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Abstract

Background: Observational studies indicate that periodontal disease may increase the risk of colorectal, lung, and pancreatic
cancers. Using a 2-sample Mendelian randomization (MR) analysis, we assessed whether a genetic predisposition index for
periodontal disease was associated with colorectal, lung, or pancreatic cancer risks. Methods: Our primary instrument
included single nucleotide polymorphisms with strong genome-wide association study evidence for associations with
chronic, aggressive, and/or severe periodontal disease (rs729876, rs1537415, rs2738058, rs12461706, rs16870060, rs2521634,
rs3826782, and rs7762544). We used summary-level genetic data for colorectal cancer (n¼58 131 cases; Genetics and
Epidemiology of Colorectal Cancer Consortium, Colon Cancer Family Registry, and Colorectal Transdisciplinary Study), lung
cancer (n¼18 082 cases; International Lung Cancer Consortium), and pancreatic cancer (n¼9254 cases; Pancreatic Cancer
Consortia). Four MR approaches were employed for this analysis: random-effects inverse-variance weighted (primary
analyses), Mendelian Randomization-Pleiotropy RESidual Sum and Outlier, simple median, and weighted median. We con-
ducted secondary analyses to determine if associations varied by cancer subtype (colorectal cancer location, lung cancer his-
tology), sex (colorectal and pancreatic cancers), or smoking history (lung and pancreatic cancer). All statistical tests were 2-
sided. Results: The genetic predisposition index for chronic or aggressive periodontitis was statistically significantly
associated with a 3% increased risk of colorectal cancer (per unit increase in genetic index of periodontal disease; P¼ .03), 3%
increased risk of colon cancer (P¼ .02), 4% increased risk of proximal colon cancer (P¼ .01), and 3% increased risk of colorectal
cancer among females (P¼ .04); however, it was not statistically significantly associated with the risk of lung cancer or
pancreatic cancer, overall or within most subgroups. Conclusions: Genetic predisposition to periodontitis may be associated
with colorectal cancer risk. Further research should determine whether increased periodontitis prevention and increased
cancer surveillance of patients with periodontitis is warranted.

Received: 11 January 2021; Revised: 10 March 2021; Accepted: 30 March 2021

© The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

1 of 8

JNCI Cancer Spectrum (2021) 5(3): pkab037

doi: 10.1093/jncics/pkab037
First published online 19 April 2021
Article

D
ow

nloaded from
 https://academ

ic.oup.com
/jncics/article/5/3/pkab037/6237908 by Im

perial C
ollege London Library user on 14 July 2021

https://orcid.org/0000-0002-3348-9063
https://orcid.org/0000-0001-7555-8963
https://orcid.org/0000-0002-8452-8472
https://orcid.org/0000-0002-4723-5064
https://orcid.org/0000-0003-3698-7006
https://orcid.org/0000-0003-2737-8399
https://orcid.org/0000-0001-5337-3941
https://orcid.org/0000-0002-0900-5735
https://orcid.org/0000-0003-3676-8954
https://orcid.org/0000-0002-8107-3011
mailto:Dominique.Michaud@tufts.edu
https://academic.oup.com/


Colorectal cancer, lung cancer (including tracheal and bronchus
cancers), and pancreatic cancer together account for >2.9 mil-
lion deaths per year globally (1). Colorectal and lung cancer
have the 2 highest number of incident cases globally (1.7 million
and 2.0 million annual cases, respectively). Most histologic sub-
types of lung cancer and pancreatic cancer have poor prognoses
because, even in the United States, at least 50% of cases are not
diagnosed until the cancer is at a less curative, advanced stage
(2). Primary prevention efforts are thus critical, and observa-
tional studies indicate that modifiable risk factors (eg, periodon-
tal disease) are implicated in the pathogenesis of colorectal,
lung, and pancreatic cancers (3-5). Although well-conducted
meta-analyses of observational studies have strengthened the
evidence for positive associations between periodontal disease
and lung, colorectal, and pancreatic cancers (6-8), additional ev-
idence for causal associations could be observed in randomized
trials or in observational studies that employ methods that em-
ulate randomization (eg, Mendelian randomization [MR]).

Two-sample MR is an approach that uses summary associa-
tion estimates (often from genome-wide association studies
[GWAS]) to develop a genetic instrument index for the exposure
and then applies the index to assess the association with the
outcome in a different sample of the same underlying source
population (9,10). The instrument must be associated with the
exposure, associated with the outcome only through paths that
include the exposure, and independent of exposure-outcome
confounders (11). Two-sample MR has advantages over 1-sam-
ple MR: weak instrument bias tends to drive association esti-
mates towards the null in 2-sample MR rather than in the
direction of the observational associations as in 1-sample MR,
and robust instruments from larger GWAS can be used in 2-
sample MR investigations such that more precise and accurate
estimates may be obtained (12-14).

Previous 2-sample MR studies used genetic instruments for
periodontal disease (15-17) and other studies used 2-sample MR
to assess risk factors for each of colorectal, lung, and pancreatic
cancer (18-20); however, to our knowledge, no MR study has
assessed the association between periodontal disease and can-
cer risk. Given the need to rigorously assess putative causal
relationships among modifiable factors (eg, oral health) and
cancer risk to support health promotion, our primary objective
was to assess whether genetic predisposition to having chronic
or aggressive periodontal disease was associated with colorec-
tal, lung, or pancreatic cancers using a 2-sample MR analysis.
Our secondary objectives were to assess whether these associa-
tions varied by cancer subtype (location in the large bowel for
colorectal cancer and histology for lung cancer), sex (for colorec-
tal and pancreatic cancers), or smoking history (for lung and
pancreatic cancers) and were robust against potential violations
of MR assumptions.

Methods

Genetic Instrument for Periodontal Disease

We determined 2 genetic instruments for periodontal disease
(defined in the Supplementary Methods, available online) based
on a systematic evaluation of the strength of the GWAS evi-
dence for associations between individual single nucleotide
polymorphisms (SNPs) and chronic, aggressive, and/or severe
periodontal disease (Supplementary Table 1, available online)
(21-28). There were 8 SNPs in our primary instrument, of which
5 had very strong evidence for an association with periodontal

disease (rs729876, rs1537415, rs2738058, rs12461706, rs16870060)
and 3 had strong evidence (rs2521634, rs3826782, rs7762544) (21-
25). We considered the evidence very strong if the association
with periodontitis met the genome-wide statistical significance
threshold of P< 5� 10�8 in a pooled analysis of multiple cohorts
(focusing on populations of European descent to match the pop-
ulation demographics of our outcome data). We considered the
evidence strong for SNPs that were positively associated with
chronic periodontitis in 1 cohort (P< 5� 10�6), nominally posi-
tively associated (P< .05) with severe chronic periodontitis in an
independent replication cohort, and positively associated
(P< 5� 10�6) with chronic periodontitis in a meta-analysis of
over 5000 European American individuals. Our secondary in-
strument included the 8 SNPs in the primary instrument and 6
additional SNPs (rs1122900, rs2064712, rs2070901, rs4970469,
rs9982623, rs9984417) with moderate evidence for an associa-
tion with periodontitis (statistically significant with a threshold
of P< 5� 10�6 in a pooled analysis of multiple cohorts but not
associated with periodontitis in any single cohort with a thresh-
old of P< 5� 10�6) (21,22). We assessed whether any of the 14
SNPs were potentially pleiotropic, in mutual linkage disequilib-
rium, accounted for population stratification, or were problem-
atic to harmonize. The Supplementary Methods (available
online) contain additional details about our SNP selection pro-
cess. We include both the primary and secondary instruments
so that the reader can assess the sensitivity of the results to our
SNP selection process and to balance the advantages of having
more SNPs in the instrument with having SNPs with the stron-
gest evidence for an association.

Summary-Level Data for Lung, Colorectal, and
Pancreatic Cancer

We used summary-level genetic data for colorectal cancer
(overall, by location in the large bowel, and by sex) from 125 478
participants (including 58 131 colorectal cancer and advanced
adenoma cases) in the Genetics and Epidemiology of Colorectal
Cancer Consortium (GECCO; 13 studies), Colon Cancer Family
Registry (CCFR), and Colorectal Transdisciplinary study
(CORECT) (29-31); lung cancer (overall, by histologic type, and by
smoker status [current or noncurrent]) from 31 862 participants
(including 18 082 cases) in the International Lung Cancer
Consortium (ILCCO; 26 studies included) (32,33); pancreatic can-
cer (overall, by sex, smoker status, data source [pancreatic can-
cer consortium], and study design) for 13 823 participants
(including 5090 cases) in PanScan I and II (12 cohort and 8 case-
control studies) and PanScan III (15 cohorts, 2 case series, and 1
case-control study) (30,34); and pancreatic cancer (overall, by
sex, and by smoker status) in 7956 participants in the Pancreatic
Cancer Case-Control Consortium (PanC4; including 4164 cases
for a total of 9254 pancreatic cancer cases) (35-37). Choices for
secondary analyses (eg, not assessing colorectal cancer associa-
tions by smoker status) were due to data availability. All cancer
data came from individuals of European ancestry. All studies
participating in each consortium obtained informed consent
from participants and approval from the relevant ethical review
boards. None of the study samples that contributed genetic data
for lung, colorectal, or pancreatic cancer overlapped with study
samples that contributed data for the periodontitis GWAS.
Genotyping and imputation methods for each consortium have
been described previously and are summarized in the
Supplementary Methods (available online) (29,37-45).
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Because we used only deidentified data, we did not need in-
stitutional review board approval for our analysis.

Statistical Analyses

In our primary analysis, we estimated the association between
each genetic predisposition index for having chronic or aggres-
sive periodontal disease and colorectal, lung, and pancreatic
cancer risks using the random-effects inverse-variance
weighted (IVW) method. We also considered 3 other MR estima-
tion methods (Mendelian Randomization-Pleiotropy RESidual
Sum and Outlier (MR-PRESSO), simple median, and weighted
median) with different assumptions to evaluate the robustness
of the IVW findings. A description of the strengths and weak-
nesses of each MR approach is provided in the Supplementary
Methods (available online). We quantitatively assessed viola-
tions of the “NO Measurement Error” assumption using the I2

GX

statistic (where values between 0.9 and 1 suggest that violations
are negligible and that the uncertainty in the SNP exposure
associations are substantially smaller than the underlying het-
erogeneity in these associations) (46,47). We assessed horizontal
pleiotropy using the I2 statistic (where values >50% indicate po-
tential horizontal pleiotropy) (48). All statistical analyses were
performed in R (version 3.6.2) with packages
MendelianRandomization (version 0.4.2) and MRPRESSO (version
1.0). We constructed plots showing the genetic associations of
the SNPs with periodontitis (natural log values of the odds ratios
shown in Supplementary Table 1, available online) vs the ge-
netic associations of the SNPs with each cancer (natural log val-
ues of the odds ratios provided by each consortium) using
ggplot2 (slope represents the beta values for the MR models).
Default parameters were used for each analysis. All statistical
tests were 2-sided. Our cut point for statistical significance was
.05.

Results

Using the 8 SNPs with the strongest evidence for a genetic pre-
disposition to having chronic or aggressive periodontal disease,
we observed a statistically significant association with the risk
of colorectal cancer (3% increase per unit increase in genetic in-
dex of periodontal disease; P¼ .03) but not with the risk of lung
(0.4% increase; P¼ .83) or pancreatic cancers (2% increase;
P¼ .51; Table 1; Figure 1). In secondary analyses, including an
additional 6 SNPs with moderately strong evidence for an asso-
ciation with periodontitis attenuated the effect estimates for
the association with colorectal cancer but did not substantially
change the effect estimates for either lung or pancreatic can-
cers. For the primary and secondary analyses, I2

GX values were
0.947 and 0.926, respectively, indicating that the effect estimates
were unlikely to be substantially biased towards the null due to
violations of the no measurement error assumption. There was
no indication of horizontal pleiotropy for any of the primary
analyses (I2 of 0% for each colorectal, lung, and pancreatic can-
cers) and limited evidence of horizontal pleiotropy for the sec-
ondary analyses (I2 of 60% for colorectal, 12% for lung, and 0%
for pancreatic cancer). Separate sensitivity analyses removing
each of rs1537415 (palindromic allele), rs3826782 (low effect al-
lele frequency and potentially influential), rs12461706 (palin-
dromic allele), rs1537415 and rs12461706 (palindromic alleles in
the primary instrument), and rs9984417 (palindromic allele) did
not substantively change any of these results (Supplementary
Table 2, available online).

In addition to the analyses for each cancer overall, we
assessed associations between genetic predisposition to hav-
ing chronic or aggressive periodontitis and risk of colorectal
cancer stratified by location in the large bowel (colon, rectal,
distal, and proximal) and sex (Figure 2; Supplementary Figure
1, available online). We observed that each unit increase in
the genetic predisposition index for chronic or aggressive
periodontitis was associated with a 3% increased risk in colon
cancer (P¼ .02), a 4% increased risk of proximal colon cancer
(P¼ .01), and a 3% increased risk of colorectal cancer among
females (P¼ .04; Figure 2). Each of these associations was ob-
served with the IVW MR method and at least 1 alternative
MR approach (Supplementary Table 3, available online).
Additionally, whereas the primary analyses using the MR ap-
proach did not suggest statistically significant associations
with rectal cancer (b¼ 0.002, P¼ .93), distal cancer (b¼ 0.023,
P¼ .19), or colorectal cancer in men (b¼ 0.021, P¼ .17), with
the MR-PRESSO method, a 1-unit increase in the genetic pre-
disposition index for chronic or aggressive periodontitis was
associated with a 2% increased risk of distal colorectal cancer
(P¼ .03) and a 2% increased risk of colorectal cancer in men
(P¼ .01). In secondary analyses including the 6 additional
SNPs with moderate evidence for an association with peri-
odontitis, none of the associations assessed with any of the
MR methods remained statistically significant (Supplementary
Table 3, available online).

We also investigated associations between genetic predisposi-
tion to having chronic or aggressive periodontitis and risk of lung
cancer stratified by histologic type (adenocarcinoma, squamous
cell, or small cell), smoker status (current or not current), and the
combination of histologic type and smoker status (Table 2). We
did not observe statistically significant associations for any of
these analyses using the primary genetic instrument or with any
of the MR methods (Supplementary Table 4, available online).
However, using the secondary genetic instrument, a 1-unit in-
crease in genetic predisposition index for chronic or aggressive
periodontitis was associated with a 34% decreased risk of small
cell lung cancer among nonsmokers (P¼ .02; Supplementary
Table 4, available online). Notably, this secondary analysis in-
cluded a very small number of cases (n¼ 64) and may thus simply
represent statistical noise (especially because the association
with the primary instrument was not statistically significant with
a b of�0.383 and a P value of .06).

For pancreatic cancer, we observed no statistically signifi-
cant associations when we stratified by sex or smoker status
(Table 3). In addition, results were similar by study design (co-
hort or case control; Supplementary Table 5, available online)
and by dataset (ie, PanScan I and II, PanScan III, and Pancreatic
Cancer Case-Control Consortium; data not shown). In general,
the main analysis results were not substantively different than
the results from the secondary analyses including the 6 addi-
tional SNPs (Supplementary Tables 5 and 6, available online);
the only exception was for a separate analysis of the PanScan
cohort studies where positive associations were observed with
pancreatic cancer using both the IVW (15% increased risk,
P¼ .02) and MR-PRESSO methods (15% increased risk, P¼ .01;
Supplementary Table 5, available online).

Discussion

Using data from several large cancer consortia and a genetic in-
strument index for predisposition to having chronic or aggres-
sive periodontal disease developed through a rigorous
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systematic selection process, we conducted the first, to our
knowledge, 2-sample MR assessment of periodontitis in relation
to the risks of developing colorectal, lung, and pancreatic can-
cer. We observed evidence that a genetic predisposition to hav-
ing chronic or aggressive periodontitis is associated with
colorectal cancer (overall, and in a subanalysis only including
women), colon cancer, and proximal colon cancer. Conversely,
our 2-sample MR results were not consistent with the

hypothesis that genetically predicted periodontal disease is
linked to lung cancer or pancreatic cancer risk.

Our observation of an MR association between genetic pre-
disposition to periodontitis and increased colorectal cancer risk
is supported by several observational studies (4,49,50), though
not all (51). Additionally, our observation that the relationship
between genetic predisposition to periodontal disease and colo-
rectal cancer risk varies by sex is supported by null associations

Table 1. Effect estimates for the association between genetic predisposition to having chronic or aggressive periodontitis and the risk of colo-
rectal, lung, and pancreatic cancer by genetic instrument and MR approach

Cancer outcome Ncases/Ncontrols Instrumenta

IVWb MR-PRESSO Simple median Weighted median
b (P) b (P) b (P) b (P)

Colorectal 58131/67347 Primary 0.025 (.03) 0.025 (.01) 0.025 (.12) 0.027 (.06)
Secondary 0.006 (.70) 0.016 (.11) 0.002 (.88) 0.025 (.05)

Colon 31083/67347 Primary 0.031 (.02) 0.031 (<.001) 0.030 (.10) 0.030 (.08)
Secondary 0.010 (.47) 0.010 (.48) 0.017 (.34) 0.027 (.07)

Rectal 15775/67347 Primary 0.002 (.93) 0.002 (.94) �0.015 (.55) 0.011 (.64)
Secondary �0.014 (.47) �0.014 (.49) �0.043 (.09) 0.004 (.87)

Lung 18082/13780 Primary 0.004 (.83) 0.004 (.76) �0.020 (.48) 0.019 (.45)
Secondary �0.006 (.75) �0.006 (.75) �0.011 (.66) 0.017 (.45)

Pancreatic 9254/12525 Primary 0.017 (.51) 0.017 (.41) 0.015 (.70) �0.007 (.85)
Secondary 0.021 (.34) 0.021 (.26) 0.055 (.11) 0.011 (.71)

aThe primary analysis included 8 SNPs (rs729876, rs1537415, rs2738058, rs12461706, rs16870060, rs2521634, rs3826782, and rs7762544). The secondary analysis included

6 additional SNPs (rs1122900, rs2064712, rs2070901, rs4970469, rs9982623, and rs9984417). IVW ¼ inverse-variance weighted; MR-PRESSO ¼ Mendelian Randomization

Pleiotropy RESidual Sum and Outlier; SNP ¼ single nucleotide polymorphism.
bThe primary Mendelian randomization method (ie, statistical test) was inverse-variance weighted (IVW) MR. We used MR-PRESSO, simple median, and weighted me-

dian as secondary analyses. Betas indicate the effect estimate for the association between a 1-unit increase in genetic predisposition to having chronic or aggressive

periodontitis and the natural log risk for each cancer outcome. All statistical tests were 2-sided.

Figure 1. Scatterplots comparing the strength of the Single Nucleotide Polymorphism (SNP)–exposure (periodontitis) and SNP–outcome (cancer risk) associations. The

lines indicate the estimated effect sizes by 4 Mendelian Randomization (MR) methods (Inverse-Variance Weighted [IVW], MR-PRESSO, simple median, and weighted

median).

Figure 2. Scatterplots comparing the strength of the Single Nucleotide Polymorphism (SNP)–exposure (periodontitis) and SNP–colorectal cancer associations. The lines

indicate the estimated effect sizes by 4 Mendelian Randomization (MR) methods (Inverse-Variance Weighted [IVW], MR-PRESSO, simple median, and weighted median).
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in an all-male cohort (52), positive associations in 1 all-female
cohort (53), and suggestive positive associations in another
small all-female cohort (n¼ 19 participants with colorectal can-
cer) (54); however, a large cohort study with clinical measure-
ments for periodontal disease reported similar positive
associations in men and women (55). More studies will need to
examine the role of sex in the association between periodontal
disease and colorectal cancer.

Plausible causal mechanisms linking periodontal disease to
colorectal cancer incidence may involve inflammatory pro-
cesses or oral microbiome shifts (dysbiosis) that migrate to ex-
tra oral sites (56,57). For example, the gram-negative
Fusobacteria is among the quantitatively dominant microorgan-
isms in dental plaque (58); it interacts with inflammatory pro-
cesses associated with periodontal disease, and it has been
identified in colorectal cancer tissue (58-60). Notably, the pro-
portion of colorectal cancer cases with high Fusobacteria varies
by location (generally observed more in proximal vs distal cases)
(61-63). Furthermore, microbiota organization (eg, presence of a
bacterial biofilm) is particularly associated with proximal colon
cancer compared with distal colon cancer (64). These observa-
tions, along with studies indicating that multiple environmen-
tal factors and mutation profiles have differential associations
by cancer location in the large bowel (65-68), support our finding

that genetic predisposition to periodontal disease may be more
likely to influence proximal colon cancer risk than distal colon
cancer or rectal cancer risk.

In contrast to meta-analyses of observational studies sug-
gesting that periodontal disease is associated with the risk of
lung and pancreatic cancer (6-8,69,70), our primary analyses did
not indicate that there were statistically significant associations
between a genetic predisposition to periodontal disease and the
risk of either lung or pancreatic cancer. Given that the effect
estimates for colorectal cancer and pancreatic cancer were sim-
ilar but we had over 6 times as many colorectal cancer cases,
our pancreatic cancer analyses may have been underpowered.
Similarly, we had over 3 times as many colorectal cancer cases
as lung cancer cases. Additionally, residual confounding by
smoking status could explain some of the differences between
our results and those from certain observational studies (espe-
cially due to the null results in our secondary analyses including
only nonsmokers) (6). The statistically significant association
we observed in 1 analysis with the secondary genetic instru-
ment using only data from PanScan cohort study participants
was most likely a chance finding, or it could suggest that other
pathways are involved that we failed to capture with our exist-
ing primary instrument. Finally, based on our overall results, it
is possible that periodontal disease is not causally involved
with lung or pancreatic cancer initiation and may instead be
linked with cancer progression. This hypothesis would be sup-
ported by evidence that cancer progression is related to in-
creased presence of certain oral bacteria common among
individuals with periodontal disease (71) or is affected by oxida-
tive stress, inflammatory, or immunological responses associ-
ated with periodontal disease (72-74). More research using
markers of periodontal disease that may affect cancer progres-
sion could provide insight into this alternative scenario.

As with all MR studies, 1 limitation of our analysis is the
potential for violations of the MR assumptions. For example,
we could not directly test for the presence (or impact of) direc-
tional pleiotropy using MR-Egger due to the small number of
genetic variants in our instrument. However, the overall con-
sistency of our primary analyses using the IVW method and
secondary analyses using different MR methods (MR-PRESSO,
simple median, and weighted median—an approach that is
less biased by the presence of directional pleiotropy) (75) sug-
gests both that directional pleiotropy is unlikely to completely
explain the results and that outliers were unlikely to substan-
tially affect the results. One exception to this general trend

Table 2. Effect estimates for the association between genetic predisposition to having chronic or aggressive periodontitisa and the risk of lung
cancer by histologic subtype and smoker status

Lung cancer

Overall Smokers Nonsmokers

(Ncontrols ¼ 13 780) (ncontrols ¼ 9084)b (ncontrols ¼ 4415)

Ncases bc (P) ncases b (P) ncases b (P)

Overall 18 082 0.004 (.83) 15 984 0.002 (.93) 1800 �0.021 (.65)
Adenocarcinoma 6730 0.025 (.31) 5639 0.029 (.32) 975 0.012 (.84)
Squamous cell 4429 �0.010 (.74) 4209 �0.019 (.54) 158 �0.040 (.77)
Small cell 1853 �0.035 (.40) 1761 �0.023 (.59) 64 �0.383 (.06)

aThe inverse-variance weighted Mendelian randomization analysis included 8 SNPs (rs729876, rs1537415, rs2738058, rs12461706, rs16870060, rs2521634, rs3826782, and

rs7762544). SNP ¼ single nucleotide polymorphism.
bControls were shared across lung cancer histologic subtypes.
cBetas indicate the effect estimate for the association between a 1-unit increase in genetic predisposition to having chronic or aggressive periodontitis and the natural

log risk for each lung cancer outcome. All statistical tests were 2-sided.

Table 3. Effect estimates for the association between genetic predis-
position to having chronic or aggressive periodontitisa and the risk
of pancreatic cancer by sex and smoker status using PanScan and
PanC4 data

Pancreatic cancer No. of cases/controls
IVW
b (P)b

Overall 9254/12 525 0.017 (.51)
Female 4243/4734 0.036 (.40)
Male 5011/7791 0.003 (.94)
Current smoker 1517/1724 0.053 (.44)
Former smoker 3286/4982 �0.008 (.88)
Never smoker 3314/5199 0.020 (.63)

aThe inverse-variance weighted (IVW) Mendelian randomization analysis in-

cluded 8 SNPs (rs729876, rs1537415, rs2738058, rs12461706, rs16870060,

rs2521634, rs3826782, and rs7762544). PanC4 ¼ Pancreatic Cancer Case-Control

Consortium; SNP ¼ single nucleotide polymorphism.
bBetas indicate the effect estimate for the association between a 1-unit increase

in genetic predisposition to having chronic or aggressive periodontitis and the

natural log risk for pancreatic cancer. All statistical tests were 2-sided.
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was observed in the analysis for colorectal cancer in men
where the effect estimates using the IVW and MR-PRESSO
methods were identical, but the association was only statisti-
cally significant using the MR-PRESSO method. Bias could also
arise due to assortative mating (ie, if parental genotypes are
correlated) (76,77). There could also be concerns about the in-
terpretability of the results (particularly with the IVW method)
if potential gene–environment interactions led to violations of
the assumption that the genetic instrument level modified
any effect of periodontitis on cancer (78) or if the association
with periodontitis did not fulfill the monotonicity assumption
for other reasons (79). Additionally, the primary phenotypes
associated with at least several of the SNPs used in the analy-
sis (eg, rs2738058, rs12461706, and rs2070901) involve inflam-
matory pathways. Because inflammation processes are likely
on a putative causal pathway between periodontal disease
and cancer risk, our choice of SNPs may introduce vertical
pleiotropy and potentially strengthen the genetic instrument.
Finally, we may have observed statistically significant associa-
tions by chance due to the multiple comparisons made, we
did not have data stratified by smoker status for colorectal
data or smoking data that distinguished former vs never
smokers for lung cancer, and our study results are only gener-
alizable to individuals of European ancestry.

Strengths of our study include the large number of cancer
cases included in each analysis, our MR approach that limited
the potential for confounding or reverse causation, and our
systematic approach to SNP selection for inclusion in our ge-
netic instrument. Previous 2-sample MR analyses that used
genetic instruments for periodontal disease (examining non-
cancer outcomes) included SNPs identified from single GWAS
articles without clear justification for using those specific
articles and SNPs (15,17). Another 2-sample MR analysis in-
cluded SNPs that were not statistically significantly associated
with periodontitis as well as SNPs that were statistically sig-
nificantly associated with the autoimmune outcomes (rheu-
matoid arthritis and systemic lupus erythematosus) in GWAS
(potentially introducing bias due to violations of the MR
assumptions) (16,80). In contrast, we examined the strength
of the evidence for an association of each SNP with periodon-
tal disease based on objective criteria (eg, inclusion of valida-
tion and replication cohorts, definition of periodontal
disease). We also quantitatively assessed our assumptions
about these criteria. Finally, our inclusion of SNPs associated
with aggressive (early onset) periodontitis may reflect the risk
of periodontal disease only rather than possible shared risk
factors of periodontal disease and cancer.

Our 2-sample MR analysis utilizing a systematically devel-
oped genetic instrument suggests that a genetic predisposi-
tion to having chronic or aggressive periodontal disease may
be associated with colorectal cancer risk. Additionally, our
results suggest confounding is unlikely to fully explain previ-
ous observational studies’ claims for an association between
periodontal disease and colorectal cancer. Our results were
not consistent with the hypothesis that a genetic predisposi-
tion to having periodontal disease is associated with lung or
pancreatic cancer risk; however, we cannot entirely rule out
the possibility that periodontal disease is associated with ei-
ther of these cancers. Taken together, our results suggest that
increased attention to preventative oral health measures and
increased cancer surveillance of patients with periodontitis
may be warranted. Future research is needed to further eluci-
date biological pathways underlying the associations between
periodontitis and cancer risk.
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