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Abstract—Learning and compression are driven by the com-
mon aim of identifying and exploiting statistical regularities in
data, which opens the door for fertile collaboration between these
areas. A promising group of compression techniques for learning
scenarios is normalised maximum likelihood (NML) coding, which
provides strong guarantees for compression of small datasets
— in contrast with more popular estimators whose guarantees
hold only in the asymptotic limit. Here we consider a NML-
based decision strategy for supervised classification problems,
and show that it attains heuristic PAC learning when applied
to a wide variety of models. Furthermore, we show that the
misclassification rate of our method is upper bounded by the
maximal leakage, a recently proposed metric to quantify the
potential of data leakage in privacy-sensitive scenarios.

Index Terms—Supervised learning; Universal Compression;
Maximal Leakage; Normalised Maximum Likelihood

I. INTRODUCTION

Since compression and learning are both based on exploiting

statistical regularities of the data, it is often possible to lever-

age compression techniques to enable novel learning methods.

Examples of successful translations abound in the literature,

including the use of universal compression methods such as

Context Tree Weighting [1] for predicting time series via

variable-order Markov chains [2].

Among the literature on universal compression, the work

of Jorma Rissanen and the Minimum Description Length

(MDL) community is particularly well-suited for statistical

learning. There are two particularly attractive aspects of the

MDL philosophy from a learning perspective (c.f. [3], [4]): a

focus on the data itself and not on assumptions about related

probabilistic models, and an emphasis on estimators that have

useful properties for finite sample sizes. These ideas lead

to the use of normalised maximum likelihood (NML) codes,

previously introduced by Shtar’kov [5], to develop universal

compression methods [6]. NML distributions provide minimax
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optimal compression features for finite sample sizes — in

contrast to e.g. distributions obtained via maximum likelihood

estimation that only have guarantees in the asymptotic regime.

Despite of their attractive properties, NML distributions

have not been much explored in the statistical learning litera-

ture. An important exception is the work reported in Refs. [7]–

[9], which leverages conditional NML (cNML) distributions

— originally introduced by Roos & Rissanen [10] — to ad-

dress a supervised learning setting. The favourable properties

of cNML-based learning strategies have been demonstrated for

the cases of linear regression [8] and deep neural networks [9].

Unfortunately, the available theoretical guarantees for the

learnability of cNML models are still limited.

Another important contribution of Rissanen was the devel-

opment of the notion of stochastic complexity, a metric of

model complexity that refines well-known model selection

procedures such as the Akaike and Bayesian Information

Criteria [6]. Stochastic complexity has a remarkable similarity

to maximal leakage, a measure introduced in Ref. [11] to quan-

tify leakage risk in privacy-sensitive scenarios. This formal

similarity is particularly intriguing given the connection that

exist between data privacy and learning: as privacy-preserving

algorithms only process general properties of datasets without

focusing on particular data samples (see [12]), they are less

likely to fall prey to overfitting. This idea was first developed

in the context of differential privacy [13], and recent reports

have shown that maximal leakage can be used to bound the

generalisation error in supervised learning scenarios [14], [15].

The goal of this paper is to establish a rigorous link between

supervised learning, NML methods, and maximal leakage. For

this, we employ a NML-based decision strategy based on

meta-universal compression principles [4, Ch. 11.2], where

the model is dynamically adapted according to the training

data. We provide an upper bound, based on maximal leakage,

to the performance gap between our NML strategy and the

(optimal) MAP criterion (Theorem 1). Furthermore, using

this bound we show that our NML strategy possesses strong

learning guarantees that hold in various contexts (Theorem 2

and Proposition 2). Importantly, while most of the MDL
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literature is based on logarithmic losses (including [7]–[9]),

our approach quantifies performance in terms of classification

accuracy, which is a more natural metric for supervised

learning scenarios.

The rest of the paper is structured as follows. Section II

introduces our supervised learning scenario and discusses

fundamental notions of universal compression and informa-

tion leakage. Section III presents our main technical results,

and Section IV summarises our conclusions. The Appendices

provide the proofs of our results, illustrate the findings in a

simple scenario, and discuss some implementation issues.

II. PRELIMINARIES

A. Scenario

Let us consider a classification task where one needs to

decide which class Y ∈ Y = {c1, . . . , cK} a given observation

X ∈ X belongs to. A hypothesis is a (possibly stochastic)

mapping h : X → Y , whose performance is measured using

the 0–1 loss function given by

Loss (y, ỹ) =

{

1 if y 6= ỹ,

0 otherwise.

The misclassification probability of x under h is calculated as

E(h;x) :=E{Loss (Y, h(X)) |X = x}
=P {Y 6= h(X)|X = x}
=1− f(h(x)|x), (1)

where f(y|x) is the conditional probability of {Y = y}
given {X = x}. The misclassification rate of h is defined as

E(h) := E{E(h;X)} = E{Loss (Y, h(X))}. The well-known

maximum-a-posteriori (MAP) rule, defined as1

hMAP(x) := argmax
y∈Y

f(y|x), (2)

can be shown to attain a minimal misclassification rate given

by E(hMAP;x) = 1 −maxy∈Y f(y|x) [16]. Unfortunately, to

build hMAP one needs precise knowledge of f(y|x), which is

rarely available in most scenarios of practical interest.

Consider now n available samples for training denoted by

z1 = (x1, y1), . . . , zn = (xn, yn), and denote the whole

dataset by zn = (z1, . . . , zn). Hypotheses that are built on

training data correspond to functions h : X ×Zn → Y , where

Z := X ×Y . Then, a hypothesis h(x, zn) can be equivalently

expressed as

hq(x, z
n) = argmax

y∈Y
q(y|x, zn), (3)

where q(y|x, zn) is a (possibly not unique) suitable conditional

probability distribution. The misclassification rate of hq is

E(hq;x, z
n) := P {Y 6= hq(X,Zn)|X = x, Zn = zn} (4)

= 1− f(hq(x, z
n)|x). (5)

Due to the optimality of hMAP, E(hMAP;x) ≤ E(hq;x, z
n)

holds for any hypotheses given by q(y|x, zn).
1In case there is more than one value of y that maximises (2), hMAP(x)

assigns one of them randomly.

B. Universal compression

While elementary compression algorithms consider data

coming from a single information source (i.e. i.i.d. data

generated from symbols in the alphabet Y according to a

given probability distribution p(y)), universal compression

approaches aim to be suitable to compress data with respect

to a statistical model class M — understood as a collection

of probability distributions. The goal is to build distributions

q that attain low values of

REGmax(M, q) := sup
p∈M

max
y∈Y

ln
p(y)

q(y)
= sup

p∈M
R(p, q), (6)

which stands for the “maximal regret” while using q to code

data related to any model p in M [4].

A remarkable result from the MDL literature is that the

minimiser of REGmax can often be written in closed form,

and is given by an NML distribution of the form

qNML,M(y) =
supp∈M p(y)

ZM
, (7)

where ZM =
∑

y∈Y supp∈M p(y) is a normalisation constant.

The minimal regret is given by

min
q

REGmax(M, q) = REGmax(M, qNML,M) = lnZM, (8)

being known as the stochastic complexity of M [6].

Note that the NML might not be well-defined if ZM

diverges. One solution to those cases is to employ sub-

models to reduce the minimal regret, since M′ ⊂ M implies

ZM′ ≤ ZM. This approach is known as meta-universal

coding, which includes a range of techniques developed in

the literature [4, Section 11.2].

C. Quantifying information leakage

Consider a variable φ that parameterises the distributions

pφ(Y ) that belong to M. We are interested in quantifying

how much information about φ can be extracted from obser-

vations of Y . Note that this highly non-trivial issue is not

properly addressed by naive applications of Shannon’s mutual

information or differential privacy criteria [17], [18].

We follow Ref. [11] and consider a random variable U
that is conditionally independent of Y given φ, and imagine

guessing U from Y via Û , so that U − φ − Y − Û forms a

Markov chain. Then, the maximal leakage between φ and Y ,

L(φ → Y ) := sup
U−φ−Y−Û

log
P{U = Û}

maxu∈U P{U = u} , (9)

characterizes the least protected secret U (that is, the worst

case over U ) of φ with respect to Y . A closed-form formula

for L(φ → Y ) is given by [18, Corollary 4]

L(φ → Y ) = log
∑

y∈Y

sup
θ∈supp(φ)

f(y|θ), (10)

with supp(φ) := {θ ∈ Θ : P{φ = θ} > 0}. This form

is equivalent to the Sibson’s mutual information of order

infinity [19], and has a number of useful properties and an

operational interpretation that are discussed in Ref. [18].



III. OPTIMIZING THE HYPOTHESIS BASED ON

META-UNIVERSAL CODING PRINCIPLES

A. Learning based on universal source coding

We first focus on a parametric model P , which is a

set of conditional distributions pθ(y|x) indexed by θ =
(θ1, . . . , θd) ∈ R

d. Following meta-universal coding principles

(c.f. Section II-B), we consider sub-models of the form

A(zn) = {pθ(·|·) ∈ P : θ ∈ Θ(zn)} ⊂ M, (11)

where Θ(zn) ⊂ R
d is a restriction in the space of parameters

that depends on the traning set zn. For the sub-model A(zn),
we define the following NML distribution:

qNML,A(y|x, zn) :=
supθ∈Θ(zn) pθ(y|x)

Z
(

x; Θ(zn)
) , (12)

with Z
(

x; Θ(zn)
)

=
∑

y∈Y supθ∈Θ(zn) pθ(y|x). Please note

that this type of NML construction has been considered before

in Ref. [7, Sec. 5]. Importantly, Z
(

x; Θ(zn)
)

< ∞ due to

the finiteness of Y , and hence qNML,A is well-defined for all

A(zn). The minimal regret attained by this NML distribution

is lnZ
(

x; Θ(zn)
)

, which corresponds to the stochastic com-

plexity of model A(zn).
When designing an NML distribution, choosing an adequate

sub-model A(zn) is critical — or, equivalently, to set adequate

parameter restrictions Θ(zn). To gain insight about the effect

of Θ(zn) on the corresponding NML distribution, let us study

the stochastic complexity of the sub-model as a form of

information leakage (c.f. Section II-C). For this, we consider

a random variable φ that takes values in a subset of the

parameter space Θ(zn) ⊂ R
d, and assume it satisfies the

Markov chain φ−Zn −X . Following Eq. (10), the maximal

leakage from φ to Y for given X = x and Zn = zn is

L(φ→ Y |x; zn) := ln







∑

y∈Y

sup
θ∈supp(φ|zn)

pθ(y|x)







, (13)

with supp(φ|zn) = {θ ∈ Θ(zn) : P {φ = θ|Zn = zn} > 0}.

This quantity has two useful properties:

1. It corresponds to a stochastic complexity: if φ is such

that supp(φ|zn) = Θ(zn), then L(φ → Y |x; zn) =
logZ

(

x; Θ(zn)
)

.

2. It is monotonous with supp(φ|zn), and does not depend

on other details of its distribution: if φ1 and φ2 are

variables such that supp(φ1|zn) ⊆ supp(φ2|zn), then

L(φ1 → Y |x; zn) ≤ L(φ2 → Y |x; zn).
Intuitively, L(φ → Y |x; zn) quantifies the information

about φ that can still be leaked from Y after x and zn have

already been given.2 Put simply, the leakage measures how

much better the training would be with n + 1 samples, by

considering all potential additional training samples of the

form zn+1 = (x, ck) with k = 1, . . . ,K . Therefore, a high

2Note that L(φ → Y |x; zn) is not a conditional leakage, but the leakage
for given values of X = x and Zn = zn. Conditional leakage has been
defined in Ref. [18].

value of L(φ→ Y |x; zn) implies that the training enabled by

zn has not saturated yet and still has room for improvement.

We make this intuition precise with the analysis carried out

below. Let us denote by qNML,φ(y|x, zn) the NML distribution

for the model P with parameters restricted to supp(φ|zn), and

consider the hypothesis given by

hNML,φ(x, z
n) = argmax

y∈Y
qNML,φ(y|x, zn) (14)

= argmax
y∈Y

sup
θ∈supp(φ|zn)

pθ(y|x). (15)

Our first result identifies upper bounds to the performance of

this hypothesis.

Theorem 1. Consider a d-dimensional parametric model P ,

and a conditional probability f(y|x). Then, for any random

variable φ ∈ R
d that depends on a dataset zn ∈ Zn, the

following bound holds:

E(hNML,φ;x, z
n)− E(hMAP;x)

≤ exp
{

∆
(

f, supp(φ|zn)
∣

∣x
)

+ L(φ→ Y |x; zn)
}

− 1 ,

where ∆(f,Θ|x) := infθ∈Θmaxy∈Y ln f(y|x)
pθ(y|x)

.

Proof. The proof proceeds in three steps. First, one proves

that for any distribution q(y|x, zn) the following bound holds:

E(hq;x, z
n)− E(hMAP;x) ≤ eR(f,q|x,zn) − 1 , (16)

where R(f, q|x, zn) := maxy∈Y ln f(y|x)
q(y|x,zn) is the redundancy

between f and q given x and the training sample zn (c.f.

Section II-B). Then, one proves a triangle inequality R(f, q) ≤
∆(f,Θ)+REGmax(A, q) for any sub-model A with parameters

in Θ ⊆ R
d. Finally, the two previous steps are combined using

q = qNML,φ and Θ = supp(φ|zn) to show the desired result.

The details of the proof can be found in Appendix A.

The above result reflects the trade-offs involved in the

design of hNML,φ: on the one hand, having a variable φ|zn
with a large support provides a big model which reduces ∆,

at the risk of introducing a substantial regret as measured by

the leakage L; on the other hand, having a reduced support of

φ|zn guarantees a small leakage, at the price of increasing

∆. This result shows, in turn, that the maximal leakage

provides a natural measure of overfitting. In effect, if the

model with variables in supp(φ|zn) is too large, then for each

class ck there exists a parameter θk ∈ supp(φ|zn) such that

pθ(ck|x) ≈ 1, and hence L ≈ log |Y|. This is an indication of

overfitting, as — rewording Ref. [20, Ch. 6] — a hypothesis

that can accommodate every possible outcome explains none

of them. On the other extreme, if argmaxθ∈supp(φ|zn) pθ(yk|x)
is approximately constant for all classes, then L ≈ 0, which

implies that the hypothesis is trustable.

We conclude this section by presenting a method to bound

L(φ → Y |x; zn) when the Fisher information matrix of the

family P is well-defined. The Fisher information matrix of

the distribution pθ(y|x) can be defined to be the d× d matrix



I(θ|x) whose component in the i-th row and j-th column is

calculated as

[

I(θ|x)
]

i,j
= E

{

∂

∂θi
ln pθ(Y |x) · ∂

∂θj
ln pθ(Y |x)

}

. (17)

The maximal eigenvalue of I(θ|x) is denoted as σmax(θ|x).
Lemma 1. If supp(φ|zn) is a convex set and the Fisher

information matrix is well-defined, then

L(φ→ Y |x; zn) ≤ ln

{

1 +

K
∑

k=2

||θk − θ1||
√

σmax(θ̃k|x)
}

,

with θi = argmaxθ∈supp(φ|zn) pθ(yi|x) for i = 1, . . . ,K with

Y = {y1, . . . , yK}, and θ̃j = τjθ1+(1−τj)θj with τj ∈ [0, 1]
for j = 2, . . . ,K .

Proof. See Appendix B.

B. Learning guarantees for well-specified models

We now consider the case where there exists a set of

parameters θ0 ∈ Θ ⊂ R
d such that f(y|x) = pθ0(y|x). Let

us focus on the case where there is a consistent estimator

θ̂ : Zn → Θ such that θ̂(Zn)
p−→ θ0. Our next result

is that, under these conditions, there exists a sequence of

random variables φn such that the hypothesis hNML,φn
attains

a form of agnostic probably approximately correct (PAC)

learning [20], [21].

Theorem 2. Consider f(y|x) = pθ0(y|x) ∈ P for some

unknown parameter θ0 ∈ Θ ⊂ R
d, and assume that there

exists a consistent estimator θ̂(Zn) of θ0. Also, assume that

the Fisher matrix of P is well-defined over all Θ, and that θ0
is an interior point. Then, for given x ∈ X and ǫ, δ > 0, there

exists a random mapping φ|θ̂ and n0 ∈ N such that

E(hNML,φ;x, z
n) ≤ E(hMAP;x) + ǫ (18)

for all n ≥ n0, where the inequality holds for all zn ∈ B ⊂
Zn with P {Zn ∈ B} ≥ 1− δ.

Proof. One builds φ as a noisy version of a consistent

estimator θ̂(zn), with the noise regulated by a parameter ρ.

By carefully choosing ρ, one can use Theorem 1 and bound

∆ using the properties of the consistent estimator, and control

the leakage L using Lemma 1. The full proof is presented in

Appendix C.

Corollary 1 (Heuristic PAC learning). If the assumptions

required by Theorem 2 hold, then for given δ, ǫ > 0 there

exists a random mapping φ|θ̂ and an n0 such that

E {E(hNML,φ;X, zn)} ≤ E {E(hMAP;X)}+ ǫ (19)

for all n ≥ n0, where the inequality holds for all zn ∈ B ⊂
Zn with P {Zn ∈ B} ≥ 1− δ.

Proof. See Appendix D.

The conditions of Theorem 2 are satisfied if P is an

exponential family (i.e. pθ(y|x) is an exponential family distri-

bution for each x ∈ X ). Also, if |X | < ∞ then any conditional

distribution f(y|x) is just a collection of 2|X | multinomial

distributions, and hence can be expressed using |Y| · 2|X |

parameters. In both cases, the corresponding parameters can

be estimated via a maximum likelihood estimator, which is

known to be consistent in these cases.3 Please note that it is

not straightforward to use our proof techniques to guarantee

heuristic PAC learning to classification based directly on θ̂

(see Appendix E).

It would be useful to find explicit expressions for the

dependency of δ, ǫ and n0. For the particular case of models

with a maximum likelihood estimator (MLE), one can prove

additional properties of the hNML,φ hypothesis. We leverage

the fact that MLEs follow a central limit theorem:
√
n
(

θ̂(zn)− θ0
)

d−→ N
(

0, I−1(θ0)
)

, (20)

with I(θ) = E{I(θ|X)} being the unconditional Fisher matrix

(with the average taken over both Y and X).

Proposition 1. Consider a d-dimensional parametric model

P with well-defined MLE θ̂(zn) and a positive-definite Fisher

matrix I(θ). Then, for given δ > 0, x ∈ X and zn ∈ Zn, the

following holds:

E(hNML,ψ;x, z
n)− E(hMAP;x) ≤ eL(ψ→Y |x;zn) − 1

≤ 1√
n
Kδ,x , (21)

where ψ := θ̂(zn) +Wρ ∈ R
d with Wρ uniformly distributed

over a ball of radius ρ = O(n−1/2) and Kδ,x is a constant

that does not depend on n.

Proof. See Appendix F.

Above, the first inequality provides a practical way to

estimate the performance gap between hNML,ψ and hMAP. In

effect, given that the radius ρ of the noise term of ψ has an

explicit value, one can estimate the leakage L. Additionally,

the second inequality states that the performance gap reduces

at least as 1/
√
n with the number of training samples.

C. Learning non-identifiable systems

In the previous section, we studied the PAC learning prop-

erties of NML estimators in the somewhat restrictive scenario

in which the target function f(y|x) belongs to the parametric

family of models under consideration. This final subsection

provides a generalisation of the main results presented above

to more widely applicable settings.

We now consider a family of parametric models P that is ca-

pable of universal approximation, in the sense of Hornik [23]:

in particular, for a given f(y|x) with reasonable properties

and ǫ > 0, we assume that there exists a subset of pa-

rameter space Θf,ǫ ⊂ R
d such that R(f, pθ) < ǫ for all

θ ∈ Θf,ǫ.
4 Additionally, we consider that the system may

3For more information about existence of consistent estimators, see [22].
4To see why a universal approximator satisfies R(f, pθ) < ǫ, consider

Theorem 1 in Ref. [24], stating that for any given target function g(x), a
parametrised approximator Gθ(x), and an ǫ > 0 there exists θ such that
|g(x)−Gθ(x)| ≤ ǫ for all x. Then, consider g = ln f and Gθ = ln pθ to
obtain the desired bound on R(f, pθ).



be non-identifiable [25], in the sense that there are multiple

θ that minimise E(hpθ
), and in general the set Θf,ǫ ⊂ R

d

might be non-convex. Moreover, we assume that there exists

a (non-ergodic) estimator that converges to Θf,ǫ in probability

for any ǫ > 0; i.e. a function θ̂ : Zn → R
d such that for all

δ, ρ > 0 there exists an n0(δ, ρ) ∈ N such that for all n > n0

there is a set B ⊂ R
d of measure P{Zn ∈ B} > 1 − δ such

that {θ ∈ R
d : ||θ − θ̂(zn)|| < ρ} ∩Θf,ǫ 6= ∅ for all zn ∈ B.

The next result shows that the desirable properties of our NML

strategy still hold in this more general context.

Proposition 2. Consider a conditional probability f(y|x),
and a universal approximator model P with well-defined

Fisher matrix and a non-ergodic estimator θ̂ that converges

in probability to Θf,ǫ for any ǫ > 0. Then, given x ∈ X and

zn ∈ Zn, for each ǫ, δ > 0, there exists n0 ∈ N and a random

mapping φ|θ̂ such that for all n > n0

E(hNML,φ;x, z
n) ≤ E(hMAP;x) + ǫ . (22)

Proof. See Appendix G.

This result generalises the main result in Theorem 2 to the

more practical setting of large non-identifiable models, like

multi-layer neural networks, showing that NML can provide

PAC guarantees even in the case of very general models.

IV. CONCLUSION

This paper provides a first step in the exploration of the

potential of meta-universal coding and maximal leakage tech-

niques for supervised learning theory. We have proposed an

approach to build hypotheses based on Normalised Maximum

Likelihood (NML) that can be applied to any standard learning

algorithm. Crucially, we showed that models evaluated with

this NML strategy attain heuristic PAC learning in a wide

variety of contexts, and for specific cases we further showed

that the performance gap between the NML approach and the

optimal strategy decreases at least with the square-root of the

number of samples.

In addition, we have provided an upper bound on the

performance of our proposed NML strategy, and showed that

this upper bound is directly determined by maximal leakage: a

quantity used in the data privacy literature that we linked to the

model’s capacity to overfit. One interesting aspect of maximal

leakage as a measure of overfitting is that it depends on the

specific input to be classified, and hence could potentially be

used to assess open problems in adversarial learning settings.

We hope this contribution may motivate further research

efforts within the fascinating interface between learning, uni-

versal compression, and data privacy.
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APPENDIX A

PROOF OF THEOREM 1

Proof. Consider the model class M = {pθ ∈ P : θ ∈
supp(φ|zn)}. By using Lemmas 2 and 3 (shown below) one

can show that

E(hNML,φ;x, z
n)− E(hMAP;x) ≤ exp

{

∆
(

f, supp(φ|zn)
)

+ REGmax

(

supp(φ|zn), qNML,φ|x, zn
)}

− 1.

The Theorem is then proven by noting that

REGmax

(

supp(φ|zn), qNML,φ|x, zn
)

= ln
{

Z
(

x; supp(φ|zn)
)}

= L(φ→ Y |x; zn),
with Z

(

x; supp(φ|zn)
)

as defined in Eq. (12).

Lemma 2. For hMAP and hq as defined in Eqs. (2) and (3),

the following holds:

E(hq;x, z
n)− E(hMAP;x) ≤ eR(f,q|x,zn) − 1,

with R(f, q|x, zn) := maxy∈Y ln f(y|x)
q(y|x,zn) .

Proof. Let us use δ := R(f, q|x, zn) as a shorthand notation

throughout the proof. Then, ln f(y|x) ≤ δ + ln q(y|x) for all

y ∈ Y . Then, one can show that

P {Y = hMAP(X)|X = x} = f(hMAP(x)|x)
≤ eδq(hMAP(x)|x, zn)
≤ eδq(hq(x, z

n)|x, zn),
where the last equality holds because hq(x, z

n) =
argmaxy∈Y q(y|x, zn). Now, note that for all y0 ∈ Y one

has that

q(y0|x, zn) = 1−
∑

y 6=y0

q(y|x, zn)

≤ 1− e−δ
∑

y 6=y0

f(y|x)

= 1− e−δ
(

1− f(y0|x)
)

.

Then, this gives

P
{

Y =hMAP(X)|X = x
}

≤ eδ
[

1− e−δ + e−δf
(

hq(x, z
n)|x

)

]

= eδ − 1 + P {Y = hq(X,Zn)|X = x, Zn = zn} ,
from where the desired result follows.

Note that R(f, q|x, zn) ≥ 0 and hence eR − 1 is non-

negative, which is consistent with the optimality of the MAP

hypothesis.

Lemma 3. For any model class M, the following bound

holds:

R(q, f |x, zn) ≤ ∆(f,M|x) + REGmax(q,M|x, zn),
with R(q, f |x, zn) as defined in Lemma 2.

Proof. First, note that

R(q, f |x, zn) = max
y∈Y

{

ln
f(y|x)
p(y|x) + ln

p(y|x)
q(y|x, zn)

}

,



which holds for all p ∈ M. This implies that

R(q, f |x, zn) = inf
p∈M

max
y∈Y

{

ln
f(y|x)
p(y|x) + ln

p(y|x)
q(y|x, zn)

}

≤ inf
p∈M

max
y∈Y

ln
f(y|x)
p(y|x) + sup

p∈M
max
y∈Y

ln
p(y|x)

q(y|x, zn) ,

proving the desired result. Note that, above, the last inequality

is a consequence of the fact that

inf
x
{f(x) + g(x)} ≤ inf

x
{f(x) + sup

x
g(x)}

= inf
x
f(x) + sup

x
g(x).

APPENDIX B

PROOF OF LEMMA 1

Proof. For the second part, let us enumerate the possible

classes as Y = {y1, . . . , yK}. Now, for given training data

zn ∈ Zn, we introduce the shorthand notation θk :=
argmaxθ∈supp(φ|zn) pθ(yk|x) for k = 1, . . . ,K . Then,

exp
{

L(φ→ Y |x, zn)
}

=

K
∑

k=1

pθk(yk|x)

= 1 +
K
∑

k=2

[

pθk(yk|x) − pθ1(yk|x)
]

≤ 1 +
K
∑

k=2

2dTV

(

pθk(y|x), pθ1(y|x)
)

≤ 1 +

K
∑

k=2

√

2D
(

pθk(y|x)||pθ1(y|x)
)

.

Above, dTV

(

p(y|x), q(y|x)
)

:= 1/2
∑

y∈Y

∣

∣p(y|x)−q(y|x)
∣

∣ is

the total variation distance, and the last inequality is a direct

application of the well-known Pinsker inequality. To finish the

proof, note that

∂iD
(

pθ(Y |x)||pθ0(Y |x)
)

∣

∣

∣

θ=θ0
= 0,

∂2
i,jD

(

pθ(Y |x)||pθ0(Y |x))
∣

∣

∣

θ=θ0
= Ii,j(θ0|x).

Therefore, a first order Taylor expansion of the Kullback-

Leibler divergence on θ centered in θ0 that expresses the

reminder according to the Lagrange form [26] gives

D
(

pθk(Y |x)||pθ1(Y |x)) = 1

2
(θk − θ1)T I(θ̃|x)(θ − θ0),

where θ̃k = τkθ1 + (1 − τk)θk for some τk ∈ (0, 1). Note

that θ̃k ∈ supp(φ|x, zn) due to the convexity of the latter. The

proof concludes by noting that

(θ − θ0)T I(θ̃;x)(θ − θ0) ≤ ||θ − θ0||2σmax(θ̃|x),

due to the properties of the maximal eigenvalue σmax(θ̃|x).

APPENDIX C

COMPLETE PROOF OF THEOREM 2

Proof. Let us consider a given x ∈ X . As θ̂ is a consistent

estimator of θ0, then for given δ, ρ > 0 there exists nθ(δ, ρ) ∈
N such that for all n ≥ nθ(δ, ρ) the following holds:

P

{

||θ̂(Zn)− θ0|| ≥ ρ
}

< δ .

This implies that B := {zn ∈ Zn : ||θ̂(zn)−θ0|| < ρ} satisfies

P {Zn ∈ B} ≥ 1−δ. Also, by defining φ = θ̂(Zn)+Wρ with

Wρ distributing uniformly over B(ρ) = {θ ∈ R
d : ||θ|| < ρ},

then θ0 ∈ supp(φ|zn) for all zn ∈ B. This implies, in turn,

that ∆(f, supp(φ|zn)|x) = 0. Therefore, using Theorem 1 one

finds that for all zn ∈ B the following inequality holds:

E(hNML,φ;x, z
n)−E(hMAP;x) ≤ exp

{

L(φ→ Y |x; zn)
}

−1.
(23)

To build a bound on L(φ→ Y |x; zn), let us define

σ(ρ)
max

(

θ0|x
)

:= sup
||θ−θ0||<ρ

σmax(θ|x). (24)

By using the fact that ||θ̃ − θ|| < 2ρ for any θ̃, θ ∈
supp(φ|zn), a direct application of Lemma 1 shows that

exp
{

L(φ→ Y |x; zn)
}

≤ 1 + 2ρK

√

σ
(ρ)
max

(

θ̂(zn)|x
)

. (25)

Finally, for given δ, ǫ > 0 one calculates

ρǫ(x, z
n) = min{ǫ, ǫ/Cǫ(x; zn)}

with Cǫ(x; z
n) := 2K

√

σ
(ǫ)
max

(

θ̂(zn)|x
)

, which is well defined

for small ǫsien la as θ0 is an interior point. Then, noting that

ρ ≤ ǫ implies that σ
(ρ)
max

(

θ̂(zn|x)
)

≤ σ
(ǫ)
max

(

θ̂(zn|x)
)

, one can

find that for all n ≥ nθ
(

ρǫ(x; z
n), δ

)

it is guaranteed that

E(hNML,φ;x, z
n)− E(hMAP;x) ≤ ǫ,

where the inequality holds for all zn ∈ B.

APPENDIX D

PROOF OF COROLLARY 1

Proof. Let us denote as T(θ|x) := ∑d
i=1

[

I(θ|x)
]

i,i
the trace

of I(θ|x), and T(θ) = E{T(θ|X)}. Moreover, let us define

T(ρ)(θ0|x) := sup
||θ−θ0||<ρ

T(θ|x) . (26)

Then, by considering Eqs. (23) and (25) and noting that

σmax(θ|x) ≤ T(θ|x), one can show that

E {E(hNML,φ;X, zn)}−E {E(hMAP;X)}

≤ 2ρKE

{

√

σ
(ρ)
max

(

θ̂(zn);X
)

}

≤ 2ρKE

{

√

T(ρ)
(

θ̂(zn);X
)

}

≤ 2ρK

√

T(ρ)
(

θ̂(zn)
)

.

The last step uses the well-known Jensen inequality. Fi-

nally, the corollary is proven by selecting ρǫ(z
n) =

min{ǫ, ǫ/Dǫ(zn)} with Dǫ(z
n) := 2K

√

T(ǫ)
(

θ̂(zn)
)

.



APPENDIX E

PLUG-IN HYPOTHESIS DOES NOT GUARANTEE

HEURISTIC PAC LEARNING

Consider the plug-in hypothesis, which corresponds to our

NML strategy with φ = θ̂ and hence hNML,φ = hp
θ̂
. Here

we show that our proof of heuristic PAC learning cannot be

applied — at least directly — to this case.

Let us consider how Theorem 1 could be used in this

scenario. As in this case φ defines a particularly narrow

model, i.e. supp(φ|zn) = {θ̂}, then is direct to verify

that L(φ → Y |x, zn) = 0 and ∆
(

pθ0 , supp(φ|zn)|x
)

=

maxy∈Y ln f(y|x)/p
θ̂
(y|x). While the consistency of θ̂ guar-

antees the convergence to zero of ∆
(

pθ0 , supp(φ|zn)|x
)

for

each x ∈ X , guaranteeing stronger types of convergence

(which would be needed to prove heuristic PAC learning)

is not straightforward. In particular, notice that to guarantee

the convergence of supx∈X ∆
(

f, supp(φ|zn)|x
)

to zero as n
grows, as one would need a function C(θ) such that for large

n the following holds for all x ∈ X , y ∈ Y:

ln pθ0(y|x) − ln p
θ̂
(y|x) ≤ C(θ0) · ||θ0 − θ̂||. (27)

However, if the cardinality of X is infinite, it is possible to

build examples where no such C(θ) exists, even if p
θ̂
(y|x) →

pθ0(y|x) for each x ∈ X , y ∈ Y . This is a consequence of the

fact that the derivative of the logarithm is unbounded within

the interval (0, 1).

APPENDIX F

PROOF OF PROPOSITION 1

Proof. Under appropriate assumptions, the MLE θ̂(Zn) satis-

fies the Berry-Esseen bound [27]
∣

∣

∣

∣

P

{

∥

∥

∥

√
nI1/2(θ0)

(

θ̂(Zn)− θ0
)∥

∥

∥

2

≤ G−1
d (t)

}

− t

∣

∣

∣

∣

≤ c√
n
,

where Gd(·) is the CDF of the chi-squared distribution with d
degrees of freedom, and c is an absolute constant. Therefore,

using the fact that
√

σmin(θ0) · ||θ̂(Zn)− θ0|| ≤ ||I1/2(θ0)
(

θ̂(Zn)− θ0
)

||,

one can show that

P

{

nσmin(θ0)
∥

∥

∥
θ̂(Zn)− θ0

∥

∥

∥

2

≤ G−1
d (t)

}

≥ t− c√
n
.

Then, by taking t = 1 − δ + cn−1/2, and assuming that n is

large enough so that t ∈ [0, 1], then one can find that

P







∥

∥

∥
θ̂(Zn)− θ0

∥

∥

∥
≤

√

G−1
d (1 − δ + cn−1/2)

nσmin(θ0)







≥ 1− δ.

Note that σmin(θ0) > 0 because I(θ0) is assumed to be

positive definite.

Therefore, by considering ψ := θ̂(zn) + W with W
uniformly distributed over a ball of radius

ρn :=

√

G−1
d (1− δ + cn−1/2)

nσmin(θ0)
, (28)

then θ0 ∈ supp(ψ|zn) for all zn ∈ B ⊂ Zn with

P {Zn ∈ B} = 1 − δ. Then, ∆(supp(ψ|zn), f) = 0 for all

zn ∈ B, and hence the first inequality in (21) can be proven

using Theorem 1.

For proving the second inequality, note that a direct appli-

cation of Lemma 1 shows that

exp
{

L(ψ → Y |x; zn)
}

≤ 1 +
2√
n
·

√

σ
(ρn)
max

(

θ̂(zn)|x
)

σmin(θ0)
,

with σ
(ρ)
max defined as in Eq. (24). Furthermore, by noting that

by construction of ρn it is guaranteed that ||θ̂(Zn)−θ0|| ≤ ρn
with probability 1 − δ, then σ

(ρn)
max

(

θ̂(zn)|x
)

≤ σ
(2ρn)
max

(

θ0|x
)

,

which in turn implies that

exp
{

L(ψ → Y |x; zn)
}

≤ 1 +
2√
n
·

√

σ
(2ρn)
max

(

θ0|x
)

σmin(θ0)
.

Finally, the proof concludes by noting that ρn, and hence also

σ
(ρn)
max , decrease with n.

APPENDIX G

PROOF OF PROPOSITION 2

Proof. Let us consider ǫ, δ > 0, and define φ := θ̂(Zn) +
Wρ ∈ R

d with Wρ distributed uniformly over a d-dimensional

ball of radius ρ > 0. By the properties of θ̂, there exists

n0(δ, ρ) ∈ N such that for all n > n0 then there exists θ0 ∈
Θf ∩ supp(φ|zn), for all zn ∈ B with P{Zn ∈ B} > 1 − δ.

Then, it is direct to check that ∆
(

f, supp(φ|zn)
)

< ǫ0 for all

zn ∈ B. Additionally, following the proof of Theorem 2 (in

particular, the derivation that leads to Eq.(25)), one can check

that the fact that supp(φ|zn) has a bounded support implies

that

exp
{

L(φ→ Y |x; zn)
}

≤ 1 + 2ρK

√

σ
(ρ)
max

(

θ̂(zn)|x
)

,

with σ
(ρ)
max(θ|x) as defined in Eq. (24).

With these results at hand, let us now choose

ρ(x; zn) = min{ǫ0, ǫ0/Cǫ0(x; z
n)} with Cǫ0(x; z

n) :=

2K

√

σ
(ǫ0)
max

(

θ̂(zn)|x
)

. Using these results and Theorem 1,

and the fact that ex ≈ 1 + x for 1 ≫ |x|, one finds that for

all n > n0

(

δ, ρ(x; zn)
)

then

E(hNML,φ;x, z
n)− E(hMAP;x) ≤e∆(f,supp(φ|zn))eL(φ→Y |x;zn)

− 1

≤2ǫ0 + ǫ20.

Finally, the proof concludes by selecting ǫ0 such that

2ǫ0 + ǫ20 < ǫ. (29)
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