peV and (c, f) kBT = 9± 2 peV.
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Figure S4. Experimental (a, b, c) and non-interacting theoretical (d, e, f) results for the forward work distribution for the
three different initial spin temperatures (a, d) kBT = 20± 3 peV, (b, e) kBT = 12± 2 peV and (c, f) kBT = 9± 2 peV.

Figure S5. Experimental (a, b, c) and non-interacting theoretical (d, e, f) results for the backward work distribution for the
three different initial spin temperatures (a, d) kBT = 20± 3 peV, (b, e) kBT = 12± 2 peV and (c, f) kBT = 9± 2 peV.
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