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Abstract

We consider the preferential attachment model with location-based choice introduced by

Haslegrave et al. (Random Struct Algorithms 56(3):775–795, 2020) as a model in which

condensation phenomena can occur. In this model, each vertex carries an independent and

uniformly distributed location. Starting from an initial tree, the model evolves in discrete

time. At every time step, a new vertex is added to the tree by selecting r candidate vertices

from the graph with replacement according to a sampling probability proportional to these

vertices’ degrees. The new vertex then connects to one of the candidates according to a

given probability associated to the ranking of their locations. In this paper, we introduce a

function that describes the phase transition when condensation can occur. Considering the

noncondensation phase, we use stochastic approximation methods to investigate bounds for

the (asymptotic) proportion of vertices inside a given interval of a given maximum degree.

We use these bounds to observe a power law for the asymptotic degree distribution described

by the aforementioned function. Hence, this function fully characterises the properties we

are interested in. The power law exponent takes the critical value one at the phase transition

between the condensation–noncondensation phase.
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1 Introduction

The study of complex networks is a prevalent area of interest for researchers as many seem-

ingly dissimilar structures observable in the real world can be modelled using a common

set of techniques. This is due to many large networks sharing similar topological properties.

For instance, it has been observed that the empirical degree distribution of many large-scale

real world networks follows an approximate power law over a large finite range of degrees.

Hence, we seek families of models that imitate this behaviour.

A probabilistic approach is to build networks as a growing sequence of graphs in which

the degree distribution follows a power-law when the number of vertices is going to infinity.

That is, the tail of the asymptotic proportion of vertices of degree at least k behaves like k−τ

for some power-law exponent τ . We call such a network scale-free.

In 1999 Barabási and Albert popularised preferential attachment [1] as a method of growth

which utilises the famous rich get richer concept. As a new vertex joins the network, it forms

an edge to already existing vertices with probability proportional to the degrees of current

vertices. This mechanism was generalised by Dorogovtsev et al. [8] by biasing the selection

mechanism to enhance or suppress the influence of the degrees. It was shown by various

authors that this building mechanism indeed leads to scale-free networks [3,8,12]. Although

preferential attachment is often an accurate method of modelling scale-free networks, it fails

to consider a new vertex’s potential to attract new edges. In order to tackle this issue, Bianconi

and Barabási [2] suggested the addition of vertex fitness as an additional parameter. Here,

each vertex joins the network with its own randomly chosen fitness, allowing for a new level

of competition between vertices, separate from their current edge-based popularity. Many

models have been devised which include this ‘attractiveness’ coefficient, most notably by

Borgs et al. [4] and Dereich and Ortgiese [6]. Another way of incorporating a vertex’s inherent

potential for growth is by introducing the notion of choice. In [15–17] preferential attachment

is used to sample a set of vertices from the network as candidates for connection. Afterwards,

a preassigned attachment rule based on the degrees of the sampled vertices is used to decide

where new edges are formed.

Furthermore, a feature of interest is the condensation phenomenon. Condensation occurs

if the total degree of an o(n) subset of vertices grows linearly in time n. Loosely speak-

ing, at any time there exists some vertex whose degree dramatically dominates the others.

Whereas in classical preferential attachment condensation cannot occur, it was shown that

both preferential attachment with choice and models with fitness can exhibit condensation

[4–7,10].

In this paper, we consider the preferential attachment with location-based choice model

introduced by Haslegrave, Jordan and Yarrow in [11] which can be seen as a generalised

variant of [9]. This model combines the ideas of both fitness and choice in a natural way.

Starting from an initial tree graph, at each time step a new vertex joins the graph and is

assigned its own location which is uniformly chosen from (0, 1). When this vertex joins the

network, a subset of r neighbour candidates is sampled with probability proportional to their

degree plus some constant α. The sampled vertices are ranked according to their locations.

Following this, a single vertex from the sample is chosen for connection to the new vertex

according to some probability measure �. Here, � can be used to make different regions of

(0, 1) more or less appealing and thus incorporates more flexibility than in previous models.

As in [11], we refer to location as opposed to fitness in order not to give the false impression

of preferring the ‘fittest’ vertex. We could choose any continuous distribution on the real line

but we do not expect any changes in the results as the connection mechanism only depends
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on the ordering of the vertices’ locations and not their actual value. Hence, there is no loss in

generality by restricting the locations distribution to the uniform one on (0, 1). This has the

added benefit that it matches previous work our results build on. From [11], it can be derived

that there exists a critical value αc such that condensation can occur if α < αc.

In this article, we give a new description of αc and study the degree-distribution of this

model in the noncondensation regime. We show that in the noncondensation case, α ≥ αc,

the model is asymptotically scale-free with a heavy tailed degree distribution with power-

law exponent τ = 2+α
2+αc

. Hence, the critical value αc for the condensation phase transition

matches the one for which the power-law exponent is large enough for the degree distribution’s

first moment to exist. This behaviour coincides with our understanding of condensation. In

the condensation phase, with positive probability a proportionally small number of vertices

dominate the others. The noncondensation phase is ‘regular’ in the sense that a typical vertex

has finite expected degree. As the behaviour of the degree distribution dramatically changes

between the two phases, we lose the finite moments at that phase transition, even though for

α = αc the network is still scale-free with τ = 1. The same behaviour can be observed in

similar models with choice [15]. Although a power-law distribution is what one would hope

for in the considered regime, it is notable that this is not the case in the original preferential

attachment model with choice of Malyshkin and Paquette for more than two options [16].

To derive the degree distribution, we introduce a function f on the location space (0, 1)

depending only on � that plays a key role in understanding the influence of location on the

degree of a vertex. Given a vertex with location x , the expected probability of choosing that

vertex with respect to �, out of a sample containing this vertex and r − 1 uniformly located

vertices is given by f (x)/r . We show that the condensation phase transition as well as the

power-law exponent can be derived from the maximum value of f . To get this, we determine

the concrete degree distribution of a vertex at a given location whose tail behaviour follows

a power-law distribution dependent on f from which we derive the final result. The function

f hints at where to search for the high degree vertices. Specifically, the larger the values of

f in a specific region, the more likely we are to find high degree vertices there. The question

of the degree distribution in the condensation phase is also of some interest but cannot be

achieved with our methods since we rely on some continuity properties in our proof that are

not fulfilled in the condensation regime.

The paper is structured as follows: In Sect. 2 we formally introduce the model and for-

mulate the main theorem. Afterwards we recall the phase transition conditions determined in

[11]. We introduce formally the function f and rewrite these conditions. In Sect. 3, we use

stochastic approximation methods to deduce bounds of the growth of the empirical degree

distribution. We use these bounds to deduce the asymptotic degree distribution, proving

the main theorem. In the last section, we show numerical results and simulations for some

interesting and important choices of � underlining our understanding and results.

2 Model Description andMain Result

Let r ≥ 2 be an initial integer model parameter and let � be a probability measure on

{1, . . . , r}. In the following, we treat � as a probability vector (�1, . . . , �r ). Furthermore,

let G0 be an initial tree graph on n0 ≥ 2 vertices {v1−n0 , . . . , v0}. Additionally, let each

vertex vi in G0 have its own location xi that is drawn independently and uniformly at random

from (0, 1) and is therefore almost surely unique.
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At time n+1, a new vertex vn+1 assigned its own location xn+1, again drawn independently

and uniformly at random from (0, 1) is added to the graph. Given Gn and the locations of

all its vertices, we form the graph Gn+1 by connecting the new vertex vn+1 by a single edge

to a vertex in Gn . Note that this maintains the tree structure of the graph. The connection

mechanism is as follows: First, we sample r candidate vertices with replacement from Gn

according to preferential attachment, i.e. proportional to the vertices’ degrees plus a fixed

constant α. Second, vn+1 chooses one vertex for connection out of the sample according to �

applied to the ranks of the locations. More precisely, fix α ∈ (−1,∞) and denote degGn
(v j )

as the degree of vertex v j in Gn . We first select a sample of r candidate vertices from Gn

with replacement so that independently for each of the r candidates

P(vi is sampled | Gn) =
degGn

(vi ) + α

(n + n0 − 1)(2 + α) + α
. (1)

Here, due to the tree structure, the denominator equals the total degree weight of Gn , that is

the sum over each vertices’ degree plus α. We next order the r sampled vertices according

to their location. That is, we obtain a sample of vertices
(

v
(n+1)
1 , . . . , v

(n+1)
r

)

and associated

locations
(

x
(n+1)
1 , . . . , x

(n+1)
r

)

such that the locations satisfy x
(n+1)
1 ≤ · · · ≤ x

(n+1)
r . An

important observation is that equality for the locations happens almost surely only if a vertex

has been sampled multiple times. Thus, the ordered sample is uniquely determined. Finally,

according to � one vertex out of
(

v
(n+1)
1 , . . . , v

(n+1)
r

)

is chosen for connection. That is, the

probability that vertex v
(n+1)
j is chosen for connection is given by � j .

2.1 Main Result

As mentioned in the introduction, it is known that there exists a threshold αc such that

condensation can only occur if and only if α < αc, see [11] and Proposition 2.3 below. Let

μk be the asymptotic proportion of vertices of degree at least k.

Theorem 2.1 If α≥αc, then μk exists and satisfies

μk = k
− 2+α

2+αc
+o(1)

,

as k → ∞.

In order to prove this result, one has to understand the influence of the location on a

vertex’s degree. To this end, define �n(x) as the conditional probability, given the graph Gn

and the locations of all the vertices of Gn , that the new vertex vn+1 selects under preferential

attachment according to equation (1) a vertex which has location at most x . Denote by V (Gn)

the vertex set of Gn . Then it holds that

�n(x) =
1

(n + n0 − 1)(2 + α) + α

⎛

⎝

∑

vi ∈V (Gn):xi ≤x

(degGn
(vi ) + α)

⎞

⎠ . (2)

The random measures induced by �n(x) converge weakly almost surely to a probability

measure on [0, 1], whose continuous distribution function we call �(x) [11, Theorem 2.2].

Here, it is important to note that in general �(x) may be random. However, it is not random

whenever α ≥ αc. Finally, define the function f : [0, 1] → R+ by

f (x) =
r

∑

s=1

s�s

(

r

s

)

x s−1 (1 − x)r−s , (3)

123



Preferential Attachment with Location-Based Choice... Page 5 of 16     2 

(for more details about �n, � and f , we refer the reader to Sect. 2.2.) Conditioned on the

event that there is a vertex at a given location x , we denote by ν(k, x) the probability that the

vertex at location x has asymptotically at least k neighbours.

Theorem 2.2 If α≥αc and x ∈ (0, 1), then ν(k, x) is well-defined and satisfies

ν(k, x) = k
− 2+α

f (�(x))
+o(1)

,

as k → ∞.

2.2 Condensation Phase Transition

According to (2), �n(x) is almost surely monotonically increasing with �n(0) = 0 and

�n(1) = 1. Hence, we can think of �n(x) as a random distribution function on the location

space. The measures induced by �n(x) converge weakly almost surely to a (possibly random)

probability measure on [0, 1]. We call the distribution function of this limit �(x).

We define condensation as a discontinuity in � since a jumping point of � implies that

�n increases by O(1) on an interval of length o(1), as n → ∞, matching the condensation

description given in the introduction. Here, condensation may arise due to the existence of a

persistent hub [11, Theorem 2.3] as well as without a hub where the currently leading vertex is

replaced over time [11, Theorem 2.4]. The following proposition summarises arguments from

[11] showing that the discontinuity of � can only occur if α is smaller than the threshold αc.

Additionally, it gives a new description of this threshold. We call (−1, αc) the condensation

and [αc,∞) the noncondensation phase of the model (Fig. 1).

The function f (see (3)) only depends on the model parameter � and plays an important

role in characterising the condensation phase transition. It can be observed that f is a prob-

ability density on [0, 1]. Rewriting the binomial coefficient, one can interpret f (x)/r as the

expected probability of connecting with respect to � to a given vertex of location x where

the remaining r − 1 vertices are chosen uniformly.

Fig. 1 Plots of a simulated tree for � = (0, 1, 0) after 500 vertices have been added. On the left, a realization

for α > αc and on the right, a realization with α < αc . In both cases, the start configuration consists of a root

vertex and a single child, both with uniform drawn location. In the plot, the size of a vertex corresponds to its

degree. We use colour saturation to indicate how close to the maximum value of f a vertex’s location is
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Proposition 2.3 There exists αc ≥ −1 such that condensation can occur with a positive

probability if α < αc but cannot occur if α ≥ αc.

Moreover,

αc = max{ f (y) : y ∈ [0, 1]} − 2. (4)

Proof As a function of y ∈ [0, 1], we define

F1(y; x, �) = x(α + 1) − (2 + α)y +
r

∑

s=1

�s

r
∑

i=s

(

r

i

)

yi (1 − y)r−i

for x ∈ [0, 1]. By [11, Theorem 2.2], �n(x) converges almost surely to a zero of the function

F1(y; x, �) and by [11, Theorems 2.3, 2.4] condensation occurs with positive probability,

whenever there exists x ∈ (0, 1) such that F1(y; x, �) has a touchpoint. Here, we call p ∈
(0, 1) a touchpoint if F1(p; x, �) = 0 and there exists ε > 0 such that either F1(y; x, �) < 0

for all y ∈ (p − ε, p + ε)\{p} or F1(y; x, �) > 0 for all y ∈ (p − ε, p + ε)\{p}. Note

that if F1(y; x, �) is increasing in y somewhere on [0, 1], one can vary x in such a way that

F1(y; x, �) has a touchpoint. Hence, condensation can occur with positive probability for

α < αc, where

αc = inf{α > −1 : F ′
1(y; x, �) ≤ 0 for all y ∈ (0, 1)},

see also [11, p. 792]. Conversely, if α ≥ αc, then, for all x ∈ [0, 1], F1(y; x, �) has only one

zero to which �n(x) converges almost surely. Since F1 is continuous and strictly decreasing

in the neighbourhood of the root, the zero � is continuous and almost surely no condensation

can occur, proving the first part of the proposition. To prove (4), we calculate

F ′
1(y; x, �) = −(2 + α) +

r
∑

s=1

�s

r
∑

i=s

i

(

r

i

)

yi−1(1 − y)r−i

(

1 −
r − i

i
y(1 − y)−1

)

= −(2 + α) +
r

∑

s=1

s�s

(

r

s

)

ys−1(1 − y)r−s = −(2 + α) + f (y).

Hence, F ′
1(y; x, �) ≤ 0 holds for all y ∈ (0, 1) if and only if 2+α ≥ max{ f (y) : y ∈ [0, 1]}.

⊓⊔

Proposition 2.3 shows that both preferential attachment and the location-based choice aspect

are necessary for condensation to occur. Sampling according to preferential attachment but

then choosing one vertex independently of the locations coincides with the choice of �s =
1/r . Then, f (x) ≡ 1 and thus αc = −1 < α for all α ∈ (−1,∞). By Theorem 2.1, the

network is then scale-free with power-law exponent τ = 2+α ∈ (1,∞), matching the results

of [8]. On the other hand, sampling without preferential attachment in this model coincides

with the case α → ∞. Therefore, it holds α > αc for all choices of �. Summarizing the

above, whenever α ≥ αc, no condensation can occur and the limiting distribution � is

continuous and non-random. This is shown to be important in following sections.

3 Noncondensation Phase Degree Distribution

We utilize a number of stochastic approximation techniques constructed by Robbins and

Monro [19] outlined in Pemantle [18, Section 2]. For a stochastic process (Xn)n∈N ⊂ R
n

adapted to a filtration (Fn)n∈N, the idea of stochastic approximation is to find a representation
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of the increments Xn+1 − Xn which fulfills certain properties. This then allows for results

on the asymptotic behaviour of the process to be derived. Classically, we call equations of

the form

Xn+1 − Xn = 1
n

(

F(Xn) + ξn+1 + rn

)

stochastic approximation equations. Here, F is an R
n-vector field, ξn+1 is a noise term

satisfying E[ξn+1 | Fn] = 0 and the remainder term rn is Fn-measurable, converging to

zero and satisfying
∑

n n−1|rn | < ∞ almost surely. Depending on the properties of F and

possible further assumptions on the noise ξn+1, different results for the asymptotic behaviour

of the process are known [18, Section 2]. Many results can be further extended to hold, when

F is random, see e.g. [11,13].

In our setting, we will need a statement for the asymptotic behaviour when only bounds

on the increments are given. To this end, we adapt Lemma 5.4. of [14] by Jordan and Wade.

Lemma 3.1 Let (Fn)n∈N0
be a filtration. Furthermore, let X = (Xn)n∈N0

, A1 = (A
(n)
1 )n∈N0

,

A2 = (A
(n)
2 )n∈N, K1 = (K

(n)
1 )n∈N0

, K2 = (K
(n)
2 )n∈N0

, ξ = (ξn)n∈N0
, r1 = (r

(n)
1 )n∈N0

and r2 = (r
(n)
2 )n∈N0

be real-valued stochastic processes adapted to (Fn)n∈N0
where X, A1,

A2, K1 and K2 are non-negative and bounded. Let (γn)n∈N0
be a sequence of non-negative

constants and suppose that

γn(A
(n)
1 − K

(n)
1 Xn + ξn+1 + r

(n)
1 ) ≤ Xn+1 − Xn

≤ γn(A
(n)
2 − K

(n)
2 Xn + ξn+1 + r

(n)
2 ). (5)

Assume further that

(i) E[ξn+1 | Fn] = 0 and E[ξ2
n+1 | Fn] ≤ C for a finite constant C,

(ii)
∑∞

n=0 γn = ∞,
∑∞

n=0 γ 2
n < ∞ and

∑∞
n=0 |r (n)

i |γn < ∞ almost surely (i = 1, 2),

(iii) 0 < ℓi ≤ K
(n)
i ≤ ui for some finite constants ℓi , ui (i = 1, 2),

(iv) lim inf
n→∞

A
(n)
1

K
(n)
1

≥ L1 and lim sup
n→∞

A
(n)
2

K
(n)
2

≤ L2 almost surely.

Then, almost surely,

L1 ≤ lim inf
n→∞

Xn ≤ lim sup
n→∞

Xn ≤ L2.

Proof We only prove the lower bound for the lim inf as the upper bound for the lim sup works

with analogous argumentation. For ε > 0 there exists an almost surely finite N1 such that

L1 ≤ A
(n)
1 /K

(n)
1 + ε/2 for n ≥ N1 by (iv). For each x < L1 − ε and n ≥ N1, we have

A
(n)
1 − K

(n)
1 x ≥ A

(n)
1 − K

(n)
1 (L1 − ε) ≥ A

(n)
1 − K

(n)
1

(

A
(n)
1

K
(n)
1

− ε
2

)

≥
ℓ1ε

2
> 0,

using (iii). Now, summing (5), we get Xn − X0 ≥ Mn + On , where

Mn =
n−1
∑

k=0

γkξk+1 and On =
n−1
∑

k=0

γk(A
(k)
1 − K

(k)
1 Xk + r

(k)
1 ).

Here, On is Fn−1-measurable and Mn is a martingale satisfying

E[M2
n+1 − M2

n | Fn] = E[(Mn+1 − Mn)2 | Fn] = E[ξ2
n+1γ

2
n | Fn] ≤ Cγ 2

n
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by (i). Since γ 2
n is summable by (ii), Mn is L2-bounded and hence there exists a finite M∞

such that Mn → M∞ almost surely as n → ∞. Moreover, by (ii), we have

Rn :=
n−1
∑

k=0

γkr
(k)
1 → R∞ < ∞,

almost surely as n → ∞. Hence, for the ε above, there exists N2 such that

sup
n≥N2

sup
m≥0

|Mn+m − Mn | ≤
ε

4
and sup

n≥N2

sup
m≥0

|Rn+m − Rn | ≤
ε

4
.

Now, fix some n0 ≥ N := N1 ∨ N2 for which Xn0 < L1 − ε. Let κn0 := min{t > n0 : X t ≥
L1 − ε} be the first time after n0 for which X returns to [L1 − ε,∞). Then, for m ≥ 0, using

(5), we have

X(n0+m)∧κn0
− Xn0 ≥

(

M(n0+m)∧κn0
− Mn0

)

+
(

R(n0+m)∧κn0
− Rn0

)

+
((n0+m)∧κn0

)−1
∑

k=n0

γk(A
(k)
1 − K

(k)
1 Xk)

≥ − ε
2

+ ℓ1ε
2

((n0+m)∧κn0
)−1

∑

k=n0

γk .

On {κn0 = ∞}, for m → ∞, the left-hand-side remains finite since X is a bounded process;

however the right-hand-side diverges to infinity by (ii). Hence, κn0 is almost surely finite.

Furthermore, since X(n0+m)∧κn0
≥ Xn0 − ε/2 using the above calculation and γk ≥ 0 for all

k, the process X returns to [L1 − ε,∞) without dropping below Xn0 − ε/2. Moreover, for

large enough n ≥ N ,

Xn+1 − Xn ≥ − ε
2

+ γn(A
(n)
1 − K

(n)
1 Xn) ≥ −ε,

as A1 − K1 X is bounded and γn tends to zero. Therefore, almost surely, Xn ≥ L1 − ε

infinitely often, and for all except a finite number of n any exit from [L1 −ε,∞) cannot drop

under L1 − 2ε; but starting from [L1 − 2ε, L1 − ε), the process X returns to [L1 − ε,∞)

before hitting L1 − 3ε. Hence, lim inf Xn ≥ L1 − 3ε, almost surely. Since ε was chosen

arbitrarily, this concludes the proof. ⊓⊔

3.1 Bounds on the Empirical Degree Distribution

The aim of this section is to find bounds for the proportion of the vertices of degree at least k

located inside [x1, x2] ⊂ (0, 1). To this end, we define P
(n)
x1,x2

(k) as the proportion of vertices

in Gn that have degree at most k and are located inside the interval [x1, x2], that is

P(n)
x1,x2

(k) =
1

n + n0

∑

(v,x)∈Gn

1{degGn
(v)≤k}1{x∈[x1,x2]}.

To get bounds on P
(n)
x1,x2

(k), we define the event that the new vertex vn+1, arriving at time

n + 1, connects to a vertex of degree k in Gn which is located inside [x1, x2]. We denote this

event by En+1. We cannot give a precise description of the probability of En+1, however we

can bound it from above and below in a natural way. The estimations are made in the part in
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which one of the r candidates of the sample is chosen for connection. First, we consider the

function

f1(y1, y2) :=
r

∑

s=1

�s

⎛

⎝

s−1
∑

j=0

r
∑

i=s

(

r

i

)(

i

j

)

y
j
1 (y2 − y1)

i− j−1(1 − y2)
r−i

⎞

⎠ . (6)

Upon multiplying f1 by (y2 − y1), the term inside the outer brackets states that for r points

ranked by 1, . . . , r , the first j points are sampled from the interval (0, y1), the next i − j points

(including point s) are sampled from [y1, y2] and the remaining i points are from (y2, 1).

Since we do not consider the precise ordering within the intervals, an upper bound for the

probability of choosing a vertex for connection from the candidate sample with location

inside [x1, x2] is given by

f1(�n(x1),�n(x2))(�n(x2) − �n(x1)).

Secondly, we denote Pn as the conditional probability measure given by the graph Gn and

all locations of vertices contained within. We also denote wn as the vertex which has been

chosen for connection at time n + 1. We have

Pn

(

wn has degree k
∣

∣ wn is located inside [x1, x2]
)

=
Pn

(

wn has degree k and is located inside [x1, x2]
)

�n(x2) − �n(x1)

= k+α
(2+α)(n+n0)−2

(n + n0)
(

P(n)
x1,x2

(k) − P(n)
x1,x2

(k − 1)
)

1
�n(x2)−�n(x1)

.

This holds because the first factor is the probability in which a vertex of degree k is sampled

according to (1) and (n + n0)
(

P
(n)
x1,x2

(k) − P
(n)
x1,x2

(k − 1)
)

counts the number of degree k

vertices with corresponding locations inside the interval [x1, x2] in Gn . Therefore, both parts

together yield

Pn(En+1) ≤ (k+α)(n+n0)
(2+α)(n+n0)−2

(

P(n)
x1,x2

(k) − P(n)
x1,x2

(k − 1)
)

f1(�n(x1),�n(x2)). (7)

Similarly, we can achieve a lower bound for Pn(En+1) if we only consider samples of

candidates where exactly one vertex is located inside [x1, x2]. Thus, we obtain

Pn(En+1) ≥
(k + α)(n + n0)

(2 + α)(n + n0) − 2

(

P(n)
x1,x2

(k) − P(n)
x1,x2

(k − 1)
)

f2(�n(x1),�n(x2)), (8)

where f2 is given by

f2(y1, y2) =
r

∑

s=1

s�s

(

r

s

)

ys−1
1 (1 − y2)

r−s . (9)

With these bounds, which will be crucial for the asymptotic degree later, we are ready to

proceed to the stochastic approximation.

Lemma 3.2 Let k ∈ N and 0 < x1 < x2 < 1. Define for j ∈ {1, 2} the random variables

A
(n)
j = A

(n)
j (k) :=

k + α

2 + α
f j (�n(x1),�n(x2)) P(n)

x1,x2
(k − 1) + (x2 − x1)

and

K
(n)
j = K

(n)
j (k) := 1 +

k + α

2 + α
f j (�n(x1),�n(x2)) ,
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for n ∈ N0. Let Fn be the filtration generated by the sequence of graphs (Gi , xi ; i ≤ n) and,

for n ∈ N0,

ξ (n+1) = (n + n0 + 1)
(

P(n+1)
x1,x2

(k) − E

[

P(n+1)
x1,x2

(k)
∣

∣Fn

])

.

Then, for the growth of the proportion of vertices with degree at most k and location inside

[x1, x2], it holds

A
(n)
1 − K

(n)
1 P

(n)
x1,x2

(k) + ξ (n+1) − R(n)

n + n0 + 1
≤ P(n+1)

x1,x2
(k) − P(n)

x1,x2
(k)

≤
A

(n)
2 − K

(n)
2 P

(n)
x1,x2

(k) + ξ (n+1)

n + n0 + 1
,

where R(n) is a non-random error term satisfying R(n)/(n + n0 + 1) = O(n−2) as n → ∞.

Proof Since

P(n+1)
x1,x2

(k) − P(n)
x1,x2

(k) = E

(

P(n+1)
x1,x2

(k)

∣

∣

∣
Fn

)

+
ξ (n+1)

n + n0 + 1
− P(n)

x1,x2
(k),

it is sufficient to find bounds for the expected increase in the number of vertices with degree

at most k and location inside the interval [x1, x2] when vn+1 joins the graph with location

xn+1, given Gn . This can be expressed by

E

(

(n + n0 + 1)P(n+1)
x1,x2

(k)

∣

∣

∣
Fn

)

= (n + n0)P(n)
x1,x2

(k) + P(xn+1 ∈ [x1, x2]) − Pn(En+1),

The first term here counts the number of degree at most k vertices in Gn with locations in the

interval [x1, x2]. The second term is the probability that the location of the new vertex vn+1

falls into the same interval. Both Pn and En+1 are as defined as above. We have utilized here

the fact that P
(n)
x1,x2

(k) is Fn-measurable, the new location xn+1 is independent of Fn , and that

the event En+1 only depends on the graph Gn and the corresponding locations of vertices

contained within. As the locations are i.i.d. uniform, this probability is equal to x2 − x1. For

the probability of the event En+1 an upper and lower bound is given by (7) and (8). Hence,

we have

E

(

(n + n0 + 1)P(n+1)
x1,x2

(k)

∣

∣

∣
Fn

)

≤
k + α

2 + α
f2(�n(x1),�n(x2))

(

P(n)
x1,x2

(k − 1) − P(n)
x1,x2

(k)
)

+ (n + n0)P(n)
x1,x2

(k) + (x2 − x1)

as well as

E

(

(n + n0 + 1)P(n+1)
x1,x2

(k)

∣

∣

∣
Fn

)

≥
k + α

2 + α
f1(�n(x1),�n(x2))

(

P(n)
x1,x2

(k − 1) − P(n)
x1,x2

(k)
)

+ (n + n0)P(n)
x1,x2

(k) + (x2 − x1) − R(n),

where R(n) = O(n−1) is an error term, occurring as the difference of the given bound in

(7) and the first summand on the right-hand side of the equation together with the fact that

(P
(n)
x1,x2

(k − 1) − P
(n)
x1,x2

(k)) ≥ −1 and the boundedness of f1. ⊓⊔

Since the number of vertices with degree at most k and location inside [x1, x2] can change

by at most one if we add a new vertex vn+1 to the graph Gn , the noise ξ (n) defined in

Lemma 3.2 is absolutely bounded by one. Additionally, it holds E
[

ξ (n+1)|Fn

]

= 0 by its

definition. Therefore, we can use stochastic approximation techniques to construct bounds

for the asymptotic behaviour of the proportion of vertices with degree at most k and location

inside [x1, x2].
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Lemma 3.3 For α ≥ αc and all k ∈ N, the proportion of vertices with degree at most k and

location inside [x1, x2] ⊂ (0, 1) satisfies

L1(k) ≤ lim inf
n→∞

P(n)
x1,x2

(k) ≤ lim sup
n→∞

P(n)
x1,x2

(k) ≤ L2(k)

almost surely, where

L j (k) = (x2 − x1)

⎛

⎝1 −
Ŵ

(

α + 1 + 2+α
f j (�(x1),�(x2))

)

Ŵ(α + 1 + k)

Ŵ(α + 1)Ŵ
(

α + 1 + k + 2+α
f j (�(x1),�(x2))

)

⎞

⎠ , for j ∈ {1, 2}.

Proof We prove the result by applying Lemma 3.1 to the observed bounds in Lemma 3.2.

Here, we focus on the lower bound for the lim inf; the upper bound for the lim sup follows

by replacing f1 by f2 in the arguments. For each fixed k, the boundedness conditions on

A
(n)
1 and K

(n)
1 , defined in Lemma 3.2, and P

(n)
x1,x2

(k) as well as the assumptions (ii) and (iii)

are straight forward to check. We have already shown (i) above. We must now show that

A
(n)
1 and K

(n)
1 converge such that lim infn→∞(A

(n)
1 /K

(n)
1 ) ≥ L1(k), for every k. First note

that, since α ≥ αc, �n(x) converges almost surely to �(x) as defined in Sect. 2.2 for all

x ∈ [0, 1]. Hence, K
(n)
1 converges almost surely to 1 + k+α

2+α
f1 (�(x1),�(x2)). Now, the

theorem can be derived by induction. Let k = 1, then by definition A
(n)
1 = x2 − x1. Hence,

lim infn→∞ P
(n)
x1,x2

(1) ≥ L1(1) almost surely. Assume that for an arbitrary fixed k ∈ N the

stated lower bound holds. Then, for k + 1, we get

lim inf
n→∞

A
(n)
1 ≥

k + 1 + α

2 + α
f1(�(x1),�(x2))L1(k) + (x2 − x1)

almost surely and hence

lim inf
n→∞

P(n)
x1,x2

(k + 1) ≥
k+1+α

2+α
f1(�(x1),�(x2))L1(k) + (x2 − x1)

1 + k+1+α
2+α

f1 (�(x1),�(x2))

= (x2 − x1)

⎛

⎝1 −
Ŵ

(

α + 1 + 2+α
f j (�(x1),�(x2))

)

Ŵ(α + 2 + k)

Ŵ(α + 1)Ŵ
(

α + 2 + k + 2+α
f j (�(x1),�(x2))

)

⎞

⎠

almost surely. ⊓⊔

3.2 Limiting Degree Distribution

In this section, we use the established bounds of Lemma 3.3 to prove the main results

stated in Sect. 2.1. To this end, we consider now the proportion of vertices located within

some interval that have a given maximum degree. We show, that in the late time regime this

proportion converges, by shrinking the interval to a single point, to some probability kernel μ

on P(N)×(0, 1). Here, P(N) denotes the set of all subsets of N. We show that this probability

kernel μ is heavy tailed, proving Theorem 2.2 as ν(k, x) = μ({k, k + 1, . . . }, x)

Lemma 3.4 If α ≥ αc, there exists a probability kernel μ : P(N)× (0, 1) → [0, 1] such that

(i) Almost surely,

lim
x1↓x

lim
n→∞

P
(n)
x,x1

(k)

x1 − x
= μ({1, . . . , k}, x).
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(ii) μ({k, k + 1, . . . }, x) = k
− 2+α

f (�(x))
+o(1)

, as k → ∞.

Proof Note that the functions f1 and f2, defined in (6) and (9), both converge to the same

limit as y1 ↓ y, namely

lim
y1↓y

f1(y, y1) = lim
y1↓y

f2(y, y1) =
r

∑

s=1

s�s

(

r

s

)

ys−1(1 − y)r−s,

that is f (y), the function used to describe the condensation phase transition in Sect. 2.2.

Sending first n → ∞ and applying then the limit x1 → x on the bounds observed in

Lemma 3.3, we get by continuity of f and �,

lim
x1↓x

lim
n→∞

P
(n)
x,x1

(k)

x1 − x
= 1 −

Ŵ
(

α + 1 + 2+α
f (�(x))

)

Ŵ(α + 1)

Ŵ(α + 1 + k)

Ŵ
(

α + 1 + k + 2+α
f (�(x))

) . (10)

Note that

Ŵ(α + 1 + k)

Ŵ
(

α + 1 + k + 2+α
f (�(x))

) ∼ (α + 1 + k)
− 2+α

f (�(x)) ∼ k
− 2+α

f (ψ(x)) , as k ↑ ∞ (11)

by Stirling’s formula. For fixed x ∈ (0, 1), the right-hand side of (10) converges to one as

k → ∞, and hence defines a distribution function. Moreover, for fixed k, the right-hand side

of (10) is continuous in x . Therefore, the desired probability kernel μ exists, proving (i). The

tail behaviour stated in (ii) is an immediate consequence of (11). ⊓⊔

Since the empirical distribution of the vertices’ locations converges to the uniform distribution

on (0, 1), we can now use the probability kernel to properly describe μk , the asymptotic

proportion of vertices with degree at least k by integrating μ({k, k + 1, . . . }, x) with respect

to the location. Namely,

μk =
∫ 1

0

μ({k, k + 1, . . . }, x)dx .

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1 Since we only consider the case when k is (very) large, we want to

apply a saddle point method approach. To this end, write

g(x) =
Ŵ

(

α + 1 + 2+α
f (x)

)

Ŵ(α + 1)

and consider

μk =
∫ 1

0

μ({k, k + 1, . . . }, x)dx =
∫ 1

0

g(�(x))
Ŵ(α+1+k)

Ŵ
(

α+1+k+ 2+α
f (�(x))

)dx

given from the proof of Lemma 3.4. Using (11) this reads

μk ∼
∫ 1

0

g(�(x)) exp
(

− 2+α
f (�(x))

log(k)
)

dx,

as k → ∞. If f ≡ c is constant (e.g. when �s = 1/r ), the exponent does not depend on

x and the claim follows immediately. Hence, we assume that f is non constant. Now, since
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we work in the noncondensation phase, �(x) is the unique zero of F1(y; x, �), defined in

Sect. 2.2. Due to the structure of F1(�(x); x, �) = 0, we can see that the inverse of � exists

and that it is a polynomial. Thus, it is differentiable. Together with �(0) = 0, almost surely,

and �(1) = 1 a change of variable leads to

μk∼
∫ 1

0

(�−1)′(y) · g(y) exp

(

−
2 + α

f (y)
log(k)

)

dy

as k → ∞. For k → ∞, this integral gets dominated by its largest peak that is located at

the minimum value of (2 + α)/ f (y), occurring at the maximum value of f (y). Since f

is a non-negative polynomial, there exists some x0 ∈ [0, 1] that maximizes f . In the case

that x0 is not uniquely determined, we can split [0, 1] in finitely many disjoint subintervals

such that each subinterval only contains exactly one maximizer. We then integrate these

subintervals separately which leads to a sum of integrals all of the same order. Moreover,

we know that the second derivative of f exists and that − ((2 + α)/ f )′′ (x0) > 0 as well as

(�−1)′(x0) · g(x0) > 0. Hence, we get by the saddle point method, for some constant C and

with 2 + αc = f (x0) that

μk∼C

√

2π

log(k + α)
exp

(

−
2 + α

2 + αc

log(k + α)

)

·
(

1 + O

(

1

log(k + α))

))

,

as k → ∞, which yields the desired result. ⊓⊔

4 Examples and Simulations

In this section, we discuss a number of examples of the model and use the stated results

to calculate the critical value αc and the power law exponent τ . Simulations of the model

back up those results and showcase the different behaviour of the local degree distribution.

For this, the different examples are simulated for an initial tree graph of 100 vertices where

1,000,000 new vertices are added to the graph. The code for the simulations can be freely

accessed at: http://www.mi.uni-koeln.de/~agrauer/files/code/PA_with_location.R

Throughout this section, we denote by fmax the global maximum of f on [0, 1]. The

first example is the middle of three model introduced in [11]. This model corresponds to

the selection vector � = (0, 1, 0), which implies f (y) = 6y(1 − y) due to Eq. (3). This

function is maximized at y = 1/2 giving fmax = 3/2. As seen in Fig. 2a, y coincides with

the maximiser of the local degree distribution μ([k,∞), x), for any k ∈ N. Using the method

introduced in Sect. 2.2, the critical value is αc = −1/2, agreeing with the results in [11]. By

Theorem 2.1 it can be seen that the degree distribution associated with the middle of three

model follows

μk = k
− 2+α

3/2 +o(1)
, as k ↑ ∞.

Introduced in [11] is the second or sixth of seven model, corresponding to � =
(0, 1/2, 0, 0, 0, 1/2, 0).Hence, the associated function is f (y) = 21y(1−y)

(

(1 − y)4 + y4
)

.

This leads to fmax =
7
(

5
√

10−14
)

9
. Unlike the middle of three model, f has two maximisers

which are also peaks of the local degree distribution, see Fig. 2b. The critical value for this

example is αc = 35
√

10−116
9

≈ −0.591 and it holds

μk = k
− 9(2+α)

7(5
√

10−14)
+o(1)

, as k ↑ ∞.
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Fig. 2 Simulation of the local degree distribution for the three examples of this section. We have inserted

picture (d), which coincides to standard preferential attachment, for comparison. The red surface shows the

simulation results while the blue curves depicts the analytical result of Lemma 3.4 for each k. Each plot is

generated for �(x) ∈ (0, 1) and k ∈ [10, 25] and α = 0

The final example is an asymmetric version of the second or sixth of seven model, i.e. � =
(0, 1/3, 0, 0, 0, 2/3, 0) as selection vector leading to f (y) = 14y(1 − y)

(

(1 − y)4 + 2y4
)

.

Although this function has two local maximisers, we only care about the global maximum

point with fmax ≈ 1.8769. Figure 2c shows that the mass of the local degree distribution

vanishes for large k at the non-global maximiser but concentrates at the global one. The

estimation of fmax leads to the critical value αc ≈ −0.1231 and

μk ≈ k− 2+α
1.8769 +o(1), as k ↑ ∞.

Although the proof of Theorem 2.1 only shows slow convergence to the stated result, our

simulations show the stated power law behaviour. For the following figure the simulated

degree distribution of the models is fitted to k−τ , considering the logarithmic correction term

arising in the proof of Theorem 2.1. For large α, it is necessary to consider simulations of

bigger graphs, since the degree is less important for the preferential attachment mechanism,

which leads to a small maximum degree of the model. Note that in Fig. 3 the power law

exponent of the simulations in each example converges to 1 as α → αc.
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Fig. 3 Simulations of the power law exponent of the degree distribution for each example for α between the

corresponding αc and 1/2. The lines show the analytical result of Theorem 2.1

and indicate if changes were made. The images or other third party material in this article are included in the

article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is

not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
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