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Abstract. The novel Hot Forming and cold die Quenching (HFQ®) process can provide cost-
effective and complex deep drawn solutions through high strength aluminium alloys. However, 
the unfamiliarity of the new process prevents its widescale adoption in industrial settings, 
while accurate Finite Element (FE) simulations using the most advanced material models take 
place late in design processes and require forming process expertise. Machine learning 
technologies have recently been proven successful in learning complex system behaviour from 
representative examples and have the potential to be used as design support tools for new 
forming technologies such as HFQ®. This study, for the first time, presents a novel application 
of a Convolutional Neural Network (CNN) based surrogate to predict the deformation and 
thinning fields for variable deep drawn geometries formed using HFQ® technology. A dataset 
based on deep drawn geometries and corresponding FE results is generated and used to train 
the model. The results show that near indistinguishable full field predictions in real time are 
obtained from the surrogate when compared with HFQ® simulations. This technique can be 
adopted in industrial settings to aid in both concept and detailed component design for 
complex-shaped panel components formed under HFQ® conditions, without underlying 
knowledge of the forming process. 

1.  Introduction 
Nowadays, the transportation sector is recognized as a significant contributor to the ever-growing 
concerns surrounding global environmental impact. Recent figures by the Office for National Statistics 
reveal that transport is responsible for 28% of all greenhouse gas emissions in the United Kingdom 
[1]. Besides using alternatives to carbon-intensive power trains, vehicle lightweighting is one of the 
most effective strategies to reduce vehicle use-phase emissions [2].  
 

Aluminium alloys are a family of lightweight metals beginning to find widespread application in 
the automotive industry. The exceptional strength to weight ratio makes the high strength aluminium 
alloys particularly attractive, with the potential to replace equivalent heavier steels traditionally used 
[2]. However, aluminium alloys exhibit poor formability under cold working conditions and display a 
significant degree of springback once the forming tools are removed [3]. To overcome these 
limitations, the novel Hot Forming and cold die Quenching (HFQ®) process has been developed by 
Lin et al. [4]. A summary of the HFQ® process is seen in Figure 1, and described further in [5].  
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Figure 1. A summary of the HFQ® forming 
process: aluminium blanks are heated to their 
Solution Heat Treatment (SHT) temperature 
before being formed and quenched by cold 
tools, highlighting the non-isothermal nature 
of the process [6]. 

 
Due to the increased material formability at elevated temperatures, HFQ® enables complex deep 

drawn shapes with tight radii to be formed from high strength aluminium alloys [5]. However, during 
the industrial exploitation process, it has been observed that the uptake of HFQ® technology is limited 
by its lack of familiarity among industrial designers. Developments made in published literature focus 
on advanced material models [5,7–9] that predict the material constitutive behaviour and forming 
limits under HFQ® conditions. These models are then used to accurately simulate the forming 
response of HFQ® formed components using Finite Element (FE) simulations [10]. Though useful, 
forming simulations usually take place late in design processes [11] and require significant process 
expertise. Consequently, more familiar cold formed, or higher embedded CO2 solutions may be used 
instead, meaning the potential weight saving and design capabilities of HFQ® are not fully realized. 
To realize its full potential, HFQ® technology should be adopted from the onset of a design process.  

 
The advent of machine learning (ML) in recent times has introduced a means for the establishment 

of time efficient process models. Fundamentally, ML approaches can learn complex system dynamics 
from simulation data using a dataset comprising of input-target examples, known as training. Once 
training is complete, the models can be used for rapid prediction of system behaviour from unseen 
input data [12]. Such models are often referred to as surrogate models or metamodels in literature. 

 
ML technologies based on FE simulation data have been widely used to support the design for 

manufacture of sheet forming processes. As typical examples, Ambrogio et al. [13] employed a 
Kringing surrogate model technique to establish a relationship between incremental sheet forming 
processing parameters and final sheet thickness. Harsch et al. [14] used surrogate models to construct 
forming window maps for a cold stamping process. Zimmerling et al. [15] went further and extended 
their model predictions to variable geometries. They established an easy to evaluate Gaussian Process 
regressor which can predict the maximum fabric shear angle in a composite forming process for 
geometries unseen during training. However, the above techniques are limited to scenarios where the 
inputs can be parameterized using relatively few parameters. Hundreds of forming simulations may be 
carried out by engineering companies every day which result in an accumulation of large engineering 
datasets, which may not share common CAD parameterizations, especially for complex geometries. 
Such data therefore cannot be exploited using parametric methods.  

 
In addition to the above limitations, available FE simulation data is usually condensed to a single 

scalar such as maximum strain, resulting in information loss as mentioned by Zhou, Li & Xu [16]. 
Other references predict full FE field data from all elements in a FE mesh using deep neural networks 
(DNNs). For example, Liang et al. [17] established a DNN based model to predict the entire stress 
distribution in FE models of a human thoracic aorta and Pfrommer et al. [18] used DNNs to predict 
shear angles from over 24,000 elements in textile forming simulations. However, these models predict 
the element wise simulation results; the element type, numbering strategy and position must be 
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common between the training data and the model predictions. This mesh dependency impedes 
generalization in forming applications, since components are of different shapes and sizes. 

 
Recently, researchers have turned to Convolutional Neural Networks (CNNs) in conjunction with 

image-based representations of boundary conditions and FE results, to detach from element wise 
dependencies when constructing surrogate models of FE simulations [19–25]. CNNs are a particular 
class of neural networks that have gained popularity when working with spatially structured data such 
as grids or images. Nie, Jiang & Kara [26] used CNNs to predict the stress fields in 2D cantilever 
structures deforming elastically. Thuerey et al. [27] predicted fluid flow solutions over varying airfoil 
shapes at different flow conditions. Cheng et al. [23] predicted spatial and temporal tsunami wave 
fluid solutions. These studies show that CNNs provide strong predictive capabilities when modelling 
highly non-linear physical systems, analogous to HFQ®. The complex non-isothermal nature of the 
HFQ® process together with the strain-rate dependency of aluminium alloys at elevated temperatures 
[5,7] make the process a challenging physical system to accurately model using surrogate techniques.  

 
The purpose of this study is to present a novel application of a CNN based surrogate to predict the 

deformation and thinning fields in real time for variable deep drawn geometries formed using HFQ® 
technology. A comprehensive CNN based surrogate of the FE process is constructed, suitable for use 
by component designers during early design phases. This approach enables rapid prediction of full 
field forming responses for complex HFQ® formed geometries without specific CAD parametric 
schemes, FE mesh dependencies or underlaying knowledge of the forming process. It is to be noted 
that this technique can also be applied to simpler and more familiar cold forming processes. 
Consequently, this paper provides an invaluable design support tool, enabling designers to become 
familiar with how thinning fields change under HFQ® conditions due to variations in component 
geometric features, and compare solutions obtained from different forming technologies in real time.  

2.  Data acquisition 
Prior to training the CNN based model, data in the form of geometries and corresponding simulation 
HFQ® simulation results is required. Details concerning the dataset used in this study and data 
preparation for network training are discussed in this section.  

2.1.  Geometry definition and design of experiments 
Deep drawn box geometries were considered in this study, which are widely adopted but challenging 
geometries to form. More specifically, flanged shrink corners are investigated, which are formed when 
blank material is drawn into a plan view radius that is smaller than the blank corner radius, as 
described by Horton et al. [11]. Due to their symmetry, quarter boxes were modelled, with a half side 
length of 500mm. Table 1 shows details of the parameterisation scheme employed to generate CAD 
geometries.   
 

Table 1. Geometric parameters, bounds and example geometries 

Geometric Parameters Symbol Description Bounds Example Geometries 

 

𝑟ௗ௜௘ Die radius 5 -30 mm 

 

𝑟௣௨௡௖௛ Punch radius 5-30 mm 

𝑟௣௟௔௡ Plan view 
radius 

40-120 mm 

𝐻 Design height 50-150 mm 
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As a first study, a database consisting of 1800 geometries was built. To ensure good distribution of 
geometries within the design space, the Latin hypercube design of experiments (DoE) technique was 
employed. The generation of the tool and blank CAD variants was automated using the VBA 
programming language in SolidWorks. Upper and lower bounds for each geometric parameter, shown 
in Table 1, were assigned during the automation scheme.  Further, filtering rules were applied to 
preserve geometric integrity during the automation process as described by Ramnath et al. [28,29].  

2.2.  HFQ® forming simulations 
FE models were built based on the generated CAD models and the FE solver PAM-STAMP was used 
to simulate the non-isothermal deep drawing processes. To capture the material constitutive behaviour 
under HFQ® conditions, the FE simulations used viscoplastic material data for AA6082 under various 
temperatures and strain rates, adapted from El Fakir [30], shown in Figure 2. The initial blank 
temperature was set to 500°C for AA6082 [5], while the tools were set to 25°C. Simulation setup 
parameters, such as friction and heat transfer coefficients were assumed identical to those used in [30]. 
 

  
(a) (b) 

Figure 2. Temperature and rate dependant stress-strain material data for AA6082 used in HFQ® simulations. 

2.3.  CNN training data pre-processing 
An undercut free geometry is a necessary requirement to avoid collision with forming tools. Both the 
3D die geometry and 2D blank can therefore be projected onto a 2D planes without spatial information 
loss. The 2D plane used was a cartesian grid (i.e. image) of a fine 512*512 pixel resolution to capture 
small geometric features on the tool, such as sharp tool radii. Geometry height and thickness contours 
were used as the out of plane dimension for the die and blank images respectively. An example is 
shown in Figure 3. These images served as the input data for the CNN training and evaluation.  

 

Figure 3. Image 
representation of 
input data for CNN 
training and 
evaluation: 3D die 
geometries and 
blanks are 
projected onto a 
2D images.  

The target data was prepared in a similar manner. Nodal displacement fields in x y and z directions, 
together with thinning fields at the final forming step were extracted from all the deep drawing 
simulations. This data was then plotted on the 2D undeformed blank and projected onto 2D cartesian 
grids of resolution 256*256, which resulted in image representations of the simulation results. A 
representative example is shown in Figure 4, corresponding to the input data seen in Figure 3. 
 



40th International Deep-Drawing Research Group Conference (IDDRG 2021)
IOP Conf. Series: Materials Science and Engineering 1157  (2021) 012079

IOP Publishing
doi:10.1088/1757-899X/1157/1/012079

5

 
 
 
 
 
 

 
Figure 4. Image representation of target data for CNN training and evaluation: FE simulation results plotted on 
the undeformed blank and projected onto 2D images. Displacement colour scale in mm, image x-y axis in pixels. 

3.  Neural network architecture and training 
A Res-SE-U-Net architecture was employed as the CNN based surrogate model in this study, shown in 
Figure 5. Res-SE-U-Nets have recently been proven to display exceptional performance in image-to-
image mapping tasks in several studies [16,21,22]. This architecture consists of a down sampling 
encoder comprising of convolutional layers, bottleneck with Res-SE layers and an up-sampling 
decoder comprising of up convolutional layers. Details on Res-SE layers can be found in [31,32]. The 
encoder-decoder structure with the skip connections which copy and concatenate intermediate feature 
maps are typical features of U-net architectures, introduced in [33]. Batch normalisation (BN) layers 
followed by a ReLU activation layer were used after all convolution operations in the encoder and 
decoder. Kernel size, stride and padding for all convolutional operations were selected such that 
feature maps with powers of 2 spatial dimensions were established throughout the network.  

 

 
Figure 5. Res-SE-U-Net architecture of the neural network: a U-Net structure with Res-SE architectural blocks 
at its bottleneck. 

The dataset contained 1800 unique instances of die and blank geometry images as inputs, and 
corresponding FE simulation results images as targets, and followed a random 90% training and 10% 
testing data split. Each input image was of size 2*512*512, with the 2 representing a die geometry 
channel and a blank shape channel. As for the target images, the thinning images were of size 
1*256*256 and the displacement images were of size 3*256*256, with the 3 representing x y and z 
displacements. Separate Res-SE-U-Nets were trained on input-thinning and input-displacement data 
pairs to prevent the sharing of network weights which would otherwise occur if both types of outputs 
were to be predicted simultaneously by a single network. These networks both followed an identical 
architecture to Figure 5 but varied only in the output channel size, as seen in the figure.  

 
The models were trained using the commonly recommended Adam optimiser with default 

parameters using the PyTorch framework. Through an iterative training process, the optimiser sought 
to find the combination of network parameters such that the mean square error between the ground 
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truth (i.e. real target) images and network predictions was minimised. In this way, the network was 
able to learn a function that can predict the HFQ® simulation results given a new corner geometry.  

4.  Network performance evaluation  
After the networks finished training, their performance was evaluated by comparing the network 
predictions with ground truths based on HFQ® FE simulations. Figure 6 compares ground truth 
thinning distributions with those predicted by the network from five randomly sampled cases from the 
test dataset. These distributions were obtained by presenting images of new geometries to the network, 
as inputs, which were unseen during training. A good agreement between ground truths and network 
predictions can be seen.  

 
Figure 6. Comparison of thinning distributions between ground truths and network predictions, and their pixel 
wise differences, for five random test set cases. Contours plotted on undeformed blank geometry. 

Similar comparison between the 2D x, y, and z displacement fields were also made where equally 
good predictions were seen and are presented in the Appendix. By applying the 2D displacement 
vector fields to uniform cartesian grids, 3D representations of the as-formed components were 
generated. The thinning fields were then be superimposed, and a comparison between the network 
predictions and ground truths for Case 1 and Case 5 from Figure 6 can be seen in Figure 7.  
 

 
Figure 7. 3D as-formed components with thinning distributions from HFQ® FE simulations and ones predicted 
by the networks in real time for Case 1 and Case 5 in Figure 6. 
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5.  Robustness to corrupt samples in the training set 
Residual errors of maximum thinning values and mean thinning values from the thinning distributions 
between ground truths and network predictions for all samples were calculated and plotted in Figure 8. 
The majority of samples lie close to zero error when evaluating both max values and distribution mean 
values, suggesting near indistinguishable distributions, as seen in Figure 7. However, a small number 
of samples show large outlier error peaks. These samples were further investigated.  
 

  
(a) (b) 

Figure 8. Spectrums of thinning distribution residuals (a) maximum values and (b) mean values between ground 
truths and network predictions for samples in the complete dataset. 

Inspecting the data responsible for the error peaks revealed that these errors were due to corrupt 
samples present in the training data. The FE models responsible for these samples used improper mesh 
sizes. The slave surface (blank) element size was larger than the master surface (tools) element size, 
resulting in numerical errors when resolving the contact conditions during the FE computation, leading 
to mesh distortions. The FE computations for the corrupt samples were redone using a finer blank 
mesh size which led to reasonable results. A representative example is shown in Figure 9. 
Remarkably, the original network prediction matched the corrected FE simulation result, even though 
it was presented with the corrupt samples during training. For practical applications, it is imperative to 
ensure an outlier-free dataset is used, however this exercise suggests that the network did indeed learn 
the underlying distributions from the HFQ® data and was therefore robust to spurious outliers.  

 

 
Figure 9. Large pixel-wise differences between ground truth sample and original network prediction due to 
numerical errors in the ground truth sample. Network was able to evade the corrupt sample during training and 
produced a sound prediction.  
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6.  Conclusions 
HFQ® is a new hot stamping technology that can provide a means of deep drawing complex panel 
components from high strength aluminium alloys. However, the uptake of HFQ® is limited by its 
unfamiliarity among industrial designers. In response, this paper presents a novel design support tool 
for HFQ® applications. A CNN based surrogate was employed which proved capable of learning the 
underlying distributions from HFQ® forming simulation data. Post form thinning and displacement 
distributions were predicted by the networks which not only allowed for a 3D as-formed 
representation in real time but were near indistinguishable from the FE simulation counterparts. The 
network can therefore provide a fast component feasibility assessment during early stage design 
without demanding intricate underlying knowledge of the HFQ® process from component designers. 
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Appendix 

 
Figure A1. Comparison of x displacement distributions in mm with between ground truth network prediction, 
and pixel wise differences for five random test set cases. Contours plotted on undeformed blank geometry. 

 
Figure A2. Comparison of y displacement distributions in mm with between ground truth network prediction, 
and pixel wise differences for five random test set cases. Contours plotted on undeformed blank geometry. 
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Figure A3. Comparison of z displacement distributions in mm with between ground truth network prediction, 
and pixel wise differences for five random test set cases. Contours plotted on undeformed blank geometry. 
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