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Abstract (275/275 words) 

 

Background 

There is limited guidance for using common drug therapies in the context of multimorbidity. 

In part, this is because their effectiveness for patients with specific comorbidities cannot 

easily be established using subgroup analyses in clinical trials. Here, we use simulations to 

explore the feasibility and implications of concurrently estimating effects of related drug 

treatments in patients with multimorbidity by partially pooling subgroup efficacy estimates 

across trials. 

Methods 

We performed simulations based on the characteristics of 161 real clinical trials of non-

insulin glucose lowering drugs for diabetes, estimating subgroup effects for patients with a 

hypothetical comorbidity across related trials in different scenarios using Bayesian 

hierarchical generalised linear models. We structured models according to an established 

ontology – the World Health Organisation Anatomic Chemical Therapeutic Classifications 

(WHO-ATC) – allowing us to nest all trials within drugs and all drugs within ATC classes, 

with effects partially pooled at each level of the hierarchy. In a range of scenarios, we 

compared the performance of this model to random effects meta-analyses of all drugs 

individually. 

Results 

Hierarchical, ontology-based Bayesian models were unbiased and accurately recovered 

simulated comorbidity-drug interactions. Compared to single drug meta-analyses, they 

offered a relative increase in precision of up to 250% in some scenarios due to information 

sharing across the hierarchy. Due to the relative precision of the approaches, a high 

proportion of small subgroup effects were only detectable using the hierarchical model. 

Conclusions 

By assuming that similar drugs may have similar subgroup effects, Bayesian hierarchical 

models based on structures defined by existing ontologies can be used to improve the 

precision of treatment efficacy estimates in patients with multimorbidity – with potential 

implications for clinical decision-making. 

 

Keywords 

Subgroup analysis; individual-patient data meta-analysis; multimorbidity; hierarchical 

modelling; medical ontologies 
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Introduction 

 

Multimorbidity, which is defined as the presence of two or more chronic conditions within an 

individual, is common and increasing. More than half of patients with any chronic disease 

have multimorbidity.(1) This represents a challenge because the applicability of clinical trial 

results to patients with multimorbidity is uncertain. Consequently, several clinical guideline 

bodies have urged caution in applying trial results to patients with multimorbidity,(2) while in 

practice patients with multimorbidity are less likely to receive drug-treatments shown to be 

effective in clinical trials, even where there is no contraindication to therapy.(3–6)  

 

One reason for this uncertainty is that multimorbidity is under-represented in clinical 

trials.(7,8)  For this reason, some researchers have used observational data – particularly 

administrative data, in which multimorbidity is common – to estimate treatment effects. 

However, such “pharmaco-epidemiological” approaches are subject to confounding by 

indication (9) despite methodological advances, (10,11) and so remain restricted in terms of 

their utility to support medical decision making in this regard. 

 

Moreover, while multimorbidity may not be present at the same rate in clinical trials 

compared to in the community, it is nonetheless common. For half of 22 medical conditions, 

we found that at least a third of trial participants – in standard industry-funded clinical trials – 

had multimorbidity. Furthermore, similar comorbidities were common in the trial and 

community settings.(8) Consequently, there is both a need and an opportunity to determine 

whether treatment effects in clinical trials differ for sub-groups of patients with and without 

multimorbidity, and for different patterns of multimorbidity.  

 

Reliably estimating treatment effects for sub-groups in individual clinical trials is notoriously 

difficult.(12–14) Claims of sub-group effects made in clinical trial reports are frequently 

unsupported by appropriate statistical evidence (15). While pre-specified sub-group analyses 

can be adequately powered, there are often insufficient numbers of participants to estimate 

differences in effects across sub-groups (especially for specific comorbidities) with adequate 

precision to inform clinical decision-making.(13) Moreover, simple methods to reduce the 

risk of false positives (i.e., by asserting that there is heterogeneity when none exists) do so at 

the expense of precision and increase in Type 2 errors.(16) Consequently, attempts to 

estimate treatment effects for patients with multimorbidity are likely to suffer from both poor 

sensitivity and poor specificity. 

 

Meta-analyses pool findings across trials to improve precision,(17) and individual patient 

data (IPD) meta-analyses can be used to pool treatment effect estimates for participants with 

specific characteristics such as particular comorbidities.(18) Even for meta-analyses, 

however, estimating sub-group effects with sufficient precision to inform clinical decision 

making is challenging because, compared to the overall trial, data on particular sub-groups 

can be limited. 

 

One approach to dealing with limited data is to use hierarchical modelling.(19) Within a 

Bayesian framework, hierarchical modelling is straightforward,(20) and has previously been 

shown to be useful for analysing clinical trial data. Examples include performing subgroup 

analyses,(19) and estimating adverse treatment effects.(21) Such approaches rely on the 

assumption that information can be shared between parameters. In an information-sharing 

approach to sub-group analysis, Dixon and Simon(20) assumed that treatment-covariate 
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interactions came from a common prior distribution. Similarly, in estimating effects of 

treatments on adverse events, Berry and Berry(21) assumed that events occurring within 

specific body systems (e.g., the gastrointestinal system) were related. In both examples, 

separate estimates were “partially pooled”, increasing precision and attenuating extreme 

values towards the group-level mean (shrinkage). Partial pooling and shrinkage are 

established features of hierarchical models.(22) These are desirable features for subgroup 

analyses as, where the assumption that information can be shared holds, they are likely to 

improve our ability to detect true subgroup effects, while reducing false positives. 

 

Despite these desirable properties, the use of hierarchical modelling in subgroup analyses has 

thus far has been limited. One reason for the limited adoption may be uncertainty in how to 

allow sharing of information between different trials – that is, how should hierarchical 

models be structured. Using established drug-related ontologies such as the World Health 

Organisation Anatomic Chemical Therapeutic Classifications (WHO ATC), which is a tree-

like classification scheme based on therapeutic indications and chemical forms,(23) and 

MED-RT, a US-based ontology which provides finer granularity for mechanisms of 

action,(24) may help overcome this barrier. Such ontologies represent expert knowledge 

about similarities, differences, and relationships between different drugs in terms of 

indications, chemical structures, and other features, providing a starting point from which to 

define a hierarchical structure for modelling. 

 

In other fields, relationships within ontologies have been used to predict protein–protein 

interactions, diagnoses and the classification of chemicals.(25) Ontologies have also been 

exploited to support the management and execution of clinical trials.(26–29) Since WHO-

ATC, MED-RT and other ontologies are publicly available, they provide a transparent 

starting point for analyses. This aspect of ontologies is appealing in the field of clinical trial 

meta-analysis where transparency, consistency and pre-specification are highly prized.(30)  

The current study 

In this study, we address the question of whether partial-pooling of subgroup effects in 

existing clinical trial data – using structures borrowed from established drug classification 

ontologies – is feasible and has the potential to support clinical decision making. To do this, 

we first simulate datasets with interactions between a group of non-insulin glucose lowering 

drugs for diabetes and a single hypothetical comorbidity, based on the characteristics of real 

trials. Next, we apply Bayesian hierarchical generalized linear models, with individual trials 

nested within drugs nested within ATC drug classes, to these data. Our use of an established 

ontology to structure a hierarchical meta-analysis is based on the simple assumption that 

drugs that are similar may behave similarly in subgroups. We compare the performance of 

these ontology-based hierarchical models, in terms of their recovery of comorbidity-treatment 

interaction effects for individual drugs, with that of standard, single-drug meta-analyses (see 

Figure 1 for an overview). In addition, we highlight specific properties of these models that 

emphasize their potential utility in IPD meta-analyses of comorbidity-based sub-group effects 

within clinical trial data. 

 

Methods 
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Identification and classification of existing trials as basis for simulation 

We opted to base our simulations on the characteristics of real trials of an exemplar drug 

grouping: non-insulin glucose lowering drugs for diabetes. We identified all relevant existing 

trials on the US clinical trials register (clinicaltrials.gov) that met a set of pre-specified 

selection criteria [Prospero protocol CRD42018048202 (31)]. Briefly, these included a 

minimum enrolment of 300 participants, a start date of 1 January 1990 or later, being a phase 

2/3, 3, or 4 trial, and having an upper age limit of 60 years or more. We used trial-level 

descriptive information that is publicly available on their clinicaltrials.gov record trials to 

define the structure of the simulated data to reflect, as closely as possible, the characteristics 

of real IPD that is (theoretically) available from trial sponsors. Specifically, we obtained 

information about the number of trials available per drug and class, and the number of 

participants enrolled in each trial, and used these characteristics as the basis of our 

simulations of subgroup effects for each trial. For simplicity, all trials were treated as single-

arm versus placebo/usual care in the simulation. 

 

After classification according to the WHO-ATC ontology, we included 161 trials involving  

210,046 participants, of 24 separate drugs from 7 different WHO-ATC 5-level classes (e.g., 

DPP-4 inhibitors, SGLT-2 inhibitors). Full details of the classifications are provided in 

sAppendix 1 and sTable 1.  

Data generation procedure 

We simulated data to generate trial-level subgroup effects for each of the 161 trials. This was 

to reflect a situation where individual patient level data for these trials had been shared, and 

the effect of an interaction between a particular comorbidity and the drug treatment under 

investigation had been estimated for each trial in preparation for meta-analysis – which is a 

common analytical approach in IPD meta-analysis. (17)  

 

Data were simulated based on an overall comorbidity-treatment interaction of -0.1 standard 

deviations at the level of the wider drug grouping (i.e., the top level of the hierarchy, 

reflecting the average interaction effect across all drugs). This was chosen as a minimum 

difference which might plausibly be important for decision-making, recognising that sub-

group interactions are likely to be modest in real applications. This effect size would mean 

that, for a treatment minus control arm difference in efficacy of 0.2 standard deviations, the 

treatment efficacy in patients with multimorbidity would be 0.1 standard deviations. 

 

Trial-level effects were simulated by adding random variation around the overall 

comorbidity-treatment interaction effect at each level of the hierarchy (i.e., at the level of 

drug class, drug, and trial). We simulated 1000 datasets for each of a range of scenarios, 

reflecting different degrees of between-trial, between-drug, and between-class variability: 

 

All levels: low variation 

In this scenario, we simulated 1000 datasets with trial-level interaction effects by adding 

random variation of 0.05 SDs at the levels of drug class, drug, and trial to the fixed overall 

effect of -0.10 SDs. Datasets in this scenario represent situations where all trials of a given 

drug, all drugs in a given class, and all classes of drugs in the hierarchy have highly similar 

estimates for a given comorbidity-treatment interaction effect. 
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All levels: medium variation 

In this scenario, we simulated 1000 datasets with trial-level interaction effects by adding 

random variation of 0.15 SDs at the level of drug class, drug, and trial to the fixed overall 

effect of -0.1 standard deviations. Datasets in this scenario represent situations where all trials 

of a given drug, all drugs in a given class, and all classes of drugs in the hierarchy have 

moderately similar estimates for a given comorbidity-treatment interaction effect. 

 

All levels: high variation 

In this scenario, we simulated 1000 datasets with trial-level interaction effects by adding 

random variation of 0.25 SDs at the level of drug class, drug, and trial to the fixed overall 

effect of -0.1 standard deviations. Datasets in this scenario represent situations where all trials 

of a given drug, all drugs in a given class, and all classes of drugs in the hierarchy have 

relatively dissimilar estimates for a given comorbidity-treatment interaction effect. 

 

Other scenarios: variation manipulated at a specific level of the hierarchy 

We additionally simulated sets of 1000 datasets in scenarios where, during the data 

generation procedure, we manipulated variation at each level of the hierarchy in turn, while 

keeping variation at the other levels constant at 0.05 SDs. So, for example, this allowed us to 

represent situations where trial-level estimates of comorbidity-treatment interactions for a 

given drug were highly dissimilar, but drugs and drug classes behaved more consistently (i.e., 

a “Trial-level: high variation” scenario, where trial-level interaction effects were simulated by 

adding random variation of 0.05 SDs at the level of drug class and drug, but 0.25 SDs at the 

level of trial, to the fixed overall effect of -0.1 standard deviations.) 

 

In the main analyses, we assumed the prevalence of the comorbidity that defines the 

subgroup to be 20%. This value is used in determining the precision of the simulated trial-

level interaction estimate, which is also based on the number of individuals enrolled in the 

trial and is the same across datasets and scenarios. Further details of the simulation procedure 

are given in sAppendix 2 and an abbreviated example of a simulated dataset is presented in 

sTable 2. 

Modelling  

To each simulated dataset, we fitted: i) a hierarchical generalized linear model with all trials 

nested within drugs, nested within ATC-5 drug classes (henceforth “the full model”); and ii) 

hierarchical generalized linear models for all trials of each of the 24 drugs (henceforth 

“single-drug models”). We fit these models using the R-INLA package.(32) Although 

integrated nested Laplacian approximation (INLA) performs approximate Bayesian 

inference, and offers less flexibility than software which uses Markov-chain Monte Carlo 

(MCMC) methods to fit models (specifically, hyperpriors must be Gaussian – an acceptable 

restriction in this case), model-fitting using R-INLA is very rapid, and gave good agreement 

to MCMC. Using R-INLA meant we could run the models on a larger number of simulated 

iterations and scenarios.  

Full model description 

Interactions at the various levels of the hierarchy were specified as follows: 
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Trial-specific comorbidity-treatment interactions 

!!,#,$ ∼ #(%!,#,$ , '!,#,$
% ) 

Between-trial variation in comorbidity-treatment interactions 

%!,#,$ ∼ #()#,$ , *#,$
% ) 

Between-drug variation in comorbidity-treatment interaction 

)#,$ ∼ #(+$ , ,$
%) 

Between-class comorbidity-treatment interaction 

+$ ∼ #(-, .%) 

 

The observed quantities y	and s represent the comorbidity-treatment interaction and standard 

error at the level of the individual trial. Normal distributions are parameterised as mean and 

variance. The / subscript indicates the trial, the 0 subscript indicates the drug, and the 1 

subscript indicates the drug class. The prior for the overall mean comorbidity-treatment 

interaction - was a Normal distribution [#(0, 2%)]. This was chosen to correspond to the 

assumption that covariate treatment interactions are uncommon (when trial data are analysed 

on an appropriate scale). For the between drug class variation	. , the between-drug (i.e., 

within-class) variation (,$)  and the between-trial (i.e., within-drug) variation (*#,$)  we used 

half-Normal priors on the standard deviations:	ℎ678#(0, 1%) . The priors were selected to be 

relatively non-informative in relation to the values for variance at these levels used during the 

data generation (0.052, 0.152, 0.252), in order to ensure that the performance of the full model 

was not artificially aided by our knowledge of these values.  

 

Single-drug models were specified using the lowest two levels of the full model (i.e., trial-

specific and between-trial) as outlined above, and with the prior for the mean comorbidity-

treatment interaction for a given drug )#,$ parameterized as a Normal distribution [#(0, 2%)]. 

Performance evaluation and sensitivity testing 

We evaluated the performance of the full model against that of the single drug models on 

their recovery of the drug-level interaction effect. In accordance with the framework outlined 

by Morris et al (33), we compare the two approaches on several established performance 

measures: bias (the extent to which the effect is systematically over-/underestimated); mean 

squared error (MSE; the average extent to which the effect is over or underestimated) and 

root mean squared error (RMSE; equivalent to MSE but interpretable on the same scale as the 

data); change in precision relative to the single drug model; and coverage (the proportion of 

credible intervals containing the true value). We used the R package rsimsum (34)to derive 

estimates and Monte Carlo standard errors for each of the measures (RMSE was derived 

manually and standard errors approximated using the delta method). 

 

To evaluate the sensitivity of the models to the prevalence of the subgroup-defining 

comorbidity, we re-ran all analyses with this value set at 10 and 50% respectively. 

 

The R code for the simulation and modelling are available at 

https://github.com/dmcalli2/simlt_interactions/blob/master/scripts/.  
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Results 

 

The relative performance of the full and single drug models is summarized in Table 1. 

Performance measures are aggregated across datasets and scenarios according to amount of 

variability around the overall average interaction effect of -0.1 that was introduced at each 

level of the hierarchy during data generation, as described in the Data generation procedure 

section above. As such, the top section of the table shows results for all datasets in three main 

scenarios: “All levels: low variation”, “All levels: medium variation”, “All levels: high 

variation”. In the lower section of the table, results are summarized for scenarios reflecting 

the effects of increasing variation at specific levels of the hierarchy. 

 

The full model estimated drug level comorbidity-treatment interaction effects without bias to 

the same extent as drug only models. MSE/RMSE values were similar in the full models and 

drug models in all cases, indicating that the degree of accuracy of the point estimates was at 

least equivalent. The largest difference in accuracy occurred in the “Trial level: high 

variation” scenario, where simulated trial-level effects were highly variable but drugs and 

drug classes relatively similar, when the full model was more precise by approximately 0.05 

SDs (RMSEdrug = 0.13; RMSEfull = 0.08). The models differed more markedly on the other 

two measures of performance, precision and coverage, for related reasons. The full model 

estimated drug level comorbidity-treatment interactions, on average, more precisely in all 

scenarios, and substantially so in most cases. This is the expected result of information 

sharing at the level of drug class. The relative precision of estimates from the two approaches 

is illustrated, as a function of drug class, in Figure 2. Precision gains related to use of the full 

model are most substantial for drugs with a limited number of trials (or only small trials; see 

sTable 1 for drug-specific details), and when drugs and drug classes are more similar and 

trial-level estimates more varied (e.g., “Trial level: high variation” scenario, middle panel). 

Precision in the full model was similar to or worse than in the drug model in all classes only 

when drug classes in the hierarchy were relatively dissimilar (e.g., “Class level: high 

variation” scenario, bottom-right panel).  

 

Coverage – the proportion of credible intervals including the “true” effect – was reduced in 

most instances in the full model, but this too is an expected feature of these models. It results 

from the combination of increased precision and shrinkage of extreme-for-class drug level 

effect estimates toward the class average. These features are illustrated in Figure 3, which 

shows the posterior distributions of effects of drugs in a specific class, as estimated in the full 

model (middle panel) and single drug models (lower panel), as they relate to the effect at the 

class level effect (top panel). Drug level effect distributions are shrunk (drawn towards the 

class level mean) and estimated more precisely in the full model when drugs in the hierarchy 

are sufficiently similar (e.g., “All levels: low variation” scenario, left-hand panels of Figure 

3). This means that the simulated effect for a given drug has more chance of falling outside 

the 95% credible intervals – but this is clearly desirable if the exchangeability assumption is 

met, as information from similar drugs has been used alongside the evidence available from 

trials of that drug to improve the estimate. In higher variation scenarios, the extent to which 

drug-level estimates are influenced by class-level information is flexible and proportionate to 

the homogeneity of effects within the class. In the example shown in Figure 3 in the “All 

levels: high variation” scenario (right-hand panels), shrinkage is minimal and only effects for 

gemigliptin and linagliptin are estimated more precisely in the full model, reflecting the fact 

that drugs and classes in this scenario are much less similar in terms of their subgroup effects. 



Improving estimation of subgroup effects using drug class information 

 

   

 

8 

 

Figure 4 illustrates the potentially clinically-meaningful impact of the increases in precision 

afforded by using the full model to estimate treatment interactions for related drugs in a 

hierarchy. It summarizes the proportion of all datasets in three main scenarios, in which a true 

drug-level subgroup effect of -0.10 or larger was able to be detected (i.e., with credible 

intervals not including zero) in i) both models; ii) the single drug model only; and iii) the full 

model only. For context, the panel on the right-hand side of the figure shows enrollment (i.e., 

N) for the largest trial per drug and aggregated across all trials of a drug. Effects in drugs with 

large trials and/or high aggregated enrollment were generally well-detected in both models, 

though a substantial proportion were only detected in the full model, especially in the “All 

levels: low variation” scenario. The drug-class level information-sharing in the full model 

was most beneficial for drugs with smaller/fewer trials (e.g., taspoglutide, and all drugs in 

classes A10BB and A10BX), where true effects were only detected in the full model, 

regardless of the extent of variation in the hierarchy.  

 

The results of sensitivity analyses for different rates of subgroup-defining comorbidity 

prevalence are presented in the supplement (sTables 3-4 and sFigures 1-4). 

 

Discussion 

 

In this paper, we have demonstrated the feasibility of improving the estimation of treatment 

effects in sub-groups by using Bayesian hierarchical meta-analytic models that share 

information across related trials based on established classification ontologies. Our 

simulations, based on characteristics of real trials of non-insulin glucose lowering drugs for 

diabetes, show that partial-pooling of subgroup effects across classes of drugs is: a) feasible, 

given the amount of data that is theoretically available from trial sponsors; and b) effective at 

increasing the potential of sub-group effect estimation in the context of multimorbidity to 

influence clinical decision-making.  

 

In our simulations, Bayesian hierarchical models structured around the ATC ontology were 

unbiased, and compared favourably to standard meta-analytic approaches in terms of both 

their precision (estimates are more precise) and conservatism (extreme estimates at drug and 

trial levels are shrunk towards class means) for estimating subgroup effects. Both of these 

represent non-trivial improvements in the estimation of drug level subgroup effects, as lack of 

data from individual trials/standard meta-analyses has typically meant that estimates are often 

too imprecise to be clinically useful and concerns about ‘false positives’ are commonly 

expressed in the literature around subgroups (12,35). More precisely and reliably estimated 

subgroup effects have greater potential to be incorporated into guidelines and influence 

clinical decision-making. This is particularly important in the context of multimorbid patients 

– who represent more than 50% of individuals with any chronic condition – since current 

guidelines lack specific trial-based recommendations for the treatment of these individuals. 

(2) 

 

The core features of the model we have outlined will not be novel to anyone familiar with 

Bayesian hierarchical modelling, and with concepts such as shrinkage and exchangeability. 

Such readers will also likely be aware of the difficulties inherent in formalizing prior 

knowledge for use in such models. We propose that the use of existing ontologies – 

specifically, though not exclusively, of drugs – such as the ATC system, to structure 

hierarchical models for meta-analyses of trial data is a widely applicable solution to this 
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problem. In particular, we believe it to be immediately applicable to the challenge of 

estimating treatment effects in sub-groups of patients likely to be poorly represented in 

clinical trials, such as those with specific comorbidities. To illustrate the portability of this 

approach and make it easier for others to use the WHO-ATC classification system, we have 

developed an online application (Figure 5) that can be used to visualise hierarchical 

classifications for a large set of trials registered in the clinicaltrials.gov database with relevant 

metadata. The tool is available at https://ihwph-hehta.shinyapps.io/duk_example_app/. Users 

can select trial types, wider drug groupings, and conditions of interest to create a hierarchy 

that can then be visualised in different ways, and for which the constituent trials (complete 

with NCT ID numbers) can be exported as a table. The tool can also be used to visualize 

networks of trials including drug-drug comparisons, and the principles of the model evaluated 

in this paper can be straightforwardly extended to perform network meta-analyses including 

data from such trials. The R code for the diagram is also available 

https://github.com/dmcalli2/ctg_network_diagram. We anticipate continuing to update this 

tool using more recent data from clinicaltrials.gov. 

 

An advantage of using existing ontologies such as the ATC system,(23,24) is that they have 

already codified a considerable body of expert knowledge about similarities/differences 

between different drugs. However, such ontologies might be used with modifications in real 

settings, where a decision may be made to exclude a drug from a given class or exclude a 

class from the modelling. If, for example, a new class of drug was developed to address a 

perceived loss of efficacy in a particular subgroup (e.g., there is some evidence that certain 

classes of antiplatelet have a lower relative efficacy in women than in men (36)) it would not 

be appropriate to include other drug-classes with the same physiological action within the 

modelling. Future work could also explore the use of more complex relationships between 

drugs, by incorporating multiple ontologies.  

 

Limitations and assumptions 

The core assumption of this approach is that partially pooling interaction estimates across 

different drugs and, especially, across drug classes, is reasonable. When considering the 

validity of this assumption, it is worth taking into account the context for examining 

treatment effects in multimorbidity. In current practice, imprecise covariate-treatment 

interactions are typically either interpreted as evidence that no difference exists, or as 

evidence that the treatment is not efficacious in patients with the multimorbidity, often 

according to some unstated prior belief. More precise estimates can be obtained from large 

observational datasets; however, such analyses are subject to confounding by indication, 

which has been called an “intractable” problem of epidemiology.(9) Secondly, it is worth 

reiterating that the flexibility of these models means that hierarchical structures can be 

defined (and subsequently refined) based on expert opinion and empirical evidence regarding 

the validity of the core assumption for specific drug groupings. We anticipate that sensitivity 

analyses involving dropping specific classes and drugs from a hierarchy and comparing 

model fit will become a standard facet of this approach, but acknowledge that further work is 

needed to develop formal assumption testing measures for use with real data. In particular, it 

will be important to develop contingencies to ascertain when a drug level estimate is extreme 

because that drug truly behaves differently from others in its class, and hence when the 

shrinkage afforded by a Bayesian hierarchical model is undesirable. Nonetheless, it should be 

borne in mind that an implicit assumption of single-drug meta-analyses is that drugs with 

similar mechanisms of action are no more likely to have similar sub-group effects associated 
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with them than those operating via entirely different biological pathways. This assumption, 

were it to be made explicitly each time a single drug meta-analysis is performed, would likely 

be at least as debatable – if not more so – than the notion that related drugs may behave 

similarly to one another. 

 

The scale of IPD sharing that is required for network meta-analyses is clearly greater than 

that which is needed for individual-drug meta-analyses. However, an important facet of the 

models we propose is that their benefits can be propagated to future work. Once a large 

network meta-analysis has been run, the posterior distributions of effects at drug class and 

drug levels can be used as priors in subsequent analyses. Indeed, as more trial sponsors 

provide access to individual-level participant data for increasing numbers of trials (e.g., via 

ClinicalStudyDataRequest.com (37)) it is possible to envisage the eventual compiling of a 

database of ‘off-the-shelf’ priors for treatment-comorbidity interactions, which will enable 

health economists and others to more easily model the effect of treatments in people with 

multimorbidity. 

 

The simulations in our study are subject to certain limitations. First, although we restricted 

our simulation to the trial-level (rather than simulating IPD at the patient level) for 

computational reasons, we have only considered a situation where IPD are available for all 

trials. That is, IPD would almost certainly be needed from all trials to get results stratified by 

particular comorbidities. To more pragmatically reflect the likely availability of data from 

clinical trials, it would be useful to explore models designed to accommodate aggregate data 

alongside IPD. However, one issue that this would exacerbate is inconsistency of reporting of 

covariates. Given that covariate reporting is likely to be missing not-at-random, such models 

would need to account for bias or rely on specific covariate results being obtainable from 

sponsors (at an aggregate level) on request. Even within IPD, trials may not consistently 

record or define specific covariates, and the impact of these potential inconsistencies are not 

considered here. However, in the case of multimorbidity at least, we have recently 

demonstrated using IPD for over 100 trials shared by commercial sponsors, that it is possible 

to use generally well-recorded concomitant medication use data to facilitate the investigation 

of comorbidities.(8) Second, for simplicity we considered only a single comorbidity-

treatment interaction. It would be useful in future studies to consider multiple comorbidities. 

This would mean simulating the impact of between-trial information sharing in models where 

there is also within-trial sharing via, for example, the Dixon-Simon model, where a common 

prior is placed on all treatment-covariate interactions.(20) Third, there are a range of 

important possible scenarios that we do not address in the current simulation. These include 

scenarios (i) with a smaller overall interaction effect (including no interaction), (ii) where an 

interaction effect is differs in magnitude or direction across classes within a hierarchy, and 

scenarios where comorbidities are absent in some trials. These (and many others) are relevant 

and realistic considerations for the challenges that real data may pose. However, the 

multiplicities created by so many possible scenarios are a limitation for all simulation studies, 

and the drawing up of bounds on the simulated universe(s) to be investigated is an inherent 

part of study design. In future, potentially informed by the characteristics of real IPD where it 

is obtained, explorations of the capability of this approach to be informative in different 

scenarios would undoubtedly be beneficial. We have published our code which we or others 

could modify to examine these, and many other scenarios in future. 
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Summary and conclusions 

Determining treatment effectiveness in multimorbidity is a challenging problem. If we are 

willing to assume - informed by existing ontologies – a level of similarity between drugs, 

hierarchical models can be used to estimate comorbidity-treatment interactions with 

improved precision. This has the potential to support trial-based decision making for patients 

with multimorbidity. 
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Tables 

Scenario   Single-drug model Full model 

Level(s) Variation Performance measure Estimate MCSE Estimate MCSE 

              

All Low  Bias 0.013 0.000 0.001 0.000 

All Low  MSE 0.003 0.000 0.003 0.000 

All Low  RMSE 0.058 0.000 0.056 0.000 

All Low  Rel. prec. ⁃ ⁃ 89.004 1.415 

All Low  Coverage 0.968 0.001 0.852 0.002 

All Medium  Bias 0.012 0.001 0.000 0.001 

All Medium  MSE 0.025 0.000 0.028 0.000 

All Medium  RMSE 0.159 0.001 0.166 0.001 

All Medium  Rel. prec. ⁃ ⁃ 13.212 0.435 

All Medium  Coverage 0.812 0.003 0.674 0.003 

All High  Bias 0.010 0.002 -0.003 0.002 

All High  MSE 0.069 0.001 0.076 0.001 

All High  RMSE 0.263 0.001 0.276 0.001 

All High  Rel. prec. ⁃ ⁃ 3.952 0.287 

All High  Coverage 0.759 0.003 0.624 0.003 

              

Trial Medium  Bias 0.012 0.001 0.000 0.000 

Trial Medium  MSE 0.008 0.000 0.005 0.000 

Trial Medium  RMSE 0.091 0.000 0.068 0.000 

Trial Medium  Rel. prec. ⁃ ⁃ 127.704 1.767 

Trial Medium  Coverage 0.958 0.001 0.897 0.002 

Trial High  Bias 0.014 0.001 0.001 0.000 

Trial High  MSE 0.017 0.000 0.006 0.000 

Trial High  RMSE 0.132 0.001 0.077 0.000 

Trial High  Rel. prec. ⁃ ⁃ 251.074 2.848 

Trial High  Coverage 0.959 0.001 0.944 0.001 

Drug Medium  Bias 0.013 0.001 0.001 0.001 

Drug Medium  MSE 0.004 0.000 0.007 0.000 

Drug Medium  RMSE 0.064 0.000 0.082 0.001 

Drug Medium  Rel. prec. ⁃ ⁃ 34.080 0.558 

Drug Medium  Coverage 0.968 0.001 0.902 0.002 

Drug High  Bias 0.013 0.001 0.000 0.001 

Drug High  MSE 0.006 0.000 0.008 0.000 

Drug High  RMSE 0.077 0.000 0.090 0.001 

Drug High  Rel. prec. ⁃ ⁃ 10.278 0.274 

Drug High  Coverage 0.968 0.001 0.911 0.002 

Class Medium  Bias 0.013 0.001 0.001 0.001 
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Class Medium  MSE 0.019 0.000 0.020 0.000 

Class Medium  RMSE 0.138 0.001 0.142 0.001 

Class Medium  Rel. prec. ⁃ ⁃ 3.648 0.443 

Class Medium  Coverage 0.785 0.003 0.542 0.003 

Class High  Bias 0.010 0.002 -0.003 0.002 

Class High  MSE 0.053 0.001 0.061 0.001 

Class High  RMSE 0.230 0.001 0.246 0.001 

Class High  Rel. prec. ⁃ ⁃ -10.158 0.283 

Class High  Coverage 0.676 0.003 0.380 0.003 

              

 

 

Table 1.  Summary of performance measures for full and single drug only models across all simulated 

datasets for different scenarios 

Note – See Data generation procedure in Methods for full definition of scenarios; MSE 

=mean squared error; RMSE=root mean squared error; Rel. precision = % change in 

precision for full vs. drug model; Coverage = proportion of 95% credible intervals 

containing true effect; MCSE = Monte Carlo standard errors; RMSE estimates and 

corresponding MCSEs are not calculated by default in the rsimsum package and so are 

instead derived, with the MCSE approximated using the delta method, i.e.: 

 :;&'()	 =	=+,-.√'()0

1
	≈ 	=1(()!"#)$

41	×	'()6 =	 ()!"#
%	×	√'()6 :  
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Figure legends 

 

Figure 1. Schematic overview of the proposed and comparator approaches in the current simulation 
study – shown for a subset of drugs within two classes the A10B ATC4 class used as the basis for the 

simulation 

Figure 2. Summary of relative precision of drug level comorbidity-treatment interaction effects in full 

vs. single drug model as a function of drug class 

Figure 3.  Posterior densities estimated for interaction effects at the drug class (top panel) and drug 
level (middle panel) from the full model and at the drug level (bottom panel) from single drug models 

for drugs in the A10BH class in a single randomly-selected dataset in the All levels: low variation and 

All levels: high variation scenarios, illustrating properties of shrinkage at the drug level in the full 

model 

Figure 4.  Illustration of the impact of increased precision in the full model: summarising the 

proportion of all datasets with “true” effects in the three main scenarios in which credible intervals for 

the interaction effect estimate for each drug excluded zero (i.e., no interaction) in i) both models; ii) 

the single drug model only; and iii) the full model only, alongside enrollment information   

Figure 5.  Introduction to an online tool for drawing network hierarchies of trials nested within drugs 
and drug WHO-ATC drug classes ascertained based on clinical trials with relevant metadata on 

clinicaltrials.gov 

 

 

 



Figure 1. Schematic overview of the proposed and comparator approaches in the current simulation study – shown for a subset of drugs 

within two classes the A10B ATC4 class used as the basis for the simulation 

Note – only a subset of the hierarchy is shown in the interests of managing space constraints; in the study the full hierarchical meta-analytic model is 

applied to a network incorporating all A10B drugs, and single drug meta-analyses are similarly run for all drugs in the network 



 

Figure 2. Summary of relative precision of drug level comorbidity-treatment interaction effects in full 

vs. single drug model as a function of drug class 

Note – error bars show Monte-Carlo standard errors; information on the number and size of trials for each 

drug class is found in sTable 1; in contrast to the values in Table 1 where relative precision is always 

displayed as % change in precision for the full model relative to the drug model, here the “comparator 

method” is selected as whichever of the full or drug model are less precise in order to facilitate visual 

comparisons  
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Figure 4.  Illustration of the impact of increased precision in the full model: summarising the 

proportion of all datasets with “true” effects in the three main scenarios in which credible intervals for 

the interaction effect estimate for each drug excluded zero (i.e., no interaction) in i) both models; ii) 
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Figure 5.  Introduction to an online tool for drawing network hierarchies of trials nested within drugs and drug 

WHO-ATC drug classes ascertained based on clinical trials with relevant metadata on clinicaltrials.gov 
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sTable 3. Summary of performance measures for full and single drug only models across all simulated datasets for 

different scenarios – LOW SIMULATED COMORBIDITY PREVALENCE (10%) 

sTable 4 Summary of performance measures for full and single drug only models across all simulated datasets for 

different scenarios – HIGH SIMULATED COMORBIDITY PREVALENCE (50%) 

 

 
sFigure 1 Summary of relative precision of drug level comorbidity-treatment interaction effects in full vs. single 

drug model as a function of drug class– LOW SIMULATED COMORBIDITY PREVALENCE (10%) 

sFigure 2  Summary of relative precision of drug level comorbidity-treatment interaction effects in full vs. single 

drug model as a function of drug class– HIGH SIMULATED COMORBIDITY PREVALENCE (50%) 

sFigure 3 Illustration of the impact of increased precision in the full model: summarising the proportion of all 

datasets with “true” effects in the three main scenarios in which credible intervals for the interaction effect 

estimate for each drug excluded zero (i.e., no interaction) in i) both models; ii) the single drug model only; 

and iii) the full model only, alongside enrollment information  – LOW SIMULATED COMORBIDITY 

PREVALENCE (10%) 

sFigure 4 Illustration of the impact of increased precision in the full model: summarising the proportion of all 

datasets with “true” effects in the three main scenarios in which credible intervals for the interaction effect 

estimate for each drug excluded zero (i.e., no interaction) in i) both models; ii) the single drug model only; 

and iii) the full model only, alongside enrollment information – HIGH SIMULATED COMORBIDITY 

PREVALENCE (50%) 
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sAppendix 1 

 

Each set of trials was organised into a hierarchy based on the biological mechanism of action of the drugs 
under study. For the diabetes trial-set, the WHO-ATC-5 level grouping of included drugs was closely 

reflective of the mechanism of action, so this was used as a node in the hierarchy. As a result, diabetes trials 

were nested within drugs, drugs were nested within WHO-ATC-5 drug classes, and drug classes were nested 
within the wider drug grouping (the WHO-ATC-4 level code A10B). The full network diagram for the 

diabetes trials can be viewed online here: https://ihwph-hehta.shinyapps.io/duk_example_app/. The 

classifications for the diabetes drugs are shown in sTable 1. 

  

sAppendix 2 
 

In order to simulate interaction effects and their precision at the trial-level (but without simulating IPD in 

full), four groups per trial were defined overall: two for each arm (those with and without the comorbidity). 
We assumed one-to-one randomisation within a two-group parallel design, and that the comorbidity was 

equally common in the intervention and control arms. The precision of the comorbidity-treatment interaction 

estimate was approximated as the inverse of the sum of the standard errors-squared for each of the four 
groups, where the standard error for each group was estimated as the standard deviation for the standardised 

outcome (by definition one), divided by the square root of the number of participants in that group. The N-

per-group was calculated by combining the trial-specific enrolment (as recorded in clinicaltrials.gov) and the 
specified prevalence for the comorbidity (see below).   

 

An example dataset from a single iteration of the simulation for the diabetes trial-set is shown in sTable 2. 

 

Supplementary references 
 
1.  Pathak J, Chute CG. Analyzing categorical information in two publicly available drug terminologies: 

RxNorm and NDF-RT. J Am Med Informatics Assoc. 2010;  

2.  Iglay K, Hannachi H, Joseph Howie P, Xu J, Li X, Engel SS, et al. Prevalence and co-prevalence of 
comorbidities among patients with type 2 diabetes mellitus. Curr Med Res Opin. 2016;32(7):1243–52.  

3.  Matcham F, Rayner L, Steer S, Hotopf M. The prevalence of depression in rheumatoid arthritis: a 

systematic review and meta-analysis. Rheumatology. 2013;52(12):2136–48.  

4.  Mikocka-Walus AA, Turnbull DA, Moulding NT, Wilson IG, Andrews JM, Holtmann GJ. 
Controversies surrounding the comorbidity of depression and anxiety in inflammatory bowel disease patients: 

A literature review. Inflamm Bowel Dis. 2007;13(2):225–34.  

5.  Hanlon P, Hannigan L, Rodriguez-Perez J, Fischbacher C, Welton NJ, Dias S, et al. Representation of 
people with comorbidity and multimorbidity in clinical trials of novel drug therapies: an individual-level 

participant data analysis. BMC Med. 2019 Dec 12;17(1):201.  



 3 

Supplementary tables  

Drug WHO-ATC level 5 code ATC-5 class description ATC-7 code N trials Total N participants 

metformin A10BA biguanide A10BA02 4 1220 

glipizide A10BB A10BB Sulfonylureas A10BB07 1 700 

glimepiride A10BB A10BB Sulfonylureas A10BB12 2 618 

rivoglitazone A10BG thiazolidinedione A10BG_2 1 910 

rosiglitazone A10BG thiazolidinedione A10BG02 4 2134 

pioglitazone A10BG thiazolidinedione A10BG03 2 948 

sitagliptin A10BH dpp-4 inhibitor A10BH01 20 23766 

vildagliptin A10BH dpp-4 inhibitor A10BH02 16 11158 

saxagliptin A10BH dpp-4 inhibitor A10BH03 11 24404 

alogliptin A10BH dpp-4 inhibitor A10BH04 5 6944 

linagliptin A10BH dpp-4 inhibitor A10BH05 13 14452 

gemigliptin A10BH dpp-4 inhibitor A10BH06 1 288 

taspoglutide A10BJ glp-1 receptor agonist A10BJ_3 1 332 

exenatide A10BJ glp-1 receptor agonist A10BJ01 7 20402 

liraglutide A10BJ glp-1 receptor agonist A10BJ02 8 12534 

lixisenatide A10BJ glp-1 receptor agonist A10BJ03 13 6058 

albiglutide A10BJ glp-1 receptor agonist A10BJ04 6 11142 

dulaglutide A10BJ glp-1 receptor agonist A10BJ05 4 10504 

dapagliflozin A10BK A10BK Sodium-glucose co-transporter 2 (SGLT2) inhibitors A10BK01 22 32198 

canagliflozin A10BK A10BK Sodium-glucose co-transporter 2 (SGLT2) inhibitors A10BK02 9 15724 

empagliflozin A10BK A10BK Sodium-glucose co-transporter 2 (SGLT2) inhibitors A10BK03 8 8390 

repaglinide A10BX glinide A10BX02 1 324 

nateglinide A10BX glinide A10BX03 1 4652 

mitiglinide A10BX glinide A10BX08 1 244 

sTable 1. Classification of drugs from the diabetes trial-set into classes based on WHO-ATC-5 
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Trial ID 

WHO-

ATC 

level 5 

code 

(class) 

Drug 

Number of 

participants per 

experimental 

group in trial 

Simulated 

covariate-

treatment 

interaction effect 

estimate 

Standard 

error of 

interaction 

effect 

estimate 

(derived1) 

NCT00819741 A10BA metformin 216 0.08 0.19 

NCT01512979 A10BA metformin 158 0.07 0.23 

NCT01545388 A10BA metformin 112 0.07 0.27 

NCT02068443 A10BA metformin 124 0.13 0.25 

NCT00131664 A10BB glimepiride 130 -0.14 0.25 

NCT01459809 A10BB glimepiride 179 -0.11 0.21 

NCT00086515 A10BB glipizide 350 -0.19 0.15 

NCT00094757 A10BG pioglitazone 173 -0.26 0.22 

NCT00220961 A10BG pioglitazone 301 -0.23 0.16 

NCT00484198 A10BG rivoglitazone 455 -0.10 0.13 

NCT00241605 A10BG rosiglitazone 300 0.05 0.16 

NCT00359112 A10BG rosiglitazone 272 0.03 0.17 

NCT00386100 A10BG rosiglitazone 344 -0.03 0.15 

NCT00499707 A10BG rosiglitazone 151 -0.05 0.23 

NCT00286494 A10BH alogliptin 164 -0.19 0.22 

NCT00432276 A10BH alogliptin 401 -0.34 0.14 

NCT00968708 A10BH alogliptin 2690 -0.20 0.05 

NCT01318070 A10BH alogliptin 113 -0.24 0.27 

NCT01318083 A10BH alogliptin 104 -0.26 0.28 

NCT01787396 A10BH gemigliptin 144 -0.10 0.24 

… 
     

 

sTable 2. Example dataset from simulation (abbreviated to 20 rows) 

Notes: 1 The standard error of the interaction effect estimate for each trial was derived by assuming a 

SD of 1 for the main effect in a trial, and using the number of participants per group in each trial to 

calculate standard errors for subgroups with and without a hypothetical comorbidity (prevalence set at 
0.2), which were combined to give the overall variance of the interaction estimate  
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Scenario   Single-drug model Full model 

Level(s) Variation Performance measure Estimate MCSE Estimate MCSE 

              

All Low  Bias 0.013 0.000 0.001 0.000 

All Low  MSE 0.003 0.000 0.003 0.000 

All Low  RMSE 0.058 0.000 0.056 0.000 

All Low  Rel. prec. ⁃ ⁃ 122.727 1.868 

All Low  Coverage 0.989 0.001 0.889 0.002 

All Medium  Bias 0.013 0.001 0.000 0.001 

All Medium  MSE 0.025 0.000 0.028 0.000 

All Medium  RMSE 0.160 0.001 0.167 0.001 

All Medium  Rel. prec. ⁃ ⁃ 20.311 0.543 

All Medium  Coverage 0.855 0.002 0.719 0.003 

All High  Bias 0.010 0.002 -0.003 0.002 

All High  MSE 0.069 0.001 0.077 0.001 

All High  RMSE 0.263 0.001 0.277 0.001 

All High  Rel. prec. ⁃ ⁃ 7.028 0.345 

All High  Coverage 0.783 0.003 0.651 0.003 

      
    

Trial Medium  Bias 0.012 0.001 0.000 0.000 

Trial Medium  MSE 0.009 0.000 0.005 0.000 

Trial Medium  RMSE 0.093 0.000 0.069 0.000 

Trial Medium  Rel. prec. ⁃ ⁃ 134.132 1.922 

Trial Medium  Coverage 0.977 0.001 0.918 0.002 

Trial High  Bias 0.014 0.001 0.002 0.001 

Trial High  MSE 0.018 0.000 0.007 0.000 

Trial High  RMSE 0.134 0.001 0.081 0.000 

Trial High  Rel. prec. ⁃ ⁃ 221.363 2.696 

Trial High  Coverage 0.968 0.001 0.950 0.001 

Drug Medium  Bias 0.013 0.001 0.001 0.001 

Drug Medium  MSE 0.004 0.000 0.008 0.000 

Drug Medium  RMSE 0.065 0.000 0.090 0.001 

Drug Medium  Rel. prec. ⁃ ⁃ 56.857 0.797 

Drug Medium  Coverage 0.989 0.001 0.938 0.002 

Drug High  Bias 0.013 0.001 0.000 0.001 

Drug High  MSE 0.006 0.000 0.011 0.000 

Drug High  RMSE 0.077 0.000 0.107 0.001 

Drug High  Rel. prec. ⁃ ⁃ 22.996 0.399 

Drug High  Coverage 0.989 0.001 0.953 0.001 

Class Medium  Bias 0.014 0.001 0.001 0.001 

Class Medium  MSE 0.019 0.000 0.019 0.000 

Class Medium  RMSE 0.138 0.001 0.138 0.001 

Class Medium  Rel. prec. ⁃ ⁃ 12.471 0.544 

Class Medium  Coverage 0.846 0.002 0.606 0.003 
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Class High  Bias 0.010 0.001 -0.003 0.002 

Class High  MSE 0.052 0.001 0.058 0.001 

Class High  RMSE 0.229 0.001 0.241 0.001 

Class High  Rel. prec. ⁃ ⁃ -6.145 0.322 

Class High  Coverage 0.737 0.003 0.447 0.003 

              

 

sTable 3. Summary of performance measures for full and single drug only models across all simulated 

datasets for different scenarios – LOW SIMULATED COMORBIDITY PREVALENCE (10%) 

Note – See Data generation procedure in Methods for full definition of scenarios; MSE =mean squared error; 

RMSE=root mean squared error; Rel. precision = % change in precision for full vs. drug model; Coverage = 

proportion of 95% credible intervals containing true effect; MCSE = Monte Carlo standard errors; RMSE 
estimates and corresponding MCSEs are not calculated by default in the rsimsum package and so are instead 

derived, with the MCSE approximated using the delta method, i.e.: 

 !"!"#$	 =	%&'()√"#$+,
	≈ 	%,(#$!"#)$

/,	×	"#$1 =	 #$!"#
2	×	√"#$1 :  
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Scenario   Single-drug model Full model 

Level(s) Variation Performance measure Estimate MCSE Estimate MCSE 

              

All Low  Bias 0.013 0.000 0.001 0.000 

All Low  MSE 0.003 0.000 0.003 0.000 

All Low  RMSE 0.057 0.000 0.056 0.000 

All Low  Rel. prec. ⁃ ⁃ 65.898 1.127 

All Low  Coverage 0.943 0.001 0.821 0.002 

All Medium  Bias 0.012 0.001 0.000 0.001 

All Medium  MSE 0.025 0.000 0.027 0.000 

All Medium  RMSE 0.159 0.001 0.165 0.001 

All Medium  Rel. prec. ⁃ ⁃ 9.408 0.370 

All Medium  Coverage 0.783 0.003 0.647 0.003 

All High  Bias 0.010 0.002 -0.003 0.002 

All High  MSE 0.069 0.001 0.076 0.001 

All High  RMSE 0.263 0.001 0.276 0.001 

All High  Rel. prec. ⁃ ⁃ 2.398 0.261 

All High  Coverage 0.748 0.003 0.609 0.003 

      
    

Trial Medium  Bias 0.012 0.001 0.000 0.000 

Trial Medium  MSE 0.008 0.000 0.004 0.000 

Trial Medium  RMSE 0.090 0.000 0.067 0.000 

Trial Medium  Rel. prec. ⁃ ⁃ 129.466 1.703 

Trial Medium  Coverage 0.944 0.001 0.884 0.002 

Trial High  Bias 0.013 0.001 0.001 0.000 

Trial High  MSE 0.017 0.000 0.006 0.000 

Trial High  RMSE 0.131 0.001 0.075 0.000 

Trial High  Rel. prec. ⁃ ⁃ 263.698 2.887 

Trial High  Coverage 0.955 0.001 0.942 0.002 

Drug Medium  Bias 0.013 0.001 0.001 0.001 

Drug Medium  MSE 0.004 0.000 0.006 0.000 

Drug Medium  RMSE 0.064 0.000 0.076 0.000 

Drug Medium  Rel. prec. ⁃ ⁃ 21.332 0.425 

Drug Medium  Coverage 0.943 0.001 0.860 0.002 

Drug High  Bias 0.012 0.002 0.000 0.001 

Drug High  MSE 0.006 0.000 0.006 0.000 

Drug High  RMSE 0.076 0.000 0.080 0.001 

Drug High  Rel. prec. ⁃ ⁃ 2.542 0.215 

Drug High  Coverage 0.943 0.001 0.867 0.002 

Class Medium  Bias 0.013 0.001 0.001 0.001 

Class Medium  MSE 0.019 0.000 0.021 0.000 

Class Medium  RMSE 0.139 0.001 0.145 0.001 

Class Medium  Rel. prec. ⁃ ⁃ -1.838 0.384 

Class Medium  Coverage 0.739 0.003 0.494 0.003 
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Class High  Bias 0.010 0.002 -0.003 0.002 

Class High  MSE 0.053 0.001 0.062 0.001 

Class High  RMSE 0.230 0.001 0.249 0.001 

Class High  Rel. prec. ⁃ ⁃ -12.440 0.263 

Class High  Coverage 0.635 0.003 0.333 0.003 

              

 

sTable 4 Summary of performance measures for full and single drug only models across all simulated 

datasets for different scenarios – HIGH SIMULATED COMORBIDITY PREVALENCE (50%) 

Note – See Data generation procedure in Methods for full definition of scenarios; MSE =mean squared error; 

RMSE=root mean squared error; Rel. precision = % change in precision for full vs. drug model; Coverage = 

proportion of 95% credible intervals containing true effect; MCSE = Monte Carlo standard errors; RMSE 
estimates and corresponding MCSEs are not calculated by default in the rsimsum package and so are instead 

derived, with the MCSE approximated using the delta method, i.e.: 

 !"!"#$	 =	%&'()√"#$+,
	≈ 	%,(#$!"#)$

/,	×	"#$1 =	 #$!"#
2	×	√"#$1 :  
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Supplementary figures 
 

 

 

 

  

sFigure 1 Summary of relative precision of drug level comorbidity-

treatment interaction effects in full vs. single drug model as a function of 
drug class– LOW SIMULATED COMORBIDITY PREVALENCE 

(10%) 

Note – error bars show Monte-Carlo standard errors; information on the 

number and size of trials for each drug class is found in sTable 1 
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sFigure 2  Summary of relative precision of drug level comorbidity-treatment 

interaction effects in full vs. single drug model as a function of drug class– HIGH 

SIMULATED COMORBIDITY PREVALENCE (50%) 

Note – error bars show Monte-Carlo standard errors; information on the number and 

size of trials for each drug class is found in sTable 1 
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sFigure 3 Illustration of the impact of increased precision in the full model: summarising the 

proportion of all datasets with “true” effects in the three main scenarios in which credible intervals 

for the interaction effect estimate for each drug excluded zero (i.e., no interaction) in i) both models; 
ii) the single drug model only; and iii) the full model only, alongside enrollment information  – 

LOW SIMULATED COMORBIDITY PREVALENCE (10%) 
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sFigure 4 Illustration of the impact of increased precision in the full model: summarising 
the proportion of all datasets with “true” effects in the three main scenarios in which 

credible intervals for the interaction effect estimate for each drug excluded zero (i.e., no 

interaction) in i) both models; ii) the single drug model only; and iii) the full model only, 

alongside enrollment information – HIGH SIMULATED COMORBIDITY 

PREVALENCE (50%) 


